Daily bump.
[official-gcc.git] / gcc / ifcvt.c
blob40575773b0d5ef537af3205f4aee08bcd9dc1041
1 /* If-conversion support.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
25 #include "rtl.h"
26 #include "regs.h"
27 #include "function.h"
28 #include "flags.h"
29 #include "insn-config.h"
30 #include "recog.h"
31 #include "except.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "expr.h"
35 #include "output.h"
36 #include "optabs.h"
37 #include "diagnostic-core.h"
38 #include "tm_p.h"
39 #include "cfgloop.h"
40 #include "target.h"
41 #include "tree-pass.h"
42 #include "df.h"
43 #include "vec.h"
44 #include "pointer-set.h"
45 #include "dbgcnt.h"
47 #ifndef HAVE_conditional_move
48 #define HAVE_conditional_move 0
49 #endif
50 #ifndef HAVE_incscc
51 #define HAVE_incscc 0
52 #endif
53 #ifndef HAVE_decscc
54 #define HAVE_decscc 0
55 #endif
56 #ifndef HAVE_trap
57 #define HAVE_trap 0
58 #endif
60 #ifndef MAX_CONDITIONAL_EXECUTE
61 #define MAX_CONDITIONAL_EXECUTE \
62 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
63 + 1)
64 #endif
66 #define IFCVT_MULTIPLE_DUMPS 1
68 #define NULL_BLOCK ((basic_block) NULL)
70 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
71 static int num_possible_if_blocks;
73 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
74 execution. */
75 static int num_updated_if_blocks;
77 /* # of changes made. */
78 static int num_true_changes;
80 /* Whether conditional execution changes were made. */
81 static int cond_exec_changed_p;
83 /* Forward references. */
84 static int count_bb_insns (const_basic_block);
85 static bool cheap_bb_rtx_cost_p (const_basic_block, int, int);
86 static rtx first_active_insn (basic_block);
87 static rtx last_active_insn (basic_block, int);
88 static rtx find_active_insn_before (basic_block, rtx);
89 static rtx find_active_insn_after (basic_block, rtx);
90 static basic_block block_fallthru (basic_block);
91 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
92 static rtx cond_exec_get_condition (rtx);
93 static rtx noce_get_condition (rtx, rtx *, bool);
94 static int noce_operand_ok (const_rtx);
95 static void merge_if_block (ce_if_block_t *);
96 static int find_cond_trap (basic_block, edge, edge);
97 static basic_block find_if_header (basic_block, int);
98 static int block_jumps_and_fallthru_p (basic_block, basic_block);
99 static int noce_find_if_block (basic_block, edge, edge, int);
100 static int cond_exec_find_if_block (ce_if_block_t *);
101 static int find_if_case_1 (basic_block, edge, edge);
102 static int find_if_case_2 (basic_block, edge, edge);
103 static int dead_or_predicable (basic_block, basic_block, basic_block,
104 edge, int);
105 static void noce_emit_move_insn (rtx, rtx);
106 static rtx block_has_only_trap (basic_block);
108 /* Count the number of non-jump active insns in BB. */
110 static int
111 count_bb_insns (const_basic_block bb)
113 int count = 0;
114 rtx insn = BB_HEAD (bb);
116 while (1)
118 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
119 count++;
121 if (insn == BB_END (bb))
122 break;
123 insn = NEXT_INSN (insn);
126 return count;
129 /* Determine whether the total insn_rtx_cost on non-jump insns in
130 basic block BB is less than MAX_COST. This function returns
131 false if the cost of any instruction could not be estimated.
133 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
134 as those insns are being speculated. MAX_COST is scaled with SCALE
135 plus a small fudge factor. */
137 static bool
138 cheap_bb_rtx_cost_p (const_basic_block bb, int scale, int max_cost)
140 int count = 0;
141 rtx insn = BB_HEAD (bb);
142 bool speed = optimize_bb_for_speed_p (bb);
144 /* Our branch probability/scaling factors are just estimates and don't
145 account for cases where we can get speculation for free and other
146 secondary benefits. So we fudge the scale factor to make speculating
147 appear a little more profitable. */
148 scale += REG_BR_PROB_BASE / 8;
149 max_cost *= scale;
151 while (1)
153 if (NONJUMP_INSN_P (insn))
155 int cost = insn_rtx_cost (PATTERN (insn), speed) * REG_BR_PROB_BASE;
156 if (cost == 0)
157 return false;
159 /* If this instruction is the load or set of a "stack" register,
160 such as a floating point register on x87, then the cost of
161 speculatively executing this insn may need to include
162 the additional cost of popping its result off of the
163 register stack. Unfortunately, correctly recognizing and
164 accounting for this additional overhead is tricky, so for
165 now we simply prohibit such speculative execution. */
166 #ifdef STACK_REGS
168 rtx set = single_set (insn);
169 if (set && STACK_REG_P (SET_DEST (set)))
170 return false;
172 #endif
174 count += cost;
175 if (count >= max_cost)
176 return false;
178 else if (CALL_P (insn))
179 return false;
181 if (insn == BB_END (bb))
182 break;
183 insn = NEXT_INSN (insn);
186 return true;
189 /* Return the first non-jump active insn in the basic block. */
191 static rtx
192 first_active_insn (basic_block bb)
194 rtx insn = BB_HEAD (bb);
196 if (LABEL_P (insn))
198 if (insn == BB_END (bb))
199 return NULL_RTX;
200 insn = NEXT_INSN (insn);
203 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
205 if (insn == BB_END (bb))
206 return NULL_RTX;
207 insn = NEXT_INSN (insn);
210 if (JUMP_P (insn))
211 return NULL_RTX;
213 return insn;
216 /* Return the last non-jump active (non-jump) insn in the basic block. */
218 static rtx
219 last_active_insn (basic_block bb, int skip_use_p)
221 rtx insn = BB_END (bb);
222 rtx head = BB_HEAD (bb);
224 while (NOTE_P (insn)
225 || JUMP_P (insn)
226 || DEBUG_INSN_P (insn)
227 || (skip_use_p
228 && NONJUMP_INSN_P (insn)
229 && GET_CODE (PATTERN (insn)) == USE))
231 if (insn == head)
232 return NULL_RTX;
233 insn = PREV_INSN (insn);
236 if (LABEL_P (insn))
237 return NULL_RTX;
239 return insn;
242 /* Return the active insn before INSN inside basic block CURR_BB. */
244 static rtx
245 find_active_insn_before (basic_block curr_bb, rtx insn)
247 if (!insn || insn == BB_HEAD (curr_bb))
248 return NULL_RTX;
250 while ((insn = PREV_INSN (insn)) != NULL_RTX)
252 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
253 break;
255 /* No other active insn all the way to the start of the basic block. */
256 if (insn == BB_HEAD (curr_bb))
257 return NULL_RTX;
260 return insn;
263 /* Return the active insn after INSN inside basic block CURR_BB. */
265 static rtx
266 find_active_insn_after (basic_block curr_bb, rtx insn)
268 if (!insn || insn == BB_END (curr_bb))
269 return NULL_RTX;
271 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
273 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
274 break;
276 /* No other active insn all the way to the end of the basic block. */
277 if (insn == BB_END (curr_bb))
278 return NULL_RTX;
281 return insn;
284 /* Return the basic block reached by falling though the basic block BB. */
286 static basic_block
287 block_fallthru (basic_block bb)
289 edge e = find_fallthru_edge (bb->succs);
291 return (e) ? e->dest : NULL_BLOCK;
294 /* Go through a bunch of insns, converting them to conditional
295 execution format if possible. Return TRUE if all of the non-note
296 insns were processed. */
298 static int
299 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
300 /* if block information */rtx start,
301 /* first insn to look at */rtx end,
302 /* last insn to look at */rtx test,
303 /* conditional execution test */rtx prob_val,
304 /* probability of branch taken. */int mod_ok)
306 int must_be_last = FALSE;
307 rtx insn;
308 rtx xtest;
309 rtx pattern;
311 if (!start || !end)
312 return FALSE;
314 for (insn = start; ; insn = NEXT_INSN (insn))
316 /* dwarf2out can't cope with conditional prologues. */
317 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
318 return FALSE;
320 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
321 goto insn_done;
323 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
325 /* Remove USE insns that get in the way. */
326 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
328 /* ??? Ug. Actually unlinking the thing is problematic,
329 given what we'd have to coordinate with our callers. */
330 SET_INSN_DELETED (insn);
331 goto insn_done;
334 /* Last insn wasn't last? */
335 if (must_be_last)
336 return FALSE;
338 if (modified_in_p (test, insn))
340 if (!mod_ok)
341 return FALSE;
342 must_be_last = TRUE;
345 /* Now build the conditional form of the instruction. */
346 pattern = PATTERN (insn);
347 xtest = copy_rtx (test);
349 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
350 two conditions. */
351 if (GET_CODE (pattern) == COND_EXEC)
353 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
354 return FALSE;
356 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
357 COND_EXEC_TEST (pattern));
358 pattern = COND_EXEC_CODE (pattern);
361 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
363 /* If the machine needs to modify the insn being conditionally executed,
364 say for example to force a constant integer operand into a temp
365 register, do so here. */
366 #ifdef IFCVT_MODIFY_INSN
367 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
368 if (! pattern)
369 return FALSE;
370 #endif
372 validate_change (insn, &PATTERN (insn), pattern, 1);
374 if (CALL_P (insn) && prob_val)
375 validate_change (insn, &REG_NOTES (insn),
376 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
377 REG_NOTES (insn)), 1);
379 insn_done:
380 if (insn == end)
381 break;
384 return TRUE;
387 /* Return the condition for a jump. Do not do any special processing. */
389 static rtx
390 cond_exec_get_condition (rtx jump)
392 rtx test_if, cond;
394 if (any_condjump_p (jump))
395 test_if = SET_SRC (pc_set (jump));
396 else
397 return NULL_RTX;
398 cond = XEXP (test_if, 0);
400 /* If this branches to JUMP_LABEL when the condition is false,
401 reverse the condition. */
402 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
403 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
405 enum rtx_code rev = reversed_comparison_code (cond, jump);
406 if (rev == UNKNOWN)
407 return NULL_RTX;
409 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
410 XEXP (cond, 1));
413 return cond;
416 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
417 to conditional execution. Return TRUE if we were successful at
418 converting the block. */
420 static int
421 cond_exec_process_if_block (ce_if_block_t * ce_info,
422 /* if block information */int do_multiple_p)
424 basic_block test_bb = ce_info->test_bb; /* last test block */
425 basic_block then_bb = ce_info->then_bb; /* THEN */
426 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
427 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
428 rtx then_start; /* first insn in THEN block */
429 rtx then_end; /* last insn + 1 in THEN block */
430 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
431 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
432 int max; /* max # of insns to convert. */
433 int then_mod_ok; /* whether conditional mods are ok in THEN */
434 rtx true_expr; /* test for else block insns */
435 rtx false_expr; /* test for then block insns */
436 rtx true_prob_val; /* probability of else block */
437 rtx false_prob_val; /* probability of then block */
438 rtx then_last_head = NULL_RTX; /* Last match at the head of THEN */
439 rtx else_last_head = NULL_RTX; /* Last match at the head of ELSE */
440 rtx then_first_tail = NULL_RTX; /* First match at the tail of THEN */
441 rtx else_first_tail = NULL_RTX; /* First match at the tail of ELSE */
442 int then_n_insns, else_n_insns, n_insns;
443 enum rtx_code false_code;
445 /* If test is comprised of && or || elements, and we've failed at handling
446 all of them together, just use the last test if it is the special case of
447 && elements without an ELSE block. */
448 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
450 if (else_bb || ! ce_info->and_and_p)
451 return FALSE;
453 ce_info->test_bb = test_bb = ce_info->last_test_bb;
454 ce_info->num_multiple_test_blocks = 0;
455 ce_info->num_and_and_blocks = 0;
456 ce_info->num_or_or_blocks = 0;
459 /* Find the conditional jump to the ELSE or JOIN part, and isolate
460 the test. */
461 test_expr = cond_exec_get_condition (BB_END (test_bb));
462 if (! test_expr)
463 return FALSE;
465 /* If the conditional jump is more than just a conditional jump,
466 then we can not do conditional execution conversion on this block. */
467 if (! onlyjump_p (BB_END (test_bb)))
468 return FALSE;
470 /* Collect the bounds of where we're to search, skipping any labels, jumps
471 and notes at the beginning and end of the block. Then count the total
472 number of insns and see if it is small enough to convert. */
473 then_start = first_active_insn (then_bb);
474 then_end = last_active_insn (then_bb, TRUE);
475 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
476 n_insns = then_n_insns;
477 max = MAX_CONDITIONAL_EXECUTE;
479 if (else_bb)
481 int n_matching;
483 max *= 2;
484 else_start = first_active_insn (else_bb);
485 else_end = last_active_insn (else_bb, TRUE);
486 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
487 n_insns += else_n_insns;
489 /* Look for matching sequences at the head and tail of the two blocks,
490 and limit the range of insns to be converted if possible. */
491 n_matching = flow_find_cross_jump (then_bb, else_bb,
492 &then_first_tail, &else_first_tail,
493 NULL);
494 if (then_first_tail == BB_HEAD (then_bb))
495 then_start = then_end = NULL_RTX;
496 if (else_first_tail == BB_HEAD (else_bb))
497 else_start = else_end = NULL_RTX;
499 if (n_matching > 0)
501 if (then_end)
502 then_end = find_active_insn_before (then_bb, then_first_tail);
503 if (else_end)
504 else_end = find_active_insn_before (else_bb, else_first_tail);
505 n_insns -= 2 * n_matching;
508 if (then_start && else_start)
510 int longest_match = MIN (then_n_insns - n_matching,
511 else_n_insns - n_matching);
512 n_matching
513 = flow_find_head_matching_sequence (then_bb, else_bb,
514 &then_last_head,
515 &else_last_head,
516 longest_match);
518 if (n_matching > 0)
520 rtx insn;
522 /* We won't pass the insns in the head sequence to
523 cond_exec_process_insns, so we need to test them here
524 to make sure that they don't clobber the condition. */
525 for (insn = BB_HEAD (then_bb);
526 insn != NEXT_INSN (then_last_head);
527 insn = NEXT_INSN (insn))
528 if (!LABEL_P (insn) && !NOTE_P (insn)
529 && !DEBUG_INSN_P (insn)
530 && modified_in_p (test_expr, insn))
531 return FALSE;
534 if (then_last_head == then_end)
535 then_start = then_end = NULL_RTX;
536 if (else_last_head == else_end)
537 else_start = else_end = NULL_RTX;
539 if (n_matching > 0)
541 if (then_start)
542 then_start = find_active_insn_after (then_bb, then_last_head);
543 if (else_start)
544 else_start = find_active_insn_after (else_bb, else_last_head);
545 n_insns -= 2 * n_matching;
550 if (n_insns > max)
551 return FALSE;
553 /* Map test_expr/test_jump into the appropriate MD tests to use on
554 the conditionally executed code. */
556 true_expr = test_expr;
558 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
559 if (false_code != UNKNOWN)
560 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
561 XEXP (true_expr, 0), XEXP (true_expr, 1));
562 else
563 false_expr = NULL_RTX;
565 #ifdef IFCVT_MODIFY_TESTS
566 /* If the machine description needs to modify the tests, such as setting a
567 conditional execution register from a comparison, it can do so here. */
568 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
570 /* See if the conversion failed. */
571 if (!true_expr || !false_expr)
572 goto fail;
573 #endif
575 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
576 if (true_prob_val)
578 true_prob_val = XEXP (true_prob_val, 0);
579 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
581 else
582 false_prob_val = NULL_RTX;
584 /* If we have && or || tests, do them here. These tests are in the adjacent
585 blocks after the first block containing the test. */
586 if (ce_info->num_multiple_test_blocks > 0)
588 basic_block bb = test_bb;
589 basic_block last_test_bb = ce_info->last_test_bb;
591 if (! false_expr)
592 goto fail;
596 rtx start, end;
597 rtx t, f;
598 enum rtx_code f_code;
600 bb = block_fallthru (bb);
601 start = first_active_insn (bb);
602 end = last_active_insn (bb, TRUE);
603 if (start
604 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
605 false_prob_val, FALSE))
606 goto fail;
608 /* If the conditional jump is more than just a conditional jump, then
609 we can not do conditional execution conversion on this block. */
610 if (! onlyjump_p (BB_END (bb)))
611 goto fail;
613 /* Find the conditional jump and isolate the test. */
614 t = cond_exec_get_condition (BB_END (bb));
615 if (! t)
616 goto fail;
618 f_code = reversed_comparison_code (t, BB_END (bb));
619 if (f_code == UNKNOWN)
620 goto fail;
622 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
623 if (ce_info->and_and_p)
625 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
626 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
628 else
630 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
631 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
634 /* If the machine description needs to modify the tests, such as
635 setting a conditional execution register from a comparison, it can
636 do so here. */
637 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
638 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
640 /* See if the conversion failed. */
641 if (!t || !f)
642 goto fail;
643 #endif
645 true_expr = t;
646 false_expr = f;
648 while (bb != last_test_bb);
651 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
652 on then THEN block. */
653 then_mod_ok = (else_bb == NULL_BLOCK);
655 /* Go through the THEN and ELSE blocks converting the insns if possible
656 to conditional execution. */
658 if (then_end
659 && (! false_expr
660 || ! cond_exec_process_insns (ce_info, then_start, then_end,
661 false_expr, false_prob_val,
662 then_mod_ok)))
663 goto fail;
665 if (else_bb && else_end
666 && ! cond_exec_process_insns (ce_info, else_start, else_end,
667 true_expr, true_prob_val, TRUE))
668 goto fail;
670 /* If we cannot apply the changes, fail. Do not go through the normal fail
671 processing, since apply_change_group will call cancel_changes. */
672 if (! apply_change_group ())
674 #ifdef IFCVT_MODIFY_CANCEL
675 /* Cancel any machine dependent changes. */
676 IFCVT_MODIFY_CANCEL (ce_info);
677 #endif
678 return FALSE;
681 #ifdef IFCVT_MODIFY_FINAL
682 /* Do any machine dependent final modifications. */
683 IFCVT_MODIFY_FINAL (ce_info);
684 #endif
686 /* Conversion succeeded. */
687 if (dump_file)
688 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
689 n_insns, (n_insns == 1) ? " was" : "s were");
691 /* Merge the blocks! If we had matching sequences, make sure to delete one
692 copy at the appropriate location first: delete the copy in the THEN branch
693 for a tail sequence so that the remaining one is executed last for both
694 branches, and delete the copy in the ELSE branch for a head sequence so
695 that the remaining one is executed first for both branches. */
696 if (then_first_tail)
698 rtx from = then_first_tail;
699 if (!INSN_P (from))
700 from = find_active_insn_after (then_bb, from);
701 delete_insn_chain (from, BB_END (then_bb), false);
703 if (else_last_head)
704 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
706 merge_if_block (ce_info);
707 cond_exec_changed_p = TRUE;
708 return TRUE;
710 fail:
711 #ifdef IFCVT_MODIFY_CANCEL
712 /* Cancel any machine dependent changes. */
713 IFCVT_MODIFY_CANCEL (ce_info);
714 #endif
716 cancel_changes (0);
717 return FALSE;
720 /* Used by noce_process_if_block to communicate with its subroutines.
