1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 #include "coretypes.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
39 #include "basic-block.h"
43 #ifndef STACK_PUSH_CODE
44 #ifdef STACK_GROWS_DOWNWARD
45 #define STACK_PUSH_CODE PRE_DEC
47 #define STACK_PUSH_CODE PRE_INC
51 #ifndef STACK_POP_CODE
52 #ifdef STACK_GROWS_DOWNWARD
53 #define STACK_POP_CODE POST_INC
55 #define STACK_POP_CODE POST_DEC
59 static void validate_replace_rtx_1 (rtx
*, rtx
, rtx
, rtx
);
60 static rtx
*find_single_use_1 (rtx
, rtx
*);
61 static void validate_replace_src_1 (rtx
*, void *);
62 static rtx
split_insn (rtx
);
64 /* Nonzero means allow operands to be volatile.
65 This should be 0 if you are generating rtl, such as if you are calling
66 the functions in optabs.c and expmed.c (most of the time).
67 This should be 1 if all valid insns need to be recognized,
68 such as in regclass.c and final.c and reload.c.
70 init_recog and init_recog_no_volatile are responsible for setting this. */
74 struct recog_data recog_data
;
76 /* Contains a vector of operand_alternative structures for every operand.
77 Set up by preprocess_constraints. */
78 struct operand_alternative recog_op_alt
[MAX_RECOG_OPERANDS
][MAX_RECOG_ALTERNATIVES
];
80 /* On return from `constrain_operands', indicate which alternative
83 int which_alternative
;
85 /* Nonzero after end of reload pass.
86 Set to 1 or 0 by toplev.c.
87 Controls the significance of (SUBREG (MEM)). */
91 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
92 int epilogue_completed
;
94 /* Initialize data used by the function `recog'.
95 This must be called once in the compilation of a function
96 before any insn recognition may be done in the function. */
99 init_recog_no_volatile (void)
110 /* Try recognizing the instruction INSN,
111 and return the code number that results.
112 Remember the code so that repeated calls do not
113 need to spend the time for actual rerecognition.
115 This function is the normal interface to instruction recognition.
116 The automatically-generated function `recog' is normally called
117 through this one. (The only exception is in combine.c.) */
120 recog_memoized_1 (rtx insn
)
122 if (INSN_CODE (insn
) < 0)
123 INSN_CODE (insn
) = recog (PATTERN (insn
), insn
, 0);
124 return INSN_CODE (insn
);
127 /* Check that X is an insn-body for an `asm' with operands
128 and that the operands mentioned in it are legitimate. */
131 check_asm_operands (rtx x
)
135 const char **constraints
;
138 /* Post-reload, be more strict with things. */
139 if (reload_completed
)
141 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
142 extract_insn (make_insn_raw (x
));
143 constrain_operands (1);
144 return which_alternative
>= 0;
147 noperands
= asm_noperands (x
);
153 operands
= alloca (noperands
* sizeof (rtx
));
154 constraints
= alloca (noperands
* sizeof (char *));
156 decode_asm_operands (x
, operands
, NULL
, constraints
, NULL
);
158 for (i
= 0; i
< noperands
; i
++)
160 const char *c
= constraints
[i
];
163 if (ISDIGIT ((unsigned char) c
[0]) && c
[1] == '\0')
164 c
= constraints
[c
[0] - '0'];
166 if (! asm_operand_ok (operands
[i
], c
))
173 /* Static data for the next two routines. */
175 typedef struct change_t
183 static change_t
*changes
;
184 static int changes_allocated
;
186 static int num_changes
= 0;
188 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
189 at which NEW will be placed. If OBJECT is zero, no validation is done,
190 the change is simply made.
192 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
193 will be called with the address and mode as parameters. If OBJECT is
194 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
197 IN_GROUP is nonzero if this is part of a group of changes that must be
198 performed as a group. In that case, the changes will be stored. The
199 function `apply_change_group' will validate and apply the changes.
201 If IN_GROUP is zero, this is a single change. Try to recognize the insn
202 or validate the memory reference with the change applied. If the result
203 is not valid for the machine, suppress the change and return zero.
204 Otherwise, perform the change and return 1. */
207 validate_change (rtx object
, rtx
*loc
, rtx
new, int in_group
)
211 if (old
== new || rtx_equal_p (old
, new))
214 gcc_assert (in_group
!= 0 || num_changes
== 0);
218 /* Save the information describing this change. */
219 if (num_changes
>= changes_allocated
)
221 if (changes_allocated
== 0)
222 /* This value allows for repeated substitutions inside complex
223 indexed addresses, or changes in up to 5 insns. */
224 changes_allocated
= MAX_RECOG_OPERANDS
* 5;
226 changes_allocated
*= 2;
228 changes
= xrealloc (changes
, sizeof (change_t
) * changes_allocated
);
231 changes
[num_changes
].object
= object
;
232 changes
[num_changes
].loc
= loc
;
233 changes
[num_changes
].old
= old
;
235 if (object
&& !MEM_P (object
))
237 /* Set INSN_CODE to force rerecognition of insn. Save old code in
239 changes
[num_changes
].old_code
= INSN_CODE (object
);
240 INSN_CODE (object
) = -1;
245 /* If we are making a group of changes, return 1. Otherwise, validate the
246 change group we made. */
251 return apply_change_group ();
254 /* This subroutine of apply_change_group verifies whether the changes to INSN
255 were valid; i.e. whether INSN can still be recognized. */
258 insn_invalid_p (rtx insn
)
260 rtx pat
= PATTERN (insn
);
261 int num_clobbers
= 0;
262 /* If we are before reload and the pattern is a SET, see if we can add
264 int icode
= recog (pat
, insn
,
265 (GET_CODE (pat
) == SET
266 && ! reload_completed
&& ! reload_in_progress
)
267 ? &num_clobbers
: 0);
268 int is_asm
= icode
< 0 && asm_noperands (PATTERN (insn
)) >= 0;
271 /* If this is an asm and the operand aren't legal, then fail. Likewise if
272 this is not an asm and the insn wasn't recognized. */
273 if ((is_asm
&& ! check_asm_operands (PATTERN (insn
)))
274 || (!is_asm
&& icode
< 0))
277 /* If we have to add CLOBBERs, fail if we have to add ones that reference
278 hard registers since our callers can't know if they are live or not.
279 Otherwise, add them. */
280 if (num_clobbers
> 0)
284 if (added_clobbers_hard_reg_p (icode
))
287 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (num_clobbers
+ 1));
288 XVECEXP (newpat
, 0, 0) = pat
;
289 add_clobbers (newpat
, icode
);
290 PATTERN (insn
) = pat
= newpat
;
293 /* After reload, verify that all constraints are satisfied. */
294 if (reload_completed
)
298 if (! constrain_operands (1))
302 INSN_CODE (insn
) = icode
;
306 /* Return number of changes made and not validated yet. */
308 num_changes_pending (void)
313 /* Apply a group of changes previously issued with `validate_change'.
314 Return 1 if all changes are valid, zero otherwise. */
317 apply_change_group (void)
320 rtx last_validated
= NULL_RTX
;
322 /* The changes have been applied and all INSN_CODEs have been reset to force
325 The changes are valid if we aren't given an object, or if we are
326 given a MEM and it still is a valid address, or if this is in insn
327 and it is recognized. In the latter case, if reload has completed,
328 we also require that the operands meet the constraints for
331 for (i
= 0; i
< num_changes
; i
++)
333 rtx object
= changes
[i
].object
;
335 /* If there is no object to test or if it is the same as the one we
336 already tested, ignore it. */
337 if (object
== 0 || object
== last_validated
)
342 if (! memory_address_p (GET_MODE (object
), XEXP (object
, 0)))
345 else if (insn_invalid_p (object
))
347 rtx pat
= PATTERN (object
);
349 /* Perhaps we couldn't recognize the insn because there were
350 extra CLOBBERs at the end. If so, try to re-recognize
351 without the last CLOBBER (later iterations will cause each of
352 them to be eliminated, in turn). But don't do this if we
353 have an ASM_OPERAND. */
354 if (GET_CODE (pat
) == PARALLEL
355 && GET_CODE (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1)) == CLOBBER
356 && asm_noperands (PATTERN (object
)) < 0)
360 if (XVECLEN (pat
, 0) == 2)
361 newpat
= XVECEXP (pat
, 0, 0);
367 = gen_rtx_PARALLEL (VOIDmode
,
368 rtvec_alloc (XVECLEN (pat
, 0) - 1));
369 for (j
= 0; j
< XVECLEN (newpat
, 0); j
++)
370 XVECEXP (newpat
, 0, j
) = XVECEXP (pat
, 0, j
);
373 /* Add a new change to this group to replace the pattern
374 with this new pattern. Then consider this change
375 as having succeeded. The change we added will
376 cause the entire call to fail if things remain invalid.
378 Note that this can lose if a later change than the one
379 we are processing specified &XVECEXP (PATTERN (object), 0, X)
380 but this shouldn't occur. */
382 validate_change (object
, &PATTERN (object
), newpat
, 1);
385 else if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
386 /* If this insn is a CLOBBER or USE, it is always valid, but is
392 last_validated
= object
;
395 if (i
== num_changes
)
399 for (i
= 0; i
< num_changes
; i
++)
400 if (changes
[i
].object
401 && INSN_P (changes
[i
].object
)
402 && (bb
= BLOCK_FOR_INSN (changes
[i
].object
)))
403 bb
->flags
|= BB_DIRTY
;
415 /* Return the number of changes so far in the current group. */
418 num_validated_changes (void)
423 /* Retract the changes numbered NUM and up. */
426 cancel_changes (int num
)
430 /* Back out all the changes. Do this in the opposite order in which
432 for (i
= num_changes
- 1; i
>= num
; i
--)
434 *changes
[i
].loc
= changes
[i
].old
;
435 if (changes
[i
].object
&& !MEM_P (changes
[i
].object
))
436 INSN_CODE (changes
[i
].object
) = changes
[i
].old_code
;
441 /* Replace every occurrence of FROM in X with TO. Mark each change with
442 validate_change passing OBJECT. */
445 validate_replace_rtx_1 (rtx
*loc
, rtx from
, rtx to
, rtx object
)
451 enum machine_mode op0_mode
= VOIDmode
;
452 int prev_changes
= num_changes
;
459 fmt
= GET_RTX_FORMAT (code
);
461 op0_mode
= GET_MODE (XEXP (x
, 0));
463 /* X matches FROM if it is the same rtx or they are both referring to the
464 same register in the same mode. Avoid calling rtx_equal_p unless the
465 operands look similar. */
468 || (REG_P (x
) && REG_P (from
)
469 && GET_MODE (x
) == GET_MODE (from
)
470 && REGNO (x
) == REGNO (from
))
471 || (GET_CODE (x
) == GET_CODE (from
) && GET_MODE (x
) == GET_MODE (from
)
472 && rtx_equal_p (x
, from
)))
474 validate_change (object
, loc
, to
, 1);
478 /* Call ourself recursively to perform the replacements.
