1 /* RTL dead store elimination.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
27 #include "coretypes.h"
34 #include "hard-reg-set.h"
39 #include "tree-pass.h"
40 #include "alloc-pool.h"
42 #include "insn-config.h"
50 /* This file contains three techniques for performing Dead Store
53 * The first technique performs dse locally on any base address. It
54 is based on the cselib which is a local value numbering technique.
55 This technique is local to a basic block but deals with a fairly
58 * The second technique performs dse globally but is restricted to
59 base addresses that are either constant or are relative to the
62 * The third technique, (which is only done after register allocation)
63 processes the spill spill slots. This differs from the second
64 technique because it takes advantage of the fact that spilling is
65 completely free from the effects of aliasing.
67 Logically, dse is a backwards dataflow problem. A store can be
68 deleted if it if cannot be reached in the backward direction by any
69 use of the value being stored. However, the local technique uses a
70 forwards scan of the basic block because cselib requires that the
71 block be processed in that order.
73 The pass is logically broken into 7 steps:
77 1) The local algorithm, as well as scanning the insns for the two
80 2) Analysis to see if the global algs are necessary. In the case
81 of stores base on a constant address, there must be at least two
82 stores to that address, to make it possible to delete some of the
83 stores. In the case of stores off of the frame or spill related
84 stores, only one store to an address is necessary because those
85 stores die at the end of the function.
87 3) Set up the global dataflow equations based on processing the
88 info parsed in the first step.
90 4) Solve the dataflow equations.
92 5) Delete the insns that the global analysis has indicated are
95 6) Delete insns that store the same value as preceeding store
96 where the earlier store couldn't be eliminated.
100 This step uses cselib and canon_rtx to build the largest expression
101 possible for each address. This pass is a forwards pass through
102 each basic block. From the point of view of the global technique,
103 the first pass could examine a block in either direction. The
104 forwards ordering is to accommodate cselib.
106 We a simplifying assumption: addresses fall into four broad
109 1) base has rtx_varies_p == false, offset is constant.
110 2) base has rtx_varies_p == false, offset variable.
111 3) base has rtx_varies_p == true, offset constant.
112 4) base has rtx_varies_p == true, offset variable.
114 The local passes are able to process all 4 kinds of addresses. The
115 global pass only handles (1).
117 The global problem is formulated as follows:
119 A store, S1, to address A, where A is not relative to the stack
120 frame, can be eliminated if all paths from S1 to the end of the
121 of the function contain another store to A before a read to A.
123 If the address A is relative to the stack frame, a store S2 to A
124 can be eliminated if there are no paths from S1 that reach the
125 end of the function that read A before another store to A. In
126 this case S2 can be deleted if there are paths to from S2 to the
127 end of the function that have no reads or writes to A. This
128 second case allows stores to the stack frame to be deleted that
129 would otherwise die when the function returns. This cannot be
130 done if stores_off_frame_dead_at_return is not true. See the doc
131 for that variable for when this variable is false.
133 The global problem is formulated as a backwards set union
134 dataflow problem where the stores are the gens and reads are the
135 kills. Set union problems are rare and require some special
136 handling given our representation of bitmaps. A straightforward
137 implementation of requires a lot of bitmaps filled with 1s.
138 These are expensive and cumbersome in our bitmap formulation so
139 care has been taken to avoid large vectors filled with 1s. See
140 the comments in bb_info and in the dataflow confluence functions
143 There are two places for further enhancements to this algorithm:
145 1) The original dse which was embedded in a pass called flow also
146 did local address forwarding. For example in
151 flow would replace the right hand side of the second insn with a
152 reference to r100. Most of the information is available to add this
153 to this pass. It has not done it because it is a lot of work in
154 the case that either r100 is assigned to between the first and
155 second insn and/or the second insn is a load of part of the value
156 stored by the first insn.
158 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
159 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
160 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
161 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
163 2) The cleaning up of spill code is quite profitable. It currently
164 depends on reading tea leaves and chicken entrails left by reload.
165 This pass depends on reload creating a singleton alias set for each
166 spill slot and telling the next dse pass which of these alias sets
167 are the singletons. Rather than analyze the addresses of the
168 spills, dse's spill processing just does analysis of the loads and
169 stores that use those alias sets. There are three cases where this
172 a) Reload sometimes creates the slot for one mode of access, and
173 then inserts loads and/or stores for a smaller mode. In this
174 case, the current code just punts on the slot. The proper thing
175 to do is to back out and use one bit vector position for each
176 byte of the entity associated with the slot. This depends on
177 KNOWING that reload always generates the accesses for each of the
178 bytes in some canonical (read that easy to understand several
179 passes after reload happens) way.
181 b) Reload sometimes decides that spill slot it allocated was not
182 large enough for the mode and goes back and allocates more slots
183 with the same mode and alias set. The backout in this case is a
184 little more graceful than (a). In this case the slot is unmarked
185 as being a spill slot and if final address comes out to be based
186 off the frame pointer, the global algorithm handles this slot.
188 c) For any pass that may prespill, there is currently no
189 mechanism to tell the dse pass that the slot being used has the
190 special properties that reload uses. It may be that all that is
191 required is to have those passes make the same calls that reload
192 does, assuming that the alias sets can be manipulated in the same
195 /* There are limits to the size of constant offsets we model for the
196 global problem. There are certainly test cases, that exceed this
197 limit, however, it is unlikely that there are important programs
198 that really have constant offsets this size. */
199 #define MAX_OFFSET (64 * 1024)
202 static bitmap scratch
= NULL
;
205 /* This structure holds information about a candidate store. */
209 /* False means this is a clobber. */
212 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
215 /* The id of the mem group of the base address. If rtx_varies_p is
216 true, this is -1. Otherwise, it is the index into the group
220 /* This is the cselib value. */
221 cselib_val
*cse_base
;
223 /* This canonized mem. */
226 /* Canonized MEM address for use by canon_true_dependence. */
229 /* If this is non-zero, it is the alias set of a spill location. */
230 alias_set_type alias_set
;
232 /* The offset of the first and byte before the last byte associated
233 with the operation. */
234 HOST_WIDE_INT begin
, end
;
238 /* A bitmask as wide as the number of bytes in the word that
239 contains a 1 if the byte may be needed. The store is unused if
240 all of the bits are 0. This is used if IS_LARGE is false. */
241 unsigned HOST_WIDE_INT small_bitmask
;
245 /* A bitmap with one bit per byte. Cleared bit means the position
246 is needed. Used if IS_LARGE is false. */
249 /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is
250 equal to END - BEGIN, the whole store is unused. */
255 /* The next store info for this insn. */
256 struct store_info
*next
;
258 /* The right hand side of the store. This is used if there is a
259 subsequent reload of the mems address somewhere later in the
263 /* If rhs is or holds a constant, this contains that constant,
267 /* Set if this store stores the same constant value as REDUNDANT_REASON
268 insn stored. These aren't eliminated early, because doing that
269 might prevent the earlier larger store to be eliminated. */
270 struct insn_info
*redundant_reason
;
273 /* Return a bitmask with the first N low bits set. */
275 static unsigned HOST_WIDE_INT
276 lowpart_bitmask (int n
)
278 unsigned HOST_WIDE_INT mask
= ~(unsigned HOST_WIDE_INT
) 0;
279 return mask
>> (HOST_BITS_PER_WIDE_INT
- n
);
282 typedef struct store_info
*store_info_t
;
283 static alloc_pool cse_store_info_pool
;
284 static alloc_pool rtx_store_info_pool
;
286 /* This structure holds information about a load. These are only
287 built for rtx bases. */
290 /* The id of the mem group of the base address. */
293 /* If this is non-zero, it is the alias set of a spill location. */
294 alias_set_type alias_set
;
296 /* The offset of the first and byte after the last byte associated
297 with the operation. If begin == end == 0, the read did not have
298 a constant offset. */
301 /* The mem being read. */
304 /* The next read_info for this insn. */
305 struct read_info
*next
;
307 typedef struct read_info
*read_info_t
;
308 static alloc_pool read_info_pool
;
311 /* One of these records is created for each insn. */
315 /* Set true if the insn contains a store but the insn itself cannot
316 be deleted. This is set if the insn is a parallel and there is
317 more than one non dead output or if the insn is in some way
321 /* This field is only used by the global algorithm. It is set true
322 if the insn contains any read of mem except for a (1). This is
323 also set if the insn is a call or has a clobber mem. If the insn
324 contains a wild read, the use_rec will be null. */
327 /* This field is only used for the processing of const functions.
328 These functions cannot read memory, but they can read the stack
329 because that is where they may get their parms. We need to be
330 this conservative because, like the store motion pass, we don't
331 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
332 Moreover, we need to distinguish two cases:
333 1. Before reload (register elimination), the stores related to
334 outgoing arguments are stack pointer based and thus deemed
335 of non-constant base in this pass. This requires special
336 handling but also means that the frame pointer based stores
337 need not be killed upon encountering a const function call.
338 2. After reload, the stores related to outgoing arguments can be
339 either stack pointer or hard frame pointer based. This means
340 that we have no other choice than also killing all the frame
341 pointer based stores upon encountering a const function call.
342 This field is set after reload for const function calls. Having
343 this set is less severe than a wild read, it just means that all
344 the frame related stores are killed rather than all the stores. */
347 /* This field is only used for the processing of const functions.
348 It is set if the insn may contain a stack pointer based store. */
349 bool stack_pointer_based
;
351 /* This is true if any of the sets within the store contains a
352 cselib base. Such stores can only be deleted by the local
354 bool contains_cselib_groups
;
359 /* The list of mem sets or mem clobbers that are contained in this
360 insn. If the insn is deletable, it contains only one mem set.
361 But it could also contain clobbers. Insns that contain more than
362 one mem set are not deletable, but each of those mems are here in
363 order to provide info to delete other insns. */
364 store_info_t store_rec
;
366 /* The linked list of mem uses in this insn. Only the reads from
367 rtx bases are listed here. The reads to cselib bases are
368 completely processed during the first scan and so are never
370 read_info_t read_rec
;
372 /* The prev insn in the basic block. */
373 struct insn_info
* prev_insn
;
375 /* The linked list of insns that are in consideration for removal in
376 the forwards pass thru the basic block. This pointer may be
377 trash as it is not cleared when a wild read occurs. The only
378 time it is guaranteed to be correct is when the traversal starts
379 at active_local_stores. */
380 struct insn_info
* next_local_store
;
383 typedef struct insn_info
*insn_info_t
;
384 static alloc_pool insn_info_pool
;
386 /* The linked list of stores that are under consideration in this
388 static insn_info_t active_local_stores
;
393 /* Pointer to the insn info for the last insn in the block. These
394 are linked so this is how all of the insns are reached. During
395 scanning this is the current insn being scanned. */
396 insn_info_t last_insn
;
398 /* The info for the global dataflow problem. */
401 /* This is set if the transfer function should and in the wild_read
402 bitmap before applying the kill and gen sets. That vector knocks
403 out most of the bits in the bitmap and thus speeds up the
405 bool apply_wild_read
;
407 /* The following 4 bitvectors hold information about which positions
408 of which stores are live or dead. They are indexed by
411 /* The set of store positions that exist in this block before a wild read. */
414 /* The set of load positions that exist in this block above the
415 same position of a store. */
418 /* The set of stores that reach the top of the block without being
421 Do not represent the in if it is all ones. Note that this is
422 what the bitvector should logically be initialized to for a set
423 intersection problem. However, like the kill set, this is too
424 expensive. So initially, the in set will only be created for the
425 exit block and any block that contains a wild read. */
428 /* The set of stores that reach the bottom of the block from it's
431 Do not represent the in if it is all ones. Note that this is
432 what the bitvector should logically be initialized to for a set
433 intersection problem. However, like the kill and in set, this is
434 too expensive. So what is done is that the confluence operator
435 just initializes the vector from one of the out sets of the
436 successors of the block. */
439 /* The following bitvector is indexed by the reg number. It
440 contains the set of regs that are live at the current instruction
441 being processed. While it contains info for all of the
442 registers, only the pseudos are actually examined. It is used to
443 assure that shift sequences that are inserted do not accidently
444 clobber live hard regs. */
448 typedef struct bb_info
*bb_info_t
;
449 static alloc_pool bb_info_pool
;
451 /* Table to hold all bb_infos. */
452 static bb_info_t
*bb_table
;
454 /* There is a group_info for each rtx base that is used to reference
455 memory. There are also not many of the rtx bases because they are
456 very limited in scope. */
460 /* The actual base of the address. */
463 /* The sequential id of the base. This allows us to have a
464 canonical ordering of these that is not based on addresses. */
467 /* True if there are any positions that are to be processed
469 bool process_globally
;
471 /* True if the base of this group is either the frame_pointer or
472 hard_frame_pointer. */
475 /* A mem wrapped around the base pointer for the group in order to
476 do read dependency. */
479 /* Canonized version of base_mem's address. */
482 /* These two sets of two bitmaps are used to keep track of how many
483 stores are actually referencing that position from this base. We
484 only do this for rtx bases as this will be used to assign
485 positions in the bitmaps for the global problem. Bit N is set in
486 store1 on the first store for offset N. Bit N is set in store2
487 for the second store to offset N. This is all we need since we
488 only care about offsets that have two or more stores for them.
490 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
491 for 0 and greater offsets.
