1 ------------------------------------------------------------------------------
3 -- GNAT RUN-TIME COMPONENTS --
5 -- S Y S T E M . R A N D O M _ N U M B E R S --
9 -- Copyright (C) 2007-2012, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
30 ------------------------------------------------------------------------------
32 ------------------------------------------------------------------------------
34 -- The implementation here is derived from a C-program for MT19937, with --
35 -- initialization improved 2002/1/26. As required, the following notice is --
36 -- copied from the original program. --
38 -- Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, --
39 -- All rights reserved. --
41 -- Redistribution and use in source and binary forms, with or without --
42 -- modification, are permitted provided that the following conditions --
45 -- 1. Redistributions of source code must retain the above copyright --
46 -- notice, this list of conditions and the following disclaimer. --
48 -- 2. Redistributions in binary form must reproduce the above copyright --
49 -- notice, this list of conditions and the following disclaimer in the --
50 -- documentation and/or other materials provided with the distribution.--
52 -- 3. The names of its contributors may not be used to endorse or promote --
53 -- products derived from this software without specific prior written --
56 -- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS --
57 -- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT --
58 -- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR --
59 -- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT --
60 -- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, --
61 -- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED --
62 -- TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --
63 -- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --
64 -- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --
65 -- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --
66 -- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --
68 ------------------------------------------------------------------------------
70 ------------------------------------------------------------------------------
72 -- This is an implementation of the Mersenne Twister, twisted generalized --
73 -- feedback shift register of rational normal form, with state-bit --
74 -- reflection and tempering. This version generates 32-bit integers with a --
75 -- period of 2**19937 - 1 (a Mersenne prime, hence the name). For --
76 -- applications requiring more than 32 bits (up to 64), we concatenate two --
79 -- See http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html for --
82 -- In contrast to the original code, we do not generate random numbers in --
83 -- batches of N. Measurement seems to show this has very little if any --
84 -- effect on performance, and it may be marginally better for real-time --
85 -- applications with hard deadlines. --
87 ------------------------------------------------------------------------------
89 with Ada
.Unchecked_Conversion
;
91 with System
.Random_Seed
;
93 with Interfaces
; use Interfaces
;
97 package body System
.Random_Numbers
is
99 Image_Numeral_Length
: constant := Max_Image_Width
/ N
;
100 subtype Image_String
is String (1 .. Max_Image_Width
);
102 ----------------------------
103 -- Algorithmic Parameters --
104 ----------------------------
106 Lower_Mask
: constant := 2**31-1;
107 Upper_Mask
: constant := 2**31;
109 Matrix_A
: constant array (State_Val
range 0 .. 1) of State_Val
110 := (0, 16#
9908b0df#
);
111 -- The twist transformation is represented by a matrix of the form
116 -- where 0 is a 31x31 block of 0s, I(31) is the 31x31 identity matrix and
117 -- _a is a particular bit row-vector, represented here by a 32-bit integer.
118 -- If integer x represents a row vector of bits (with x(0), the units bit,
120 -- x * A = [0 x(31..1)] xor Matrix_A(x(0)).
124 B_Mask
: constant := 16#
9d2c5680#
;
126 C_Mask
: constant := 16#efc60000#
;
128 -- The tempering shifts and bit masks, in the order applied
130 Seed0
: constant := 5489;
131 -- Default seed, used to initialize the state vector when Reset not called
133 Seed1
: constant := 19650218;
134 -- Seed used to initialize the state vector when calling Reset with an
135 -- initialization vector.
137 Mult0
: constant := 1812433253;
138 -- Multiplier for a modified linear congruential generator used to
139 -- initialize the state vector when calling Reset with a single integer
142 Mult1
: constant := 1664525;
143 Mult2
: constant := 1566083941;
144 -- Multipliers for two modified linear congruential generators used to
145 -- initialize the state vector when calling Reset with an initialization
148 -----------------------
149 -- Local Subprograms --
150 -----------------------
152 procedure Init
(Gen
: Generator
; Initiator
: Unsigned_32
);
153 -- Perform a default initialization of the state of Gen. The resulting
154 -- state is identical for identical values of Initiator.
156 procedure Insert_Image
157 (S
: in out Image_String
;
160 -- Insert image of V into S, in the Index'th 11-character substring
162 function Extract_Value
(S
: String; Index
: Integer) return State_Val
;
163 -- Treat S as a sequence of 11-character decimal numerals and return
164 -- the result of converting numeral #Index (numbering from 0)
166 function To_Unsigned
is
167 new Unchecked_Conversion
(Integer_32
, Unsigned_32
);
168 function To_Unsigned
is
169 new Unchecked_Conversion
(Integer_64
, Unsigned_64
);
175 function Random
(Gen
: Generator
) return Unsigned_32
is
176 G
: Generator
renames Gen
.Writable
.Self
.all;
178 I
: Integer; -- should avoid use of identifier I ???