479 We must not replace inside already replaced expression, otherwise we
480 get infinite recursion for replacements like (reg X)->(subreg (reg X))
481 done by regmove, so we must special case shared ASM_OPERANDS. */
483 if (GET_CODE (x
) == PARALLEL
)
485 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
487 if (j
&& GET_CODE (XVECEXP (x
, 0, j
)) == SET
488 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == ASM_OPERANDS
)
490 /* Verify that operands are really shared. */
491 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x
, 0, 0)))
492 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
494 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x
, 0, j
)),
498 validate_replace_rtx_1 (&XVECEXP (x
, 0, j
), from
, to
, object
);
502 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
505 validate_replace_rtx_1 (&XEXP (x
, i
), from
, to
, object
);
506 else if (fmt
[i
] == 'E')
507 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
508 validate_replace_rtx_1 (&XVECEXP (x
, i
, j
), from
, to
, object
);
511 /* If we didn't substitute, there is nothing more to do. */
512 if (num_changes
== prev_changes
)
515 /* Allow substituted expression to have different mode. This is used by
516 regmove to change mode of pseudo register. */
517 if (fmt
[0] == 'e' && GET_MODE (XEXP (x
, 0)) != VOIDmode
)
518 op0_mode
= GET_MODE (XEXP (x
, 0));
520 /* Do changes needed to keep rtx consistent. Don't do any other
521 simplifications, as it is not our job. */
523 if (SWAPPABLE_OPERANDS_P (x
)
524 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
526 validate_change (object
, loc
,
527 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x
) ? code
528 : swap_condition (code
),
529 GET_MODE (x
), XEXP (x
, 1),
538 /* If we have a PLUS whose second operand is now a CONST_INT, use
539 simplify_gen_binary to try to simplify it.
540 ??? We may want later to remove this, once simplification is
541 separated from this function. */
542 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
&& XEXP (x
, 1) == to
)
543 validate_change (object
, loc
,
545 (PLUS
, GET_MODE (x
), XEXP (x
, 0), XEXP (x
, 1)), 1);
548 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
549 || GET_CODE (XEXP (x
, 1)) == CONST_DOUBLE
)
550 validate_change (object
, loc
,
552 (PLUS
, GET_MODE (x
), XEXP (x
, 0),
553 simplify_gen_unary (NEG
,
554 GET_MODE (x
), XEXP (x
, 1),
559 if (GET_MODE (XEXP (x
, 0)) == VOIDmode
)
561 new = simplify_gen_unary (code
, GET_MODE (x
), XEXP (x
, 0),
563 /* If any of the above failed, substitute in something that
564 we know won't be recognized. */
566 new = gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
567 validate_change (object
, loc
, new, 1);
571 /* All subregs possible to simplify should be simplified. */
572 new = simplify_subreg (GET_MODE (x
), SUBREG_REG (x
), op0_mode
,
575 /* Subregs of VOIDmode operands are incorrect. */
576 if (!new && GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
577 new = gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
579 validate_change (object
, loc
, new, 1);
583 /* If we are replacing a register with memory, try to change the memory
584 to be the mode required for memory in extract operations (this isn't
585 likely to be an insertion operation; if it was, nothing bad will
586 happen, we might just fail in some cases). */
588 if (MEM_P (XEXP (x
, 0))
589 && GET_CODE (XEXP (x
, 1)) == CONST_INT
590 && GET_CODE (XEXP (x
, 2)) == CONST_INT
591 && !mode_dependent_address_p (XEXP (XEXP (x
, 0), 0))
592 && !MEM_VOLATILE_P (XEXP (x
, 0)))
594 enum machine_mode wanted_mode
= VOIDmode
;
595 enum machine_mode is_mode
= GET_MODE (XEXP (x
, 0));
596 int pos
= INTVAL (XEXP (x
, 2));
598 if (GET_CODE (x
) == ZERO_EXTRACT
)
600 enum machine_mode new_mode
601 = mode_for_extraction (EP_extzv
, 1);
602 if (new_mode
!= MAX_MACHINE_MODE
)
603 wanted_mode
= new_mode
;
605 else if (GET_CODE (x
) == SIGN_EXTRACT
)
607 enum machine_mode new_mode
608 = mode_for_extraction (EP_extv
, 1);
609 if (new_mode
!= MAX_MACHINE_MODE
)
610 wanted_mode
= new_mode
;
613 /* If we have a narrower mode, we can do something. */
614 if (wanted_mode
!= VOIDmode
615 && GET_MODE_SIZE (wanted_mode
) < GET_MODE_SIZE (is_mode
))
617 int offset
= pos
/ BITS_PER_UNIT
;
620 /* If the bytes and bits are counted differently, we
621 must adjust the offset. */
622 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
)
624 (GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (wanted_mode
) -
627 pos
%= GET_MODE_BITSIZE (wanted_mode
);
629 newmem
= adjust_address_nv (XEXP (x
, 0), wanted_mode
, offset
);
631 validate_change (object
, &XEXP (x
, 2), GEN_INT (pos
), 1);
632 validate_change (object
, &XEXP (x
, 0), newmem
, 1);
643 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
644 with TO. After all changes have been made, validate by seeing
645 if INSN is still valid. */
648 validate_replace_rtx_subexp (rtx from
, rtx to
, rtx insn
, rtx
*loc
)
650 validate_replace_rtx_1 (loc
, from
, to
, insn
);
651 return apply_change_group ();
654 /* Try replacing every occurrence of FROM in INSN with TO. After all
655 changes have been made, validate by seeing if INSN is still valid. */
658 validate_replace_rtx (rtx from
, rtx to
, rtx insn
)
660 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
);
661 return apply_change_group ();
664 /* Try replacing every occurrence of FROM in INSN with TO. */
667 validate_replace_rtx_group (rtx from
, rtx to
, rtx insn
)
669 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
);
672 /* Function called by note_uses to replace used subexpressions. */
673 struct validate_replace_src_data
675 rtx from
; /* Old RTX */
676 rtx to
; /* New RTX */
677 rtx insn
; /* Insn in which substitution is occurring. */
681 validate_replace_src_1 (rtx
*x
, void *data
)
683 struct validate_replace_src_data
*d
684 = (struct validate_replace_src_data
*) data
;
686 validate_replace_rtx_1 (x
, d
->from
, d
->to
, d
->insn
);
689 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
693 validate_replace_src_group (rtx from
, rtx to
, rtx insn
)
695 struct validate_replace_src_data d
;
700 note_uses (&PATTERN (insn
), validate_replace_src_1
, &d
);
704 /* Return 1 if the insn using CC0 set by INSN does not contain
705 any ordered tests applied to the condition codes.
706 EQ and NE tests do not count. */
709 next_insn_tests_no_inequality (rtx insn
)
711 rtx next
= next_cc0_user (insn
);
713 /* If there is no next insn, we have to take the conservative choice. */
717 return (INSN_P (next
)
718 && ! inequality_comparisons_p (PATTERN (next
)));
722 /* This is used by find_single_use to locate an rtx that contains exactly one
723 use of DEST, which is typically either a REG or CC0. It returns a
724 pointer to the innermost rtx expression containing DEST. Appearances of
725 DEST that are being used to totally replace it are not counted. */
728 find_single_use_1 (rtx dest
, rtx
*loc
)
731 enum rtx_code code
= GET_CODE (x
);
749 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
750 of a REG that occupies all of the REG, the insn uses DEST if
751 it is mentioned in the destination or the source. Otherwise, we
752 need just check the source. */
753 if (GET_CODE (SET_DEST (x
)) != CC0
754 && GET_CODE (SET_DEST (x
)) != PC
755 && !REG_P (SET_DEST (x
))
756 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
757 && REG_P (SUBREG_REG (SET_DEST (x
)))
758 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
759 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
760 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
761 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
764 return find_single_use_1 (dest
, &SET_SRC (x
));
768 return find_single_use_1 (dest
, &XEXP (x
, 0));
774 /* If it wasn't one of the common cases above, check each expression and
775 vector of this code. Look for a unique usage of DEST. */
777 fmt
= GET_RTX_FORMAT (code
);
778 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
782 if (dest
== XEXP (x
, i
)
783 || (REG_P (dest
) && REG_P (XEXP (x
, i
))
784 && REGNO (dest
) == REGNO (XEXP (x
, i
))))
787 this_result
= find_single_use_1 (dest
, &XEXP (x
, i
));
790 result
= this_result
;
791 else if (this_result
)
792 /* Duplicate usage. */
795 else if (fmt
[i
] == 'E')
799 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
801 if (XVECEXP (x
, i
, j
) == dest
803 && REG_P (XVECEXP (x
, i
, j
))
804 && REGNO (XVECEXP (x
, i
, j
)) == REGNO (dest
)))
807 this_result
= find_single_use_1 (dest
, &XVECEXP (x
, i
, j
));
810 result
= this_result
;
811 else if (this_result
)
820 /* See if DEST, produced in INSN, is used only a single time in the
821 sequel. If so, return a pointer to the innermost rtx expression in which
824 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
826 This routine will return usually zero either before flow is called (because
827 there will be no LOG_LINKS notes) or after reload (because the REG_DEAD
828 note can't be trusted).
830 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
831 care about REG_DEAD notes or LOG_LINKS.
833 Otherwise, we find the single use by finding an insn that has a
834 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
835 only referenced once in that insn, we know that it must be the first
836 and last insn referencing DEST. */
839 find_single_use (rtx dest
, rtx insn
, rtx
*ploc
)
848 next
= NEXT_INSN (insn
);
850 || (!NONJUMP_INSN_P (next
) && !JUMP_P (next
)))
853 result
= find_single_use_1 (dest
, &PATTERN (next
));
860 if (reload_completed
|| reload_in_progress
|| !REG_P (dest
))
863 for (next
= next_nonnote_insn (insn
);
864 next
!= 0 && !LABEL_P (next
);
865 next
= next_nonnote_insn (next
))
866 if (INSN_P (next
) && dead_or_set_p (next
, dest
))
868 for (link
= LOG_LINKS (next
); link
; link
= XEXP (link
, 1))
869 if (XEXP (link
, 0) == insn
)
874 result
= find_single_use_1 (dest
, &PATTERN (next
));
884 /* Return 1 if OP is a valid general operand for machine mode MODE.
