1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* This program is used to produce insn-recog.c, which contains a
22 function called `recog' plus its subroutines. These functions
23 contain a decision tree that recognizes whether an rtx, the
24 argument given to recog, is a valid instruction.
26 recog returns -1 if the rtx is not valid. If the rtx is valid,
27 recog returns a nonnegative number which is the insn code number
28 for the pattern that matched. This is the same as the order in the
29 machine description of the entry that matched. This number can be
30 used as an index into various insn_* tables, such as insn_template,
31 insn_outfun, and insn_n_operands (found in insn-output.c).
33 The third argument to recog is an optional pointer to an int. If
34 present, recog will accept a pattern if it matches except for
35 missing CLOBBER expressions at the end. In that case, the value
36 pointed to by the optional pointer will be set to the number of
37 CLOBBERs that need to be added (it should be initialized to zero by
38 the caller). If it is set nonzero, the caller should allocate a
39 PARALLEL of the appropriate size, copy the initial entries, and
40 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
42 This program also generates the function `split_insns', which
43 returns 0 if the rtl could not be split, or it returns the split
46 This program also generates the function `peephole2_insns', which
47 returns 0 if the rtl could not be matched. If there was a match,
48 the new rtl is returned in an INSN list, and LAST_INSN will point
49 to the last recognized insn in the old sequence.
52 At a high level, the algorithm used in this file is as follows:
54 1. Build up a decision tree for each routine, using the following
55 approach to matching an rtx:
57 - First determine the "shape" of the rtx, based on GET_CODE,
58 XVECLEN and XINT. This phase examines SET_SRCs before SET_DESTs
59 since SET_SRCs tend to be more distinctive. It examines other
60 operands in numerical order, since the canonicalization rules
61 prefer putting complex operands of commutative operators first.
63 - Next check modes and predicates. This phase examines all
64 operands in numerical order, even for SETs, since the mode of a
65 SET_DEST is exact while the mode of a SET_SRC can be VOIDmode
66 for constant integers.
68 - Next check match_dups.
70 - Finally check the C condition and (where appropriate) pnum_clobbers.
72 2. Try to optimize the tree by removing redundant tests, CSEing tests,
73 folding tests together, etc.
75 3. Look for common subtrees and split them out into "pattern" routines.
76 These common subtrees can be identical or they can differ in mode,
77 code, or integer (usually an UNSPEC or UNSPEC_VOLATILE code).
78 In the latter case the users of the pattern routine pass the
79 appropriate mode, etc., as argument. For example, if two patterns
82 (plus:SI (match_operand:SI 1 "register_operand")
83 (match_operand:SI 2 "register_operand"))
85 we can split the associated matching code out into a subroutine.
86 If a pattern contains:
88 (minus:DI (match_operand:DI 1 "register_operand")
89 (match_operand:DI 2 "register_operand"))
91 then we can consider using the same matching routine for both
92 the plus and minus expressions, passing PLUS and SImode in the
93 former case and MINUS and DImode in the latter case.
95 The main aim of this phase is to reduce the compile time of the
96 insn-recog.c code and to reduce the amount of object code in
99 4. Split the matching trees into functions, trying to limit the
100 size of each function to a sensible amount.
102 Again, the main aim of this phase is to reduce the compile time
103 of insn-recog.c. (It doesn't help with the size of insn-recog.o.)
105 5. Write out C++ code for each function. */
109 #include "coretypes.h"
114 #include "gensupport.h"
115 #include "hash-table.h"
119 #undef GENERATOR_FILE
121 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) TRUE_##ENUM,
124 FIRST_GENERATOR_RTX_CODE
126 #define NUM_TRUE_RTX_CODE ((int) FIRST_GENERATOR_RTX_CODE)
127 #define GENERATOR_FILE 1
129 /* Debugging variables to control which optimizations are performed.
130 Note that disabling merge_states_p leads to very large output. */
131 static const bool merge_states_p
= true;
132 static const bool collapse_optional_decisions_p
= true;
133 static const bool cse_tests_p
= true;
134 static const bool simplify_tests_p
= true;
135 static const bool use_operand_variables_p
= true;
136 static const bool use_subroutines_p
= true;
137 static const bool use_pattern_routines_p
= true;
139 /* Whether to add comments for optional tests that we decided to keep.
140 Can be useful when debugging the generator itself but is noise when
141 debugging the generated code. */
142 static const bool mark_optional_transitions_p
= false;
144 /* Whether pattern routines should calculate positions relative to their
145 rtx parameter rather than use absolute positions. This e.g. allows
146 a pattern routine to be shared between a plain SET and a PARALLEL
149 In principle it sounds like this should be useful, especially for
150 recog_for_combine, where the plain SET form is generated automatically
151 from a PARALLEL of a single SET and some CLOBBERs. In practice it doesn't
152 seem to help much and leads to slightly bigger object files. */
153 static const bool relative_patterns_p
= false;
155 /* Whether pattern routines should be allowed to test whether pnum_clobbers
156 is null. This requires passing pnum_clobbers around as a parameter. */
157 static const bool pattern_have_num_clobbers_p
= true;
159 /* Whether pattern routines should be allowed to test .md file C conditions.
160 This requires passing insn around as a parameter, in case the C
161 condition refers to it. In practice this tends to lead to bigger
163 static const bool pattern_c_test_p
= false;
165 /* Whether to require each parameter passed to a pattern routine to be
166 unique. Disabling this check for example allows unary operators with
167 matching modes (like NEG) and unary operators with mismatched modes
168 (like ZERO_EXTEND) to be matched by a single pattern. However, we then
169 often have cases where the same value is passed too many times. */
170 static const bool force_unique_params_p
= true;
172 /* The maximum (approximate) depth of block nesting that an individual
173 routine or subroutine should have. This limit is about keeping the
174 output readable rather than reducing compile time. */
175 static const unsigned int MAX_DEPTH
= 6;
177 /* The minimum number of pseudo-statements that a state must have before
178 we split it out into a subroutine. */
179 static const unsigned int MIN_NUM_STATEMENTS
= 5;
181 /* The number of pseudo-statements a state can have before we consider
182 splitting out substates into subroutines. This limit is about avoiding
183 compile-time problems with very big functions (and also about keeping
184 functions within --param optimization limits, etc.). */
185 static const unsigned int MAX_NUM_STATEMENTS
= 200;
187 /* The minimum number of pseudo-statements that can be used in a pattern
189 static const unsigned int MIN_COMBINE_COST
= 4;
191 /* The maximum number of arguments that a pattern routine can have.
192 The idea is to prevent one pattern getting a ridiculous number of
193 arguments when it would be more beneficial to have a separate pattern
195 static const unsigned int MAX_PATTERN_PARAMS
= 5;
197 /* The maximum operand number plus one. */
200 /* Ways of obtaining an rtx to be tested. */
202 /* PATTERN (peep2_next_insn (ARG)). */
205 /* XEXP (BASE, ARG). */
208 /* XVECEXP (BASE, 0, ARG). */
212 /* The position of an rtx relative to X0. Each useful position is
213 represented by exactly one instance of this structure. */
216 /* The parent rtx. This is the root position for POS_PEEP2_INSNs. */
217 struct position
*base
;
219 /* A position with the same BASE and TYPE, but with the next value
221 struct position
*next
;
223 /* A list of all POS_XEXP positions that use this one as their base,
224 chained by NEXT fields. The first entry represents XEXP (this, 0),
225 the second represents XEXP (this, 1), and so on. */
226 struct position
*xexps
;
228 /* A list of POS_XVECEXP0 positions that use this one as their base,
229 chained by NEXT fields. The first entry represents XVECEXP (this, 0, 0),
230 the second represents XVECEXP (this, 0, 1), and so on. */
231 struct position
*xvecexp0s
;
233 /* The type of position. */
234 enum position_type type
;
236 /* The argument to TYPE (shown as ARG in the position_type comments). */
239 /* The instruction to which the position belongs. */
240 unsigned int insn_id
;
242 /* The depth of this position relative to the instruction pattern.
243 E.g. if the instruction pattern is a SET, the SET itself has a
244 depth of 0 while the SET_DEST and SET_SRC have depths of 1. */
247 /* A unique identifier for this position. */
252 SUBPATTERN
, RECOG
, SPLIT
, PEEPHOLE2
255 /* Next number to use as an insn_code. */
256 static int next_insn_code
;
258 /* The line number of the start of the pattern currently being processed. */
259 static int pattern_lineno
;
261 /* The root position (x0). */
262 static struct position root_pos
;
264 /* The number of positions created. Also one higher than the maximum
266 static unsigned int num_positions
= 1;
268 /* A list of all POS_PEEP2_INSNs. The entry for insn 0 is the root position,
269 since we are given that instruction's pattern as x0. */
270 static struct position
*peep2_insn_pos_list
= &root_pos
;
272 /* Return a position with the given BASE, TYPE and ARG. NEXT_PTR
273 points to where the unique object that represents the position
274 should be stored. Create the object if it doesn't already exist,
275 otherwise reuse the object that is already there. */
277 static struct position
*
278 next_position (struct position
**next_ptr
, struct position
*base
,
279 enum position_type type
, int arg
)
281 struct position
*pos
;
286 pos
= XCNEW (struct position
);
289 if (type
== POS_PEEP2_INSN
)
293 pos
->depth
= base
->depth
;
298 pos
->insn_id
= base
->insn_id
;
299 pos
->depth
= base
->depth
+ 1;
301 pos
->id
= num_positions
++;
307 /* Compare positions POS1 and POS2 lexicographically. */
310 compare_positions (struct position
*pos1
, struct position
*pos2
)
314 diff
= pos1
->depth
- pos2
->depth
;
318 while (pos1
->depth
!= pos2
->depth
);
322 while (pos1
->depth
!= pos2
->depth
);
325 diff
= (int) pos1
->type
- (int) pos2
->type
;
327 diff
= pos1
->arg
- pos2
->arg
;
334 /* Return the most deeply-nested position that is common to both
335 POS1 and POS2. If the positions are from different instructions,
336 return the one with the lowest insn_id. */
338 static struct position
*
339 common_position (struct position
*pos1
, struct position
*pos2
)
341 if (pos1
->insn_id
!= pos2
->insn_id
)
342 return pos1
->insn_id
< pos2
->insn_id
? pos1
: pos2
;
343 if (pos1
->depth
> pos2
->depth
)
344 std::swap (pos1
, pos2
);
345 while (pos1
->depth
!= pos2
->depth
)
355 /* Search for and return operand N, stop when reaching node STOP. */
358 find_operand (rtx pattern
, int n
, rtx stop
)
368 code
= GET_CODE (pattern
);
369 if ((code
== MATCH_SCRATCH
370 || code
== MATCH_OPERAND
371 || code
== MATCH_OPERATOR
372 || code
== MATCH_PARALLEL
)
373 && XINT (pattern
, 0) == n
)
376 fmt
= GET_RTX_FORMAT (code
);
377 len
= GET_RTX_LENGTH (code
);
378 for (i
= 0; i
< len
; i
++)
383 if ((r
= find_operand (XEXP (pattern
, i
), n
, stop
)) != NULL_RTX
)
388 if (! XVEC (pattern
, i
))
393 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
394 if ((r
= find_operand (XVECEXP (pattern
, i
, j
), n
, stop
))
399 case 'i': case 'r': case 'w': case '0': case 's':
410 /* Search for and return operand M, such that it has a matching
411 constraint for operand N. */
414 find_matching_operand (rtx pattern
, int n
)
421 code
= GET_CODE (pattern
);
422 if (code
== MATCH_OPERAND
423 && (XSTR (pattern
, 2)[0] == '0' + n
424 || (XSTR (pattern
, 2)[0] == '%'
425 && XSTR (pattern
, 2)[1] == '0' + n
)))
428 fmt
= GET_RTX_FORMAT (code
);
429 len
= GET_RTX_LENGTH (code
);
430 for (i
= 0; i
< len
; i
++)
435 if ((r
= find_matching_operand (XEXP (pattern
, i
), n
)))
440 if (! XVEC (pattern
, i
))
445 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
446 if ((r
= find_matching_operand (XVECEXP (pattern
, i
, j
), n
)))
450 case 'i': case 'r': case 'w': case '0': case 's':
461 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
462 don't use the MATCH_OPERAND constraint, only the predicate.
