Daily bump.
[official-gcc.git] / gcc / loop-unroll.c
blob41d9e5f0fadbe2407d4f9d1936fa31d6930c54ce
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "hard-reg-set.h"
26 #include "obstack.h"
27 #include "basic-block.h"
28 #include "cfgloop.h"
29 #include "params.h"
30 #include "expr.h"
31 #include "hash-table.h"
32 #include "recog.h"
33 #include "target.h"
34 #include "dumpfile.h"
36 /* This pass performs loop unrolling and peeling. We only perform these
37 optimizations on innermost loops (with single exception) because
38 the impact on performance is greatest here, and we want to avoid
39 unnecessary code size growth. The gain is caused by greater sequentiality
40 of code, better code to optimize for further passes and in some cases
41 by fewer testings of exit conditions. The main problem is code growth,
42 that impacts performance negatively due to effect of caches.
44 What we do:
46 -- complete peeling of once-rolling loops; this is the above mentioned
47 exception, as this causes loop to be cancelled completely and
48 does not cause code growth
49 -- complete peeling of loops that roll (small) constant times.
50 -- simple peeling of first iterations of loops that do not roll much
51 (according to profile feedback)
52 -- unrolling of loops that roll constant times; this is almost always
53 win, as we get rid of exit condition tests.
54 -- unrolling of loops that roll number of times that we can compute
55 in runtime; we also get rid of exit condition tests here, but there
56 is the extra expense for calculating the number of iterations
57 -- simple unrolling of remaining loops; this is performed only if we
58 are asked to, as the gain is questionable in this case and often
59 it may even slow down the code
60 For more detailed descriptions of each of those, see comments at
61 appropriate function below.
63 There is a lot of parameters (defined and described in params.def) that
64 control how much we unroll/peel.
66 ??? A great problem is that we don't have a good way how to determine
67 how many times we should unroll the loop; the experiments I have made
68 showed that this choice may affect performance in order of several %.
71 /* Information about induction variables to split. */
73 struct iv_to_split
75 rtx insn; /* The insn in that the induction variable occurs. */
76 rtx orig_var; /* The variable (register) for the IV before split. */
77 rtx base_var; /* The variable on that the values in the further
78 iterations are based. */
79 rtx step; /* Step of the induction variable. */
80 struct iv_to_split *next; /* Next entry in walking order. */
81 unsigned n_loc;
82 unsigned loc[3]; /* Location where the definition of the induction
83 variable occurs in the insn. For example if
84 N_LOC is 2, the expression is located at
85 XEXP (XEXP (single_set, loc[0]), loc[1]). */
88 /* Information about accumulators to expand. */
90 struct var_to_expand
92 rtx insn; /* The insn in that the variable expansion occurs. */
93 rtx reg; /* The accumulator which is expanded. */
94 vec<rtx> var_expansions; /* The copies of the accumulator which is expanded. */
95 struct var_to_expand *next; /* Next entry in walking order. */
96 enum rtx_code op; /* The type of the accumulation - addition, subtraction
97 or multiplication. */
98 int expansion_count; /* Count the number of expansions generated so far. */
99 int reuse_expansion; /* The expansion we intend to reuse to expand
100 the accumulator. If REUSE_EXPANSION is 0 reuse
101 the original accumulator. Else use
102 var_expansions[REUSE_EXPANSION - 1]. */
105 /* Hashtable helper for iv_to_split. */
107 struct iv_split_hasher : typed_free_remove <iv_to_split>
109 typedef iv_to_split value_type;
110 typedef iv_to_split compare_type;
111 static inline hashval_t hash (const value_type *);
112 static inline bool equal (const value_type *, const compare_type *);
116 /* A hash function for information about insns to split. */
118 inline hashval_t
119 iv_split_hasher::hash (const value_type *ivts)
121 return (hashval_t) INSN_UID (ivts->insn);
124 /* An equality functions for information about insns to split. */
126 inline bool
127 iv_split_hasher::equal (const value_type *i1, const compare_type *i2)
129 return i1->insn == i2->insn;
132 /* Hashtable helper for iv_to_split. */
134 struct var_expand_hasher : typed_free_remove <var_to_expand>
136 typedef var_to_expand value_type;
137 typedef var_to_expand compare_type;
138 static inline hashval_t hash (const value_type *);
139 static inline bool equal (const value_type *, const compare_type *);
142 /* Return a hash for VES. */
144 inline hashval_t
145 var_expand_hasher::hash (const value_type *ves)
147 return (hashval_t) INSN_UID (ves->insn);
150 /* Return true if I1 and I2 refer to the same instruction. */
152 inline bool
153 var_expand_hasher::equal (const value_type *i1, const compare_type *i2)
155 return i1->insn == i2->insn;
158 /* Information about optimization applied in
159 the unrolled loop. */
161 struct opt_info
163 hash_table <iv_split_hasher> insns_to_split; /* A hashtable of insns to
164 split. */
165 struct iv_to_split *iv_to_split_head; /* The first iv to split. */
166 struct iv_to_split **iv_to_split_tail; /* Pointer to the tail of the list. */
167 hash_table <var_expand_hasher> insns_with_var_to_expand; /* A hashtable of
168 insns with accumulators to expand. */
169 struct var_to_expand *var_to_expand_head; /* The first var to expand. */
170 struct var_to_expand **var_to_expand_tail; /* Pointer to the tail of the list. */
171 unsigned first_new_block; /* The first basic block that was
172 duplicated. */
173 basic_block loop_exit; /* The loop exit basic block. */
174 basic_block loop_preheader; /* The loop preheader basic block. */
177 static void decide_unrolling_and_peeling (int);
178 static void peel_loops_completely (int);
179 static void decide_peel_simple (struct loop *, int);
180 static void decide_peel_once_rolling (struct loop *, int);
181 static void decide_peel_completely (struct loop *, int);
182 static void decide_unroll_stupid (struct loop *, int);
183 static void decide_unroll_constant_iterations (struct loop *, int);
184 static void decide_unroll_runtime_iterations (struct loop *, int);
185 static void peel_loop_simple (struct loop *);
186 static void peel_loop_completely (struct loop *);
187 static void unroll_loop_stupid (struct loop *);
188 static void unroll_loop_constant_iterations (struct loop *);
189 static void unroll_loop_runtime_iterations (struct loop *);
190 static struct opt_info *analyze_insns_in_loop (struct loop *);
191 static void opt_info_start_duplication (struct opt_info *);
192 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
193 static void free_opt_info (struct opt_info *);
194 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
195 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx, int *);
196 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
197 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
198 static void insert_var_expansion_initialization (struct var_to_expand *,
199 basic_block);
200 static void combine_var_copies_in_loop_exit (struct var_to_expand *,
201 basic_block);
202 static rtx get_expansion (struct var_to_expand *);
204 /* Emit a message summarizing the unroll or peel that will be
205 performed for LOOP, along with the loop's location LOCUS, if
206 appropriate given the dump or -fopt-info settings. */
208 static void
209 report_unroll_peel (struct loop *loop, location_t locus)
211 struct niter_desc *desc;
212 int niters = 0;
213 int report_flags = MSG_OPTIMIZED_LOCATIONS | TDF_RTL | TDF_DETAILS;
215 if (!dump_enabled_p ())
216 return;
218 /* In the special case where the loop never iterated, emit
219 a different message so that we don't report an unroll by 0.