885 This is either a register reference, a memory reference,
886 or a constant. In the case of a memory reference, the address
887 is checked for general validity for the target machine.
889 Register and memory references must have mode MODE in order to be valid,
890 but some constants have no machine mode and are valid for any mode.
892 If MODE is VOIDmode, OP is checked for validity for whatever mode
895 The main use of this function is as a predicate in match_operand
896 expressions in the machine description.
898 For an explanation of this function's behavior for registers of
899 class NO_REGS, see the comment for `register_operand'. */
902 general_operand (rtx op
, enum machine_mode mode
)
904 enum rtx_code code
= GET_CODE (op
);
906 if (mode
== VOIDmode
)
907 mode
= GET_MODE (op
);
909 /* Don't accept CONST_INT or anything similar
910 if the caller wants something floating. */
911 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
912 && GET_MODE_CLASS (mode
) != MODE_INT
913 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
916 if (GET_CODE (op
) == CONST_INT
918 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
922 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
924 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
925 && LEGITIMATE_CONSTANT_P (op
));
927 /* Except for certain constants with VOIDmode, already checked for,
928 OP's mode must match MODE if MODE specifies a mode. */
930 if (GET_MODE (op
) != mode
)
935 rtx sub
= SUBREG_REG (op
);
937 #ifdef INSN_SCHEDULING
938 /* On machines that have insn scheduling, we want all memory
939 reference to be explicit, so outlaw paradoxical SUBREGs. */
941 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (sub
)))
944 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
945 may result in incorrect reference. We should simplify all valid
946 subregs of MEM anyway. But allow this after reload because we
947 might be called from cleanup_subreg_operands.
949 ??? This is a kludge. */
950 if (!reload_completed
&& SUBREG_BYTE (op
) != 0
954 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
955 create such rtl, and we must reject it. */
956 if (GET_MODE_CLASS (GET_MODE (op
)) == MODE_FLOAT
957 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
961 code
= GET_CODE (op
);
965 /* A register whose class is NO_REGS is not a general operand. */
966 return (REGNO (op
) >= FIRST_PSEUDO_REGISTER
967 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
);
971 rtx y
= XEXP (op
, 0);
973 if (! volatile_ok
&& MEM_VOLATILE_P (op
))
976 /* Use the mem's mode, since it will be reloaded thus. */
977 if (memory_address_p (GET_MODE (op
), y
))
984 /* Return 1 if OP is a valid memory address for a memory reference
987 The main use of this function is as a predicate in match_operand
988 expressions in the machine description. */
991 address_operand (rtx op
, enum machine_mode mode
)
993 return memory_address_p (mode
, op
);
996 /* Return 1 if OP is a register reference of mode MODE.
997 If MODE is VOIDmode, accept a register in any mode.
999 The main use of this function is as a predicate in match_operand
1000 expressions in the machine description.
1002 As a special exception, registers whose class is NO_REGS are
1003 not accepted by `register_operand'. The reason for this change
1004 is to allow the representation of special architecture artifacts
1005 (such as a condition code register) without extending the rtl
1006 definitions. Since registers of class NO_REGS cannot be used
1007 as registers in any case where register classes are examined,
1008 it is most consistent to keep this function from accepting them. */
1011 register_operand (rtx op
, enum machine_mode mode
)
1013 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1016 if (GET_CODE (op
) == SUBREG
)
1018 rtx sub
= SUBREG_REG (op
);
1020 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1021 because it is guaranteed to be reloaded into one.
1022 Just make sure the MEM is valid in itself.
1023 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1024 but currently it does result from (SUBREG (REG)...) where the
1025 reg went on the stack.) */
1026 if (! reload_completed
&& MEM_P (sub
))
1027 return general_operand (op
, mode
);
1029 #ifdef CANNOT_CHANGE_MODE_CLASS
1031 && REGNO (sub
) < FIRST_PSEUDO_REGISTER
1032 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub
), GET_MODE (sub
), mode
)
1033 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_INT
1034 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_FLOAT
)
1038 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1039 create such rtl, and we must reject it. */
1040 if (GET_MODE_CLASS (GET_MODE (op
)) == MODE_FLOAT
1041 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
1047 /* We don't consider registers whose class is NO_REGS
1048 to be a register operand. */
1050 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1051 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
));
1054 /* Return 1 for a register in Pmode; ignore the tested mode. */
1057 pmode_register_operand (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
1059 return register_operand (op
, Pmode
);
1062 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1063 or a hard register. */
1066 scratch_operand (rtx op
, enum machine_mode mode
)
1068 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1071 return (GET_CODE (op
) == SCRATCH
1073 && REGNO (op
) < FIRST_PSEUDO_REGISTER
));
1076 /* Return 1 if OP is a valid immediate operand for mode MODE.
1078 The main use of this function is as a predicate in match_operand
1079 expressions in the machine description. */
1082 immediate_operand (rtx op
, enum machine_mode mode
)
1084 /* Don't accept CONST_INT or anything similar
1085 if the caller wants something floating. */
1086 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1087 && GET_MODE_CLASS (mode
) != MODE_INT
1088 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1091 if (GET_CODE (op
) == CONST_INT
1093 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1096 return (CONSTANT_P (op
)
1097 && (GET_MODE (op
) == mode
|| mode
== VOIDmode
1098 || GET_MODE (op
) == VOIDmode
)
1099 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1100 && LEGITIMATE_CONSTANT_P (op
));
1103 /* Returns 1 if OP is an operand that is a CONST_INT. */
1106 const_int_operand (rtx op
, enum machine_mode mode
)
1108 if (GET_CODE (op
) != CONST_INT
)
1111 if (mode
!= VOIDmode
1112 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1118 /* Returns 1 if OP is an operand that is a constant integer or constant
1119 floating-point number. */
1122 const_double_operand (rtx op
, enum machine_mode mode
)
1124 /* Don't accept CONST_INT or anything similar
1125 if the caller wants something floating. */
1126 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1127 && GET_MODE_CLASS (mode
) != MODE_INT
1128 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1131 return ((GET_CODE (op
) == CONST_DOUBLE
|| GET_CODE (op
) == CONST_INT
)
1132 && (mode
== VOIDmode
|| GET_MODE (op
) == mode
1133 || GET_MODE (op
) == VOIDmode
));
1136 /* Return 1 if OP is a general operand that is not an immediate operand. */
1139 nonimmediate_operand (rtx op
, enum machine_mode mode
)
1141 return (general_operand (op
, mode
) && ! CONSTANT_P (op
));
1144 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1147 nonmemory_operand (rtx op
, enum machine_mode mode
)
1149 if (CONSTANT_P (op
))
1151 /* Don't accept CONST_INT or anything similar
1152 if the caller wants something floating. */
1153 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1154 && GET_MODE_CLASS (mode
) != MODE_INT
1155 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1158 if (GET_CODE (op
) == CONST_INT
1160 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1163 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
1164 || mode
== VOIDmode
)
1165 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1166 && LEGITIMATE_CONSTANT_P (op
));
1169 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1172 if (GET_CODE (op
) == SUBREG
)
1174 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1175 because it is guaranteed to be reloaded into one.
1176 Just make sure the MEM is valid in itself.
1177 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1178 but currently it does result from (SUBREG (REG)...) where the
1179 reg went on the stack.) */
1180 if (! reload_completed
&& MEM_P (SUBREG_REG (op
)))
1181 return general_operand (op
, mode
);
1182 op
= SUBREG_REG (op
);
1185 /* We don't consider registers whose class is NO_REGS
1186 to be a register operand. */
1188 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1189 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
));
1192 /* Return 1 if OP is a valid operand that stands for pushing a
1193 value of mode MODE onto the stack.
1195 The main use of this function is as a predicate in match_operand
1196 expressions in the machine description. */
1199 push_operand (rtx op
, enum machine_mode mode
)
1201 unsigned int rounded_size
= GET_MODE_SIZE (mode
);
1203 #ifdef PUSH_ROUNDING
1204 rounded_size
= PUSH_ROUNDING (rounded_size
);
1210 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1215 if (rounded_size
== GET_MODE_SIZE (mode
))
1217 if (GET_CODE (op
) != STACK_PUSH_CODE
)
1222 if (GET_CODE (op
) != PRE_MODIFY
1223 || GET_CODE (XEXP (op
, 1)) != PLUS
1224 || XEXP (XEXP (op
, 1), 0) != XEXP (op
, 0)
1225 || GET_CODE (XEXP (XEXP (op
, 1), 1)) != CONST_INT
1226 #ifdef STACK_GROWS_DOWNWARD
1227 || INTVAL (XEXP (XEXP (op
, 1), 1)) != - (int) rounded_size
1229 || INTVAL (XEXP (XEXP (op
, 1), 1)) != (int) rounded_size
1235 return XEXP (op
, 0) == stack_pointer_rtx
;
1238 /* Return 1 if OP is a valid operand that stands for popping a
1239 value of mode MODE off the stack.
1241 The main use of this function is as a predicate in match_operand
1242 expressions in the machine description. */
1245 pop_operand (rtx op
, enum machine_mode mode
)
1250 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1255 if (GET_CODE (op
) != STACK_POP_CODE
)
1258 return XEXP (op
, 0) == stack_pointer_rtx
;
1261 /* Return 1 if ADDR is a valid memory address for mode MODE. */
1264 memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED
, rtx addr
)
1266 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
1273 /* Return 1 if OP is a valid memory reference with mode MODE,
1274 including a valid address.
1276 The main use of this function is as a predicate in match_operand
1277 expressions in the machine description. */
1280 memory_operand (rtx op
, enum machine_mode mode
)
1284 if (! reload_completed
)
1285 /* Note that no SUBREG is a memory operand before end of reload pass,
1286 because (SUBREG (MEM...)) forces reloading into a register. */
1287 return MEM_P (op
) && general_operand (op
, mode
);
1289 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1293 if (GET_CODE (inner
) == SUBREG
)
1294 inner
= SUBREG_REG (inner
);
1296 return (MEM_P (inner
) && general_operand (op
, mode
));
1299 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1300 that is, a memory reference whose address is a general_operand. */
1303 indirect_operand (rtx op
, enum machine_mode mode
)
1305 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1306 if (! reload_completed
1307 && GET_CODE (op
) == SUBREG
&& MEM_P (SUBREG_REG (op
)))
1309 int offset
= SUBREG_BYTE (op
);
1310 rtx inner
= SUBREG_REG (op
);
1312 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1315 /* The only way that we can have a general_operand as the resulting
1316 address is if OFFSET is zero and the address already is an operand
1317 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1320 return ((offset
== 0 && general_operand (XEXP (inner
, 0), Pmode
))
1321 || (GET_CODE (XEXP (inner
, 0)) == PLUS
1322 && GET_CODE (XEXP (XEXP (inner
, 0), 1)) == CONST_INT
1323 && INTVAL (XEXP (XEXP (inner
, 0), 1)) == -offset
1324 && general_operand (XEXP (XEXP (inner
, 0), 0), Pmode
)));
1328 && memory_operand (op
, mode
)
1329 && general_operand (XEXP (op
, 0), Pmode
));
1332 /* Return 1 if this is a comparison operator. This allows the use of
1333 MATCH_OPERATOR to recognize all the branch insns. */
1336 comparison_operator (rtx op
, enum machine_mode mode
)
1338 return ((mode
== VOIDmode
|| GET_MODE (op
) == mode
)
1339 && COMPARISON_P (op
));
1342 /* If BODY is an insn body that uses ASM_OPERANDS,
1343 return the number of operands (both input and output) in the insn.