463 This is confusing to folks doing new ports, so help them
464 not make the mistake. */
467 constraints_supported_in_insn_p (rtx insn
)
469 return !(GET_CODE (insn
) == DEFINE_EXPAND
470 || GET_CODE (insn
) == DEFINE_SPLIT
471 || GET_CODE (insn
) == DEFINE_PEEPHOLE2
);
474 /* Check for various errors in patterns. SET is nonnull for a destination,
475 and is the complete set pattern. SET_CODE is '=' for normal sets, and
476 '+' within a context that requires in-out constraints. */
479 validate_pattern (rtx pattern
, rtx insn
, rtx set
, int set_code
)
486 code
= GET_CODE (pattern
);
491 const char constraints0
= XSTR (pattern
, 1)[0];
493 if (!constraints_supported_in_insn_p (insn
))
497 error_with_line (pattern_lineno
,
498 "constraints not supported in %s",
499 rtx_name
[GET_CODE (insn
)]);
504 /* If a MATCH_SCRATCH is used in a context requiring an write-only
505 or read/write register, validate that. */
508 && constraints0
!= '='
509 && constraints0
!= '+')
511 error_with_line (pattern_lineno
,
512 "operand %d missing output reload",
520 if (find_operand (insn
, XINT (pattern
, 0), pattern
) == pattern
)
521 error_with_line (pattern_lineno
,
522 "operand %i duplicated before defined",
528 const char *pred_name
= XSTR (pattern
, 1);
529 const struct pred_data
*pred
;
532 if (GET_CODE (insn
) == DEFINE_INSN
)
533 c_test
= XSTR (insn
, 2);
535 c_test
= XSTR (insn
, 1);
537 if (pred_name
[0] != 0)
539 pred
= lookup_predicate (pred_name
);
541 error_with_line (pattern_lineno
, "unknown predicate '%s'",
547 if (code
== MATCH_OPERAND
)
549 const char *constraints
= XSTR (pattern
, 2);
550 const char constraints0
= constraints
[0];
552 if (!constraints_supported_in_insn_p (insn
))
556 error_with_line (pattern_lineno
,
557 "constraints not supported in %s",
558 rtx_name
[GET_CODE (insn
)]);
562 /* A MATCH_OPERAND that is a SET should have an output reload. */
563 else if (set
&& constraints0
)
567 if (constraints0
== '+')
569 /* If we've only got an output reload for this operand,
570 we'd better have a matching input operand. */
571 else if (constraints0
== '='
572 && find_matching_operand (insn
, XINT (pattern
, 0)))
575 error_with_line (pattern_lineno
,
576 "operand %d missing in-out reload",
579 else if (constraints0
!= '=' && constraints0
!= '+')
580 error_with_line (pattern_lineno
,
581 "operand %d missing output reload",
585 /* For matching constraint in MATCH_OPERAND, the digit must be a
586 smaller number than the number of the operand that uses it in the
590 while (constraints
[0]
591 && (constraints
[0] == ' ' || constraints
[0] == ','))
596 if (constraints
[0] >= '0' && constraints
[0] <= '9')
600 sscanf (constraints
, "%d", &val
);
601 if (val
>= XINT (pattern
, 0))
602 error_with_line (pattern_lineno
,
603 "constraint digit %d is not smaller than"
605 val
, XINT (pattern
, 0));
608 while (constraints
[0] && constraints
[0] != ',')
613 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
614 while not likely to occur at runtime, results in less efficient
615 code from insn-recog.c. */
616 if (set
&& pred
&& pred
->allows_non_lvalue
)
617 error_with_line (pattern_lineno
,
618 "destination operand %d allows non-lvalue",
621 /* A modeless MATCH_OPERAND can be handy when we can check for
622 multiple modes in the c_test. In most other cases, it is a
623 mistake. Only DEFINE_INSN is eligible, since SPLIT and
624 PEEP2 can FAIL within the output pattern. Exclude special
625 predicates, which check the mode themselves. Also exclude
626 predicates that allow only constants. Exclude the SET_DEST
627 of a call instruction, as that is a common idiom. */
629 if (GET_MODE (pattern
) == VOIDmode
630 && code
== MATCH_OPERAND
631 && GET_CODE (insn
) == DEFINE_INSN
634 && pred
->allows_non_const
635 && strstr (c_test
, "operands") == NULL
637 && GET_CODE (set
) == SET
638 && GET_CODE (SET_SRC (set
)) == CALL
))
639 message_with_line (pattern_lineno
,
640 "warning: operand %d missing mode?",
647 machine_mode dmode
, smode
;
650 dest
= SET_DEST (pattern
);
651 src
= SET_SRC (pattern
);
653 /* STRICT_LOW_PART is a wrapper. Its argument is the real
654 destination, and it's mode should match the source. */
655 if (GET_CODE (dest
) == STRICT_LOW_PART
)
656 dest
= XEXP (dest
, 0);
658 /* Find the referent for a DUP. */
660 if (GET_CODE (dest
) == MATCH_DUP
661 || GET_CODE (dest
) == MATCH_OP_DUP
662 || GET_CODE (dest
) == MATCH_PAR_DUP
)
663 dest
= find_operand (insn
, XINT (dest
, 0), NULL
);
665 if (GET_CODE (src
) == MATCH_DUP
666 || GET_CODE (src
) == MATCH_OP_DUP
667 || GET_CODE (src
) == MATCH_PAR_DUP
)
668 src
= find_operand (insn
, XINT (src
, 0), NULL
);
670 dmode
= GET_MODE (dest
);
671 smode
= GET_MODE (src
);
673 /* The mode of an ADDRESS_OPERAND is the mode of the memory
674 reference, not the mode of the address. */
675 if (GET_CODE (src
) == MATCH_OPERAND
676 && ! strcmp (XSTR (src
, 1), "address_operand"))
679 /* The operands of a SET must have the same mode unless one
681 else if (dmode
!= VOIDmode
&& smode
!= VOIDmode
&& dmode
!= smode
)
682 error_with_line (pattern_lineno
,
683 "mode mismatch in set: %smode vs %smode",
684 GET_MODE_NAME (dmode
), GET_MODE_NAME (smode
));
686 /* If only one of the operands is VOIDmode, and PC or CC0 is
687 not involved, it's probably a mistake. */
688 else if (dmode
!= smode
689 && GET_CODE (dest
) != PC
690 && GET_CODE (dest
) != CC0
691 && GET_CODE (src
) != PC
692 && GET_CODE (src
) != CC0
693 && !CONST_INT_P (src
)
694 && !CONST_WIDE_INT_P (src
)
695 && GET_CODE (src
) != CALL
)
698 which
= (dmode
== VOIDmode
? "destination" : "source");
699 message_with_line (pattern_lineno
,
700 "warning: %s missing a mode?", which
);
703 if (dest
!= SET_DEST (pattern
))
704 validate_pattern (dest
, insn
, pattern
, '=');
705 validate_pattern (SET_DEST (pattern
), insn
, pattern
, '=');
706 validate_pattern (SET_SRC (pattern
), insn
, NULL_RTX
, 0);
711 validate_pattern (SET_DEST (pattern
), insn
, pattern
, '=');
715 validate_pattern (XEXP (pattern
, 0), insn
, set
, set
? '+' : 0);
716 validate_pattern (XEXP (pattern
, 1), insn
, NULL_RTX
, 0);
717 validate_pattern (XEXP (pattern
, 2), insn
, NULL_RTX
, 0);
720 case STRICT_LOW_PART
:
721 validate_pattern (XEXP (pattern
, 0), insn
, set
, set
? '+' : 0);
725 if (GET_MODE (LABEL_REF_LABEL (pattern
)) != VOIDmode
)
726 error_with_line (pattern_lineno
,
727 "operand to label_ref %smode not VOIDmode",
728 GET_MODE_NAME (GET_MODE (LABEL_REF_LABEL (pattern
))));
735 fmt
= GET_RTX_FORMAT (code
);
736 len
= GET_RTX_LENGTH (code
);
737 for (i
= 0; i
< len
; i
++)
742 validate_pattern (XEXP (pattern
, i
), insn
, NULL_RTX
, 0);
746 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
747 validate_pattern (XVECEXP (pattern
, i
, j
), insn
, NULL_RTX
, 0);
750 case 'i': case 'r': case 'w': case '0': case 's':
759 /* Simple list structure for items of type T, for use when being part
760 of a list is an inherent property of T. T must have members equivalent
761 to "T *prev, *next;" and a function "void set_parent (list_head <T> *)"
762 to set the parent list. */
763 template <typename T
>
766 /* A range of linked items. */
773 void set_parent (list_head
*);
778 void push_back (range
);
779 range
remove (range
);
780 void replace (range
, range
);
781 T
*singleton () const;
786 /* Create a range [START_IN, START_IN]. */
788 template <typename T
>
789 list_head
<T
>::range::range (T
*start_in
) : start (start_in
), end (start_in
) {}
791 /* Create a range [START_IN, END_IN], linked by next and prev fields. */
793 template <typename T
>
794 list_head
<T
>::range::range (T
*start_in
, T
*end_in
)
795 : start (start_in
), end (end_in
) {}
797 template <typename T
>
799 list_head
<T
>::range::set_parent (list_head
<T
> *owner
)
801 for (T
*item
= start
; item
!= end
; item
= item
->next
)
802 item
->set_parent (owner
);
803 end
->set_parent (owner
);
806 template <typename T
>
807 list_head
<T
>::list_head () : first (0), last (0) {}
809 /* Add R to the end of the list. */
811 template <typename T
>
813 list_head
<T
>::push_back (range r
)
816 last
->next
= r
.start
;
819 r
.start
->prev
= last
;
824 /* Remove R from the list. R remains valid and can be inserted into
827 template <typename T
>
828 typename list_head
<T
>::range
829 list_head
<T
>::remove (range r
)
832 r
.start
->prev
->next
= r
.end
->next
;
836 r
.end
->next
->prev
= r
.start
->prev
;
838 last
= r
.start
->prev
;
845 /* Replace OLDR with NEWR. OLDR remains valid and can be inserted into
848 template <typename T
>
850 list_head
<T
>::replace (range oldr
, range newr
)
852 newr
.start
->prev
= oldr
.start
->prev
;
853 newr
.end
->next
= oldr
.end
->next
;
855 oldr
.start
->prev
= 0;
859 if (newr
.start
->prev
)
860 newr
.start
->prev
->next
= newr
.start
;
864 newr
.end
->next
->prev
= newr
.end
;
867 newr
.set_parent (this);
870 /* Empty the list and return the previous contents as a range that can
871 be inserted into other lists. */
873 template <typename T
>
874 typename list_head
<T
>::range
875 list_head
<T
>::release ()
877 range
r (first
, last
);
884 /* If the list contains a single item, return that item, otherwise return
887 template <typename T
>
889 list_head
<T
>::singleton () const
891 return first
== last
? first
: 0;
896 /* Describes a possible successful return from a routine. */
897 struct acceptance_type
899 /* The type of routine we're returning from. */
900 routine_type type
: 16;
902 /* True if this structure only really represents a partial match,
903 and if we must call a subroutine of type TYPE to complete the match.
904 In this case we'll call the subroutine and, if it succeeds, return
905 whatever the subroutine returned.
907 False if this structure presents a full match. */
908 unsigned int partial_p
: 1;
912 /* If PARTIAL_P, this is the number of the subroutine to call. */
915 /* Valid if !PARTIAL_P. */
918 /* The identifier of the matching pattern. For SUBPATTERNs this
919 value belongs to an ad-hoc routine-specific enum. For the
920 others it's the number of an .md file pattern. */
924 /* For RECOG, the number of clobbers that must be added to the
925 pattern in order for it to match CODE. */
928 /* For PEEPHOLE2, the number of additional instructions that were
929 included in the optimization. */
937 operator == (const acceptance_type
&a
, const acceptance_type
&b
)
939 if (a
.partial_p
!= b
.partial_p
)
942 return a
.u
.subroutine_id
== b
.u
.subroutine_id
;
944 return a
.u
.full
.code
== b
.u
.full
.code
;
948 operator != (const acceptance_type
&a
, const acceptance_type
&b
)
950 return !operator == (a
, b
);
953 /* Represents a parameter to a pattern routine. */
956 /* The C type of parameter. */
958 /* Represents an invalid parameter. */
961 /* A machine_mode parameter. */
964 /* An rtx_code parameter. */
967 /* An int parameter. */
970 /* An unsigned int parameter. */
973 /* A HOST_WIDE_INT parameter. */
978 parameter (type_enum
, bool, uint64_t);
980 /* The type of the parameter. */
983 /* True if the value passed is variable, false if it is constant. */
986 /* If IS_PARAM, this is the number of the variable passed, for an "i%d"
987 format string. If !IS_PARAM, this is the constant value passed. */
991 parameter::parameter ()
992 : type (UNSET
), is_param (false), value (0) {}
994 parameter::parameter (type_enum type_in
, bool is_param_in
, uint64_t value_in
)
995 : type (type_in
), is_param (is_param_in
), value (value_in
) {}
998 operator == (const parameter
¶m1
, const parameter
¶m2
)
1000 return (param1
.type
== param2
.type
1001 && param1
.is_param
== param2
.is_param
1002 && param1
.value
== param2
.value
);
1006 operator != (const parameter
¶m1
, const parameter
¶m2
)
1008 return !operator == (param1
, param2
);
1011 /* Represents a routine that matches a partial rtx pattern, returning
1012 an ad-hoc enum value on success and -1 on failure. The routine can
1013 be used by any subroutine type. The match can be parameterized by
1014 things like mode, code and UNSPEC number. */
1015 struct pattern_routine
1017 /* The state that implements the pattern. */
1020 /* The deepest root position from which S can access all the rtxes it needs.
1021 This is NULL if the pattern doesn't need an rtx input, usually because
1022 all matching is done on operands[] instead. */
1025 /* A unique identifier for the routine. */
1026 unsigned int pattern_id
;
1028 /* True if the routine takes pnum_clobbers as argument. */
1029 bool pnum_clobbers_p
;
1031 /* True if the routine takes the enclosing instruction as argument. */
1034 /* The types of the other parameters to the routine, if any. */
1035 auto_vec
<parameter::type_enum
, MAX_PATTERN_PARAMS
> param_types
;
1038 /* All defined patterns. */
1039 static vec
<pattern_routine
*> patterns
;
1041 /* Represents one use of a pattern routine. */
1044 /* The pattern routine to use. */
1045 pattern_routine
*routine
;
1047 /* The values to pass as parameters. This vector has the same length
1048 as ROUTINE->PARAM_TYPES. */
1049 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
1052 /* Represents a test performed by a decision. */
1057 /* The types of test that can be performed. Most of them take as input
1058 an rtx X. Some also take as input a transition label LABEL; the others
1059 are booleans for which the transition label is always "true".
1061 The order of the enum isn't important. */
1063 /* Check GET_CODE (X) == LABEL. */
1066 /* Check GET_MODE (X) == LABEL. */
1069 /* Check REGNO (X) == LABEL. */
1072 /* Check XINT (X, u.opno) == LABEL. */
1075 /* Check XWINT (X, u.opno) == LABEL. */
1078 /* Check XVECLEN (X, 0) == LABEL. */
1081 /* Check peep2_current_count >= u.min_len. */
1084 /* Check XVECLEN (X, 0) >= u.min_len. */
1087 /* Check whether X is a cached const_int with value u.integer. */
1090 /* Check u.predicate.data (X, u.predicate.mode). */
1093 /* Check rtx_equal_p (X, operands[u.opno]). */
1096 /* Check whether X matches pattern u.pattern. */
1099 /* Check whether pnum_clobbers is nonnull (RECOG only). */
1102 /* Check whether general C test u.string holds. In general the condition
1103 needs access to "insn" and the full operand list. */
1106 /* Execute operands[u.opno] = X. (Always succeeds.) */
1109 /* Accept u.acceptance. Always succeeds for SUBPATTERN, RECOG and SPLIT.
