1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Csets
; use Csets
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Elists
; use Elists
;
33 with Namet
; use Namet
;
34 with Nlists
; use Nlists
;
35 with Output
; use Output
;
36 with Sem_Mech
; use Sem_Mech
;
37 with Sinfo
; use Sinfo
;
38 with Snames
; use Snames
;
39 with Sinput
; use Sinput
;
40 with Stand
; use Stand
;
41 with Stringt
; use Stringt
;
42 with SCIL_LL
; use SCIL_LL
;
43 with Treeprs
; use Treeprs
;
44 with Uintp
; use Uintp
;
45 with Urealp
; use Urealp
;
46 with Uname
; use Uname
;
47 with Unchecked_Deallocation
;
49 package body Treepr
is
51 use Atree
.Unchecked_Access
;
52 -- This module uses the unchecked access functions in package Atree
53 -- since it does an untyped traversal of the tree (we do not want to
54 -- count on the structure of the tree being correct in this routine!)
56 ----------------------------------
57 -- Approach Used for Tree Print --
58 ----------------------------------
60 -- When a complete subtree is being printed, a trace phase first marks
61 -- the nodes and lists to be printed. This trace phase allocates logical
62 -- numbers corresponding to the order in which the nodes and lists will
63 -- be printed. The Node_Id, List_Id and Elist_Id values are mapped to
64 -- logical node numbers using a hash table. Output is done using a set
65 -- of Print_xxx routines, which are similar to the Write_xxx routines
66 -- with the same name, except that they do not generate any output in
67 -- the marking phase. This allows identical logic to be used in the
70 -- Note that the hash table not only holds the serial numbers, but also
71 -- acts as a record of which nodes have already been visited. In the
72 -- marking phase, a node has been visited if it is already in the hash
73 -- table, and in the printing phase, we can tell whether a node has
74 -- already been printed by looking at the value of the serial number.
76 ----------------------
77 -- Global Variables --
78 ----------------------
80 type Hash_Record
is record
82 -- Serial number for hash table entry. A value of zero means that
83 -- the entry is currently unused.
86 -- If serial number field is non-zero, contains corresponding Id value
89 type Hash_Table_Type
is array (Nat
range <>) of Hash_Record
;
90 type Access_Hash_Table_Type
is access Hash_Table_Type
;
91 Hash_Table
: Access_Hash_Table_Type
;
92 -- The hash table itself, see Serial_Number function for details of use
95 -- Range of Hash_Table is from 0 .. Hash_Table_Len - 1 so that dividing
96 -- by Hash_Table_Len gives a remainder that is in Hash_Table'Range.
98 Next_Serial_Number
: Nat
;
99 -- Number of last visited node or list. Used during the marking phase to
100 -- set proper node numbers in the hash table, and during the printing
101 -- phase to make sure that a given node is not printed more than once.
102 -- (nodes are printed in order during the printing phase, that's the
103 -- point of numbering them in the first place!)
105 Printing_Descendants
: Boolean;
106 -- True if descendants are being printed, False if not. In the false case,
107 -- only node Id's are printed. In the true case, node numbers as well as
108 -- node Id's are printed, as described above.
110 type Phase_Type
is (Marking
, Printing
);
111 -- Type for Phase variable
114 -- When an entire tree is being printed, the traversal operates in two
115 -- phases. The first phase marks the nodes in use by installing node
116 -- numbers in the node number table. The second phase prints the nodes.
117 -- This variable indicates the current phase.
119 ----------------------
120 -- Local Procedures --
121 ----------------------
123 procedure Print_End_Span
(N
: Node_Id
);
124 -- Special routine to print contents of End_Span field of node N.
125 -- The format includes the implicit source location as well as the
126 -- value of the field.
128 procedure Print_Init
;
129 -- Initialize for printing of tree with descendents
131 procedure Print_Term
;
132 -- Clean up after printing of tree with descendents
134 procedure Print_Char
(C
: Character);
135 -- Print character C if currently in print phase, noop if in marking phase
137 procedure Print_Name
(N
: Name_Id
);
138 -- Print name from names table if currently in print phase, noop if in
139 -- marking phase. Note that the name is output in mixed case mode.
141 procedure Print_Node_Header
(N
: Node_Id
);
142 -- Print header line used by Print_Node and Print_Node_Briefly
144 procedure Print_Node_Kind
(N
: Node_Id
);
145 -- Print node kind name in mixed case if in print phase, noop if in
148 procedure Print_Str
(S
: String);
149 -- Print string S if currently in print phase, noop if in marking phase
151 procedure Print_Str_Mixed_Case
(S
: String);
152 -- Like Print_Str, except that the string is printed in mixed case mode
154 procedure Print_Int
(I
: Int
);
155 -- Print integer I if currently in print phase, noop if in marking phase
158 -- Print end of line if currently in print phase, noop if in marking phase
160 procedure Print_Node_Ref
(N
: Node_Id
);
161 -- Print "<empty>", "<error>" or "Node #nnn" with additional information
162 -- in the latter case, including the Id and the Nkind of the node.
164 procedure Print_List_Ref
(L
: List_Id
);
165 -- Print "<no list>", or "<empty node list>" or "Node list #nnn"
167 procedure Print_Elist_Ref
(E
: Elist_Id
);
168 -- Print "<no elist>", or "<empty element list>" or "Element list #nnn"
170 procedure Print_Entity_Info
(Ent
: Entity_Id
; Prefix
: String);
171 -- Called if the node being printed is an entity. Prints fields from the
172 -- extension, using routines in Einfo to get the field names and flags.
174 procedure Print_Field
(Val
: Union_Id
; Format
: UI_Format
:= Auto
);
175 -- Print representation of Field value (name, tree, string, uint, charcode)
176 -- The format parameter controls the format of printing in the case of an
177 -- integer value (see UI_Write for details).
179 procedure Print_Flag
(F
: Boolean);
180 -- Print True or False
185 Prefix_Char
: Character);
186 -- This is the internal routine used to print a single node. Each line of
187 -- output is preceded by Prefix_Str (which is used to set the indentation
188 -- level and the bars used to link list elements). In addition, for lines
189 -- other than the first, an additional character Prefix_Char is output.
191 function Serial_Number
(Id
: Int
) return Nat
;
192 -- Given a Node_Id, List_Id or Elist_Id, returns the previously assigned
193 -- serial number, or zero if no serial number has yet been assigned.
195 procedure Set_Serial_Number
;
196 -- Can be called only immediately following a call to Serial_Number that
197 -- returned a value of zero. Causes the value of Next_Serial_Number to be
198 -- placed in the hash table (corresponding to the Id argument used in the
199 -- Serial_Number call), and increments Next_Serial_Number.