220 This matches the equivalent message emitted during tree unrolling. */
221 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY
222 && !loop->lpt_decision.times)
224 dump_printf_loc (report_flags, locus,
225 "Turned loop into non-loop; it never loops.\n");
226 return;
229 desc = get_simple_loop_desc (loop);
231 if (desc->const_iter)
232 niters = desc->niter;
233 else if (loop->header->count)
234 niters = expected_loop_iterations (loop);
236 dump_printf_loc (report_flags, locus,
237 "%s loop %d times",
238 (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY
239 ? "Completely unroll"
240 : (loop->lpt_decision.decision == LPT_PEEL_SIMPLE
241 ? "Peel" : "Unroll")),
242 loop->lpt_decision.times);
243 if (profile_info)
244 dump_printf (report_flags,
245 " (header execution count %d",
246 (int)loop->header->count);
247 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
248 dump_printf (report_flags,
249 "%s%s iterations %d)",
250 profile_info ? ", " : " (",
251 desc->const_iter ? "const" : "average",
252 niters);
253 else if (profile_info)
254 dump_printf (report_flags, ")");
256 dump_printf (report_flags, "\n");
259 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
260 void
261 unroll_and_peel_loops (int flags)
263 struct loop *loop;
264 bool changed = false;
265 loop_iterator li;
267 /* First perform complete loop peeling (it is almost surely a win,
268 and affects parameters for further decision a lot). */
269 peel_loops_completely (flags);
271 /* Now decide rest of unrolling and peeling. */
272 decide_unrolling_and_peeling (flags);
274 /* Scan the loops, inner ones first. */
275 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
277 /* And perform the appropriate transformations. */
278 switch (loop->lpt_decision.decision)
280 case LPT_PEEL_COMPLETELY:
281 /* Already done. */
282 gcc_unreachable ();
283 case LPT_PEEL_SIMPLE:
284 peel_loop_simple (loop);
285 changed = true;
286 break;
287 case LPT_UNROLL_CONSTANT:
288 unroll_loop_constant_iterations (loop);
289 changed = true;
290 break;
291 case LPT_UNROLL_RUNTIME:
292 unroll_loop_runtime_iterations (loop);
293 changed = true;
294 break;
295 case LPT_UNROLL_STUPID:
296 unroll_loop_stupid (loop);
297 changed = true;
298 break;
299 case LPT_NONE:
300 break;
301 default:
302 gcc_unreachable ();
306 if (changed)
308 calculate_dominance_info (CDI_DOMINATORS);
309 fix_loop_structure (NULL);
312 iv_analysis_done ();
315 /* Check whether exit of the LOOP is at the end of loop body. */
317 static bool
318 loop_exit_at_end_p (struct loop *loop)
320 struct niter_desc *desc = get_simple_loop_desc (loop);
321 rtx insn;
323 if (desc->in_edge->dest != loop->latch)
324 return false;
326 /* Check that the latch is empty. */
327 FOR_BB_INSNS (loop->latch, insn)
329 if (NONDEBUG_INSN_P (insn))
330 return false;
333 return true;
336 /* Depending on FLAGS, check whether to peel loops completely and do so. */
337 static void
338 peel_loops_completely (int flags)
340 struct loop *loop;
341 loop_iterator li;
342 bool changed = false;
344 /* Scan the loops, the inner ones first. */
345 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
347 loop->lpt_decision.decision = LPT_NONE;
348 location_t locus = get_loop_location (loop);
350 if (dump_enabled_p ())
351 dump_printf_loc (TDF_RTL, locus,
352 ";; *** Considering loop %d at BB %d for "
353 "complete peeling ***\n",
354 loop->num, loop->header->index);
356 loop->ninsns = num_loop_insns (loop);
358 decide_peel_once_rolling (loop, flags);
359 if (loop->lpt_decision.decision == LPT_NONE)
360 decide_peel_completely (loop, flags);
362 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
364 report_unroll_peel (loop, locus);
365 peel_loop_completely (loop);
366 changed = true;
370 if (changed)
372 calculate_dominance_info (CDI_DOMINATORS);
373 fix_loop_structure (NULL);
377 /* Decide whether unroll or peel loops (depending on FLAGS) and how much. */
378 static void
379 decide_unrolling_and_peeling (int flags)
381 struct loop *loop;
382 loop_iterator li;
384 /* Scan the loops, inner ones first. */
385 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
387 loop->lpt_decision.decision = LPT_NONE;
388 location_t locus = get_loop_location (loop);
390 if (dump_enabled_p ())
391 dump_printf_loc (TDF_RTL, locus,
392 ";; *** Considering loop %d at BB %d for "
393 "unrolling and peeling ***\n",
394 loop->num, loop->header->index);
396 /* Do not peel cold areas. */
397 if (optimize_loop_for_size_p (loop))
399 if (dump_file)
400 fprintf (dump_file, ";; Not considering loop, cold area\n");
401 continue;
404 /* Can the loop be manipulated? */
405 if (!can_duplicate_loop_p (loop))
407 if (dump_file)
408 fprintf (dump_file,
409 ";; Not considering loop, cannot duplicate\n");
410 continue;
413 /* Skip non-innermost loops. */
414 if (loop->inner)
416 if (dump_file)
417 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
418 continue;
421 loop->ninsns = num_loop_insns (loop);
422 loop->av_ninsns = average_num_loop_insns (loop);
424 /* Try transformations one by one in decreasing order of
425 priority. */
427 decide_unroll_constant_iterations (loop, flags);
428 if (loop->lpt_decision.decision == LPT_NONE)
429 decide_unroll_runtime_iterations (loop, flags);
430 if (loop->lpt_decision.decision == LPT_NONE)
431 decide_unroll_stupid (loop, flags);
432 if (loop->lpt_decision.decision == LPT_NONE)
433 decide_peel_simple (loop, flags);
435 report_unroll_peel (loop, locus);
439 /* Decide whether the LOOP is once rolling and suitable for complete
440 peeling. */
441 static void
442 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
444 struct niter_desc *desc;
446 if (dump_file)
447 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
449 /* Is the loop small enough? */
450 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
452 if (dump_file)
453 fprintf (dump_file, ";; Not considering loop, is too big\n");
454 return;
457 /* Check for simple loops. */
458 desc = get_simple_loop_desc (loop);
460 /* Check number of iterations. */
461 if (!desc->simple_p
462 || desc->assumptions
463 || desc->infinite
464 || !desc->const_iter
465 || (desc->niter != 0
466 && max_loop_iterations_int (loop) != 0))
468 if (dump_file)
469 fprintf (dump_file,
470 ";; Unable to prove that the loop rolls exactly once\n");
471 return;
474 /* Success. */
475 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
478 /* Decide whether the LOOP is suitable for complete peeling. */
479 static void
480 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
482 unsigned npeel;
483 struct niter_desc *desc;
485 if (dump_file)
486 fprintf (dump_file, "\n;; Considering peeling completely\n");
488 /* Skip non-innermost loops. */
489 if (loop->inner)
491 if (dump_file)
492 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
493 return;
496 /* Do not peel cold areas. */
497 if (optimize_loop_for_size_p (loop))
499 if (dump_file)
500 fprintf (dump_file, ";; Not considering loop, cold area\n");
501 return;
504 /* Can the loop be manipulated? */
505 if (!can_duplicate_loop_p (loop))
507 if (dump_file)
508 fprintf (dump_file,
509 ";; Not considering loop, cannot duplicate\n");
510 return;
513 /* npeel = number of iterations to peel. */
514 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
515 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
516 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
518 /* Is the loop small enough? */
519 if (!npeel)
521 if (dump_file)
522 fprintf (dump_file, ";; Not considering loop, is too big\n");
523 return;
526 /* Check for simple loops. */
527 desc = get_simple_loop_desc (loop);
529 /* Check number of iterations. */
530 if (!desc->simple_p
531 || desc->assumptions
532 || !desc->const_iter
533 || desc->infinite)
535 if (dump_file)
536 fprintf (dump_file,
537 ";; Unable to prove that the loop iterates constant times\n");
538 return;
541 if (desc->niter > npeel - 1)
543 if (dump_file)
545 fprintf (dump_file,
546 ";; Not peeling loop completely, rolls too much (");
547 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
548 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
550 return;
553 /* Success. */
554 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
557 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
558 completely. The transformation done:
560 for (i = 0; i < 4; i++)
561 body;
565 i = 0;
566 body; i++;
567 body; i++;
568 body; i++;
569 body; i++;
571 static void
572 peel_loop_completely (struct loop *loop)
574 sbitmap wont_exit;
575 unsigned HOST_WIDE_INT npeel;
576 unsigned i;
577 vec<edge> remove_edges;
578 edge ein;
579 struct niter_desc *desc = get_simple_loop_desc (loop);
580 struct opt_info *opt_info = NULL;
582 npeel = desc->niter;
584 if (npeel)
586 bool ok;
588 wont_exit = sbitmap_alloc (npeel + 1);
589 bitmap_ones (wont_exit);
590 bitmap_clear_bit (wont_exit, 0);
591 if (desc->noloop_assumptions)
592 bitmap_clear_bit (wont_exit, 1);
594 remove_edges.create (0);
596 if (flag_split_ivs_in_unroller)
597 opt_info = analyze_insns_in_loop (loop);
599 opt_info_start_duplication (opt_info);
600 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
601 npeel,
602 wont_exit, desc->out_edge,
603 &remove_edges,
604 DLTHE_FLAG_UPDATE_FREQ
605 | DLTHE_FLAG_COMPLETTE_PEEL
606 | (opt_info
607 ? DLTHE_RECORD_COPY_NUMBER : 0));
608 gcc_assert (ok);
610 free (wont_exit);
612 if (opt_info)
614 apply_opt_in_copies (opt_info, npeel, false, true);
615 free_opt_info (opt_info);
618 /* Remove the exit edges. */
619 FOR_EACH_VEC_ELT (remove_edges, i, ein)
620 remove_path (ein);
621 remove_edges.release ();
624 ein = desc->in_edge;
625 free_simple_loop_desc (loop);
627 /* Now remove the unreachable part of the last iteration and cancel
628 the loop. */
629 remove_path (ein);
631 if (dump_file)
632 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
635 /* Decide whether to unroll LOOP iterating constant number of times
636 and how much. */
638 static void
639 decide_unroll_constant_iterations (struct loop *loop, int flags)
641 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
642 struct niter_desc *desc;
643 double_int iterations;
645 if (!(flags & UAP_UNROLL))
647 /* We were not asked to, just return back silently. */
648 return;
651 if (dump_file)
652 fprintf (dump_file,
653 "\n;; Considering unrolling loop with constant "
654 "number of iterations\n");
656 /* nunroll = total number of copies of the original loop body in
657 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
658 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
659 nunroll_by_av
660 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
661 if (nunroll > nunroll_by_av)
662 nunroll = nunroll_by_av;
663 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
664 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
666 /* Skip big loops. */
667 if (nunroll <= 1)
669 if (dump_file)
670 fprintf (dump_file, ";; Not considering loop, is too big\n");
671 return;
674 /* Check for simple loops. */
675 desc = get_simple_loop_desc (loop);
677 /* Check number of iterations. */
678 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
680 if (dump_file)
681 fprintf (dump_file,
682 ";; Unable to prove that the loop iterates constant times\n");
683 return;
686 /* Check whether the loop rolls enough to consider.