722 The subroutines know that A and B may be evaluated freely. They
723 know that X is a register. They should insert new instructions
724 before cond_earliest. */
726 struct noce_if_info
728 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
729 basic_block test_bb, then_bb, else_bb, join_bb;
731 /* The jump that ends TEST_BB. */
732 rtx jump;
734 /* The jump condition. */
735 rtx cond;
737 /* New insns should be inserted before this one. */
738 rtx cond_earliest;
740 /* Insns in the THEN and ELSE block. There is always just this
741 one insns in those blocks. The insns are single_set insns.
742 If there was no ELSE block, INSN_B is the last insn before
743 COND_EARLIEST, or NULL_RTX. In the former case, the insn
744 operands are still valid, as if INSN_B was moved down below
745 the jump. */
746 rtx insn_a, insn_b;
748 /* The SET_SRC of INSN_A and INSN_B. */
749 rtx a, b;
751 /* The SET_DEST of INSN_A. */
752 rtx x;
754 /* True if this if block is not canonical. In the canonical form of
755 if blocks, the THEN_BB is the block reached via the fallthru edge
756 from TEST_BB. For the noce transformations, we allow the symmetric
757 form as well. */
758 bool then_else_reversed;
760 /* Estimated cost of the particular branch instruction. */
761 int branch_cost;
764 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
765 static int noce_try_move (struct noce_if_info *);
766 static int noce_try_store_flag (struct noce_if_info *);
767 static int noce_try_addcc (struct noce_if_info *);
768 static int noce_try_store_flag_constants (struct noce_if_info *);
769 static int noce_try_store_flag_mask (struct noce_if_info *);
770 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
771 rtx, rtx, rtx);
772 static int noce_try_cmove (struct noce_if_info *);
773 static int noce_try_cmove_arith (struct noce_if_info *);
774 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
775 static int noce_try_minmax (struct noce_if_info *);
776 static int noce_try_abs (struct noce_if_info *);
777 static int noce_try_sign_mask (struct noce_if_info *);
779 /* Helper function for noce_try_store_flag*. */
781 static rtx
782 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
783 int normalize)
785 rtx cond = if_info->cond;
786 int cond_complex;
787 enum rtx_code code;
789 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
790 || ! general_operand (XEXP (cond, 1), VOIDmode));
792 /* If earliest == jump, or when the condition is complex, try to
793 build the store_flag insn directly. */
795 if (cond_complex)
797 rtx set = pc_set (if_info->jump);
798 cond = XEXP (SET_SRC (set), 0);
799 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
800 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
801 reversep = !reversep;
802 if (if_info->then_else_reversed)
803 reversep = !reversep;
806 if (reversep)
807 code = reversed_comparison_code (cond, if_info->jump);
808 else
809 code = GET_CODE (cond);
811 if ((if_info->cond_earliest == if_info->jump || cond_complex)
812 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
814 rtx tmp;
816 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
817 XEXP (cond, 1));
818 tmp = gen_rtx_SET (VOIDmode, x, tmp);
820 start_sequence ();
821 tmp = emit_insn (tmp);
823 if (recog_memoized (tmp) >= 0)
825 tmp = get_insns ();
826 end_sequence ();
827 emit_insn (tmp);
829 if_info->cond_earliest = if_info->jump;
831 return x;
834 end_sequence ();
837 /* Don't even try if the comparison operands or the mode of X are weird. */
838 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
839 return NULL_RTX;
841 return emit_store_flag (x, code, XEXP (cond, 0),
842 XEXP (cond, 1), VOIDmode,
843 (code == LTU || code == LEU
844 || code == GEU || code == GTU), normalize);
847 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
848 X is the destination/target and Y is the value to copy. */
850 static void
851 noce_emit_move_insn (rtx x, rtx y)
853 enum machine_mode outmode;
854 rtx outer, inner;
855 int bitpos;
857 if (GET_CODE (x) != STRICT_LOW_PART)
859 rtx seq, insn, target;
860 optab ot;
862 start_sequence ();
863 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
864 otherwise construct a suitable SET pattern ourselves. */
865 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
866 ? emit_move_insn (x, y)
867 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
868 seq = get_insns ();
869 end_sequence ();
871 if (recog_memoized (insn) <= 0)
873 if (GET_CODE (x) == ZERO_EXTRACT)
875 rtx op = XEXP (x, 0);
876 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
877 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
879 /* store_bit_field expects START to be relative to
880 BYTES_BIG_ENDIAN and adjusts this value for machines with
881 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
882 invoke store_bit_field again it is necessary to have the START
883 value from the first call. */
884 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
886 if (MEM_P (op))
887 start = BITS_PER_UNIT - start - size;
888 else
890 gcc_assert (REG_P (op));
891 start = BITS_PER_WORD - start - size;
895 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
896 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y);
897 return;
900 switch (GET_RTX_CLASS (GET_CODE (y)))
902 case RTX_UNARY:
903 ot = code_to_optab (GET_CODE (y));
904 if (ot)
906 start_sequence ();
907 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
908 if (target != NULL_RTX)
910 if (target != x)
911 emit_move_insn (x, target);
912 seq = get_insns ();
914 end_sequence ();
916 break;
918 case RTX_BIN_ARITH:
919 case RTX_COMM_ARITH:
920 ot = code_to_optab (GET_CODE (y));
921 if (ot)
923 start_sequence ();
924 target = expand_binop (GET_MODE (y), ot,
925 XEXP (y, 0), XEXP (y, 1),
926 x, 0, OPTAB_DIRECT);
927 if (target != NULL_RTX)
929 if (target != x)
930 emit_move_insn (x, target);
931 seq = get_insns ();
933 end_sequence ();
935 break;
937 default:
938 break;
942 emit_insn (seq);
943 return;
946 outer = XEXP (x, 0);
947 inner = XEXP (outer, 0);
948 outmode = GET_MODE (outer);
949 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
950 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
951 0, 0, outmode, y);
954 /* Return sequence of instructions generated by if conversion. This
955 function calls end_sequence() to end the current stream, ensures
956 that are instructions are unshared, recognizable non-jump insns.
957 On failure, this function returns a NULL_RTX. */
959 static rtx
960 end_ifcvt_sequence (struct noce_if_info *if_info)
962 rtx insn;
963 rtx seq = get_insns ();
965 set_used_flags (if_info->x);
966 set_used_flags (if_info->cond);
967 set_used_flags (if_info->a);
968 set_used_flags (if_info->b);
969 unshare_all_rtl_in_chain (seq);
970 end_sequence ();
972 /* Make sure that all of the instructions emitted are recognizable,
973 and that we haven't introduced a new jump instruction.
974 As an exercise for the reader, build a general mechanism that
975 allows proper placement of required clobbers. */
976 for (insn = seq; insn; insn = NEXT_INSN (insn))
977 if (JUMP_P (insn)
978 || recog_memoized (insn) == -1)
979 return NULL_RTX;
981 return seq;
984 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
985 "if (a == b) x = a; else x = b" into "x = b". */
987 static int
988 noce_try_move (struct noce_if_info *if_info)
990 rtx cond = if_info->cond;
991 enum rtx_code code = GET_CODE (cond);
992 rtx y, seq;
994 if (code != NE && code != EQ)
995 return FALSE;
997 /* This optimization isn't valid if either A or B could be a NaN
998 or a signed zero. */
999 if (HONOR_NANS (GET_MODE (if_info->x))
1000 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1001 return FALSE;
1003 /* Check whether the operands of the comparison are A and in
1004 either order. */
1005 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1006 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1007 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1008 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1010 y = (code == EQ) ? if_info->a : if_info->b;
1012 /* Avoid generating the move if the source is the destination. */
1013 if (! rtx_equal_p (if_info->x, y))
1015 start_sequence ();
1016 noce_emit_move_insn (if_info->x, y);
1017 seq = end_ifcvt_sequence (if_info);
1018 if (!seq)
1019 return FALSE;
1021 emit_insn_before_setloc (seq, if_info->jump,
1022 INSN_LOCATION (if_info->insn_a));
1024 return TRUE;
1026 return FALSE;
1029 /* Convert "if (test) x = 1; else x = 0".