204 Prefix_Char
: Character);
205 -- Called to process a single node in the case where descendents are to
206 -- be printed before every line, and Prefix_Char added to all lines
207 -- except the header line for the node.
209 procedure Visit_List
(L
: List_Id
; Prefix_Str
: String);
210 -- Visit_List is called to process a list in the case where descendents
211 -- are to be printed. Prefix_Str is to be added to all printed lines.
213 procedure Visit_Elist
(E
: Elist_Id
; Prefix_Str
: String);
214 -- Visit_Elist is called to process an element list in the case where
215 -- descendents are to be printed. Prefix_Str is to be added to all
222 function p
(N
: Union_Id
) return Node_Or_Entity_Id
is
225 when List_Low_Bound
.. List_High_Bound
- 1 =>
226 return Nlists
.Parent
(List_Id
(N
));
229 return Atree
.Parent
(Node_Or_Entity_Id
(N
));
233 Write_Str
(" is not a Node_Id or List_Id value");
243 procedure pe
(E
: Elist_Id
) is
245 Print_Tree_Elist
(E
);
252 procedure pl
(L
: Int
) is
259 -- This is the case where we transform e.g. +36 to -99999936
263 Lid
:= -(99999990 + L
);
265 Lid
:= -(99999900 + L
);
267 Lid
:= -(99999000 + L
);
269 Lid
:= -(99990000 + L
);
270 elsif L
<= 99999 then
271 Lid
:= -(99900000 + L
);
272 elsif L
<= 999999 then
273 Lid
:= -(99000000 + L
);
274 elsif L
<= 9999999 then
275 Lid
:= -(90000000 + L
);
281 -- Now output the list
283 Print_Tree_List
(List_Id
(Lid
));
290 procedure pn
(N
: Union_Id
) is
293 when List_Low_Bound
.. List_High_Bound
- 1 =>
296 Print_Tree_Node
(Node_Id
(N
));
298 Print_Tree_Elist
(Elist_Id
(N
));
301 Id
: constant Elmt_Id
:= Elmt_Id
(N
);
304 Write_Str
("No_Elmt");
307 Write_Str
("Elmt_Id --> ");
308 Print_Tree_Node
(Node
(Id
));
312 Namet
.wn
(Name_Id
(N
));
313 when Strings_Range
=>
314 Write_String_Table_Entry
(String_Id
(N
));
316 Uintp
.pid
(From_Union
(N
));
318 Urealp
.pr
(From_Union
(N
));
320 Write_Str
("Invalid Union_Id: ");
330 procedure pp
(N
: Union_Id
) is
339 procedure Print_Char
(C
: Character) is
341 if Phase
= Printing
then
346 ---------------------
347 -- Print_Elist_Ref --
348 ---------------------
350 procedure Print_Elist_Ref
(E
: Elist_Id
) is
352 if Phase
/= Printing
then
357 Write_Str
("<no elist>");
359 elsif Is_Empty_Elmt_List
(E
) then
360 Write_Str
("Empty elist, (Elist_Id=");
365 Write_Str
("(Elist_Id=");
369 if Printing_Descendants
then
371 Write_Int
(Serial_Number
(Int
(E
)));
376 -------------------------
377 -- Print_Elist_Subtree --
378 -------------------------
380 procedure Print_Elist_Subtree
(E
: Elist_Id
) is
384 Next_Serial_Number
:= 1;
388 Next_Serial_Number
:= 1;
393 end Print_Elist_Subtree
;
399 procedure Print_End_Span
(N
: Node_Id
) is
400 Val
: constant Uint
:= End_Span
(N
);
404 Write_Str
(" (Uint = ");
405 Write_Int
(Int
(Field5
(N
)));
408 if Val
/= No_Uint
then
409 Write_Location
(End_Location
(N
));
413 -----------------------
414 -- Print_Entity_Info --
415 -----------------------
417 procedure Print_Entity_Info
(Ent
: Entity_Id
; Prefix
: String) is
418 function Field_Present
(U
: Union_Id
) return Boolean;
419 -- Returns False unless the value U represents a missing value
420 -- (Empty, No_Uint, No_Ureal or No_String)
422 function Field_Present
(U
: Union_Id
) return Boolean is
425 U
/= Union_Id
(Empty
) and then
426 U
/= To_Union
(No_Uint
) and then
427 U
/= To_Union
(No_Ureal
) and then
428 U
/= Union_Id
(No_String
);
431 -- Start of processing for Print_Entity_Info
435 Print_Str
("Ekind = ");
436 Print_Str_Mixed_Case
(Entity_Kind
'Image (Ekind
(Ent
)));
440 Print_Str
("Etype = ");
441 Print_Node_Ref
(Etype
(Ent
));
444 if Convention
(Ent
) /= Convention_Ada
then
446 Print_Str
("Convention = ");
448 -- Print convention name skipping the Convention_ at the start
451 S
: constant String := Convention_Id
'Image (Convention
(Ent
));
454 Print_Str_Mixed_Case
(S
(12 .. S
'Last));
459 if Field_Present
(Field6
(Ent
)) then
461 Write_Field6_Name
(Ent
);
463 Print_Field
(Field6
(Ent
));
467 if Field_Present
(Field7
(Ent
)) then
469 Write_Field7_Name
(Ent
);
471 Print_Field
(Field7
(Ent
));
475 if Field_Present
(Field8
(Ent
)) then
477 Write_Field8_Name
(Ent
);
479 Print_Field
(Field8
(Ent
));
483 if Field_Present
(Field9
(Ent
)) then
485 Write_Field9_Name
(Ent
);
487 Print_Field
(Field9
(Ent
));
491 if Field_Present
(Field10
(Ent
)) then
493 Write_Field10_Name
(Ent
);
495 Print_Field
(Field10
(Ent
));
499 if Field_Present
(Field11
(Ent
)) then
501 Write_Field11_Name
(Ent
);
503 Print_Field
(Field11
(Ent
));
507 if Field_Present
(Field12
(Ent
)) then
509 Write_Field12_Name
(Ent
);
511 Print_Field
(Field12
(Ent
));
515 if Field_Present
(Field13
(Ent
)) then
517 Write_Field13_Name
(Ent
);
519 Print_Field
(Field13
(Ent
));
523 if Field_Present
(Field14
(Ent
)) then
525 Write_Field14_Name
(Ent
);
527 Print_Field
(Field14
(Ent
));
531 if Field_Present
(Field15
(Ent
)) then
533 Write_Field15_Name
(Ent
);
535 Print_Field
(Field15
(Ent
));
539 if Field_Present