687 Consult also loop bounds and profile; in the case the loop has more
688 than one exit it may well loop less than determined maximal number
689 of iterations. */
690 if (desc->niter < 2 * nunroll
691 || ((estimated_loop_iterations (loop, &iterations)
692 || max_loop_iterations (loop, &iterations))
693 && iterations.ult (double_int::from_shwi (2 * nunroll))))
695 if (dump_file)
696 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
697 return;
700 /* Success; now compute number of iterations to unroll. We alter
701 nunroll so that as few as possible copies of loop body are
702 necessary, while still not decreasing the number of unrollings
703 too much (at most by 1). */
704 best_copies = 2 * nunroll + 10;
706 i = 2 * nunroll + 2;
707 if (i - 1 >= desc->niter)
708 i = desc->niter - 2;
710 for (; i >= nunroll - 1; i--)
712 unsigned exit_mod = desc->niter % (i + 1);
714 if (!loop_exit_at_end_p (loop))
715 n_copies = exit_mod + i + 1;
716 else if (exit_mod != (unsigned) i
717 || desc->noloop_assumptions != NULL_RTX)
718 n_copies = exit_mod + i + 2;
719 else
720 n_copies = i + 1;
722 if (n_copies < best_copies)
724 best_copies = n_copies;
725 best_unroll = i;
729 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
730 loop->lpt_decision.times = best_unroll;
733 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES times.
734 The transformation does this:
736 for (i = 0; i < 102; i++)
737 body;
739 ==> (LOOP->LPT_DECISION.TIMES == 3)
741 i = 0;
742 body; i++;
743 body; i++;
744 while (i < 102)
746 body; i++;
747 body; i++;
748 body; i++;
749 body; i++;
752 static void
753 unroll_loop_constant_iterations (struct loop *loop)
755 unsigned HOST_WIDE_INT niter;
756 unsigned exit_mod;
757 sbitmap wont_exit;
758 unsigned i;
759 vec<edge> remove_edges;
760 edge e;
761 unsigned max_unroll = loop->lpt_decision.times;
762 struct niter_desc *desc = get_simple_loop_desc (loop);
763 bool exit_at_end = loop_exit_at_end_p (loop);
764 struct opt_info *opt_info = NULL;
765 bool ok;
767 niter = desc->niter;
769 /* Should not get here (such loop should be peeled instead). */
770 gcc_assert (niter > max_unroll + 1);
772 exit_mod = niter % (max_unroll + 1);
774 wont_exit = sbitmap_alloc (max_unroll + 1);
775 bitmap_ones (wont_exit);
777 remove_edges.create (0);
778 if (flag_split_ivs_in_unroller
779 || flag_variable_expansion_in_unroller)
780 opt_info = analyze_insns_in_loop (loop);
782 if (!exit_at_end)
784 /* The exit is not at the end of the loop; leave exit test
785 in the first copy, so that the loops that start with test
786 of exit condition have continuous body after unrolling. */
788 if (dump_file)
789 fprintf (dump_file, ";; Condition at beginning of loop.\n");
791 /* Peel exit_mod iterations. */
792 bitmap_clear_bit (wont_exit, 0);
793 if (desc->noloop_assumptions)
794 bitmap_clear_bit (wont_exit, 1);
796 if (exit_mod)
798 opt_info_start_duplication (opt_info);
799 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
800 exit_mod,
801 wont_exit, desc->out_edge,
802 &remove_edges,
803 DLTHE_FLAG_UPDATE_FREQ
804 | (opt_info && exit_mod > 1
805 ? DLTHE_RECORD_COPY_NUMBER
806 : 0));
807 gcc_assert (ok);
809 if (opt_info && exit_mod > 1)
810 apply_opt_in_copies (opt_info, exit_mod, false, false);
812 desc->noloop_assumptions = NULL_RTX;
813 desc->niter -= exit_mod;
814 loop->nb_iterations_upper_bound -= double_int::from_uhwi (exit_mod);
815 if (loop->any_estimate
816 && double_int::from_uhwi (exit_mod).ule
817 (loop->nb_iterations_estimate))
818 loop->nb_iterations_estimate -= double_int::from_uhwi (exit_mod);
819 else
820 loop->any_estimate = false;
823 bitmap_set_bit (wont_exit, 1);
825 else
827 /* Leave exit test in last copy, for the same reason as above if
828 the loop tests the condition at the end of loop body. */
830 if (dump_file)
831 fprintf (dump_file, ";; Condition at end of loop.\n");
833 /* We know that niter >= max_unroll + 2; so we do not need to care of
834 case when we would exit before reaching the loop. So just peel
835 exit_mod + 1 iterations. */
836 if (exit_mod != max_unroll
837 || desc->noloop_assumptions)
839 bitmap_clear_bit (wont_exit, 0);
840 if (desc->noloop_assumptions)
841 bitmap_clear_bit (wont_exit, 1);
843 opt_info_start_duplication (opt_info);
844 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
845 exit_mod + 1,
846 wont_exit, desc->out_edge,
847 &remove_edges,
848 DLTHE_FLAG_UPDATE_FREQ
849 | (opt_info && exit_mod > 0
850 ? DLTHE_RECORD_COPY_NUMBER
851 : 0));
852 gcc_assert (ok);
854 if (opt_info && exit_mod > 0)
855 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
857 desc->niter -= exit_mod + 1;
858 loop->nb_iterations_upper_bound -= double_int::from_uhwi (exit_mod + 1);
859 if (loop->any_estimate
860 && double_int::from_uhwi (exit_mod + 1).ule
861 (loop->nb_iterations_estimate))
862 loop->nb_iterations_estimate -= double_int::from_uhwi (exit_mod + 1);
863 else
864 loop->any_estimate = false;
865 desc->noloop_assumptions = NULL_RTX;
867 bitmap_set_bit (wont_exit, 0);
868 bitmap_set_bit (wont_exit, 1);
871 bitmap_clear_bit (wont_exit, max_unroll);
874 /* Now unroll the loop. */
876 opt_info_start_duplication (opt_info);
877 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
878 max_unroll,
879 wont_exit, desc->out_edge,
880 &remove_edges,
881 DLTHE_FLAG_UPDATE_FREQ
882 | (opt_info
883 ? DLTHE_RECORD_COPY_NUMBER
884 : 0));
885 gcc_assert (ok);
887 if (opt_info)
889 apply_opt_in_copies (opt_info, max_unroll, true, true);
890 free_opt_info (opt_info);
893 free (wont_exit);
895 if (exit_at_end)
897 basic_block exit_block = get_bb_copy (desc->in_edge->src);
898 /* Find a new in and out edge; they are in the last copy we have made. */
900 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
902 desc->out_edge = EDGE_SUCC (exit_block, 0);
903 desc->in_edge = EDGE_SUCC (exit_block, 1);
905 else
907 desc->out_edge = EDGE_SUCC (exit_block, 1);
908 desc->in_edge = EDGE_SUCC (exit_block, 0);
912 desc->niter /= max_unroll + 1;
913 loop->nb_iterations_upper_bound
914 = loop->nb_iterations_upper_bound.udiv (double_int::from_uhwi (max_unroll
915 + 1),
916 TRUNC_DIV_EXPR);
917 if (loop->any_estimate)
918 loop->nb_iterations_estimate
919 = loop->nb_iterations_estimate.udiv (double_int::from_uhwi (max_unroll
920 + 1),
921 TRUNC_DIV_EXPR);
922 desc->niter_expr = GEN_INT (desc->niter);
924 /* Remove the edges. */
925 FOR_EACH_VEC_ELT (remove_edges, i, e)
926 remove_path (e);
927 remove_edges.release ();
929 if (dump_file)
930 fprintf (dump_file,
931 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
932 max_unroll, num_loop_insns (loop));
935 /* Decide whether to unroll LOOP iterating runtime computable number of times
936 and how much. */
937 static void
938 decide_unroll_runtime_iterations (struct loop *loop, int flags)
940 unsigned nunroll, nunroll_by_av, i;
941 struct niter_desc *desc;
942 double_int iterations;
944 if (!(flags & UAP_UNROLL))
946 /* We were not asked to, just return back silently. */
947 return;
950 if (dump_file)
951 fprintf (dump_file,
952 "\n;; Considering unrolling loop with runtime "
953 "computable number of iterations\n");
955 /* nunroll = total number of copies of the original loop body in
956 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
957 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
958 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
959 if (nunroll > nunroll_by_av)
960 nunroll = nunroll_by_av;
961 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
962 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
964 if (targetm.loop_unroll_adjust)
965 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
967 /* Skip big loops. */
968 if (nunroll <= 1)
970 if (dump_file)
971 fprintf (dump_file, ";; Not considering loop, is too big\n");
972 return;
975 /* Check for simple loops. */
976 desc = get_simple_loop_desc (loop);
978 /* Check simpleness. */
979 if (!desc->simple_p || desc->assumptions)
981 if (dump_file)
982 fprintf (dump_file,
983 ";; Unable to prove that the number of iterations "
984 "can be counted in runtime\n");
985 return;
988 if (desc->const_iter)
990 if (dump_file)
991 fprintf (dump_file, ";; Loop iterates constant times\n");
992 return;
995 /* Check whether the loop rolls. */
996 if ((estimated_loop_iterations (loop, &iterations)
997 || max_loop_iterations (loop, &iterations))
998 && iterations.ult (double_int::from_shwi (2 * nunroll)))
1000 if (dump_file)
1001 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1002 return;
1005 /* Success; now force nunroll to be power of 2, as we are unable to
1006 cope with overflows in computation of number of iterations. */
1007 for (i = 1; 2 * i <= nunroll; i *= 2)
1008 continue;
1010 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
1011 loop->lpt_decision.times = i - 1;
1014 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
1015 returns the newly created block. If INSNS is NULL_RTX, nothing is changed
1016 and NULL is returned instead. */
1018 basic_block
1019 split_edge_and_insert (edge e, rtx insns)
1021 basic_block bb;
1023 if (!insns)
1024 return NULL;
1025 bb = split_edge (e);
1026 emit_insn_after (insns, BB_END (bb));
1028 /* ??? We used to assume that INSNS can contain control flow insns, and
1029 that we had to try to find sub basic blocks in BB to maintain a valid
1030 CFG. For this purpose we used to set the BB_SUPERBLOCK flag on BB
1031 and call break_superblocks when going out of cfglayout mode. But it
1032 turns out that this never happens; and that if it does ever happen,
1033 the TODO_verify_flow at the end of the RTL loop passes would fail.