493 There is one special case here, for stores into the stack frame,
494 we will or store1 into store2 before deciding which stores look
495 at globally. This is because stores to the stack frame that have
496 no other reads before the end of the function can also be
498 bitmap store1_n
, store1_p
, store2_n
, store2_p
;
500 /* The positions in this bitmap have the same assignments as the in,
501 out, gen and kill bitmaps. This bitmap is all zeros except for
502 the positions that are occupied by stores for this group. */
505 /* The offset_map is used to map the offsets from this base into
506 positions in the global bitmaps. It is only created after all of
507 the all of stores have been scanned and we know which ones we
509 int *offset_map_n
, *offset_map_p
;
510 int offset_map_size_n
, offset_map_size_p
;
512 typedef struct group_info
*group_info_t
;
513 typedef const struct group_info
*const_group_info_t
;
514 static alloc_pool rtx_group_info_pool
;
516 /* Tables of group_info structures, hashed by base value. */
517 static htab_t rtx_group_table
;
519 /* Index into the rtx_group_vec. */
520 static int rtx_group_next_id
;
522 DEF_VEC_P(group_info_t
);
523 DEF_VEC_ALLOC_P(group_info_t
,heap
);
525 static VEC(group_info_t
,heap
) *rtx_group_vec
;
528 /* This structure holds the set of changes that are being deferred
529 when removing read operation. See replace_read. */
530 struct deferred_change
533 /* The mem that is being replaced. */
536 /* The reg it is being replaced with. */
539 struct deferred_change
*next
;
542 typedef struct deferred_change
*deferred_change_t
;
543 static alloc_pool deferred_change_pool
;
545 static deferred_change_t deferred_change_list
= NULL
;
547 /* This are used to hold the alias sets of spill variables. Since
548 these are never aliased and there may be a lot of them, it makes
549 sense to treat them specially. This bitvector is only allocated in
550 calls from dse_record_singleton_alias_set which currently is only
551 made during reload1. So when dse is called before reload this
552 mechanism does nothing. */
554 static bitmap clear_alias_sets
= NULL
;
556 /* The set of clear_alias_sets that have been disqualified because
557 there are loads or stores using a different mode than the alias set
558 was registered with. */
559 static bitmap disqualified_clear_alias_sets
= NULL
;
561 /* The group that holds all of the clear_alias_sets. */
562 static group_info_t clear_alias_group
;
564 /* The modes of the clear_alias_sets. */
565 static htab_t clear_alias_mode_table
;
567 /* Hash table element to look up the mode for an alias set. */
568 struct clear_alias_mode_holder
570 alias_set_type alias_set
;
571 enum machine_mode mode
;
574 static alloc_pool clear_alias_mode_pool
;
576 /* This is true except if cfun->stdarg -- i.e. we cannot do
577 this for vararg functions because they play games with the frame. */
578 static bool stores_off_frame_dead_at_return
;
580 /* Counter for stats. */
581 static int globally_deleted
;
582 static int locally_deleted
;
583 static int spill_deleted
;
585 static bitmap all_blocks
;
587 /* The number of bits used in the global bitmaps. */
588 static unsigned int current_position
;
591 static bool gate_dse (void);
592 static bool gate_dse1 (void);
593 static bool gate_dse2 (void);
596 /*----------------------------------------------------------------------------
600 ----------------------------------------------------------------------------*/
602 /* Hashtable callbacks for maintaining the "bases" field of
603 store_group_info, given that the addresses are function invariants. */
606 clear_alias_mode_eq (const void *p1
, const void *p2
)
608 const struct clear_alias_mode_holder
* h1
609 = (const struct clear_alias_mode_holder
*) p1
;
610 const struct clear_alias_mode_holder
* h2
611 = (const struct clear_alias_mode_holder
*) p2
;
612 return h1
->alias_set
== h2
->alias_set
;
617 clear_alias_mode_hash (const void *p
)
619 const struct clear_alias_mode_holder
*holder
620 = (const struct clear_alias_mode_holder
*) p
;
621 return holder
->alias_set
;
625 /* Find the entry associated with ALIAS_SET. */
627 static struct clear_alias_mode_holder
*
628 clear_alias_set_lookup (alias_set_type alias_set
)
630 struct clear_alias_mode_holder tmp_holder
;
633 tmp_holder
.alias_set
= alias_set
;
634 slot
= htab_find_slot (clear_alias_mode_table
, &tmp_holder
, NO_INSERT
);
637 return (struct clear_alias_mode_holder
*) *slot
;
641 /* Hashtable callbacks for maintaining the "bases" field of
642 store_group_info, given that the addresses are function invariants. */
645 invariant_group_base_eq (const void *p1
, const void *p2
)
647 const_group_info_t gi1
= (const_group_info_t
) p1
;
648 const_group_info_t gi2
= (const_group_info_t
) p2
;
649 return rtx_equal_p (gi1
->rtx_base
, gi2
->rtx_base
);
654 invariant_group_base_hash (const void *p
)
656 const_group_info_t gi
= (const_group_info_t
) p
;
658 return hash_rtx (gi
->rtx_base
, Pmode
, &do_not_record
, NULL
, false);
662 /* Get the GROUP for BASE. Add a new group if it is not there. */
665 get_group_info (rtx base
)
667 struct group_info tmp_gi
;
673 /* Find the store_base_info structure for BASE, creating a new one
675 tmp_gi
.rtx_base
= base
;
676 slot
= htab_find_slot (rtx_group_table
, &tmp_gi
, INSERT
);
677 gi
= (group_info_t
) *slot
;
681 if (!clear_alias_group
)
683 clear_alias_group
= gi
=
684 (group_info_t
) pool_alloc (rtx_group_info_pool
);
685 memset (gi
, 0, sizeof (struct group_info
));
686 gi
->id
= rtx_group_next_id
++;
687 gi
->store1_n
= BITMAP_ALLOC (NULL
);
688 gi
->store1_p
= BITMAP_ALLOC (NULL
);
689 gi
->store2_n
= BITMAP_ALLOC (NULL
);
690 gi
->store2_p
= BITMAP_ALLOC (NULL
);
691 gi
->group_kill
= BITMAP_ALLOC (NULL
);
692 gi
->process_globally
= false;
693 gi
->offset_map_size_n
= 0;
694 gi
->offset_map_size_p
= 0;
695 gi
->offset_map_n
= NULL
;
696 gi
->offset_map_p
= NULL
;
697 VEC_safe_push (group_info_t
, heap
, rtx_group_vec
, gi
);
699 return clear_alias_group
;
704 *slot
= gi
= (group_info_t
) pool_alloc (rtx_group_info_pool
);
706 gi
->id
= rtx_group_next_id
++;
707 gi
->base_mem
= gen_rtx_MEM (QImode
, base
);
708 gi
->canon_base_addr
= canon_rtx (base
);
709 gi
->store1_n
= BITMAP_ALLOC (NULL
);
710 gi
->store1_p
= BITMAP_ALLOC (NULL
);
711 gi
->store2_n
= BITMAP_ALLOC (NULL
);
712 gi
->store2_p
= BITMAP_ALLOC (NULL
);
713 gi
->group_kill
= BITMAP_ALLOC (NULL
);
714 gi
->process_globally
= false;
716 (base
== frame_pointer_rtx
) || (base
== hard_frame_pointer_rtx
);
717 gi
->offset_map_size_n
= 0;
718 gi
->offset_map_size_p
= 0;
719 gi
->offset_map_n
= NULL
;
720 gi
->offset_map_p
= NULL
;
721 VEC_safe_push (group_info_t
, heap
, rtx_group_vec
, gi
);
728 /* Initialization of data structures. */
734 globally_deleted
= 0;
737 scratch
= BITMAP_ALLOC (NULL
);
740 = create_alloc_pool ("rtx_store_info_pool",
741 sizeof (struct store_info
), 100);
743 = create_alloc_pool ("read_info_pool",
744 sizeof (struct read_info
), 100);
746 = create_alloc_pool ("insn_info_pool",
747 sizeof (struct insn_info
), 100);
749 = create_alloc_pool ("bb_info_pool",
750 sizeof (struct bb_info
), 100);
752 = create_alloc_pool ("rtx_group_info_pool",
753 sizeof (struct group_info
), 100);
755 = create_alloc_pool ("deferred_change_pool",
756 sizeof (struct deferred_change
), 10);
758 rtx_group_table
= htab_create (11, invariant_group_base_hash
,
759 invariant_group_base_eq
, NULL
);
761 bb_table
= XCNEWVEC (bb_info_t
, last_basic_block
);
762 rtx_group_next_id
= 0;
764 stores_off_frame_dead_at_return
= !cfun
->stdarg
;
766 init_alias_analysis ();
768 if (clear_alias_sets
)
769 clear_alias_group
= get_group_info (NULL
);
771 clear_alias_group
= NULL
;
776 /*----------------------------------------------------------------------------
779 Scan all of the insns. Any random ordering of the blocks is fine.
780 Each block is scanned in forward order to accommodate cselib which
781 is used to remove stores with non-constant bases.
782 ----------------------------------------------------------------------------*/
784 /* Delete all of the store_info recs from INSN_INFO. */
787 free_store_info (insn_info_t insn_info
)
789 store_info_t store_info
= insn_info
->store_rec
;
792 store_info_t next
= store_info
->next
;
793 if (store_info
->is_large
)
794 BITMAP_FREE (store_info
->positions_needed
.large
.bmap
);
795 if (store_info
->cse_base
)
796 pool_free (cse_store_info_pool
, store_info
);
798 pool_free (rtx_store_info_pool
, store_info
);
802 insn_info
->cannot_delete
= true;
803 insn_info
->contains_cselib_groups
= false;
804 insn_info
->store_rec
= NULL
;
814 /* Add an insn to do the add inside a x if it is a
815 PRE/POST-INC/DEC/MODIFY. D is an structure containing the insn and
816 the size of the mode of the MEM that this is inside of. */
819 replace_inc_dec (rtx
*r
, void *d
)
822 struct insn_size
*data
= (struct insn_size
*)d
;
823 switch (GET_CODE (x
))
828 rtx r1
= XEXP (x
, 0);
829 rtx c
= gen_int_mode (data
->size
, GET_MODE (r1
));
830 emit_insn_before (gen_rtx_SET (VOIDmode
, r1
,
831 gen_rtx_PLUS (GET_MODE (r1
), r1
, c
)),
839 rtx r1
= XEXP (x
, 0);
840 rtx c
= gen_int_mode (-data
->size
, GET_MODE (r1
));
841 emit_insn_before (gen_rtx_SET (VOIDmode
, r1
,
842 gen_rtx_PLUS (GET_MODE (r1
), r1
, c
)),
850 /* We can reuse the add because we are about to delete the
851 insn that contained it. */
852 rtx add
= XEXP (x
, 0);
853 rtx r1
= XEXP (add
, 0);
854 emit_insn_before (gen_rtx_SET (VOIDmode
, r1
, add
), data
->insn
);
864 /* If X is a MEM, check the address to see if it is PRE/POST-INC/DEC/MODIFY
865 and generate an add to replace that. */
868 replace_inc_dec_mem (rtx
*r
, void *d
)
871 if (x
!= NULL_RTX
&& MEM_P (x
))
873 struct insn_size data
;
875 data
.size
= GET_MODE_SIZE (GET_MODE (x
));
878 for_each_rtx (&XEXP (x
, 0), replace_inc_dec
, &data
);
885 /* Before we delete INSN, make sure that the auto inc/dec, if it is
886 there, is split into a separate insn. */
889 check_for_inc_dec (rtx insn
)
891 rtx note
= find_reg_note (insn
, REG_INC
, NULL_RTX
);
893 for_each_rtx (&insn
, replace_inc_dec_mem
, insn
);
897 /* Delete the insn and free all of the fields inside INSN_INFO. */
900 delete_dead_store_insn (insn_info_t insn_info
)
902 read_info_t read_info
;
907 check_for_inc_dec (insn_info
->insn
);
910 fprintf (dump_file
, "Locally deleting insn %d ",
911 INSN_UID (insn_info
->insn
));
912 if (insn_info
->store_rec
->alias_set
)
913 fprintf (dump_file
, "alias set %d\n",
914 (int) insn_info
->store_rec
->alias_set
);
916 fprintf (dump_file
, "\n");
919 free_store_info (insn_info
);
920 read_info
= insn_info
->read_rec
;
924 read_info_t next
= read_info
->next
;
925 pool_free (read_info_pool
, read_info
);
928 insn_info
->read_rec
= NULL
;
930 delete_insn (insn_info
->insn
);
932 insn_info
->insn
= NULL
;
934 insn_info
->wild_read
= false;
938 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
942 set_usage_bits (group_info_t group
, HOST_WIDE_INT offset
, HOST_WIDE_INT width
)
946 if (offset
> -MAX_OFFSET
&& offset
+ width
< MAX_OFFSET
)
947 for (i
=offset
; i
<offset
+width
; i
++)
954 store1
= group
->store1_n
;
955 store2
= group
->store2_n
;
960 store1
= group
->store1_p
;
961 store2
= group
->store2_p
;
965 if (bitmap_bit_p (store1
, ai
))
966 bitmap_set_bit (store2
, ai
);
969 bitmap_set_bit (store1
, ai
);
972 if (group
->offset_map_size_n
< ai
)
973 group
->offset_map_size_n
= ai
;
977 if (group
->offset_map_size_p
< ai
)
978 group
->offset_map_size_p
= ai
;
985 /* Set the BB_INFO so that the last insn is marked as a wild read. */
988 add_wild_read (bb_info_t bb_info
)
990 insn_info_t insn_info
= bb_info
->last_insn
;
991 read_info_t
*ptr
= &insn_info
->read_rec
;
995 read_info_t next
= (*ptr
)->next
;
996 if ((*ptr
)->alias_set
== 0)
998 pool_free (read_info_pool
, *ptr
);
1002 ptr
= &(*ptr
)->next
;
1004 insn_info
->wild_read
= true;
1005 active_local_stores
= NULL
;
1009 /* Return true if X is a constant or one of the registers that behave
1010 as a constant over the life of a function. This is equivalent to
1011 !rtx_varies_p for memory addresses. */
1014 const_or_frame_p (rtx x
)
1016 switch (GET_CODE (x
))
1027 /* Note that we have to test for the actual rtx used for the frame
1028 and arg pointers and not just the register number in case we have
1029 eliminated the frame and/or arg pointer and are using it
1031 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
1032 /* The arg pointer varies if it is not a fixed register. */
1033 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
])
1034 || x
== pic_offset_table_rtx
)
1043 /* Take all reasonable action to put the address of MEM into the form
1044 that we can do analysis on.