(Field16
(Ent
)) then
541 Write_Field16_Name
(Ent
);
543 Print_Field
(Field16
(Ent
));
547 if Field_Present
(Field17
(Ent
)) then
549 Write_Field17_Name
(Ent
);
551 Print_Field
(Field17
(Ent
));
555 if Field_Present
(Field18
(Ent
)) then
557 Write_Field18_Name
(Ent
);
559 Print_Field
(Field18
(Ent
));
563 if Field_Present
(Field19
(Ent
)) then
565 Write_Field19_Name
(Ent
);
567 Print_Field
(Field19
(Ent
));
571 if Field_Present
(Field20
(Ent
)) then
573 Write_Field20_Name
(Ent
);
575 Print_Field
(Field20
(Ent
));
579 if Field_Present
(Field21
(Ent
)) then
581 Write_Field21_Name
(Ent
);
583 Print_Field
(Field21
(Ent
));
587 if Field_Present
(Field22
(Ent
)) then
589 Write_Field22_Name
(Ent
);
592 -- Mechanism case has to be handled specially
594 if Ekind
(Ent
) = E_Function
or else Is_Formal
(Ent
) then
596 M
: constant Mechanism_Type
:= Mechanism
(Ent
);
600 when Default_Mechanism
601 => Write_Str
("Default");
603 => Write_Str
("By_Copy");
605 => Write_Str
("By_Reference");
607 => Write_Str
("By_Descriptor");
608 when By_Descriptor_UBS
609 => Write_Str
("By_Descriptor_UBS");
610 when By_Descriptor_UBSB
611 => Write_Str
("By_Descriptor_UBSB");
612 when By_Descriptor_UBA
613 => Write_Str
("By_Descriptor_UBA");
615 => Write_Str
("By_Descriptor_S");
616 when By_Descriptor_SB
617 => Write_Str
("By_Descriptor_SB");
619 => Write_Str
("By_Descriptor_A");
620 when By_Descriptor_NCA
621 => Write_Str
("By_Descriptor_NCA");
622 when By_Short_Descriptor
623 => Write_Str
("By_Short_Descriptor");
624 when By_Short_Descriptor_UBS
625 => Write_Str
("By_Short_Descriptor_UBS");
626 when By_Short_Descriptor_UBSB
627 => Write_Str
("By_Short_Descriptor_UBSB");
628 when By_Short_Descriptor_UBA
629 => Write_Str
("By_Short_Descriptor_UBA");
630 when By_Short_Descriptor_S
631 => Write_Str
("By_Short_Descriptor_S");
632 when By_Short_Descriptor_SB
633 => Write_Str
("By_Short_Descriptor_SB");
634 when By_Short_Descriptor_A
635 => Write_Str
("By_Short_Descriptor_A");
636 when By_Short_Descriptor_NCA
637 => Write_Str
("By_Short_Descriptor_NCA");
639 when 1 .. Mechanism_Type
'Last =>
640 Write_Str
("By_Copy if size <= ");
646 -- Normal case (not Mechanism)
649 Print_Field
(Field22
(Ent
));
655 if Field_Present
(Field23
(Ent
)) then
657 Write_Field23_Name
(Ent
);
659 Print_Field
(Field23
(Ent
));
663 if Field_Present
(Field24
(Ent
)) then
665 Write_Field24_Name
(Ent
);
667 Print_Field
(Field24
(Ent
));
671 if Field_Present
(Field25
(Ent
)) then
673 Write_Field25_Name
(Ent
);
675 Print_Field
(Field25
(Ent
));
679 if Field_Present
(Field26
(Ent
)) then
681 Write_Field26_Name
(Ent
);
683 Print_Field
(Field26
(Ent
));
687 if Field_Present
(Field27
(Ent
)) then
689 Write_Field27_Name
(Ent
);
691 Print_Field
(Field27
(Ent
));
695 if Field_Present
(Field28
(Ent
)) then
697 Write_Field28_Name
(Ent
);
699 Print_Field
(Field28
(Ent
));
703 if Field_Present
(Field29
(Ent
)) then
705 Write_Field29_Name
(Ent
);
707 Print_Field
(Field29
(Ent
));
711 if Field_Present
(Field30
(Ent
)) then
713 Write_Field30_Name
(Ent
);
715 Print_Field
(Field30
(Ent
));
719 if Field_Present
(Field31
(Ent
)) then
721 Write_Field31_Name
(Ent
);
723 Print_Field
(Field31
(Ent
));
727 if Field_Present
(Field32
(Ent
)) then
729 Write_Field32_Name
(Ent
);
731 Print_Field
(Field32
(Ent
));
735 if Field_Present
(Field33
(Ent
)) then
737 Write_Field33_Name
(Ent
);
739 Print_Field
(Field33
(Ent
));
743 if Field_Present
(Field34
(Ent
)) then
745 Write_Field34_Name
(Ent
);
747 Print_Field
(Field34
(Ent
));
751 if Field_Present
(Field35
(Ent
)) then
753 Write_Field35_Name
(Ent
);
755 Print_Field
(Field35
(Ent
));
759 Write_Entity_Flags
(Ent
, Prefix
);
760 end Print_Entity_Info
;
766 procedure Print_Eol
is
768 if Phase
= Printing
then
777 procedure Print_Field
(Val
: Union_Id
; Format
: UI_Format
:= Auto
) is
779 if Phase
/= Printing
then
783 if Val
in Node_Range
then
784 Print_Node_Ref
(Node_Id
(Val
));
786 elsif Val
in List_Range
then
787 Print_List_Ref
(List_Id
(Val
));
789 elsif Val
in Elist_Range
then
790 Print_Elist_Ref
(Elist_Id
(Val
));
792 elsif Val
in Names_Range
then
793 Print_Name
(Name_Id
(Val
));
794 Write_Str
(" (Name_Id=");
795 Write_Int
(Int
(Val
));
798 elsif Val
in Strings_Range
then
799 Write_String_Table_Entry
(String_Id
(Val
));
800 Write_Str
(" (String_Id=");
801 Write_Int
(Int
(Val
));
804 elsif Val
in Uint_Range
then
805 UI_Write
(From_Union
(Val
), Format
);
806 Write_Str
(" (Uint = ");
807 Write_Int
(Int
(Val
));
810 elsif Val
in Ureal_Range
then
811 UR_Write
(From_Union
(Val
));
812 Write_Str
(" (Ureal = ");
813 Write_Int
(Int
(Val
));
817 Print_Str
("****** Incorrect value = ");
818 Print_Int
(Int
(Val
));
826 procedure Print_Flag
(F
: Boolean) is
839 procedure Print_Init
is
841 Printing_Descendants
:= True;
844 -- Allocate and clear serial number hash table. The size is 150% of
845 -- the maximum possible number of entries, so that the hash table
846 -- cannot get significantly overloaded.