1035 There are two reasons why we expected we could have control flow insns
1036 in INSNS. The first is when a comparison has to be done in parts, and
1037 the second is when the number of iterations is computed for loops with
1038 the number of iterations known at runtime. In both cases, test cases
1039 to get control flow in INSNS appear to be impossible to construct:
1041 * If do_compare_rtx_and_jump needs several branches to do comparison
1042 in a mode that needs comparison by parts, we cannot analyze the
1043 number of iterations of the loop, and we never get to unrolling it.
1045 * The code in expand_divmod that was suspected to cause creation of
1046 branching code seems to be only accessed for signed division. The
1047 divisions used by # of iterations analysis are always unsigned.
1048 Problems might arise on architectures that emits branching code
1049 for some operations that may appear in the unroller (especially
1050 for division), but we have no such architectures.
1052 Considering all this, it was decided that we should for now assume
1053 that INSNS can in theory contain control flow insns, but in practice
1054 it never does. So we don't handle the theoretical case, and should
1055 a real failure ever show up, we have a pretty good clue for how to
1056 fix it. */
1058 return bb;
1061 /* Unroll LOOP for which we are able to count number of iterations in runtime
1062 LOOP->LPT_DECISION.TIMES times. The transformation does this (with some
1063 extra care for case n < 0):
1065 for (i = 0; i < n; i++)
1066 body;
1068 ==> (LOOP->LPT_DECISION.TIMES == 3)
1070 i = 0;
1071 mod = n % 4;
1073 switch (mod)
1075 case 3:
1076 body; i++;
1077 case 2:
1078 body; i++;
1079 case 1:
1080 body; i++;
1081 case 0: ;
1084 while (i < n)
1086 body; i++;
1087 body; i++;
1088 body; i++;
1089 body; i++;
1092 static void
1093 unroll_loop_runtime_iterations (struct loop *loop)
1095 rtx old_niter, niter, init_code, branch_code, tmp;
1096 unsigned i, j, p;
1097 basic_block preheader, *body, swtch, ezc_swtch;
1098 vec<basic_block> dom_bbs;
1099 sbitmap wont_exit;
1100 int may_exit_copy;
1101 unsigned n_peel;
1102 vec<edge> remove_edges;
1103 edge e;
1104 bool extra_zero_check, last_may_exit;
1105 unsigned max_unroll = loop->lpt_decision.times;
1106 struct niter_desc *desc = get_simple_loop_desc (loop);
1107 bool exit_at_end = loop_exit_at_end_p (loop);
1108 struct opt_info *opt_info = NULL;
1109 bool ok;
1111 if (flag_split_ivs_in_unroller
1112 || flag_variable_expansion_in_unroller)
1113 opt_info = analyze_insns_in_loop (loop);
1115 /* Remember blocks whose dominators will have to be updated. */
1116 dom_bbs.create (0);
1118 body = get_loop_body (loop);
1119 for (i = 0; i < loop->num_nodes; i++)
1121 vec<basic_block> ldom;
1122 basic_block bb;
1124 ldom = get_dominated_by (CDI_DOMINATORS, body[i]);
1125 FOR_EACH_VEC_ELT (ldom, j, bb)
1126 if (!flow_bb_inside_loop_p (loop, bb))
1127 dom_bbs.safe_push (bb);
1129 ldom.release ();
1131 free (body);
1133 if (!exit_at_end)
1135 /* Leave exit in first copy (for explanation why see comment in
1136 unroll_loop_constant_iterations). */
1137 may_exit_copy = 0;
1138 n_peel = max_unroll - 1;
1139 extra_zero_check = true;
1140 last_may_exit = false;
1142 else
1144 /* Leave exit in last copy (for explanation why see comment in
1145 unroll_loop_constant_iterations). */
1146 may_exit_copy = max_unroll;
1147 n_peel = max_unroll;
1148 extra_zero_check = false;
1149 last_may_exit = true;
1152 /* Get expression for number of iterations. */
1153 start_sequence ();
1154 old_niter = niter = gen_reg_rtx (desc->mode);
1155 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
1156 if (tmp != niter)
1157 emit_move_insn (niter, tmp);
1159 /* Count modulo by ANDing it with max_unroll; we use the fact that
1160 the number of unrollings is a power of two, and thus this is correct
1161 even if there is overflow in the computation. */
1162 niter = expand_simple_binop (desc->mode, AND,
1163 niter,
1164 GEN_INT (max_unroll),
1165 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1167 init_code = get_insns ();
1168 end_sequence ();
1169 unshare_all_rtl_in_chain (init_code);
1171 /* Precondition the loop. */
1172 split_edge_and_insert (loop_preheader_edge (loop), init_code);
1174 remove_edges.create (0);
1176 wont_exit = sbitmap_alloc (max_unroll + 2);
1178 /* Peel the first copy of loop body (almost always we must leave exit test
1179 here; the only exception is when we have extra zero check and the number
1180 of iterations is reliable. Also record the place of (possible) extra
1181 zero check. */
1182 bitmap_clear (wont_exit);
1183 if (extra_zero_check
1184 && !desc->noloop_assumptions)
1185 bitmap_set_bit (wont_exit, 1);
1186 ezc_swtch = loop_preheader_edge (loop)->src;
1187 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1188 1, wont_exit, desc->out_edge,
1189 &remove_edges,
1190 DLTHE_FLAG_UPDATE_FREQ);
1191 gcc_assert (ok);
1193 /* Record the place where switch will be built for preconditioning. */
1194 swtch = split_edge (loop_preheader_edge (loop));
1196 for (i = 0; i < n_peel; i++)
1198 /* Peel the copy. */
1199 bitmap_clear (wont_exit);
1200 if (i != n_peel - 1 || !last_may_exit)
1201 bitmap_set_bit (wont_exit, 1);
1202 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1203 1, wont_exit, desc->out_edge,
1204 &remove_edges,
1205 DLTHE_FLAG_UPDATE_FREQ);
1206 gcc_assert (ok);
1208 /* Create item for switch. */
1209 j = n_peel - i - (extra_zero_check ? 0 : 1);
1210 p = REG_BR_PROB_BASE / (i + 2);
1212 preheader = split_edge (loop_preheader_edge (loop));
1213 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1214 block_label (preheader), p,
1215 NULL_RTX);
1217 /* We rely on the fact that the compare and jump cannot be optimized out,
1218 and hence the cfg we create is correct. */
1219 gcc_assert (branch_code != NULL_RTX);
1221 swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
1222 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1223 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1224 e = make_edge (swtch, preheader,
1225 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1226 e->count = RDIV (preheader->count * REG_BR_PROB_BASE, p);
1227 e->probability = p;
1230 if (extra_zero_check)
1232 /* Add branch for zero iterations. */
1233 p = REG_BR_PROB_BASE / (max_unroll + 1);
1234 swtch = ezc_swtch;
1235 preheader = split_edge (loop_preheader_edge (loop));
1236 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1237 block_label (preheader), p,
1238 NULL_RTX);
1239 gcc_assert (branch_code != NULL_RTX);
1241 swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
1242 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1243 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1244 e = make_edge (swtch, preheader,
1245 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1246 e->count = RDIV (preheader->count * REG_BR_PROB_BASE, p);
1247 e->probability = p;
1250 /* Recount dominators for outer blocks. */
1251 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
1253 /* And unroll loop. */
1255 bitmap_ones (wont_exit);
1256 bitmap_clear_bit (wont_exit, may_exit_copy);
1257 opt_info_start_duplication (opt_info);
1259 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1260 max_unroll,
1261 wont_exit, desc->out_edge,
1262 &remove_edges,
1263 DLTHE_FLAG_UPDATE_FREQ
1264 | (opt_info
1265 ? DLTHE_RECORD_COPY_NUMBER
1266 : 0));
1267 gcc_assert (ok);
1269 if (opt_info)
1271 apply_opt_in_copies (opt_info, max_unroll, true, true);