1031 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1032 tried in noce_try_store_flag_constants after noce_try_cmove has had
1033 a go at the conversion. */
1035 static int
1036 noce_try_store_flag (struct noce_if_info *if_info)
1038 int reversep;
1039 rtx target, seq;
1041 if (CONST_INT_P (if_info->b)
1042 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1043 && if_info->a == const0_rtx)
1044 reversep = 0;
1045 else if (if_info->b == const0_rtx
1046 && CONST_INT_P (if_info->a)
1047 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1048 && (reversed_comparison_code (if_info->cond, if_info->jump)
1049 != UNKNOWN))
1050 reversep = 1;
1051 else
1052 return FALSE;
1054 start_sequence ();
1056 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1057 if (target)
1059 if (target != if_info->x)
1060 noce_emit_move_insn (if_info->x, target);
1062 seq = end_ifcvt_sequence (if_info);
1063 if (! seq)
1064 return FALSE;
1066 emit_insn_before_setloc (seq, if_info->jump,
1067 INSN_LOCATION (if_info->insn_a));
1068 return TRUE;
1070 else
1072 end_sequence ();
1073 return FALSE;
1077 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1079 static int
1080 noce_try_store_flag_constants (struct noce_if_info *if_info)
1082 rtx target, seq;
1083 int reversep;
1084 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1085 int normalize, can_reverse;
1086 enum machine_mode mode;
1088 if (CONST_INT_P (if_info->a)
1089 && CONST_INT_P (if_info->b))
1091 mode = GET_MODE (if_info->x);
1092 ifalse = INTVAL (if_info->a);
1093 itrue = INTVAL (if_info->b);
1095 /* Make sure we can represent the difference between the two values. */
1096 if ((itrue - ifalse > 0)
1097 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1098 return FALSE;
1100 diff = trunc_int_for_mode (itrue - ifalse, mode);
1102 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1103 != UNKNOWN);
1105 reversep = 0;
1106 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1107 normalize = 0;
1108 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1109 && (STORE_FLAG_VALUE == 1
1110 || if_info->branch_cost >= 2))
1111 normalize = 1;
1112 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1113 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1114 normalize = 1, reversep = 1;
1115 else if (itrue == -1
1116 && (STORE_FLAG_VALUE == -1
1117 || if_info->branch_cost >= 2))
1118 normalize = -1;
1119 else if (ifalse == -1 && can_reverse
1120 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1121 normalize = -1, reversep = 1;
1122 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1123 || if_info->branch_cost >= 3)
1124 normalize = -1;
1125 else
1126 return FALSE;
1128 if (reversep)
1130 tmp = itrue; itrue = ifalse; ifalse = tmp;
1131 diff = trunc_int_for_mode (-diff, mode);
1134 start_sequence ();
1135 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1136 if (! target)
1138 end_sequence ();
1139 return FALSE;
1142 /* if (test) x = 3; else x = 4;
1143 => x = 3 + (test == 0); */
1144 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1146 target = expand_simple_binop (mode,
1147 (diff == STORE_FLAG_VALUE
1148 ? PLUS : MINUS),
1149 GEN_INT (ifalse), target, if_info->x, 0,
1150 OPTAB_WIDEN);
1153 /* if (test) x = 8; else x = 0;
1154 => x = (test != 0) << 3; */
1155 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1157 target = expand_simple_binop (mode, ASHIFT,
1158 target, GEN_INT (tmp), if_info->x, 0,
1159 OPTAB_WIDEN);
1162 /* if (test) x = -1; else x = b;
1163 => x = -(test != 0) | b; */
1164 else if (itrue == -1)
1166 target = expand_simple_binop (mode, IOR,
1167 target, GEN_INT (ifalse), if_info->x, 0,
1168 OPTAB_WIDEN);
1171 /* if (test) x = a; else x = b;
1172 => x = (-(test != 0) & (b - a)) + a; */
1173 else
1175 target = expand_simple_binop (mode, AND,
1176 target, GEN_INT (diff), if_info->x, 0,
1177 OPTAB_WIDEN);
1178 if (target)
1179 target = expand_simple_binop (mode, PLUS,
1180 target, GEN_INT (ifalse),
1181 if_info->x, 0, OPTAB_WIDEN);
1184 if (! target)
1186 end_sequence ();
1187 return FALSE;
1190 if (target != if_info->x)
1191 noce_emit_move_insn (if_info->x, target);
1193 seq = end_ifcvt_sequence (if_info);
1194 if (!seq)
1195 return FALSE;
1197 emit_insn_before_setloc (seq, if_info->jump,
1198 INSN_LOCATION (if_info->insn_a));
1199 return TRUE;
1202 return FALSE;
1205 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1206 similarly for "foo--". */
1208 static int
1209 noce_try_addcc (struct noce_if_info *if_info)
1211 rtx target, seq;
1212 int subtract, normalize;
1214 if (GET_CODE (if_info->a) == PLUS
1215 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1216 && (reversed_comparison_code (if_info->cond, if_info->jump)
1217 != UNKNOWN))
1219 rtx cond = if_info->cond;
1220 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1222 /* First try to use addcc pattern. */
1223 if (general_operand (XEXP (cond, 0), VOIDmode)
1224 && general_operand (XEXP (cond, 1), VOIDmode))
1226 start_sequence ();
1227 target = emit_conditional_add (if_info->x, code,
1228 XEXP (cond, 0),
1229 XEXP (cond, 1),
1230 VOIDmode,
1231 if_info->b,
1232 XEXP (if_info->a, 1),
1233 GET_MODE (if_info->x),
1234 (code == LTU || code == GEU
1235 || code == LEU || code == GTU));
1236 if (target)
1238 if (target != if_info->x)
1239 noce_emit_move_insn (if_info->x, target);
1241 seq = end_ifcvt_sequence (if_info);
1242 if (!seq)
1243 return FALSE;
1245 emit_insn_before_setloc (seq, if_info->jump,
1246 INSN_LOCATION (if_info->insn_a));
1247 return TRUE;
1249 end_sequence ();
1252 /* If that fails, construct conditional increment or decrement using
1253 setcc. */
1254 if (if_info->branch_cost >= 2
1255 && (XEXP (if_info->a, 1) == const1_rtx
1256 || XEXP (if_info->a, 1) == constm1_rtx))
1258 start_sequence ();
1259 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1260 subtract = 0, normalize = 0;
1261 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1262 subtract = 1, normalize = 0;
1263 else
1264 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1267 target = noce_emit_store_flag (if_info,
1268 gen_reg_rtx (GET_MODE (if_info->x)),
1269 1, normalize);
1271 if (target)
1272 target = expand_simple_binop (GET_MODE (if_info->x),
1273 subtract ? MINUS : PLUS,
1274 if_info->b, target, if_info->x,
1275 0, OPTAB_WIDEN);
1276 if (target)
1278 if (target != if_info->x)
1279 noce_emit_move_insn (if_info->x, target);
1281 seq = end_ifcvt_sequence (if_info);
1282 if (!seq)
1283 return FALSE;
1285 emit_insn_before_setloc (seq, if_info->jump,
1286 INSN_LOCATION (if_info->insn_a));
1287 return TRUE;
1289 end_sequence ();
1293 return FALSE;
1296 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1298 static int
1299 noce_try_store_flag_mask (struct noce_if_info *if_info)
1301 rtx target, seq;
1302 int reversep;
1304 reversep = 0;
1305 if ((if_info->branch_cost >= 2
1306 || STORE_FLAG_VALUE == -1)
1307 && ((if_info->a == const0_rtx
1308 && rtx_equal_p (if_info->b, if_info->x))
1309 || ((reversep = (reversed_comparison_code (if_info->cond,
1310 if_info->jump)
1311 != UNKNOWN))
1312 && if_info->b == const0_rtx
1313 && rtx_equal_p (if_info->a, if_info->x))))
1315 start_sequence ();
1316 target = noce_emit_store_flag (if_info,
1317 gen_reg_rtx (GET_MODE (if_info->x)),
1318 reversep, -1);
1319 if (target)
1320 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1321 if_info->x,
1322 target, if_info->x, 0,
1323 OPTAB_WIDEN);
1325 if (target)
1327 if (target != if_info->x)
1328 noce_emit_move_insn (if_info->x, target);
1330 seq = end_ifcvt_sequence (if_info);
1331 if (!seq)
1332 return FALSE;
1334 emit_insn_before_setloc (seq, if_info->jump,
1335 INSN_LOCATION (if_info->insn_a));
1336 return TRUE;
1339 end_sequence ();
1342 return FALSE;
1345 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1347 static rtx
1348 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1349 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1351 rtx target ATTRIBUTE_UNUSED;
1352 int unsignedp ATTRIBUTE_UNUSED;
1354 /* If earliest == jump, try to build the cmove insn directly.
1355 This is helpful when combine has created some complex condition
1356 (like for alpha's cmovlbs) that we can't hope to regenerate
1357 through the normal interface. */
1359 if (if_info->cond_earliest == if_info->jump)
1361 rtx tmp;
1363 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1364 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1365 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1367 start_sequence ();
1368 tmp = emit_insn (tmp);
1370 if (recog_memoized (tmp) >= 0)
1372 tmp = get_insns ();
1373 end_sequence ();
1374 emit_insn (tmp);
1376 return x;
1379 end_sequence ();
1382 /* Don't even try if the comparison operands are weird. */
1383 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1384 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1385 return NULL_RTX;
1387 #if HAVE_conditional_move
1388 unsignedp = (code == LTU || code == GEU
1389 || code == LEU || code == GTU);
1391 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1392 vtrue, vfalse, GET_MODE (x),
1393 unsignedp);
1394 if (target)
1395 return target;
1397 /* We might be faced with a situation like:
1399 x = (reg:M TARGET)
1400 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1401 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1403 We can't do a conditional move in mode M, but it's possible that we
1404 could do a conditional move in mode N instead and take a subreg of
1405 the result.
1407 If we can't create new pseudos, though, don't bother. */
1408 if (reload_completed)
1409 return NULL_RTX;
1411 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1413 rtx reg_vtrue = SUBREG_REG (vtrue);
1414 rtx reg_vfalse = SUBREG_REG (vfalse);
1415 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1416 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1417 rtx promoted_target;
1419 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1420 || byte_vtrue != byte_vfalse
1421 || (SUBREG_PROMOTED_VAR_P (vtrue)
1422 != SUBREG_PROMOTED_VAR_P (vfalse))
1423 || (SUBREG_PROMOTED_UNSIGNED_P (vtrue)
1424 != SUBREG_PROMOTED_UNSIGNED_P (vfalse)))
1425 return NULL_RTX;
1427 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1429 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1430 VOIDmode, reg_vtrue, reg_vfalse,
1431 GET_MODE (reg_vtrue), unsignedp);
1432 /* Nope, couldn't do it in that mode either. */
1433 if (!target)
1434 return NULL_RTX;
1436 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1437 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1438 SUBREG_PROMOTED_UNSIGNED_SET (target, SUBREG_PROMOTED_UNSIGNED_P (vtrue));
1439 emit_move_insn (x, target);
1440 return x;
1442 else
1443 return NULL_RTX;
1444 #else
1445 /* We'll never get here, as noce_process_if_block doesn't call the
1446 functions involved. Ifdef code, however, should be discouraged
1447 because it leads to typos in the code not selected. However,
1448 emit_conditional_move won't exist either. */
1449 return NULL_RTX;
1450 #endif
1453 /* Try only simple constants and registers here. More complex cases
1454 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1455 has had a go at it. */
1457 static int
1458 noce_try_cmove (struct noce_if_info *if_info)
1460 enum rtx_code code;
1461 rtx target, seq;
1463 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1464 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1466 start_sequence ();
1468 code = GET_CODE (if_info->cond);
1469 target = noce_emit_cmove (if_info, if_info->x, code,
1470 XEXP (if_info->cond, 0),
1471 XEXP (if_info->cond, 1),
1472 if_info->a, if_info->b);
1474 if (target)
1476 if (target != if_info->x)
1477 noce_emit_move_insn (if_info->x, target);
1479 seq = end_ifcvt_sequence (if_info);
1480 if (!seq)
1481 return FALSE;
1483 emit_insn_before_setloc (seq, if_info->jump,
1484 INSN_LOCATION (if_info->insn_a));
1485 return TRUE;
1487 else
1489 end_sequence ();
1490 return FALSE;
1494 return FALSE;
1497 /* Try more complex cases involving conditional_move. */
1499 static int
1500 noce_try_cmove_arith (struct noce_if_info *if_info)
1502 rtx a = if_info->a;
1503 rtx b = if_info->b;
1504 rtx x = if_info->x;
1505 rtx orig_a, orig_b;
1506 rtx insn_a, insn_b;
1507 rtx tmp, target;
1508 int is_mem = 0;
1509 int insn_cost;
1510 enum rtx_code code;
1512 /* A conditional move from two memory sources is equivalent to a
1513 conditional on their addresses followed by a load. Don't do this
1514 early because it'll screw alias analysis. Note that we've
1515 already checked for no side effects. */
1516 /* ??? FIXME: Magic number 5. */
1517 if (cse_not_expected
1518 && MEM_P (a) && MEM_P (b)
1519 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1520 && if_info->branch_cost >= 5)
1522 enum machine_mode address_mode = get_address_mode (a);
1524 a = XEXP (a, 0);
1525 b = XEXP (b, 0);
1526 x = gen_reg_rtx (address_mode);
1527 is_mem = 1;
1530 /* ??? We could handle this if we knew that a load from A or B could
1531 not trap or fault. This is also true if we've already loaded
1532 from the address along the path from ENTRY. */
1533 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
1534 return FALSE;
1536 /* if (test) x = a + b; else x = c - d;
1537 => y = a + b;
1538 x = c - d;
1539 if (test)
1540 x = y;
1543 code = GET_CODE (if_info->cond);
1544 insn_a = if_info->insn_a;
1545 insn_b = if_info->insn_b;
1547 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1548 if insn_rtx_cost can't be estimated. */
1549 if (insn_a)
1551 insn_cost
1552 = insn_rtx_cost (PATTERN (insn_a),
1553 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1554 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1555 return FALSE;
1557 else
1558 insn_cost = 0;
1560 if (insn_b)
1562 insn_cost
1563 += insn_rtx_cost (PATTERN (insn_b),
1564 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1565 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1566 return FALSE;
1569 /* Possibly rearrange operands to make things come out more natural. */
1570 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1572 int reversep = 0;
1573 if (rtx_equal_p (b, x))
1574 reversep = 1;
1575 else if (general_operand (b, GET_MODE (b)))
1576 reversep = 1;
1578 if (reversep)
1580 code = reversed_comparison_code (if_info->cond, if_info->jump);
1581 tmp = a, a = b, b = tmp;
1582 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1586 start_sequence ();
1588 orig_a = a;
1589 orig_b = b;
1591 /* If either operand is complex, load it into a register first.
1592 The best way to do this is to copy the original insn. In this
1593 way we preserve any clobbers etc that the insn may have had.
1594 This is of course not possible in the IS_MEM case. */
1595 if (! general_operand (a, GET_MODE (a)))
1597 rtx set;
1599 if (is_mem)
1601 tmp = gen_reg_rtx (GET_MODE (a));
1602 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1604 else if (! insn_a)
1605 goto end_seq_and_fail;
1606 else
1608 a = gen_reg_rtx (GET_MODE (a));
1609 tmp = copy_rtx (insn_a);
1610 set = single_set (tmp);
1611 SET_DEST (set) = a;
1612 tmp = emit_insn (PATTERN (tmp));
1614 if (recog_memoized (tmp) < 0)
1615 goto end_seq_and_fail;
1617 if (! general_operand (b, GET_MODE (b)))
1619 rtx set, last;
1621 if (is_mem)
1623 tmp = gen_reg_rtx (GET_MODE (b));
1624 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1626 else if (! insn_b)
1627 goto end_seq_and_fail;
1628 else
1630 b = gen_reg_rtx (GET_MODE (b));
1631 tmp = copy_rtx (insn_b);
1632 set = single_set (tmp);
1633 SET_DEST (set) = b;
1634 tmp = PATTERN (tmp);
1637 /* If insn to set up A clobbers any registers B depends on, try to
1638 swap insn that sets up A with the one that sets up B. If even
1639 that doesn't help, punt. */
1640 last = get_last_insn ();
1641 if (last && modified_in_p (orig_b, last))
1643 tmp = emit_insn_before (tmp, get_insns ());
1644 if (modified_in_p (orig_a, tmp))
1645 goto end_seq_and_fail;
1647 else
1648 tmp = emit_insn (tmp);
1650 if (recog_memoized (tmp) < 0)
1651 goto end_seq_and_fail;
1654 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1655 XEXP (if_info->cond, 1), a, b);
1657 if (! target)
1658 goto end_seq_and_fail;
1660 /* If we're handling a memory for above, emit the load now. */
1661 if (is_mem)
1663 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1665 /* Copy over flags as appropriate. */
1666 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1667 MEM_VOLATILE_P (tmp) = 1;
1668 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1669 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1670 set_mem_align (tmp,
1671 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1673 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1674 set_mem_addr_space (tmp, MEM_ADDR_SPACE (if_info->a));
1676 noce_emit_move_insn (if_info->x, tmp);
1678 else if (target != x)
1679 noce_emit_move_insn (x, target);
1681 tmp = end_ifcvt_sequence (if_info);
1682 if (!tmp)
1683 return FALSE;
1685 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATION (if_info->insn_a));
1686 return TRUE;
1688 end_seq_and_fail:
1689 end_sequence ();
1690 return FALSE;
1693 /* For most cases, the simplified condition we found is the best
1694 choice, but this is not the case for the min/max/abs transforms.
1695 For these we wish to know that it is A or B in the condition. */
1697 static rtx
1698 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1699 rtx *earliest)
1701 rtx cond, set, insn;
1702 int reverse;
1704 /* If target is already mentioned in the known condition, return it. */
1705 if (reg_mentioned_p (target, if_info->cond))
1707 *earliest = if_info->cond_earliest;
1708 return if_info->cond;
1711 set = pc_set (if_info->jump);
1712 cond = XEXP (SET_SRC (set), 0);
1713 reverse
1714 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1715 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1716 if (if_info->then_else_reversed)
1717 reverse = !reverse;
1719 /* If we're looking for a constant, try to make the conditional
1720 have that constant in it. There are two reasons why it may
1721 not have the constant we want:
1723 1. GCC may have needed to put the constant in a register, because
1724 the target can't compare directly against that constant. For
1725 this case, we look for a SET immediately before the comparison
1726 that puts a constant in that register.
1728 2. GCC may have canonicalized the conditional, for example
1729 replacing "if x < 4" with "if x <= 3". We can undo that (or
1730 make equivalent types of changes) to get the constants we need
1731 if they're off by one in the right direction. */
1733 if (CONST_INT_P (target))
1735 enum rtx_code code = GET_CODE (if_info->cond);
1736 rtx op_a = XEXP (if_info->cond, 0);
1737 rtx op_b = XEXP (if_info->cond, 1);
1738 rtx prev_insn;
1740 /* First, look to see if we put a constant in a register. */
1741 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1742 if (prev_insn
1743 && BLOCK_FOR_INSN (prev_insn)
1744 == BLOCK_FOR_INSN (if_info->cond_earliest)
1745 && INSN_P (prev_insn)
1746 && GET_CODE (PATTERN (prev_insn)) == SET)
1748 rtx src = find_reg_equal_equiv_note (prev_insn);
1749 if (!src)
1750 src = SET_SRC (PATTERN (prev_insn));
1751 if (CONST_INT_P (src))
1753 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1754 op_a = src;
1755 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1756 op_b = src;
1758 if (CONST_INT_P (op_a))
1760 rtx tmp = op_a;
1761 op_a = op_b;
1762 op_b = tmp;
1763 code = swap_condition (code);
1768 /* Now, look to see if we can get the right constant by
1769 adjusting the conditional. */
1770 if (CONST_INT_P (op_b))
1772 HOST_WIDE_INT desired_val = INTVAL (target);
1773 HOST_WIDE_INT actual_val = INTVAL (op_b);
1775 switch (code)
1777 case LT:
1778 if (actual_val == desired_val + 1)
1780 code = LE;
1781 op_b = GEN_INT (desired_val);
1783 break;
1784 case LE:
1785 if (actual_val == desired_val - 1)
1787 code = LT;
1788 op_b = GEN_INT (desired_val);
1790 break;
1791 case GT:
1792 if (actual_val == desired_val - 1)
1794 code = GE;
1795 op_b = GEN_INT (desired_val);
1797 break;
1798 case GE:
1799 if (actual_val == desired_val + 1)
1801 code = GT;
1802 op_b = GEN_INT (desired_val);
1804 break;
1805 default:
1806 break;
1810 /* If we made any changes, generate a new conditional that is
1811 equivalent to what we started with, but has the right
1812 constants in it. */
1813 if (code != GET_CODE (if_info->cond)
1814 || op_a != XEXP (if_info->cond, 0)
1815 || op_b != XEXP (if_info->cond, 1))
1817 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1818 *earliest = if_info->cond_earliest;
1819 return cond;
1823 cond = canonicalize_condition (if_info->jump, cond, reverse,
1824 earliest, target, false, true);
1825 if (! cond || ! reg_mentioned_p (target, cond))
1826 return NULL;
1828 /* We almost certainly searched back to a different place.