848 Hash_Table_Len
:= (150 * (Num_Nodes
+ Num_Lists
+ Num_Elists
)) / 100;
849 Hash_Table
:= new Hash_Table_Type
(0 .. Hash_Table_Len
- 1);
851 for J
in Hash_Table
'Range loop
852 Hash_Table
(J
).Serial
:= 0;
861 procedure Print_Int
(I
: Int
) is
863 if Phase
= Printing
then
872 procedure Print_List_Ref
(L
: List_Id
) is
874 if Phase
/= Printing
then
879 Write_Str
("<no list>");
881 elsif Is_Empty_List
(L
) then
882 Write_Str
("<empty list> (List_Id=");
889 if Printing_Descendants
then
891 Write_Int
(Serial_Number
(Int
(L
)));
894 Write_Str
(" (List_Id=");
900 ------------------------
901 -- Print_List_Subtree --
902 ------------------------
904 procedure Print_List_Subtree
(L
: List_Id
) is
908 Next_Serial_Number
:= 1;
912 Next_Serial_Number
:= 1;
917 end Print_List_Subtree
;
923 procedure Print_Name
(N
: Name_Id
) is
925 if Phase
= Printing
then
927 Print_Str
("<No_Name>");
929 elsif N
= Error_Name
then
930 Print_Str
("<Error_Name>");
932 elsif Is_Valid_Name
(N
) then
939 Print_Str
("<invalid name ???>");
951 Prefix_Char
: Character)
954 P
: Natural := Pchar_Pos
(Nkind
(N
));
956 Field_To_Be_Printed
: Boolean;
957 Prefix_Str_Char
: String (Prefix_Str
'First .. Prefix_Str
'Last + 1);
959 Sfile
: Source_File_Index
;
963 if Phase
/= Printing
then
967 if Nkind
(N
) = N_Integer_Literal
and then Print_In_Hex
(N
) then
973 Prefix_Str_Char
(Prefix_Str
'Range) := Prefix_Str
;
974 Prefix_Str_Char
(Prefix_Str
'Last + 1) := Prefix_Char
;
978 Print_Str
(Prefix_Str
);
979 Print_Node_Header
(N
);
981 if Is_Rewrite_Substitution
(N
) then
982 Print_Str
(Prefix_Str
);
983 Print_Str
(" Rewritten: original node = ");
984 Print_Node_Ref
(Original_Node
(N
));
992 if not Is_List_Member
(N
) then
993 Print_Str
(Prefix_Str
);
994 Print_Str
(" Parent = ");
995 Print_Node_Ref
(Parent
(N
));
999 -- Print Sloc field if it is set
1001 if Sloc
(N
) /= No_Location
then
1002 Print_Str
(Prefix_Str_Char
);
1003 Print_Str
("Sloc = ");
1005 if Sloc
(N
) = Standard_Location
then
1006 Print_Str
("Standard_Location");
1008 elsif Sloc
(N
) = Standard_ASCII_Location
then
1009 Print_Str
("Standard_ASCII_Location");
1012 Sfile
:= Get_Source_File_Index
(Sloc
(N
));
1013 Print_Int
(Int
(Sloc
(N
)) - Int
(Source_Text
(Sfile
)'First));
1015 Write_Location
(Sloc
(N
));
1021 -- Print Chars field if present
1023 if Nkind
(N
) in N_Has_Chars
and then Chars
(N
) /= No_Name
then
1024 Print_Str
(Prefix_Str_Char
);
1025 Print_Str
("Chars = ");
1026 Print_Name
(Chars
(N
));
1027 Write_Str
(" (Name_Id=");
1028 Write_Int
(Int
(Chars
(N
)));
1033 -- Special field print operations for non-entity nodes
1035 if Nkind
(N
) not in N_Entity
then
1037 -- Deal with Left_Opnd and Right_Opnd fields
1039 if Nkind
(N
) in N_Op
1040 or else Nkind
(N
) in N_Short_Circuit
1041 or else Nkind
(N
) in N_Membership_Test
1043 -- Print Left_Opnd if present
1045 if Nkind
(N
) not in N_Unary_Op
then
1046 Print_Str
(Prefix_Str_Char
);
1047 Print_Str
("Left_Opnd = ");
1048 Print_Node_Ref
(Left_Opnd
(N
));
1054 Print_Str
(Prefix_Str_Char
);
1055 Print_Str
("Right_Opnd = ");
1056 Print_Node_Ref
(Right_Opnd
(N
));
1060 -- Print Entity field if operator (other cases of Entity
1061 -- are in the table, so are handled in the normal circuit)
1063 if Nkind
(N
) in N_Op
and then Present
(Entity
(N
)) then
1064 Print_Str
(Prefix_Str_Char
);
1065 Print_Str
("Entity = ");
1066 Print_Node_Ref
(Entity
(N
));
1070 -- Print special fields if we have a subexpression
1072 if Nkind
(N
) in N_Subexpr
then
1074 if Assignment_OK
(N
) then
1075 Print_Str
(Prefix_Str_Char
);
1076 Print_Str
("Assignment_OK = True");
1080 if Do_Range_Check
(N
) then
1081 Print_Str
(Prefix_Str_Char
);
1082 Print_Str
("Do_Range_Check = True");
1086 if Has_Dynamic_Length_Check
(N
) then
1087 Print_Str
(Prefix_Str_Char
);
1088 Print_Str
("Has_Dynamic_Length_Check = True");
1092 if Has_Aspects
(N
) then
1093 Print_Str
(Prefix_Str_Char
);
1094 Print_Str
("Has_Aspects = True");
1098 if Has_Dynamic_Range_Check
(N
) then
1099 Print_Str
(Prefix_Str_Char
);
1100 Print_Str
("Has_Dynamic_Range_Check = True");
1104 if Is_Controlling_Actual
(N
) then
1105 Print_Str
(Prefix_Str_Char
);
1106 Print_Str
("Is_Controlling_Actual = True");
1110 if Is_Overloaded
(N
) then
1111 Print_Str
(Prefix_Str_Char
);
1112 Print_Str
("Is_Overloaded = True");
1116 if Is_Static_Expression
(N
) then
1117 Print_Str
(Prefix_Str_Char
);
1118 Print_Str
("Is_Static_Expression = True");
1122 if Must_Not_Freeze
(N
) then
1123 Print_Str
(Prefix_Str_Char
);
1124 Print_Str
("Must_Not_Freeze = True");
1128 if Paren_Count
(N
) /= 0 then
1129 Print_Str
(Prefix_Str_Char
);
1130 Print_Str
("Paren_Count = ");
1131 Print_Int
(Int
(Paren_Count
(N
)));
1135 if Raises_Constraint_Error
(N
) then
1136 Print_Str
(Prefix_Str_Char
);
1137 Print_Str
("Raise_Constraint_Error = True");
1143 -- Print Do_Overflow_Check field if present
1145 if Nkind
(N
) in N_Op
and then Do_Overflow_Check
(N
) then
1146 Print_Str
(Prefix_Str_Char
);
1147 Print_Str
("Do_Overflow_Check = True");
1151 -- Print Etype field if present (printing of this field for entities
1152 -- is handled by the Print_Entity_Info procedure).
