2007-01-03 Paul Brook <paul@codesourcery.com>
[official-gcc.git] / gcc / config / xtensa / xtensa.h
blobd1fe0220b983561d895efcd33b13f9fcf09c45b1
1 /* Definitions of Tensilica's Xtensa target machine for GNU compiler.
2 Copyright 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* Get Xtensa configuration settings */
23 #include "xtensa-config.h"
25 /* Standard GCC variables that we reference. */
26 extern int current_function_calls_alloca;
27 extern int optimize;
29 /* External variables defined in xtensa.c. */
31 /* comparison type */
32 enum cmp_type {
33 CMP_SI, /* four byte integers */
34 CMP_DI, /* eight byte integers */
35 CMP_SF, /* single precision floats */
36 CMP_DF, /* double precision floats */
37 CMP_MAX /* max comparison type */
40 extern struct rtx_def * branch_cmp[2]; /* operands for compare */
41 extern enum cmp_type branch_type; /* what type of branch to use */
42 extern unsigned xtensa_current_frame_size;
44 /* Macros used in the machine description to select various Xtensa
45 configuration options. */
46 #ifndef XCHAL_HAVE_MUL32_HIGH
47 #define XCHAL_HAVE_MUL32_HIGH 0
48 #endif
49 #define TARGET_BIG_ENDIAN XCHAL_HAVE_BE
50 #define TARGET_DENSITY XCHAL_HAVE_DENSITY
51 #define TARGET_MAC16 XCHAL_HAVE_MAC16
52 #define TARGET_MUL16 XCHAL_HAVE_MUL16
53 #define TARGET_MUL32 XCHAL_HAVE_MUL32
54 #define TARGET_MUL32_HIGH XCHAL_HAVE_MUL32_HIGH
55 #define TARGET_DIV32 XCHAL_HAVE_DIV32
56 #define TARGET_NSA XCHAL_HAVE_NSA
57 #define TARGET_MINMAX XCHAL_HAVE_MINMAX
58 #define TARGET_SEXT XCHAL_HAVE_SEXT
59 #define TARGET_BOOLEANS XCHAL_HAVE_BOOLEANS
60 #define TARGET_HARD_FLOAT XCHAL_HAVE_FP
61 #define TARGET_HARD_FLOAT_DIV XCHAL_HAVE_FP_DIV
62 #define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
63 #define TARGET_HARD_FLOAT_SQRT XCHAL_HAVE_FP_SQRT
64 #define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
65 #define TARGET_ABS XCHAL_HAVE_ABS
66 #define TARGET_ADDX XCHAL_HAVE_ADDX
68 #define TARGET_DEFAULT ( \
69 (XCHAL_HAVE_L32R ? 0 : MASK_CONST16))
71 #define OVERRIDE_OPTIONS override_options ()
73 /* Reordering blocks for Xtensa is not a good idea unless the compiler
74 understands the range of conditional branches. Currently all branch
75 relaxation for Xtensa is handled in the assembler, so GCC cannot do a
76 good job of reordering blocks. Do not enable reordering unless it is
77 explicitly requested. */
78 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
79 do \
80 { \
81 flag_reorder_blocks = 0; \
82 } \
83 while (0)
86 /* Target CPU builtins. */
87 #define TARGET_CPU_CPP_BUILTINS() \
88 do { \
89 builtin_assert ("cpu=xtensa"); \
90 builtin_assert ("machine=xtensa"); \
91 builtin_define ("__xtensa__"); \
92 builtin_define ("__XTENSA__"); \
93 builtin_define ("__XTENSA_WINDOWED_ABI__"); \
94 builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
95 if (!TARGET_HARD_FLOAT) \
96 builtin_define ("__XTENSA_SOFT_FLOAT__"); \
97 } while (0)
99 #define CPP_SPEC " %(subtarget_cpp_spec) "
101 #ifndef SUBTARGET_CPP_SPEC
102 #define SUBTARGET_CPP_SPEC ""
103 #endif
105 #define EXTRA_SPECS \
106 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
108 #ifdef __XTENSA_EB__
109 #define LIBGCC2_WORDS_BIG_ENDIAN 1
110 #else
111 #define LIBGCC2_WORDS_BIG_ENDIAN 0
112 #endif
114 /* Show we can debug even without a frame pointer. */
115 #define CAN_DEBUG_WITHOUT_FP
118 /* Target machine storage layout */
120 /* Define this if most significant bit is lowest numbered
121 in instructions that operate on numbered bit-fields. */
122 #define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
124 /* Define this if most significant byte of a word is the lowest numbered. */
125 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
127 /* Define this if most significant word of a multiword number is the lowest. */
128 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
130 #define MAX_BITS_PER_WORD 32
132 /* Width of a word, in units (bytes). */
133 #define UNITS_PER_WORD 4
134 #define MIN_UNITS_PER_WORD 4
136 /* Width of a floating point register. */
137 #define UNITS_PER_FPREG 4
139 /* Size in bits of various types on the target machine. */
140 #define INT_TYPE_SIZE 32
141 #define SHORT_TYPE_SIZE 16
142 #define LONG_TYPE_SIZE 32
143 #define LONG_LONG_TYPE_SIZE 64
144 #define FLOAT_TYPE_SIZE 32
145 #define DOUBLE_TYPE_SIZE 64
146 #define LONG_DOUBLE_TYPE_SIZE 64
148 /* Allocation boundary (in *bits*) for storing pointers in memory. */
149 #define POINTER_BOUNDARY 32
151 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
152 #define PARM_BOUNDARY 32