1829 Need to re-verify correct lifetimes. */
1831 /* X may not be mentioned in the range (cond_earliest, jump]. */
1832 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1833 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1834 return NULL;
1836 /* A and B may not be modified in the range [cond_earliest, jump). */
1837 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1838 if (INSN_P (insn)
1839 && (modified_in_p (if_info->a, insn)
1840 || modified_in_p (if_info->b, insn)))
1841 return NULL;
1843 return cond;
1846 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1848 static int
1849 noce_try_minmax (struct noce_if_info *if_info)
1851 rtx cond, earliest, target, seq;
1852 enum rtx_code code, op;
1853 int unsignedp;
1855 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1856 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1857 to get the target to tell us... */
1858 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1859 || HONOR_NANS (GET_MODE (if_info->x)))
1860 return FALSE;
1862 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1863 if (!cond)
1864 return FALSE;
1866 /* Verify the condition is of the form we expect, and canonicalize
1867 the comparison code. */
1868 code = GET_CODE (cond);
1869 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1871 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1872 return FALSE;
1874 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1876 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1877 return FALSE;
1878 code = swap_condition (code);
1880 else
1881 return FALSE;
1883 /* Determine what sort of operation this is. Note that the code is for
1884 a taken branch, so the code->operation mapping appears backwards. */
1885 switch (code)
1887 case LT:
1888 case LE:
1889 case UNLT:
1890 case UNLE:
1891 op = SMAX;
1892 unsignedp = 0;
1893 break;
1894 case GT:
1895 case GE:
1896 case UNGT:
1897 case UNGE:
1898 op = SMIN;
1899 unsignedp = 0;
1900 break;
1901 case LTU:
1902 case LEU:
1903 op = UMAX;
1904 unsignedp = 1;
1905 break;
1906 case GTU:
1907 case GEU:
1908 op = UMIN;
1909 unsignedp = 1;
1910 break;
1911 default:
1912 return FALSE;
1915 start_sequence ();
1917 target = expand_simple_binop (GET_MODE (if_info->x), op,
1918 if_info->a, if_info->b,
1919 if_info->x, unsignedp, OPTAB_WIDEN);
1920 if (! target)
1922 end_sequence ();
1923 return FALSE;
1925 if (target != if_info->x)
1926 noce_emit_move_insn (if_info->x, target);
1928 seq = end_ifcvt_sequence (if_info);
1929 if (!seq)
1930 return FALSE;
1932 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
1933 if_info->cond = cond;
1934 if_info->cond_earliest = earliest;
1936 return TRUE;
1939 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1940 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1941 etc. */
1943 static int
1944 noce_try_abs (struct noce_if_info *if_info)
1946 rtx cond, earliest, target, seq, a, b, c;
1947 int negate;
1948 bool one_cmpl = false;
1950 /* Reject modes with signed zeros. */
1951 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1952 return FALSE;
1954 /* Recognize A and B as constituting an ABS or NABS. The canonical
1955 form is a branch around the negation, taken when the object is the
1956 first operand of a comparison against 0 that evaluates to true. */
1957 a = if_info->a;
1958 b = if_info->b;
1959 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1960 negate = 0;
1961 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1963 c = a; a = b; b = c;
1964 negate = 1;
1966 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
1968 negate = 0;
1969 one_cmpl = true;
1971 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
1973 c = a; a = b; b = c;
1974 negate = 1;
1975 one_cmpl = true;
1977 else
1978 return FALSE;
1980 cond = noce_get_alt_condition (if_info, b, &earliest);
1981 if (!cond)
1982 return FALSE;
1984 /* Verify the condition is of the form we expect. */
1985 if (rtx_equal_p (XEXP (cond, 0), b))
1986 c = XEXP (cond, 1);
1987 else if (rtx_equal_p (XEXP (cond, 1), b))
1989 c = XEXP (cond, 0);
1990 negate = !negate;
1992 else
1993 return FALSE;
1995 /* Verify that C is zero. Search one step backward for a
1996 REG_EQUAL note or a simple source if necessary. */
1997 if (REG_P (c))
1999 rtx set, insn = prev_nonnote_insn (earliest);
2000 if (insn
2001 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2002 && (set = single_set (insn))
2003 && rtx_equal_p (SET_DEST (set), c))
2005 rtx note = find_reg_equal_equiv_note (insn);
2006 if (note)
2007 c = XEXP (note, 0);
2008 else
2009 c = SET_SRC (set);
2011 else
2012 return FALSE;
2014 if (MEM_P (c)
2015 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2016 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2017 c = get_pool_constant (XEXP (c, 0));
2019 /* Work around funny ideas get_condition has wrt canonicalization.
2020 Note that these rtx constants are known to be CONST_INT, and
2021 therefore imply integer comparisons. */
2022 if (c == constm1_rtx && GET_CODE (cond) == GT)
2024 else if (c == const1_rtx && GET_CODE (cond) == LT)
2026 else if (c != CONST0_RTX (GET_MODE (b)))
2027 return FALSE;
2029 /* Determine what sort of operation this is. */
2030 switch (GET_CODE (cond))
2032 case LT:
2033 case LE:
2034 case UNLT:
2035 case UNLE:
2036 negate = !negate;
2037 break;
2038 case GT:
2039 case GE:
2040 case UNGT:
2041 case UNGE:
2042 break;
2043 default:
2044 return FALSE;
2047 start_sequence ();
2048 if (one_cmpl)
2049 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2050 if_info->x);
2051 else
2052 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2054 /* ??? It's a quandary whether cmove would be better here, especially
2055 for integers. Perhaps combine will clean things up. */
2056 if (target && negate)
2058 if (one_cmpl)
2059 target = expand_simple_unop (GET_MODE (target), NOT, target,
2060 if_info->x, 0);
2061 else
2062 target = expand_simple_unop (GET_MODE (target), NEG, target,
2063 if_info->x, 0);
2066 if (! target)
2068 end_sequence ();
2069 return FALSE;
2072 if (target != if_info->x)
2073 noce_emit_move_insn (if_info->x, target);
2075 seq = end_ifcvt_sequence (if_info);
2076 if (!seq)
2077 return FALSE;
2079 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2080 if_info->cond = cond;
2081 if_info->cond_earliest = earliest;
2083 return TRUE;
2086 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2088 static int
2089 noce_try_sign_mask (struct noce_if_info *if_info)
2091 rtx cond, t, m, c, seq;
2092 enum machine_mode mode;
2093 enum rtx_code code;
2094 bool t_unconditional;
2096 cond = if_info->cond;
2097 code = GET_CODE (cond);
2098 m = XEXP (cond, 0);
2099 c = XEXP (cond, 1);
2101 t = NULL_RTX;
2102 if (if_info->a == const0_rtx)
2104 if ((code == LT && c == const0_rtx)
2105 || (code == LE && c == constm1_rtx))
2106 t = if_info->b;
2108 else if (if_info->b == const0_rtx)
2110 if ((code == GE && c == const0_rtx)
2111 || (code == GT && c == constm1_rtx))
2112 t = if_info->a;
2115 if (! t || side_effects_p (t))
2116 return FALSE;
2118 /* We currently don't handle different modes. */
2119 mode = GET_MODE (t);
2120 if (GET_MODE (m) != mode)
2121 return FALSE;
2123 /* This is only profitable if T is unconditionally executed/evaluated in the
2124 original insn sequence or T is cheap. The former happens if B is the
2125 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2126 INSN_B which can happen for e.g. conditional stores to memory. For the
2127 cost computation use the block TEST_BB where the evaluation will end up
2128 after the transformation. */
2129 t_unconditional =
2130 (t == if_info->b
2131 && (if_info->insn_b == NULL_RTX
2132 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2133 if (!(t_unconditional
2134 || (set_src_cost (t, optimize_bb_for_speed_p (if_info->test_bb))
2135 < COSTS_N_INSNS (2))))
2136 return FALSE;
2138 start_sequence ();
2139 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2140 "(signed) m >> 31" directly. This benefits targets with specialized
2141 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2142 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2143 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2144 : NULL_RTX;
2146 if (!t)
2148 end_sequence ();
2149 return FALSE;
2152 noce_emit_move_insn (if_info->x, t);
2154 seq = end_ifcvt_sequence (if_info);
2155 if (!seq)
2156 return FALSE;
2158 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2159 return TRUE;
2163 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2164 transformations. */
2166 static int
2167 noce_try_bitop (struct noce_if_info *if_info)
2169 rtx cond, x, a, result, seq;
2170 enum machine_mode mode;
2171 enum rtx_code code;
2172 int bitnum;
2174 x = if_info->x;
2175 cond = if_info->cond;
2176 code = GET_CODE (cond);
2178 /* Check for no else condition. */
2179 if (! rtx_equal_p (x, if_info->b))
2180 return FALSE;
2182 /* Check for a suitable condition. */
2183 if (code != NE && code != EQ)
2184 return FALSE;
2185 if (XEXP (cond, 1) != const0_rtx)
2186 return FALSE;
2187 cond = XEXP (cond, 0);
2189 /* ??? We could also handle AND here. */
2190 if (GET_CODE (cond) == ZERO_EXTRACT)
2192 if (XEXP (cond, 1) != const1_rtx
2193 || !CONST_INT_P (XEXP (cond, 2))
2194 || ! rtx_equal_p (x, XEXP (cond, 0)))
2195 return FALSE;
2196 bitnum = INTVAL (XEXP (cond, 2));
2197 mode = GET_MODE (x);
2198 if (BITS_BIG_ENDIAN)
2199 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2200 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2201 return FALSE;
2203 else
2204 return FALSE;
2206 a = if_info->a;
2207 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2209 /* Check for "if (X & C) x = x op C". */
2210 if (! rtx_equal_p (x, XEXP (a, 0))
2211 || !CONST_INT_P (XEXP (a, 1))
2212 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2213 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2214 return FALSE;
2216 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2217 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2218 if (GET_CODE (a) == IOR)
2219 result = (code == NE) ? a : NULL_RTX;
2220 else if (code == NE)
2222 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2223 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2224 result = simplify_gen_binary (IOR, mode, x, result);
2226 else
2228 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2229 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2230 result = simplify_gen_binary (AND, mode, x, result);
2233 else if (GET_CODE (a) == AND)
2235 /* Check for "if (X & C) x &= ~C". */
2236 if (! rtx_equal_p (x, XEXP (a, 0))
2237 || !CONST_INT_P (XEXP (a, 1))
2238 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2239 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2240 return FALSE;
2242 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2243 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2244 result = (code == EQ) ? a : NULL_RTX;
2246 else
2247 return FALSE;
2249 if (result)
2251 start_sequence ();
2252 noce_emit_move_insn (x, result);
2253 seq = end_ifcvt_sequence (if_info);
2254 if (!seq)
2255 return FALSE;
2257 emit_insn_before_setloc (seq, if_info->jump,
2258 INSN_LOCATION (if_info->insn_a));
2260 return TRUE;
2264 /* Similar to get_condition, only the resulting condition must be
2265 valid at JUMP, instead of at EARLIEST.
2267 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2268 THEN block of the caller, and we have to reverse the condition. */
2270 static rtx
2271 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2273 rtx cond, set, tmp;
2274 bool reverse;
2276 if (! any_condjump_p (jump))
2277 return NULL_RTX;
2279 set = pc_set (jump);
2281 /* If this branches to JUMP_LABEL when the condition is false,
2282 reverse the condition. */
2283 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2284 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2286 /* We may have to reverse because the caller's if block is not canonical,
2287 i.e. the THEN block isn't the fallthrough block for the TEST block
2288 (see find_if_header). */
2289 if (then_else_reversed)
2290 reverse = !reverse;
2292 /* If the condition variable is a register and is MODE_INT, accept it. */
2294 cond = XEXP (SET_SRC (set), 0);
2295 tmp = XEXP (cond, 0);
2296 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
2297 && (GET_MODE (tmp) != BImode
2298 || !targetm.small_register_classes_for_mode_p (BImode)))
2300 *earliest = jump;
2302 if (reverse)
2303 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2304 GET_MODE (cond), tmp, XEXP (cond, 1));
2305 return cond;
2308 /* Otherwise, fall back on canonicalize_condition to do the dirty
2309 work of manipulating MODE_CC values and COMPARE rtx codes. */
2310 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2311 NULL_RTX, false, true);
2313 /* We don't handle side-effects in the condition, like handling
2314 REG_INC notes and making sure no duplicate conditions are emitted. */
2315 if (tmp != NULL_RTX && side_effects_p (tmp))
2316 return NULL_RTX;
2318 return tmp;
2321 /* Return true if OP is ok for if-then-else processing. */
2323 static int
2324 noce_operand_ok (const_rtx op)
2326 if (side_effects_p (op))
2327 return FALSE;
2329 /* We special-case memories, so handle any of them with
2330 no address side effects. */
2331 if (MEM_P (op))
2332 return ! side_effects_p (XEXP (op, 0));
2334 return ! may_trap_p (op);
2337 /* Return true if a write into MEM may trap or fault. */
2339 static bool
2340 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2342 rtx addr;
2344 if (MEM_READONLY_P (mem))
2345 return true;
2347 if (may_trap_or_fault_p (mem))
2348 return true;
2350 addr = XEXP (mem, 0);
2352 /* Call target hook to avoid the effects of -fpic etc.... */
2353 addr = targetm.delegitimize_address (addr);
2355 while (addr)
2356 switch (GET_CODE (addr))
2358 case CONST:
2359 case PRE_DEC:
2360 case PRE_INC:
2361 case POST_DEC:
2362 case POST_INC:
2363 case POST_MODIFY:
2364 addr = XEXP (addr, 0);
2365 break;
2366 case LO_SUM:
2367 case PRE_MODIFY:
2368 addr = XEXP (addr, 1);
2369 break;
2370 case PLUS:
2371 if (CONST_INT_P (XEXP (addr, 1)))
2372 addr = XEXP (addr, 0);
2373 else
2374 return false;
2375 break;
2376 case LABEL_REF:
2377 return true;
2378 case SYMBOL_REF:
2379 if (SYMBOL_REF_DECL (addr)
2380 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2381 return true;
2382 return false;
2383 default:
2384 return false;
2387 return false;
2390 /* Return whether we can use store speculation for MEM. TOP_BB is the
2391 basic block above the conditional block where we are considering
2392 doing the speculative store. We look for whether MEM is set
2393 unconditionally later in the function. */
2395 static bool
2396 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2398 basic_block dominator;
2400 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2401 dominator != NULL;
2402 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2404 rtx insn;
2406 FOR_BB_INSNS (dominator, insn)
2408 /* If we see something that might be a memory barrier, we
2409 have to stop looking. Even if the MEM is set later in
2410 the function, we still don't want to set it
2411 unconditionally before the barrier. */
2412 if (INSN_P (insn)
2413 && (volatile_insn_p (PATTERN (insn))
2414 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2415 return false;
2417 if (memory_must_be_modified_in_insn_p (mem, insn))
2418 return true;
2419 if (modified_in_p (XEXP (mem, 0), insn))
2420 return false;
2425 return false;
2428 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2429 it without using conditional execution. Return TRUE if we were successful
2430 at converting the block. */
2432 static int
2433 noce_process_if_block (struct noce_if_info *if_info)
2435 basic_block test_bb = if_info->test_bb; /* test block */
2436 basic_block then_bb = if_info->then_bb; /* THEN */
2437 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2438 basic_block join_bb = if_info->join_bb; /* JOIN */
2439 rtx jump = if_info->jump;
2440 rtx cond = if_info->cond;
2441 rtx insn_a, insn_b;
2442 rtx set_a, set_b;
2443 rtx orig_x, x, a, b;
2445 /* We're looking for patterns of the form
2447 (1) if (...) x = a; else x = b;
2448 (2) x = b; if (...) x = a;
2449 (3) if (...) x = a; // as if with an initial x = x.