1344 Otherwise return -1. */
1347 asm_noperands (rtx body
)
1349 switch (GET_CODE (body
))
1352 /* No output operands: return number of input operands. */
1353 return ASM_OPERANDS_INPUT_LENGTH (body
);
1355 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
1356 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1357 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body
)) + 1;
1361 if (GET_CODE (XVECEXP (body
, 0, 0)) == SET
1362 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
1364 /* Multiple output operands, or 1 output plus some clobbers:
1365 body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1369 /* Count backwards through CLOBBERs to determine number of SETs. */
1370 for (i
= XVECLEN (body
, 0); i
> 0; i
--)
1372 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) == SET
)
1374 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) != CLOBBER
)
1378 /* N_SETS is now number of output operands. */
1381 /* Verify that all the SETs we have
1382 came from a single original asm_operands insn
1383 (so that invalid combinations are blocked). */
1384 for (i
= 0; i
< n_sets
; i
++)
1386 rtx elt
= XVECEXP (body
, 0, i
);
1387 if (GET_CODE (elt
) != SET
)
1389 if (GET_CODE (SET_SRC (elt
)) != ASM_OPERANDS
)
1391 /* If these ASM_OPERANDS rtx's came from different original insns
1392 then they aren't allowed together. */
1393 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt
))
1394 != ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body
, 0, 0))))
1397 return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body
, 0, 0)))
1400 else if (GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
1402 /* 0 outputs, but some clobbers:
1403 body is [(asm_operands ...) (clobber (reg ...))...]. */
1406 /* Make sure all the other parallel things really are clobbers. */
1407 for (i
= XVECLEN (body
, 0) - 1; i
> 0; i
--)
1408 if (GET_CODE (XVECEXP (body
, 0, i
)) != CLOBBER
)
1411 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body
, 0, 0));
1420 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1421 copy its operands (both input and output) into the vector OPERANDS,
1422 the locations of the operands within the insn into the vector OPERAND_LOCS,
1423 and the constraints for the operands into CONSTRAINTS.
1424 Write the modes of the operands into MODES.
1425 Return the assembler-template.
1427 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1428 we don't store that info. */
1431 decode_asm_operands (rtx body
, rtx
*operands
, rtx
**operand_locs
,
1432 const char **constraints
, enum machine_mode
*modes
)
1436 const char *template = 0;
1438 if (GET_CODE (body
) == SET
&& GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
1440 rtx asmop
= SET_SRC (body
);
1441 /* Single output operand: BODY is (set OUTPUT (asm_operands ....)). */
1443 noperands
= ASM_OPERANDS_INPUT_LENGTH (asmop
) + 1;
1445 for (i
= 1; i
< noperands
; i
++)
1448 operand_locs
[i
] = &ASM_OPERANDS_INPUT (asmop
, i
- 1);
1450 operands
[i
] = ASM_OPERANDS_INPUT (asmop
, i
- 1);
1452 constraints
[i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
- 1);
1454 modes
[i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
- 1);
1457 /* The output is in the SET.
1458 Its constraint is in the ASM_OPERANDS itself. */
1460 operands
[0] = SET_DEST (body
);
1462 operand_locs
[0] = &SET_DEST (body
);
1464 constraints
[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop
);
1466 modes
[0] = GET_MODE (SET_DEST (body
));
1467 template = ASM_OPERANDS_TEMPLATE (asmop
);
1469 else if (GET_CODE (body
) == ASM_OPERANDS
)
1472 /* No output operands: BODY is (asm_operands ....). */
1474 noperands
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1476 /* The input operands are found in the 1st element vector. */
1477 /* Constraints for inputs are in the 2nd element vector. */
1478 for (i
= 0; i
< noperands
; i
++)
1481 operand_locs
[i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1483 operands
[i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1485 constraints
[i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1487 modes
[i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1489 template = ASM_OPERANDS_TEMPLATE (asmop
);
1491 else if (GET_CODE (body
) == PARALLEL
1492 && GET_CODE (XVECEXP (body
, 0, 0)) == SET
1493 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
1495 rtx asmop
= SET_SRC (XVECEXP (body
, 0, 0));
1496 int nparallel
= XVECLEN (body
, 0); /* Includes CLOBBERs. */
1497 int nin
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1498 int nout
= 0; /* Does not include CLOBBERs. */
1500 /* At least one output, plus some CLOBBERs. */
1502 /* The outputs are in the SETs.
1503 Their constraints are in the ASM_OPERANDS itself. */
1504 for (i
= 0; i
< nparallel
; i
++)
1506 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
1507 break; /* Past last SET */
1510 operands
[i
] = SET_DEST (XVECEXP (body
, 0, i
));
1512 operand_locs
[i
] = &SET_DEST (XVECEXP (body
, 0, i
));
1514 constraints
[i
] = XSTR (SET_SRC (XVECEXP (body
, 0, i
)), 1);
1516 modes
[i
] = GET_MODE (SET_DEST (XVECEXP (body
, 0, i
)));
1520 for (i
= 0; i
< nin
; i
++)
1523 operand_locs
[i
+ nout
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1525 operands
[i
+ nout
] = ASM_OPERANDS_INPUT (asmop
, i
);
1527 constraints
[i
+ nout
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1529 modes
[i
+ nout
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1532 template = ASM_OPERANDS_TEMPLATE (asmop
);
1534 else if (GET_CODE (body
) == PARALLEL
1535 && GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
1537 /* No outputs, but some CLOBBERs. */
1539 rtx asmop
= XVECEXP (body
, 0, 0);
1540 int nin
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1542 for (i
= 0; i
< nin
; i
++)
1545 operand_locs
[i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1547 operands
[i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1549 constraints
[i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1551 modes
[i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1554 template = ASM_OPERANDS_TEMPLATE (asmop
);
1560 /* Check if an asm_operand matches its constraints.
1561 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1564 asm_operand_ok (rtx op
, const char *constraint
)
1568 /* Use constrain_operands after reload. */
1569 gcc_assert (!reload_completed
);
1573 char c
= *constraint
;
1590 case '0': case '1': case '2': case '3': case '4':
1591 case '5': case '6': case '7': case '8': case '9':
1592 /* For best results, our caller should have given us the
1593 proper matching constraint, but we can't actually fail
1594 the check if they didn't. Indicate that results are
1598 while (ISDIGIT (*constraint
));
1604 if (address_operand (op
, VOIDmode
))
1609 case 'V': /* non-offsettable */
1610 if (memory_operand (op
, VOIDmode
))
1614 case 'o': /* offsettable */
1615 if (offsettable_nonstrict_memref_p (op
))
1620 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
1621 excepting those that expand_call created. Further, on some
1622 machines which do not have generalized auto inc/dec, an inc/dec
1623 is not a memory_operand.
1625 Match any memory and hope things are resolved after reload. */
1629 || GET_CODE (XEXP (op
, 0)) == PRE_DEC
1630 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
1637 || GET_CODE (XEXP (op
, 0)) == PRE_INC
1638 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
1644 if (GET_CODE (op
) == CONST_DOUBLE
1645 || (GET_CODE (op
) == CONST_VECTOR
1646 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_VECTOR_FLOAT
))
1651 if (GET_CODE (op
) == CONST_DOUBLE
1652 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, 'G', constraint
))
1656 if (GET_CODE (op
) == CONST_DOUBLE
1657 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, 'H', constraint
))
1662 if (GET_CODE (op
) == CONST_INT
1663 || (GET_CODE (op
) == CONST_DOUBLE
1664 && GET_MODE (op
) == VOIDmode
))
1669 if (CONSTANT_P (op
) && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
)))
1674 if (GET_CODE (op
) == CONST_INT
1675 || (GET_CODE (op
) == CONST_DOUBLE
1676 && GET_MODE (op
) == VOIDmode
))
1681 if (GET_CODE (op
) == CONST_INT
1682 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'I', constraint
))
1686 if (GET_CODE (op
) == CONST_INT
1687 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'J', constraint
))
1691 if (GET_CODE (op
) == CONST_INT
1692 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'K', constraint
))
1696 if (GET_CODE (op
) == CONST_INT
1697 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'L', constraint
))
1701 if (GET_CODE (op
) == CONST_INT
1702 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'M', constraint
))
1706 if (GET_CODE (op
) == CONST_INT
1707 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'N', constraint
))
1711 if (GET_CODE (op
) == CONST_INT
1712 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'O', constraint
))
1716 if (GET_CODE (op
) == CONST_INT
1717 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'P', constraint
))
1726 if (general_operand (op
, VOIDmode
))
1731 /* For all other letters, we first check for a register class,
1732 otherwise it is an EXTRA_CONSTRAINT. */
1733 if (REG_CLASS_FROM_CONSTRAINT (c
, constraint
) != NO_REGS
)
1736 if (GET_MODE (op
) == BLKmode
)
1738 if (register_operand (op
, VOIDmode
))
1741 #ifdef EXTRA_CONSTRAINT_STR
1742 else if (EXTRA_CONSTRAINT_STR (op
, c
, constraint
))
1744 else if (EXTRA_MEMORY_CONSTRAINT (c
, constraint
)
1745 /* Every memory operand can be reloaded to fit. */
1746 && memory_operand (op
, VOIDmode
))
1748 else if (EXTRA_ADDRESS_CONSTRAINT (c
, constraint
)
1749 /* Every address operand can be reloaded to fit. */
1750 && address_operand (op
, VOIDmode
))
1755 len
= CONSTRAINT_LEN (c
, constraint
);
1758 while (--len
&& *constraint
);
1766 /* Given an rtx *P, if it is a sum containing an integer constant term,
1767 return the location (type rtx *) of the pointer to that constant term.