154 /* Allocation boundary (in *bits*) for the code of a function. */
155 #define FUNCTION_BOUNDARY 32
157 /* Alignment of field after 'int : 0' in a structure. */
158 #define EMPTY_FIELD_BOUNDARY 32
160 /* Every structure's size must be a multiple of this. */
161 #define STRUCTURE_SIZE_BOUNDARY 8
163 /* There is no point aligning anything to a rounder boundary than this. */
164 #define BIGGEST_ALIGNMENT 128
166 /* Set this nonzero if move instructions will actually fail to work
167 when given unaligned data. */
168 #define STRICT_ALIGNMENT 1
170 /* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
171 for QImode, because there is no 8-bit load from memory with sign
172 extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
173 loads both with and without sign extension. */
174 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
175 do { \
176 if (GET_MODE_CLASS (MODE) == MODE_INT \
177 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
179 if ((MODE) == QImode) \
180 (UNSIGNEDP) = 1; \
181 (MODE) = SImode; \
183 } while (0)
185 /* Imitate the way many other C compilers handle alignment of
186 bitfields and the structures that contain them. */
187 #define PCC_BITFIELD_TYPE_MATTERS 1
189 /* Disable the use of word-sized or smaller complex modes for structures,
190 and for function arguments in particular, where they cause problems with
191 register a7. The xtensa_copy_incoming_a7 function assumes that there is
192 a single reference to an argument in a7, but with small complex modes the
193 real and imaginary components may be extracted separately, leading to two
194 uses of the register, only one of which would be replaced. */
195 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
196 ((MODE) == CQImode || (MODE) == CHImode)
198 /* Align string constants and constructors to at least a word boundary.
199 The typical use of this macro is to increase alignment for string
200 constants to be word aligned so that 'strcpy' calls that copy
201 constants can be done inline. */
202 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
203 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
204 && (ALIGN) < BITS_PER_WORD \
205 ? BITS_PER_WORD \
206 : (ALIGN))
208 /* Align arrays, unions and records to at least a word boundary.
209 One use of this macro is to increase alignment of medium-size
210 data to make it all fit in fewer cache lines. Another is to
211 cause character arrays to be word-aligned so that 'strcpy' calls
212 that copy constants to character arrays can be done inline. */
213 #undef DATA_ALIGNMENT
214 #define DATA_ALIGNMENT(TYPE, ALIGN) \
215 ((((ALIGN) < BITS_PER_WORD) \
216 && (TREE_CODE (TYPE) == ARRAY_TYPE \
217 || TREE_CODE (TYPE) == UNION_TYPE \
218 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
220 /* Operations between registers always perform the operation
221 on the full register even if a narrower mode is specified. */
222 #define WORD_REGISTER_OPERATIONS
224 /* Xtensa loads are zero-extended by default. */
225 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
227 /* Standard register usage. */
229 /* Number of actual hardware registers.
230 The hardware registers are assigned numbers for the compiler
231 from 0 to just below FIRST_PSEUDO_REGISTER.
232 All registers that the compiler knows about must be given numbers,
233 even those that are not normally considered general registers.
235 The fake frame pointer and argument pointer will never appear in
236 the generated code, since they will always be eliminated and replaced
237 by either the stack pointer or the hard frame pointer.
239 0 - 15 AR[0] - AR[15]
240 16 FRAME_POINTER (fake = initial sp)
241 17 ARG_POINTER (fake = initial sp + framesize)
242 18 BR[0] for floating-point CC
243 19 - 34 FR[0] - FR[15]
244 35 MAC16 accumulator */
246 #define FIRST_PSEUDO_REGISTER 36
248 /* Return the stabs register number to use for REGNO. */
249 #define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
251 /* 1 for registers that have pervasive standard uses
252 and are not available for the register allocator. */
253 #define FIXED_REGISTERS \
255 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
256 1, 1, 0, \
257 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
258 0, \
261 /* 1 for registers not available across function calls.
262 These must include the FIXED_REGISTERS and also any
263 registers that can be used without being saved.
264 The latter must include the registers where values are returned
265 and the register where structure-value addresses are passed.