1272 free_opt_info (opt_info);
1275 free (wont_exit);
1277 if (exit_at_end)
1279 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1280 /* Find a new in and out edge; they are in the last copy we have
1281 made. */
1283 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1285 desc->out_edge = EDGE_SUCC (exit_block, 0);
1286 desc->in_edge = EDGE_SUCC (exit_block, 1);
1288 else
1290 desc->out_edge = EDGE_SUCC (exit_block, 1);
1291 desc->in_edge = EDGE_SUCC (exit_block, 0);
1295 /* Remove the edges. */
1296 FOR_EACH_VEC_ELT (remove_edges, i, e)
1297 remove_path (e);
1298 remove_edges.release ();
1300 /* We must be careful when updating the number of iterations due to
1301 preconditioning and the fact that the value must be valid at entry
1302 of the loop. After passing through the above code, we see that
1303 the correct new number of iterations is this: */
1304 gcc_assert (!desc->const_iter);
1305 desc->niter_expr =
1306 simplify_gen_binary (UDIV, desc->mode, old_niter,
1307 GEN_INT (max_unroll + 1));
1308 loop->nb_iterations_upper_bound
1309 = loop->nb_iterations_upper_bound.udiv (double_int::from_uhwi (max_unroll
1310 + 1),
1311 TRUNC_DIV_EXPR);
1312 if (loop->any_estimate)
1313 loop->nb_iterations_estimate
1314 = loop->nb_iterations_estimate.udiv (double_int::from_uhwi (max_unroll
1315 + 1),
1316 TRUNC_DIV_EXPR);
1317 if (exit_at_end)
1319 desc->niter_expr =
1320 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1321 desc->noloop_assumptions = NULL_RTX;
1322 --loop->nb_iterations_upper_bound;
1323 if (loop->any_estimate
1324 && loop->nb_iterations_estimate != double_int_zero)
1325 --loop->nb_iterations_estimate;
1326 else
1327 loop->any_estimate = false;
1330 if (dump_file)
1331 fprintf (dump_file,
1332 ";; Unrolled loop %d times, counting # of iterations "
1333 "in runtime, %i insns\n",
1334 max_unroll, num_loop_insns (loop));
1336 dom_bbs.release ();
1339 /* Decide whether to simply peel LOOP and how much. */
1340 static void
1341 decide_peel_simple (struct loop *loop, int flags)
1343 unsigned npeel;
1344 double_int iterations;
1346 if (!(flags & UAP_PEEL))
1348 /* We were not asked to, just return back silently. */
1349 return;
1352 if (dump_file)
1353 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1355 /* npeel = number of iterations to peel. */
1356 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1357 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1358 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1360 /* Skip big loops. */
1361 if (!npeel)
1363 if (dump_file)
1364 fprintf (dump_file, ";; Not considering loop, is too big\n");
1365 return;
1368 /* Do not simply peel loops with branches inside -- it increases number
1369 of mispredicts.
1370 Exception is when we do have profile and we however have good chance
1371 to peel proper number of iterations loop will iterate in practice.
1372 TODO: this heuristic needs tunning; while for complette unrolling
1373 the branch inside loop mostly eliminates any improvements, for
1374 peeling it is not the case. Also a function call inside loop is
1375 also branch from branch prediction POV (and probably better reason
1376 to not unroll/peel). */
1377 if (num_loop_branches (loop) > 1
1378 && profile_status != PROFILE_READ)
1380 if (dump_file)
1381 fprintf (dump_file, ";; Not peeling, contains branches\n");
1382 return;
1385 /* If we have realistic estimate on number of iterations, use it. */
1386 if (estimated_loop_iterations (loop, &iterations))
1388 if (double_int::from_shwi (npeel).ule (iterations))
1390 if (dump_file)
1392 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1393 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1394 (HOST_WIDEST_INT) (iterations.to_shwi () + 1));
1395 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1396 npeel);
1398 return;
1400 npeel = iterations.to_shwi () + 1;
1402 /* If we have small enough bound on iterations, we can still peel (completely
1403 unroll). */
1404 else if (max_loop_iterations (loop, &iterations)
1405 && iterations.ult (double_int::from_shwi (npeel)))
1406 npeel = iterations.to_shwi () + 1;
1407 else
1409 /* For now we have no good heuristics to decide whether loop peeling
1410 will be effective, so disable it. */
1411 if (dump_file)
1412 fprintf (dump_file,
1413 ";; Not peeling loop, no evidence it will be profitable\n");
1414 return;
1417 /* Success. */
1418 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1419 loop->lpt_decision.times = npeel;
1422 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation does this:
1424 while (cond)
1425 body;
1427 ==> (LOOP->LPT_DECISION.TIMES == 3)
1429 if (!cond) goto end;
1430 body;
1431 if (!cond) goto end;
1432 body;
1433 if (!cond) goto end;
1434 body;
1435 while (cond)
1436 body;
1437 end: ;
1439 static void
1440 peel_loop_simple (struct loop *loop)
1442 sbitmap wont_exit;
1443 unsigned npeel = loop->lpt_decision.times;
1444 struct niter_desc *desc = get_simple_loop_desc (loop);
1445 struct opt_info *opt_info = NULL;
1446 bool ok;
1448 if (flag_split_ivs_in_unroller && npeel > 1)
1449 opt_info = analyze_insns_in_loop (loop);
1451 wont_exit = sbitmap_alloc (npeel + 1);
1452 bitmap_clear (wont_exit);
1454 opt_info_start_duplication (opt_info);
1456 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1457 npeel, wont_exit, NULL,
1458 NULL, DLTHE_FLAG_UPDATE_FREQ
1459 | (opt_info
1460 ? DLTHE_RECORD_COPY_NUMBER
1461 : 0));
1462 gcc_assert (ok);
1464 free (wont_exit);
1466 if (opt_info)
1468 apply_opt_in_copies (opt_info, npeel, false, false);
1469 free_opt_info (opt_info);
1472 if (desc->simple_p)
1474 if (desc->const_iter)
1476 desc->niter -= npeel;
1477 desc->niter_expr = GEN_INT (desc->niter);
1478 desc->noloop_assumptions = NULL_RTX;
1480 else
1482 /* We cannot just update niter_expr, as its value might be clobbered
1483 inside loop. We could handle this by counting the number into
1484 temporary just like we do in runtime unrolling, but it does not
1485 seem worthwhile. */
1486 free_simple_loop_desc (loop);
1489 if (dump_file)
1490 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1493 /* Decide whether to unroll LOOP stupidly and how much. */
1494 static void
1495 decide_unroll_stupid (struct loop *loop, int flags)
1497 unsigned nunroll, nunroll_by_av, i;
1498 struct niter_desc *desc;
1499 double_int iterations;
1501 if (!(flags & UAP_UNROLL_ALL))
1503 /* We were not asked to, just return back silently. */
1504 return;
1507 if (dump_file)
1508 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1510 /* nunroll = total number of copies of the original loop body in
1511 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1512 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1513 nunroll_by_av
1514 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1515 if (nunroll > nunroll_by_av)
1516 nunroll = nunroll_by_av;
1517 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1518 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1520 if (targetm.loop_unroll_adjust)
1521 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
1523 /* Skip big loops. */
1524 if (nunroll <= 1)
1526 if (dump_file)
1527 fprintf (dump_file, ";; Not considering loop, is too big\n");
1528 return;
1531 /* Check for simple loops. */
1532 desc = get_simple_loop_desc (loop);
1534 /* Check simpleness. */
1535 if (desc->simple_p && !desc->assumptions)
1537 if (dump_file)
1538 fprintf (dump_file, ";; The loop is simple\n");
1539 return;
1542 /* Do not unroll loops with branches inside -- it increases number
1543 of mispredicts.