1768 Otherwise, return a null pointer. */
1771 find_constant_term_loc (rtx
*p
)
1774 enum rtx_code code
= GET_CODE (*p
);
1776 /* If *P IS such a constant term, P is its location. */
1778 if (code
== CONST_INT
|| code
== SYMBOL_REF
|| code
== LABEL_REF
1782 /* Otherwise, if not a sum, it has no constant term. */
1784 if (GET_CODE (*p
) != PLUS
)
1787 /* If one of the summands is constant, return its location. */
1789 if (XEXP (*p
, 0) && CONSTANT_P (XEXP (*p
, 0))
1790 && XEXP (*p
, 1) && CONSTANT_P (XEXP (*p
, 1)))
1793 /* Otherwise, check each summand for containing a constant term. */
1795 if (XEXP (*p
, 0) != 0)
1797 tem
= find_constant_term_loc (&XEXP (*p
, 0));
1802 if (XEXP (*p
, 1) != 0)
1804 tem
= find_constant_term_loc (&XEXP (*p
, 1));
1812 /* Return 1 if OP is a memory reference
1813 whose address contains no side effects
1814 and remains valid after the addition
1815 of a positive integer less than the
1816 size of the object being referenced.
1818 We assume that the original address is valid and do not check it.
1820 This uses strict_memory_address_p as a subroutine, so
1821 don't use it before reload. */
1824 offsettable_memref_p (rtx op
)
1826 return ((MEM_P (op
))
1827 && offsettable_address_p (1, GET_MODE (op
), XEXP (op
, 0)));
1830 /* Similar, but don't require a strictly valid mem ref:
1831 consider pseudo-regs valid as index or base regs. */
1834 offsettable_nonstrict_memref_p (rtx op
)
1836 return ((MEM_P (op
))
1837 && offsettable_address_p (0, GET_MODE (op
), XEXP (op
, 0)));
1840 /* Return 1 if Y is a memory address which contains no side effects
1841 and would remain valid after the addition of a positive integer
1842 less than the size of that mode.
1844 We assume that the original address is valid and do not check it.
1845 We do check that it is valid for narrower modes.
1847 If STRICTP is nonzero, we require a strictly valid address,
1848 for the sake of use in reload.c. */
1851 offsettable_address_p (int strictp
, enum machine_mode mode
, rtx y
)
1853 enum rtx_code ycode
= GET_CODE (y
);
1857 int (*addressp
) (enum machine_mode
, rtx
) =
1858 (strictp
? strict_memory_address_p
: memory_address_p
);
1859 unsigned int mode_sz
= GET_MODE_SIZE (mode
);
1861 if (CONSTANT_ADDRESS_P (y
))
1864 /* Adjusting an offsettable address involves changing to a narrower mode.
1865 Make sure that's OK. */
1867 if (mode_dependent_address_p (y
))
1870 /* ??? How much offset does an offsettable BLKmode reference need?
1871 Clearly that depends on the situation in which it's being used.
1872 However, the current situation in which we test 0xffffffff is
1873 less than ideal. Caveat user. */
1875 mode_sz
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
1877 /* If the expression contains a constant term,
1878 see if it remains valid when max possible offset is added. */
1880 if ((ycode
== PLUS
) && (y2
= find_constant_term_loc (&y1
)))
1885 *y2
= plus_constant (*y2
, mode_sz
- 1);
1886 /* Use QImode because an odd displacement may be automatically invalid
1887 for any wider mode. But it should be valid for a single byte. */
1888 good
= (*addressp
) (QImode
, y
);
1890 /* In any case, restore old contents of memory. */
1895 if (GET_RTX_CLASS (ycode
) == RTX_AUTOINC
)
1898 /* The offset added here is chosen as the maximum offset that
1899 any instruction could need to add when operating on something
1900 of the specified mode. We assume that if Y and Y+c are
1901 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1902 go inside a LO_SUM here, so we do so as well. */
1903 if (GET_CODE (y
) == LO_SUM
1905 && mode_sz
<= GET_MODE_ALIGNMENT (mode
) / BITS_PER_UNIT
)
1906 z
= gen_rtx_LO_SUM (GET_MODE (y
), XEXP (y
, 0),
1907 plus_constant (XEXP (y
, 1), mode_sz
- 1));
1909 z
= plus_constant (y
, mode_sz
- 1);
1911 /* Use QImode because an odd displacement may be automatically invalid
1912 for any wider mode. But it should be valid for a single byte. */
1913 return (*addressp
) (QImode
, z
);
1916 /* Return 1 if ADDR is an address-expression whose effect depends
1917 on the mode of the memory reference it is used in.
1919 Autoincrement addressing is a typical example of mode-dependence
1920 because the amount of the increment depends on the mode. */
1923 mode_dependent_address_p (rtx addr ATTRIBUTE_UNUSED
/* Maybe used in GO_IF_MODE_DEPENDENT_ADDRESS. */)
1925 GO_IF_MODE_DEPENDENT_ADDRESS (addr
, win
);
1927 /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
1928 win
: ATTRIBUTE_UNUSED_LABEL
1932 /* Like extract_insn, but save insn extracted and don't extract again, when
1933 called again for the same insn expecting that recog_data still contain the
1934 valid information. This is used primary by gen_attr infrastructure that
1935 often does extract insn again and again. */
1937 extract_insn_cached (rtx insn
)
1939 if (recog_data
.insn
== insn
&& INSN_CODE (insn
) >= 0)
1941 extract_insn (insn
);
1942 recog_data
.insn
= insn
;
1944 /* Do cached extract_insn, constrain_operands and complain about failures.
1945 Used by insn_attrtab. */
1947 extract_constrain_insn_cached (rtx insn
)
1949 extract_insn_cached (insn
);
1950 if (which_alternative
== -1
1951 && !constrain_operands (reload_completed
))
1952 fatal_insn_not_found (insn
);
1954 /* Do cached constrain_operands and complain about failures. */
1956 constrain_operands_cached (int strict
)
1958 if (which_alternative
== -1)
1959 return constrain_operands (strict
);
1964 /* Analyze INSN and fill in recog_data. */
1967 extract_insn (rtx insn
)
1972 rtx body
= PATTERN (insn
);
1974 recog_data
.insn
= NULL
;
1975 recog_data
.n_operands
= 0;
1976 recog_data
.n_alternatives
= 0;
1977 recog_data
.n_dups
= 0;
1978 which_alternative
= -1;
1980 switch (GET_CODE (body
))
1990 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
1995 if ((GET_CODE (XVECEXP (body
, 0, 0)) == SET
1996 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
1997 || GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
2003 recog_data
.n_operands
= noperands
= asm_noperands (body
);
2006 /* This insn is an `asm' with operands. */
2008 /* expand_asm_operands makes sure there aren't too many operands. */
2009 gcc_assert (noperands
<= MAX_RECOG_OPERANDS
);
2011 /* Now get the operand values and constraints out of the insn. */
2012 decode_asm_operands (body
, recog_data
.operand
,
2013 recog_data
.operand_loc
,
2014 recog_data
.constraints
,
2015 recog_data
.operand_mode
);
2018 const char *p
= recog_data
.constraints
[0];
2019 recog_data
.n_alternatives
= 1;
2021 recog_data
.n_alternatives
+= (*p
++ == ',');
2025 fatal_insn_not_found (insn
);
2029 /* Ordinary insn: recognize it, get the operands via insn_extract
2030 and get the constraints. */
2032 icode
= recog_memoized (insn
);
2034 fatal_insn_not_found (insn
);
2036 recog_data
.n_operands
= noperands
= insn_data
[icode
].n_operands
;
2037 recog_data
.n_alternatives
= insn_data
[icode
].n_alternatives
;
2038 recog_data
.n_dups
= insn_data
[icode
].n_dups
;
2040 insn_extract (insn
);
2042 for (i
= 0; i
< noperands
; i
++)
2044 recog_data
.constraints
[i
] = insn_data
[icode
].operand
[i
].constraint
;
2045 recog_data
.operand_mode
[i
] = insn_data
[icode
].operand
[i
].mode
;
2046 /* VOIDmode match_operands gets mode from their real operand. */
2047 if (recog_data
.operand_mode
[i
] == VOIDmode
)
2048 recog_data
.operand_mode
[i
] = GET_MODE (recog_data
.operand
[i
]);
2051 for (i
= 0; i
< noperands
; i
++)
2052 recog_data
.operand_type
[i
]
2053 = (recog_data
.constraints
[i
][0] == '=' ? OP_OUT
2054 : recog_data
.constraints
[i
][0] == '+' ? OP_INOUT
2057 gcc_assert (recog_data
.n_alternatives
<= MAX_RECOG_ALTERNATIVES
);
2060 /* After calling extract_insn, you can use this function to extract some
2061 information from the constraint strings into a more usable form.
2062 The collected data is stored in recog_op_alt. */
2064 preprocess_constraints (void)
2068 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2069 memset (recog_op_alt
[i
], 0, (recog_data
.n_alternatives
2070 * sizeof (struct operand_alternative
)));
2072 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2075 struct operand_alternative
*op_alt
;
2076 const char *p
= recog_data
.constraints
[i
];
2078 op_alt
= recog_op_alt
[i
];
2080 for (j
= 0; j
< recog_data
.n_alternatives
; j
++)
2082 op_alt
[j
].cl
= NO_REGS
;
2083 op_alt
[j
].constraint
= p
;
2084 op_alt
[j
].matches
= -1;
2085 op_alt
[j
].matched
= -1;
2087 if (*p
== '\0' || *p
== ',')
2089 op_alt
[j
].anything_ok
= 1;
2099 while (c
!= ',' && c
!= '\0');
2100 if (c
== ',' || c
== '\0')
2108 case '=': case '+': case '*': case '%':
2109 case 'E': case 'F': case 'G': case 'H':
2110 case 's': case 'i': case 'n':
2111 case 'I': case 'J': case 'K': case 'L':
2112 case 'M': case 'N': case 'O': case 'P':
2113 /* These don't say anything we care about. */
2117 op_alt
[j
].reject
+= 6;
2120 op_alt
[j
].reject
+= 600;
2123 op_alt
[j
].earlyclobber
= 1;
2126 case '0': case '1': case '2': case '3': case '4':
2127 case '5': case '6': case '7': case '8': case '9':
2130 op_alt
[j
].matches
= strtoul (p
, &end
, 10);
2131 recog_op_alt
[op_alt
[j
].matches
][j
].matched
= i
;
2137 op_alt
[j
].memory_ok
= 1;
2140 op_alt
[j
].decmem_ok
= 1;
2143 op_alt
[j
].incmem_ok
= 1;
2146 op_alt
[j
].nonoffmem_ok
= 1;
2149 op_alt
[j
].offmem_ok
= 1;
2152 op_alt
[j
].anything_ok
= 1;
2156 op_alt
[j
].is_address
= 1;
2157 op_alt
[j
].cl
= reg_class_subunion
[(int) op_alt
[j
].cl
]
2158 [(int) MODE_BASE_REG_CLASS (VOIDmode
)];
2164 reg_class_subunion
[(int) op_alt
[j
].cl
][(int) GENERAL_REGS
];
2168 if (EXTRA_MEMORY_CONSTRAINT (c
, p
))
2170 op_alt
[j
].memory_ok
= 1;
2173 if (EXTRA_ADDRESS_CONSTRAINT (c
, p
))
2175 op_alt
[j
].is_address
= 1;
2177 = (reg_class_subunion
2178 [(int) op_alt
[j
].cl
]
2179 [(int) MODE_BASE_REG_CLASS (VOIDmode
)]);
2184 = (reg_class_subunion
2185 [(int) op_alt
[j
].cl
]
2186 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c
, p
)]);
2189 p
+= CONSTRAINT_LEN (c
, p
);
2195 /* Check the operands of an insn against the insn's operand constraints
2196 and return 1 if they are valid.