184 Y
:= (G
.S
(I
) and Upper_Mask
) or (G
.S
(I
+ 1) and Lower_Mask
);
185 Y
:= G
.S
(I
+ M
) xor Shift_Right
(Y
, 1) xor Matrix_A
(Y
and 1);
189 Y
:= (G
.S
(I
) and Upper_Mask
) or (G
.S
(I
+ 1) and Lower_Mask
);
190 Y
:= G
.S
(I
+ (M
- N
))
191 xor Shift_Right
(Y
, 1)
192 xor Matrix_A
(Y
and 1);
196 Y
:= (G
.S
(I
) and Upper_Mask
) or (G
.S
(0) and Lower_Mask
);
197 Y
:= G
.S
(M
- 1) xor Shift_Right
(Y
, 1) xor Matrix_A
(Y
and 1);
208 Y
:= Y
xor Shift_Right
(Y
, U
);
209 Y
:= Y
xor (Shift_Left
(Y
, S
) and B_Mask
);
210 Y
:= Y
xor (Shift_Left
(Y
, T
) and C_Mask
);
211 Y
:= Y
xor Shift_Right
(Y
, L
);
217 type Unsigned
is mod <>;
218 type Real
is digits <>;
219 with function Random
(G
: Generator
) return Unsigned
is <>;
220 function Random_Float_Template
(Gen
: Generator
) return Real
;
221 pragma Inline
(Random_Float_Template
);
222 -- Template for a random-number generator implementation that delivers
223 -- values of type Real in the range [0 .. 1], using values from Gen,
224 -- assuming that Unsigned is large enough to hold the bits of a mantissa
227 ---------------------------
228 -- Random_Float_Template --
229 ---------------------------
231 function Random_Float_Template
(Gen
: Generator
) return Real
is
233 pragma Compile_Time_Error
234 (Unsigned
'Last <= 2**(Real
'Machine_Mantissa - 1),
235 "insufficiently large modular type used to hold mantissa");
238 -- This code generates random floating-point numbers from unsigned
239 -- integers. Assuming that Real'Machine_Radix = 2, it can deliver all
240 -- machine values of type Real (as implied by Real'Machine_Mantissa and
241 -- Real'Machine_Emin), which is not true of the standard method (to
242 -- which we fall back for non-binary radix): computing Real(<random
243 -- integer>) / (<max random integer>+1). To do so, we first extract an
244 -- (M-1)-bit significand (where M is Real'Machine_Mantissa), and then
245 -- decide on a normalized exponent by repeated coin flips, decrementing
246 -- from 0 as long as we flip heads (1 bits). This process yields the
247 -- proper geometric distribution for the exponent: in a uniformly
248 -- distributed set of floating-point numbers, 1/2 of them will be in
249 -- (0.5, 1], 1/4 will be in (0.25, 0.5], and so forth. It makes a
250 -- further adjustment at binade boundaries (see comments below) to give
251 -- the effect of selecting a uniformly distributed real deviate in
252 -- [0..1] and then rounding to the nearest representable floating-point
253 -- number. The algorithm attempts to be stingy with random integers. In
254 -- the worst case, it can consume roughly -Real'Machine_Emin/32 32-bit
255 -- integers, but this case occurs with probability around
256 -- 2**Machine_Emin, and the expected number of calls to integer-valued
257 -- Random is 1. For another discussion of the issues addressed by this
258 -- process, see Allen Downey's unpublished paper at
259 -- http://allendowney.com/research/rand/downey07randfloat.pdf.
261 if Real
'Machine_Radix /= 2 then
263 (Real
(Unsigned
'(Random (Gen))) * 2.0**(-Unsigned'Size));
267 type Bit_Count is range 0 .. 4;
269 subtype T is Real'Base;
271 Trailing_Ones : constant array (Unsigned_32 range 0 .. 15)
273 (2#00000# => 0, 2#00001# => 1, 2#00010# => 0, 2#00011# => 2,
274 2#00100# => 0, 2#00101# => 1, 2#00110# => 0, 2#00111# => 3,
275 2#01000# => 0, 2#01001# => 1, 2#01010# => 0, 2#01011# => 2,
276 2#01100# => 0, 2#01101# => 1, 2#01110# => 0, 2#01111# => 4);
278 Pow_Tab : constant array (Bit_Count range 0 .. 3) of Real
279 := (0 => 2.0**(0 - T'Machine_Mantissa),
280 1 => 2.0**(-1 - T'Machine_Mantissa),
281 2 => 2.0**(-2 - T'Machine_Mantissa),
282 3 => 2.0**(-3 - T'Machine_Mantissa));
284 Extra_Bits : constant Natural :=
285 (Unsigned'Size - T'Machine_Mantissa + 1);
286 -- Random bits left over after selecting mantissa
290 X : Real; -- Scaled mantissa
291 R : Unsigned_32; -- Supply of random bits
292 R_Bits : Natural; -- Number of bits left in R
293 K : Bit_Count; -- Next decrement to exponent
296 Mantissa := Random (Gen) / 2**Extra_Bits;
297 R := Unsigned_32 (Mantissa mod 2**Extra_Bits);
298 R_Bits := Extra_Bits;
299 X := Real (2**(T'Machine_Mantissa - 1) + Mantissa); -- Exact
301 if Extra_Bits < 4 and then R < 2 ** Extra_Bits - 1 then
303 -- We got lucky and got a zero in our few extra bits
305 K := Trailing_Ones (R);
310 -- R has R_Bits unprocessed random bits, a multiple of 4.