1154 if Nkind
(N
) in N_Has_Etype
and then Present
(Etype
(N
)) then
1155 Print_Str
(Prefix_Str_Char
);
1156 Print_Str
("Etype = ");
1157 Print_Node_Ref
(Etype
(N
));
1162 -- Loop to print fields included in Pchars array
1164 while P
< Pchar_Pos
(Node_Kind
'Succ (Nkind
(N
))) loop
1168 -- Check for case of False flag, which we never print, or
1169 -- an Empty field, which is also never printed
1173 Field_To_Be_Printed
:= Field1
(N
) /= Union_Id
(Empty
);
1176 Field_To_Be_Printed
:= Field2
(N
) /= Union_Id
(Empty
);
1179 Field_To_Be_Printed
:= Field3
(N
) /= Union_Id
(Empty
);
1182 Field_To_Be_Printed
:= Field4
(N
) /= Union_Id
(Empty
);
1185 Field_To_Be_Printed
:= Field5
(N
) /= Union_Id
(Empty
);
1187 -- Flag3 is obsolete, so this probably gets removed ???
1189 when F_Flag3
=> Field_To_Be_Printed
:= Has_Aspects
(N
);
1191 when F_Flag4
=> Field_To_Be_Printed
:= Flag4
(N
);
1192 when F_Flag5
=> Field_To_Be_Printed
:= Flag5
(N
);
1193 when F_Flag6
=> Field_To_Be_Printed
:= Flag6
(N
);
1194 when F_Flag7
=> Field_To_Be_Printed
:= Flag7
(N
);
1195 when F_Flag8
=> Field_To_Be_Printed
:= Flag8
(N
);
1196 when F_Flag9
=> Field_To_Be_Printed
:= Flag9
(N
);
1197 when F_Flag10
=> Field_To_Be_Printed
:= Flag10
(N
);
1198 when F_Flag11
=> Field_To_Be_Printed
:= Flag11
(N
);
1199 when F_Flag12
=> Field_To_Be_Printed
:= Flag12
(N
);
1200 when F_Flag13
=> Field_To_Be_Printed
:= Flag13
(N
);
1201 when F_Flag14
=> Field_To_Be_Printed
:= Flag14
(N
);
1202 when F_Flag15
=> Field_To_Be_Printed
:= Flag15
(N
);
1203 when F_Flag16
=> Field_To_Be_Printed
:= Flag16
(N
);
1204 when F_Flag17
=> Field_To_Be_Printed
:= Flag17
(N
);
1205 when F_Flag18
=> Field_To_Be_Printed
:= Flag18
(N
);
1207 -- Flag1,2 are no longer used
1209 when F_Flag1
=> raise Program_Error
;
1210 when F_Flag2
=> raise Program_Error
;
1213 -- Print field if it is to be printed
1215 if Field_To_Be_Printed
then
1216 Print_Str
(Prefix_Str_Char
);
1218 while P
< Pchar_Pos
(Node_Kind
'Succ (Nkind
(N
)))
1219 and then Pchars
(P
) not in Fchar
1221 Print_Char
(Pchars
(P
));
1228 when F_Field1
=> Print_Field
(Field1
(N
), Fmt
);
1229 when F_Field2
=> Print_Field
(Field2
(N
), Fmt
);
1230 when F_Field3
=> Print_Field
(Field3
(N
), Fmt
);
1231 when F_Field4
=> Print_Field
(Field4
(N
), Fmt
);
1233 -- Special case End_Span = Uint5
1236 if Nkind
(N
) = N_Case_Statement
1237 or else Nkind
(N
) = N_If_Statement
1241 Print_Field
(Field5
(N
), Fmt
);
1244 when F_Flag4
=> Print_Flag
(Flag4
(N
));
1245 when F_Flag5
=> Print_Flag
(Flag5
(N
));
1246 when F_Flag6
=> Print_Flag
(Flag6
(N
));
1247 when F_Flag7
=> Print_Flag
(Flag7
(N
));
1248 when F_Flag8
=> Print_Flag
(Flag8
(N
));
1249 when F_Flag9
=> Print_Flag
(Flag9
(N
));
1250 when F_Flag10
=> Print_Flag
(Flag10
(N
));
1251 when F_Flag11
=> Print_Flag
(Flag11
(N
));
1252 when F_Flag12
=> Print_Flag
(Flag12
(N
));
1253 when F_Flag13
=> Print_Flag
(Flag13
(N
));
1254 when F_Flag14
=> Print_Flag
(Flag14
(N
));
1255 when F_Flag15
=> Print_Flag
(Flag15
(N
));
1256 when F_Flag16
=> Print_Flag
(Flag16
(N
));
1257 when F_Flag17
=> Print_Flag
(Flag17
(N
));
1258 when F_Flag18
=> Print_Flag
(Flag18
(N
));
1260 -- Flag1,2 are no longer used
1262 when F_Flag1
=> raise Program_Error
;
1263 when F_Flag2
=> raise Program_Error
;
1265 -- Not clear why we need the following ???