266 Aside from that, you can include as many other registers as you like. */
267 #define CALL_USED_REGISTERS \
269 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
270 1, 1, 1, \
271 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
272 1, \
275 /* For non-leaf procedures on Xtensa processors, the allocation order
276 is as specified below by REG_ALLOC_ORDER. For leaf procedures, we
277 want to use the lowest numbered registers first to minimize
278 register window overflows. However, local-alloc is not smart
279 enough to consider conflicts with incoming arguments. If an
280 incoming argument in a2 is live throughout the function and
281 local-alloc decides to use a2, then the incoming argument must
282 either be spilled or copied to another register. To get around
283 this, we define ORDER_REGS_FOR_LOCAL_ALLOC to redefine
284 reg_alloc_order for leaf functions such that lowest numbered
285 registers are used first with the exception that the incoming
286 argument registers are not used until after other register choices
287 have been exhausted. */
289 #define REG_ALLOC_ORDER \
290 { 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \
291 18, \
292 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
293 0, 1, 16, 17, \
294 35, \
297 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
299 /* For Xtensa, the only point of this is to prevent GCC from otherwise
300 giving preference to call-used registers. To minimize window
301 overflows for the AR registers, we want to give preference to the
302 lower-numbered AR registers. For other register files, which are
303 not windowed, we still prefer call-used registers, if there are any. */
304 extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
305 #define LEAF_REGISTERS xtensa_leaf_regs
307 /* For Xtensa, no remapping is necessary, but this macro must be
308 defined if LEAF_REGISTERS is defined. */
309 #define LEAF_REG_REMAP(REGNO) (REGNO)
311 /* This must be declared if LEAF_REGISTERS is set. */
312 extern int leaf_function;
314 /* Internal macros to classify a register number. */
316 /* 16 address registers + fake registers */
317 #define GP_REG_FIRST 0
318 #define GP_REG_LAST 17
319 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
321 /* Coprocessor registers */
322 #define BR_REG_FIRST 18
323 #define BR_REG_LAST 18
324 #define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
326 /* 16 floating-point registers */
327 #define FP_REG_FIRST 19
328 #define FP_REG_LAST 34
329 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
331 /* MAC16 accumulator */
332 #define ACC_REG_FIRST 35
333 #define ACC_REG_LAST 35
334 #define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
336 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
337 #define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
338 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
339 #define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
341 /* Return number of consecutive hard regs needed starting at reg REGNO
342 to hold something of mode MODE. */
343 #define HARD_REGNO_NREGS(REGNO, MODE) \
344 (FP_REG_P (REGNO) ? \
345 ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
346 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
348 /* Value is 1 if hard register REGNO can hold a value of machine-mode
349 MODE. */
350 extern char xtensa_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
352 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
353 xtensa_hard_regno_mode_ok[(int) (MODE)][(REGNO)]
355 /* Value is 1 if it is a good idea to tie two pseudo registers
356 when one has mode MODE1 and one has mode MODE2.
357 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
358 for any hard reg, then this must be 0 for correct output. */
359 #define MODES_TIEABLE_P(MODE1, MODE2) \
360 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
361 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
362 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
363 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
365 /* Register to use for pushing function arguments. */
366 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
368 /* Base register for access to local variables of the function. */
369 #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 7)
371 /* The register number of the frame pointer register, which is used to
372 access automatic variables in the stack frame. For Xtensa, this
373 register never appears in the output. It is always eliminated to
374 either the stack pointer or the hard frame pointer. */
375 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
377 /* Value should be nonzero if functions must have frame pointers.
378 Zero means the frame pointer need not be set up (and parms
379 may be accessed via the stack pointer) in functions that seem suitable.
380 This is computed in 'reload', in reload1.c. */
381 #define FRAME_POINTER_REQUIRED xtensa_frame_pointer_required ()
383 /* Base register for access to arguments of the function. */
384 #define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
386 /* If the static chain is passed in memory, these macros provide rtx
387 giving 'mem' expressions that denote where they are stored.
388 'STATIC_CHAIN' and 'STATIC_CHAIN_INCOMING' give the locations as
389 seen by the calling and called functions, respectively. */
391 #define STATIC_CHAIN \
392 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, -5 * UNITS_PER_WORD))
394 #define STATIC_CHAIN_INCOMING \
395 gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -5 * UNITS_PER_WORD))
397 /* For now we don't try to use the full set of boolean registers. Without
398 software pipelining of FP operations, there's not much to gain and it's
399 a real pain to get them reloaded. */
400 #define FPCC_REGNUM (BR_REG_FIRST + 0)
402 /* It is as good or better to call a constant function address than to
403 call an address kept in a register. */
404 #define NO_FUNCTION_CSE 1
406 /* Xtensa processors have "register windows". GCC does not currently
407 take advantage of the possibility for variable-sized windows; instead,
408 we use a fixed window size of 8. */
410 #define INCOMING_REGNO(OUT) \
411 ((GP_REG_P (OUT) && \
412 ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
413 (OUT) - WINDOW_SIZE : (OUT))
415 #define OUTGOING_REGNO(IN) \
416 ((GP_REG_P (IN) && \
417 ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
418 (IN) + WINDOW_SIZE : (IN))
421 /* Define the classes of registers for register constraints in the
422 machine description. */
423 enum reg_class
425 NO_REGS, /* no registers in set */
426 BR_REGS, /* coprocessor boolean registers */
427 FP_REGS, /* floating point registers */
428 ACC_REG, /* MAC16 accumulator */
429 SP_REG, /* sp register (aka a1) */
430 RL_REGS, /* preferred reload regs (not sp or fp) */
431 GR_REGS, /* integer registers except sp */
432 AR_REGS, /* all integer registers */
433 ALL_REGS, /* all registers */
434 LIM_REG_CLASSES /* max value + 1 */
437 #define N_REG_CLASSES (int) LIM_REG_CLASSES
439 #define GENERAL_REGS AR_REGS
441 /* An initializer containing the names of the register classes as C
442 string constants. These names are used in writing some of the
443 debugging dumps. */
444 #define REG_CLASS_NAMES \
446 "NO_REGS", \
447 "BR_REGS", \
448 "FP_REGS", \
449 "ACC_REG", \
450 "SP_REG", \
451 "RL_REGS", \
452 "GR_REGS", \
453 "AR_REGS", \
454 "ALL_REGS" \
457 /* Contents of the register classes. The Nth integer specifies the
458 contents of class N. The way the integer MASK is interpreted is
459 that register R is in the class if 'MASK & (1 << R)' is 1. */
460 #define REG_CLASS_CONTENTS \
462 { 0x00000000, 0x00000000 }, /* no registers */ \
463 { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
464 { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
465 { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
466 { 0x00000002, 0x00000000 }, /* stack pointer register */ \
467 { 0x0000ff7d, 0x00000000 }, /* preferred reload registers */ \
468 { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
469 { 0x0003ffff, 0x00000000 }, /* integer registers */ \
470 { 0xffffffff, 0x0000000f } /* all registers */ \
473 /* A C expression whose value is a register class containing hard
474 register REGNO. In general there is more that one such class;
475 choose a class which is "minimal", meaning that no smaller class
476 also contains the register. */
477 extern const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER];
479 #define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class[ (REGNO) ]
481 /* Use the Xtensa AR register file for base registers.