1110 May fail for PEEPHOLE2 if the define_peephole2 C code executes FAIL. */
1114 /* The position of rtx X in the above description, relative to the
1115 incoming instruction "insn". The position is null if the test
1116 doesn't take an X as input. */
1119 /* Which element of operands[] already contains POS, or -1 if no element
1120 is known to hold POS. */
1123 /* The type of test and its parameters, as described above. */
1136 const struct pred_data
*data
;
1137 /* True if the mode is taken from a machine_mode parameter
1138 to the routine rather than a constant machine_mode. If true,
1139 MODE is the number of the parameter (for an "i%d" format string),
1140 otherwise it is the mode itself. */
1144 pattern_use
*pattern
;
1146 acceptance_type acceptance
;
1149 static rtx_test
code (position
*);
1150 static rtx_test
mode (position
*);
1151 static rtx_test
regno_field (position
*);
1152 static rtx_test
int_field (position
*, int);
1153 static rtx_test
wide_int_field (position
*, int);
1154 static rtx_test
veclen (position
*);
1155 static rtx_test
peep2_count (int);
1156 static rtx_test
veclen_ge (position
*, int);
1157 static rtx_test
predicate (position
*, const pred_data
*, machine_mode
);
1158 static rtx_test
duplicate (position
*, int);
1159 static rtx_test
pattern (position
*, pattern_use
*);
1160 static rtx_test
have_num_clobbers ();
1161 static rtx_test
c_test (const char *);
1162 static rtx_test
set_op (position
*, int);
1163 static rtx_test
accept (const acceptance_type
&);
1165 bool terminal_p () const;
1166 bool single_outcome_p () const;
1169 rtx_test (position
*, kind_enum
);
1172 rtx_test::rtx_test () {}
1174 rtx_test::rtx_test (position
*pos_in
, kind_enum kind_in
)
1175 : pos (pos_in
), pos_operand (-1), kind (kind_in
) {}
1178 rtx_test::code (position
*pos
)
1180 return rtx_test (pos
, rtx_test::CODE
);
1184 rtx_test::mode (position
*pos
)
1186 return rtx_test (pos
, rtx_test::MODE
);
1190 rtx_test::regno_field (position
*pos
)
1192 rtx_test
res (pos
, rtx_test::REGNO_FIELD
);
1197 rtx_test::int_field (position
*pos
, int opno
)
1199 rtx_test
res (pos
, rtx_test::INT_FIELD
);
1205 rtx_test::wide_int_field (position
*pos
, int opno
)
1207 rtx_test
res (pos
, rtx_test::WIDE_INT_FIELD
);
1213 rtx_test::veclen (position
*pos
)
1215 return rtx_test (pos
, rtx_test::VECLEN
);
1219 rtx_test::peep2_count (int min_len
)
1221 rtx_test
res (0, rtx_test::PEEP2_COUNT
);
1222 res
.u
.min_len
= min_len
;
1227 rtx_test::veclen_ge (position
*pos
, int min_len
)
1229 rtx_test
res (pos
, rtx_test::VECLEN_GE
);
1230 res
.u
.min_len
= min_len
;
1235 rtx_test::predicate (position
*pos
, const struct pred_data
*data
,
1238 rtx_test
res (pos
, rtx_test::PREDICATE
);
1239 res
.u
.predicate
.data
= data
;
1240 res
.u
.predicate
.mode_is_param
= false;
1241 res
.u
.predicate
.mode
= mode
;
1246 rtx_test::duplicate (position
*pos
, int opno
)
1248 rtx_test
res (pos
, rtx_test::DUPLICATE
);
1254 rtx_test::pattern (position
*pos
, pattern_use
*pattern
)
1256 rtx_test
res (pos
, rtx_test::PATTERN
);
1257 res
.u
.pattern
= pattern
;
1262 rtx_test::have_num_clobbers ()
1264 return rtx_test (0, rtx_test::HAVE_NUM_CLOBBERS
);
1268 rtx_test::c_test (const char *string
)
1270 rtx_test
res (0, rtx_test::C_TEST
);
1271 res
.u
.string
= string
;
1276 rtx_test::set_op (position
*pos
, int opno
)
1278 rtx_test
res (pos
, rtx_test::SET_OP
);
1284 rtx_test::accept (const acceptance_type
&acceptance
)
1286 rtx_test
res (0, rtx_test::ACCEPT
);
1287 res
.u
.acceptance
= acceptance
;
1291 /* Return true if the test represents an unconditionally successful match. */
1294 rtx_test::terminal_p () const
1296 return kind
== rtx_test::ACCEPT
&& u
.acceptance
.type
!= PEEPHOLE2
;
1299 /* Return true if the test is a boolean that is always true. */
1302 rtx_test::single_outcome_p () const
1304 return terminal_p () || kind
== rtx_test::SET_OP
;
1308 operator == (const rtx_test
&a
, const rtx_test
&b
)
1310 if (a
.pos
!= b
.pos
|| a
.kind
!= b
.kind
)
1314 case rtx_test::CODE
:
1315 case rtx_test::MODE
:
1316 case rtx_test::REGNO_FIELD
:
1317 case rtx_test::VECLEN
:
1318 case rtx_test::HAVE_NUM_CLOBBERS
:
1321 case rtx_test::PEEP2_COUNT
:
1322 case rtx_test::VECLEN_GE
:
1323 return a
.u
.min_len
== b
.u
.min_len
;
1325 case rtx_test::INT_FIELD
:
1326 case rtx_test::WIDE_INT_FIELD
:
1327 case rtx_test::DUPLICATE
:
1328 case rtx_test::SET_OP
:
1329 return a
.u
.opno
== b
.u
.opno
;
1331 case rtx_test::SAVED_CONST_INT
:
1332 return (a
.u
.integer
.is_param
== b
.u
.integer
.is_param
1333 && a
.u
.integer
.value
== b
.u
.integer
.value
);
1335 case rtx_test::PREDICATE
:
1336 return (a
.u
.predicate
.data
== b
.u
.predicate
.data
1337 && a
.u
.predicate
.mode_is_param
== b
.u
.predicate
.mode_is_param
1338 && a
.u
.predicate
.mode
== b
.u
.predicate
.mode
);
1340 case rtx_test::PATTERN
:
1341 return (a
.u
.pattern
->routine
== b
.u
.pattern
->routine
1342 && a
.u
.pattern
->params
== b
.u
.pattern
->params
);
1344 case rtx_test::C_TEST
:
1345 return strcmp (a
.u
.string
, b
.u
.string
) == 0;
1347 case rtx_test::ACCEPT
:
1348 return a
.u
.acceptance
== b
.u
.acceptance
;
1354 operator != (const rtx_test
&a
, const rtx_test
&b
)
1356 return !operator == (a
, b
);
1359 /* A simple set of transition labels. Most transitions have a singleton
1360 label, so try to make that case as efficient as possible. */
1361 struct int_set
: public auto_vec
<uint64_t, 1>
1363 typedef uint64_t *iterator
;
1367 int_set (const int_set
&);
1369 int_set
&operator = (const int_set
&);
1375 int_set::int_set () {}
1377 int_set::int_set (uint64_t label
)
1382 int_set::int_set (const int_set
&other
)
1384 safe_splice (other
);
1388 int_set::operator = (const int_set
&other
)
1391 safe_splice (other
);
1404 return address () + length ();
1408 operator == (const int_set
&a
, const int_set
&b
)
1410 if (a
.length () != b
.length ())
1412 for (unsigned int i
= 0; i
< a
.length (); ++i
)
1419 operator != (const int_set
&a
, const int_set
&b
)
1421 return !operator == (a
, b
);
1426 /* Represents a transition between states, dependent on the result of
1430 transition (const int_set
&, state
*, bool);
1432 void set_parent (list_head
<transition
> *);
1434 /* Links to other transitions for T. Always null for boolean tests. */
1435 transition
*prev
, *next
;
1437 /* The transition should be taken when T has one of these values.
1438 E.g. for rtx_test::CODE this is a set of codes, while for booleans like
1439 rtx_test::PREDICATE it is always a singleton "true". The labels are
1440 sorted in ascending order. */
1443 /* The source decision. */
1446 /* The target state. */
1449 /* True if TO would function correctly even if TEST wasn't performed.
1450 E.g. it isn't necessary to check whether GET_MODE (x1) is SImode
1451 before calling register_operand (x1, SImode), since register_operand
1452 performs its own mode check. However, checking GET_MODE can be a cheap
1453 way of disambiguating SImode and DImode register operands. */
1456 /* True if LABELS contains parameter numbers rather than constants.
1457 E.g. if this is true for a rtx_test::CODE, the label is the number
1458 of an rtx_code parameter rather than an rtx_code itself.
1459 LABELS is always a singleton when this variable is true. */
1463 /* Represents a test and the action that should be taken on the result.
1464 If a transition exists for the test outcome, the machine switches
1465 to the transition's target state. If no suitable transition exists,
1466 the machine either falls through to the next decision or, if there are no
1467 more decisions to try, fails the match. */
1468 struct decision
: list_head
<transition
>
1470 decision (const rtx_test
&);
1472 void set_parent (list_head
<decision
> *s
);
1473 bool if_statement_p (uint64_t * = 0) const;
1475 /* The state to which this decision belongs. */
1478 /* Links to other decisions in the same state. */
1479 decision
*prev
, *next
;
1481 /* The test to perform. */
1485 /* Represents one machine state. For each state the machine tries a list
1486 of decisions, in order, and acts on the first match. It fails without
1487 further backtracking if no decisions match. */
1488 struct state
: list_head
<decision
>
1490 void set_parent (list_head
<state
> *) {}
1493 transition::transition (const int_set
&labels_in
, state
*to_in
,
1495 : prev (0), next (0), labels (labels_in
), from (0), to (to_in
),
1496 optional (optional_in
), is_param (false) {}
1498 /* Set the source decision of the transition. */
1501 transition::set_parent (list_head
<transition
> *from_in
)
1503 from
= static_cast <decision
*> (from_in
);
1506 decision::decision (const rtx_test
&test_in
)
1507 : prev (0), next (0), test (test_in
) {}
1509 /* Set the state to which this decision belongs. */
1512 decision::set_parent (list_head
<decision
> *s_in
)
1514 s
= static_cast <state
*> (s_in
);
1517 /* Return true if the decision has a single transition with a single label.
1518 If so, return the label in *LABEL if nonnull. */
1521 decision::if_statement_p (uint64_t *label
) const
1523 if (singleton () && first
->labels
.length () == 1)
1526 *label
= first
->labels
[0];
1532 /* Add to FROM a decision that performs TEST and has a single transition
1536 add_decision (state
*from
, const rtx_test
&test
, transition
*trans
)
1538 decision
*d
= new decision (test
);
1539 from
->push_back (d
);
1540 d
->push_back (trans
);
1543 /* Add a transition from FROM to a new, empty state that is taken
1544 when TEST == LABELS. OPTIONAL says whether the new transition
1545 should be optional. Return the new state. */
1548 add_decision (state
*from
, const rtx_test
&test
, int_set labels
, bool optional
)
1550 state
*to
= new state
;
1551 add_decision (from
, test
, new transition (labels
, to
, optional
));
1555 /* Insert a decision before decisions R to make them dependent on
1556 TEST == LABELS. OPTIONAL says whether the new transition should be
1560 insert_decision_before (state::range r
, const rtx_test
&test
,
1561 const int_set
&labels
, bool optional
)
1563 decision
*newd
= new decision (test
);
1564 state
*news
= new state
;
1565 newd
->push_back (new transition (labels
, news
, optional
));
1566 r
.start
->s
->replace (r
, newd
);
1567 news
->push_back (r
);
1571 /* Remove any optional transitions from S that turned out not to be useful. */
1574 collapse_optional_decisions (state
*s
)
1576 decision
*d
= s
->first
;
1579 decision
*next
= d
->next
;
1580 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1581 collapse_optional_decisions (trans
->to
);
1582 /* A decision with a single optional transition doesn't help
1583 partition the potential matches and so is unlikely to be
1584 worthwhile. In particular, if the decision that performs the
1585 test is the last in the state, the best it could do is reject
1586 an invalid pattern slightly earlier. If instead the decision
1587 is not the last in the state, the condition it tests could hold
1588 even for the later decisions in the state. The best it can do
1589 is save work in some cases where only the later decisions can
1592 In both cases the optional transition would add extra work to
1593 successful matches when the tested condition holds. */
1594 if (transition
*trans
= d
->singleton ())
1595 if (trans
->optional
)
1596 s
->replace (d
, trans
->to
->release ());
1601 /* Try to squash several separate tests into simpler ones. */
1604 simplify_tests (state
*s
)
1606 for (decision
*d
= s
->first
; d
; d
= d
->next
)
1609 /* Convert checks for GET_CODE (x) == CONST_INT and XWINT (x, 0) == N
1610 into checks for const_int_rtx[N'], if N is suitably small. */
1611 if (d
->test
.kind
== rtx_test::CODE
1612 && d
->if_statement_p (&label
)
1613 && label
== CONST_INT
)
1614 if (decision
*second
= d
->first
->to
->singleton ())
1615 if (d
->test
.pos
== second
->test
.pos
1616 && second
->test
.kind
== rtx_test::WIDE_INT_FIELD
1617 && second
->test
.u
.opno
== 0
1618 && second
->if_statement_p (&label
)
1619 && IN_RANGE (int64_t (label
),
1620 -MAX_SAVED_CONST_INT
, MAX_SAVED_CONST_INT
))
1622 d
->test
.kind
= rtx_test::SAVED_CONST_INT
;
1623 d
->test
.u
.integer
.is_param
= false;
1624 d
->test
.u
.integer
.value
= label
;
1625 d
->replace (d
->first
, second
->release ());
1626 d
->first
->labels
[0] = true;
1628 /* If we have a CODE test followed by a PREDICATE test, rely on
1629 the predicate to test the code.
1631 This case exists for match_operators. We initially treat the
1632 CODE test for a match_operator as non-optional so that we can
1633 safely move down to its operands. It may turn out that all
1634 paths that reach that code test require the same predicate
1635 to be true. cse_tests will then put the predicate test in
1636 series with the code test. */
1637 if (d
->test
.kind
== rtx_test::CODE
)
1638 if (transition
*trans
= d
->singleton ())
1640 state
*s
= trans
->to
;
1641 while (decision
*d2
= s
->singleton ())
1643 if (d
->test
.pos
!= d2
->test
.pos
)
1645 transition
*trans2
= d2
->singleton ();
1648 if (d2
->test
.kind
== rtx_test::PREDICATE
)
1651 trans
->labels
= int_set (true);
1652 s
->replace (d2
, trans2
->to
->release ());
1658 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1659 simplify_tests (trans
->to
);
1663 /* Return true if all successful returns passing through D require the
1664 condition tested by COMMON to be true.
1666 When returning true, add all transitions like COMMON in D to WHERE.
1667 WHERE may contain a partial result on failure. */
1670 common_test_p (decision
*d
, transition
*common
, vec
<transition
*> *where
)
1672 if (d
->test
.kind
== rtx_test::ACCEPT
)
1673 /* We found a successful return that didn't require COMMON. */
1675 if (d
->test
== common
->from
->test
)
1677 transition
*trans
= d
->singleton ();
1679 || trans
->optional
!= common
->optional
1680 || trans
->labels
!= common
->labels
)
1682 where
->safe_push (trans
);
1685 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1686 for (decision
*subd
= trans
->to
->first
; subd
; subd
= subd
->next
)
1687 if (!common_test_p (subd
, common
, where
))
1692 /* Indicates that we have tested GET_CODE (X) for a particular rtx X. */
1693 const unsigned char TESTED_CODE
= 1;
1695 /* Indicates that we have tested XVECLEN (X, 0) for a particular rtx X. */
1696 const unsigned char TESTED_VECLEN
= 2;
1698 /* Represents a set of conditions that are known to hold. */
1699 struct known_conditions
1701 /* A mask of TESTED_ values for each position, indexed by the position's
1703 auto_vec
<unsigned char> position_tests
;
1705 /* Index N says whether operands[N] has been set. */
1706 auto_vec
<bool> set_operands
;
1708 /* A guranteed lower bound on the value of peep2_current_count. */
1712 /* Return true if TEST can safely be performed at D, where
1713 the conditions in KC hold. TEST is known to occur along the
1714 first path from D (i.e. always following the first transition
1715 of the first decision). Any intervening tests can be used as
1716 negative proof that hoisting isn't safe, but only KC can be used
1717 as positive proof. */
1720 safe_to_hoist_p (decision
*d
, const rtx_test
&test
, known_conditions
*kc
)
1724 case rtx_test::C_TEST
:
1725 /* In general, C tests require everything else to have been
1726 verified and all operands to have been set up. */
1729 case rtx_test::ACCEPT
:
1730 /* Don't accept something before all conditions have been tested. */
1733 case rtx_test::PREDICATE
:
1734 /* Don't move a predicate over a test for VECLEN_GE, since the
1735 predicate used in a match_parallel can legitimately expect the
1736 length to be checked first. */
1737 for (decision
*subd
= d
;
1739 subd
= subd
->first
->to
->first
)
1740 if (subd
->test
.pos
== test
.pos
1741 && subd
->test
.kind
== rtx_test::VECLEN_GE
)
1745 case rtx_test::DUPLICATE
:
1746 /* Don't test for a match_dup until the associated operand has
1748 if (!kc
->set_operands
[test
.u
.opno
])
1752 case rtx_test::CODE
:
1753 case rtx_test::MODE
:
1754 case rtx_test::SAVED_CONST_INT
:
1755 case rtx_test::SET_OP
:
1757 /* Check whether it is safe to access the rtx under test. */
1758 switch (test
.pos
->type
)
1760 case POS_PEEP2_INSN
:
1761 return test
.pos
->arg
< kc
->peep2_count
;
1764 return kc
->position_tests
[test
.pos
->base
->id
] & TESTED_CODE
;
1767 return kc
->position_tests
[test
.pos
->base
->id
] & TESTED_VECLEN
;
1771 case rtx_test::REGNO_FIELD
:
1772 case rtx_test::INT_FIELD
:
1773 case rtx_test::WIDE_INT_FIELD
:
1774 case rtx_test::VECLEN
:
1775 case rtx_test::VECLEN_GE
:
1776 /* These tests access a specific part of an rtx, so are only safe
1777 once we know what the rtx is. */
1778 return kc
->position_tests
[test
.pos
->id
] & TESTED_CODE
;
1780 case rtx_test::PEEP2_COUNT
:
1781 case rtx_test::HAVE_NUM_CLOBBERS
:
1782 /* These tests can be performed anywhere. */
1785 case rtx_test::PATTERN
:
1791 /* Look for a transition that is taken by all successful returns from a range
1792 of decisions starting at OUTER and that would be better performed by
1793 OUTER's state instead. On success, store all instances of that transition
1794 in WHERE and return the last decision in the range. The range could
1795 just be OUTER, or it could include later decisions as well.
1797 WITH_POSITION_P is true if only tests with position POS should be tried,
1798 false if any test should be tried. WORTHWHILE_SINGLE_P is true if the
1799 result is useful even when the range contains just a single decision
1800 with a single transition. KC are the conditions that are known to
1804 find_common_test (decision
*outer
, bool with_position_p
,
1805 position
*pos
, bool worthwhile_single_p
,
1806 known_conditions
*kc
, vec
<transition
*> *where
)
1808 /* After this, WORTHWHILE_SINGLE_P indicates whether a range that contains
1809 just a single decision is useful, regardless of the number of
1810 transitions it has. */
1811 if (!outer
->singleton ())
1812 worthwhile_single_p
= true;
1813 /* Quick exit if we don't have enough decisions to form a worthwhile
1815 if (!worthwhile_single_p
&& !outer
->next
)
1817 /* Follow the first chain down, as one example of a path that needs
1818 to contain the common test. */
1819 for (decision
*d
= outer
; d
; d
= d
->first
->to
->first
)
1821 transition
*trans
= d
->singleton ();
1823 && (!with_position_p
|| d
->test
.pos
== pos
)
1824 && safe_to_hoist_p (outer
, d
->test
, kc
))
1826 if (common_test_p (outer
, trans
, where
))
1829 /* We checked above whether the move is worthwhile. */
1831 /* See how many decisions in OUTER's chain could reuse
1833 decision
*outer_end
= outer
;
1836 unsigned int length
= where
->length ();
1837 if (!common_test_p (outer_end
->next
, trans
, where
))
1839 where
->truncate (length
);
1842 outer_end
= outer_end
->next
;
1844 while (outer_end
->next
);
1845 /* It is worth moving TRANS if it can be shared by more than
1847 if (outer_end
!= outer
|| worthwhile_single_p
)
1850 where
->truncate (0);
1856 /* Try to promote common subtests in S to a single, shared decision.