1046 The gold standard is to get the address into the form: address +
1047 OFFSET where address is something that rtx_varies_p considers a
1048 constant. When we can get the address in this form, we can do
1049 global analysis on it. Note that for constant bases, address is
1050 not actually returned, only the group_id. The address can be
1053 If that fails, we try cselib to get a value we can at least use
1054 locally. If that fails we return false.
1056 The GROUP_ID is set to -1 for cselib bases and the index of the
1057 group for non_varying bases.
1059 FOR_READ is true if this is a mem read and false if not. */
1062 canon_address (rtx mem
,
1063 alias_set_type
*alias_set_out
,
1065 HOST_WIDE_INT
*offset
,
1068 enum machine_mode address_mode
1069 = targetm
.addr_space
.address_mode (MEM_ADDR_SPACE (mem
));
1070 rtx mem_address
= XEXP (mem
, 0);
1071 rtx expanded_address
, address
;
1074 /* Make sure that cselib is has initialized all of the operands of
1075 the address before asking it to do the subst. */
1077 if (clear_alias_sets
)
1079 /* If this is a spill, do not do any further processing. */
1080 alias_set_type alias_set
= MEM_ALIAS_SET (mem
);
1082 fprintf (dump_file
, "found alias set %d\n", (int) alias_set
);
1083 if (bitmap_bit_p (clear_alias_sets
, alias_set
))
1085 struct clear_alias_mode_holder
*entry
1086 = clear_alias_set_lookup (alias_set
);
1088 /* If the modes do not match, we cannot process this set. */
1089 if (entry
->mode
!= GET_MODE (mem
))
1093 "disqualifying alias set %d, (%s) != (%s)\n",
1094 (int) alias_set
, GET_MODE_NAME (entry
->mode
),
1095 GET_MODE_NAME (GET_MODE (mem
)));
1097 bitmap_set_bit (disqualified_clear_alias_sets
, alias_set
);
1101 *alias_set_out
= alias_set
;
1102 *group_id
= clear_alias_group
->id
;
1109 cselib_lookup (mem_address
, address_mode
, 1);
1113 fprintf (dump_file
, " mem: ");
1114 print_inline_rtx (dump_file
, mem_address
, 0);
1115 fprintf (dump_file
, "\n");
1118 /* First see if just canon_rtx (mem_address) is const or frame,
1119 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1121 for (expanded
= 0; expanded
< 2; expanded
++)
1125 /* Use cselib to replace all of the reg references with the full
1126 expression. This will take care of the case where we have
1128 r_x = base + offset;
1133 val = *(base + offset); */
1135 expanded_address
= cselib_expand_value_rtx (mem_address
,
1138 /* If this fails, just go with the address from first
1140 if (!expanded_address
)
1144 expanded_address
= mem_address
;
1146 /* Split the address into canonical BASE + OFFSET terms. */
1147 address
= canon_rtx (expanded_address
);
1155 fprintf (dump_file
, "\n after cselib_expand address: ");
1156 print_inline_rtx (dump_file
, expanded_address
, 0);
1157 fprintf (dump_file
, "\n");
1160 fprintf (dump_file
, "\n after canon_rtx address: ");
1161 print_inline_rtx (dump_file
, address
, 0);
1162 fprintf (dump_file
, "\n");
1165 if (GET_CODE (address
) == CONST
)
1166 address
= XEXP (address
, 0);
1168 if (GET_CODE (address
) == PLUS
1169 && CONST_INT_P (XEXP (address
, 1)))
1171 *offset
= INTVAL (XEXP (address
, 1));
1172 address
= XEXP (address
, 0);
1175 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem
))
1176 && const_or_frame_p (address
))
1178 group_info_t group
= get_group_info (address
);
1181 fprintf (dump_file
, " gid=%d offset=%d \n",
1182 group
->id
, (int)*offset
);
1184 *group_id
= group
->id
;
1189 *base
= cselib_lookup (address
, address_mode
, true);
1195 fprintf (dump_file
, " no cselib val - should be a wild read.\n");
1199 fprintf (dump_file
, " varying cselib base=%u:%u offset = %d\n",
1200 (*base
)->uid
, (*base
)->hash
, (int)*offset
);
1205 /* Clear the rhs field from the active_local_stores array. */
1208 clear_rhs_from_active_local_stores (void)
1210 insn_info_t ptr
= active_local_stores
;
1214 store_info_t store_info
= ptr
->store_rec
;
1215 /* Skip the clobbers. */
1216 while (!store_info
->is_set
)
1217 store_info
= store_info
->next
;
1219 store_info
->rhs
= NULL
;
1220 store_info
->const_rhs
= NULL
;
1222 ptr
= ptr
->next_local_store
;
1227 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1230 set_position_unneeded (store_info_t s_info
, int pos
)
1232 if (__builtin_expect (s_info
->is_large
, false))
1234 if (!bitmap_bit_p (s_info
->positions_needed
.large
.bmap
, pos
))
1236 s_info
->positions_needed
.large
.count
++;
1237 bitmap_set_bit (s_info
->positions_needed
.large
.bmap
, pos
);
1241 s_info
->positions_needed
.small_bitmask
1242 &= ~(((unsigned HOST_WIDE_INT
) 1) << pos
);
1245 /* Mark the whole store S_INFO as unneeded. */
1248 set_all_positions_unneeded (store_info_t s_info
)
1250 if (__builtin_expect (s_info
->is_large
, false))
1252 int pos
, end
= s_info
->end
- s_info
->begin
;
1253 for (pos
= 0; pos
< end
; pos
++)
1254 bitmap_set_bit (s_info
->positions_needed
.large
.bmap
, pos
);
1255 s_info
->positions_needed
.large
.count
= end
;
1258 s_info
->positions_needed
.small_bitmask
= (unsigned HOST_WIDE_INT
) 0;
1261 /* Return TRUE if any bytes from S_INFO store are needed. */
1264 any_positions_needed_p (store_info_t s_info
)
1266 if (__builtin_expect (s_info
->is_large
, false))
1267 return (s_info
->positions_needed
.large
.count
1268 < s_info
->end
- s_info
->begin
);
1270 return (s_info
->positions_needed
.small_bitmask
1271 != (unsigned HOST_WIDE_INT
) 0);
1274 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1275 store are needed. */
1278 all_positions_needed_p (store_info_t s_info
, int start
, int width
)
1280 if (__builtin_expect (s_info
->is_large
, false))
1282 int end
= start
+ width
;
1284 if (bitmap_bit_p (s_info
->positions_needed
.large
.bmap
, start
++))
1290 unsigned HOST_WIDE_INT mask
= lowpart_bitmask (width
) << start
;
1291 return (s_info
->positions_needed
.small_bitmask
& mask
) == mask
;
1296 static rtx
get_stored_val (store_info_t
, enum machine_mode
, HOST_WIDE_INT
,
1297 HOST_WIDE_INT
, basic_block
, bool);
1300 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1301 there is a candidate store, after adding it to the appropriate
1302 local store group if so. */
1305 record_store (rtx body
, bb_info_t bb_info
)
1307 rtx mem
, rhs
, const_rhs
, mem_addr
;
1308 HOST_WIDE_INT offset
= 0;
1309 HOST_WIDE_INT width
= 0;
1310 alias_set_type spill_alias_set
;
1311 insn_info_t insn_info
= bb_info
->last_insn
;
1312 store_info_t store_info
= NULL
;
1314 cselib_val
*base
= NULL
;
1315 insn_info_t ptr
, last
, redundant_reason
;
1316 bool store_is_unused
;
1318 if (GET_CODE (body
) != SET
&& GET_CODE (body
) != CLOBBER
)
1321 mem
= SET_DEST (body
);
1323 /* If this is not used, then this cannot be used to keep the insn
1324 from being deleted. On the other hand, it does provide something
1325 that can be used to prove that another store is dead. */
1327 = (find_reg_note (insn_info
->insn
, REG_UNUSED
, mem
) != NULL
);
1329 /* Check whether that value is a suitable memory location. */
1332 /* If the set or clobber is unused, then it does not effect our
1333 ability to get rid of the entire insn. */
1334 if (!store_is_unused
)
1335 insn_info
->cannot_delete
= true;
1339 /* At this point we know mem is a mem. */
1340 if (GET_MODE (mem
) == BLKmode
)
1342 if (GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
1345 fprintf (dump_file
, " adding wild read for (clobber (mem:BLK (scratch))\n");
1346 add_wild_read (bb_info
);
1347 insn_info
->cannot_delete
= true;
1350 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1351 as memset (addr, 0, 36); */
1352 else if (!MEM_SIZE (mem
)
1353 || !CONST_INT_P (MEM_SIZE (mem
))
1354 || GET_CODE (body
) != SET
1355 || INTVAL (MEM_SIZE (mem
)) <= 0
1356 || INTVAL (MEM_SIZE (mem
)) > MAX_OFFSET
1357 || !CONST_INT_P (SET_SRC (body
)))
1359 if (!store_is_unused
)
1361 /* If the set or clobber is unused, then it does not effect our
1362 ability to get rid of the entire insn. */
1363 insn_info
->cannot_delete
= true;
1364 clear_rhs_from_active_local_stores ();
1370 /* We can still process a volatile mem, we just cannot delete it. */
1371 if (MEM_VOLATILE_P (mem
))
1372 insn_info
->cannot_delete
= true;
1374 if (!canon_address (mem
, &spill_alias_set
, &group_id
, &offset
, &base
))
1376 clear_rhs_from_active_local_stores ();
1380 if (GET_MODE (mem
) == BLKmode
)
1381 width
= INTVAL (MEM_SIZE (mem
));
1384 width
= GET_MODE_SIZE (GET_MODE (mem
));
1385 gcc_assert ((unsigned) width
<= HOST_BITS_PER_WIDE_INT
);
1388 if (spill_alias_set
)
1390 bitmap store1
= clear_alias_group
->store1_p
;
1391 bitmap store2
= clear_alias_group
->store2_p
;
1393 gcc_assert (GET_MODE (mem
) != BLKmode
);
1395 if (bitmap_bit_p (store1
, spill_alias_set
))
1396 bitmap_set_bit (store2
, spill_alias_set
);
1398 bitmap_set_bit (store1
, spill_alias_set
);
1400 if (clear_alias_group
->offset_map_size_p
< spill_alias_set
)
1401 clear_alias_group
->offset_map_size_p
= spill_alias_set
;
1403 store_info
= (store_info_t
) pool_alloc (rtx_store_info_pool
);
1406 fprintf (dump_file
, " processing spill store %d(%s)\n",
1407 (int) spill_alias_set
, GET_MODE_NAME (GET_MODE (mem
)));
1409 else if (group_id
>= 0)
1411 /* In the restrictive case where the base is a constant or the
1412 frame pointer we can do global analysis. */
1415 = VEC_index (group_info_t
, rtx_group_vec
, group_id
);
1417 store_info
= (store_info_t
) pool_alloc (rtx_store_info_pool
);
1418 set_usage_bits (group
, offset
, width
);
1421 fprintf (dump_file
, " processing const base store gid=%d[%d..%d)\n",
1422 group_id
, (int)offset
, (int)(offset
+width
));
1426 rtx base_term
= find_base_term (XEXP (mem
, 0));
1428 || (GET_CODE (base_term
) == ADDRESS
1429 && GET_MODE (base_term
) == Pmode
1430 && XEXP (base_term
, 0) == stack_pointer_rtx
))
1431 insn_info
->stack_pointer_based
= true;
1432 insn_info
->contains_cselib_groups
= true;
1434 store_info
= (store_info_t
) pool_alloc (cse_store_info_pool
);
1438 fprintf (dump_file
, " processing cselib store [%d..%d)\n",
1439 (int)offset
, (int)(offset
+width
));
1442 const_rhs
= rhs
= NULL_RTX
;
1443 if (GET_CODE (body
) == SET
1444 /* No place to keep the value after ra. */
1445 && !reload_completed
1446 && (REG_P (SET_SRC (body
))
1447 || GET_CODE (SET_SRC (body
)) == SUBREG
1448 || CONSTANT_P (SET_SRC (body
)))
1449 && !MEM_VOLATILE_P (mem
)
1450 /* Sometimes the store and reload is used for truncation and
1452 && !(FLOAT_MODE_P (GET_MODE (mem
)) && (flag_float_store
)))
1454 rhs
= SET_SRC (body
);
1455 if (CONSTANT_P (rhs
))
1457 else if (body
== PATTERN (insn_info
->insn
))
1459 rtx tem
= find_reg_note (insn_info
->insn
, REG_EQUAL
, NULL_RTX
);
1460 if (tem
&& CONSTANT_P (XEXP (tem
, 0)))
1461 const_rhs
= XEXP (tem
, 0);
1463 if (const_rhs
== NULL_RTX
&& REG_P (rhs
))
1465 rtx tem
= cselib_expand_value_rtx (rhs
, scratch
, 5);
1467 if (tem
&& CONSTANT_P (tem
))
1472 /* Check to see if this stores causes some other stores to be
1474 ptr
= active_local_stores
;
1476 redundant_reason
= NULL
;
1477 mem
= canon_rtx (mem
);
1478 /* For alias_set != 0 canon_true_dependence should be never called. */
1479 if (spill_alias_set
)
1480 mem_addr
= NULL_RTX
;
1484 mem_addr
= base
->val_rtx
;
1488 = VEC_index (group_info_t
, rtx_group_vec
, group_id
);
1489 mem_addr
= group
->canon_base_addr
;
1492 mem_addr
= plus_constant (mem_addr
, offset
);
1497 insn_info_t next
= ptr
->next_local_store
;
1498 store_info_t s_info
= ptr
->store_rec
;
1501 /* Skip the clobbers. We delete the active insn if this insn