1544 TODO: this heuristic needs tunning; call inside the loop body
1545 is also relatively good reason to not unroll. */
1546 if (num_loop_branches (loop) > 1)
1548 if (dump_file)
1549 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1550 return;
1553 /* Check whether the loop rolls. */
1554 if ((estimated_loop_iterations (loop, &iterations)
1555 || max_loop_iterations (loop, &iterations))
1556 && iterations.ult (double_int::from_shwi (2 * nunroll)))
1558 if (dump_file)
1559 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1560 return;
1563 /* Success. Now force nunroll to be power of 2, as it seems that this
1564 improves results (partially because of better alignments, partially
1565 because of some dark magic). */
1566 for (i = 1; 2 * i <= nunroll; i *= 2)
1567 continue;
1569 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1570 loop->lpt_decision.times = i - 1;
1573 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation does this:
1575 while (cond)
1576 body;
1578 ==> (LOOP->LPT_DECISION.TIMES == 3)
1580 while (cond)
1582 body;
1583 if (!cond) break;
1584 body;
1585 if (!cond) break;
1586 body;
1587 if (!cond) break;
1588 body;
1591 static void
1592 unroll_loop_stupid (struct loop *loop)
1594 sbitmap wont_exit;
1595 unsigned nunroll = loop->lpt_decision.times;
1596 struct niter_desc *desc = get_simple_loop_desc (loop);
1597 struct opt_info *opt_info = NULL;
1598 bool ok;
1600 if (flag_split_ivs_in_unroller
1601 || flag_variable_expansion_in_unroller)
1602 opt_info = analyze_insns_in_loop (loop);
1605 wont_exit = sbitmap_alloc (nunroll + 1);
1606 bitmap_clear (wont_exit);
1607 opt_info_start_duplication (opt_info);
1609 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1610 nunroll, wont_exit,
1611 NULL, NULL,
1612 DLTHE_FLAG_UPDATE_FREQ
1613 | (opt_info
1614 ? DLTHE_RECORD_COPY_NUMBER
1615 : 0));
1616 gcc_assert (ok);
1618 if (opt_info)
1620 apply_opt_in_copies (opt_info, nunroll, true, true);
1621 free_opt_info (opt_info);
1624 free (wont_exit);
1626 if (desc->simple_p)
1628 /* We indeed may get here provided that there are nontrivial assumptions
1629 for a loop to be really simple. We could update the counts, but the
1630 problem is that we are unable to decide which exit will be taken
1631 (not really true in case the number of iterations is constant,
1632 but noone will do anything with this information, so we do not
1633 worry about it). */
1634 desc->simple_p = false;
1637 if (dump_file)
1638 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1639 nunroll, num_loop_insns (loop));
1642 /* Returns true if REG is referenced in one nondebug insn in LOOP.
1643 Set *DEBUG_USES to the number of debug insns that reference the
1644 variable. */
1646 bool
1647 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg,
1648 int *debug_uses)
1650 basic_block *body, bb;
1651 unsigned i;
1652 int count_ref = 0;
1653 rtx insn;
1655 body = get_loop_body (loop);
1656 for (i = 0; i < loop->num_nodes; i++)
1658 bb = body[i];
1660 FOR_BB_INSNS (bb, insn)
1661 if (!rtx_referenced_p (reg, insn))
1662 continue;
1663 else if (DEBUG_INSN_P (insn))
1664 ++*debug_uses;
1665 else if (++count_ref > 1)
1666 break;
1668 free (body);
1669 return (count_ref == 1);
1672 /* Reset the DEBUG_USES debug insns in LOOP that reference REG. */
1674 static void
1675 reset_debug_uses_in_loop (struct loop *loop, rtx reg, int debug_uses)
1677 basic_block *body, bb;
1678 unsigned i;
1679 rtx insn;
1681 body = get_loop_body (loop);
1682 for (i = 0; debug_uses && i < loop->num_nodes; i++)
1684 bb = body[i];
1686 FOR_BB_INSNS (bb, insn)
1687 if (!DEBUG_INSN_P (insn) || !rtx_referenced_p (reg, insn))
1688 continue;
1689 else
1691 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn),
1692 gen_rtx_UNKNOWN_VAR_LOC (), 0);
1693 if (!--debug_uses)
1694 break;
1697 free (body);
1700 /* Determine whether INSN contains an accumulator
1701 which can be expanded into separate copies,
1702 one for each copy of the LOOP body.
1704 for (i = 0 ; i < n; i++)
1705 sum += a[i];
1709 sum += a[i]
1710 ....
1711 i = i+1;
1712 sum1 += a[i]
1713 ....
1714 i = i+1
1715 sum2 += a[i];
1716 ....
1718 Return NULL if INSN contains no opportunity for expansion of accumulator.
1719 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1720 information and return a pointer to it.
1723 static struct var_to_expand *
1724 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1726 rtx set, dest, src;
1727 struct var_to_expand *ves;
1728 unsigned accum_pos;
1729 enum rtx_code code;
1730 int debug_uses = 0;
1732 set = single_set (insn);
1733 if (!set)
1734 return NULL;
1736 dest = SET_DEST (set);
1737 src = SET_SRC (set);
1738 code = GET_CODE (src);
1740 if (code != PLUS && code != MINUS && code != MULT && code != FMA)
1741 return NULL;
1743 if (FLOAT_MODE_P (GET_MODE (dest)))
1745 if (!flag_associative_math)
1746 return NULL;
1747 /* In the case of FMA, we're also changing the rounding. */
1748 if (code == FMA && !flag_unsafe_math_optimizations)
1749 return NULL;
1752 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1753 in MD. But if there is no optab to generate the insn, we can not
1754 perform the variable expansion. This can happen if an MD provides
1755 an insn but not a named pattern to generate it, for example to avoid
1756 producing code that needs additional mode switches like for x87/mmx.
1758 So we check have_insn_for which looks for an optab for the operation
1759 in SRC. If it doesn't exist, we can't perform the expansion even
1760 though INSN is valid. */
1761 if (!have_insn_for (code, GET_MODE (src)))
1762 return NULL;
1764 if (!REG_P (dest)
1765 && !(GET_CODE (dest) == SUBREG
1766 && REG_P (SUBREG_REG (dest))))
1767 return NULL;
1769 /* Find the accumulator use within the operation. */
1770 if (code == FMA)
1772 /* We only support accumulation via FMA in the ADD position. */
1773 if (!rtx_equal_p (dest, XEXP (src, 2)))
1774 return NULL;
1775 accum_pos = 2;
1777 else if (rtx_equal_p (dest, XEXP (src, 0)))
1778 accum_pos = 0;
1779 else if (rtx_equal_p (dest, XEXP (src, 1)))
1781 /* The method of expansion that we are using; which includes the
1782 initialization of the expansions with zero and the summation of
1783 the expansions at the end of the computation will yield wrong
1784 results for (x = something - x) thus avoid using it in that case. */
1785 if (code == MINUS)
1786 return NULL;
1787 accum_pos = 1;
1789 else
1790 return NULL;
1792 /* It must not otherwise be used. */
1793 if (code == FMA)
1795 if (rtx_referenced_p (dest, XEXP (src, 0))
1796 || rtx_referenced_p (dest, XEXP (src, 1)))
1797 return NULL;
1799 else if (rtx_referenced_p (dest, XEXP (src, 1 - accum_pos)))
1800 return NULL;
1802 /* It must be used in exactly one insn. */
1803 if (!referenced_in_one_insn_in_loop_p (loop, dest, &debug_uses))
1804 return NULL;
1806 if (dump_file)
1808 fprintf (dump_file, "\n;; Expanding Accumulator ");
1809 print_rtl (dump_file, dest);
1810 fprintf (dump_file, "\n");
1813 if (debug_uses)
1814 /* Instead of resetting the debug insns, we could replace each
1815 debug use in the loop with the sum or product of all expanded
1816 accummulators. Since we'll only know of all expansions at the
1817 end, we'd have to keep track of which vars_to_expand a debug
1818 insn in the loop references, take note of each copy of the
1819 debug insn during unrolling, and when it's all done, compute
1820 the sum or product of each variable and adjust the original
1821 debug insn and each copy thereof. What a pain! */
1822 reset_debug_uses_in_loop (loop, dest, debug_uses);
1824 /* Record the accumulator to expand. */
1825 ves = XNEW (struct var_to_expand);
1826 ves->insn = insn;
1827 ves->reg = copy_rtx (dest);
1828 ves->var_expansions.create (1);
1829 ves->next = NULL;
1830 ves->op = GET_CODE (src);
1831 ves->expansion_count = 0;
1832 ves->reuse_expansion = 0;
1833 return ves;
1836 /* Determine whether there is an induction variable in INSN that
1837 we would like to split during unrolling.
1839 I.e. replace
1841 i = i + 1;
1843 i = i + 1;
1845 i = i + 1;
1848 type chains by
1850 i0 = i + 1
1852 i = i0 + 1
1854 i = i0 + 2
1857 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1858 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1859 pointer to it. */
1861 static struct iv_to_split *
1862 analyze_iv_to_split_insn (rtx insn)
1864 rtx set, dest;
1865 struct rtx_iv iv;
1866 struct iv_to_split *ivts;
1867 bool ok;
1869 /* For now we just split the basic induction variables. Later this may be
1870 extended for example by selecting also addresses of memory references. */
1871 set = single_set (insn);
1872 if (!set)
1873 return NULL;
1875 dest = SET_DEST (set);
1876 if (!REG_P (dest))
1877 return NULL;
1879 if (!biv_p (insn, dest))
1880 return NULL;
1882 ok = iv_analyze_result (insn, dest, &iv);
1884 /* This used to be an assert under the assumption that if biv_p returns
1885 true that iv_analyze_result must also return true. However, that
1886 assumption is not strictly correct as evidenced by pr25569.