1857 Also try to bunch tests for the same position together. POS is the
1858 position of the rtx tested before reaching S. KC are the conditions
1859 that are known to hold on entry to S. */
1862 cse_tests (position
*pos
, state
*s
, known_conditions
*kc
)
1864 for (decision
*d
= s
->first
; d
; d
= d
->next
)
1866 auto_vec
<transition
*, 16> where
;
1869 /* Try to find conditions that don't depend on a particular rtx,
1870 such as pnum_clobbers != NULL or peep2_current_count >= X.
1871 It's usually better to check these conditions as soon as
1872 possible, so the change is worthwhile even if there is
1873 only one copy of the test. */
1874 decision
*endd
= find_common_test (d
, true, 0, true, kc
, &where
);
1875 if (!endd
&& d
->test
.pos
!= pos
)
1876 /* Try to find other conditions related to position POS
1877 before moving to the new position. Again, this is
1878 worthwhile even if there is only one copy of the test,
1879 since it means that fewer position variables are live
1881 endd
= find_common_test (d
, true, pos
, true, kc
, &where
);
1883 /* Try to find any condition that is used more than once. */
1884 endd
= find_common_test (d
, false, 0, false, kc
, &where
);
1887 transition
*common
= where
[0];
1888 /* Replace [D, ENDD] with a test like COMMON. We'll recurse
1889 on the common test and see the original D again next time. */
1890 d
= insert_decision_before (state::range (d
, endd
),
1894 /* Remove the old tests. */
1895 while (!where
.is_empty ())
1897 transition
*trans
= where
.pop ();
1898 trans
->from
->s
->replace (trans
->from
, trans
->to
->release ());
1903 /* Make sure that safe_to_hoist_p isn't being overly conservative.
1904 It should realize that D's test is safe in the current
1906 gcc_assert (d
->test
.kind
== rtx_test::C_TEST
1907 || d
->test
.kind
== rtx_test::ACCEPT
1908 || safe_to_hoist_p (d
, d
->test
, kc
));
1910 /* D won't be changed any further by the current optimization.
1911 Recurse with the state temporarily updated to include D. */
1913 switch (d
->test
.kind
)
1915 case rtx_test::CODE
:
1916 prev
= kc
->position_tests
[d
->test
.pos
->id
];
1917 kc
->position_tests
[d
->test
.pos
->id
] |= TESTED_CODE
;
1920 case rtx_test::VECLEN
:
1921 case rtx_test::VECLEN_GE
:
1922 prev
= kc
->position_tests
[d
->test
.pos
->id
];
1923 kc
->position_tests
[d
->test
.pos
->id
] |= TESTED_VECLEN
;
1926 case rtx_test::SET_OP
:
1927 prev
= kc
->set_operands
[d
->test
.u
.opno
];
1929 kc
->set_operands
[d
->test
.u
.opno
] = true;
1932 case rtx_test::PEEP2_COUNT
:
1933 prev
= kc
->peep2_count
;
1934 kc
->peep2_count
= MAX (prev
, d
->test
.u
.min_len
);
1940 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
1941 cse_tests (d
->test
.pos
? d
->test
.pos
: pos
, trans
->to
, kc
);
1942 switch (d
->test
.kind
)
1944 case rtx_test::CODE
:
1945 case rtx_test::VECLEN
:
1946 case rtx_test::VECLEN_GE
:
1947 kc
->position_tests
[d
->test
.pos
->id
] = prev
;
1950 case rtx_test::SET_OP
:
1951 kc
->set_operands
[d
->test
.u
.opno
] = prev
;
1954 case rtx_test::PEEP2_COUNT
:
1955 kc
->peep2_count
= prev
;
1964 /* Return the type of value that can be used to parameterize test KIND,
1965 or parameter::UNSET if none. */
1967 parameter::type_enum
1968 transition_parameter_type (rtx_test::kind_enum kind
)
1972 case rtx_test::CODE
:
1973 return parameter::CODE
;
1975 case rtx_test::MODE
:
1976 return parameter::MODE
;
1978 case rtx_test::REGNO_FIELD
:
1979 return parameter::UINT
;
1981 case rtx_test::INT_FIELD
:
1982 case rtx_test::VECLEN
:
1983 case rtx_test::PATTERN
:
1984 return parameter::INT
;
1986 case rtx_test::WIDE_INT_FIELD
:
1987 return parameter::WIDE_INT
;
1989 case rtx_test::PEEP2_COUNT
:
1990 case rtx_test::VECLEN_GE
:
1991 case rtx_test::SAVED_CONST_INT
:
1992 case rtx_test::PREDICATE
:
1993 case rtx_test::DUPLICATE
:
1994 case rtx_test::HAVE_NUM_CLOBBERS
:
1995 case rtx_test::C_TEST
:
1996 case rtx_test::SET_OP
:
1997 case rtx_test::ACCEPT
:
1998 return parameter::UNSET
;
2003 /* Initialize the pos_operand fields of each state reachable from S.
2004 If OPERAND_POS[ID] >= 0, the position with id ID is stored in
2005 operands[OPERAND_POS[ID]] on entry to S. */
2008 find_operand_positions (state
*s
, vec
<int> &operand_pos
)
2010 for (decision
*d
= s
->first
; d
; d
= d
->next
)
2012 int this_operand
= (d
->test
.pos
? operand_pos
[d
->test
.pos
->id
] : -1);
2013 if (this_operand
>= 0)
2014 d
->test
.pos_operand
= this_operand
;
2015 if (d
->test
.kind
== rtx_test::SET_OP
)
2016 operand_pos
[d
->test
.pos
->id
] = d
->test
.u
.opno
;
2017 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2018 find_operand_positions (trans
->to
, operand_pos
);
2019 if (d
->test
.kind
== rtx_test::SET_OP
)
2020 operand_pos
[d
->test
.pos
->id
] = this_operand
;
2024 /* Statistics about a matching routine. */
2029 /* The total number of decisions in the routine, excluding trivial
2030 ones that never fail. */
2031 unsigned int num_decisions
;
2033 /* The number of non-trivial decisions on the longest path through
2034 the routine, and the return value that contributes most to that
2036 unsigned int longest_path
;
2037 int longest_path_code
;
2039 /* The maximum number of times that a single call to the routine
2040 can backtrack, and the value returned at the end of that path.
2041 "Backtracking" here means failing one decision in state and
2042 going onto to the next. */
2043 unsigned int longest_backtrack
;
2044 int longest_backtrack_code
;
2048 : num_decisions (0), longest_path (0), longest_path_code (-1),
2049 longest_backtrack (0), longest_backtrack_code (-1) {}
2051 /* Return statistics about S. */
2054 get_stats (state
*s
)
2057 unsigned int longest_path
= 0;
2058 for (decision
*d
= s
->first
; d
; d
= d
->next
)
2060 /* Work out the statistics for D. */
2062 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2064 stats for_trans
= get_stats (trans
->to
);
2065 for_d
.num_decisions
+= for_trans
.num_decisions
;
2066 /* Each transition is mutually-exclusive, so just pick the
2067 longest of the individual paths. */
2068 if (for_d
.longest_path
<= for_trans
.longest_path
)
2070 for_d
.longest_path
= for_trans
.longest_path
;
2071 for_d
.longest_path_code
= for_trans
.longest_path_code
;
2073 /* Likewise for backtracking. */
2074 if (for_d
.longest_backtrack
<= for_trans
.longest_backtrack
)
2076 for_d
.longest_backtrack
= for_trans
.longest_backtrack
;
2077 for_d
.longest_backtrack_code
= for_trans
.longest_backtrack_code
;
2081 /* Account for D's test in its statistics. */
2082 if (!d
->test
.single_outcome_p ())
2084 for_d
.num_decisions
+= 1;
2085 for_d
.longest_path
+= 1;
2087 if (d
->test
.kind
== rtx_test::ACCEPT
)
2089 for_d
.longest_path_code
= d
->test
.u
.acceptance
.u
.full
.code
;
2090 for_d
.longest_backtrack_code
= d
->test
.u
.acceptance
.u
.full
.code
;
2093 /* Keep a running count of the number of backtracks. */
2095 for_s
.longest_backtrack
+= 1;
2097 /* Accumulate D's statistics into S's. */
2098 for_s
.num_decisions
+= for_d
.num_decisions
;
2099 for_s
.longest_path
+= for_d
.longest_path
;
2100 for_s
.longest_backtrack
+= for_d
.longest_backtrack
;
2102 /* Use the code from the decision with the longest individual path,
2103 since that's more likely to be useful if trying to make the
2104 path shorter. In the event of a tie, pick the later decision,
2105 since that's closer to the end of the path. */
2106 if (longest_path
<= for_d
.longest_path
)
2108 longest_path
= for_d
.longest_path
;
2109 for_s
.longest_path_code
= for_d
.longest_path_code
;
2112 /* Later decisions in a state are necessarily in a longer backtrack
2113 than earlier decisions. */
2114 for_s
.longest_backtrack_code
= for_d
.longest_backtrack_code
;
2119 /* Optimize ROOT. Use TYPE to describe ROOT in status messages. */
2122 optimize_subroutine_group (const char *type
, state
*root
)
2124 /* Remove optional transitions that turned out not to be worthwhile. */
2125 if (collapse_optional_decisions_p
)
2126 collapse_optional_decisions (root
);
2128 /* Try to remove duplicated tests and to rearrange tests into a more
2132 known_conditions kc
;
2133 kc
.position_tests
.safe_grow_cleared (num_positions
);
2134 kc
.set_operands
.safe_grow_cleared (num_operands
);
2136 cse_tests (&root_pos
, root
, &kc
);
2139 /* Try to simplify two or more tests into one. */
2140 if (simplify_tests_p
)
2141 simplify_tests (root
);
2143 /* Try to use operands[] instead of xN variables. */
2144 if (use_operand_variables_p
)
2146 auto_vec
<int> operand_pos (num_positions
);
2147 for (unsigned int i
= 0; i
< num_positions
; ++i
)
2148 operand_pos
.quick_push (-1);
2149 find_operand_positions (root
, operand_pos
);
2152 /* Print a summary of the new state. */
2153 stats st
= get_stats (root
);
2154 fprintf (stderr
, "Statistics for %s:\n", type
);
2155 fprintf (stderr
, " Number of decisions: %6d\n", st
.num_decisions
);
2156 fprintf (stderr
, " longest path: %6d (code: %6d)\n",
2157 st
.longest_path
, st
.longest_path_code
);
2158 fprintf (stderr
, " longest backtrack: %6d (code: %6d)\n",
2159 st
.longest_backtrack
, st
.longest_backtrack_code
);
2162 struct merge_pattern_info
;
2164 /* Represents a transition from one pattern to another. */
2165 struct merge_pattern_transition
2167 merge_pattern_transition (merge_pattern_info
*);
2169 /* The target pattern. */
2170 merge_pattern_info
*to
;
2172 /* The parameters that the source pattern passes to the target pattern.
2173 "parameter (TYPE, true, I)" represents parameter I of the source
2175 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
2178 merge_pattern_transition::merge_pattern_transition (merge_pattern_info
*to_in
)
2183 /* Represents a pattern that can might match several states. The pattern
2184 may replace parts of the test with a parameter value. It may also
2185 replace transition labels with parameters. */
2186 struct merge_pattern_info
2188 merge_pattern_info (unsigned int);
2190 /* If PARAM_TEST_P, the state's singleton test should be generalized
2191 to use the runtime value of PARAMS[PARAM_TEST]. */
2192 unsigned int param_test
: 8;
2194 /* If PARAM_TRANSITION_P, the state's single transition label should
2195 be replaced by the runtime value of PARAMS[PARAM_TRANSITION]. */
2196 unsigned int param_transition
: 8;
2198 /* True if we have decided to generalize the root decision's test,
2199 as per PARAM_TEST. */
2200 unsigned int param_test_p
: 1;
2202 /* Likewise for the root decision's transition, as per PARAM_TRANSITION. */
2203 unsigned int param_transition_p
: 1;
2205 /* True if the contents of the structure are completely filled in. */
2206 unsigned int complete_p
: 1;
2208 /* The number of pseudo-statements in the pattern. Used to decide
2209 whether it's big enough to break out into a subroutine. */
2210 unsigned int num_statements
;
2212 /* The number of states that use this pattern. */
2213 unsigned int num_users
;
2215 /* The number of distinct success values that the pattern returns. */
2216 unsigned int num_results
;
2218 /* This array has one element for each runtime parameter to the pattern.
2219 PARAMS[I] gives the default value of parameter I, which is always
2222 These default parameters are used in cases where we match the
2223 pattern against some state S1, then add more parameters while
2224 matching against some state S2. S1 is then left passing fewer
2225 parameters than S2. The array gives us enough informatino to
2226 construct a full parameter list for S1 (see update_parameters).
2228 If we decide to create a subroutine for this pattern,
2229 PARAMS[I].type determines the C type of parameter I. */
2230 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
2232 /* All states that match this pattern must have the same number of
2233 transitions. TRANSITIONS[I] describes the subpattern for transition
2234 number I; it is null if transition I represents a successful return
2235 from the pattern. */
2236 auto_vec
<merge_pattern_transition
*, 1> transitions
;
2238 /* The routine associated with the pattern, or null if we haven't generated
2240 pattern_routine
*routine
;
2243 merge_pattern_info::merge_pattern_info (unsigned int num_transitions
)
2245 param_transition (0),
2246 param_test_p (false),
2247 param_transition_p (false),
2254 transitions
.safe_grow_cleared (num_transitions
);
2257 /* Describes one way of matching a particular state to a particular
2259 struct merge_state_result
2261 merge_state_result (merge_pattern_info
*, position
*, merge_state_result
*);
2263 /* A pattern that matches the state. */
2264 merge_pattern_info
*pattern
;
2266 /* If we decide to use this match and create a subroutine for PATTERN,
2267 the state should pass the rtx at position ROOT to the pattern's
2268 rtx parameter. A null root means that the pattern doesn't need
2269 an rtx parameter; all the rtxes it matches come from elsewhere. */
2272 /* The parameters that should be passed to PATTERN for this state.