1267 when F_Flag3
=> Print_Flag
(Has_Aspects
(N
));
1272 -- Field is not to be printed (False flag field)
1275 while P
< Pchar_Pos
(Node_Kind
'Succ (Nkind
(N
)))
1276 and then Pchars
(P
) not in Fchar
1283 -- Print aspects if present
1285 if Has_Aspects
(N
) then
1286 Print_Str
(Prefix_Str_Char
);
1287 Print_Str
("Aspect_Specifications = ");
1288 Print_Field
(Union_Id
(Aspect_Specifications
(N
)));
1292 -- Print entity information for entities
1294 if Nkind
(N
) in N_Entity
then
1295 Print_Entity_Info
(N
, Prefix_Str_Char
);
1298 -- Print the SCIL node (if available)
1300 if Present
(Get_SCIL_Node
(N
)) then
1301 Print_Str
(Prefix_Str_Char
);
1302 Print_Str
("SCIL_Node = ");
1303 Print_Node_Ref
(Get_SCIL_Node
(N
));
1308 ------------------------
1309 -- Print_Node_Briefly --
1310 ------------------------
1312 procedure Print_Node_Briefly
(N
: Node_Id
) is
1314 Printing_Descendants
:= False;
1316 Print_Node_Header
(N
);
1317 end Print_Node_Briefly
;
1319 -----------------------
1320 -- Print_Node_Header --
1321 -----------------------
1323 procedure Print_Node_Header
(N
: Node_Id
) is
1324 Notes
: Boolean := False;
1329 if N
> Atree_Private_Part
.Nodes
.Last
then
1330 Print_Str
(" (no such node)");
1335 if Comes_From_Source
(N
) then
1337 Print_Str
(" (source");
1340 if Analyzed
(N
) then
1348 Print_Str
("analyzed");
1351 if Error_Posted
(N
) then
1359 Print_Str
("posted");
1367 end Print_Node_Header
;
1369 ---------------------
1370 -- Print_Node_Kind --
1371 ---------------------
1373 procedure Print_Node_Kind
(N
: Node_Id
) is
1375 S
: constant String := Node_Kind
'Image (Nkind
(N
));
1378 if Phase
= Printing
then
1381 -- Note: the call to Fold_Upper in this loop is to get past the GNAT
1382 -- bug of 'Image returning lower case instead of upper case.
1384 for J
in S
'Range loop
1386 Write_Char
(Fold_Upper
(S
(J
)));
1388 Write_Char
(Fold_Lower
(S
(J
)));
1391 Ucase
:= (S
(J
) = '_');
1394 end Print_Node_Kind
;
1396 --------------------
1397 -- Print_Node_Ref --
1398 --------------------
1400 procedure Print_Node_Ref
(N
: Node_Id
) is
1404 if Phase
/= Printing
then
1409 Write_Str
("<empty>");
1411 elsif N
= Error
then
1412 Write_Str
("<error>");
1415 if Printing_Descendants
then
1416 S
:= Serial_Number
(Int
(N
));
1426 Print_Node_Kind
(N
);
1428 if Nkind
(N
) in N_Has_Chars
then
1430 Print_Name
(Chars
(N
));
1433 if Nkind
(N
) in N_Entity
then
1434 Write_Str
(" (Entity_Id=");
1436 Write_Str
(" (Node_Id=");
1439 Write_Int
(Int
(N
));
1441 if Sloc
(N
) <= Standard_Location
then
1450 ------------------------
1451 -- Print_Node_Subtree --
1452 ------------------------
1454 procedure Print_Node_Subtree
(N
: Node_Id
) is
1458 Next_Serial_Number
:= 1;
1460 Visit_Node
(N
, "", ' ');
1462 Next_Serial_Number
:= 1;
1464 Visit_Node
(N
, "", ' ');
1467 end Print_Node_Subtree
;
1473 procedure Print_Str
(S
: String) is
1475 if Phase
= Printing
then
1480 --------------------------
1481 -- Print_Str_Mixed_Case --
1482 --------------------------
1484 procedure Print_Str_Mixed_Case
(S
: String) is
1488 if Phase
= Printing
then
1491 for J
in S
'Range loop
1495 Write_Char
(Fold_Lower
(S
(J
)));
1498 Ucase
:= (S
(J
) = '_');
1501 end Print_Str_Mixed_Case
;
1507 procedure Print_Term
is
1508 procedure Free
is new Unchecked_Deallocation
1509 (Hash_Table_Type
, Access_Hash_Table_Type
);
1515 ---------------------
1516 -- Print_Tree_Elist --
1517 ---------------------
1519 procedure Print_Tree_Elist
(E
: Elist_Id
) is
1523 Printing_Descendants
:= False;
1526 Print_Elist_Ref
(E
);
1529 M
:= First_Elmt
(E
);
1532 Print_Str
("<empty element list>");
1539 exit when No
(Next_Elmt
(M
));
1540 Print_Node
(Node
(M
), "", '|');
1544 Print_Node
(Node
(M
), "", ' ');
1547 end Print_Tree_Elist
;
1549 ---------------------
1550 -- Print_Tree_List --
1551 ---------------------
1553 procedure Print_Tree_List
(L
: List_Id
) is
1557 Printing_Descendants
:= False;
1561 Print_Str
(" List_Id=");
1562 Print_Int
(Int
(L
));
1568 Print_Str
("<empty node list>");
1575 exit when Next
(N
) = Empty
;
1576 Print_Node
(N
, "", '|');
1580 Print_Node
(N
, "", ' ');
1583 end Print_Tree_List
;
1585 ---------------------
1586 -- Print_Tree_Node --
1587 ---------------------
1589 procedure Print_Tree_Node
(N
: Node_Id
; Label
: String := "") is
1591 Printing_Descendants
:= False;
1593 Print_Node
(N
, Label
, ' ');
1594 end Print_Tree_Node
;
1600 procedure pt
(N
: Node_Id
) is
1602 Print_Node_Subtree
(N
);
1609 procedure ppp
(N
: Node_Id
) is
1618 -- The hashing algorithm is to use the remainder of the ID value divided
1619 -- by the hash table length as the starting point in the table, and then
1620 -- handle collisions by serial searching wrapping at the end of the table.
1623 -- Set by an unsuccessful call to Serial_Number (one which returns zero)
1624 -- to save the slot that should be used if Set_Serial_Number is called.
1626 function Serial_Number
(Id
: Int
) return Nat
is
1627 H
: Int
:= Id
mod Hash_Table_Len
;
1630 while Hash_Table
(H
).Serial
/= 0 loop
1632 if Id
= Hash_Table
(H
).Id
then
1633 return Hash_Table
(H
).Serial
;
1638 if H
> Hash_Table
'Last then
1643 -- Entry was not found, save slot number for possible subsequent call
1644 -- to Set_Serial_Number, and unconditionally save the Id in this slot
1645 -- in case of such a call (the Id field is never read if the serial
1646 -- number of the slot is zero, so this is harmless in the case where
1647 -- Set_Serial_Number is not subsequently called).