482 No index registers. */
483 #define BASE_REG_CLASS AR_REGS
484 #define INDEX_REG_CLASS NO_REGS
486 /* SMALL_REGISTER_CLASSES is required for Xtensa, because all of the
487 16 AR registers may be explicitly used in the RTL, as either
488 incoming or outgoing arguments. */
489 #define SMALL_REGISTER_CLASSES 1
491 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
492 xtensa_preferred_reload_class (X, CLASS, 0)
494 #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
495 xtensa_preferred_reload_class (X, CLASS, 1)
497 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
498 xtensa_secondary_reload_class (CLASS, MODE, X, 0)
500 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
501 xtensa_secondary_reload_class (CLASS, MODE, X, 1)
503 /* Return the maximum number of consecutive registers
504 needed to represent mode MODE in a register of class CLASS. */
505 #define CLASS_UNITS(mode, size) \
506 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
508 #define CLASS_MAX_NREGS(CLASS, MODE) \
509 (CLASS_UNITS (MODE, UNITS_PER_WORD))
512 /* Stack layout; function entry, exit and calling. */
514 #define STACK_GROWS_DOWNWARD
516 /* Offset within stack frame to start allocating local variables at. */
517 #define STARTING_FRAME_OFFSET \
518 current_function_outgoing_args_size
520 /* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
521 they are eliminated to either the stack pointer or hard frame pointer. */
522 #define ELIMINABLE_REGS \
523 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
524 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
525 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
526 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
528 #define CAN_ELIMINATE(FROM, TO) 1
530 /* Specify the initial difference between the specified pair of registers. */
531 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
532 do { \
533 compute_frame_size (get_frame_size ()); \
534 switch (FROM) \
536 case FRAME_POINTER_REGNUM: \
537 (OFFSET) = 0; \
538 break; \
539 case ARG_POINTER_REGNUM: \
540 (OFFSET) = xtensa_current_frame_size; \
541 break; \
542 default: \
543 gcc_unreachable (); \
545 } while (0)
547 /* If defined, the maximum amount of space required for outgoing
548 arguments will be computed and placed into the variable
549 'current_function_outgoing_args_size'. No space will be pushed
550 onto the stack for each call; instead, the function prologue
551 should increase the stack frame size by this amount. */
552 #define ACCUMULATE_OUTGOING_ARGS 1
554 /* Offset from the argument pointer register to the first argument's
555 address. On some machines it may depend on the data type of the
556 function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
557 location above the first argument's address. */
558 #define FIRST_PARM_OFFSET(FNDECL) 0
560 /* Align stack frames on 128 bits for Xtensa. This is necessary for
561 128-bit datatypes defined in TIE (e.g., for Vectra). */
562 #define STACK_BOUNDARY 128
564 /* Functions do not pop arguments off the stack. */
565 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
567 /* Use a fixed register window size of 8. */
568 #define WINDOW_SIZE 8
570 /* Symbolic macros for the registers used to return integer, floating
571 point, and values of coprocessor and user-defined modes. */
572 #define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
573 #define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
575 /* Symbolic macros for the first/last argument registers. */
576 #define GP_ARG_FIRST (GP_REG_FIRST + 2)
577 #define GP_ARG_LAST (GP_REG_FIRST + 7)
578 #define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
579 #define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
581 #define MAX_ARGS_IN_REGISTERS 6
583 /* Don't worry about compatibility with PCC. */
584 #define DEFAULT_PCC_STRUCT_RETURN 0
586 /* Define how to find the value returned by a library function
587 assuming the value has mode MODE. Because we have defined
588 TARGET_PROMOTE_FUNCTION_RETURN that returns true, we have to
589 perform the same promotions as PROMOTE_MODE. */
590 #define XTENSA_LIBCALL_VALUE(MODE, OUTGOINGP) \
591 gen_rtx_REG ((GET_MODE_CLASS (MODE) == MODE_INT \
592 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
593 ? SImode : (MODE), \
594 OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
596 #define LIBCALL_VALUE(MODE) \
597 XTENSA_LIBCALL_VALUE ((MODE), 0)
599 #define LIBCALL_OUTGOING_VALUE(MODE) \
600 XTENSA_LIBCALL_VALUE ((MODE), 1)
602 /* Define how to find the value returned by a function.