1502 shadows the set. To have been put on the active list, it
1503 has exactly on set. */
1504 while (!s_info
->is_set
)
1505 s_info
= s_info
->next
;
1507 if (s_info
->alias_set
!= spill_alias_set
)
1509 else if (s_info
->alias_set
)
1511 struct clear_alias_mode_holder
*entry
1512 = clear_alias_set_lookup (s_info
->alias_set
);
1513 /* Generally, spills cannot be processed if and of the
1514 references to the slot have a different mode. But if
1515 we are in the same block and mode is exactly the same
1516 between this store and one before in the same block,
1517 we can still delete it. */
1518 if ((GET_MODE (mem
) == GET_MODE (s_info
->mem
))
1519 && (GET_MODE (mem
) == entry
->mode
))
1522 set_all_positions_unneeded (s_info
);
1525 fprintf (dump_file
, " trying spill store in insn=%d alias_set=%d\n",
1526 INSN_UID (ptr
->insn
), (int) s_info
->alias_set
);
1528 else if ((s_info
->group_id
== group_id
)
1529 && (s_info
->cse_base
== base
))
1533 fprintf (dump_file
, " trying store in insn=%d gid=%d[%d..%d)\n",
1534 INSN_UID (ptr
->insn
), s_info
->group_id
,
1535 (int)s_info
->begin
, (int)s_info
->end
);
1537 /* Even if PTR won't be eliminated as unneeded, if both
1538 PTR and this insn store the same constant value, we might
1539 eliminate this insn instead. */
1540 if (s_info
->const_rhs
1542 && offset
>= s_info
->begin
1543 && offset
+ width
<= s_info
->end
1544 && all_positions_needed_p (s_info
, offset
- s_info
->begin
,
1547 if (GET_MODE (mem
) == BLKmode
)
1549 if (GET_MODE (s_info
->mem
) == BLKmode
1550 && s_info
->const_rhs
== const_rhs
)
1551 redundant_reason
= ptr
;
1553 else if (s_info
->const_rhs
== const0_rtx
1554 && const_rhs
== const0_rtx
)
1555 redundant_reason
= ptr
;
1560 val
= get_stored_val (s_info
, GET_MODE (mem
),
1561 offset
, offset
+ width
,
1562 BLOCK_FOR_INSN (insn_info
->insn
),
1564 if (get_insns () != NULL
)
1567 if (val
&& rtx_equal_p (val
, const_rhs
))
1568 redundant_reason
= ptr
;
1572 for (i
= MAX (offset
, s_info
->begin
);
1573 i
< offset
+ width
&& i
< s_info
->end
;
1575 set_position_unneeded (s_info
, i
- s_info
->begin
);
1577 else if (s_info
->rhs
)
1578 /* Need to see if it is possible for this store to overwrite
1579 the value of store_info. If it is, set the rhs to NULL to
1580 keep it from being used to remove a load. */
1582 if (canon_true_dependence (s_info
->mem
,
1583 GET_MODE (s_info
->mem
),
1585 mem
, mem_addr
, rtx_varies_p
))
1588 s_info
->const_rhs
= NULL
;
1592 /* An insn can be deleted if every position of every one of
1593 its s_infos is zero. */
1594 if (any_positions_needed_p (s_info
)
1595 || ptr
->cannot_delete
)
1600 insn_info_t insn_to_delete
= ptr
;
1603 last
->next_local_store
= ptr
->next_local_store
;
1605 active_local_stores
= ptr
->next_local_store
;
1607 delete_dead_store_insn (insn_to_delete
);
1615 /* Finish filling in the store_info. */
1616 store_info
->next
= insn_info
->store_rec
;
1617 insn_info
->store_rec
= store_info
;
1618 store_info
->mem
= mem
;
1619 store_info
->alias_set
= spill_alias_set
;
1620 store_info
->mem_addr
= mem_addr
;
1621 store_info
->cse_base
= base
;
1622 if (width
> HOST_BITS_PER_WIDE_INT
)
1624 store_info
->is_large
= true;
1625 store_info
->positions_needed
.large
.count
= 0;
1626 store_info
->positions_needed
.large
.bmap
= BITMAP_ALLOC (NULL
);
1630 store_info
->is_large
= false;
1631 store_info
->positions_needed
.small_bitmask
= lowpart_bitmask (width
);
1633 store_info
->group_id
= group_id
;
1634 store_info
->begin
= offset
;
1635 store_info
->end
= offset
+ width
;
1636 store_info
->is_set
= GET_CODE (body
) == SET
;
1637 store_info
->rhs
= rhs
;
1638 store_info
->const_rhs
= const_rhs
;
1639 store_info
->redundant_reason
= redundant_reason
;
1641 /* If this is a clobber, we return 0. We will only be able to
1642 delete this insn if there is only one store USED store, but we
1643 can use the clobber to delete other stores earlier. */
1644 return store_info
->is_set
? 1 : 0;
1649 dump_insn_info (const char * start
, insn_info_t insn_info
)
1651 fprintf (dump_file
, "%s insn=%d %s\n", start
,
1652 INSN_UID (insn_info
->insn
),
1653 insn_info
->store_rec
? "has store" : "naked");
1657 /* If the modes are different and the value's source and target do not
1658 line up, we need to extract the value from lower part of the rhs of
1659 the store, shift it, and then put it into a form that can be shoved
1660 into the read_insn. This function generates a right SHIFT of a
1661 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1662 shift sequence is returned or NULL if we failed to find a
1666 find_shift_sequence (int access_size
,
1667 store_info_t store_info
,
1668 enum machine_mode read_mode
,
1669 int shift
, bool speed
, bool require_cst
)
1671 enum machine_mode store_mode
= GET_MODE (store_info
->mem
);
1672 enum machine_mode new_mode
;
1673 rtx read_reg
= NULL
;
1675 /* Some machines like the x86 have shift insns for each size of
1676 operand. Other machines like the ppc or the ia-64 may only have
1677 shift insns that shift values within 32 or 64 bit registers.
1678 This loop tries to find the smallest shift insn that will right
1679 justify the value we want to read but is available in one insn on
1682 for (new_mode
= smallest_mode_for_size (access_size
* BITS_PER_UNIT
,
1684 GET_MODE_BITSIZE (new_mode
) <= BITS_PER_WORD
;
1685 new_mode
= GET_MODE_WIDER_MODE (new_mode
))
1687 rtx target
, new_reg
, shift_seq
, insn
, new_lhs
;
1690 /* If a constant was stored into memory, try to simplify it here,
1691 otherwise the cost of the shift might preclude this optimization
1692 e.g. at -Os, even when no actual shift will be needed. */
1693 if (store_info
->const_rhs
)
1695 unsigned int byte
= subreg_lowpart_offset (new_mode
, store_mode
);
1696 rtx ret
= simplify_subreg (new_mode
, store_info
->const_rhs
,
1698 if (ret
&& CONSTANT_P (ret
))
1700 ret
= simplify_const_binary_operation (LSHIFTRT
, new_mode
,
1701 ret
, GEN_INT (shift
));
1702 if (ret
&& CONSTANT_P (ret
))
1704 byte
= subreg_lowpart_offset (read_mode
, new_mode
);
1705 ret
= simplify_subreg (read_mode
, ret
, new_mode
, byte
);
1706 if (ret
&& CONSTANT_P (ret
)
1707 && rtx_cost (ret
, SET
, speed
) <= COSTS_N_INSNS (1))
1716 /* Try a wider mode if truncating the store mode to NEW_MODE
1717 requires a real instruction. */
1718 if (GET_MODE_BITSIZE (new_mode
) < GET_MODE_BITSIZE (store_mode
)
1719 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (new_mode
),
1720 GET_MODE_BITSIZE (store_mode
)))
1723 /* Also try a wider mode if the necessary punning is either not
1724 desirable or not possible. */
1725 if (!CONSTANT_P (store_info
->rhs
)
1726 && !MODES_TIEABLE_P (new_mode
, store_mode
))
1729 new_reg
= gen_reg_rtx (new_mode
);
1733 /* In theory we could also check for an ashr. Ian Taylor knows
1734 of one dsp where the cost of these two was not the same. But
1735 this really is a rare case anyway. */
1736 target
= expand_binop (new_mode
, lshr_optab
, new_reg
,
1737 GEN_INT (shift
), new_reg
, 1, OPTAB_DIRECT
);
1739 shift_seq
= get_insns ();
1742 if (target
!= new_reg
|| shift_seq
== NULL
)
1746 for (insn
= shift_seq
; insn
!= NULL_RTX
; insn
= NEXT_INSN (insn
))
1748 cost
+= insn_rtx_cost (PATTERN (insn
), speed
);
1750 /* The computation up to here is essentially independent
1751 of the arguments and could be precomputed. It may
1752 not be worth doing so. We could precompute if
1753 worthwhile or at least cache the results. The result
1754 technically depends on both SHIFT and ACCESS_SIZE,
1755 but in practice the answer will depend only on ACCESS_SIZE. */
1757 if (cost
> COSTS_N_INSNS (1))
1760 new_lhs
= extract_low_bits (new_mode
, store_mode
,
1761 copy_rtx (store_info
->rhs
));
1762 if (new_lhs
== NULL_RTX
)
1765 /* We found an acceptable shift. Generate a move to
1766 take the value from the store and put it into the
1767 shift pseudo, then shift it, then generate another
1768 move to put in into the target of the read. */
1769 emit_move_insn (new_reg
, new_lhs
);
1770 emit_insn (shift_seq
);
1771 read_reg
= extract_low_bits (read_mode
, new_mode
, new_reg
);
1779 /* Call back for note_stores to find the hard regs set or clobbered by
1780 insn. Data is a bitmap of the hardregs set so far. */
1783 look_for_hardregs (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
1785 bitmap regs_set
= (bitmap
) data
;
1788 && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1790 int regno
= REGNO (x
);
1791 int n
= hard_regno_nregs
[regno
][GET_MODE (x
)];
1793 bitmap_set_bit (regs_set
, regno
+ n
);
1797 /* Helper function for replace_read and record_store.
1798 Attempt to return a value stored in STORE_INFO, from READ_BEGIN
1799 to one before READ_END bytes read in READ_MODE. Return NULL
1800 if not successful. If REQUIRE_CST is true, return always constant. */
1803 get_stored_val (store_info_t store_info
, enum machine_mode read_mode
,
1804 HOST_WIDE_INT read_begin
, HOST_WIDE_INT read_end
,
1805 basic_block bb
, bool require_cst
)
1807 enum machine_mode store_mode
= GET_MODE (store_info
->mem
);
1809 int access_size
; /* In bytes. */
1812 /* To get here the read is within the boundaries of the write so
1813 shift will never be negative. Start out with the shift being in
1815 if (store_mode
== BLKmode
)
1817 else if (BYTES_BIG_ENDIAN
)
1818 shift
= store_info
->end
- read_end
;
1820 shift
= read_begin
- store_info
->begin
;
1822 access_size
= shift
+ GET_MODE_SIZE (read_mode
);
1824 /* From now on it is bits. */
1825 shift
*= BITS_PER_UNIT
;
1828 read_reg
= find_shift_sequence (access_size
, store_info
, read_mode
, shift
,
1829 optimize_bb_for_speed_p (bb
),
1831 else if (store_mode
== BLKmode
)
1833 /* The store is a memset (addr, const_val, const_size). */
1834 gcc_assert (CONST_INT_P (store_info
->rhs
));
1835 store_mode
= int_mode_for_mode (read_mode
);
1836 if (store_mode
== BLKmode
)
1837 read_reg
= NULL_RTX
;
1838 else if (store_info
->rhs
== const0_rtx
)
1839 read_reg
= extract_low_bits (read_mode
, store_mode
, const0_rtx
);
1840 else if (GET_MODE_BITSIZE (store_mode
) > HOST_BITS_PER_WIDE_INT
1841 || BITS_PER_UNIT
>= HOST_BITS_PER_WIDE_INT
)
1842 read_reg
= NULL_RTX
;
1845 unsigned HOST_WIDE_INT c
1846 = INTVAL (store_info
->rhs
)
1847 & (((HOST_WIDE_INT
) 1 << BITS_PER_UNIT
) - 1);
1848 int shift
= BITS_PER_UNIT
;
1849 while (shift
< HOST_BITS_PER_WIDE_INT
)
1854 read_reg
= GEN_INT (trunc_int_for_mode (c
, store_mode
));
1855 read_reg
= extract_low_bits (read_mode
, store_mode
, read_reg
);
1858 else if (store_info
->const_rhs
1860 || GET_MODE_CLASS (read_mode
) != GET_MODE_CLASS (store_mode
)))
1861 read_reg
= extract_low_bits (read_mode
, store_mode
,
1862 copy_rtx (store_info
->const_rhs
));
1864 read_reg
= extract_low_bits (read_mode
, store_mode
,
1865 copy_rtx (store_info
->rhs
));
1866 if (require_cst
&& read_reg
&& !CONSTANT_P (read_reg
))
1867 read_reg
= NULL_RTX
;
1871 /* Take a sequence of:
1894 Depending on the alignment and the mode of the store and
1898 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1899 and READ_INSN are for the read. Return true if the replacement
1903 replace_read (store_info_t store_info
, insn_info_t store_insn
,
1904 read_info_t read_info
, insn_info_t read_insn
, rtx
*loc
,
1907 enum machine_mode store_mode
= GET_MODE (store_info
->mem
);
1908 enum machine_mode read_mode
= GET_MODE (read_info
->mem
);
1909 rtx insns
, this_insn
, read_reg
;
1915 /* Create a sequence of instructions to set up the read register.