311 -- X needs to be halved for each trailing one bit. The
312 -- process stops as soon as a 0 bit is found. If R_Bits
313 -- becomes zero, reload R.
315 -- Process 4 bits at a time for speed: the two iterations
316 -- on average with three tests each was still too slow,
317 -- probably because the branches are not predictable.
318 -- This loop now will only execute once 94% of the cases,
319 -- doing more bits at a time will not help.
321 while R_Bits >= 4 loop
322 K := Trailing_Ones (R mod 16);
324 exit Find_Zero when K < 4; -- Exits 94% of the time
326 R_Bits := R_Bits - 4;
331 -- Do not allow us to loop endlessly even in the (very
332 -- unlikely) case that Random (Gen) keeps yielding all ones.
334 exit Find_Zero when X = 0.0;
340 -- K has the count of trailing ones not reflected yet in X. The
341 -- following multiplication takes care of that, as well as the
342 -- correction to move the radix point to the left of the mantissa.
343 -- Doing it at the end avoids repeated rounding errors in the
344 -- exceedingly unlikely case of ever having a subnormal result.
346 X := X * Pow_Tab (K);
348 -- The smallest value in each binade is rounded to by 0.75 of
349 -- the span of real numbers as its next larger neighbor, and
350 -- 1.0 is rounded to by half of the span of real numbers as its
351 -- next smaller neighbor. To account for this, when we encounter
352 -- the smallest number in a binade, we substitute the smallest
353 -- value in the next larger binade with probability 1/2.
355 if Mantissa = 0 and then Unsigned_32'(Random
(Gen
)) mod 2 = 0 then
362 end Random_Float_Template
;
368 function Random
(Gen
: Generator
) return Float is
369 function F
is new Random_Float_Template
(Unsigned_32
, Float);
374 function Random
(Gen
: Generator
) return Long_Float is
375 function F
is new Random_Float_Template
(Unsigned_64
, Long_Float);
380 function Random
(Gen
: Generator
) return Unsigned_64
is
382 return Shift_Left
(Unsigned_64
(Unsigned_32
'(Random (Gen))), 32)
383 or Unsigned_64 (Unsigned_32'(Random
(Gen
)));
386 ---------------------
387 -- Random_Discrete --
388 ---------------------
390 function Random_Discrete
392 Min
: Result_Subtype
:= Default_Min
;
393 Max
: Result_Subtype
:= Result_Subtype
'Last) return Result_Subtype
400 raise Constraint_Error
;
402 elsif Result_Subtype
'Base'Size > 32 then
404 -- In the 64-bit case, we have to be careful, since not all 64-bit
405 -- unsigned values are representable in GNAT's root_integer type.