603 VALTYPE is the data type of the value (as a tree).
604 If the precise function being called is known, FUNC is its FUNCTION_DECL;
605 otherwise, FUNC is 0. */
606 #define XTENSA_FUNCTION_VALUE(VALTYPE, FUNC, OUTGOINGP) \
607 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
608 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
609 ? SImode: TYPE_MODE (VALTYPE), \
610 OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
612 #define FUNCTION_VALUE(VALTYPE, FUNC) \
613 XTENSA_FUNCTION_VALUE (VALTYPE, FUNC, 0)
615 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
616 XTENSA_FUNCTION_VALUE (VALTYPE, FUNC, 1)
618 /* A C expression that is nonzero if REGNO is the number of a hard
619 register in which the values of called function may come back. A
620 register whose use for returning values is limited to serving as
621 the second of a pair (for a value of type 'double', say) need not
622 be recognized by this macro. If the machine has register windows,
623 so that the caller and the called function use different registers
624 for the return value, this macro should recognize only the caller's
625 register numbers. */
626 #define FUNCTION_VALUE_REGNO_P(N) \
627 ((N) == GP_RETURN)
629 /* A C expression that is nonzero if REGNO is the number of a hard
630 register in which function arguments are sometimes passed. This
631 does *not* include implicit arguments such as the static chain and
632 the structure-value address. On many machines, no registers can be
633 used for this purpose since all function arguments are pushed on
634 the stack. */
635 #define FUNCTION_ARG_REGNO_P(N) \
636 ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
638 /* Record the number of argument words seen so far, along with a flag to
639 indicate whether these are incoming arguments. (FUNCTION_INCOMING_ARG
640 is used for both incoming and outgoing args, so a separate flag is
641 needed. */
642 typedef struct xtensa_args
644 int arg_words;
645 int incoming;
646 } CUMULATIVE_ARGS;
648 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
649 init_cumulative_args (&CUM, 0)
651 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
652 init_cumulative_args (&CUM, 1)
654 /* Update the data in CUM to advance over an argument
655 of mode MODE and data type TYPE.
656 (TYPE is null for libcalls where that information may not be available.) */
657 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
658 function_arg_advance (&CUM, MODE, TYPE)
660 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
661 function_arg (&CUM, MODE, TYPE, FALSE)
663 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
664 function_arg (&CUM, MODE, TYPE, TRUE)
666 #define FUNCTION_ARG_BOUNDARY function_arg_boundary
668 /* Profiling Xtensa code is typically done with the built-in profiling
669 feature of Tensilica's instruction set simulator, which does not
670 require any compiler support. Profiling code on a real (i.e.,
671 non-simulated) Xtensa processor is currently only supported by
672 GNU/Linux with glibc. The glibc version of _mcount doesn't require
673 counter variables. The _mcount function needs the current PC and
674 the current return address to identify an arc in the call graph.
675 Pass the current return address as the first argument; the current
676 PC is available as a0 in _mcount's register window. Both of these
677 values contain window size information in the two most significant
678 bits; we assume that _mcount will mask off those bits. The call to
679 _mcount uses a window size of 8 to make sure that it doesn't clobber
680 any incoming argument values. */
682 #define NO_PROFILE_COUNTERS 1
684 #define FUNCTION_PROFILER(FILE, LABELNO) \
685 do { \
686 fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
687 if (flag_pic) \
689 fprintf (FILE, "\tmovi\ta8, _mcount@PLT\n"); \
690 fprintf (FILE, "\tcallx8\ta8\n"); \
692 else \
693 fprintf (FILE, "\tcall8\t_mcount\n"); \
694 } while (0)
696 /* Stack pointer value doesn't matter at exit. */
697 #define EXIT_IGNORE_STACK 1
699 /* A C statement to output, on the stream FILE, assembler code for a
700 block of data that contains the constant parts of a trampoline.
701 This code should not include a label--the label is taken care of
702 automatically.
704 For Xtensa, the trampoline must perform an entry instruction with a
705 minimal stack frame in order to get some free registers. Once the
706 actual call target is known, the proper stack frame size is extracted
707 from the entry instruction at the target and the current frame is
708 adjusted to match. The trampoline then transfers control to the
709 instruction following the entry at the target. Note: this assumes
710 that the target begins with an entry instruction. */
712 /* minimum frame = reg save area (4 words) plus static chain (1 word)
713 and the total number of words must be a multiple of 128 bits */
714 #define MIN_FRAME_SIZE (8 * UNITS_PER_WORD)
716 #define TRAMPOLINE_TEMPLATE(STREAM) \
717 do { \
718 fprintf (STREAM, "\t.begin no-transform\n"); \
719 fprintf (STREAM, "\tentry\tsp, %d\n", MIN_FRAME_SIZE); \
721 /* save the return address */ \
722 fprintf (STREAM, "\tmov\ta10, a0\n"); \
724 /* Use a CALL0 instruction to skip past the constants and in the \
725 process get the PC into A0. This allows PC-relative access to \