2197 The information about the insn's operands, constraints, operand modes
2198 etc. is obtained from the global variables set up by extract_insn.
2200 WHICH_ALTERNATIVE is set to a number which indicates which
2201 alternative of constraints was matched: 0 for the first alternative,
2202 1 for the next, etc.
2204 In addition, when two operands are required to match
2205 and it happens that the output operand is (reg) while the
2206 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2207 make the output operand look like the input.
2208 This is because the output operand is the one the template will print.
2210 This is used in final, just before printing the assembler code and by
2211 the routines that determine an insn's attribute.
2213 If STRICT is a positive nonzero value, it means that we have been
2214 called after reload has been completed. In that case, we must
2215 do all checks strictly. If it is zero, it means that we have been called
2216 before reload has completed. In that case, we first try to see if we can
2217 find an alternative that matches strictly. If not, we try again, this
2218 time assuming that reload will fix up the insn. This provides a "best
2219 guess" for the alternative and is used to compute attributes of insns prior
2220 to reload. A negative value of STRICT is used for this internal call. */
2228 constrain_operands (int strict
)
2230 const char *constraints
[MAX_RECOG_OPERANDS
];
2231 int matching_operands
[MAX_RECOG_OPERANDS
];
2232 int earlyclobber
[MAX_RECOG_OPERANDS
];
2235 struct funny_match funny_match
[MAX_RECOG_OPERANDS
];
2236 int funny_match_index
;
2238 which_alternative
= 0;
2239 if (recog_data
.n_operands
== 0 || recog_data
.n_alternatives
== 0)
2242 for (c
= 0; c
< recog_data
.n_operands
; c
++)
2244 constraints
[c
] = recog_data
.constraints
[c
];
2245 matching_operands
[c
] = -1;
2252 funny_match_index
= 0;
2254 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2256 rtx op
= recog_data
.operand
[opno
];
2257 enum machine_mode mode
= GET_MODE (op
);
2258 const char *p
= constraints
[opno
];
2264 earlyclobber
[opno
] = 0;
2266 /* A unary operator may be accepted by the predicate, but it
2267 is irrelevant for matching constraints. */
2271 if (GET_CODE (op
) == SUBREG
)
2273 if (REG_P (SUBREG_REG (op
))
2274 && REGNO (SUBREG_REG (op
)) < FIRST_PSEUDO_REGISTER
)
2275 offset
= subreg_regno_offset (REGNO (SUBREG_REG (op
)),
2276 GET_MODE (SUBREG_REG (op
)),
2279 op
= SUBREG_REG (op
);
2282 /* An empty constraint or empty alternative
2283 allows anything which matched the pattern. */
2284 if (*p
== 0 || *p
== ',')
2288 switch (c
= *p
, len
= CONSTRAINT_LEN (c
, p
), c
)
2297 case '?': case '!': case '*': case '%':
2302 /* Ignore rest of this alternative as far as
2303 constraint checking is concerned. */
2306 while (*p
&& *p
!= ',');
2311 earlyclobber
[opno
] = 1;
2314 case '0': case '1': case '2': case '3': case '4':
2315 case '5': case '6': case '7': case '8': case '9':
2317 /* This operand must be the same as a previous one.
2318 This kind of constraint is used for instructions such
2319 as add when they take only two operands.
2321 Note that the lower-numbered operand is passed first.
2323 If we are not testing strictly, assume that this
2324 constraint will be satisfied. */
2329 match
= strtoul (p
, &end
, 10);
2336 rtx op1
= recog_data
.operand
[match
];
2337 rtx op2
= recog_data
.operand
[opno
];
2339 /* A unary operator may be accepted by the predicate,
2340 but it is irrelevant for matching constraints. */
2342 op1
= XEXP (op1
, 0);
2344 op2
= XEXP (op2
, 0);
2346 val
= operands_match_p (op1
, op2
);
2349 matching_operands
[opno
] = match
;
2350 matching_operands
[match
] = opno
;
2355 /* If output is *x and input is *--x, arrange later
2356 to change the output to *--x as well, since the
2357 output op is the one that will be printed. */
2358 if (val
== 2 && strict
> 0)
2360 funny_match
[funny_match_index
].this = opno
;
2361 funny_match
[funny_match_index
++].other
= match
;
2368 /* p is used for address_operands. When we are called by
2369 gen_reload, no one will have checked that the address is
2370 strictly valid, i.e., that all pseudos requiring hard regs
2371 have gotten them. */
2373 || (strict_memory_address_p (recog_data
.operand_mode
[opno
],
2378 /* No need to check general_operand again;
2379 it was done in insn-recog.c. */
2381 /* Anything goes unless it is a REG and really has a hard reg
2382 but the hard reg is not in the class GENERAL_REGS. */
2384 || GENERAL_REGS
== ALL_REGS
2386 || (reload_in_progress
2387 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2388 || reg_fits_class_p (op
, GENERAL_REGS
, offset
, mode
))
2393 /* This is used for a MATCH_SCRATCH in the cases when
2394 we don't actually need anything. So anything goes
2400 /* Memory operands must be valid, to the extent
2401 required by STRICT. */
2405 && !strict_memory_address_p (GET_MODE (op
),
2409 && !memory_address_p (GET_MODE (op
), XEXP (op
, 0)))
2413 /* Before reload, accept what reload can turn into mem. */
2414 else if (strict
< 0 && CONSTANT_P (op
))
2416 /* During reload, accept a pseudo */
2417 else if (reload_in_progress
&& REG_P (op
)
2418 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2424 && (GET_CODE (XEXP (op
, 0)) == PRE_DEC
2425 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
2431 && (GET_CODE (XEXP (op
, 0)) == PRE_INC
2432 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
2438 if (GET_CODE (op
) == CONST_DOUBLE
2439 || (GET_CODE (op
) == CONST_VECTOR
2440 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_VECTOR_FLOAT
))
2446 if (GET_CODE (op
) == CONST_DOUBLE
2447 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, c
, p
))
2452 if (GET_CODE (op
) == CONST_INT
2453 || (GET_CODE (op
) == CONST_DOUBLE
2454 && GET_MODE (op
) == VOIDmode
))
2457 if (CONSTANT_P (op
))
2462 if (GET_CODE (op
) == CONST_INT
2463 || (GET_CODE (op
) == CONST_DOUBLE
2464 && GET_MODE (op
) == VOIDmode
))
2476 if (GET_CODE (op
) == CONST_INT
2477 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), c
, p
))
2483 && ((strict
> 0 && ! offsettable_memref_p (op
))
2485 && !(CONSTANT_P (op
) || MEM_P (op
)))
2486 || (reload_in_progress
2488 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))))
2493 if ((strict
> 0 && offsettable_memref_p (op
))
2494 || (strict
== 0 && offsettable_nonstrict_memref_p (op
))
2495 /* Before reload, accept what reload can handle. */
2497 && (CONSTANT_P (op
) || MEM_P (op
)))
2498 /* During reload, accept a pseudo */
2499 || (reload_in_progress
&& REG_P (op
)
2500 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))
2509 ? GENERAL_REGS
: REG_CLASS_FROM_CONSTRAINT (c
, p
));
2515 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2516 || (strict
== 0 && GET_CODE (op
) == SCRATCH
)
2518 && reg_fits_class_p (op
, cl
, offset
, mode
)))
2521 #ifdef EXTRA_CONSTRAINT_STR
2522 else if (EXTRA_CONSTRAINT_STR (op
, c
, p
))
2525 else if (EXTRA_MEMORY_CONSTRAINT (c
, p
)
2526 /* Every memory operand can be reloaded to fit. */
2527 && ((strict
< 0 && MEM_P (op
))
2528 /* Before reload, accept what reload can turn
2530 || (strict
< 0 && CONSTANT_P (op
))
2531 /* During reload, accept a pseudo */
2532 || (reload_in_progress
&& REG_P (op
)
2533 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)))
2535 else if (EXTRA_ADDRESS_CONSTRAINT (c
, p
)
2536 /* Every address operand can be reloaded to fit. */
2543 while (p
+= len
, c
);
2545 constraints
[opno
] = p
;
2546 /* If this operand did not win somehow,
2547 this alternative loses. */
2551 /* This alternative won; the operands are ok.
2552 Change whichever operands this alternative says to change. */
2557 /* See if any earlyclobber operand conflicts with some other
2561 for (eopno
= 0; eopno
< recog_data
.n_operands
; eopno
++)
2562 /* Ignore earlyclobber operands now in memory,
2563 because we would often report failure when we have
2564 two memory operands, one of which was formerly a REG. */
2565 if (earlyclobber
[eopno
]
2566 && REG_P (recog_data
.operand
[eopno
]))
2567 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2568 if ((MEM_P (recog_data
.operand
[opno
])
2569 || recog_data
.operand_type
[opno
] != OP_OUT
)
2571 /* Ignore things like match_operator operands. */
2572 && *recog_data
.constraints
[opno
] != 0
2573 && ! (matching_operands
[opno
] == eopno
2574 && operands_match_p (recog_data
.operand
[opno
],
2575 recog_data
.operand
[eopno
]))
2576 && ! safe_from_earlyclobber (recog_data
.operand
[opno
],
2577 recog_data
.operand
[eopno
]))
2582 while (--funny_match_index
>= 0)
2584 recog_data
.operand
[funny_match
[funny_match_index
].other
]
2585 = recog_data
.operand
[funny_match
[funny_match_index
].this];
2592 which_alternative
++;
2594 while (which_alternative
< recog_data
.n_alternatives
);
2596 which_alternative
= -1;
2597 /* If we are about to reject this, but we are not to test strictly,
2598 try a very loose test. Only return failure if it fails also. */
2600 return constrain_operands (-1);
2605 /* Return 1 iff OPERAND (assumed to be a REG rtx)
2606 is a hard reg in class CLASS when its regno is offset by OFFSET
2607 and changed to mode MODE.