2273 If the array is shorter than PATTERN->params, the missing entries
2274 should be taken from the corresponding element of PATTERN->params. */
2275 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params
;
2277 /* An earlier match for the same state, or null if none. Patterns
2278 matched by earlier entries are smaller than PATTERN. */
2279 merge_state_result
*prev
;
2282 merge_state_result::merge_state_result (merge_pattern_info
*pattern_in
,
2284 merge_state_result
*prev_in
)
2285 : pattern (pattern_in
), root (root_in
), prev (prev_in
)
2288 /* Information about a state, used while trying to match it against
2290 struct merge_state_info
2292 merge_state_info (state
*);
2294 /* The state itself. */
2297 /* Index I gives information about the target of transition I. */
2298 merge_state_info
*to_states
;
2300 /* The number of transitions in S. */
2301 unsigned int num_transitions
;
2303 /* True if the state has been deleted in favor of a call to a
2307 /* The previous state that might be a merge candidate for S, or null
2308 if no previous states could be merged with S. */
2309 merge_state_info
*prev_same_test
;
2311 /* A list of pattern matches for this state. */
2312 merge_state_result
*res
;
2315 merge_state_info::merge_state_info (state
*s_in
)
2318 num_transitions (0),
2323 /* True if PAT would be useful as a subroutine. */
2326 useful_pattern_p (merge_pattern_info
*pat
)
2328 return pat
->num_statements
>= MIN_COMBINE_COST
;
2331 /* PAT2 is a subpattern of PAT1. Return true if PAT2 should be inlined
2332 into PAT1's C routine. */
2335 same_pattern_p (merge_pattern_info
*pat1
, merge_pattern_info
*pat2
)
2337 return pat1
->num_users
== pat2
->num_users
|| !useful_pattern_p (pat2
);
2340 /* PAT was previously matched against SINFO based on tentative matches
2341 for the target states of SINFO's state. Return true if the match
2342 still holds; that is, if the target states of SINFO's state still
2343 match the corresponding transitions of PAT. */
2346 valid_result_p (merge_pattern_info
*pat
, merge_state_info
*sinfo
)
2348 for (unsigned int j
= 0; j
< sinfo
->num_transitions
; ++j
)
2349 if (merge_pattern_transition
*ptrans
= pat
->transitions
[j
])
2351 merge_state_result
*to_res
= sinfo
->to_states
[j
].res
;
2352 if (!to_res
|| to_res
->pattern
!= ptrans
->to
)
2358 /* Remove any matches that are no longer valid from the head of SINFO's
2362 prune_invalid_results (merge_state_info
*sinfo
)
2364 while (sinfo
->res
&& !valid_result_p (sinfo
->res
->pattern
, sinfo
))
2366 sinfo
->res
= sinfo
->res
->prev
;
2367 gcc_assert (sinfo
->res
);
2371 /* Return true if PAT represents the biggest posssible match for SINFO;
2372 that is, if the next action of SINFO's state on return from PAT will
2373 be something that cannot be merged with any other state. */
2376 complete_result_p (merge_pattern_info
*pat
, merge_state_info
*sinfo
)
2378 for (unsigned int j
= 0; j
< sinfo
->num_transitions
; ++j
)
2379 if (sinfo
->to_states
[j
].res
&& !pat
->transitions
[j
])
2384 /* Update TO for any parameters that have been added to FROM since TO
2385 was last set. The extra parameters in FROM will be constants or
2386 instructions to duplicate earlier parameters. */
2389 update_parameters (vec
<parameter
> &to
, const vec
<parameter
> &from
)
2391 for (unsigned int i
= to
.length (); i
< from
.length (); ++i
)
2392 to
.quick_push (from
[i
]);
2395 /* Return true if A and B can be tested by a single test. If the test
2396 can be parameterised, store the parameter value for A in *PARAMA and
2397 the parameter value for B in *PARAMB, otherwise leave PARAMA and
2401 compatible_tests_p (const rtx_test
&a
, const rtx_test
&b
,
2402 parameter
*parama
, parameter
*paramb
)
2404 if (a
.kind
!= b
.kind
)
2408 case rtx_test::PREDICATE
:
2409 if (a
.u
.predicate
.data
!= b
.u
.predicate
.data
)
2411 *parama
= parameter (parameter::MODE
, false, a
.u
.predicate
.mode
);
2412 *paramb
= parameter (parameter::MODE
, false, b
.u
.predicate
.mode
);
2415 case rtx_test::SAVED_CONST_INT
:
2416 *parama
= parameter (parameter::INT
, false, a
.u
.integer
.value
);
2417 *paramb
= parameter (parameter::INT
, false, b
.u
.integer
.value
);
2425 /* PARAMS is an array of the parameters that a state is going to pass
2426 to a pattern routine. It is still incomplete; index I has a kind of
2427 parameter::UNSET if we don't yet know what the state will pass
2428 as parameter I. Try to make parameter ID equal VALUE, returning
2432 set_parameter (vec
<parameter
> ¶ms
, unsigned int id
,
2433 const parameter
&value
)
2435 if (params
[id
].type
== parameter::UNSET
)
2437 if (force_unique_params_p
)
2438 for (unsigned int i
= 0; i
< params
.length (); ++i
)
2439 if (params
[i
] == value
)
2444 return params
[id
] == value
;
2447 /* PARAMS2 is the "params" array for a pattern and PARAMS1 is the
2448 set of parameters that a particular state is going to pass to
2451 Try to extend PARAMS1 and PARAMS2 so that there is a parameter
2452 that is equal to PARAM1 for the state and has a default value of
2453 PARAM2. Parameters beginning at START were added as part of the
2454 same match and so may be reused. */
2457 add_parameter (vec
<parameter
> ¶ms1
, vec
<parameter
> ¶ms2
,
2458 const parameter
¶m1
, const parameter
¶m2
,
2459 unsigned int start
, unsigned int *res
)
2461 gcc_assert (params1
.length () == params2
.length ());
2462 gcc_assert (!param1
.is_param
&& !param2
.is_param
);
2464 for (unsigned int i
= start
; i
< params2
.length (); ++i
)
2465 if (params1
[i
] == param1
&& params2
[i
] == param2
)
2471 if (force_unique_params_p
)
2472 for (unsigned int i
= 0; i
< params2
.length (); ++i
)
2473 if (params1
[i
] == param1
|| params2
[i
] == param2
)
2476 if (params2
.length () >= MAX_PATTERN_PARAMS
)
2479 *res
= params2
.length ();
2480 params1
.quick_push (param1
);
2481 params2
.quick_push (param2
);
2485 /* If *ROOTA is nonnull, return true if the same sequence of steps are
2486 required to reach A from *ROOTA as to reach B from ROOTB. If *ROOTA
2487 is null, update it if necessary in order to make the condition hold. */
2490 merge_relative_positions (position
**roota
, position
*a
,
2491 position
*rootb
, position
*b
)
2493 if (!relative_patterns_p
)
2502 return *roota
== rootb
;
2504 /* If B does not belong to the same instruction as ROOTB, we don't
2505 start with ROOTB but instead start with a call to peep2_next_insn.
2506 In that case the sequences for B and A are identical iff B and A
2507 are themselves identical. */
2508 if (rootb
->insn_id
!= b
->insn_id
)
2512 if (!a
|| b
->type
!= a
->type
|| b
->arg
!= a
->arg
)
2522 /* A hasher of states that treats two states as "equal" if they might be
2523 merged (but trying to be more discriminating than "return true"). */
2524 struct test_pattern_hasher
: typed_noop_remove
<merge_state_info
>
2526 typedef merge_state_info
*value_type
;
2527 typedef merge_state_info
*compare_type
;
2528 static inline hashval_t
hash (const value_type
&);
2529 static inline bool equal (const value_type
&, const compare_type
&);
2533 test_pattern_hasher::hash (merge_state_info
*const &sinfo
)
2536 decision
*d
= sinfo
->s
->singleton ();
2537 h
.add_int (d
->test
.pos_operand
+ 1);
2538 if (!relative_patterns_p
)
2539 h
.add_int (d
->test
.pos
? d
->test
.pos
->id
+ 1 : 0);
2540 h
.add_int (d
->test
.kind
);
2541 h
.add_int (sinfo
->num_transitions
);
2546 test_pattern_hasher::equal (merge_state_info
*const &sinfo1
,
2547 merge_state_info
*const &sinfo2
)
2549 decision
*d1
= sinfo1
->s
->singleton ();
2550 decision
*d2
= sinfo2
->s
->singleton ();
2551 gcc_assert (d1
&& d2
);
2553 parameter new_param1
, new_param2
;
2554 return (d1
->test
.pos_operand
== d2
->test
.pos_operand
2555 && (relative_patterns_p
|| d1
->test
.pos
== d2
->test
.pos
)
2556 && compatible_tests_p (d1
->test
, d2
->test
, &new_param1
, &new_param2
)
2557 && sinfo1
->num_transitions
== sinfo2
->num_transitions
);
2560 /* Try to make the state described by SINFO1 use the same pattern as the
2561 state described by SINFO2. Return true on success.
2563 SINFO1 and SINFO2 are known to have the same hash value. */
2566 merge_patterns (merge_state_info
*sinfo1
, merge_state_info
*sinfo2
)
2568 merge_state_result
*res2
= sinfo2
->res
;
2569 merge_pattern_info
*pat
= res2
->pattern
;
2571 /* Write to temporary arrays while matching, in case we have to abort
2572 half way through. */
2573 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params1
;
2574 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> params2
;
2575 params1
.quick_grow_cleared (pat
->params
.length ());
2576 params2
.splice (pat
->params
);
2577 unsigned int start_param
= params2
.length ();
2579 /* An array for recording changes to PAT->transitions[?].params.
2580 All changes involve replacing a constant parameter with some
2581 PAT->params[N], where N is the second element of the pending_param. */
2582 typedef std::pair
<parameter
*, unsigned int> pending_param
;
2583 auto_vec
<pending_param
, 32> pending_params
;
2585 decision
*d1
= sinfo1
->s
->singleton ();
2586 decision
*d2
= sinfo2
->s
->singleton ();
2587 gcc_assert (d1
&& d2
);
2589 /* If D2 tests a position, SINFO1's root relative to D1 is the same
2590 as SINFO2's root relative to D2. */
2591 position
*root1
= 0;
2592 position
*root2
= res2
->root
;
2593 if (d2
->test
.pos_operand
< 0
2595 && !merge_relative_positions (&root1
, d1
->test
.pos
,
2596 root2
, d2
->test
.pos
))
2599 /* Check whether the patterns have the same shape. */
2600 unsigned int num_transitions
= sinfo1
->num_transitions
;
2601 gcc_assert (num_transitions
== sinfo2
->num_transitions
);
2602 for (unsigned int i
= 0; i
< num_transitions
; ++i
)
2603 if (merge_pattern_transition
*ptrans
= pat
->transitions
[i
])
2605 merge_state_result
*to1_res
= sinfo1
->to_states
[i
].res
;
2606 merge_state_result
*to2_res
= sinfo2
->to_states
[i
].res
;
2607 merge_pattern_info
*to_pat
= ptrans
->to
;
2608 gcc_assert (to2_res
&& to2_res
->pattern
== to_pat
);
2609 if (!to1_res
|| to1_res
->pattern
!= to_pat
)
2612 && !merge_relative_positions (&root1
, to1_res
->root
,
2613 root2
, to2_res
->root
))
2615 /* Match the parameters that TO1_RES passes to TO_PAT with the
2616 parameters that PAT passes to TO_PAT. */
2617 update_parameters (to1_res
->params
, to_pat
->params
);
2618 for (unsigned int j
= 0; j
< to1_res
->params
.length (); ++j
)
2620 const parameter
¶m1
= to1_res
->params
[j
];
2621 const parameter
¶m2
= ptrans
->params
[j
];
2622 gcc_assert (!param1
.is_param
);
2623 if (param2
.is_param
)
2625 if (!set_parameter (params1
, param2
.value
, param1
))
2628 else if (param1
!= param2
)
2631 if (!add_parameter (params1
, params2
,
2632 param1
, param2
, start_param
, &id
))
2634 /* Record that PAT should now pass parameter ID to TO_PAT,
2635 instead of the current contents of *PARAM2. We only
2636 make the change if the rest of the match succeeds. */
2637 pending_params
.safe_push
2638 (pending_param (&ptrans
->params
[j
], id
));
2643 unsigned int param_test
= pat
->param_test
;
2644 unsigned int param_transition
= pat
->param_transition
;
2645 bool param_test_p
= pat
->param_test_p
;
2646 bool param_transition_p
= pat
->param_transition_p
;
2648 /* If the tests don't match exactly, try to parameterize them. */
2649 parameter new_param1
, new_param2
;
2650 if (!compatible_tests_p (d1
->test
, d2
->test
, &new_param1
, &new_param2
))
2652 if (new_param1
.type
!= parameter::UNSET
)
2654 /* If the test has not already been parameterized, all existing
2655 matches use constant NEW_PARAM2. */
2658 if (!set_parameter (params1
, param_test
, new_param1
))
2661 else if (new_param1
!= new_param2
)
2663 if (!add_parameter (params1
, params2
, new_param1
, new_param2
,
2664 start_param
, ¶m_test
))
2666 param_test_p
= true;
2670 /* Match the transitions. */
2671 transition
*trans1
= d1
->first
;
2672 transition
*trans2
= d2
->first
;
2673 for (unsigned int i
= 0; i
< num_transitions
; ++i
)
2675 if (param_transition_p
|| trans1
->labels
!= trans2
->labels
)
2677 /* We can only generalize a single transition with a single
2679 if (num_transitions
!= 1
2680 || trans1
->labels
.length () != 1
2681 || trans2
->labels
.length () != 1)
2684 /* Although we can match wide-int fields, in practice it leads
2685 to some odd results for const_vectors. We end up
2686 parameterizing the first N const_ints of the vector
2687 and then (once we reach the maximum number of parameters)
2688 we go on to match the other elements exactly. */
2689 if (d1
->test
.kind
== rtx_test::WIDE_INT_FIELD
)
2692 /* See whether the label has a generalizable type. */
2693 parameter::type_enum param_type
2694 = transition_parameter_type (d1
->test
.kind
);
2695 if (param_type
== parameter::UNSET
)
2698 /* Match the labels using parameters. */
2699 new_param1
= parameter (param_type
, false, trans1
->labels
[0]);
2700 if (param_transition_p
)
2702 if (!set_parameter (params1
, param_transition
, new_param1
))
2707 new_param2
= parameter (param_type
, false, trans2
->labels
[0]);
2708 if (!add_parameter (params1
, params2
, new_param1
, new_param2
,
2709 start_param
, ¶m_transition
))
2711 param_transition_p
= true;
2714 trans1
= trans1
->next
;
2715 trans2
= trans2
->next
;
2718 /* Set any unset parameters to their default values. This occurs if some
2719 other state needed something to be parameterized in order to match SINFO2,
2720 but SINFO1 on its own does not. */
2721 for (unsigned int i
= 0; i
< params1
.length (); ++i
)
2722 if (params1
[i
].type
== parameter::UNSET
)
2723 params1
[i
] = params2
[i
];
2725 /* The match was successful. Commit all pending changes to PAT. */
2726 update_parameters (pat
->params
, params2
);
2730 FOR_EACH_VEC_ELT (pending_params
, i
, pp
)
2731 *pp
->first
= parameter (pp
->first
->type
, true, pp
->second
);
2733 pat
->param_test
= param_test
;
2734 pat
->param_transition
= param_transition
;
2735 pat
->param_test_p
= param_test_p
;
2736 pat
->param_transition_p
= param_transition_p
;
2738 /* Record the match of SINFO1. */
2739 merge_state_result
*new_res1
= new merge_state_result (pat
, root1
,
2741 new_res1
->params
.splice (params1
);
2742 sinfo1
->res
= new_res1
;
2746 /* The number of states that were removed by calling pattern routines. */
2747 static unsigned int pattern_use_states
;
2749 /* The number of states used while defining pattern routines. */
2750 static unsigned int pattern_def_states
;
2752 /* Information used while constructing a use or definition of a pattern
2754 struct create_pattern_info
2756 /* The routine itself. */
2757 pattern_routine
*routine
;
2759 /* The first unclaimed return value for this particular use or definition.
2760 We walk the substates of uses and definitions in the same order
2761 so each return value always refers to the same position within
2763 unsigned int next_result
;
2766 static void populate_pattern_routine (create_pattern_info
*,
2767 merge_state_info
*, state
*,
2768 const vec
<parameter
> &);
2770 /* SINFO matches a pattern for which we've decided to create a C routine.
2771 Return a decision that performs a call to the pattern routine,
2772 but leave the caller to add the transitions to it. Initialize CPI
2773 for this purpose. Also create a definition for the pattern routine,
2774 if it doesn't already have one.