1888 Returning NULL when iv_analyze_result returns false is safe and
1889 avoids the problems in pr25569 until the iv_analyze_* routines
1890 can be fixed, which is apparently hard and time consuming
1891 according to their author. */
1892 if (! ok)
1893 return NULL;
1895 if (iv.step == const0_rtx
1896 || iv.mode != iv.extend_mode)
1897 return NULL;
1899 /* Record the insn to split. */
1900 ivts = XNEW (struct iv_to_split);
1901 ivts->insn = insn;
1902 ivts->orig_var = dest;
1903 ivts->base_var = NULL_RTX;
1904 ivts->step = iv.step;
1905 ivts->next = NULL;
1906 ivts->n_loc = 1;
1907 ivts->loc[0] = 1;
1909 return ivts;
1912 /* Determines which of insns in LOOP can be optimized.
1913 Return a OPT_INFO struct with the relevant hash tables filled
1914 with all insns to be optimized. The FIRST_NEW_BLOCK field
1915 is undefined for the return value. */
1917 static struct opt_info *
1918 analyze_insns_in_loop (struct loop *loop)
1920 basic_block *body, bb;
1921 unsigned i;
1922 struct opt_info *opt_info = XCNEW (struct opt_info);
1923 rtx insn;
1924 struct iv_to_split *ivts = NULL;
1925 struct var_to_expand *ves = NULL;
1926 iv_to_split **slot1;
1927 var_to_expand **slot2;
1928 vec<edge> edges = get_loop_exit_edges (loop);
1929 edge exit;
1930 bool can_apply = false;
1932 iv_analysis_loop_init (loop);
1934 body = get_loop_body (loop);
1936 if (flag_split_ivs_in_unroller)
1938 opt_info->insns_to_split.create (5 * loop->num_nodes);
1939 opt_info->iv_to_split_head = NULL;
1940 opt_info->iv_to_split_tail = &opt_info->iv_to_split_head;
1943 /* Record the loop exit bb and loop preheader before the unrolling. */
1944 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1946 if (edges.length () == 1)
1948 exit = edges[0];
1949 if (!(exit->flags & EDGE_COMPLEX))
1951 opt_info->loop_exit = split_edge (exit);
1952 can_apply = true;
1956 if (flag_variable_expansion_in_unroller
1957 && can_apply)
1959 opt_info->insns_with_var_to_expand.create (5 * loop->num_nodes);
1960 opt_info->var_to_expand_head = NULL;
1961 opt_info->var_to_expand_tail = &opt_info->var_to_expand_head;
1964 for (i = 0; i < loop->num_nodes; i++)
1966 bb = body[i];
1967 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1968 continue;
1970 FOR_BB_INSNS (bb, insn)
1972 if (!INSN_P (insn))
1973 continue;
1975 if (opt_info->insns_to_split.is_created ())
1976 ivts = analyze_iv_to_split_insn (insn);
1978 if (ivts)
1980 slot1 = opt_info->insns_to_split.find_slot (ivts, INSERT);
1981 gcc_assert (*slot1 == NULL);
1982 *slot1 = ivts;
1983 *opt_info->iv_to_split_tail = ivts;
1984 opt_info->iv_to_split_tail = &ivts->next;
1985 continue;
1988 if (opt_info->insns_with_var_to_expand.is_created ())
1989 ves = analyze_insn_to_expand_var (loop, insn);
1991 if (ves)
1993 slot2 = opt_info->insns_with_var_to_expand.find_slot (ves, INSERT);
1994 gcc_assert (*slot2 == NULL);
1995 *slot2 = ves;
1996 *opt_info->var_to_expand_tail = ves;
1997 opt_info->var_to_expand_tail = &ves->next;
2002 edges.release ();
2003 free (body);
2004 return opt_info;
2007 /* Called just before loop duplication. Records start of duplicated area
2008 to OPT_INFO. */
2010 static void
2011 opt_info_start_duplication (struct opt_info *opt_info)
2013 if (opt_info)
2014 opt_info->first_new_block = last_basic_block;
2017 /* Determine the number of iterations between initialization of the base
2018 variable and the current copy (N_COPY). N_COPIES is the total number
2019 of newly created copies. UNROLLING is true if we are unrolling
2020 (not peeling) the loop. */
2022 static unsigned
2023 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
2025 if (unrolling)
2027 /* If we are unrolling, initialization is done in the original loop
2028 body (number 0). */
2029 return n_copy;
2031 else
2033 /* If we are peeling, the copy in that the initialization occurs has
2034 number 1. The original loop (number 0) is the last. */
2035 if (n_copy)
2036 return n_copy - 1;
2037 else
2038 return n_copies;
2042 /* Locate in EXPR the expression corresponding to the location recorded
2043 in IVTS, and return a pointer to the RTX for this location. */
2045 static rtx *
2046 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
2048 unsigned i;
2049 rtx *ret = &expr;
2051 for (i = 0; i < ivts->n_loc; i++)
2052 ret = &XEXP (*ret, ivts->loc[i]);
2054 return ret;
2057 /* Allocate basic variable for the induction variable chain. */
2059 static void
2060 allocate_basic_variable (struct iv_to_split *ivts)
2062 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
2064 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
2067 /* Insert initialization of basic variable of IVTS before INSN, taking
2068 the initial value from INSN. */
2070 static void
2071 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
2073 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
2074 rtx seq;
2076 start_sequence ();
2077 expr = force_operand (expr, ivts->base_var);
2078 if (expr != ivts->base_var)
2079 emit_move_insn (ivts->base_var, expr);
2080 seq = get_insns ();
2081 end_sequence ();
2083 emit_insn_before (seq, insn);
2086 /* Replace the use of induction variable described in IVTS in INSN
2087 by base variable + DELTA * step. */
2089 static void
2090 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
2092 rtx expr, *loc, seq, incr, var;
2093 enum machine_mode mode = GET_MODE (ivts->base_var);
2094 rtx src, dest, set;
2096 /* Construct base + DELTA * step. */
2097 if (!delta)
2098 expr = ivts->base_var;
2099 else
2101 incr = simplify_gen_binary (MULT, mode,
2102 ivts->step, gen_int_mode (delta, mode));
2103 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
2104 ivts->base_var, incr);
2107 /* Figure out where to do the replacement. */
2108 loc = get_ivts_expr (single_set (insn), ivts);
2110 /* If we can make the replacement right away, we're done. */
2111 if (validate_change (insn, loc, expr, 0))
2112 return;
2114 /* Otherwise, force EXPR into a register and try again. */
2115 start_sequence ();
2116 var = gen_reg_rtx (mode);
2117 expr = force_operand (expr, var);
2118 if (expr != var)
2119 emit_move_insn (var, expr);
2120 seq = get_insns ();
2121 end_sequence ();
2122 emit_insn_before (seq, insn);
2124 if (validate_change (insn, loc, var, 0))
2125 return;
2127 /* The last chance. Try recreating the assignment in insn
2128 completely from scratch. */
2129 set = single_set (insn);
2130 gcc_assert (set);
2132 start_sequence ();
2133 *loc = var;
2134 src = copy_rtx (SET_SRC (set));
2135 dest = copy_rtx (SET_DEST (set));
2136 src = force_operand (src, dest);
2137 if (src != dest)
2138 emit_move_insn (dest, src);
2139 seq = get_insns ();
2140 end_sequence ();
2142 emit_insn_before (seq, insn);
2143 delete_insn (insn);
2147 /* Return one expansion of the accumulator recorded in struct VE. */
2149 static rtx
2150 get_expansion (struct var_to_expand *ve)
2152 rtx reg;
2154 if (ve->reuse_expansion == 0)
2155 reg = ve->reg;
2156 else
2157 reg = ve->var_expansions[ve->reuse_expansion - 1];
2159 if (ve->var_expansions.length () == (unsigned) ve->reuse_expansion)
2160 ve->reuse_expansion = 0;
2161 else
2162 ve->reuse_expansion++;
2164 return reg;
2168 /* Given INSN replace the uses of the accumulator recorded in VE
2169 with a new register. */
2171 static void
2172 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
2174 rtx new_reg, set;
2175 bool really_new_expansion = false;
2177 set = single_set (insn);
2178 gcc_assert (set);
2180 /* Generate a new register only if the expansion limit has not been
2181 reached. Else reuse an already existing expansion. */
2182 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
2184 really_new_expansion = true;
2185 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
2187 else
2188 new_reg = get_expansion (ve);
2190 validate_replace_rtx_group (SET_DEST (set), new_reg, insn);
2191 if (apply_change_group ())
2192 if (really_new_expansion)
2194 ve->var_expansions.safe_push (new_reg);
2195 ve->expansion_count++;
2199 /* Initialize the variable expansions in loop preheader. PLACE is the
2200 loop-preheader basic block where the initialization of the
2201 expansions should take place. The expansions are initialized with
2202 (-0) when the operation is plus or minus to honor sign zero. This
2203 way we can prevent cases where the sign of the final result is
2204 effected by the sign of the expansion. Here is an example to
2205 demonstrate this:
2207 for (i = 0 ; i < n; i++)
2208 sum += something;
2212 sum += something
2213 ....