2608 If REG occupies multiple hard regs, all of them must be in CLASS. */
2611 reg_fits_class_p (rtx operand
, enum reg_class cl
, int offset
,
2612 enum machine_mode mode
)
2614 int regno
= REGNO (operand
);
2615 if (regno
< FIRST_PSEUDO_REGISTER
2616 && TEST_HARD_REG_BIT (reg_class_contents
[(int) cl
],
2621 for (sr
= hard_regno_nregs
[regno
][mode
] - 1;
2623 if (! TEST_HARD_REG_BIT (reg_class_contents
[(int) cl
],
2632 /* Split single instruction. Helper function for split_all_insns and
2633 split_all_insns_noflow. Return last insn in the sequence if successful,
2634 or NULL if unsuccessful. */
2637 split_insn (rtx insn
)
2639 /* Split insns here to get max fine-grain parallelism. */
2640 rtx first
= PREV_INSN (insn
);
2641 rtx last
= try_split (PATTERN (insn
), insn
, 1);
2646 /* try_split returns the NOTE that INSN became. */
2647 SET_INSN_DELETED (insn
);
2649 /* ??? Coddle to md files that generate subregs in post-reload
2650 splitters instead of computing the proper hard register. */
2651 if (reload_completed
&& first
!= last
)
2653 first
= NEXT_INSN (first
);
2657 cleanup_subreg_operands (first
);
2660 first
= NEXT_INSN (first
);
2666 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2669 split_all_insns (int upd_life
)
2675 blocks
= sbitmap_alloc (last_basic_block
);
2676 sbitmap_zero (blocks
);
2679 FOR_EACH_BB_REVERSE (bb
)
2682 bool finish
= false;
2684 for (insn
= BB_HEAD (bb
); !finish
; insn
= next
)
2686 /* Can't use `next_real_insn' because that might go across
2687 CODE_LABELS and short-out basic blocks. */
2688 next
= NEXT_INSN (insn
);
2689 finish
= (insn
== BB_END (bb
));
2692 rtx set
= single_set (insn
);
2694 /* Don't split no-op move insns. These should silently
2695 disappear later in final. Splitting such insns would
2696 break the code that handles REG_NO_CONFLICT blocks. */
2697 if (set
&& set_noop_p (set
))
2699 /* Nops get in the way while scheduling, so delete them
2700 now if register allocation has already been done. It
2701 is too risky to try to do this before register
2702 allocation, and there are unlikely to be very many
2703 nops then anyways. */
2704 if (reload_completed
)
2706 /* If the no-op set has a REG_UNUSED note, we need
2707 to update liveness information. */
2708 if (find_reg_note (insn
, REG_UNUSED
, NULL_RTX
))
2710 SET_BIT (blocks
, bb
->index
);
2713 /* ??? Is life info affected by deleting edges? */
2714 delete_insn_and_edges (insn
);
2719 rtx last
= split_insn (insn
);
2722 /* The split sequence may include barrier, but the
2723 BB boundary we are interested in will be set to
2726 while (BARRIER_P (last
))
2727 last
= PREV_INSN (last
);
2728 SET_BIT (blocks
, bb
->index
);
2738 int old_last_basic_block
= last_basic_block
;
2740 find_many_sub_basic_blocks (blocks
);
2742 if (old_last_basic_block
!= last_basic_block
&& upd_life
)
2743 blocks
= sbitmap_resize (blocks
, last_basic_block
, 1);
2746 if (changed
&& upd_life
)
2747 update_life_info (blocks
, UPDATE_LIFE_GLOBAL_RM_NOTES
,
2750 #ifdef ENABLE_CHECKING
2751 verify_flow_info ();
2754 sbitmap_free (blocks
);
2757 /* Same as split_all_insns, but do not expect CFG to be available.
2758 Used by machine dependent reorg passes. */
2761 split_all_insns_noflow (void)
2765 for (insn
= get_insns (); insn
; insn
= next
)
2767 next
= NEXT_INSN (insn
);
2770 /* Don't split no-op move insns. These should silently
2771 disappear later in final. Splitting such insns would
2772 break the code that handles REG_NO_CONFLICT blocks. */
2773 rtx set
= single_set (insn
);
2774 if (set
&& set_noop_p (set
))
2776 /* Nops get in the way while scheduling, so delete them
2777 now if register allocation has already been done. It
2778 is too risky to try to do this before register
2779 allocation, and there are unlikely to be very many
2782 ??? Should we use delete_insn when the CFG isn't valid? */
2783 if (reload_completed
)
2784 delete_insn_and_edges (insn
);
2792 #ifdef HAVE_peephole2
2793 struct peep2_insn_data
2799 static struct peep2_insn_data peep2_insn_data
[MAX_INSNS_PER_PEEP2
+ 1];
2800 static int peep2_current
;
2802 /* A non-insn marker indicating the last insn of the block.
2803 The live_before regset for this element is correct, indicating
2804 global_live_at_end for the block. */
2805 #define PEEP2_EOB pc_rtx
2807 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2808 does not exist. Used by the recognizer to find the next insn to match
2809 in a multi-insn pattern. */
2812 peep2_next_insn (int n
)
2814 gcc_assert (n
< MAX_INSNS_PER_PEEP2
+ 1);
2817 if (n
>= MAX_INSNS_PER_PEEP2
+ 1)
2818 n
-= MAX_INSNS_PER_PEEP2
+ 1;
2820 if (peep2_insn_data
[n
].insn
== PEEP2_EOB
)
2822 return peep2_insn_data
[n
].insn
;
2825 /* Return true if REGNO is dead before the Nth non-note insn
2829 peep2_regno_dead_p (int ofs
, int regno
)
2831 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
2833 ofs
+= peep2_current
;
2834 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2835 ofs
-= MAX_INSNS_PER_PEEP2
+ 1;
2837 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
2839 return ! REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
);
2842 /* Similarly for a REG. */
2845 peep2_reg_dead_p (int ofs
, rtx reg
)
2849 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
2851 ofs
+= peep2_current
;
2852 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2853 ofs
-= MAX_INSNS_PER_PEEP2
+ 1;
2855 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
2857 regno
= REGNO (reg
);
2858 n
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
2860 if (REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
+ n
))
2865 /* Try to find a hard register of mode MODE, matching the register class in
2866 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
2867 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
2868 in which case the only condition is that the register must be available
2869 before CURRENT_INSN.
2870 Registers that already have bits set in REG_SET will not be considered.
2872 If an appropriate register is available, it will be returned and the
2873 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
2877 peep2_find_free_register (int from
, int to
, const char *class_str
,
2878 enum machine_mode mode
, HARD_REG_SET
*reg_set
)
2880 static int search_ofs
;
2885 gcc_assert (from
< MAX_INSNS_PER_PEEP2
+ 1);
2886 gcc_assert (to
< MAX_INSNS_PER_PEEP2
+ 1);
2888 from
+= peep2_current
;
2889 if (from
>= MAX_INSNS_PER_PEEP2
+ 1)
2890 from
-= MAX_INSNS_PER_PEEP2
+ 1;
2891 to
+= peep2_current
;
2892 if (to
>= MAX_INSNS_PER_PEEP2
+ 1)
2893 to
-= MAX_INSNS_PER_PEEP2
+ 1;
2895 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
2896 REG_SET_TO_HARD_REG_SET (live
, peep2_insn_data
[from
].live_before
);
2900 HARD_REG_SET this_live
;
2902 if (++from
>= MAX_INSNS_PER_PEEP2
+ 1)
2904 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
2905 REG_SET_TO_HARD_REG_SET (this_live
, peep2_insn_data
[from
].live_before
);
2906 IOR_HARD_REG_SET (live
, this_live
);
2909 cl
= (class_str
[0] == 'r' ? GENERAL_REGS
2910 : REG_CLASS_FROM_CONSTRAINT (class_str
[0], class_str
));
2912 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2914 int raw_regno
, regno
, success
, j
;
2916 /* Distribute the free registers as much as possible. */
2917 raw_regno
= search_ofs
+ i
;
2918 if (raw_regno
>= FIRST_PSEUDO_REGISTER
)
2919 raw_regno
-= FIRST_PSEUDO_REGISTER
;
2920 #ifdef REG_ALLOC_ORDER
2921 regno
= reg_alloc_order
[raw_regno
];
2926 /* Don't allocate fixed registers. */
2927 if (fixed_regs
[regno
])
2929 /* Make sure the register is of the right class. */
2930 if (! TEST_HARD_REG_BIT (reg_class_contents
[cl
], regno
))
2932 /* And can support the mode we need. */
2933 if (! HARD_REGNO_MODE_OK (regno
, mode
))
2935 /* And that we don't create an extra save/restore. */
2936 if (! call_used_regs
[regno
] && ! regs_ever_live
[regno
])
2938 /* And we don't clobber traceback for noreturn functions. */
2939 if ((regno
== FRAME_POINTER_REGNUM
|| regno
== HARD_FRAME_POINTER_REGNUM
)
2940 && (! reload_completed
|| frame_pointer_needed
))
2944 for (j
= hard_regno_nregs
[regno
][mode
] - 1; j
>= 0; j
--)
2946 if (TEST_HARD_REG_BIT (*reg_set
, regno
+ j
)
2947 || TEST_HARD_REG_BIT (live
, regno
+ j
))
2955 for (j
= hard_regno_nregs
[regno
][mode
] - 1; j
>= 0; j
--)
2956 SET_HARD_REG_BIT (*reg_set
, regno
+ j
);
2958 /* Start the next search with the next register. */
2959 if (++raw_regno
>= FIRST_PSEUDO_REGISTER
)
2961 search_ofs
= raw_regno
;
2963 return gen_rtx_REG (mode
, regno
);
2971 /* Perform the peephole2 optimization pass. */