2776 PARAMS are the parameters that SINFO passes to its pattern. */
2779 init_pattern_use (create_pattern_info
*cpi
, merge_state_info
*sinfo
,
2780 const vec
<parameter
> ¶ms
)
2782 state
*s
= sinfo
->s
;
2783 merge_state_result
*res
= sinfo
->res
;
2784 merge_pattern_info
*pat
= res
->pattern
;
2785 cpi
->routine
= pat
->routine
;
2788 /* We haven't defined the pattern routine yet, so create
2789 a definition now. */
2790 pattern_routine
*routine
= new pattern_routine
;
2791 pat
->routine
= routine
;
2792 cpi
->routine
= routine
;
2793 routine
->s
= new state
;
2794 routine
->insn_p
= false;
2795 routine
->pnum_clobbers_p
= false;
2797 /* Create an "idempotent" mapping of parameter I to parameter I.
2798 Also record the C type of each parameter to the routine. */
2799 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> def_params
;
2800 for (unsigned int i
= 0; i
< pat
->params
.length (); ++i
)
2802 def_params
.quick_push (parameter (pat
->params
[i
].type
, true, i
));
2803 routine
->param_types
.quick_push (pat
->params
[i
].type
);
2806 /* Any of the states that match the pattern could be used to
2807 create the routine definition. We might as well use SINFO
2808 since it's already to hand. This means that all positions
2809 in the definition will be relative to RES->root. */
2810 routine
->pos
= res
->root
;
2811 cpi
->next_result
= 0;
2812 populate_pattern_routine (cpi
, sinfo
, routine
->s
, def_params
);
2813 gcc_assert (cpi
->next_result
== pat
->num_results
);
2815 /* Add the routine to the global list, after the subroutines
2817 routine
->pattern_id
= patterns
.length ();
2818 patterns
.safe_push (routine
);
2821 /* Create a decision to call the routine, passing PARAMS to it. */
2822 pattern_use
*use
= new pattern_use
;
2823 use
->routine
= pat
->routine
;
2824 use
->params
.splice (params
);
2825 decision
*d
= new decision (rtx_test::pattern (res
->root
, use
));
2827 /* If the original decision could use an element of operands[] instead
2828 of an rtx variable, try to transfer it to the new decision. */
2829 if (s
->first
->test
.pos
&& res
->root
== s
->first
->test
.pos
)
2830 d
->test
.pos_operand
= s
->first
->test
.pos_operand
;
2832 cpi
->next_result
= 0;
2836 /* Make S return the next unclaimed pattern routine result for CPI. */
2839 add_pattern_acceptance (create_pattern_info
*cpi
, state
*s
)
2841 acceptance_type acceptance
;
2842 acceptance
.type
= SUBPATTERN
;
2843 acceptance
.partial_p
= false;
2844 acceptance
.u
.full
.code
= cpi
->next_result
;
2845 add_decision (s
, rtx_test::accept (acceptance
), true, false);
2846 cpi
->next_result
+= 1;
2849 /* Initialize new empty state NEWS so that it implements SINFO's pattern
2850 (here referred to as "P"). P may be the top level of a pattern routine
2851 or a subpattern that should be inlined into its parent pattern's routine
2852 (as per same_pattern_p). The choice of SINFO for a top-level pattern is
2853 arbitrary; it could be any of the states that use P. The choice for
2854 subpatterns follows the choice for the parent pattern.
2856 PARAMS gives the value of each parameter to P in terms of the parameters
2857 to the top-level pattern. If P itself is the top level pattern, PARAMS[I]
2858 is always "parameter (TYPE, true, I)". */
2861 populate_pattern_routine (create_pattern_info
*cpi
, merge_state_info
*sinfo
,
2862 state
*news
, const vec
<parameter
> ¶ms
)
2864 pattern_def_states
+= 1;
2866 decision
*d
= sinfo
->s
->singleton ();
2867 merge_pattern_info
*pat
= sinfo
->res
->pattern
;
2868 pattern_routine
*routine
= cpi
->routine
;
2870 /* Create a copy of D's test for the pattern routine and generalize it
2872 decision
*newd
= new decision (d
->test
);
2873 gcc_assert (newd
->test
.pos_operand
>= 0
2875 || common_position (newd
->test
.pos
,
2876 routine
->pos
) == routine
->pos
);
2877 if (pat
->param_test_p
)
2879 const parameter
¶m
= params
[pat
->param_test
];
2880 switch (newd
->test
.kind
)
2882 case rtx_test::PREDICATE
:
2883 newd
->test
.u
.predicate
.mode_is_param
= param
.is_param
;
2884 newd
->test
.u
.predicate
.mode
= param
.value
;
2887 case rtx_test::SAVED_CONST_INT
:
2888 newd
->test
.u
.integer
.is_param
= param
.is_param
;
2889 newd
->test
.u
.integer
.value
= param
.value
;
2897 if (d
->test
.kind
== rtx_test::C_TEST
)
2898 routine
->insn_p
= true;
2899 else if (d
->test
.kind
== rtx_test::HAVE_NUM_CLOBBERS
)
2900 routine
->pnum_clobbers_p
= true;
2901 news
->push_back (newd
);
2903 /* Fill in the transitions of NEWD. */
2905 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2907 /* Create a new state to act as the target of the new transition. */
2908 state
*to_news
= new state
;
2909 if (merge_pattern_transition
*ptrans
= pat
->transitions
[i
])
2911 /* The pattern hasn't finished matching yet. Get the target
2912 pattern and the corresponding target state of SINFO. */
2913 merge_pattern_info
*to_pat
= ptrans
->to
;
2914 merge_state_info
*to
= sinfo
->to_states
+ i
;
2915 gcc_assert (to
->res
->pattern
== to_pat
);
2916 gcc_assert (ptrans
->params
.length () == to_pat
->params
.length ());
2918 /* Express the parameters to TO_PAT in terms of the parameters
2919 to the top-level pattern. */
2920 auto_vec
<parameter
, MAX_PATTERN_PARAMS
> to_params
;
2921 for (unsigned int j
= 0; j
< ptrans
->params
.length (); ++j
)
2923 const parameter
¶m
= ptrans
->params
[j
];
2924 to_params
.quick_push (param
.is_param
2925 ? params
[param
.value
]
2929 if (same_pattern_p (pat
, to_pat
))
2930 /* TO_PAT is part of the current routine, so just recurse. */
2931 populate_pattern_routine (cpi
, to
, to_news
, to_params
);
2934 /* TO_PAT should be matched by calling a separate routine. */
2935 create_pattern_info sub_cpi
;
2936 decision
*subd
= init_pattern_use (&sub_cpi
, to
, to_params
);
2937 routine
->insn_p
|= sub_cpi
.routine
->insn_p
;
2938 routine
->pnum_clobbers_p
|= sub_cpi
.routine
->pnum_clobbers_p
;
2940 /* Add the pattern routine call to the new target state. */
2941 to_news
->push_back (subd
);
2943 /* Add a transition for each successful call result. */
2944 for (unsigned int j
= 0; j
< to_pat
->num_results
; ++j
)
2946 state
*res
= new state
;
2947 add_pattern_acceptance (cpi
, res
);
2948 subd
->push_back (new transition (j
, res
, false));
2953 /* This transition corresponds to a successful match. */
2954 add_pattern_acceptance (cpi
, to_news
);
2956 /* Create the transition itself, generalizing as necessary. */
2957 transition
*new_trans
= new transition (trans
->labels
, to_news
,
2959 if (pat
->param_transition_p
)
2961 const parameter
¶m
= params
[pat
->param_transition
];
2962 new_trans
->is_param
= param
.is_param
;
2963 new_trans
->labels
[0] = param
.value
;
2965 newd
->push_back (new_trans
);
2970 /* USE is a decision that calls a pattern routine and SINFO is part of the
2971 original state tree that the call is supposed to replace. Add the
2972 transitions for SINFO and its substates to USE. */
2975 populate_pattern_use (create_pattern_info
*cpi
, decision
*use
,
2976 merge_state_info
*sinfo
)
2978 pattern_use_states
+= 1;
2979 gcc_assert (!sinfo
->merged_p
);
2980 sinfo
->merged_p
= true;
2981 merge_state_result
*res
= sinfo
->res
;
2982 merge_pattern_info
*pat
= res
->pattern
;
2983 decision
*d
= sinfo
->s
->singleton ();
2985 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
2987 if (pat
->transitions
[i
])
2988 /* The target state is also part of the pattern. */
2989 populate_pattern_use (cpi
, use
, sinfo
->to_states
+ i
);
2992 /* The transition corresponds to a successful return from the
2994 use
->push_back (new transition (cpi
->next_result
, trans
->to
, false));
2995 cpi
->next_result
+= 1;
3001 /* We have decided to replace SINFO's state with a call to a pattern
3002 routine. Make the change, creating a definition of the pattern routine
3003 if it doesn't have one already. */
3006 use_pattern (merge_state_info
*sinfo
)
3008 merge_state_result
*res
= sinfo
->res
;
3009 merge_pattern_info
*pat
= res
->pattern
;
3010 state
*s
= sinfo
->s
;
3012 /* The pattern may have acquired new parameters after it was matched
3013 against SINFO. Update the parameters that SINFO passes accordingly. */
3014 update_parameters (res
->params
, pat
->params
);
3016 create_pattern_info cpi
;
3017 decision
*d
= init_pattern_use (&cpi
, sinfo
, res
->params
);
3018 populate_pattern_use (&cpi
, d
, sinfo
);
3023 /* Look through the state trees in STATES for common patterns and
3024 split them into subroutines. */
3027 split_out_patterns (vec
<merge_state_info
> &states
)
3029 unsigned int first_transition
= states
.length ();
3030 hash_table
<test_pattern_hasher
> hashtab (128);
3031 /* Stage 1: Create an order in which parent states come before their child
3032 states and in which sibling states are at consecutive locations.
3033 Having consecutive sibling states allows merge_state_info to have
3034 a single to_states pointer. */
3035 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3036 for (decision
*d
= states
[i
].s
->first
; d
; d
= d
->next
)
3037 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
3039 states
.safe_push (trans
->to
);
3040 states
[i
].num_transitions
+= 1;
3042 /* Stage 2: Now that the addresses are stable, set up the to_states
3043 pointers. Look for states that might be merged and enter them
3044 into the hash table. */
3045 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3047 merge_state_info
*sinfo
= &states
[i
];
3048 if (sinfo
->num_transitions
)
3050 sinfo
->to_states
= &states
[first_transition
];
3051 first_transition
+= sinfo
->num_transitions
;
3053 /* For simplicity, we only try to merge states that have a single
3054 decision. This is in any case the best we can do for peephole2,
3055 since whether a peephole2 ACCEPT succeeds or not depends on the
3056 specific peephole2 pattern (which is unique to each ACCEPT
3057 and so couldn't be shared between states). */
3058 if (decision
*d
= sinfo
->s
->singleton ())
3059 /* ACCEPT states are unique, so don't even try to merge them. */
3060 if (d
->test
.kind
!= rtx_test::ACCEPT
3061 && (pattern_have_num_clobbers_p
3062 || d
->test
.kind
!= rtx_test::HAVE_NUM_CLOBBERS
)
3063 && (pattern_c_test_p
3064 || d
->test
.kind
!= rtx_test::C_TEST
))
3066 merge_state_info
**slot
= hashtab
.find_slot (sinfo
, INSERT
);
3067 sinfo
->prev_same_test
= *slot
;
3071 /* Stage 3: Walk backwards through the list of states and try to merge
3072 them. This is a greedy, bottom-up match; parent nodes can only start
3073 a new leaf pattern if they fail to match when combined with all child
3074 nodes that have matching patterns.
3076 For each state we keep a list of potential matches, with each
3077 potential match being larger (and deeper) than the next match in
3078 the list. The final element in the list is a leaf pattern that
3079 matches just a single state.
3081 Each candidate pattern created in this loop is unique -- it won't
3082 have been seen by an earlier iteration. We try to match each pattern
3083 with every state that appears earlier in STATES.
3085 Because the patterns created in the loop are unique, any state
3086 that already has a match must have a final potential match that
3087 is different from any new leaf pattern. Therefore, when matching
3088 leaf patterns, we need only consider states whose list of matches
3091 The non-leaf patterns that we try are as deep as possible
3092 and are an extension of the state's previous best candidate match (PB).
3093 We need only consider states whose current potential match is also PB;
3094 any states that don't match as much as PB cannnot match the new pattern,
3095 while any states that already match more than PB must be different from
3097 for (unsigned int i2
= states
.length (); i2
-- > 0; )
3099 merge_state_info
*sinfo2
= &states
[i2
];
3101 /* Enforce the bottom-upness of the match: remove matches with later
3102 states if SINFO2's child states ended up finding a better match. */
3103 prune_invalid_results (sinfo2
);
3105 /* Do nothing if the state doesn't match a later one and if there are
3106 no earlier states it could match. */
3107 if (!sinfo2
->res
&& !sinfo2
->prev_same_test
)
3110 merge_state_result
*res2
= sinfo2
->res
;
3111 decision
*d2
= sinfo2
->s
->singleton ();
3112 position
*root2
= (d2
->test
.pos_operand
< 0 ? d2
->test
.pos
: 0);
3113 unsigned int num_transitions
= sinfo2
->num_transitions
;
3115 /* If RES2 is null then SINFO2's test in isolation has not been seen
3116 before. First try matching that on its own. */
3119 merge_pattern_info
*new_pat
3120 = new merge_pattern_info (num_transitions
);
3121 merge_state_result
*new_res2
3122 = new merge_state_result (new_pat
, root2
, res2
);
3123 sinfo2
->res
= new_res2
;
3125 new_pat
->num_statements
= !d2
->test
.single_outcome_p ();
3126 new_pat
->num_results
= num_transitions
;
3127 bool matched_p
= false;
3128 /* Look for states that don't currently match anything but
3129 can be made to match SINFO2 on its own. */
3130 for (merge_state_info
*sinfo1
= sinfo2
->prev_same_test
; sinfo1
;
3131 sinfo1
= sinfo1
->prev_same_test
)
3132 if (!sinfo1
->res
&& merge_patterns (sinfo1
, sinfo2
))
3136 /* No other states match. */
3146 /* Keep the existing pattern if it's as good as anything we'd
3147 create for SINFO2. */
3148 if (complete_result_p (res2
->pattern
, sinfo2
))
3150 res2
->pattern
->num_users
+= 1;
3154 /* Create a new pattern for SINFO2. */
3155 merge_pattern_info
*new_pat
= new merge_pattern_info (num_transitions
);
3156 merge_state_result
*new_res2
3157 = new merge_state_result (new_pat
, root2
, res2
);
3158 sinfo2
->res
= new_res2
;
3160 /* Fill in details about the pattern. */
3161 new_pat
->num_statements
= !d2
->test
.single_outcome_p ();
3162 new_pat
->num_results
= 0;
3163 for (unsigned int j
= 0; j
< num_transitions
; ++j
)
3164 if (merge_state_result
*to_res
= sinfo2
->to_states
[j
].res
)
3166 /* Count the target state as part of this pattern.