2451 The later patterns require jumps to be more expensive.
2453 ??? For future expansion, look for multiple X in such patterns. */
2455 /* Look for one of the potential sets. */
2456 insn_a = first_active_insn (then_bb);
2457 if (! insn_a
2458 || insn_a != last_active_insn (then_bb, FALSE)
2459 || (set_a = single_set (insn_a)) == NULL_RTX)
2460 return FALSE;
2462 x = SET_DEST (set_a);
2463 a = SET_SRC (set_a);
2465 /* Look for the other potential set. Make sure we've got equivalent
2466 destinations. */
2467 /* ??? This is overconservative. Storing to two different mems is
2468 as easy as conditionally computing the address. Storing to a
2469 single mem merely requires a scratch memory to use as one of the
2470 destination addresses; often the memory immediately below the
2471 stack pointer is available for this. */
2472 set_b = NULL_RTX;
2473 if (else_bb)
2475 insn_b = first_active_insn (else_bb);
2476 if (! insn_b
2477 || insn_b != last_active_insn (else_bb, FALSE)
2478 || (set_b = single_set (insn_b)) == NULL_RTX
2479 || ! rtx_equal_p (x, SET_DEST (set_b)))
2480 return FALSE;
2482 else
2484 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2485 /* We're going to be moving the evaluation of B down from above
2486 COND_EARLIEST to JUMP. Make sure the relevant data is still
2487 intact. */
2488 if (! insn_b
2489 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2490 || !NONJUMP_INSN_P (insn_b)
2491 || (set_b = single_set (insn_b)) == NULL_RTX
2492 || ! rtx_equal_p (x, SET_DEST (set_b))
2493 || ! noce_operand_ok (SET_SRC (set_b))
2494 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2495 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2496 /* Avoid extending the lifetime of hard registers on small
2497 register class machines. */
2498 || (REG_P (SET_SRC (set_b))
2499 && HARD_REGISTER_P (SET_SRC (set_b))
2500 && targetm.small_register_classes_for_mode_p
2501 (GET_MODE (SET_SRC (set_b))))
2502 /* Likewise with X. In particular this can happen when
2503 noce_get_condition looks farther back in the instruction
2504 stream than one might expect. */
2505 || reg_overlap_mentioned_p (x, cond)
2506 || reg_overlap_mentioned_p (x, a)
2507 || modified_between_p (x, insn_b, jump))
2508 insn_b = set_b = NULL_RTX;
2511 /* If x has side effects then only the if-then-else form is safe to
2512 convert. But even in that case we would need to restore any notes
2513 (such as REG_INC) at then end. That can be tricky if
2514 noce_emit_move_insn expands to more than one insn, so disable the
2515 optimization entirely for now if there are side effects. */
2516 if (side_effects_p (x))
2517 return FALSE;
2519 b = (set_b ? SET_SRC (set_b) : x);
2521 /* Only operate on register destinations, and even then avoid extending
2522 the lifetime of hard registers on small register class machines. */
2523 orig_x = x;
2524 if (!REG_P (x)
2525 || (HARD_REGISTER_P (x)
2526 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2528 if (GET_MODE (x) == BLKmode)
2529 return FALSE;
2531 if (GET_CODE (x) == ZERO_EXTRACT
2532 && (!CONST_INT_P (XEXP (x, 1))
2533 || !CONST_INT_P (XEXP (x, 2))))
2534 return FALSE;
2536 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2537 ? XEXP (x, 0) : x));
2540 /* Don't operate on sources that may trap or are volatile. */
2541 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2542 return FALSE;
2544 retry:
2545 /* Set up the info block for our subroutines. */
2546 if_info->insn_a = insn_a;
2547 if_info->insn_b = insn_b;
2548 if_info->x = x;
2549 if_info->a = a;
2550 if_info->b = b;
2552 /* Try optimizations in some approximation of a useful order. */
2553 /* ??? Should first look to see if X is live incoming at all. If it
2554 isn't, we don't need anything but an unconditional set. */
2556 /* Look and see if A and B are really the same. Avoid creating silly
2557 cmove constructs that no one will fix up later. */
2558 if (rtx_equal_p (a, b))
2560 /* If we have an INSN_B, we don't have to create any new rtl. Just
2561 move the instruction that we already have. If we don't have an
2562 INSN_B, that means that A == X, and we've got a noop move. In
2563 that case don't do anything and let the code below delete INSN_A. */
2564 if (insn_b && else_bb)
2566 rtx note;
2568 if (else_bb && insn_b == BB_END (else_bb))
2569 BB_END (else_bb) = PREV_INSN (insn_b);
2570 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2572 /* If there was a REG_EQUAL note, delete it since it may have been
2573 true due to this insn being after a jump. */
2574 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2575 remove_note (insn_b, note);
2577 insn_b = NULL_RTX;
2579 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2580 x must be executed twice. */
2581 else if (insn_b && side_effects_p (orig_x))
2582 return FALSE;
2584 x = orig_x;
2585 goto success;
2588 if (!set_b && MEM_P (orig_x))
2590 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2591 for optimizations if writing to x may trap or fault,
2592 i.e. it's a memory other than a static var or a stack slot,
2593 is misaligned on strict aligned machines or is read-only. If
2594 x is a read-only memory, then the program is valid only if we
2595 avoid the store into it. If there are stores on both the
2596 THEN and ELSE arms, then we can go ahead with the conversion;
2597 either the program is broken, or the condition is always
2598 false such that the other memory is selected. */
2599 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2600 return FALSE;
2602 /* Avoid store speculation: given "if (...) x = a" where x is a
2603 MEM, we only want to do the store if x is always set
2604 somewhere in the function. This avoids cases like
2605 if (pthread_mutex_trylock(mutex))
2606 ++global_variable;
2607 where we only want global_variable to be changed if the mutex
2608 is held. FIXME: This should ideally be expressed directly in
2609 RTL somehow. */
2610 if (!noce_can_store_speculate_p (test_bb, orig_x))
2611 return FALSE;
2614 if (noce_try_move (if_info))
2615 goto success;
2616 if (noce_try_store_flag (if_info))
2617 goto success;
2618 if (noce_try_bitop (if_info))
2619 goto success;
2620 if (noce_try_minmax (if_info))
2621 goto success;
2622 if (noce_try_abs (if_info))
2623 goto success;
2624 if (HAVE_conditional_move
2625 && noce_try_cmove (if_info))
2626 goto success;
2627 if (! targetm.have_conditional_execution ())
2629 if (noce_try_store_flag_constants (if_info))
2630 goto success;
2631 if (noce_try_addcc (if_info))
2632 goto success;
2633 if (noce_try_store_flag_mask (if_info))
2634 goto success;
2635 if (HAVE_conditional_move
2636 && noce_try_cmove_arith (if_info))
2637 goto success;
2638 if (noce_try_sign_mask (if_info))
2639 goto success;
2642 if (!else_bb && set_b)
2644 insn_b = set_b = NULL_RTX;
2645 b = orig_x;
2646 goto retry;
2649 return FALSE;
2651 success:
2653 /* If we used a temporary, fix it up now. */
2654 if (orig_x != x)
2656 rtx seq;
2658 start_sequence ();
2659 noce_emit_move_insn (orig_x, x);
2660 seq = get_insns ();
2661 set_used_flags (orig_x);
2662 unshare_all_rtl_in_chain (seq);
2663 end_sequence ();
2665 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
2668 /* The original THEN and ELSE blocks may now be removed. The test block
2669 must now jump to the join block. If the test block and the join block
2670 can be merged, do so. */
2671 if (else_bb)
2673 delete_basic_block (else_bb);
2674 num_true_changes++;
2676 else
2677 remove_edge (find_edge (test_bb, join_bb));
2679 remove_edge (find_edge (then_bb, join_bb));
2680 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2681 delete_basic_block (then_bb);
2682 num_true_changes++;
2684 if (can_merge_blocks_p (test_bb, join_bb))
2686 merge_blocks (test_bb, join_bb);
2687 num_true_changes++;
2690 num_updated_if_blocks++;
2691 return TRUE;
2694 /* Check whether a block is suitable for conditional move conversion.
2695 Every insn must be a simple set of a register to a constant or a
2696 register. For each assignment, store the value in the pointer map
2697 VALS, keyed indexed by register pointer, then store the register
2698 pointer in REGS. COND is the condition we will test. */
2700 static int
2701 check_cond_move_block (basic_block bb,
2702 struct pointer_map_t *vals,
2703 vec<rtx> *regs,
2704 rtx cond)
2706 rtx insn;
2708 /* We can only handle simple jumps at the end of the basic block.
2709 It is almost impossible to update the CFG otherwise. */
2710 insn = BB_END (bb);
2711 if (JUMP_P (insn) && !onlyjump_p (insn))
2712 return FALSE;
2714 FOR_BB_INSNS (bb, insn)
2716 rtx set, dest, src;
2717 void **slot;
2719 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2720 continue;
2721 set = single_set (insn);
2722 if (!set)
2723 return FALSE;
2725 dest = SET_DEST (set);
2726 src = SET_SRC (set);
2727 if (!REG_P (dest)
2728 || (HARD_REGISTER_P (dest)
2729 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2730 return FALSE;
2732 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2733 return FALSE;
2735 if (side_effects_p (src) || side_effects_p (dest))
2736 return FALSE;
2738 if (may_trap_p (src) || may_trap_p (dest))
2739 return FALSE;
2741 /* Don't try to handle this if the source register was
2742 modified earlier in the block. */
2743 if ((REG_P (src)
2744 && pointer_map_contains (vals, src))
2745 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2746 && pointer_map_contains (vals, SUBREG_REG (src))))
2747 return FALSE;
2749 /* Don't try to handle this if the destination register was
2750 modified earlier in the block. */
2751 if (pointer_map_contains (vals, dest))
2752 return FALSE;
2754 /* Don't try to handle this if the condition uses the
2755 destination register. */
2756 if (reg_overlap_mentioned_p (dest, cond))
2757 return FALSE;
2759 /* Don't try to handle this if the source register is modified
2760 later in the block. */
2761 if (!CONSTANT_P (src)
2762 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2763 return FALSE;
2765 slot = pointer_map_insert (vals, (void *) dest);
2766 *slot = (void *) src;
2768 regs->safe_push (dest);
2771 return TRUE;
2774 /* Given a basic block BB suitable for conditional move conversion,
2775 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
2776 the register values depending on COND, emit the insns in the block as
2777 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2778 processed. The caller has started a sequence for the conversion.
2779 Return true if successful, false if something goes wrong. */
2781 static bool
2782 cond_move_convert_if_block (struct noce_if_info *if_infop,
2783 basic_block bb, rtx cond,
2784 struct pointer_map_t *then_vals,
2785 struct pointer_map_t *else_vals,
2786 bool else_block_p)
2788 enum rtx_code code;
2789 rtx insn, cond_arg0, cond_arg1;
2791 code = GET_CODE (cond);
2792 cond_arg0 = XEXP (cond, 0);
2793 cond_arg1 = XEXP (cond, 1);
2795 FOR_BB_INSNS (bb, insn)
2797 rtx set, target, dest, t, e;
2798 void **then_slot, **else_slot;
2800 /* ??? Maybe emit conditional debug insn? */
2801 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2802 continue;
2803 set = single_set (insn);
2804 gcc_assert (set && REG_P (SET_DEST (set)));
2806 dest = SET_DEST (set);
2808 then_slot = pointer_map_contains (then_vals, dest);
2809 else_slot = pointer_map_contains (else_vals, dest);
2810 t = then_slot ? (rtx) *then_slot : NULL_RTX;
2811 e = else_slot ? (rtx) *else_slot : NULL_RTX;
2813 if (else_block_p)
2815 /* If this register was set in the then block, we already
2816 handled this case there. */
2817 if (t)
2818 continue;
2819 t = dest;
2820 gcc_assert (e);
2822 else
2824 gcc_assert (t);
2825 if (!e)
2826 e = dest;
2829 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2830 t, e);
2831 if (!target)
2832 return false;
2834 if (target != dest)
2835 noce_emit_move_insn (dest, target);
2838 return true;
2841 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2842 it using only conditional moves. Return TRUE if we were successful at
2843 converting the block. */
2845 static int
2846 cond_move_process_if_block (struct noce_if_info *if_info)
2848 basic_block test_bb = if_info->test_bb;
2849 basic_block then_bb = if_info->then_bb;
2850 basic_block else_bb = if_info->else_bb;
2851 basic_block join_bb = if_info->join_bb;
2852 rtx jump = if_info->jump;
2853 rtx cond = if_info->cond;
2854 rtx seq, loc_insn;
2855 rtx reg;
2856 int c;
2857 struct pointer_map_t *then_vals;
2858 struct pointer_map_t *else_vals;
2859 vec<rtx> then_regs = vNULL;
2860 vec<rtx> else_regs = vNULL;
2861 unsigned int i;
2862 int success_p = FALSE;
2864 /* Build a mapping for each block to the value used for each
2865 register. */
2866 then_vals = pointer_map_create ();
2867 else_vals = pointer_map_create ();
2869 /* Make sure the blocks are suitable. */
2870 if (!check_cond_move_block (then_bb, then_vals, &then_regs, cond)
2871 || (else_bb
2872 && !check_cond_move_block (else_bb, else_vals, &else_regs, cond)))
2873 goto done;
2875 /* Make sure the blocks can be used together. If the same register
2876 is set in both blocks, and is not set to a constant in both
2877 cases, then both blocks must set it to the same register. We
2878 have already verified that if it is set to a register, that the
2879 source register does not change after the assignment. Also count
2880 the number of registers set in only one of the blocks. */
2881 c = 0;
2882 FOR_EACH_VEC_ELT (then_regs, i, reg)
2884 void **then_slot = pointer_map_contains (then_vals, reg);
2885 void **else_slot = pointer_map_contains (else_vals, reg);
2887 gcc_checking_assert (then_slot);
2888 if (!else_slot)
2889 ++c;
2890 else
2892 rtx then_val = (rtx) *then_slot;
2893 rtx else_val = (rtx) *else_slot;
2894 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
2895 && !rtx_equal_p (then_val, else_val))
2896 goto done;
2900 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2901 FOR_EACH_VEC_ELT (else_regs, i, reg)
2903 gcc_checking_assert (pointer_map_contains (else_vals, reg));
2904 if (!pointer_map_contains (then_vals, reg))
2905 ++c;
2908 /* Make sure it is reasonable to convert this block. What matters
2909 is the number of assignments currently made in only one of the
2910 branches, since if we convert we are going to always execute
2911 them. */
2912 if (c > MAX_CONDITIONAL_EXECUTE)
2913 goto done;
2915 /* Try to emit the conditional moves. First do the then block,
2916 then do anything left in the else blocks. */
2917 start_sequence ();
2918 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2919 then_vals, else_vals, false)
2920 || (else_bb
2921 && !cond_move_convert_if_block (if_info, else_bb, cond,
2922 then_vals, else_vals, true)))
2924 end_sequence ();
2925 goto done;
2927 seq = end_ifcvt_sequence (if_info);
2928 if (!seq)
2929 goto done;
2931 loc_insn = first_active_insn (then_bb);
2932 if (!loc_insn)
2934 loc_insn = first_active_insn (else_bb);
2935 gcc_assert (loc_insn);
2937 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
2939 if (else_bb)
2941 delete_basic_block (else_bb);
2942 num_true_changes++;
2944 else
2945 remove_edge (find_edge (test_bb, join_bb));
2947 remove_edge (find_edge (then_bb, join_bb));
2948 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2949 delete_basic_block (then_bb);
2950 num_true_changes++;
2952 if (can_merge_blocks_p (test_bb, join_bb))
2954 merge_blocks (test_bb, join_bb);
2955 num_true_changes++;
2958 num_updated_if_blocks++;
2960 success_p = TRUE;
2962 done:
2963 pointer_map_destroy (then_vals);
2964 pointer_map_destroy (else_vals);
2965 then_regs.release ();
2966 else_regs.release ();
2967 return success_p;
2971 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2972 IF-THEN-ELSE-JOIN block.