1650 Hash_Table
(H
).Id
:= Id
;
1655 -----------------------
1656 -- Set_Serial_Number --
1657 -----------------------
1659 procedure Set_Serial_Number
is
1661 Hash_Table
(Hash_Slot
).Serial
:= Next_Serial_Number
;
1662 Next_Serial_Number
:= Next_Serial_Number
+ 1;
1663 end Set_Serial_Number
;
1669 procedure Tree_Dump
is
1670 procedure Underline
;
1671 -- Put underline under string we just printed
1673 procedure Underline
is
1674 Col
: constant Int
:= Column
;
1679 while Col
> Column
loop
1686 -- Start of processing for Tree_Dump. Note that we turn off the tree dump
1687 -- flags immediately, before starting the dump. This avoids generating two
1688 -- copies of the dump if an abort occurs after printing the dump, and more
1689 -- importantly, avoids an infinite loop if an abort occurs during the dump.
1691 -- Note: unlike in the source print case (in Sprint), we do not output
1692 -- separate trees for each unit. Instead the -df debug switch causes the
1693 -- tree that is output from the main unit to trace references into other
1694 -- units (normally such references are not traced). Since all other units
1695 -- are linked to the main unit by at least one reference, this causes all
1696 -- tree nodes to be included in the output tree.
1699 if Debug_Flag_Y
then
1700 Debug_Flag_Y
:= False;
1702 Write_Str
("Tree created for Standard (spec) ");
1704 Print_Node_Subtree
(Standard_Package_Node
);
1708 if Debug_Flag_T
then
1709 Debug_Flag_T
:= False;
1712 Write_Str
("Tree created for ");
1713 Write_Unit_Name
(Unit_Name
(Main_Unit
));
1715 Print_Node_Subtree
(Cunit
(Main_Unit
));
1725 procedure Visit_Elist
(E
: Elist_Id
; Prefix_Str
: String) is
1728 S
: constant Nat
:= Serial_Number
(Int
(E
));
1731 -- In marking phase, return if already marked, otherwise set next
1732 -- serial number in hash table for later reference.
1734 if Phase
= Marking
then
1736 return; -- already visited
1741 -- In printing phase, if already printed, then return, otherwise we
1742 -- are printing the next item, so increment the serial number.
1745 if S
< Next_Serial_Number
then
1746 return; -- already printed
1748 Next_Serial_Number
:= Next_Serial_Number
+ 1;
1752 -- Now process the list (Print calls have no effect in marking phase)
1754 Print_Str
(Prefix_Str
);
1755 Print_Elist_Ref
(E
);
1758 if Is_Empty_Elmt_List
(E
) then
1759 Print_Str
(Prefix_Str
);
1760 Print_Str
("(Empty element list)");
1765 if Phase
= Printing
then
1766 M
:= First_Elmt
(E
);
1767 while Present
(M
) loop
1769 Print_Str
(Prefix_Str
);
1776 Print_Str
(Prefix_Str
);
1780 M
:= First_Elmt
(E
);
1781 while Present
(M
) loop
1782 Visit_Node
(Node
(M
), Prefix_Str
, ' ');
1792 procedure Visit_List
(L
: List_Id
; Prefix_Str
: String) is
1794 S
: constant Nat
:= Serial_Number
(Int
(L
));
1797 -- In marking phase, return if already marked, otherwise set next
1798 -- serial number in hash table for later reference.
1800 if Phase
= Marking
then
1807 -- In printing phase, if already printed, then return, otherwise we
1808 -- are printing the next item, so increment the serial number.
1811 if S
< Next_Serial_Number
then
1812 return; -- already printed
1814 Next_Serial_Number
:= Next_Serial_Number
+ 1;
1818 -- Now process the list (Print calls have no effect in marking phase)
1820 Print_Str
(Prefix_Str
);
1824 Print_Str
(Prefix_Str
);
1825 Print_Str
("|Parent = ");
1826 Print_Node_Ref
(Parent
(L
));
1832 Print_Str
(Prefix_Str
);
1833 Print_Str
("(Empty list)");
1838 Print_Str
(Prefix_Str
);
1842 while Next
(N
) /= Empty
loop
1843 Visit_Node
(N
, Prefix_Str
, '|');
1848 Visit_Node
(N
, Prefix_Str
, ' ');
1855 procedure Visit_Node
1857 Prefix_Str
: String;
1858 Prefix_Char
: Character)
1860 New_Prefix
: String (Prefix_Str
'First .. Prefix_Str
'Last + 2);
1861 -- Prefix string for printing referenced fields
1863 procedure Visit_Descendent
1865 No_Indent
: Boolean := False);
1866 -- This procedure tests the given value of one of the Fields referenced
1867 -- by the current node to determine whether to visit it recursively.
1868 -- Normally No_Indent is false, which means that the visited node will
1869 -- be indented using New_Prefix. If No_Indent is set to True, then
1870 -- this indentation is skipped, and Prefix_Str is used for the call
1871 -- to print the descendent. No_Indent is effective only if the
1872 -- referenced descendent is a node.
1874 ----------------------
1875 -- Visit_Descendent --
1876 ----------------------
1878 procedure Visit_Descendent
1880 No_Indent
: Boolean := False)
1883 -- Case of descendent is a node
1885 if D
in Node_Range
then
1887 -- Don't bother about Empty or Error descendents
1889 if D
<= Union_Id
(Empty_Or_Error
) then
1894 Nod
: constant Node_Or_Entity_Id
:= Node_Or_Entity_Id
(D
);
1897 -- Descendents in one of the standardly compiled internal
1898 -- packages are normally ignored, unless the parent is also
1899 -- in such a package (happens when Standard itself is output)
1900 -- or if the -df switch is set which causes all links to be
1901 -- followed, even into package standard.
1903 if Sloc
(Nod
) <= Standard_Location
then
1904 if Sloc
(N
) > Standard_Location
1905 and then not Debug_Flag_F
1910 -- Don't bother about a descendent in a different unit than
1911 -- the node we came from unless the -df switch is set. Note
1912 -- that we know at this point that Sloc (D) > Standard_Location
1914 -- Note: the tests for No_Location here just make sure that we
1915 -- don't blow up on a node which is missing an Sloc value. This
1916 -- should not normally happen.
1919 if (Sloc
(N
) <= Standard_Location
1920 or else Sloc
(N
) = No_Location
1921 or else Sloc
(Nod
) = No_Location
1922 or else not In_Same_Source_Unit
(Nod
, N
))
1923 and then not Debug_Flag_F
1929 -- Don't bother visiting a source node that has a parent which
1930 -- is not the node we came from. We prefer to trace such nodes
1931 -- from their real parents. This causes the tree to be printed
1932 -- in a more coherent order, e.g. a defining identifier listed
1933 -- next to its corresponding declaration, instead of next to
1934 -- some semantic reference.