1916 This sequence goes immediately before the store and its result
1917 is read by the load.
1919 We need to keep this in perspective. We are replacing a read
1920 with a sequence of insns, but the read will almost certainly be
1921 in cache, so it is not going to be an expensive one. Thus, we
1922 are not willing to do a multi insn shift or worse a subroutine
1923 call to get rid of the read. */
1925 fprintf (dump_file
, "trying to replace %smode load in insn %d"
1926 " from %smode store in insn %d\n",
1927 GET_MODE_NAME (read_mode
), INSN_UID (read_insn
->insn
),
1928 GET_MODE_NAME (store_mode
), INSN_UID (store_insn
->insn
));
1930 bb
= BLOCK_FOR_INSN (read_insn
->insn
);
1931 read_reg
= get_stored_val (store_info
,
1932 read_mode
, read_info
->begin
, read_info
->end
,
1934 if (read_reg
== NULL_RTX
)
1938 fprintf (dump_file
, " -- could not extract bits of stored value\n");
1941 /* Force the value into a new register so that it won't be clobbered
1942 between the store and the load. */
1943 read_reg
= copy_to_mode_reg (read_mode
, read_reg
);
1944 insns
= get_insns ();
1947 if (insns
!= NULL_RTX
)
1949 /* Now we have to scan the set of new instructions to see if the
1950 sequence contains and sets of hardregs that happened to be
1951 live at this point. For instance, this can happen if one of
1952 the insns sets the CC and the CC happened to be live at that
1953 point. This does occasionally happen, see PR 37922. */
1954 bitmap regs_set
= BITMAP_ALLOC (NULL
);
1956 for (this_insn
= insns
; this_insn
!= NULL_RTX
; this_insn
= NEXT_INSN (this_insn
))
1957 note_stores (PATTERN (this_insn
), look_for_hardregs
, regs_set
);
1959 bitmap_and_into (regs_set
, regs_live
);
1960 if (!bitmap_empty_p (regs_set
))
1965 "abandoning replacement because sequence clobbers live hardregs:");
1966 df_print_regset (dump_file
, regs_set
);
1969 BITMAP_FREE (regs_set
);
1972 BITMAP_FREE (regs_set
);
1975 if (validate_change (read_insn
->insn
, loc
, read_reg
, 0))
1977 deferred_change_t deferred_change
=
1978 (deferred_change_t
) pool_alloc (deferred_change_pool
);
1980 /* Insert this right before the store insn where it will be safe
1981 from later insns that might change it before the read. */
1982 emit_insn_before (insns
, store_insn
->insn
);
1984 /* And now for the kludge part: cselib croaks if you just
1985 return at this point. There are two reasons for this:
1987 1) Cselib has an idea of how many pseudos there are and
1988 that does not include the new ones we just added.
1990 2) Cselib does not know about the move insn we added
1991 above the store_info, and there is no way to tell it
1992 about it, because it has "moved on".
1994 Problem (1) is fixable with a certain amount of engineering.
1995 Problem (2) is requires starting the bb from scratch. This
1998 So we are just going to have to lie. The move/extraction
1999 insns are not really an issue, cselib did not see them. But
2000 the use of the new pseudo read_insn is a real problem because
2001 cselib has not scanned this insn. The way that we solve this
2002 problem is that we are just going to put the mem back for now
2003 and when we are finished with the block, we undo this. We
2004 keep a table of mems to get rid of. At the end of the basic
2005 block we can put them back. */
2007 *loc
= read_info
->mem
;
2008 deferred_change
->next
= deferred_change_list
;
2009 deferred_change_list
= deferred_change
;
2010 deferred_change
->loc
= loc
;
2011 deferred_change
->reg
= read_reg
;
2013 /* Get rid of the read_info, from the point of view of the
2014 rest of dse, play like this read never happened. */
2015 read_insn
->read_rec
= read_info
->next
;
2016 pool_free (read_info_pool
, read_info
);
2019 fprintf (dump_file
, " -- replaced the loaded MEM with ");
2020 print_simple_rtl (dump_file
, read_reg
);
2021 fprintf (dump_file
, "\n");
2029 fprintf (dump_file
, " -- replacing the loaded MEM with ");
2030 print_simple_rtl (dump_file
, read_reg
);
2031 fprintf (dump_file
, " led to an invalid instruction\n");
2037 /* A for_each_rtx callback in which DATA is the bb_info. Check to see
2038 if LOC is a mem and if it is look at the address and kill any
2039 appropriate stores that may be active. */
2042 check_mem_read_rtx (rtx
*loc
, void *data
)
2044 rtx mem
= *loc
, mem_addr
;
2046 insn_info_t insn_info
;
2047 HOST_WIDE_INT offset
= 0;
2048 HOST_WIDE_INT width
= 0;
2049 alias_set_type spill_alias_set
= 0;
2050 cselib_val
*base
= NULL
;
2052 read_info_t read_info
;
2054 if (!mem
|| !MEM_P (mem
))
2057 bb_info
= (bb_info_t
) data
;
2058 insn_info
= bb_info
->last_insn
;
2060 if ((MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
2061 || (MEM_VOLATILE_P (mem
)))
2064 fprintf (dump_file
, " adding wild read, volatile or barrier.\n");
2065 add_wild_read (bb_info
);
2066 insn_info
->cannot_delete
= true;
2070 /* If it is reading readonly mem, then there can be no conflict with
2072 if (MEM_READONLY_P (mem
))
2075 if (!canon_address (mem
, &spill_alias_set
, &group_id
, &offset
, &base
))
2078 fprintf (dump_file
, " adding wild read, canon_address failure.\n");
2079 add_wild_read (bb_info
);
2083 if (GET_MODE (mem
) == BLKmode
)
2086 width
= GET_MODE_SIZE (GET_MODE (mem
));
2088 read_info
= (read_info_t
) pool_alloc (read_info_pool
);
2089 read_info
->group_id
= group_id
;
2090 read_info
->mem
= mem
;
2091 read_info
->alias_set
= spill_alias_set
;
2092 read_info
->begin
= offset
;
2093 read_info
->end
= offset
+ width
;
2094 read_info
->next
= insn_info
->read_rec
;
2095 insn_info
->read_rec
= read_info
;
2096 /* For alias_set != 0 canon_true_dependence should be never called. */
2097 if (spill_alias_set
)
2098 mem_addr
= NULL_RTX
;
2102 mem_addr
= base
->val_rtx
;
2106 = VEC_index (group_info_t
, rtx_group_vec
, group_id
);
2107 mem_addr
= group
->canon_base_addr
;
2110 mem_addr
= plus_constant (mem_addr
, offset
);
2113 /* We ignore the clobbers in store_info. The is mildly aggressive,
2114 but there really should not be a clobber followed by a read. */
2116 if (spill_alias_set
)
2118 insn_info_t i_ptr
= active_local_stores
;
2119 insn_info_t last
= NULL
;
2122 fprintf (dump_file
, " processing spill load %d\n",
2123 (int) spill_alias_set
);
2127 store_info_t store_info
= i_ptr
->store_rec
;
2129 /* Skip the clobbers. */
2130 while (!store_info
->is_set
)
2131 store_info
= store_info
->next
;
2133 if (store_info
->alias_set
== spill_alias_set
)
2136 dump_insn_info ("removing from active", i_ptr
);
2139 last
->next_local_store
= i_ptr
->next_local_store
;
2141 active_local_stores
= i_ptr
->next_local_store
;
2145 i_ptr
= i_ptr
->next_local_store
;
2148 else if (group_id
>= 0)
2150 /* This is the restricted case where the base is a constant or
2151 the frame pointer and offset is a constant. */
2152 insn_info_t i_ptr
= active_local_stores
;
2153 insn_info_t last
= NULL
;
2158 fprintf (dump_file
, " processing const load gid=%d[BLK]\n",
2161 fprintf (dump_file
, " processing const load gid=%d[%d..%d)\n",
2162 group_id
, (int)offset
, (int)(offset
+width
));
2167 bool remove
= false;
2168 store_info_t store_info
= i_ptr
->store_rec
;
2170 /* Skip the clobbers. */
2171 while (!store_info
->is_set
)
2172 store_info
= store_info
->next
;
2174 /* There are three cases here. */
2175 if (store_info
->group_id
< 0)
2176 /* We have a cselib store followed by a read from a
2179 = canon_true_dependence (store_info
->mem
,
2180 GET_MODE (store_info
->mem
),
2181 store_info
->mem_addr
,
2182 mem
, mem_addr
, rtx_varies_p
);
2184 else if (group_id
== store_info
->group_id
)
2186 /* This is a block mode load. We may get lucky and
2187 canon_true_dependence may save the day. */
2190 = canon_true_dependence (store_info
->mem
,
2191 GET_MODE (store_info
->mem
),
2192 store_info
->mem_addr
,
2193 mem
, mem_addr
, rtx_varies_p
);
2195 /* If this read is just reading back something that we just
2196 stored, rewrite the read. */
2200 && offset
>= store_info
->begin
2201 && offset
+ width
<= store_info
->end
2202 && all_positions_needed_p (store_info
,
2203 offset
- store_info
->begin
,
2205 && replace_read (store_info
, i_ptr
, read_info
,
2206 insn_info
, loc
, bb_info
->regs_live
))
2209 /* The bases are the same, just see if the offsets
2211 if ((offset
< store_info
->end
)
2212 && (offset
+ width
> store_info
->begin
))
2218 The else case that is missing here is that the
2219 bases are constant but different. There is nothing
2220 to do here because there is no overlap. */
2225 dump_insn_info ("removing from active", i_ptr
);
2228 last
->next_local_store
= i_ptr
->next_local_store
;
2230 active_local_stores
= i_ptr
->next_local_store
;
2234 i_ptr
= i_ptr
->next_local_store
;
2239 insn_info_t i_ptr
= active_local_stores
;
2240 insn_info_t last
= NULL
;
2243 fprintf (dump_file
, " processing cselib load mem:");
2244 print_inline_rtx (dump_file
, mem
, 0);
2245 fprintf (dump_file
, "\n");
2250 bool remove
= false;
2251 store_info_t store_info
= i_ptr
->store_rec
;
2254 fprintf (dump_file
, " processing cselib load against insn %d\n",
2255 INSN_UID (i_ptr
->insn
));
2257 /* Skip the clobbers. */
2258 while (!store_info
->is_set
)
2259 store_info
= store_info
->next
;
2261 /* If this read is just reading back something that we just
2262 stored, rewrite the read. */
2264 && store_info
->group_id
== -1
2265 && store_info
->cse_base
== base
2267 && offset
>= store_info
->begin
2268 && offset
+ width
<= store_info
->end
2269 && all_positions_needed_p (store_info
,
2270 offset
- store_info
->begin
, width
)
2271 && replace_read (store_info
, i_ptr
, read_info
, insn_info
, loc
,
2272 bb_info
->regs_live
))
2275 if (!store_info
->alias_set
)
2276 remove
= canon_true_dependence (store_info
->mem
,
2277 GET_MODE (store_info
->mem
),
2278 store_info
->mem_addr
,
2279 mem
, mem_addr
, rtx_varies_p
);
2284 dump_insn_info ("removing from active", i_ptr
);
2287 last
->next_local_store
= i_ptr
->next_local_store
;
2289 active_local_stores
= i_ptr
->next_local_store
;
2293 i_ptr
= i_ptr
->next_local_store
;
2299 /* A for_each_rtx callback in which DATA points the INSN_INFO for
2300 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2301 true for any part of *LOC. */
2304 check_mem_read_use (rtx
*loc
, void *data
)
2306 for_each_rtx (loc
, check_mem_read_rtx
, data
);
2310 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2311 So far it only handles arguments passed in registers. */
2314 get_call_args (rtx call_insn
, tree fn
, rtx
*args
, int nargs
)
2316 CUMULATIVE_ARGS args_so_far
;
2320 INIT_CUMULATIVE_ARGS (args_so_far
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
2322 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
2324 arg
!= void_list_node
&& idx
< nargs
;
2325 arg
= TREE_CHAIN (arg
), idx
++)
2327 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
2328 rtx reg
= FUNCTION_ARG (args_so_far
, mode
, NULL_TREE
, 1), link
, tmp
;
2329 if (!reg
|| !REG_P (reg
) || GET_MODE (reg
) != mode
2330 || GET_MODE_CLASS (mode
) != MODE_INT
)
2333 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
);
2335 link
= XEXP (link
, 1))
2336 if (GET_CODE (XEXP (link
, 0)) == USE
)
2338 args
[idx
] = XEXP (XEXP (link
, 0), 0);
2339 if (REG_P (args
[idx
])
2340 && REGNO (args
[idx
]) == REGNO (reg
)
2341 && (GET_MODE (args
[idx
]) == mode
2342 || (GET_MODE_CLASS (GET_MODE (args
[idx
])) == MODE_INT
2343 && (GET_MODE_SIZE (GET_MODE (args
[idx
]))
2345 && (GET_MODE_SIZE (GET_MODE (args
[idx
]))
2346 > GET_MODE_SIZE (mode
)))))
2352 tmp
= cselib_expand_value_rtx (args
[idx
], scratch
, 5);
2353 if (GET_MODE (args
[idx
]) != mode
)
2355 if (!tmp
|| !CONST_INT_P (tmp
))
2357 tmp
= GEN_INT (trunc_int_for_mode (INTVAL (tmp
), mode
));
2362 FUNCTION_ARG_ADVANCE (args_so_far
, mode
, NULL_TREE
, 1);
2364 if (arg
!= void_list_node
|| idx
!= nargs
)
2370 /* Apply record_store to all candidate stores in INSN. Mark INSN
2371 if some part of it is not a candidate store and assigns to a
2372 non-register target. */
2375 scan_insn (bb_info_t bb_info
, rtx insn
)
2378 insn_info_t insn_info
= (insn_info_t
) pool_alloc (insn_info_pool
);
2380 memset (insn_info
, 0, sizeof (struct insn_info
));
2383 fprintf (dump_file
, "\n**scanning insn=%d\n",
2386 insn_info
->prev_insn
= bb_info
->last_insn
;
2387 insn_info
->insn
= insn
;
2388 bb_info
->last_insn
= insn_info
;
2390 if (DEBUG_INSN_P (insn
))
2392 insn_info
->cannot_delete
= true;
2396 /* Cselib clears the table for this case, so we have to essentially
2398 if (NONJUMP_INSN_P (insn
)
2399 && GET_CODE (PATTERN (insn
)) == ASM_OPERANDS
2400 && MEM_VOLATILE_P (PATTERN (insn
)))
2402 add_wild_read (bb_info
);
2403 insn_info
->cannot_delete
= true;
2407 /* Look at all of the uses in the insn. */
2408 note_uses (&PATTERN (insn
), check_mem_read_use
, bb_info
);
2413 tree memset_call
= NULL_TREE
;
2415 insn_info
->cannot_delete
= true;
2417 /* Const functions cannot do anything bad i.e. read memory,
2418 however, they can read their parameters which may have
2419 been pushed onto the stack.