2974 If so, we'll try to convert the insns to not require the branch,
2975 using only transformations that do not require conditional execution.
2977 Return TRUE if we were successful at converting the block. */
2979 static int
2980 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
2981 int pass)
2983 basic_block then_bb, else_bb, join_bb;
2984 bool then_else_reversed = false;
2985 rtx jump, cond;
2986 rtx cond_earliest;
2987 struct noce_if_info if_info;
2989 /* We only ever should get here before reload. */
2990 gcc_assert (!reload_completed);
2992 /* Recognize an IF-THEN-ELSE-JOIN block. */
2993 if (single_pred_p (then_edge->dest)
2994 && single_succ_p (then_edge->dest)
2995 && single_pred_p (else_edge->dest)
2996 && single_succ_p (else_edge->dest)
2997 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
2999 then_bb = then_edge->dest;
3000 else_bb = else_edge->dest;
3001 join_bb = single_succ (then_bb);
3003 /* Recognize an IF-THEN-JOIN block. */
3004 else if (single_pred_p (then_edge->dest)
3005 && single_succ_p (then_edge->dest)
3006 && single_succ (then_edge->dest) == else_edge->dest)
3008 then_bb = then_edge->dest;
3009 else_bb = NULL_BLOCK;
3010 join_bb = else_edge->dest;
3012 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3013 of basic blocks in cfglayout mode does not matter, so the fallthrough
3014 edge can go to any basic block (and not just to bb->next_bb, like in
3015 cfgrtl mode). */
3016 else if (single_pred_p (else_edge->dest)
3017 && single_succ_p (else_edge->dest)
3018 && single_succ (else_edge->dest) == then_edge->dest)
3020 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3021 To make this work, we have to invert the THEN and ELSE blocks
3022 and reverse the jump condition. */
3023 then_bb = else_edge->dest;
3024 else_bb = NULL_BLOCK;
3025 join_bb = single_succ (then_bb);
3026 then_else_reversed = true;
3028 else
3029 /* Not a form we can handle. */
3030 return FALSE;
3032 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3033 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3034 return FALSE;
3035 if (else_bb
3036 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3037 return FALSE;
3039 num_possible_if_blocks++;
3041 if (dump_file)
3043 fprintf (dump_file,
3044 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3045 (else_bb) ? "-ELSE" : "",
3046 pass, test_bb->index, then_bb->index);
3048 if (else_bb)
3049 fprintf (dump_file, ", else %d", else_bb->index);
3051 fprintf (dump_file, ", join %d\n", join_bb->index);
3054 /* If the conditional jump is more than just a conditional
3055 jump, then we can not do if-conversion on this block. */
3056 jump = BB_END (test_bb);
3057 if (! onlyjump_p (jump))
3058 return FALSE;
3060 /* If this is not a standard conditional jump, we can't parse it. */
3061 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3062 if (!cond)
3063 return FALSE;
3065 /* We must be comparing objects whose modes imply the size. */
3066 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3067 return FALSE;
3069 /* Initialize an IF_INFO struct to pass around. */
3070 memset (&if_info, 0, sizeof if_info);
3071 if_info.test_bb = test_bb;
3072 if_info.then_bb = then_bb;
3073 if_info.else_bb = else_bb;
3074 if_info.join_bb = join_bb;
3075 if_info.cond = cond;
3076 if_info.cond_earliest = cond_earliest;
3077 if_info.jump = jump;
3078 if_info.then_else_reversed = then_else_reversed;
3079 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3080 predictable_edge_p (then_edge));
3082 /* Do the real work. */
3084 if (noce_process_if_block (&if_info))
3085 return TRUE;
3087 if (HAVE_conditional_move
3088 && cond_move_process_if_block (&if_info))
3089 return TRUE;
3091 return FALSE;
3095 /* Merge the blocks and mark for local life update. */
3097 static void
3098 merge_if_block (struct ce_if_block * ce_info)
3100 basic_block test_bb = ce_info->test_bb; /* last test block */
3101 basic_block then_bb = ce_info->then_bb; /* THEN */
3102 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3103 basic_block join_bb = ce_info->join_bb; /* join block */
3104 basic_block combo_bb;
3106 /* All block merging is done into the lower block numbers. */
3108 combo_bb = test_bb;
3109 df_set_bb_dirty (test_bb);
3111 /* Merge any basic blocks to handle && and || subtests. Each of
3112 the blocks are on the fallthru path from the predecessor block. */
3113 if (ce_info->num_multiple_test_blocks > 0)
3115 basic_block bb = test_bb;
3116 basic_block last_test_bb = ce_info->last_test_bb;
3117 basic_block fallthru = block_fallthru (bb);
3121 bb = fallthru;
3122 fallthru = block_fallthru (bb);
3123 merge_blocks (combo_bb, bb);
3124 num_true_changes++;
3126 while (bb != last_test_bb);
3129 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3130 label, but it might if there were || tests. That label's count should be
3131 zero, and it normally should be removed. */
3133 if (then_bb)
3135 merge_blocks (combo_bb, then_bb);
3136 num_true_changes++;
3139 /* The ELSE block, if it existed, had a label. That label count
3140 will almost always be zero, but odd things can happen when labels
3141 get their addresses taken. */
3142 if (else_bb)
3144 merge_blocks (combo_bb, else_bb);
3145 num_true_changes++;
3148 /* If there was no join block reported, that means it was not adjacent
3149 to the others, and so we cannot merge them. */
3151 if (! join_bb)
3153 rtx last = BB_END (combo_bb);
3155 /* The outgoing edge for the current COMBO block should already
3156 be correct. Verify this. */
3157 if (EDGE_COUNT (combo_bb->succs) == 0)
3158 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3159 || (NONJUMP_INSN_P (last)
3160 && GET_CODE (PATTERN (last)) == TRAP_IF
3161 && (TRAP_CONDITION (PATTERN (last))
3162 == const_true_rtx)));
3164 else
3165 /* There should still be something at the end of the THEN or ELSE
3166 blocks taking us to our final destination. */
3167 gcc_assert (JUMP_P (last)
3168 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
3169 && CALL_P (last)
3170 && SIBLING_CALL_P (last))
3171 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3172 && can_throw_internal (last)));
3175 /* The JOIN block may have had quite a number of other predecessors too.
3176 Since we've already merged the TEST, THEN and ELSE blocks, we should
3177 have only one remaining edge from our if-then-else diamond. If there
3178 is more than one remaining edge, it must come from elsewhere. There
3179 may be zero incoming edges if the THEN block didn't actually join
3180 back up (as with a call to a non-return function). */
3181 else if (EDGE_COUNT (join_bb->preds) < 2
3182 && join_bb != EXIT_BLOCK_PTR)
3184 /* We can merge the JOIN cleanly and update the dataflow try
3185 again on this pass.*/
3186 merge_blocks (combo_bb, join_bb);
3187 num_true_changes++;
3189 else
3191 /* We cannot merge the JOIN. */
3193 /* The outgoing edge for the current COMBO block should already
3194 be correct. Verify this. */
3195 gcc_assert (single_succ_p (combo_bb)
3196 && single_succ (combo_bb) == join_bb);
3198 /* Remove the jump and cruft from the end of the COMBO block. */
3199 if (join_bb != EXIT_BLOCK_PTR)
3200 tidy_fallthru_edge (single_succ_edge (combo_bb));
3203 num_updated_if_blocks++;
3206 /* Find a block ending in a simple IF condition and try to transform it
3207 in some way. When converting a multi-block condition, put the new code
3208 in the first such block and delete the rest. Return a pointer to this
3209 first block if some transformation was done. Return NULL otherwise. */
3211 static basic_block
3212 find_if_header (basic_block test_bb, int pass)
3214 ce_if_block_t ce_info;
3215 edge then_edge;
3216 edge else_edge;
3218 /* The kind of block we're looking for has exactly two successors. */
3219 if (EDGE_COUNT (test_bb->succs) != 2)
3220 return NULL;
3222 then_edge = EDGE_SUCC (test_bb, 0);
3223 else_edge = EDGE_SUCC (test_bb, 1);
3225 if (df_get_bb_dirty (then_edge->dest))
3226 return NULL;
3227 if (df_get_bb_dirty (else_edge->dest))
3228 return NULL;
3230 /* Neither edge should be abnormal. */
3231 if ((then_edge->flags & EDGE_COMPLEX)
3232 || (else_edge->flags & EDGE_COMPLEX))
3233 return NULL;
3235 /* Nor exit the loop. */
3236 if ((then_edge->flags & EDGE_LOOP_EXIT)
3237 || (else_edge->flags & EDGE_LOOP_EXIT))
3238 return NULL;
3240 /* The THEN edge is canonically the one that falls through. */
3241 if (then_edge->flags & EDGE_FALLTHRU)
3243 else if (else_edge->flags & EDGE_FALLTHRU)
3245 edge e = else_edge;
3246 else_edge = then_edge;
3247 then_edge = e;
3249 else
3250 /* Otherwise this must be a multiway branch of some sort. */
3251 return NULL;
3253 memset (&ce_info, 0, sizeof (ce_info));
3254 ce_info.test_bb = test_bb;
3255 ce_info.then_bb = then_edge->dest;
3256 ce_info.else_bb = else_edge->dest;
3257 ce_info.pass = pass;
3259 #ifdef IFCVT_MACHDEP_INIT
3260 IFCVT_MACHDEP_INIT (&ce_info);
3261 #endif
3263 if (!reload_completed
3264 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3265 goto success;
3267 if (reload_completed
3268 && targetm.have_conditional_execution ()
3269 && cond_exec_find_if_block (&ce_info))
3270 goto success;
3272 if (HAVE_trap
3273 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3274 && find_cond_trap (test_bb, then_edge, else_edge))
3275 goto success;
3277 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3278 && (reload_completed || !targetm.have_conditional_execution ()))
3280 if (find_if_case_1 (test_bb, then_edge, else_edge))
3281 goto success;
3282 if (find_if_case_2 (test_bb, then_edge, else_edge))
3283 goto success;
3286 return NULL;
3288 success:
3289 if (dump_file)
3290 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3291 /* Set this so we continue looking. */
3292 cond_exec_changed_p = TRUE;
3293 return ce_info.test_bb;
3296 /* Return true if a block has two edges, one of which falls through to the next
3297 block, and the other jumps to a specific block, so that we can tell if the
3298 block is part of an && test or an || test. Returns either -1 or the number
3299 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3301 static int
3302 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3304 edge cur_edge;
3305 int fallthru_p = FALSE;
3306 int jump_p = FALSE;
3307 rtx insn;
3308 rtx end;
3309 int n_insns = 0;
3310 edge_iterator ei;
3312 if (!cur_bb || !target_bb)
3313 return -1;
3315 /* If no edges, obviously it doesn't jump or fallthru. */
3316 if (EDGE_COUNT (cur_bb->succs) == 0)
3317 return FALSE;
3319 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3321 if (cur_edge->flags & EDGE_COMPLEX)
3322 /* Anything complex isn't what we want. */
3323 return -1;
3325 else if (cur_edge->flags & EDGE_FALLTHRU)
3326 fallthru_p = TRUE;
3328 else if (cur_edge->dest == target_bb)
3329 jump_p = TRUE;
3331 else
3332 return -1;
3335 if ((jump_p & fallthru_p) == 0)
3336 return -1;
3338 /* Don't allow calls in the block, since this is used to group && and ||
3339 together for conditional execution support. ??? we should support
3340 conditional execution support across calls for IA-64 some day, but
3341 for now it makes the code simpler. */
3342 end = BB_END (cur_bb);
3343 insn = BB_HEAD (cur_bb);
3345 while (insn != NULL_RTX)
3347 if (CALL_P (insn))
3348 return -1;
3350 if (INSN_P (insn)
3351 && !JUMP_P (insn)
3352 && !DEBUG_INSN_P (insn)
3353 && GET_CODE (PATTERN (insn)) != USE
3354 && GET_CODE (PATTERN (insn)) != CLOBBER)
3355 n_insns++;
3357 if (insn == end)
3358 break;
3360 insn = NEXT_INSN (insn);
3363 return n_insns;
3366 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3367 block. If so, we'll try to convert the insns to not require the branch.