2214 i = i+1;
2215 sum1 += something
2216 ....
2217 i = i+1
2218 sum2 += something;
2219 ....
2221 When SUM is initialized with -zero and SOMETHING is also -zero; the
2222 final result of sum should be -zero thus the expansions sum1 and sum2
2223 should be initialized with -zero as well (otherwise we will get +zero
2224 as the final result). */
2226 static void
2227 insert_var_expansion_initialization (struct var_to_expand *ve,
2228 basic_block place)
2230 rtx seq, var, zero_init;
2231 unsigned i;
2232 enum machine_mode mode = GET_MODE (ve->reg);
2233 bool honor_signed_zero_p = HONOR_SIGNED_ZEROS (mode);
2235 if (ve->var_expansions.length () == 0)
2236 return;
2238 start_sequence ();
2239 switch (ve->op)
2241 case FMA:
2242 /* Note that we only accumulate FMA via the ADD operand. */
2243 case PLUS:
2244 case MINUS:
2245 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2247 if (honor_signed_zero_p)
2248 zero_init = simplify_gen_unary (NEG, mode, CONST0_RTX (mode), mode);
2249 else
2250 zero_init = CONST0_RTX (mode);
2251 emit_move_insn (var, zero_init);
2253 break;
2255 case MULT:
2256 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2258 zero_init = CONST1_RTX (GET_MODE (var));
2259 emit_move_insn (var, zero_init);
2261 break;
2263 default:
2264 gcc_unreachable ();
2267 seq = get_insns ();
2268 end_sequence ();
2270 emit_insn_after (seq, BB_END (place));
2273 /* Combine the variable expansions at the loop exit. PLACE is the
2274 loop exit basic block where the summation of the expansions should
2275 take place. */
2277 static void
2278 combine_var_copies_in_loop_exit (struct var_to_expand *ve, basic_block place)
2280 rtx sum = ve->reg;
2281 rtx expr, seq, var, insn;
2282 unsigned i;
2284 if (ve->var_expansions.length () == 0)
2285 return;
2287 start_sequence ();
2288 switch (ve->op)
2290 case FMA:
2291 /* Note that we only accumulate FMA via the ADD operand. */
2292 case PLUS:
2293 case MINUS:
2294 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2295 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg), var, sum);
2296 break;
2298 case MULT:
2299 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2300 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg), var, sum);
2301 break;
2303 default:
2304 gcc_unreachable ();
2307 expr = force_operand (sum, ve->reg);
2308 if (expr != ve->reg)
2309 emit_move_insn (ve->reg, expr);
2310 seq = get_insns ();
2311 end_sequence ();
2313 insn = BB_HEAD (place);
2314 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2315 insn = NEXT_INSN (insn);
2317 emit_insn_after (seq, insn);
2320 /* Strip away REG_EQUAL notes for IVs we're splitting.
2322 Updating REG_EQUAL notes for IVs we split is tricky: We
2323 cannot tell until after unrolling, DF-rescanning, and liveness
2324 updating, whether an EQ_USE is reached by the split IV while
2325 the IV reg is still live. See PR55006.
2327 ??? We cannot use remove_reg_equal_equiv_notes_for_regno,
2328 because RTL loop-iv requires us to defer rescanning insns and
2329 any notes attached to them. So resort to old techniques... */
2331 static void
2332 maybe_strip_eq_note_for_split_iv (struct opt_info *opt_info, rtx insn)
2334 struct iv_to_split *ivts;
2335 rtx note = find_reg_equal_equiv_note (insn);
2336 if (! note)
2337 return;
2338 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
2339 if (reg_mentioned_p (ivts->orig_var, note))
2341 remove_note (insn, note);
2342 return;
2346 /* Apply loop optimizations in loop copies using the
2347 data which gathered during the unrolling. Structure
2348 OPT_INFO record that data.
2350 UNROLLING is true if we unrolled (not peeled) the loop.
2351 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2352 the loop (as it should happen in complete unrolling, but not in ordinary
2353 peeling of the loop). */
2355 static void
2356 apply_opt_in_copies (struct opt_info *opt_info,
2357 unsigned n_copies, bool unrolling,
2358 bool rewrite_original_loop)
2360 unsigned i, delta;
2361 basic_block bb, orig_bb;
2362 rtx insn, orig_insn, next;
2363 struct iv_to_split ivts_templ, *ivts;
2364 struct var_to_expand ve_templ, *ves;
2366 /* Sanity check -- we need to put initialization in the original loop
2367 body. */
2368 gcc_assert (!unrolling || rewrite_original_loop);
2370 /* Allocate the basic variables (i0). */
2371 if (opt_info->insns_to_split.is_created ())
2372 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
2373 allocate_basic_variable (ivts);
2375 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2377 bb = BASIC_BLOCK (i);
2378 orig_bb = get_bb_original (bb);
2380 /* bb->aux holds position in copy sequence initialized by
2381 duplicate_loop_to_header_edge. */
2382 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2383 unrolling);
2384 bb->aux = 0;
2385 orig_insn = BB_HEAD (orig_bb);
2386 FOR_BB_INSNS_SAFE (bb, insn, next)
2388 if (!INSN_P (insn)
2389 || (DEBUG_INSN_P (insn)
2390 && TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL))
2391 continue;
2393 while (!INSN_P (orig_insn)
2394 || (DEBUG_INSN_P (orig_insn)
2395 && (TREE_CODE (INSN_VAR_LOCATION_DECL (orig_insn))
2396 == LABEL_DECL)))
2397 orig_insn = NEXT_INSN (orig_insn);
2399 ivts_templ.insn = orig_insn;
2400 ve_templ.insn = orig_insn;
2402 /* Apply splitting iv optimization. */
2403 if (opt_info->insns_to_split.is_created ())
2405 maybe_strip_eq_note_for_split_iv (opt_info, insn);
2407 ivts = opt_info->insns_to_split.find (&ivts_templ);
2409 if (ivts)
2411 gcc_assert (GET_CODE (PATTERN (insn))
2412 == GET_CODE (PATTERN (orig_insn)));
2414 if (!delta)
2415 insert_base_initialization (ivts, insn);
2416 split_iv (ivts, insn, delta);
2419 /* Apply variable expansion optimization. */
2420 if (unrolling && opt_info->insns_with_var_to_expand.is_created ())
2422 ves = (struct var_to_expand *)
2423 opt_info->insns_with_var_to_expand.find (&ve_templ);
2424 if (ves)
2426 gcc_assert (GET_CODE (PATTERN (insn))
2427 == GET_CODE (PATTERN (orig_insn)));
2428 expand_var_during_unrolling (ves, insn);
2431 orig_insn = NEXT_INSN (orig_insn);
2435 if (!rewrite_original_loop)
2436 return;
2438 /* Initialize the variable expansions in the loop preheader
2439 and take care of combining them at the loop exit. */
2440 if (opt_info->insns_with_var_to_expand.is_created ())
2442 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2443 insert_var_expansion_initialization (ves, opt_info->loop_preheader);
2444 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2445 combine_var_copies_in_loop_exit (ves, opt_info->loop_exit);
2448 /* Rewrite also the original loop body. Find them as originals of the blocks
2449 in the last copied iteration, i.e. those that have
2450 get_bb_copy (get_bb_original (bb)) == bb. */
2451 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2453 bb = BASIC_BLOCK (i);
2454 orig_bb = get_bb_original (bb);
2455 if (get_bb_copy (orig_bb) != bb)
2456 continue;
2458 delta = determine_split_iv_delta (0, n_copies, unrolling);
2459 for (orig_insn = BB_HEAD (orig_bb);
2460 orig_insn != NEXT_INSN (BB_END (bb));
2461 orig_insn = next)
2463 next = NEXT_INSN (orig_insn);
2465 if (!INSN_P (orig_insn))
2466 continue;
2468 ivts_templ.insn = orig_insn;
2469 if (opt_info->insns_to_split.is_created ())
2471 maybe_strip_eq_note_for_split_iv (opt_info, orig_insn);
2473 ivts = (struct iv_to_split *)
2474 opt_info->insns_to_split.find (&ivts_templ);
2475 if (ivts)
2477 if (!delta)
2478 insert_base_initialization (ivts, orig_insn);
2479 split_iv (ivts, orig_insn, delta);
2480 continue;
2488 /* Release OPT_INFO. */
2490 static void
2491 free_opt_info (struct opt_info *opt_info)
2493 if (opt_info->insns_to_split.is_created ())
2494 opt_info->insns_to_split.dispose ();
2495 if (opt_info->insns_with_var_to_expand.is_created ())
2497 struct var_to_expand *ves;
2499 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2500 ves->var_expansions.release ();
2501 opt_info->insns_with_var_to_expand.dispose ();
2503 free (opt_info);