726 the constants without relying on L32R, which may not always be \
727 available. */ \
729 fprintf (STREAM, "\tcall0\t.Lskipconsts\n"); \
730 fprintf (STREAM, "\t.align\t4\n"); \
731 fprintf (STREAM, ".Lchainval:%s0\n", integer_asm_op (4, TRUE)); \
732 fprintf (STREAM, ".Lfnaddr:%s0\n", integer_asm_op (4, TRUE)); \
733 fprintf (STREAM, ".Lskipconsts:\n"); \
735 /* store the static chain */ \
736 fprintf (STREAM, "\taddi\ta0, a0, 3\n"); \
737 fprintf (STREAM, "\tl32i\ta8, a0, 0\n"); \
738 fprintf (STREAM, "\ts32i\ta8, sp, %d\n", MIN_FRAME_SIZE - 20); \
740 /* set the proper stack pointer value */ \
741 fprintf (STREAM, "\tl32i\ta8, a0, 4\n"); \
742 fprintf (STREAM, "\tl32i\ta9, a8, 0\n"); \
743 fprintf (STREAM, "\textui\ta9, a9, %d, 12\n", \
744 TARGET_BIG_ENDIAN ? 8 : 12); \
745 fprintf (STREAM, "\tslli\ta9, a9, 3\n"); \
746 fprintf (STREAM, "\taddi\ta9, a9, %d\n", -MIN_FRAME_SIZE); \
747 fprintf (STREAM, "\tsub\ta9, sp, a9\n"); \
748 fprintf (STREAM, "\tmovsp\tsp, a9\n"); \
750 /* restore the return address */ \
751 fprintf (STREAM, "\tmov\ta0, a10\n"); \
753 /* jump to the instruction following the entry */ \
754 fprintf (STREAM, "\taddi\ta8, a8, 3\n"); \
755 fprintf (STREAM, "\tjx\ta8\n"); \
756 fprintf (STREAM, "\t.byte\t0\n"); \
757 fprintf (STREAM, "\t.end no-transform\n"); \
758 } while (0)
760 /* Size in bytes of the trampoline, as an integer. Make sure this is
761 a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings. */
762 #define TRAMPOLINE_SIZE 60
764 /* Alignment required for trampolines, in bits. */
765 #define TRAMPOLINE_ALIGNMENT (32)
767 /* A C statement to initialize the variable parts of a trampoline. */
768 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
769 do { \
770 rtx addr = ADDR; \
771 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 12)), CHAIN); \
772 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 16)), FUNC); \
773 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_sync_caches"), \
774 0, VOIDmode, 1, addr, Pmode); \
775 } while (0)
777 /* Implement `va_start' for varargs and stdarg. */
778 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
779 xtensa_va_start (valist, nextarg)
781 /* If defined, a C expression that produces the machine-specific code
782 to setup the stack so that arbitrary frames can be accessed.
784 On Xtensa, a stack back-trace must always begin from the stack pointer,
785 so that the register overflow save area can be located. However, the
786 stack-walking code in GCC always begins from the hard_frame_pointer
787 register, not the stack pointer. The frame pointer is usually equal
788 to the stack pointer, but the __builtin_return_address and
789 __builtin_frame_address functions will not work if count > 0 and
790 they are called from a routine that uses alloca. These functions
791 are not guaranteed to work at all if count > 0 so maybe that is OK.
793 A nicer solution would be to allow the architecture-specific files to
794 specify whether to start from the stack pointer or frame pointer. That
795 would also allow us to skip the machine->accesses_prev_frame stuff that
796 we currently need to ensure that there is a frame pointer when these
797 builtin functions are used. */
799 #define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
801 /* A C expression whose value is RTL representing the address in a
802 stack frame where the pointer to the caller's frame is stored.
803 Assume that FRAMEADDR is an RTL expression for the address of the
804 stack frame itself.
806 For Xtensa, there is no easy way to get the frame pointer if it is
807 not equivalent to the stack pointer. Moreover, the result of this
808 macro is used for continuing to walk back up the stack, so it must
809 return the stack pointer address. Thus, there is some inconsistency
810 here in that __builtin_frame_address will return the frame pointer
811 when count == 0 and the stack pointer when count > 0. */
813 #define DYNAMIC_CHAIN_ADDRESS(frame) \
814 gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
816 /* Define this if the return address of a particular stack frame is
817 accessed from the frame pointer of the previous stack frame. */
818 #define RETURN_ADDR_IN_PREVIOUS_FRAME
820 /* A C expression whose value is RTL representing the value of the
821 return address for the frame COUNT steps up from the current
822 frame, after the prologue. */
823 #define RETURN_ADDR_RTX xtensa_return_addr
825 /* Addressing modes, and classification of registers for them. */
827 /* C expressions which are nonzero if register number NUM is suitable
828 for use as a base or index register in operand addresses. It may
829 be either a suitable hard register or a pseudo register that has
830 been allocated such a hard register. The difference between an
831 index register and a base register is that the index register may
832 be scaled. */
834 #define REGNO_OK_FOR_BASE_P(NUM) \
835 (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
837 #define REGNO_OK_FOR_INDEX_P(NUM) 0
839 /* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
840 valid for use as a base or index register. For hard registers, it
841 should always accept those which the hardware permits and reject
842 the others. Whether the macro accepts or rejects pseudo registers
843 must be controlled by `REG_OK_STRICT'. This usually requires two