406 -- Ignore different-size warnings here since GNAT's handling
409 pragma Warnings ("Z");
410 function Conv_To_Unsigned is
411 new Unchecked_Conversion (Result_Subtype'Base, Unsigned_64);
412 function Conv_To_Result is
413 new Unchecked_Conversion (Unsigned_64, Result_Subtype'Base);
414 pragma Warnings ("z");
416 N : constant Unsigned_64 :=
417 Conv_To_Unsigned (Max) - Conv_To_Unsigned (Min) + 1;
419 X, Slop : Unsigned_64;
423 return Conv_To_Result (Conv_To_Unsigned (Min) + Random (Gen));
426 Slop := Unsigned_64'Last rem N + 1;
430 exit when Slop = N or else X <= Unsigned_64'Last - Slop;
433 return Conv_To_Result (Conv_To_Unsigned (Min) + X rem N);
437 elsif Result_Subtype'Pos (Max) - Result_Subtype'Pos (Min) =
440 return Result_Subtype'Val
441 (Result_Subtype'Pos (Min) + Unsigned_32'Pos (Random (Gen)));
444 N : constant Unsigned_32 :=
445 Unsigned_32 (Result_Subtype'Pos (Max) -
446 Result_Subtype'Pos (Min) + 1);
447 Slop : constant Unsigned_32 := Unsigned_32'Last rem N + 1;
453 exit when Slop = N or else X <= Unsigned_32'Last - Slop;
458 (Result_Subtype'Pos (Min) + Unsigned_32'Pos (X rem N));
467 function Random_Float (Gen : Generator) return Result_Subtype is
469 if Result_Subtype'Base'Digits > Float'Digits then
470 return Result_Subtype
'Machine (Result_Subtype
471 (Long_Float'(Random (Gen))));
473 return Result_Subtype'Machine (Result_Subtype
474 (Float'(Random
(Gen
))));
482 procedure Reset
(Gen
: Generator
) is
484 Init
(Gen
, Unsigned_32
'Mod (Random_Seed
.Get_Seed
));
487 procedure Reset
(Gen
: Generator
; Initiator
: Integer_32
) is
489 Init
(Gen
, To_Unsigned
(Initiator
));
492 procedure Reset
(Gen
: Generator
; Initiator
: Unsigned_32
) is
494 Init
(Gen
, Initiator
);
497 procedure Reset
(Gen
: Generator
; Initiator
: Integer) is
499 -- This is probably an unnecessary precaution against future change, but
500 -- since the test is a static expression, no extra code is involved.
502 if Integer'Size <= 32 then
503 Init
(Gen
, To_Unsigned
(Integer_32
(Initiator
)));
507 Initiator1
: constant Unsigned_64
:=
508 To_Unsigned
(Integer_64
(Initiator
));
509 Init0
: constant Unsigned_32
:=
510 Unsigned_32
(Initiator1
mod 2 ** 32);
511 Init1
: constant Unsigned_32
:=
512 Unsigned_32
(Shift_Right
(Initiator1
, 32));
514 Reset
(Gen
, Initialization_Vector
'(Init0, Init1));
519 procedure Reset (Gen : Generator; Initiator : Initialization_Vector) is
520 G : Generator renames Gen.Writable.Self.all;
528 if Initiator'Length > 0 then
529 for K in reverse 1 .. Integer'Max (N, Initiator'Length) loop
531 (G.S (I) xor ((G.S (I - 1)
532 xor Shift_Right (G.S (I - 1), 30)) * Mult1))
533 + Initiator (J + Initiator'First) + Unsigned_32 (J);
539 G.S (0) := G.S (N - 1);
543 if J >= Initiator'Length then
549 for K in reverse 1 .. N - 1 loop
551 (G.S (I) xor ((G.S (I - 1)
552 xor Shift_Right (G.S (I - 1), 30)) * Mult2))
557 G.S (0) := G.S (N - 1);
562 G.S (0) := Upper_Mask;
565 procedure Reset (Gen : Generator; From_State : Generator) is
566 G : Generator renames Gen.Writable.Self.all;
572 procedure Reset (Gen : Generator; From_State : State) is
573 G : Generator renames Gen.Writable.Self.all;
579 procedure Reset (Gen : Generator; From_Image : String) is
580 G : Generator renames Gen.Writable.Self.all;
584 for J in 0 .. N - 1 loop
585 G.S (J) := Extract_Value (From_Image, J);
593 procedure Save (Gen : Generator; To_State : out State) is
602 To_State (0 .. N - 1 - Gen.I) := Gen.S (Gen.I .. N - 1);
603 To_State (N - Gen.I .. N - 1) := Gen.S (0 .. Gen.I - 1);
611 function Image (Of_State : State) return String is
612 Result : Image_String;
615 Result := (others => ' ');
617 for J in Of_State'Range loop
618 Insert_Image (Result, J, Of_State (J));
624 function Image (Gen : Generator) return String is
625 Result : Image_String;
628 Result := (others => ' ');
629 for J in 0 .. N - 1 loop
630 Insert_Image (Result, J, Gen.S ((J + Gen.I) mod N));
640 function Value (Coded_State : String) return State is
644 Reset (Gen, Coded_State);
653 procedure Init (Gen : Generator; Initiator : Unsigned_32) is
654 G : Generator renames Gen.Writable.Self.all;
656 G.S (0) := Initiator;
658 for I in 1 .. N - 1 loop
660 (G.S (I - 1) xor Shift_Right (G.S (I - 1), 30)) * Mult0
671 procedure Insert_Image
672 (S : in out Image_String;
676 Value : constant String := State_Val'Image (V);
678 S (Index * 11 + 1 .. Index * 11 + Value'Length) := Value;
685 function Extract_Value (S : String; Index : Integer) return State_Val is
686 Start : constant Integer := S'First + Index * Image_Numeral_Length;
688 return State_Val'Value (S (Start .. Start + Image_Numeral_Length - 1));
691 end System.Random_Numbers;