2420 memset and bzero don't read memory either. */
2421 const_call
= RTL_CONST_CALL_P (insn
);
2424 rtx call
= PATTERN (insn
);
2425 if (GET_CODE (call
) == PARALLEL
)
2426 call
= XVECEXP (call
, 0, 0);
2427 if (GET_CODE (call
) == SET
)
2428 call
= SET_SRC (call
);
2429 if (GET_CODE (call
) == CALL
2430 && MEM_P (XEXP (call
, 0))
2431 && GET_CODE (XEXP (XEXP (call
, 0), 0)) == SYMBOL_REF
)
2433 rtx symbol
= XEXP (XEXP (call
, 0), 0);
2434 if (SYMBOL_REF_DECL (symbol
)
2435 && TREE_CODE (SYMBOL_REF_DECL (symbol
)) == FUNCTION_DECL
)
2437 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol
))
2439 && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol
))
2440 == BUILT_IN_MEMSET
))
2441 || SYMBOL_REF_DECL (symbol
) == block_clear_fn
)
2442 memset_call
= SYMBOL_REF_DECL (symbol
);
2446 if (const_call
|| memset_call
)
2448 insn_info_t i_ptr
= active_local_stores
;
2449 insn_info_t last
= NULL
;
2452 fprintf (dump_file
, "%s call %d\n",
2453 const_call
? "const" : "memset", INSN_UID (insn
));
2455 /* See the head comment of the frame_read field. */
2456 if (reload_completed
)
2457 insn_info
->frame_read
= true;
2459 /* Loop over the active stores and remove those which are
2460 killed by the const function call. */
2463 bool remove_store
= false;
2465 /* The stack pointer based stores are always killed. */
2466 if (i_ptr
->stack_pointer_based
)
2467 remove_store
= true;
2469 /* If the frame is read, the frame related stores are killed. */
2470 else if (insn_info
->frame_read
)
2472 store_info_t store_info
= i_ptr
->store_rec
;
2474 /* Skip the clobbers. */
2475 while (!store_info
->is_set
)
2476 store_info
= store_info
->next
;
2478 if (store_info
->group_id
>= 0
2479 && VEC_index (group_info_t
, rtx_group_vec
,
2480 store_info
->group_id
)->frame_related
)
2481 remove_store
= true;
2487 dump_insn_info ("removing from active", i_ptr
);
2490 last
->next_local_store
= i_ptr
->next_local_store
;
2492 active_local_stores
= i_ptr
->next_local_store
;
2497 i_ptr
= i_ptr
->next_local_store
;
2503 if (get_call_args (insn
, memset_call
, args
, 3)
2504 && CONST_INT_P (args
[1])
2505 && CONST_INT_P (args
[2])
2506 && INTVAL (args
[2]) > 0)
2508 rtx mem
= gen_rtx_MEM (BLKmode
, args
[0]);
2509 set_mem_size (mem
, args
[2]);
2510 body
= gen_rtx_SET (VOIDmode
, mem
, args
[1]);
2511 mems_found
+= record_store (body
, bb_info
);
2513 fprintf (dump_file
, "handling memset as BLKmode store\n");
2514 if (mems_found
== 1)
2516 insn_info
->next_local_store
= active_local_stores
;
2517 active_local_stores
= insn_info
;
2524 /* Every other call, including pure functions, may read memory. */
2525 add_wild_read (bb_info
);
2530 /* Assuming that there are sets in these insns, we cannot delete
2532 if ((GET_CODE (PATTERN (insn
)) == CLOBBER
)
2533 || volatile_refs_p (PATTERN (insn
))
2534 || insn_could_throw_p (insn
)
2535 || (RTX_FRAME_RELATED_P (insn
))
2536 || find_reg_note (insn
, REG_FRAME_RELATED_EXPR
, NULL_RTX
))
2537 insn_info
->cannot_delete
= true;
2539 body
= PATTERN (insn
);
2540 if (GET_CODE (body
) == PARALLEL
)
2543 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
2544 mems_found
+= record_store (XVECEXP (body
, 0, i
), bb_info
);
2547 mems_found
+= record_store (body
, bb_info
);
2550 fprintf (dump_file
, "mems_found = %d, cannot_delete = %s\n",
2551 mems_found
, insn_info
->cannot_delete
? "true" : "false");
2553 /* If we found some sets of mems, add it into the active_local_stores so
2554 that it can be locally deleted if found dead or used for
2555 replace_read and redundant constant store elimination. Otherwise mark
2556 it as cannot delete. This simplifies the processing later. */
2557 if (mems_found
== 1)
2559 insn_info
->next_local_store
= active_local_stores
;
2560 active_local_stores
= insn_info
;
2563 insn_info
->cannot_delete
= true;
2567 /* Remove BASE from the set of active_local_stores. This is a
2568 callback from cselib that is used to get rid of the stores in
2569 active_local_stores. */
2572 remove_useless_values (cselib_val
*base
)
2574 insn_info_t insn_info
= active_local_stores
;
2575 insn_info_t last
= NULL
;
2579 store_info_t store_info
= insn_info
->store_rec
;
2582 /* If ANY of the store_infos match the cselib group that is
2583 being deleted, then the insn can not be deleted. */
2586 if ((store_info
->group_id
== -1)
2587 && (store_info
->cse_base
== base
))
2592 store_info
= store_info
->next
;
2598 last
->next_local_store
= insn_info
->next_local_store
;
2600 active_local_stores
= insn_info
->next_local_store
;
2601 free_store_info (insn_info
);
2606 insn_info
= insn_info
->next_local_store
;
2611 /* Do all of step 1. */
2617 bitmap regs_live
= BITMAP_ALLOC (NULL
);
2619 cselib_init (false);
2620 all_blocks
= BITMAP_ALLOC (NULL
);
2621 bitmap_set_bit (all_blocks
, ENTRY_BLOCK
);
2622 bitmap_set_bit (all_blocks
, EXIT_BLOCK
);
2627 bb_info_t bb_info
= (bb_info_t
) pool_alloc (bb_info_pool
);
2629 memset (bb_info
, 0, sizeof (struct bb_info
));
2630 bitmap_set_bit (all_blocks
, bb
->index
);
2631 bb_info
->regs_live
= regs_live
;
2633 bitmap_copy (regs_live
, DF_LR_IN (bb
));
2634 df_simulate_initialize_forwards (bb
, regs_live
);
2636 bb_table
[bb
->index
] = bb_info
;
2637 cselib_discard_hook
= remove_useless_values
;
2639 if (bb
->index
>= NUM_FIXED_BLOCKS
)
2644 = create_alloc_pool ("cse_store_info_pool",
2645 sizeof (struct store_info
), 100);
2646 active_local_stores
= NULL
;
2647 cselib_clear_table ();
2649 /* Scan the insns. */
2650 FOR_BB_INSNS (bb
, insn
)
2653 scan_insn (bb_info
, insn
);
2654 cselib_process_insn (insn
);
2656 df_simulate_one_insn_forwards (bb
, insn
, regs_live
);
2659 /* This is something of a hack, because the global algorithm
2660 is supposed to take care of the case where stores go dead
2661 at the end of the function. However, the global
2662 algorithm must take a more conservative view of block
2663 mode reads than the local alg does. So to get the case
2664 where you have a store to the frame followed by a non
2665 overlapping block more read, we look at the active local
2666 stores at the end of the function and delete all of the
2667 frame and spill based ones. */
2668 if (stores_off_frame_dead_at_return
2669 && (EDGE_COUNT (bb
->succs
) == 0
2670 || (single_succ_p (bb
)
2671 && single_succ (bb
) == EXIT_BLOCK_PTR
2672 && ! crtl
->calls_eh_return
)))
2674 insn_info_t i_ptr
= active_local_stores
;
2677 store_info_t store_info
= i_ptr
->store_rec
;
2679 /* Skip the clobbers. */
2680 while (!store_info
->is_set
)
2681 store_info
= store_info
->next
;
2682 if (store_info
->alias_set
&& !i_ptr
->cannot_delete
)
2683 delete_dead_store_insn (i_ptr
);
2685 if (store_info
->group_id
>= 0)
2688 = VEC_index (group_info_t
, rtx_group_vec
, store_info
->group_id
);
2689 if (group
->frame_related
&& !i_ptr
->cannot_delete
)
2690 delete_dead_store_insn (i_ptr
);
2693 i_ptr
= i_ptr
->next_local_store
;
2697 /* Get rid of the loads that were discovered in
2698 replace_read. Cselib is finished with this block. */
2699 while (deferred_change_list
)
2701 deferred_change_t next
= deferred_change_list
->next
;
2703 /* There is no reason to validate this change. That was
2705 *deferred_change_list
->loc
= deferred_change_list
->reg
;
2706 pool_free (deferred_change_pool
, deferred_change_list
);
2707 deferred_change_list
= next
;
2710 /* Get rid of all of the cselib based store_infos in this
2711 block and mark the containing insns as not being
2713 ptr
= bb_info
->last_insn
;
2716 if (ptr
->contains_cselib_groups
)
2718 store_info_t s_info
= ptr
->store_rec
;
2719 while (s_info
&& !s_info
->is_set
)
2720 s_info
= s_info
->next
;
2722 && s_info
->redundant_reason
2723 && s_info
->redundant_reason
->insn
2724 && !ptr
->cannot_delete
)
2727 fprintf (dump_file
, "Locally deleting insn %d "
2728 "because insn %d stores the "
2729 "same value and couldn't be "
2731 INSN_UID (ptr
->insn
),
2732 INSN_UID (s_info
->redundant_reason
->insn
));
2733 delete_dead_store_insn (ptr
);
2736 s_info
->redundant_reason
= NULL
;
2737 free_store_info (ptr
);
2741 store_info_t s_info
;
2743 /* Free at least positions_needed bitmaps. */
2744 for (s_info
= ptr
->store_rec
; s_info
; s_info
= s_info
->next
)
2745 if (s_info
->is_large
)
2747 BITMAP_FREE (s_info
->positions_needed
.large
.bmap
);
2748 s_info
->is_large
= false;
2751 ptr
= ptr
->prev_insn
;
2754 free_alloc_pool (cse_store_info_pool
);
2756 bb_info
->regs_live
= NULL
;
2759 BITMAP_FREE (regs_live
);
2761 htab_empty (rtx_group_table
);
2765 /*----------------------------------------------------------------------------
2768 Assign each byte position in the stores that we are going to
2769 analyze globally to a position in the bitmaps. Returns true if
2770 there are any bit positions assigned.
2771 ----------------------------------------------------------------------------*/
2774 dse_step2_init (void)
2779 for (i
= 0; VEC_iterate (group_info_t
, rtx_group_vec
, i
, group
); i
++)
2781 /* For all non stack related bases, we only consider a store to
2782 be deletable if there are two or more stores for that
2783 position. This is because it takes one store to make the
2784 other store redundant. However, for the stores that are
2785 stack related, we consider them if there is only one store
2786 for the position. We do this because the stack related
2787 stores can be deleted if their is no read between them and
2788 the end of the function.
2790 To make this work in the current framework, we take the stack
2791 related bases add all of the bits from store1 into store2.