1936 -- This test is skipped for nodes in standard packages unless
1937 -- the -dy option is set (which outputs the tree for standard)
1939 -- Also, always follow pointers to Is_Itype entities,
1940 -- since we want to list these when they are first referenced.
1942 if Parent
(Nod
) /= Empty
1943 and then Comes_From_Source
(Nod
)
1944 and then Parent
(Nod
) /= N
1945 and then (Sloc
(N
) > Standard_Location
or else Debug_Flag_Y
)
1950 -- If we successfully fall through all the above tests (which
1951 -- execute a return if the node is not to be visited), we can
1952 -- go ahead and visit the node!
1955 Visit_Node
(Nod
, Prefix_Str
, Prefix_Char
);
1957 Visit_Node
(Nod
, New_Prefix
, ' ');
1961 -- Case of descendent is a list
1963 elsif D
in List_Range
then
1965 -- Don't bother with a missing list, empty list or error list
1967 if D
= Union_Id
(No_List
)
1968 or else D
= Union_Id
(Error_List
)
1969 or else Is_Empty_List
(List_Id
(D
))
1973 -- Otherwise we can visit the list. Note that we don't bother
1974 -- to do the parent test that we did for the node case, because
1975 -- it just does not happen that lists are referenced more than
1976 -- one place in the tree. We aren't counting on this being the
1977 -- case to generate valid output, it is just that we don't need
1978 -- in practice to worry about listing the list at a place that
1982 Visit_List
(List_Id
(D
), New_Prefix
);
1985 -- Case of descendent is an element list
1987 elsif D
in Elist_Range
then
1989 -- Don't bother with a missing list, or an empty list
1991 if D
= Union_Id
(No_Elist
)
1992 or else Is_Empty_Elmt_List
(Elist_Id
(D
))
1996 -- Otherwise, visit the referenced element list
1999 Visit_Elist
(Elist_Id
(D
), New_Prefix
);
2002 -- For all other kinds of descendents (strings, names, uints etc),
2003 -- there is nothing to visit (the contents of the field will be
2004 -- printed when we print the containing node, but what concerns
2005 -- us now is looking for descendents in the tree.
2010 end Visit_Descendent
;
2012 -- Start of processing for Visit_Node
2019 -- Set fatal error node in case we get a blow up during the trace
2021 Current_Error_Node
:= N
;
2023 New_Prefix
(Prefix_Str
'Range) := Prefix_Str
;
2024 New_Prefix
(Prefix_Str
'Last + 1) := Prefix_Char
;
2025 New_Prefix
(Prefix_Str
'Last + 2) := ' ';
2027 -- In the marking phase, all we do is to set the serial number
2029 if Phase
= Marking
then
2030 if Serial_Number
(Int
(N
)) /= 0 then
2031 return; -- already visited
2036 -- In the printing phase, we print the node
2039 if Serial_Number
(Int
(N
)) < Next_Serial_Number
then
2041 -- Here we have already visited the node, but if it is in
2042 -- a list, we still want to print the reference, so that
2043 -- it is clear that it belongs to the list.
2045 if Is_List_Member
(N
) then
2046 Print_Str
(Prefix_Str
);
2049 Print_Str
(Prefix_Str
);
2050 Print_Char
(Prefix_Char
);
2051 Print_Str
("(already output)");
2053 Print_Str
(Prefix_Str
);
2054 Print_Char
(Prefix_Char
);
2061 Print_Node
(N
, Prefix_Str
, Prefix_Char
);
2062 Print_Str
(Prefix_Str
);
2063 Print_Char
(Prefix_Char
);
2065 Next_Serial_Number
:= Next_Serial_Number
+ 1;
2069 -- Visit all descendents of this node
2071 if Nkind
(N
) not in N_Entity
then
2072 Visit_Descendent
(Field1
(N
));
2073 Visit_Descendent
(Field2
(N
));
2074 Visit_Descendent
(Field3
(N
));
2075 Visit_Descendent
(Field4
(N
));
2076 Visit_Descendent
(Field5
(N
));
2078 if Has_Aspects
(N
) then
2079 Visit_Descendent
(Union_Id
(Aspect_Specifications
(N
)));
2085 Visit_Descendent
(Field1
(N
));
2086 Visit_Descendent
(Field3
(N
));
2087 Visit_Descendent
(Field4
(N
));
2088 Visit_Descendent
(Field5
(N
));
2089 Visit_Descendent
(Field6
(N
));
2090 Visit_Descendent
(Field7
(N
));
2091 Visit_Descendent
(Field8
(N
));
2092 Visit_Descendent
(Field9
(N
));
2093 Visit_Descendent
(Field10
(N
));
2094 Visit_Descendent
(Field11
(N
));
2095 Visit_Descendent
(Field12
(N
));
2096 Visit_Descendent
(Field13
(N
));
2097 Visit_Descendent
(Field14
(N
));
2098 Visit_Descendent
(Field15
(N
));
2099 Visit_Descendent
(Field16
(N
));
2100 Visit_Descendent
(Field17
(N
));
2101 Visit_Descendent
(Field18
(N
));
2102 Visit_Descendent
(Field19
(N
));
2103 Visit_Descendent
(Field20
(N
));
2104 Visit_Descendent
(Field21
(N
));
2105 Visit_Descendent
(Field22
(N
));
2106 Visit_Descendent
(Field23
(N
));
2108 -- Now an interesting kludge. Normally parents are always printed
2109 -- since we traverse the tree in a downwards direction. There is
2110 -- however an exception to this rule, which is the case where a
2111 -- parent is constructed by the compiler and is not referenced
2112 -- elsewhere in the tree. The following catches this case
2114 if not Comes_From_Source
(N
) then
2115 Visit_Descendent
(Union_Id
(Parent
(N
)));
2118 -- You may be wondering why we omitted Field2 above. The answer
2119 -- is that this is the Next_Entity field, and we want to treat
2120 -- it rather specially. Why? Because a Next_Entity link does not
2121 -- correspond to a level deeper in the tree, and we do not want
2122 -- the tree to march off to the right of the page due to bogus
2123 -- indentations coming from this effect.
2125 -- To prevent this, what we do is to control references via
2126 -- Next_Entity only from the first entity on a given scope
2127 -- chain, and we keep them all at the same level. Of course
2128 -- if an entity has already been referenced it is not printed.
2130 if Present
(Next_Entity
(N
))
2131 and then Present
(Scope
(N
))
2132 and then First_Entity
(Scope
(N
)) = N
2139 while Present
(Nod
) loop
2140 Visit_Descendent
(Union_Id
(Next_Entity
(Nod
)));
2141 Nod
:= Next_Entity
(Nod
);