3167 First update the root position so that it can reach
3168 the target state's root. */
3172 new_res2
->root
= common_position (new_res2
->root
,
3175 new_res2
->root
= to_res
->root
;
3177 merge_pattern_info
*to_pat
= to_res
->pattern
;
3178 merge_pattern_transition
*ptrans
3179 = new merge_pattern_transition (to_pat
);
3181 /* TO_PAT may have acquired more parameters when matching
3182 states earlier in STATES than TO_RES's, but the list is
3183 now final. Make sure that TO_RES is up to date. */
3184 update_parameters (to_res
->params
, to_pat
->params
);
3186 /* Start out by assuming that every user of NEW_PAT will
3187 want to pass the same (constant) parameters as TO_RES. */
3188 update_parameters (ptrans
->params
, to_res
->params
);
3190 new_pat
->transitions
[j
] = ptrans
;
3191 new_pat
->num_statements
+= to_pat
->num_statements
;
3192 new_pat
->num_results
+= to_pat
->num_results
;
3195 /* The target state doesn't match anything and so is not part
3197 new_pat
->num_results
+= 1;
3199 /* See if any earlier states that match RES2's pattern also match
3201 bool matched_p
= false;
3202 for (merge_state_info
*sinfo1
= sinfo2
->prev_same_test
; sinfo1
;
3203 sinfo1
= sinfo1
->prev_same_test
)
3205 prune_invalid_results (sinfo1
);
3207 && sinfo1
->res
->pattern
== res2
->pattern
3208 && merge_patterns (sinfo1
, sinfo2
))
3213 /* Nothing else matches NEW_PAT, so go back to the previous
3214 pattern (possibly just a single-state one). */
3219 /* Assume that SINFO2 will use RES. At this point we don't know
3220 whether earlier states that match the same pattern will use
3221 that match or a different one. */
3222 sinfo2
->res
->pattern
->num_users
+= 1;
3224 /* Step 4: Finalize the choice of pattern for each state, ignoring
3225 patterns that were only used once. Update each pattern's size
3226 so that it doesn't include subpatterns that are going to be split
3227 out into subroutines. */
3228 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3230 merge_state_info
*sinfo
= &states
[i
];
3231 merge_state_result
*res
= sinfo
->res
;
3232 /* Wind past patterns that are only used by SINFO. */
3233 while (res
&& res
->pattern
->num_users
== 1)
3238 res
->pattern
->num_users
+= 1;
3243 /* We have a shared pattern and are now committed to the match. */
3244 merge_pattern_info
*pat
= res
->pattern
;
3245 gcc_assert (valid_result_p (pat
, sinfo
));
3247 if (!pat
->complete_p
)
3249 /* Look for subpatterns that are going to be split out and remove
3250 them from the number of statements. */
3251 for (unsigned int j
= 0; j
< sinfo
->num_transitions
; ++j
)
3252 if (merge_pattern_transition
*ptrans
= pat
->transitions
[j
])
3254 merge_pattern_info
*to_pat
= ptrans
->to
;
3255 if (!same_pattern_p (pat
, to_pat
))
3256 pat
->num_statements
-= to_pat
->num_statements
;
3258 pat
->complete_p
= true;
3261 /* Step 5: Split out the patterns. */
3262 for (unsigned int i
= 0; i
< states
.length (); ++i
)
3264 merge_state_info
*sinfo
= &states
[i
];
3265 merge_state_result
*res
= sinfo
->res
;
3266 if (!sinfo
->merged_p
&& res
&& useful_pattern_p (res
->pattern
))
3267 use_pattern (sinfo
);
3269 fprintf (stderr
, "Shared %d out of %d states by creating %d new states,"
3271 pattern_use_states
, states
.length (), pattern_def_states
,
3272 pattern_use_states
- pattern_def_states
);
3275 /* Information about a state tree that we're considering splitting into a
3279 /* The number of pseudo-statements in the state tree. */
3280 unsigned int num_statements
;
3282 /* The approximate number of nested "if" and "switch" statements that
3283 would be required if control could fall through to a later state. */
3287 /* Pairs a transition with information about its target state. */
3288 typedef std::pair
<transition
*, state_size
> subroutine_candidate
;
3290 /* Sort two subroutine_candidates so that the one with the largest
3291 number of statements comes last. */
3294 subroutine_candidate_cmp (const void *a
, const void *b
)
3296 return int (((const subroutine_candidate
*) a
)->second
.num_statements
3297 - ((const subroutine_candidate
*) b
)->second
.num_statements
);
3300 /* Turn S into a subroutine of type TYPE and add it to PROCS. Return a new
3301 state that performs a subroutine call to S. */
3304 create_subroutine (routine_type type
, state
*s
, vec
<state
*> &procs
)
3306 procs
.safe_push (s
);
3307 acceptance_type acceptance
;
3308 acceptance
.type
= type
;
3309 acceptance
.partial_p
= true;
3310 acceptance
.u
.subroutine_id
= procs
.length ();
3311 state
*news
= new state
;
3312 add_decision (news
, rtx_test::accept (acceptance
), true, false);
3316 /* Walk state tree S, of type TYPE, and look for subtrees that would be
3317 better split into subroutines. Accumulate all such subroutines in PROCS.
3318 Return the size of the new state tree (excluding subroutines). */
3321 find_subroutines (routine_type type
, state
*s
, vec
<state
*> &procs
)
3323 auto_vec
<subroutine_candidate
, 16> candidates
;
3325 size
.num_statements
= 0;
3327 for (decision
*d
= s
->first
; d
; d
= d
->next
)
3329 if (!d
->test
.single_outcome_p ())
3330 size
.num_statements
+= 1;
3331 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
3333 /* Keep chains of simple decisions together if we know that no
3334 change of position is required. We'll output this chain as a
3335 single "if" statement, so it counts as a single nesting level. */
3336 if (d
->test
.pos
&& d
->if_statement_p ())
3339 decision
*newd
= trans
->to
->singleton ();
3342 && newd
->test
.pos_operand
< 0
3343 && newd
->test
.pos
!= d
->test
.pos
)
3344 || !newd
->if_statement_p ())
3346 if (!newd
->test
.single_outcome_p ())
3347 size
.num_statements
+= 1;
3348 trans
= newd
->singleton ();
3349 if (newd
->test
.kind
== rtx_test::SET_OP
3350 || newd
->test
.kind
== rtx_test::ACCEPT
)
3353 /* The target of TRANS is a subroutine candidate. First recurse
3354 on it to see how big it is after subroutines have been
3356 state_size to_size
= find_subroutines (type
, trans
->to
, procs
);
3357 if (d
->next
&& to_size
.depth
> MAX_DEPTH
)
3358 /* Keeping the target state in the same routine would lead
3359 to an excessive nesting of "if" and "switch" statements.
3360 Split it out into a subroutine so that it can use
3361 inverted tests that return early on failure. */
3362 trans
->to
= create_subroutine (type
, trans
->to
, procs
);
3365 size
.num_statements
+= to_size
.num_statements
;
3366 if (to_size
.num_statements
< MIN_NUM_STATEMENTS
)
3367 /* The target state is too small to be worth splitting.
3368 Keep it in the same routine as S. */
3369 size
.depth
= MAX (size
.depth
, to_size
.depth
);
3371 /* Assume for now that we'll keep the target state in the
3372 same routine as S, but record it as a subroutine candidate
3373 if S grows too big. */
3374 candidates
.safe_push (subroutine_candidate (trans
, to_size
));
3378 if (size
.num_statements
> MAX_NUM_STATEMENTS
)
3380 /* S is too big. Sort the subroutine candidates so that bigger ones
3381 are nearer the end. */
3382 candidates
.qsort (subroutine_candidate_cmp
);
3383 while (!candidates
.is_empty ()
3384 && size
.num_statements
> MAX_NUM_STATEMENTS
)
3386 /* Peel off a candidate and force it into a subroutine. */
3387 subroutine_candidate cand
= candidates
.pop ();
3388 size
.num_statements
-= cand
.second
.num_statements
;
3389 cand
.first
->to
= create_subroutine (type
, cand
.first
->to
, procs
);
3392 /* Update the depth for subroutine candidates that we decided not to
3394 for (unsigned int i
= 0; i
< candidates
.length (); ++i
)
3395 size
.depth
= MAX (size
.depth
, candidates
[i
].second
.depth
);
3400 /* Return true if, for all X, PRED (X, MODE) implies that X has mode MODE. */
3403 safe_predicate_mode (const struct pred_data
*pred
, machine_mode mode
)
3405 /* Scalar integer constants have VOIDmode. */
3406 if (GET_MODE_CLASS (mode
) == MODE_INT
3407 && (pred
->codes
[CONST_INT
]
3408 || pred
->codes
[CONST_DOUBLE
]
3409 || pred
->codes
[CONST_WIDE_INT
]))
3412 return !pred
->special
&& mode
!= VOIDmode
;
3415 /* Fill CODES with the set of codes that could be matched by PRED. */
3418 get_predicate_codes (const struct pred_data
*pred
, int_set
*codes
)
3420 for (int i
= 0; i
< NUM_TRUE_RTX_CODE
; ++i
)
3421 if (!pred
|| pred
->codes
[i
])
3422 codes
->safe_push (i
);
3425 /* Return true if the first path through D1 tests the same thing as D2. */
3428 has_same_test_p (decision
*d1
, decision
*d2
)
3432 if (d1
->test
== d2
->test
)
3434 d1
= d1
->first
->to
->first
;
3440 /* Return true if D1 and D2 cannot match the same rtx. All states reachable
3441 from D2 have single decisions and all those decisions have single
3445 mutually_exclusive_p (decision
*d1
, decision
*d2
)
3447 /* If one path through D1 fails to test the same thing as D2, assume
3448 that D2's test could be true for D1 and look for a later, more useful,
3449 test. This isn't as expensive as it looks in practice. */
3450 while (!has_same_test_p (d1
, d2
))
3452 d2
= d2
->singleton ()->to
->singleton ();
3456 if (d1
->test
== d2
->test
)
3458 /* Look for any transitions from D1 that have the same labels as
3459 the transition from D2. */
3460 transition
*trans2
= d2
->singleton ();
3461 for (transition
*trans1
= d1
->first
; trans1
; trans1
= trans1
->next
)
3463 int_set::iterator i1
= trans1
->labels
.begin ();
3464 int_set::iterator end1
= trans1
->labels
.end ();
3465 int_set::iterator i2
= trans2
->labels
.begin ();
3466 int_set::iterator end2
= trans2
->labels
.end ();
3467 while (i1
!= end1
&& i2
!= end2
)
3474 /* TRANS1 has some labels in common with TRANS2. Assume
3475 that D1 and D2 could match the same rtx if the target
3476 of TRANS1 could match the same rtx as D2. */
3477 for (decision
*subd1
= trans1
->to
->first
;
3478 subd1
; subd1
= subd1
->next
)
3479 if (!mutually_exclusive_p (subd1
, d2
))
3486 for (transition
*trans1
= d1
->first
; trans1
; trans1
= trans1
->next
)
3487 for (decision
*subd1
= trans1
->to
->first
; subd1
; subd1
= subd1
->next
)
3488 if (!mutually_exclusive_p (subd1
, d2
))
3493 /* Try to merge S2's decision into D1, given that they have the same test.
3494 Fail only if EXCLUDE is nonnull and the new transition would have the
3495 same labels as *EXCLUDE. When returning true, set *NEXT_S1, *NEXT_S2
3496 and *NEXT_EXCLUDE as for merge_into_state_1, or set *NEXT_S2 to null
3497 if the merge is complete. */
3500 merge_into_decision (decision
*d1
, state
*s2
, const int_set
*exclude
,
3501 state
**next_s1
, state
**next_s2
,
3502 const int_set
**next_exclude
)
3504 decision
*d2
= s2
->singleton ();
3505 transition
*trans2
= d2
->singleton ();
3507 /* Get a list of the transitions that intersect TRANS2. */
3508 auto_vec
<transition
*, 32> intersecting
;
3509 for (transition
*trans1
= d1
->first
; trans1
; trans1
= trans1
->next
)
3511 int_set::iterator i1
= trans1
->labels
.begin ();
3512 int_set::iterator end1
= trans1
->labels
.end ();
3513 int_set::iterator i2
= trans2
->labels
.begin ();
3514 int_set::iterator end2
= trans2
->labels
.end ();
3515 bool trans1_is_subset
= true;
3516 bool trans2_is_subset
= true;
3517 bool intersect_p
= false;
3518 while (i1
!= end1
&& i2
!= end2
)
3521 trans1_is_subset
= false;
3526 trans2_is_subset
= false;
3536 trans1_is_subset
= false;
3538 trans2_is_subset
= false;
3539 if (trans1_is_subset
&& trans2_is_subset
)
3541 /* There's already a transition that matches exactly.
3542 Merge the target states. */
3543 trans1
->optional
&= trans2
->optional
;
3544 *next_s1
= trans1
->to
;
3545 *next_s2
= trans2
->to
;
3549 if (trans2_is_subset
)
3551 /* TRANS1 has all the labels that TRANS2 needs. Merge S2 into
3552 the target of TRANS1, but (to avoid infinite recursion)
3553 make sure that we don't end up creating another transition
3555 *next_s1
= trans1
->to
;
3557 *next_exclude
= &trans1
->labels
;
3561 intersecting
.safe_push (trans1
);
3564 if (intersecting
.is_empty ())
3566 /* No existing labels intersect the new ones. We can just add
3568 d1
->push_back (d2
->release ());
3575 /* Take the union of the labels in INTERSECTING and TRANS2. Store the
3576 result in COMBINED and use NEXT as a temporary. */
3577 int_set tmp1
= trans2
->labels
, tmp2
;
3578 int_set
*combined
= &tmp1
, *next
= &tmp2
;
3579 for (unsigned int i
= 0; i
< intersecting
.length (); ++i
)
3581 transition
*trans1
= intersecting
[i
];
3583 next
->safe_grow (trans1
->labels
.length () + combined
->length ());
3584 int_set::iterator end
3585 = std::set_union (trans1
->labels
.begin (), trans1
->labels
.end (),
3586 combined
->begin (), combined
->end (),
3588 next
->truncate (end
- next
->begin ());
3589 std::swap (next
, combined
);
3592 /* Stop now if we've been told not to create a transition with these
3594 if (exclude
&& *combined
== *exclude
)
3597 /* Get the transition that should carry the new labels. */
3598 transition
*new_trans
= intersecting
[0];
3599 if (intersecting
.length () == 1)
3601 /* We're merging with one existing transition whose labels are a
3602 subset of those required. If both transitions are optional,
3603 we can just expand the set of labels so that it's suitable
3604 for both transitions. It isn't worth preserving the original
3605 transitions since we know that they can't be merged; we would
3606 need to backtrack to S2 if TRANS1->to fails. In contrast,
3607 we might be able to merge the targets of the transitions
3608 without any backtracking.
3610 If instead the existing transition is not optional, ensure that
3611 all target decisions are suitably protected. Some decisions
3612 might already have a more specific requirement than NEW_TRANS,
3613 in which case there's no point testing NEW_TRANS as well. E.g. this
3614 would have happened if a test for an (eq ...) rtx had been
3615 added to a decision that tested whether the code is suitable
3616 for comparison_operator. The original comparison_operator
3617 transition would have been non-optional and the (eq ...) test
3618 would be performed by a second decision in the target of that
3621 The remaining case -- keeping the original optional transition
3622 when adding a non-optional TRANS2 -- is a wash. Preserving
3623 the optional transition only helps if we later merge another
3624 state S3 that is mutually exclusive with S2 and whose labels
3625 belong to *COMBINED - TRANS1->labels. We can then test the
3626 original NEW_TRANS and S3 in the same decision. We keep the
3627 optional transition around for that case, but it occurs very
3629 gcc_assert (new_trans
->labels
!= *combined
);
3630 if (!new_trans
->optional
|| !trans2
->optional
)
3632 decision
*start
= 0;
3633 for (decision
*end
= new_trans
->to
->first
; end
; end
= end
->next
)
3635 if (!start
&& end
->test
!= d1
->test
)
3636 /* END belongs to a range of decisions that need to be
3637 protected by NEW_TRANS. */
3639 if (start
&& (!end
->next
|| end
->next
->test
== d1
->test
))
3641 /* Protect [START, END] with NEW_TRANS. The decisions
3642 move to NEW_S and NEW_D becomes part of NEW_TRANS->to. */
3643 state
*new_s
= new state
;
3644 decision
*new_d
= new decision (d1
->test
);
3645 new_d
->push_back (new transition (new_trans
->labels
, new_s
,
3646 new_trans
->optional
));
3647 state::range
r (start
, end
);
3648 new_trans
->to
->replace (r
, new_d
);
3649 new_s
->push_back (r
);
3651 /* Continue with an empty range. */
3654 /* Continue from the decision after NEW_D. */
3659 new_trans
->optional
= true;
3660 new_trans
->labels
= *combined
;
3664 /* We're merging more than one existing transition together.
3665 Those transitions are successfully dividing the matching space
3666 and so we want to preserve them, even if they're optional.