844 variant definitions, of which `REG_OK_STRICT' controls the one
845 actually used. The difference between an index register and a base
846 register is that the index register may be scaled. */
848 #ifdef REG_OK_STRICT
850 #define REG_OK_FOR_INDEX_P(X) 0
851 #define REG_OK_FOR_BASE_P(X) \
852 REGNO_OK_FOR_BASE_P (REGNO (X))
854 #else /* !REG_OK_STRICT */
856 #define REG_OK_FOR_INDEX_P(X) 0
857 #define REG_OK_FOR_BASE_P(X) \
858 ((REGNO (X) >= FIRST_PSEUDO_REGISTER) || (GP_REG_P (REGNO (X))))
860 #endif /* !REG_OK_STRICT */
862 /* Maximum number of registers that can appear in a valid memory address. */
863 #define MAX_REGS_PER_ADDRESS 1
865 /* Identify valid Xtensa addresses. */
866 #define GO_IF_LEGITIMATE_ADDRESS(MODE, ADDR, LABEL) \
867 do { \
868 rtx xinsn = (ADDR); \
870 /* allow constant pool addresses */ \
871 if ((MODE) != BLKmode && GET_MODE_SIZE (MODE) >= UNITS_PER_WORD \
872 && !TARGET_CONST16 && constantpool_address_p (xinsn)) \
873 goto LABEL; \
875 while (GET_CODE (xinsn) == SUBREG) \
876 xinsn = SUBREG_REG (xinsn); \
878 /* allow base registers */ \
879 if (GET_CODE (xinsn) == REG && REG_OK_FOR_BASE_P (xinsn)) \
880 goto LABEL; \
882 /* check for "register + offset" addressing */ \
883 if (GET_CODE (xinsn) == PLUS) \
885 rtx xplus0 = XEXP (xinsn, 0); \
886 rtx xplus1 = XEXP (xinsn, 1); \
887 enum rtx_code code0; \
888 enum rtx_code code1; \
890 while (GET_CODE (xplus0) == SUBREG) \
891 xplus0 = SUBREG_REG (xplus0); \
892 code0 = GET_CODE (xplus0); \
894 while (GET_CODE (xplus1) == SUBREG) \
895 xplus1 = SUBREG_REG (xplus1); \
896 code1 = GET_CODE (xplus1); \
898 /* swap operands if necessary so the register is first */ \
899 if (code0 != REG && code1 == REG) \
901 xplus0 = XEXP (xinsn, 1); \
902 xplus1 = XEXP (xinsn, 0); \
903 code0 = GET_CODE (xplus0); \
904 code1 = GET_CODE (xplus1); \
907 if (code0 == REG && REG_OK_FOR_BASE_P (xplus0) \
908 && code1 == CONST_INT \
909 && xtensa_mem_offset (INTVAL (xplus1), (MODE))) \
911 goto LABEL; \
914 } while (0)
916 /* A C expression that is 1 if the RTX X is a constant which is a
917 valid address. This is defined to be the same as 'CONSTANT_P (X)',
918 but rejecting CONST_DOUBLE. */
919 #define CONSTANT_ADDRESS_P(X) \
920 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
921 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
922 || (GET_CODE (X) == CONST)))
924 /* Nonzero if the constant value X is a legitimate general operand.
925 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
926 #define LEGITIMATE_CONSTANT_P(X) 1
928 /* A C expression that is nonzero if X is a legitimate immediate
929 operand on the target machine when generating position independent
930 code. */
931 #define LEGITIMATE_PIC_OPERAND_P(X) \
932 ((GET_CODE (X) != SYMBOL_REF \
933 || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X))) \
934 && GET_CODE (X) != LABEL_REF \
935 && GET_CODE (X) != CONST)
937 /* Tell GCC how to use ADDMI to generate addresses. */
938 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
939 do { \
940 rtx xinsn = (X); \
941 if (GET_CODE (xinsn) == PLUS) \
943 rtx plus0 = XEXP (xinsn, 0); \
944 rtx plus1 = XEXP (xinsn, 1); \
946 if (GET_CODE (plus0) != REG && GET_CODE (plus1) == REG) \
948 plus0 = XEXP (xinsn, 1); \
949 plus1 = XEXP (xinsn, 0); \
952 if (GET_CODE (plus0) == REG \
953 && GET_CODE (plus1) == CONST_INT \
954 && !xtensa_mem_offset (INTVAL (plus1), MODE) \
955 && !xtensa_simm8 (INTVAL (plus1)) \
956 && xtensa_mem_offset (INTVAL (plus1) & 0xff, MODE) \
957 && xtensa_simm8x256 (INTVAL (plus1) & ~0xff)) \
959 rtx temp = gen_reg_rtx (Pmode); \
960 emit_insn (gen_rtx_SET (Pmode, temp, \
961 gen_rtx_PLUS (Pmode, plus0, \
962 GEN_INT (INTVAL (plus1) & ~0xff)))); \
963 (X) = gen_rtx_PLUS (Pmode, temp, \
964 GEN_INT (INTVAL (plus1) & 0xff)); \
965 goto WIN; \
968 } while (0)
971 /* Treat constant-pool references as "mode dependent" since they can
972 only be accessed with SImode loads. This works around a bug in the
973 combiner where a constant pool reference is temporarily converted
974 to an HImode load, which is then assumed to zero-extend based on
975 our definition of LOAD_EXTEND_OP. This is wrong because the high
976 bits of a 16-bit value in the constant pool are now sign-extended
977 by default. */
979 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
980 do { \
981 if (constantpool_address_p (ADDR)) \
982 goto LABEL; \
983 } while (0)
985 /* Specify the machine mode that this machine uses
986 for the index in the tablejump instruction. */
987 #define CASE_VECTOR_MODE (SImode)
989 /* Define this as 1 if 'char' should by default be signed; else as 0. */
990 #define DEFAULT_SIGNED_CHAR 0
992 /* Max number of bytes we can move from memory to memory
993 in one reasonably fast instruction. */
994 #define MOVE_MAX 4
995 #define MAX_MOVE_MAX 4
997 /* Prefer word-sized loads. */
998 #define SLOW_BYTE_ACCESS 1
1000 /* Shift instructions ignore all but the low-order few bits. */
1001 #define SHIFT_COUNT_TRUNCATED 1
1003 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1004 is done just by pretending it is already truncated. */
1005 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1007 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
1008 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
1010 /* Specify the machine mode that pointers have.