3368 Return TRUE if we were successful at converting the block. */
3370 static int
3371 cond_exec_find_if_block (struct ce_if_block * ce_info)
3373 basic_block test_bb = ce_info->test_bb;
3374 basic_block then_bb = ce_info->then_bb;
3375 basic_block else_bb = ce_info->else_bb;
3376 basic_block join_bb = NULL_BLOCK;
3377 edge cur_edge;
3378 basic_block next;
3379 edge_iterator ei;
3381 ce_info->last_test_bb = test_bb;
3383 /* We only ever should get here after reload,
3384 and if we have conditional execution. */
3385 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3387 /* Discover if any fall through predecessors of the current test basic block
3388 were && tests (which jump to the else block) or || tests (which jump to
3389 the then block). */
3390 if (single_pred_p (test_bb)
3391 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3393 basic_block bb = single_pred (test_bb);
3394 basic_block target_bb;
3395 int max_insns = MAX_CONDITIONAL_EXECUTE;
3396 int n_insns;
3398 /* Determine if the preceding block is an && or || block. */
3399 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3401 ce_info->and_and_p = TRUE;
3402 target_bb = else_bb;
3404 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3406 ce_info->and_and_p = FALSE;
3407 target_bb = then_bb;
3409 else
3410 target_bb = NULL_BLOCK;
3412 if (target_bb && n_insns <= max_insns)
3414 int total_insns = 0;
3415 int blocks = 0;
3417 ce_info->last_test_bb = test_bb;
3419 /* Found at least one && or || block, look for more. */
3422 ce_info->test_bb = test_bb = bb;
3423 total_insns += n_insns;
3424 blocks++;
3426 if (!single_pred_p (bb))
3427 break;
3429 bb = single_pred (bb);
3430 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3432 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3434 ce_info->num_multiple_test_blocks = blocks;
3435 ce_info->num_multiple_test_insns = total_insns;
3437 if (ce_info->and_and_p)
3438 ce_info->num_and_and_blocks = blocks;
3439 else
3440 ce_info->num_or_or_blocks = blocks;
3444 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3445 other than any || blocks which jump to the THEN block. */
3446 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3447 return FALSE;
3449 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3450 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3452 if (cur_edge->flags & EDGE_COMPLEX)
3453 return FALSE;
3456 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3458 if (cur_edge->flags & EDGE_COMPLEX)
3459 return FALSE;
3462 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3463 if (EDGE_COUNT (then_bb->succs) > 0
3464 && (!single_succ_p (then_bb)
3465 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3466 || (epilogue_completed
3467 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3468 return FALSE;
3470 /* If the THEN block has no successors, conditional execution can still
3471 make a conditional call. Don't do this unless the ELSE block has
3472 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3473 Check for the last insn of the THEN block being an indirect jump, which
3474 is listed as not having any successors, but confuses the rest of the CE
3475 code processing. ??? we should fix this in the future. */
3476 if (EDGE_COUNT (then_bb->succs) == 0)
3478 if (single_pred_p (else_bb) && else_bb != EXIT_BLOCK_PTR)
3480 rtx last_insn = BB_END (then_bb);
3482 while (last_insn
3483 && NOTE_P (last_insn)
3484 && last_insn != BB_HEAD (then_bb))
3485 last_insn = PREV_INSN (last_insn);
3487 if (last_insn
3488 && JUMP_P (last_insn)
3489 && ! simplejump_p (last_insn))
3490 return FALSE;
3492 join_bb = else_bb;
3493 else_bb = NULL_BLOCK;
3495 else
3496 return FALSE;
3499 /* If the THEN block's successor is the other edge out of the TEST block,
3500 then we have an IF-THEN combo without an ELSE. */
3501 else if (single_succ (then_bb) == else_bb)
3503 join_bb = else_bb;
3504 else_bb = NULL_BLOCK;
3507 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3508 has exactly one predecessor and one successor, and the outgoing edge
3509 is not complex, then we have an IF-THEN-ELSE combo. */
3510 else if (single_succ_p (else_bb)
3511 && single_succ (then_bb) == single_succ (else_bb)
3512 && single_pred_p (else_bb)
3513 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3514 && !(epilogue_completed
3515 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3516 join_bb = single_succ (else_bb);
3518 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3519 else
3520 return FALSE;
3522 num_possible_if_blocks++;
3524 if (dump_file)
3526 fprintf (dump_file,
3527 "\nIF-THEN%s block found, pass %d, start block %d "
3528 "[insn %d], then %d [%d]",
3529 (else_bb) ? "-ELSE" : "",
3530 ce_info->pass,
3531 test_bb->index,
3532 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3533 then_bb->index,
3534 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3536 if (else_bb)
3537 fprintf (dump_file, ", else %d [%d]",
3538 else_bb->index,
3539 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3541 fprintf (dump_file, ", join %d [%d]",
3542 join_bb->index,
3543 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3545 if (ce_info->num_multiple_test_blocks > 0)
3546 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3547 ce_info->num_multiple_test_blocks,
3548 (ce_info->and_and_p) ? "&&" : "||",
3549 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3550 ce_info->last_test_bb->index,
3551 ((BB_HEAD (ce_info->last_test_bb))
3552 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3553 : -1));
3555 fputc ('\n', dump_file);
3558 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3559 first condition for free, since we've already asserted that there's a
3560 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3561 we checked the FALLTHRU flag, those are already adjacent to the last IF
3562 block. */
3563 /* ??? As an enhancement, move the ELSE block. Have to deal with
3564 BLOCK notes, if by no other means than backing out the merge if they
3565 exist. Sticky enough I don't want to think about it now. */
3566 next = then_bb;
3567 if (else_bb && (next = next->next_bb) != else_bb)
3568 return FALSE;
3569 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3571 if (else_bb)
3572 join_bb = NULL;
3573 else
3574 return FALSE;
3577 /* Do the real work. */
3579 ce_info->else_bb = else_bb;
3580 ce_info->join_bb = join_bb;
3582 /* If we have && and || tests, try to first handle combining the && and ||
3583 tests into the conditional code, and if that fails, go back and handle
3584 it without the && and ||, which at present handles the && case if there
3585 was no ELSE block. */
3586 if (cond_exec_process_if_block (ce_info, TRUE))
3587 return TRUE;
3589 if (ce_info->num_multiple_test_blocks)
3591 cancel_changes (0);
3593 if (cond_exec_process_if_block (ce_info, FALSE))
3594 return TRUE;
3597 return FALSE;
3600 /* Convert a branch over a trap, or a branch
3601 to a trap, into a conditional trap. */
3603 static int
3604 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3606 basic_block then_bb = then_edge->dest;
3607 basic_block else_bb = else_edge->dest;
3608 basic_block other_bb, trap_bb;
3609 rtx trap, jump, cond, cond_earliest, seq;
3610 enum rtx_code code;
3612 /* Locate the block with the trap instruction. */
3613 /* ??? While we look for no successors, we really ought to allow
3614 EH successors. Need to fix merge_if_block for that to work. */
3615 if ((trap = block_has_only_trap (then_bb)) != NULL)
3616 trap_bb = then_bb, other_bb = else_bb;
3617 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3618 trap_bb = else_bb, other_bb = then_bb;
3619 else
3620 return FALSE;
3622 if (dump_file)
3624 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3625 test_bb->index, trap_bb->index);
3628 /* If this is not a standard conditional jump, we can't parse it. */
3629 jump = BB_END (test_bb);
3630 cond = noce_get_condition (jump, &cond_earliest, false);
3631 if (! cond)
3632 return FALSE;
3634 /* If the conditional jump is more than just a conditional jump, then
3635 we can not do if-conversion on this block. */
3636 if (! onlyjump_p (jump))
3637 return FALSE;
3639 /* We must be comparing objects whose modes imply the size. */
3640 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3641 return FALSE;
3643 /* Reverse the comparison code, if necessary. */
3644 code = GET_CODE (cond);
3645 if (then_bb == trap_bb)
3647 code = reversed_comparison_code (cond, jump);
3648 if (code == UNKNOWN)
3649 return FALSE;
3652 /* Attempt to generate the conditional trap. */
3653 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3654 copy_rtx (XEXP (cond, 1)),
3655 TRAP_CODE (PATTERN (trap)));
3656 if (seq == NULL)
3657 return FALSE;
3659 /* Emit the new insns before cond_earliest. */
3660 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
3662 /* Delete the trap block if possible. */
3663 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3664 df_set_bb_dirty (test_bb);
3665 df_set_bb_dirty (then_bb);
3666 df_set_bb_dirty (else_bb);
3668 if (EDGE_COUNT (trap_bb->preds) == 0)
3670 delete_basic_block (trap_bb);
3671 num_true_changes++;
3674 /* Wire together the blocks again. */
3675 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3676 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3677 else
3679 rtx lab, newjump;
3681 lab = JUMP_LABEL (jump);
3682 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3683 LABEL_NUSES (lab) += 1;
3684 JUMP_LABEL (newjump) = lab;
3685 emit_barrier_after (newjump);
3687 delete_insn (jump);
3689 if (can_merge_blocks_p (test_bb, other_bb))
3691 merge_blocks (test_bb, other_bb);
3692 num_true_changes++;
3695 num_updated_if_blocks++;
3696 return TRUE;
3699 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3700 return it. */
3702 static rtx
3703 block_has_only_trap (basic_block bb)
3705 rtx trap;
3707 /* We're not the exit block. */
3708 if (bb == EXIT_BLOCK_PTR)
3709 return NULL_RTX;
3711 /* The block must have no successors. */
3712 if (EDGE_COUNT (bb->succs) > 0)
3713 return NULL_RTX;
3715 /* The only instruction in the THEN block must be the trap. */
3716 trap = first_active_insn (bb);
3717 if (! (trap == BB_END (bb)
3718 && GET_CODE (PATTERN (trap)) == TRAP_IF
3719 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3720 return NULL_RTX;
3722 return trap;
3725 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3726 transformable, but not necessarily the other. There need be no
3727 JOIN block.
3729 Return TRUE if we were successful at converting the block.
3731 Cases we'd like to look at:
3734 if (test) goto over; // x not live
3735 x = a;
3736 goto label;
3737 over:
3739 becomes
3741 x = a;
3742 if (! test) goto label;
3745 if (test) goto E; // x not live
3746 x = big();
3747 goto L;
3749 x = b;
3750 goto M;
3752 becomes
3754 x = b;
3755 if (test) goto M;
3756 x = big();
3757 goto L;
3759 (3) // This one's really only interesting for targets that can do
3760 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3761 // it results in multiple branches on a cache line, which often
3762 // does not sit well with predictors.
3764 if (test1) goto E; // predicted not taken
3765 x = a;
3766 if (test2) goto F;
3769 x = b;
3772 becomes
3774 x = a;
3775 if (test1) goto E;
3776 if (test2) goto F;
3778 Notes:
3780 (A) Don't do (2) if the branch is predicted against the block we're
3781 eliminating. Do it anyway if we can eliminate a branch; this requires
3782 that the sole successor of the eliminated block postdominate the other
3783 side of the if.
3785 (B) With CE, on (3) we can steal from both sides of the if, creating
3787 if (test1) x = a;
3788 if (!test1) x = b;
3789 if (test1) goto J;
3790 if (test2) goto F;
3794 Again, this is most useful if J postdominates.
3796 (C) CE substitutes for helpful life information.
3798 (D) These heuristics need a lot of work. */
3800 /* Tests for case 1 above. */
3802 static int
3803 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3805 basic_block then_bb = then_edge->dest;
3806 basic_block else_bb = else_edge->dest;
3807 basic_block new_bb;
3808 int then_bb_index, then_prob;
3809 rtx else_target = NULL_RTX;
3811 /* If we are partitioning hot/cold basic blocks, we don't want to
3812 mess up unconditional or indirect jumps that cross between hot
3813 and cold sections.
3815 Basic block partitioning may result in some jumps that appear to
3816 be optimizable (or blocks that appear to be mergeable), but which really
3817 must be left untouched (they are required to make it safely across
3818 partition boundaries). See the comments at the top of
3819 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3821 if ((BB_END (then_bb)
3822 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3823 || (BB_END (test_bb)
3824 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3825 || (BB_END (else_bb)
3826 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3827 NULL_RTX)))
3828 return FALSE;
3830 /* THEN has one successor. */
3831 if (!single_succ_p (then_bb))
3832 return FALSE;
3834 /* THEN does not fall through, but is not strange either. */
3835 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3836 return FALSE;
3838 /* THEN has one predecessor. */
3839 if (!single_pred_p (then_bb))
3840 return FALSE;
3842 /* THEN must do something. */
3843 if (forwarder_block_p (then_bb))
3844 return FALSE;
3846 num_possible_if_blocks++;
3847 if (dump_file)
3848 fprintf (dump_file,
3849 "\nIF-CASE-1 found, start %d, then %d\n",
3850 test_bb->index, then_bb->index);
3852 if (then_edge->probability)
3853 then_prob = REG_BR_PROB_BASE - then_edge->probability;
3854 else
3855 then_prob = REG_BR_PROB_BASE / 2;
3857 /* We're speculating from the THEN path, we want to make sure the cost
3858 of speculation is within reason. */
3859 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
3860 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3861 predictable_edge_p (then_edge)))))
3862 return FALSE;
3864 if (else_bb == EXIT_BLOCK_PTR)
3866 rtx jump = BB_END (else_edge->src);
3867 gcc_assert (JUMP_P (jump));
3868 else_target = JUMP_LABEL (jump);
3871 /* Registers set are dead, or are predicable. */
3872 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3873 single_succ_edge (then_bb), 1))
3874 return FALSE;
3876 /* Conversion went ok, including moving the insns and fixing up the
3877 jump. Adjust the CFG to match. */
3879 /* We can avoid creating a new basic block if then_bb is immediately
3880 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3881 through to else_bb. */
3883 if (then_bb->next_bb == else_bb
3884 && then_bb->prev_bb == test_bb
3885 && else_bb != EXIT_BLOCK_PTR)
3887 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3888 new_bb = 0;
3890 else if (else_bb == EXIT_BLOCK_PTR)
3891 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
3892 else_bb, else_target);
3893 else
3894 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3895 else_bb);
3897 df_set_bb_dirty (test_bb);
3898 df_set_bb_dirty (else_bb);
3900 then_bb_index = then_bb->index;
3901 delete_basic_block (then_bb);
3903 /* Make rest of code believe that the newly created block is the THEN_BB
3904 block we removed. */
3905 if (new_bb)
3907 df_bb_replace (then_bb_index, new_bb);
3908 /* Since the fallthru edge was redirected from test_bb to new_bb,
3909 we need to ensure that new_bb is in the same partition as
3910 test bb (you can not fall through across section boundaries). */
3911 BB_COPY_PARTITION (new_bb, test_bb);
3914 num_true_changes++;
3915 num_updated_if_blocks++;
3917 return TRUE;
3920 /* Test for case 2 above. */
3922 static int
3923 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3925 basic_block then_bb = then_edge->dest;
3926 basic_block else_bb = else_edge->dest;
3927 edge else_succ;
3928 int then_prob, else_prob;
3930 /* We do not want to speculate (empty) loop latches. */
3931 if (current_loops
3932 && else_bb->loop_father->latch == else_bb)
3933 return FALSE;
3935 /* If we are partitioning hot/cold basic blocks, we don't want to
3936 mess up unconditional or indirect jumps that cross between hot
3937 and cold sections.
3939 Basic block partitioning may result in some jumps that appear to
3940 be optimizable (or blocks that appear to be mergeable), but which really
3941 must be left untouched (they are required to make it safely across
3942 partition boundaries). See the comments at the top of
3943 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3945 if ((BB_END (then_bb)
3946 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3947 || (BB_END (test_bb)
3948 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3949 || (BB_END (else_bb)
3950 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3951 NULL_RTX)))
3952 return FALSE;
3954 /* ELSE has one successor. */
3955 if (!single_succ_p (else_bb))
3956 return FALSE;
3957 else
3958 else_succ = single_succ_edge (else_bb);
3960 /* ELSE outgoing edge is not complex. */
3961 if (else_succ->flags & EDGE_COMPLEX)
3962 return FALSE;
3964 /* ELSE has one predecessor. */
3965 if (!single_pred_p (else_bb))
3966 return FALSE;
3968 /* THEN is not EXIT. */
3969 if (then_bb->index < NUM_FIXED_BLOCKS)
3970 return FALSE;
3972 if (else_edge->probability)
3974 else_prob = else_edge->probability;
3975 then_prob = REG_BR_PROB_BASE - else_prob;
3977 else
3979 else_prob = REG_BR_PROB_BASE / 2;
3980 then_prob = REG_BR_PROB_BASE / 2;
3983 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3984 if (else_prob > then_prob)
3986 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3987 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3988 else_succ->dest))
3990 else
3991 return FALSE;
3993 num_possible_if_blocks++;
3994 if (dump_file)
3995 fprintf (dump_file,
3996 "\nIF-CASE-2 found, start %d, else %d\n",
3997 test_bb->index, else_bb->index);
3999 /* We're speculating from the ELSE path, we want to make sure the cost
4000 of speculation is within reason. */
4001 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
4002 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
4003 predictable_edge_p (else_edge)))))
4004 return FALSE;
4006 /* Registers set are dead, or are predicable. */
4007 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
4008 return FALSE;
4010 /* Conversion went ok, including moving the insns and fixing up the
4011 jump. Adjust the CFG to match. */
4013 df_set_bb_dirty (test_bb);
4014 df_set_bb_dirty (then_bb);
4015 delete_basic_block (else_bb);
4017 num_true_changes++;
4018 num_updated_if_blocks++;
4020 /* ??? We may now fallthru from one of THEN's successors into a join
4021 block. Rerun cleanup_cfg? Examine things manually? Wait? */
4023 return TRUE;
4026 /* Used by the code above to perform the actual rtl transformations.