2792 This has the effect of making the eligible even if there is
2795 if (stores_off_frame_dead_at_return
&& group
->frame_related
)
2797 bitmap_ior_into (group
->store2_n
, group
->store1_n
);
2798 bitmap_ior_into (group
->store2_p
, group
->store1_p
);
2800 fprintf (dump_file
, "group %d is frame related ", i
);
2803 group
->offset_map_size_n
++;
2804 group
->offset_map_n
= XNEWVEC (int, group
->offset_map_size_n
);
2805 group
->offset_map_size_p
++;
2806 group
->offset_map_p
= XNEWVEC (int, group
->offset_map_size_p
);
2807 group
->process_globally
= false;
2810 fprintf (dump_file
, "group %d(%d+%d): ", i
,
2811 (int)bitmap_count_bits (group
->store2_n
),
2812 (int)bitmap_count_bits (group
->store2_p
));
2813 bitmap_print (dump_file
, group
->store2_n
, "n ", " ");
2814 bitmap_print (dump_file
, group
->store2_p
, "p ", "\n");
2820 /* Init the offset tables for the normal case. */
2823 dse_step2_nospill (void)
2827 /* Position 0 is unused because 0 is used in the maps to mean
2829 current_position
= 1;
2831 for (i
= 0; VEC_iterate (group_info_t
, rtx_group_vec
, i
, group
); i
++)
2836 if (group
== clear_alias_group
)
2839 memset (group
->offset_map_n
, 0, sizeof(int) * group
->offset_map_size_n
);
2840 memset (group
->offset_map_p
, 0, sizeof(int) * group
->offset_map_size_p
);
2841 bitmap_clear (group
->group_kill
);
2843 EXECUTE_IF_SET_IN_BITMAP (group
->store2_n
, 0, j
, bi
)
2845 bitmap_set_bit (group
->group_kill
, current_position
);
2846 group
->offset_map_n
[j
] = current_position
++;
2847 group
->process_globally
= true;
2849 EXECUTE_IF_SET_IN_BITMAP (group
->store2_p
, 0, j
, bi
)
2851 bitmap_set_bit (group
->group_kill
, current_position
);
2852 group
->offset_map_p
[j
] = current_position
++;
2853 group
->process_globally
= true;
2856 return current_position
!= 1;
2860 /* Init the offset tables for the spill case. */
2863 dse_step2_spill (void)
2866 group_info_t group
= clear_alias_group
;
2869 /* Position 0 is unused because 0 is used in the maps to mean
2871 current_position
= 1;
2875 bitmap_print (dump_file
, clear_alias_sets
,
2876 "clear alias sets ", "\n");
2877 bitmap_print (dump_file
, disqualified_clear_alias_sets
,
2878 "disqualified clear alias sets ", "\n");
2881 memset (group
->offset_map_n
, 0, sizeof(int) * group
->offset_map_size_n
);
2882 memset (group
->offset_map_p
, 0, sizeof(int) * group
->offset_map_size_p
);
2883 bitmap_clear (group
->group_kill
);
2885 /* Remove the disqualified positions from the store2_p set. */
2886 bitmap_and_compl_into (group
->store2_p
, disqualified_clear_alias_sets
);
2888 /* We do not need to process the store2_n set because
2889 alias_sets are always positive. */
2890 EXECUTE_IF_SET_IN_BITMAP (group
->store2_p
, 0, j
, bi
)
2892 bitmap_set_bit (group
->group_kill
, current_position
);
2893 group
->offset_map_p
[j
] = current_position
++;
2894 group
->process_globally
= true;
2897 return current_position
!= 1;
2902 /*----------------------------------------------------------------------------
2905 Build the bit vectors for the transfer functions.
2906 ----------------------------------------------------------------------------*/
2909 /* Note that this is NOT a general purpose function. Any mem that has
2910 an alias set registered here expected to be COMPLETELY unaliased:
2911 i.e it's addresses are not and need not be examined.
2913 It is known that all references to this address will have this
2914 alias set and there are NO other references to this address in the
2917 Currently the only place that is known to be clean enough to use
2918 this interface is the code that assigns the spill locations.
2920 All of the mems that have alias_sets registered are subjected to a
2921 very powerful form of dse where function calls, volatile reads and
2922 writes, and reads from random location are not taken into account.
2924 It is also assumed that these locations go dead when the function
2925 returns. This assumption could be relaxed if there were found to
2926 be places that this assumption was not correct.
2928 The MODE is passed in and saved. The mode of each load or store to
2929 a mem with ALIAS_SET is checked against MEM. If the size of that
2930 load or store is different from MODE, processing is halted on this
2931 alias set. For the vast majority of aliases sets, all of the loads
2932 and stores will use the same mode. But vectors are treated
2933 differently: the alias set is established for the entire vector,
2934 but reload will insert loads and stores for individual elements and
2935 we do not necessarily have the information to track those separate
2936 elements. So when we see a mode mismatch, we just bail. */
2940 dse_record_singleton_alias_set (alias_set_type alias_set
,
2941 enum machine_mode mode
)
2943 struct clear_alias_mode_holder tmp_holder
;
2944 struct clear_alias_mode_holder
*entry
;
2947 /* If we are not going to run dse, we need to return now or there
2948 will be problems with allocating the bitmaps. */
2949 if ((!gate_dse()) || !alias_set
)
2952 if (!clear_alias_sets
)
2954 clear_alias_sets
= BITMAP_ALLOC (NULL
);
2955 disqualified_clear_alias_sets
= BITMAP_ALLOC (NULL
);
2956 clear_alias_mode_table
= htab_create (11, clear_alias_mode_hash
,
2957 clear_alias_mode_eq
, NULL
);
2958 clear_alias_mode_pool
= create_alloc_pool ("clear_alias_mode_pool",
2959 sizeof (struct clear_alias_mode_holder
), 100);
2962 bitmap_set_bit (clear_alias_sets
, alias_set
);
2964 tmp_holder
.alias_set
= alias_set
;
2966 slot
= htab_find_slot (clear_alias_mode_table
, &tmp_holder
, INSERT
);
2967 gcc_assert (*slot
== NULL
);
2970 (struct clear_alias_mode_holder
*) pool_alloc (clear_alias_mode_pool
);
2971 entry
->alias_set
= alias_set
;
2976 /* Remove ALIAS_SET from the sets of stack slots being considered. */
2979 dse_invalidate_singleton_alias_set (alias_set_type alias_set
)
2981 if ((!gate_dse()) || !alias_set
)
2984 bitmap_clear_bit (clear_alias_sets
, alias_set
);
2988 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2992 get_bitmap_index (group_info_t group_info
, HOST_WIDE_INT offset
)
2996 HOST_WIDE_INT offset_p
= -offset
;
2997 if (offset_p
>= group_info
->offset_map_size_n
)
2999 return group_info
->offset_map_n
[offset_p
];
3003 if (offset
>= group_info
->offset_map_size_p
)
3005 return group_info
->offset_map_p
[offset
];
3010 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3014 scan_stores_nospill (store_info_t store_info
, bitmap gen
, bitmap kill
)
3019 group_info_t group_info
3020 = VEC_index (group_info_t
, rtx_group_vec
, store_info
->group_id
);
3021 if (group_info
->process_globally
)
3022 for (i
= store_info
->begin
; i
< store_info
->end
; i
++)
3024 int index
= get_bitmap_index (group_info
, i
);
3027 bitmap_set_bit (gen
, index
);
3029 bitmap_clear_bit (kill
, index
);
3032 store_info
= store_info
->next
;
3037 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
3041 scan_stores_spill (store_info_t store_info
, bitmap gen
, bitmap kill
)
3045 if (store_info
->alias_set
)
3047 int index
= get_bitmap_index (clear_alias_group
,
3048 store_info
->alias_set
);
3051 bitmap_set_bit (gen
, index
);
3053 bitmap_clear_bit (kill
, index
);
3056 store_info
= store_info
->next
;
3061 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3065 scan_reads_nospill (insn_info_t insn_info
, bitmap gen
, bitmap kill
)
3067 read_info_t read_info
= insn_info
->read_rec
;
3071 /* If this insn reads the frame, kill all the frame related stores. */
3072 if (insn_info
->frame_read
)
3074 for (i
= 0; VEC_iterate (group_info_t
, rtx_group_vec
, i
, group
); i
++)
3075 if (group
->process_globally
&& group
->frame_related
)
3078 bitmap_ior_into (kill
, group
->group_kill
);
3079 bitmap_and_compl_into (gen
, group
->group_kill
);
3085 for (i
= 0; VEC_iterate (group_info_t
, rtx_group_vec
, i
, group
); i
++)
3087 if (group
->process_globally
)
3089 if (i
== read_info
->group_id
)
3091 if (read_info
->begin
> read_info
->end
)
3093 /* Begin > end for block mode reads. */
3095 bitmap_ior_into (kill
, group
->group_kill
);
3096 bitmap_and_compl_into (gen
, group
->group_kill
);
3100 /* The groups are the same, just process the
3103 for (j
= read_info
->begin
; j
< read_info
->end
; j
++)
3105 int index
= get_bitmap_index (group
, j
);
3109 bitmap_set_bit (kill
, index
);
3110 bitmap_clear_bit (gen
, index
);
3117 /* The groups are different, if the alias sets
3118 conflict, clear the entire group. We only need
3119 to apply this test if the read_info is a cselib
3120 read. Anything with a constant base cannot alias
3121 something else with a different constant
3123 if ((read_info
->group_id
< 0)
3124 && canon_true_dependence (group
->base_mem
,
3126 group
->canon_base_addr
,
3127 read_info
->mem
, NULL_RTX
,
3131 bitmap_ior_into (kill
, group
->group_kill
);
3132 bitmap_and_compl_into (gen
, group
->group_kill
);
3138 read_info
= read_info
->next
;
3142 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3146 scan_reads_spill (read_info_t read_info
, bitmap gen
, bitmap kill
)
3150 if (read_info
->alias_set
)
3152 int index
= get_bitmap_index (clear_alias_group
,
3153 read_info
->alias_set
);
3157 bitmap_set_bit (kill
, index
);
3158 bitmap_clear_bit (gen
, index
);
3162 read_info
= read_info
->next
;
3167 /* Return the insn in BB_INFO before the first wild read or if there
3168 are no wild reads in the block, return the last insn. */
3171 find_insn_before_first_wild_read (bb_info_t bb_info
)
3173 insn_info_t insn_info
= bb_info
->last_insn
;
3174 insn_info_t last_wild_read
= NULL
;
3178 if (insn_info
->wild_read
)
3180 last_wild_read
= insn_info
->prev_insn
;
3181 /* Block starts with wild read. */
3182 if (!last_wild_read
)
3186 insn_info
= insn_info
->prev_insn
;
3190 return last_wild_read
;
3192 return bb_info
->last_insn
;
3196 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3197 the block in order to build the gen and kill sets for the block.
3198 We start at ptr which may be the last insn in the block or may be
3199 the first insn with a wild read. In the latter case we are able to
3200 skip the rest of the block because it just does not matter:
3201 anything that happens is hidden by the wild read. */
3204 dse_step3_scan (bool for_spills
, basic_block bb
)
3206 bb_info_t bb_info
= bb_table
[bb
->index
];
3207 insn_info_t insn_info
;
3210 /* There are no wild reads in the spill case. */
3211 insn_info
= bb_info
->last_insn
;
3213 insn_info
= find_insn_before_first_wild_read (bb_info
);
3215 /* In the spill case or in the no_spill case if there is no wild
3216 read in the block, we will need a kill set. */
3217 if (insn_info
== bb_info
->last_insn
)
3220 bitmap_clear (bb_info
->kill
);
3222 bb_info
->kill
= BITMAP_ALLOC (NULL
);
3226 BITMAP_FREE (bb_info
->kill
);
3230 /* There may have been code deleted by the dce pass run before
3232 if (insn_info
->insn
&& INSN_P (insn_info
->insn
))
3234 /* Process the read(s) last. */
3237 scan_stores_spill (insn_info
->store_rec
, bb_info
->gen
, bb_info
->kill
);
3238 scan_reads_spill (insn_info
->read_rec
, bb_info
->gen
, bb_info
->kill
);
3242 scan_stores_nospill (insn_info
->store_rec
, bb_info
->gen
, bb_info
->kill
);
3243 scan_reads_nospill (insn_info
, bb_info
->gen
, bb_info
->kill
);
3247 insn_info
= insn_info
->prev_insn
;
3252 /* Set the gen set of the exit block, and also any block with no
3253 successors that does not have a wild read. */
3256 dse_step3_exit_block_scan (bb_info_t bb_info
)
3258 /* The gen set is all 0's for the exit block except for the
3259 frame_pointer_group. */
3261 if (stores_off_frame_dead_at_return
)
3266 for (i
= 0; VEC_iterate (group_info_t
, rtx_group_vec
, i
, group
); i
++)
3268 if (group
->process_globally
&& group
->frame_related
)
3269 bitmap_ior_into (bb_info
->gen
, group
->group_kill
);
3275 /* Find all of the blocks that are not backwards reachable from the
3276 exit block or any block with no successors (BB). These are the
3277 infinite loops or infinite self loops. These blocks will still
3278 have their bits set in UNREACHABLE_BLOCKS. */
3281 mark_reachable_blocks (sbitmap unreachable_blocks
, basic_block bb
)
3286 if (TEST_BIT (unreachable_blocks
, bb
->index
))
3288 RESET_BIT (unreachable_blocks
, bb
->index
);
3289 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3291 mark_reachable_blocks (unreachable_blocks
, e
->src
);
3296 /* Build the transfer functions for the function. */
3299 dse_step3 (bool for_spills
)
3302 sbitmap unreachable_blocks
= sbitmap_alloc (last_basic_block
);
3303 sbitmap_iterator sbi
;
3304 bitmap all_ones
= NULL
;
3307 sbitmap_ones (unreachable_blocks
);
3311 bb_info_t bb_info
= bb_table
[bb
->index
];
3313 bitmap_clear (bb_info
->gen
);
3315 bb_info
->gen
= BITMAP_ALLOC (NULL
);
3317 if (bb
->index
== ENTRY_BLOCK
)
3319 else if (bb
->index
== EXIT_BLOCK
)
3320 dse_step3_exit_block_scan (bb_info
);
3322 dse_step3_scan (for_spills
, bb
);
3323 if (EDGE_COUNT (bb
->succs
) == 0)
3324 mark_reachable_blocks (unreachable_blocks
, bb
);
3326 /* If this is the second time dataflow is run, delete the old
3329 BITMAP_FREE (bb_info
->in
);
3331 BITMAP_FREE (bb_info
->out
);
3334 /* For any block in an infinite loop, we must initialize the out set
3335 to all ones. This could be expensive, but almost never occurs in
3336 practice. However, it is common in regression tests. */
3337 EXECUTE_IF_SET_IN_SBITMAP (unreachable_blocks
, 0, i
, sbi
)
3339 if (bitmap_bit_p (all_blocks
, i
))
3341 bb_info_t bb_info
= bb_table
[i
];
3347 all_ones
= BITMAP_ALLOC (NULL
);
3348 for (j
= 0; VEC_iterate (group_info_t
, rtx_group_vec
, j
, group
); j
++)
3349 bitmap_ior_into (all_ones
, group
->group_kill
);
3353 bb_info
->out
= BITMAP_ALLOC (NULL
);
3354 bitmap_copy (bb_info
->out
, all_ones
);
3360 BITMAP_FREE (all_ones
);
3361 sbitmap_free (unreachable_blocks
);
3366 /*----------------------------------------------------------------------------