2974 peephole2_optimize (FILE *dump_file ATTRIBUTE_UNUSED
)
2976 regset_head rs_heads
[MAX_INSNS_PER_PEEP2
+ 2];
2981 #ifdef HAVE_conditional_execution
2985 bool do_cleanup_cfg
= false;
2986 bool do_rebuild_jump_labels
= false;
2988 /* Initialize the regsets we're going to use. */
2989 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
2990 peep2_insn_data
[i
].live_before
= INITIALIZE_REG_SET (rs_heads
[i
]);
2991 live
= INITIALIZE_REG_SET (rs_heads
[i
]);
2993 #ifdef HAVE_conditional_execution
2994 blocks
= sbitmap_alloc (last_basic_block
);
2995 sbitmap_zero (blocks
);
2998 count_or_remove_death_notes (NULL
, 1);
3001 FOR_EACH_BB_REVERSE (bb
)
3003 struct propagate_block_info
*pbi
;
3005 /* Indicate that all slots except the last holds invalid data. */
3006 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
; ++i
)
3007 peep2_insn_data
[i
].insn
= NULL_RTX
;
3009 /* Indicate that the last slot contains live_after data. */
3010 peep2_insn_data
[MAX_INSNS_PER_PEEP2
].insn
= PEEP2_EOB
;
3011 peep2_current
= MAX_INSNS_PER_PEEP2
;
3013 /* Start up propagation. */
3014 COPY_REG_SET (live
, bb
->global_live_at_end
);
3015 COPY_REG_SET (peep2_insn_data
[MAX_INSNS_PER_PEEP2
].live_before
, live
);
3017 #ifdef HAVE_conditional_execution
3018 pbi
= init_propagate_block_info (bb
, live
, NULL
, NULL
, 0);
3020 pbi
= init_propagate_block_info (bb
, live
, NULL
, NULL
, PROP_DEATH_NOTES
);
3023 for (insn
= BB_END (bb
); ; insn
= prev
)
3025 prev
= PREV_INSN (insn
);
3028 rtx
try, before_try
, x
;
3031 bool was_call
= false;
3033 /* Record this insn. */
3034 if (--peep2_current
< 0)
3035 peep2_current
= MAX_INSNS_PER_PEEP2
;
3036 peep2_insn_data
[peep2_current
].insn
= insn
;
3037 propagate_one_insn (pbi
, insn
);
3038 COPY_REG_SET (peep2_insn_data
[peep2_current
].live_before
, live
);
3040 /* Match the peephole. */
3041 try = peephole2_insns (PATTERN (insn
), insn
, &match_len
);
3044 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3045 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3046 cfg-related call notes. */
3047 for (i
= 0; i
<= match_len
; ++i
)
3050 rtx old_insn
, new_insn
, note
;
3052 j
= i
+ peep2_current
;
3053 if (j
>= MAX_INSNS_PER_PEEP2
+ 1)
3054 j
-= MAX_INSNS_PER_PEEP2
+ 1;
3055 old_insn
= peep2_insn_data
[j
].insn
;
3056 if (!CALL_P (old_insn
))
3061 while (new_insn
!= NULL_RTX
)
3063 if (CALL_P (new_insn
))
3065 new_insn
= NEXT_INSN (new_insn
);
3068 gcc_assert (new_insn
!= NULL_RTX
);
3070 CALL_INSN_FUNCTION_USAGE (new_insn
)
3071 = CALL_INSN_FUNCTION_USAGE (old_insn
);
3073 for (note
= REG_NOTES (old_insn
);
3075 note
= XEXP (note
, 1))
3076 switch (REG_NOTE_KIND (note
))
3080 case REG_ALWAYS_RETURN
:
3081 REG_NOTES (new_insn
)
3082 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note
),
3084 REG_NOTES (new_insn
));
3086 /* Discard all other reg notes. */
3090 /* Croak if there is another call in the sequence. */
3091 while (++i
<= match_len
)
3093 j
= i
+ peep2_current
;
3094 if (j
>= MAX_INSNS_PER_PEEP2
+ 1)
3095 j
-= MAX_INSNS_PER_PEEP2
+ 1;
3096 old_insn
= peep2_insn_data
[j
].insn
;
3097 gcc_assert (!CALL_P (old_insn
));
3102 i
= match_len
+ peep2_current
;
3103 if (i
>= MAX_INSNS_PER_PEEP2
+ 1)
3104 i
-= MAX_INSNS_PER_PEEP2
+ 1;
3106 note
= find_reg_note (peep2_insn_data
[i
].insn
,
3107 REG_EH_REGION
, NULL_RTX
);
3109 /* Replace the old sequence with the new. */
3110 try = emit_insn_after_setloc (try, peep2_insn_data
[i
].insn
,
3111 INSN_LOCATOR (peep2_insn_data
[i
].insn
));
3112 before_try
= PREV_INSN (insn
);
3113 delete_insn_chain (insn
, peep2_insn_data
[i
].insn
);
3115 /* Re-insert the EH_REGION notes. */
3116 if (note
|| (was_call
&& nonlocal_goto_handler_labels
))
3121 FOR_EACH_EDGE (eh_edge
, ei
, bb
->succs
)
3122 if (eh_edge
->flags
& (EDGE_EH
| EDGE_ABNORMAL_CALL
))
3125 for (x
= try ; x
!= before_try
; x
= PREV_INSN (x
))
3127 || (flag_non_call_exceptions
3128 && may_trap_p (PATTERN (x
))
3129 && !find_reg_note (x
, REG_EH_REGION
, NULL
)))
3133 = gen_rtx_EXPR_LIST (REG_EH_REGION
,
3137 if (x
!= BB_END (bb
) && eh_edge
)
3142 nfte
= split_block (bb
, x
);
3143 flags
= (eh_edge
->flags
3144 & (EDGE_EH
| EDGE_ABNORMAL
));
3146 flags
|= EDGE_ABNORMAL_CALL
;
3147 nehe
= make_edge (nfte
->src
, eh_edge
->dest
,
3150 nehe
->probability
= eh_edge
->probability
;
3152 = REG_BR_PROB_BASE
- nehe
->probability
;
3154 do_cleanup_cfg
|= purge_dead_edges (nfte
->dest
);
3155 #ifdef HAVE_conditional_execution
3156 SET_BIT (blocks
, nfte
->dest
->index
);
3164 /* Converting possibly trapping insn to non-trapping is
3165 possible. Zap dummy outgoing edges. */
3166 do_cleanup_cfg
|= purge_dead_edges (bb
);
3169 #ifdef HAVE_conditional_execution
3170 /* With conditional execution, we cannot back up the
3171 live information so easily, since the conditional
3172 death data structures are not so self-contained.
3173 So record that we've made a modification to this
3174 block and update life information at the end. */
3175 SET_BIT (blocks
, bb
->index
);
3178 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3179 peep2_insn_data
[i
].insn
= NULL_RTX
;
3180 peep2_insn_data
[peep2_current
].insn
= PEEP2_EOB
;
3182 /* Back up lifetime information past the end of the
3183 newly created sequence. */
3184 if (++i
>= MAX_INSNS_PER_PEEP2
+ 1)
3186 COPY_REG_SET (live
, peep2_insn_data
[i
].live_before
);
3188 /* Update life information for the new sequence. */
3195 i
= MAX_INSNS_PER_PEEP2
;
3196 peep2_insn_data
[i
].insn
= x
;
3197 propagate_one_insn (pbi
, x
);
3198 COPY_REG_SET (peep2_insn_data
[i
].live_before
, live
);
3204 /* ??? Should verify that LIVE now matches what we
3205 had before the new sequence. */
3210 /* If we generated a jump instruction, it won't have
3211 JUMP_LABEL set. Recompute after we're done. */
3212 for (x
= try; x
!= before_try
; x
= PREV_INSN (x
))
3215 do_rebuild_jump_labels
= true;
3221 if (insn
== BB_HEAD (bb
))
3225 free_propagate_block_info (pbi
);
3228 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3229 FREE_REG_SET (peep2_insn_data
[i
].live_before
);
3230 FREE_REG_SET (live
);
3232 if (do_rebuild_jump_labels
)
3233 rebuild_jump_labels (get_insns ());
3235 /* If we eliminated EH edges, we may be able to merge blocks. Further,
3236 we've changed global life since exception handlers are no longer
3241 update_life_info (0, UPDATE_LIFE_GLOBAL_RM_NOTES
, PROP_DEATH_NOTES
);
3243 #ifdef HAVE_conditional_execution
3246 count_or_remove_death_notes (blocks
, 1);
3247 update_life_info (blocks
, UPDATE_LIFE_LOCAL
, PROP_DEATH_NOTES
);
3249 sbitmap_free (blocks
);
3252 #endif /* HAVE_peephole2 */
3254 /* Common predicates for use with define_bypass. */
3256 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3257 data not the address operand(s) of the store. IN_INSN must be
3258 single_set. OUT_INSN must be either a single_set or a PARALLEL with
3262 store_data_bypass_p (rtx out_insn
, rtx in_insn
)
3264 rtx out_set
, in_set
;
3266 in_set
= single_set (in_insn
);
3267 gcc_assert (in_set
);
3269 if (!MEM_P (SET_DEST (in_set
)))
3272 out_set
= single_set (out_insn
);
3275 if (reg_mentioned_p (SET_DEST (out_set
), SET_DEST (in_set
)))
3283 out_pat
= PATTERN (out_insn
);
3284 gcc_assert (GET_CODE (out_pat
) == PARALLEL
);
3286 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3288 rtx exp
= XVECEXP (out_pat
, 0, i
);
3290 if (GET_CODE (exp
) == CLOBBER
)
3293 gcc_assert (GET_CODE (exp
) == SET
);
3295 if (reg_mentioned_p (SET_DEST (exp
), SET_DEST (in_set
)))
3303 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3304 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3305 or multiple set; IN_INSN should be single_set for truth, but for convenience
3306 of insn categorization may be any JUMP or CALL insn. */
3309 if_test_bypass_p (rtx out_insn
, rtx in_insn
)
3311 rtx out_set
, in_set
;
3313 in_set
= single_set (in_insn
);
3316 gcc_assert (JUMP_P (in_insn
) || CALL_P (in_insn
));
3320 if (GET_CODE (SET_SRC (in_set
)) != IF_THEN_ELSE
)
3322 in_set
= SET_SRC (in_set
);
3324 out_set
= single_set (out_insn
);
3327 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3328 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3336 out_pat
= PATTERN (out_insn
);
3337 gcc_assert (GET_CODE (out_pat
) == PARALLEL
);
3339 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3341 rtx exp
= XVECEXP (out_pat
, 0, i
);
3343 if (GET_CODE (exp
) == CLOBBER
)
3346 gcc_assert (GET_CODE (exp
) == SET
);
3348 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3349 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))