4027 Return TRUE if successful.
4029 TEST_BB is the block containing the conditional branch. MERGE_BB
4030 is the block containing the code to manipulate. DEST_EDGE is an
4031 edge representing a jump to the join block; after the conversion,
4032 TEST_BB should be branching to its destination.
4033 REVERSEP is true if the sense of the branch should be reversed. */
4035 static int
4036 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
4037 basic_block other_bb, edge dest_edge, int reversep)
4039 basic_block new_dest = dest_edge->dest;
4040 rtx head, end, jump, earliest = NULL_RTX, old_dest;
4041 bitmap merge_set = NULL;
4042 /* Number of pending changes. */
4043 int n_validated_changes = 0;
4044 rtx new_dest_label = NULL_RTX;
4046 jump = BB_END (test_bb);
4048 /* Find the extent of the real code in the merge block. */
4049 head = BB_HEAD (merge_bb);
4050 end = BB_END (merge_bb);
4052 while (DEBUG_INSN_P (end) && end != head)
4053 end = PREV_INSN (end);
4055 /* If merge_bb ends with a tablejump, predicating/moving insn's
4056 into test_bb and then deleting merge_bb will result in the jumptable
4057 that follows merge_bb being removed along with merge_bb and then we
4058 get an unresolved reference to the jumptable. */
4059 if (tablejump_p (end, NULL, NULL))
4060 return FALSE;
4062 if (LABEL_P (head))
4063 head = NEXT_INSN (head);
4064 while (DEBUG_INSN_P (head) && head != end)
4065 head = NEXT_INSN (head);
4066 if (NOTE_P (head))
4068 if (head == end)
4070 head = end = NULL_RTX;
4071 goto no_body;
4073 head = NEXT_INSN (head);
4074 while (DEBUG_INSN_P (head) && head != end)
4075 head = NEXT_INSN (head);
4078 if (JUMP_P (end))
4080 if (head == end)
4082 head = end = NULL_RTX;
4083 goto no_body;
4085 end = PREV_INSN (end);
4086 while (DEBUG_INSN_P (end) && end != head)
4087 end = PREV_INSN (end);
4090 /* Disable handling dead code by conditional execution if the machine needs
4091 to do anything funny with the tests, etc. */
4092 #ifndef IFCVT_MODIFY_TESTS
4093 if (targetm.have_conditional_execution ())
4095 /* In the conditional execution case, we have things easy. We know
4096 the condition is reversible. We don't have to check life info
4097 because we're going to conditionally execute the code anyway.
4098 All that's left is making sure the insns involved can actually
4099 be predicated. */
4101 rtx cond, prob_val;
4103 cond = cond_exec_get_condition (jump);
4104 if (! cond)
4105 return FALSE;
4107 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4108 if (prob_val)
4109 prob_val = XEXP (prob_val, 0);
4111 if (reversep)
4113 enum rtx_code rev = reversed_comparison_code (cond, jump);
4114 if (rev == UNKNOWN)
4115 return FALSE;
4116 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4117 XEXP (cond, 1));
4118 if (prob_val)
4119 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
4122 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4123 && verify_changes (0))
4124 n_validated_changes = num_validated_changes ();
4125 else
4126 cancel_changes (0);
4128 earliest = jump;
4130 #endif
4132 /* If we allocated new pseudos (e.g. in the conditional move
4133 expander called from noce_emit_cmove), we must resize the
4134 array first. */
4135 if (max_regno < max_reg_num ())
4136 max_regno = max_reg_num ();
4138 /* Try the NCE path if the CE path did not result in any changes. */
4139 if (n_validated_changes == 0)
4141 rtx cond, insn;
4142 regset live;
4143 bool success;
4145 /* In the non-conditional execution case, we have to verify that there
4146 are no trapping operations, no calls, no references to memory, and
4147 that any registers modified are dead at the branch site. */
4149 if (!any_condjump_p (jump))
4150 return FALSE;
4152 /* Find the extent of the conditional. */
4153 cond = noce_get_condition (jump, &earliest, false);
4154 if (!cond)
4155 return FALSE;
4157 live = BITMAP_ALLOC (&reg_obstack);
4158 simulate_backwards_to_point (merge_bb, live, end);
4159 success = can_move_insns_across (head, end, earliest, jump,
4160 merge_bb, live,
4161 df_get_live_in (other_bb), NULL);
4162 BITMAP_FREE (live);
4163 if (!success)
4164 return FALSE;
4166 /* Collect the set of registers set in MERGE_BB. */
4167 merge_set = BITMAP_ALLOC (&reg_obstack);
4169 FOR_BB_INSNS (merge_bb, insn)
4170 if (NONDEBUG_INSN_P (insn))
4171 df_simulate_find_defs (insn, merge_set);
4173 #ifdef HAVE_simple_return
4174 /* If shrink-wrapping, disable this optimization when test_bb is
4175 the first basic block and merge_bb exits. The idea is to not
4176 move code setting up a return register as that may clobber a
4177 register used to pass function parameters, which then must be
4178 saved in caller-saved regs. A caller-saved reg requires the
4179 prologue, killing a shrink-wrap opportunity. */
4180 if ((flag_shrink_wrap && HAVE_simple_return && !epilogue_completed)
4181 && ENTRY_BLOCK_PTR->next_bb == test_bb
4182 && single_succ_p (new_dest)
4183 && single_succ (new_dest) == EXIT_BLOCK_PTR
4184 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
4186 regset return_regs;
4187 unsigned int i;
4189 return_regs = BITMAP_ALLOC (&reg_obstack);
4191 /* Start off with the intersection of regs used to pass
4192 params and regs used to return values. */
4193 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4194 if (FUNCTION_ARG_REGNO_P (i)
4195 && targetm.calls.function_value_regno_p (i))
4196 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
4198 bitmap_and_into (return_regs, df_get_live_out (ENTRY_BLOCK_PTR));
4199 bitmap_and_into (return_regs, df_get_live_in (EXIT_BLOCK_PTR));
4200 if (!bitmap_empty_p (return_regs))
4202 FOR_BB_INSNS_REVERSE (new_dest, insn)
4203 if (NONDEBUG_INSN_P (insn))
4205 df_ref *def_rec;
4206 unsigned int uid = INSN_UID (insn);
4208 /* If this insn sets any reg in return_regs.. */
4209 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
4211 df_ref def = *def_rec;
4212 unsigned r = DF_REF_REGNO (def);
4214 if (bitmap_bit_p (return_regs, r))
4215 break;
4217 /* ..then add all reg uses to the set of regs
4218 we're interested in. */
4219 if (*def_rec)
4220 df_simulate_uses (insn, return_regs);
4222 if (bitmap_intersect_p (merge_set, return_regs))
4224 BITMAP_FREE (return_regs);
4225 BITMAP_FREE (merge_set);
4226 return FALSE;
4229 BITMAP_FREE (return_regs);
4231 #endif
4234 no_body:
4235 /* We don't want to use normal invert_jump or redirect_jump because
4236 we don't want to delete_insn called. Also, we want to do our own
4237 change group management. */
4239 old_dest = JUMP_LABEL (jump);
4240 if (other_bb != new_dest)
4242 if (JUMP_P (BB_END (dest_edge->src)))
4243 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
4244 else if (new_dest == EXIT_BLOCK_PTR)
4245 new_dest_label = ret_rtx;
4246 else
4247 new_dest_label = block_label (new_dest);
4249 if (reversep
4250 ? ! invert_jump_1 (jump, new_dest_label)
4251 : ! redirect_jump_1 (jump, new_dest_label))
4252 goto cancel;
4255 if (verify_changes (n_validated_changes))
4256 confirm_change_group ();
4257 else
4258 goto cancel;
4260 if (other_bb != new_dest)
4262 redirect_jump_2 (jump, old_dest, new_dest_label, 0, reversep);
4264 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4265 if (reversep)
4267 gcov_type count, probability;
4268 count = BRANCH_EDGE (test_bb)->count;
4269 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4270 FALLTHRU_EDGE (test_bb)->count = count;
4271 probability = BRANCH_EDGE (test_bb)->probability;
4272 BRANCH_EDGE (test_bb)->probability
4273 = FALLTHRU_EDGE (test_bb)->probability;
4274 FALLTHRU_EDGE (test_bb)->probability = probability;
4275 update_br_prob_note (test_bb);
4279 /* Move the insns out of MERGE_BB to before the branch. */
4280 if (head != NULL)
4282 rtx insn;
4284 if (end == BB_END (merge_bb))
4285 BB_END (merge_bb) = PREV_INSN (head);
4287 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4288 notes being moved might become invalid. */
4289 insn = head;
4292 rtx note, set;
4294 if (! INSN_P (insn))
4295 continue;
4296 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4297 if (! note)
4298 continue;
4299 set = single_set (insn);
4300 if (!set || !function_invariant_p (SET_SRC (set))
4301 || !function_invariant_p (XEXP (note, 0)))
4302 remove_note (insn, note);
4303 } while (insn != end && (insn = NEXT_INSN (insn)));
4305 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4306 notes referring to the registers being set might become invalid. */
4307 if (merge_set)
4309 unsigned i;
4310 bitmap_iterator bi;
4312 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4313 remove_reg_equal_equiv_notes_for_regno (i);
4315 BITMAP_FREE (merge_set);
4318 reorder_insns (head, end, PREV_INSN (earliest));
4321 /* Remove the jump and edge if we can. */
4322 if (other_bb == new_dest)
4324 delete_insn (jump);
4325 remove_edge (BRANCH_EDGE (test_bb));
4326 /* ??? Can't merge blocks here, as then_bb is still in use.
4327 At minimum, the merge will get done just before bb-reorder. */
4330 return TRUE;
4332 cancel:
4333 cancel_changes (0);
4335 if (merge_set)
4336 BITMAP_FREE (merge_set);
4338 return FALSE;
4341 /* Main entry point for all if-conversion. */
4343 static void
4344 if_convert (void)
4346 basic_block bb;
4347 int pass;
4349 if (optimize == 1)
4351 df_live_add_problem ();
4352 df_live_set_all_dirty ();
4355 num_possible_if_blocks = 0;
4356 num_updated_if_blocks = 0;
4357 num_true_changes = 0;
4359 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4360 mark_loop_exit_edges ();
4361 loop_optimizer_finalize ();
4362 free_dominance_info (CDI_DOMINATORS);
4364 /* Compute postdominators. */
4365 calculate_dominance_info (CDI_POST_DOMINATORS);
4367 df_set_flags (DF_LR_RUN_DCE);
4369 /* Go through each of the basic blocks looking for things to convert. If we
4370 have conditional execution, we make multiple passes to allow us to handle
4371 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4372 pass = 0;
4375 df_analyze ();
4376 /* Only need to do dce on the first pass. */
4377 df_clear_flags (DF_LR_RUN_DCE);
4378 cond_exec_changed_p = FALSE;
4379 pass++;
4381 #ifdef IFCVT_MULTIPLE_DUMPS
4382 if (dump_file && pass > 1)
4383 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4384 #endif
4386 FOR_EACH_BB (bb)
4388 basic_block new_bb;
4389 while (!df_get_bb_dirty (bb)
4390 && (new_bb = find_if_header (bb, pass)) != NULL)
4391 bb = new_bb;
4394 #ifdef IFCVT_MULTIPLE_DUMPS
4395 if (dump_file && cond_exec_changed_p)
4396 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
4397 #endif
4399 while (cond_exec_changed_p);
4401 #ifdef IFCVT_MULTIPLE_DUMPS
4402 if (dump_file)
4403 fprintf (dump_file, "\n\n========== no more changes\n");
4404 #endif
4406 free_dominance_info (CDI_POST_DOMINATORS);
4408 if (dump_file)
4409 fflush (dump_file);
4411 clear_aux_for_blocks ();
4413 /* If we allocated new pseudos, we must resize the array for sched1. */
4414 if (max_regno < max_reg_num ())
4415 max_regno = max_reg_num ();
4417 /* Write the final stats. */
4418 if (dump_file && num_possible_if_blocks > 0)
4420 fprintf (dump_file,
4421 "\n%d possible IF blocks searched.\n",
4422 num_possible_if_blocks);
4423 fprintf (dump_file,
4424 "%d IF blocks converted.\n",
4425 num_updated_if_blocks);
4426 fprintf (dump_file,
4427 "%d true changes made.\n\n\n",
4428 num_true_changes);
4431 if (optimize == 1)
4432 df_remove_problem (df_live);
4434 #ifdef ENABLE_CHECKING
4435 verify_flow_info ();
4436 #endif
4439 static bool
4440 gate_handle_if_conversion (void)
4442 return (optimize > 0)
4443 && dbg_cnt (if_conversion);
4446 /* If-conversion and CFG cleanup. */
4447 static unsigned int
4448 rest_of_handle_if_conversion (void)
4450 if (flag_if_conversion)
4452 if (dump_file)
4454 dump_reg_info (dump_file);
4455 dump_flow_info (dump_file, dump_flags);
4457 cleanup_cfg (CLEANUP_EXPENSIVE);
4458 if_convert ();
4461 cleanup_cfg (0);
4462 return 0;
4465 struct rtl_opt_pass pass_rtl_ifcvt =
4468 RTL_PASS,
4469 "ce1", /* name */
4470 OPTGROUP_NONE, /* optinfo_flags */
4471 gate_handle_if_conversion, /* gate */
4472 rest_of_handle_if_conversion, /* execute */
4473 NULL, /* sub */
4474 NULL, /* next */
4475 0, /* static_pass_number */
4476 TV_IFCVT, /* tv_id */
4477 0, /* properties_required */
4478 0, /* properties_provided */
4479 0, /* properties_destroyed */
4480 0, /* todo_flags_start */
4481 TODO_df_finish | TODO_verify_rtl_sharing |
4482 0 /* todo_flags_finish */
4486 static bool
4487 gate_handle_if_after_combine (void)
4489 return optimize > 0 && flag_if_conversion
4490 && dbg_cnt (if_after_combine);
4494 /* Rerun if-conversion, as combine may have simplified things enough
4495 to now meet sequence length restrictions. */
4496 static unsigned int
4497 rest_of_handle_if_after_combine (void)
4499 if_convert ();
4500 return 0;
4503 struct rtl_opt_pass pass_if_after_combine =
4506 RTL_PASS,
4507 "ce2", /* name */
4508 OPTGROUP_NONE, /* optinfo_flags */
4509 gate_handle_if_after_combine, /* gate */
4510 rest_of_handle_if_after_combine, /* execute */
4511 NULL, /* sub */
4512 NULL, /* next */
4513 0, /* static_pass_number */
4514 TV_IFCVT, /* tv_id */
4515 0, /* properties_required */
4516 0, /* properties_provided */
4517 0, /* properties_destroyed */
4518 0, /* todo_flags_start */
4519 TODO_df_finish | TODO_verify_rtl_sharing /* todo_flags_finish */
4524 static bool
4525 gate_handle_if_after_reload (void)
4527 return optimize > 0 && flag_if_conversion2
4528 && dbg_cnt (if_after_reload);
4531 static unsigned int
4532 rest_of_handle_if_after_reload (void)
4534 if_convert ();
4535 return 0;
4539 struct rtl_opt_pass pass_if_after_reload =
4542 RTL_PASS,
4543 "ce3", /* name */
4544 OPTGROUP_NONE, /* optinfo_flags */
4545 gate_handle_if_after_reload, /* gate */
4546 rest_of_handle_if_after_reload, /* execute */
4547 NULL, /* sub */
4548 NULL, /* next */
4549 0, /* static_pass_number */
4550 TV_IFCVT2, /* tv_id */
4551 0, /* properties_required */
4552 0, /* properties_provided */
4553 0, /* properties_destroyed */
4554 0, /* todo_flags_start */
4555 TODO_df_finish | TODO_verify_rtl_sharing /* todo_flags_finish */