3369 Solve the bitvector equations.
3370 ----------------------------------------------------------------------------*/
3373 /* Confluence function for blocks with no successors. Create an out
3374 set from the gen set of the exit block. This block logically has
3375 the exit block as a successor. */
3380 dse_confluence_0 (basic_block bb
)
3382 bb_info_t bb_info
= bb_table
[bb
->index
];
3384 if (bb
->index
== EXIT_BLOCK
)
3389 bb_info
->out
= BITMAP_ALLOC (NULL
);
3390 bitmap_copy (bb_info
->out
, bb_table
[EXIT_BLOCK
]->gen
);
3394 /* Propagate the information from the in set of the dest of E to the
3395 out set of the src of E. If the various in or out sets are not
3396 there, that means they are all ones. */
3399 dse_confluence_n (edge e
)
3401 bb_info_t src_info
= bb_table
[e
->src
->index
];
3402 bb_info_t dest_info
= bb_table
[e
->dest
->index
];
3407 bitmap_and_into (src_info
->out
, dest_info
->in
);
3410 src_info
->out
= BITMAP_ALLOC (NULL
);
3411 bitmap_copy (src_info
->out
, dest_info
->in
);
3417 /* Propagate the info from the out to the in set of BB_INDEX's basic
3418 block. There are three cases:
3420 1) The block has no kill set. In this case the kill set is all
3421 ones. It does not matter what the out set of the block is, none of
3422 the info can reach the top. The only thing that reaches the top is
3423 the gen set and we just copy the set.
3425 2) There is a kill set but no out set and bb has successors. In
3426 this case we just return. Eventually an out set will be created and
3427 it is better to wait than to create a set of ones.
3429 3) There is both a kill and out set. We apply the obvious transfer
3434 dse_transfer_function (int bb_index
)
3436 bb_info_t bb_info
= bb_table
[bb_index
];
3444 return bitmap_ior_and_compl (bb_info
->in
, bb_info
->gen
,
3445 bb_info
->out
, bb_info
->kill
);
3448 bb_info
->in
= BITMAP_ALLOC (NULL
);
3449 bitmap_ior_and_compl (bb_info
->in
, bb_info
->gen
,
3450 bb_info
->out
, bb_info
->kill
);
3460 /* Case 1 above. If there is already an in set, nothing
3466 bb_info
->in
= BITMAP_ALLOC (NULL
);
3467 bitmap_copy (bb_info
->in
, bb_info
->gen
);
3473 /* Solve the dataflow equations. */
3478 df_simple_dataflow (DF_BACKWARD
, NULL
, dse_confluence_0
,
3479 dse_confluence_n
, dse_transfer_function
,
3480 all_blocks
, df_get_postorder (DF_BACKWARD
),
3481 df_get_n_blocks (DF_BACKWARD
));
3486 fprintf (dump_file
, "\n\n*** Global dataflow info after analysis.\n");
3489 bb_info_t bb_info
= bb_table
[bb
->index
];
3491 df_print_bb_index (bb
, dump_file
);
3493 bitmap_print (dump_file
, bb_info
->in
, " in: ", "\n");
3495 fprintf (dump_file
, " in: *MISSING*\n");
3497 bitmap_print (dump_file
, bb_info
->gen
, " gen: ", "\n");
3499 fprintf (dump_file
, " gen: *MISSING*\n");
3501 bitmap_print (dump_file
, bb_info
->kill
, " kill: ", "\n");
3503 fprintf (dump_file
, " kill: *MISSING*\n");
3505 bitmap_print (dump_file
, bb_info
->out
, " out: ", "\n");
3507 fprintf (dump_file
, " out: *MISSING*\n\n");
3514 /*----------------------------------------------------------------------------
3517 Delete the stores that can only be deleted using the global information.
3518 ----------------------------------------------------------------------------*/
3522 dse_step5_nospill (void)
3527 bb_info_t bb_info
= bb_table
[bb
->index
];
3528 insn_info_t insn_info
= bb_info
->last_insn
;
3529 bitmap v
= bb_info
->out
;
3533 bool deleted
= false;
3534 if (dump_file
&& insn_info
->insn
)
3536 fprintf (dump_file
, "starting to process insn %d\n",
3537 INSN_UID (insn_info
->insn
));
3538 bitmap_print (dump_file
, v
, " v: ", "\n");
3541 /* There may have been code deleted by the dce pass run before
3544 && INSN_P (insn_info
->insn
)
3545 && (!insn_info
->cannot_delete
)
3546 && (!bitmap_empty_p (v
)))
3548 store_info_t store_info
= insn_info
->store_rec
;
3550 /* Try to delete the current insn. */
3553 /* Skip the clobbers. */
3554 while (!store_info
->is_set
)
3555 store_info
= store_info
->next
;
3557 if (store_info
->alias_set
)
3562 group_info_t group_info
3563 = VEC_index (group_info_t
, rtx_group_vec
, store_info
->group_id
);
3565 for (i
= store_info
->begin
; i
< store_info
->end
; i
++)
3567 int index
= get_bitmap_index (group_info
, i
);
3570 fprintf (dump_file
, "i = %d, index = %d\n", (int)i
, index
);
3571 if (index
== 0 || !bitmap_bit_p (v
, index
))
3574 fprintf (dump_file
, "failing at i = %d\n", (int)i
);
3584 check_for_inc_dec (insn_info
->insn
);
3585 delete_insn (insn_info
->insn
);
3586 insn_info
->insn
= NULL
;
3591 /* We do want to process the local info if the insn was
3592 deleted. For instance, if the insn did a wild read, we
3593 no longer need to trash the info. */
3595 && INSN_P (insn_info
->insn
)
3598 scan_stores_nospill (insn_info
->store_rec
, v
, NULL
);
3599 if (insn_info
->wild_read
)
3602 fprintf (dump_file
, "wild read\n");
3605 else if (insn_info
->read_rec
)
3608 fprintf (dump_file
, "regular read\n");
3609 scan_reads_nospill (insn_info
, v
, NULL
);
3613 insn_info
= insn_info
->prev_insn
;
3620 dse_step5_spill (void)
3625 bb_info_t bb_info
= bb_table
[bb
->index
];
3626 insn_info_t insn_info
= bb_info
->last_insn
;
3627 bitmap v
= bb_info
->out
;
3631 bool deleted
= false;
3632 /* There may have been code deleted by the dce pass run before
3635 && INSN_P (insn_info
->insn
)
3636 && (!insn_info
->cannot_delete
)
3637 && (!bitmap_empty_p (v
)))
3639 /* Try to delete the current insn. */
3640 store_info_t store_info
= insn_info
->store_rec
;
3645 if (store_info
->alias_set
)
3647 int index
= get_bitmap_index (clear_alias_group
,
3648 store_info
->alias_set
);
3649 if (index
== 0 || !bitmap_bit_p (v
, index
))
3657 store_info
= store_info
->next
;
3659 if (deleted
&& dbg_cnt (dse
))
3662 fprintf (dump_file
, "Spill deleting insn %d\n",
3663 INSN_UID (insn_info
->insn
));
3664 check_for_inc_dec (insn_info
->insn
);
3665 delete_insn (insn_info
->insn
);
3667 insn_info
->insn
= NULL
;
3672 && INSN_P (insn_info
->insn
)
3675 scan_stores_spill (insn_info
->store_rec
, v
, NULL
);
3676 scan_reads_spill (insn_info
->read_rec
, v
, NULL
);
3679 insn_info
= insn_info
->prev_insn
;
3686 /*----------------------------------------------------------------------------
3689 Delete stores made redundant by earlier stores (which store the same
3690 value) that couldn't be eliminated.
3691 ----------------------------------------------------------------------------*/
3700 bb_info_t bb_info
= bb_table
[bb
->index
];
3701 insn_info_t insn_info
= bb_info
->last_insn
;
3705 /* There may have been code deleted by the dce pass run before
3708 && INSN_P (insn_info
->insn
)
3709 && !insn_info
->cannot_delete
)
3711 store_info_t s_info
= insn_info
->store_rec
;
3713 while (s_info
&& !s_info
->is_set
)
3714 s_info
= s_info
->next
;
3716 && s_info
->redundant_reason
3717 && s_info
->redundant_reason
->insn
3718 && INSN_P (s_info
->redundant_reason
->insn
))
3720 rtx rinsn
= s_info
->redundant_reason
->insn
;
3722 fprintf (dump_file
, "Locally deleting insn %d "
3723 "because insn %d stores the "
3724 "same value and couldn't be "
3726 INSN_UID (insn_info
->insn
),
3728 delete_dead_store_insn (insn_info
);
3731 insn_info
= insn_info
->prev_insn
;
3736 /*----------------------------------------------------------------------------
3739 Destroy everything left standing.
3740 ----------------------------------------------------------------------------*/
3743 dse_step7 (bool global_done
)
3749 for (i
= 0; VEC_iterate (group_info_t
, rtx_group_vec
, i
, group
); i
++)
3751 free (group
->offset_map_n
);
3752 free (group
->offset_map_p
);
3753 BITMAP_FREE (group
->store1_n
);
3754 BITMAP_FREE (group
->store1_p
);
3755 BITMAP_FREE (group
->store2_n
);
3756 BITMAP_FREE (group
->store2_p
);
3757 BITMAP_FREE (group
->group_kill
);
3763 bb_info_t bb_info
= bb_table
[bb
->index
];
3764 BITMAP_FREE (bb_info
->gen
);
3766 BITMAP_FREE (bb_info
->kill
);
3768 BITMAP_FREE (bb_info
->in
);
3770 BITMAP_FREE (bb_info
->out
);
3773 if (clear_alias_sets
)
3775 BITMAP_FREE (clear_alias_sets
);
3776 BITMAP_FREE (disqualified_clear_alias_sets
);
3777 free_alloc_pool (clear_alias_mode_pool
);
3778 htab_delete (clear_alias_mode_table
);
3781 end_alias_analysis ();
3783 htab_delete (rtx_group_table
);
3784 VEC_free (group_info_t
, heap
, rtx_group_vec
);
3785 BITMAP_FREE (all_blocks
);
3786 BITMAP_FREE (scratch
);
3788 free_alloc_pool (rtx_store_info_pool
);
3789 free_alloc_pool (read_info_pool
);
3790 free_alloc_pool (insn_info_pool
);
3791 free_alloc_pool (bb_info_pool
);
3792 free_alloc_pool (rtx_group_info_pool
);
3793 free_alloc_pool (deferred_change_pool
);
3797 /* -------------------------------------------------------------------------
3799 ------------------------------------------------------------------------- */
3801 /* Callback for running pass_rtl_dse. */
3804 rest_of_handle_dse (void)
3806 bool did_global
= false;
3808 df_set_flags (DF_DEFER_INSN_RESCAN
);
3810 /* Need the notes since we must track live hardregs in the forwards
3812 df_note_add_problem ();
3818 if (dse_step2_nospill ())
3820 df_set_flags (DF_LR_RUN_DCE
);
3824 fprintf (dump_file
, "doing global processing\n");
3827 dse_step5_nospill ();
3830 /* For the instance of dse that runs after reload, we make a special
3831 pass to process the spills. These are special in that they are
3832 totally transparent, i.e, there is no aliasing issues that need
3833 to be considered. This means that the wild reads that kill
3834 everything else do not apply here. */
3835 if (clear_alias_sets
&& dse_step2_spill ())
3839 df_set_flags (DF_LR_RUN_DCE
);
3844 fprintf (dump_file
, "doing global spill processing\n");
3851 dse_step7 (did_global
);
3854 fprintf (dump_file
, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
3855 locally_deleted
, globally_deleted
, spill_deleted
);
3862 return gate_dse1 () || gate_dse2 ();
3868 return optimize
> 0 && flag_dse
3875 return optimize
> 0 && flag_dse
3879 struct rtl_opt_pass pass_rtl_dse1
=
3884 gate_dse1
, /* gate */
3885 rest_of_handle_dse
, /* execute */
3888 0, /* static_pass_number */
3889 TV_DSE1
, /* tv_id */
3890 0, /* properties_required */
3891 0, /* properties_provided */
3892 0, /* properties_destroyed */
3893 0, /* todo_flags_start */
3895 TODO_df_finish
| TODO_verify_rtl_sharing
|
3896 TODO_ggc_collect
/* todo_flags_finish */
3900 struct rtl_opt_pass pass_rtl_dse2
=
3905 gate_dse2
, /* gate */
3906 rest_of_handle_dse
, /* execute */
3909 0, /* static_pass_number */
3910 TV_DSE2
, /* tv_id */
3911 0, /* properties_required */
3912 0, /* properties_provided */
3913 0, /* properties_destroyed */
3914 0, /* todo_flags_start */
3916 TODO_df_finish
| TODO_verify_rtl_sharing
|
3917 TODO_ggc_collect
/* todo_flags_finish */