1011 After generation of rtl, the compiler makes no further distinction
1012 between pointers and any other objects of this machine mode. */
1013 #define Pmode SImode
1015 /* A function address in a call instruction is a word address (for
1016 indexing purposes) so give the MEM rtx a words's mode. */
1017 #define FUNCTION_MODE SImode
1019 /* A C expression for the cost of moving data from a register in
1020 class FROM to one in class TO. The classes are expressed using
1021 the enumeration values such as 'GENERAL_REGS'. A value of 2 is
1022 the default; other values are interpreted relative to that. */
1023 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
1024 (((FROM) == (TO) && (FROM) != BR_REGS && (TO) != BR_REGS) \
1025 ? 2 \
1026 : (reg_class_subset_p ((FROM), AR_REGS) \
1027 && reg_class_subset_p ((TO), AR_REGS) \
1028 ? 2 \
1029 : (reg_class_subset_p ((FROM), AR_REGS) \
1030 && (TO) == ACC_REG \
1031 ? 3 \
1032 : ((FROM) == ACC_REG \
1033 && reg_class_subset_p ((TO), AR_REGS) \
1034 ? 3 \
1035 : 10))))
1037 #define MEMORY_MOVE_COST(MODE, CLASS, IN) 4
1039 #define BRANCH_COST 3
1041 /* How to refer to registers in assembler output.
1042 This sequence is indexed by compiler's hard-register-number (see above). */
1043 #define REGISTER_NAMES \
1045 "a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
1046 "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
1047 "fp", "argp", "b0", \
1048 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
1049 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
1050 "acc" \
1053 /* If defined, a C initializer for an array of structures containing a
1054 name and a register number. This macro defines additional names
1055 for hard registers, thus allowing the 'asm' option in declarations
1056 to refer to registers using alternate names. */
1057 #define ADDITIONAL_REGISTER_NAMES \
1059 { "a1", 1 + GP_REG_FIRST } \
1062 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1063 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1065 /* Recognize machine-specific patterns that may appear within
1066 constants. Used for PIC-specific UNSPECs. */
1067 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
1068 do { \
1069 if (flag_pic && GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1) \
1071 switch (XINT ((X), 1)) \
1073 case UNSPEC_PLT: \
1074 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
1075 fputs ("@PLT", (STREAM)); \
1076 break; \
1077 default: \
1078 goto FAIL; \
1080 break; \
1082 else \
1083 goto FAIL; \
1084 } while (0)
1086 /* Globalizing directive for a label. */
1087 #define GLOBAL_ASM_OP "\t.global\t"
1089 /* Declare an uninitialized external linkage data object. */
1090 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1091 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
1093 /* This is how to output an element of a case-vector that is absolute. */
1094 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
1095 fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
1096 LOCAL_LABEL_PREFIX, VALUE)
1098 /* This is how to output an element of a case-vector that is relative.
1099 This is used for pc-relative code. */
1100 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
1101 do { \
1102 fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
1103 LOCAL_LABEL_PREFIX, (VALUE), \
1104 LOCAL_LABEL_PREFIX, (REL)); \
1105 } while (0)
1107 /* This is how to output an assembler line that says to advance the
1108 location counter to a multiple of 2**LOG bytes. */
1109 #define ASM_OUTPUT_ALIGN(STREAM, LOG) \
1110 do { \
1111 if ((LOG) != 0) \
1112 fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
1113 } while (0)
1115 /* Indicate that jump tables go in the text section. This is
1116 necessary when compiling PIC code. */
1117 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
1120 /* Define the strings to put out for each section in the object file. */
1121 #define TEXT_SECTION_ASM_OP "\t.text"
1122 #define DATA_SECTION_ASM_OP "\t.data"
1123 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
1126 /* Define output to appear before the constant pool. */
1127 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
1128 do { \
1129 if ((SIZE) > 0) \
1131 resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
1132 switch_to_section (function_section (FUNDECL)); \
1133 fprintf (FILE, "\t.literal_position\n"); \
1135 } while (0)
1138 /* A C statement (with or without semicolon) to output a constant in
1139 the constant pool, if it needs special treatment. */
1140 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
1141 do { \
1142 xtensa_output_literal (FILE, X, MODE, LABELNO); \
1143 goto JUMPTO; \
1144 } while (0)
1146 /* How to start an assembler comment. */
1147 #define ASM_COMMENT_START "#"
1149 /* Exception handling TODO!! */
1150 #define DWARF_UNWIND_INFO 0
1152 /* Xtensa constant pool breaks the devices in crtstuff.c to control
1153 section in where code resides. We have to write it as asm code. Use
1154 a MOVI and let the assembler relax it -- for the .init and .fini
1155 sections, the assembler knows to put the literal in the right
1156 place. */
1157 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
1158 asm (SECTION_OP "\n\
1159 movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
1160 callx8\ta8\n" \
1161 TEXT_SECTION_ASM_OP);