3668 Create a new transition with the union set of labels and make
3669 it go to a state that has the original transitions. */
3670 decision
*new_d
= new decision (d1
->test
);
3671 for (unsigned int i
= 0; i
< intersecting
.length (); ++i
)
3672 new_d
->push_back (d1
->remove (intersecting
[i
]));
3674 state
*new_s
= new state
;
3675 new_s
->push_back (new_d
);
3677 new_trans
= new transition (*combined
, new_s
, true);
3678 d1
->push_back (new_trans
);
3681 /* We now have an optional transition with labels *COMBINED. Decide
3682 whether we can use it as TRANS2 or whether we need to merge S2
3683 into the target of NEW_TRANS. */
3684 gcc_assert (new_trans
->optional
);
3685 if (new_trans
->labels
== trans2
->labels
)
3687 /* NEW_TRANS matches TRANS2. Just merge the target states. */
3688 new_trans
->optional
= trans2
->optional
;
3689 *next_s1
= new_trans
->to
;
3690 *next_s2
= trans2
->to
;
3695 /* Try to merge TRANS2 into the target of the overlapping transition,
3696 but (to prevent infinite recursion or excessive redundancy) without
3697 creating another transition of the same type. */
3698 *next_s1
= new_trans
->to
;
3700 *next_exclude
= &new_trans
->labels
;
3705 /* Make progress in merging S2 into S1, given that each state in S2
3706 has a single decision. If EXCLUDE is nonnull, avoid creating a new
3707 transition with the same test as S2's decision and with the labels
3710 Return true if there is still work to do. When returning true,
3711 set *NEXT_S1, *NEXT_S2 and *NEXT_EXCLUDE to the values that
3712 S1, S2 and EXCLUDE should have next time round.
3714 If S1 and S2 both match a particular rtx, give priority to S1. */
3717 merge_into_state_1 (state
*s1
, state
*s2
, const int_set
*exclude
,
3718 state
**next_s1
, state
**next_s2
,
3719 const int_set
**next_exclude
)
3721 decision
*d2
= s2
->singleton ();
3722 if (decision
*d1
= s1
->last
)
3724 if (d1
->test
.terminal_p ())
3725 /* D1 is an unconditional return, so S2 can never match. This can
3726 sometimes be a bug in the .md description, but might also happen
3727 if genconditions forces some conditions to true for certain
3731 /* Go backwards through the decisions in S1, stopping once we find one
3732 that could match the same thing as S2. */
3733 while (d1
->prev
&& mutually_exclusive_p (d1
, d2
))
3736 /* Search forwards from that point, merging D2 into the first
3738 for (; d1
; d1
= d1
->next
)
3740 /* If S2 performs some optional tests before testing the same thing
3741 as D1, those tests do not help to distinguish D1 and S2, so it's
3742 better to drop them. Search through such optional decisions
3743 until we find something that tests the same thing as D1. */
3747 decision
*sub_d2
= sub_s2
->singleton ();
3748 if (d1
->test
== sub_d2
->test
)
3750 /* Only apply EXCLUDE if we're testing the same thing
3752 const int_set
*sub_exclude
= (d2
== sub_d2
? exclude
: 0);
3754 /* Try to merge SUB_S2 into D1. This can only fail if
3755 it would involve creating a new transition with
3756 labels SUB_EXCLUDE. */
3757 if (merge_into_decision (d1
, sub_s2
, sub_exclude
,
3758 next_s1
, next_s2
, next_exclude
))
3759 return *next_s2
!= 0;
3761 /* Can't merge with D1; try a later decision. */
3764 transition
*sub_trans2
= sub_d2
->singleton ();
3765 if (!sub_trans2
->optional
)
3766 /* Can't merge with D1; try a later decision. */
3768 sub_s2
= sub_trans2
->to
;
3773 /* We can't merge D2 with any existing decision. Just add it to the end. */
3774 s1
->push_back (s2
->release ());
3778 /* Merge S2 into S1. If they both match a particular rtx, give
3779 priority to S1. Each state in S2 has a single decision. */
3782 merge_into_state (state
*s1
, state
*s2
)
3784 const int_set
*exclude
= 0;
3785 while (s2
&& merge_into_state_1 (s1
, s2
, exclude
, &s1
, &s2
, &exclude
))
3789 /* Pairs a pattern that needs to be matched with the rtx position at
3790 which the pattern should occur. */
3791 struct pattern_pos
{
3793 pattern_pos (rtx
, position
*);
3799 pattern_pos::pattern_pos (rtx pattern_in
, position
*pos_in
)
3800 : pattern (pattern_in
), pos (pos_in
)
3803 /* Compare entries according to their depth-first order. There shouldn't
3804 be two entries at the same position. */
3807 operator < (const pattern_pos
&e1
, const pattern_pos
&e2
)
3809 int diff
= compare_positions (e1
.pos
, e2
.pos
);
3810 gcc_assert (diff
!= 0 || e1
.pattern
== e2
.pattern
);
3814 /* Return the name of the predicate matched by MATCH_RTX. */
3817 predicate_name (rtx match_rtx
)
3819 if (GET_CODE (match_rtx
) == MATCH_SCRATCH
)
3820 return "scratch_operand";
3822 return XSTR (match_rtx
, 1);
3825 /* Add new decisions to S that check whether the rtx at position POS
3826 matches PATTERN. Return the state that is reached in that case.
3827 TOP_PATTERN is the overall pattern, as passed to match_pattern_1. */
3830 match_pattern_2 (state
*s
, rtx top_pattern
, position
*pos
, rtx pattern
)
3832 auto_vec
<pattern_pos
, 32> worklist
;
3833 auto_vec
<pattern_pos
, 32> pred_and_mode_tests
;
3834 auto_vec
<pattern_pos
, 32> dup_tests
;
3836 worklist
.safe_push (pattern_pos (pattern
, pos
));
3837 while (!worklist
.is_empty ())
3839 pattern_pos next
= worklist
.pop ();
3840 pattern
= next
.pattern
;
3842 unsigned int reverse_s
= worklist
.length ();
3844 enum rtx_code code
= GET_CODE (pattern
);
3850 /* Add a test that the rtx matches the earlier one, but only
3851 after the structure and predicates have been checked. */
3852 dup_tests
.safe_push (pattern_pos (pattern
, pos
));
3854 /* Use the same code check as the original operand. */
3855 pattern
= find_operand (top_pattern
, XINT (pattern
, 0), NULL_RTX
);
3858 case MATCH_PARALLEL
:
3861 case MATCH_OPERATOR
:
3863 const char *pred_name
= predicate_name (pattern
);
3864 const struct pred_data
*pred
= 0;
3865 if (pred_name
[0] != 0)
3867 pred
= lookup_predicate (pred_name
);
3868 /* Only report errors once per rtx. */
3869 if (code
== GET_CODE (pattern
))
3872 error_with_line (pattern_lineno
,
3873 "unknown predicate '%s'"
3874 " in '%s' expression",
3875 pred_name
, GET_RTX_NAME (code
));
3876 else if (code
== MATCH_PARALLEL
3877 && pred
->singleton
!= PARALLEL
)
3878 error_with_line (pattern_lineno
,
3879 "predicate '%s' used in match_parallel"
3880 " does not allow only PARALLEL",
3885 if (code
== MATCH_PARALLEL
|| code
== MATCH_PAR_DUP
)
3887 /* Check that we have a parallel with enough elements. */
3888 s
= add_decision (s
, rtx_test::code (pos
), PARALLEL
, false);
3889 int min_len
= XVECLEN (pattern
, 2);
3890 s
= add_decision (s
, rtx_test::veclen_ge (pos
, min_len
),
3895 /* Check that the rtx has one of codes accepted by the
3896 predicate. This is necessary when matching suboperands
3897 of a MATCH_OPERATOR or MATCH_OP_DUP, since we can't
3898 call XEXP (X, N) without checking that X has at least
3901 get_predicate_codes (pred
, &codes
);
3902 bool need_codes
= (pred
3903 && (code
== MATCH_OPERATOR
3904 || code
== MATCH_OP_DUP
));
3905 s
= add_decision (s
, rtx_test::code (pos
), codes
, !need_codes
);
3908 /* Postpone the predicate check until we've checked the rest
3909 of the rtx structure. */
3910 if (code
== GET_CODE (pattern
))
3911 pred_and_mode_tests
.safe_push (pattern_pos (pattern
, pos
));
3913 /* If we need to match suboperands, add them to the worklist. */
3914 if (code
== MATCH_OPERATOR
|| code
== MATCH_PARALLEL
)
3916 position
**subpos_ptr
;
3917 enum position_type pos_type
;
3919 if (code
== MATCH_OPERATOR
|| code
== MATCH_OP_DUP
)
3921 pos_type
= POS_XEXP
;
3922 subpos_ptr
= &pos
->xexps
;
3923 i
= (code
== MATCH_OPERATOR
? 2 : 1);
3927 pos_type
= POS_XVECEXP0
;
3928 subpos_ptr
= &pos
->xvecexp0s
;
3931 for (int j
= 0; j
< XVECLEN (pattern
, i
); ++j
)
3933 position
*subpos
= next_position (subpos_ptr
, pos
,
3935 worklist
.safe_push (pattern_pos (XVECEXP (pattern
, i
, j
),
3937 subpos_ptr
= &subpos
->next
;
3945 /* Check that the rtx has the right code. */
3946 s
= add_decision (s
, rtx_test::code (pos
), code
, false);
3948 /* Queue a test for the mode if one is specified. */
3949 if (GET_MODE (pattern
) != VOIDmode
)
3950 pred_and_mode_tests
.safe_push (pattern_pos (pattern
, pos
));
3952 /* Push subrtxes onto the worklist. Match nonrtx operands now. */
3953 const char *fmt
= GET_RTX_FORMAT (code
);
3954 position
**subpos_ptr
= &pos
->xexps
;
3955 for (size_t i
= 0; fmt
[i
]; ++i
)
3957 position
*subpos
= next_position (subpos_ptr
, pos
,
3962 worklist
.safe_push (pattern_pos (XEXP (pattern
, i
),
3968 /* Make sure the vector has the right number of
3970 int length
= XVECLEN (pattern
, i
);
3971 s
= add_decision (s
, rtx_test::veclen (pos
),
3974 position
**subpos2_ptr
= &pos
->xvecexp0s
;
3975 for (int j
= 0; j
< length
; j
++)
3977 position
*subpos2
= next_position (subpos2_ptr
, pos
,
3979 rtx x
= XVECEXP (pattern
, i
, j
);
3980 worklist
.safe_push (pattern_pos (x
, subpos2
));
3981 subpos2_ptr
= &subpos2
->next
;
3987 /* Make sure that XINT (X, I) has the right value. */
3988 s
= add_decision (s
, rtx_test::int_field (pos
, i
),
3989 XINT (pattern
, i
), false);
3993 /* Make sure that REGNO (X) has the right value. */
3994 gcc_assert (i
== 0);
3995 s
= add_decision (s
, rtx_test::regno_field (pos
),
3996 REGNO (pattern
), false);
4000 /* Make sure that XWINT (X, I) has the right value. */
4001 s
= add_decision (s
, rtx_test::wide_int_field (pos
, i
),
4002 XWINT (pattern
, 0), false);
4011 subpos_ptr
= &subpos
->next
;
4016 /* Operands are pushed onto the worklist so that later indices are
4017 nearer the top. That's what we want for SETs, since a SET_SRC
4018 is a better discriminator than a SET_DEST. In other cases it's
4019 usually better to match earlier indices first. This is especially
4020 true of PARALLELs, where the first element tends to be the most
4021 individual. It's also true for commutative operators, where the
4022 canonicalization rules say that the more complex operand should
4024 if (code
!= SET
&& worklist
.length () > reverse_s
)
4025 std::reverse (&worklist
[0] + reverse_s
,
4026 &worklist
[0] + worklist
.length ());
4029 /* Sort the predicate and mode tests so that they're in depth-first order.
4030 The main goal of this is to put SET_SRC match_operands after SET_DEST
4031 match_operands and after mode checks for the enclosing SET_SRC operators
4032 (such as the mode of a PLUS in an addition instruction). The latter
4033 two types of test can determine the mode exactly, whereas a SET_SRC
4034 match_operand often has to cope with the possibility of the operand
4035 being a modeless constant integer. E.g. something that matches
4036 register_operand (x, SImode) never matches register_operand (x, DImode),
4037 but a const_int that matches immediate_operand (x, SImode) also matches
4038 immediate_operand (x, DImode). The register_operand cases can therefore
4039 be distinguished by a switch on the mode, but the immediate_operand
4041 if (pred_and_mode_tests
.length () > 1)
4042 std::sort (&pred_and_mode_tests
[0],
4043 &pred_and_mode_tests
[0] + pred_and_mode_tests
.length ());
4045 /* Add the mode and predicate tests. */
4048 FOR_EACH_VEC_ELT (pred_and_mode_tests
, i
, e
)
4050 switch (GET_CODE (e
->pattern
))
4052 case MATCH_PARALLEL
:
4055 case MATCH_OPERATOR
:
4057 int opno
= XINT (e
->pattern
, 0);
4058 num_operands
= MAX (num_operands
, opno
+ 1);
4059 const char *pred_name
= predicate_name (e
->pattern
);
4062 const struct pred_data
*pred
= lookup_predicate (pred_name
);
4063 /* Check the mode first, to distinguish things like SImode
4064 and DImode register_operands, as described above. */
4065 machine_mode mode
= GET_MODE (e
->pattern
);
4066 if (safe_predicate_mode (pred
, mode
))
4067 s
= add_decision (s
, rtx_test::mode (e
->pos
), mode
, true);
4069 /* Assign to operands[] first, so that the rtx usually doesn't
4070 need to be live across the call to the predicate.
4072 This shouldn't cause a problem with dirtying the page,
4073 since we fully expect to assign to operands[] at some point,
4074 and since the caller usually writes to other parts of
4075 recog_data anyway. */
4076 s
= add_decision (s
, rtx_test::set_op (e
->pos
, opno
),
4078 s
= add_decision (s
, rtx_test::predicate (e
->pos
, pred
, mode
),
4082 /* Historically we've ignored the mode when there's no
4083 predicate. Just set up operands[] unconditionally. */
4084 s
= add_decision (s
, rtx_test::set_op (e
->pos
, opno
),
4090 s
= add_decision (s
, rtx_test::mode (e
->pos
),
4091 GET_MODE (e
->pattern
), false);
4096 /* Finally add rtx_equal_p checks for duplicated operands. */
4097 FOR_EACH_VEC_ELT (dup_tests
, i
, e
)
4098 s
= add_decision (s
, rtx_test::duplicate (e
->pos
, XINT (e
->pattern
, 0)),
4103 /* Add new decisions to S that make it return ACCEPTANCE if:
4105 (1) the rtx doesn't match anything already matched by S
4106 (2) the rtx matches TOP_PATTERN and
4109 For peephole2, TOP_PATTERN is a SEQUENCE of the instruction patterns
4110 to match, otherwise it is a single instruction pattern. */
4113 match_pattern_1 (state
*s
, rtx top_pattern
, const char *c_test
,
4114 acceptance_type acceptance
)
4116 if (acceptance
.type
== PEEPHOLE2
)
4118 /* Match each individual instruction. */
4119 position
**subpos_ptr
= &peep2_insn_pos_list
;
4121 for (int i
= 0; i
< XVECLEN (top_pattern
, 0); ++i
)
4123 rtx x
= XVECEXP (top_pattern
, 0, i
);
4124 position
*subpos
= next_position (subpos_ptr
, &root_pos
,
4125 POS_PEEP2_INSN
, count
);
4127 s
= add_decision (s
, rtx_test::peep2_count (count
+ 1),
4129 s
= match_pattern_2 (s
, top_pattern
, subpos
, x
);
4130 subpos_ptr
= &subpos
->next
;
4133 acceptance
.u
.full
.u
.match_len
= count
- 1;
4137 /* Make the rtx itself. */
4138 s
= match_pattern_2 (s
, top_pattern
, &root_pos
, top_pattern
);
4140 /* If the match is only valid when extra clobbers are added,
4141 make sure we're able to pass that information to the caller. */
4142 if (acceptance
.type
== RECOG
&& acceptance
.u
.full
.u
.num_clobbers
)
4143 s
= add_decision (s
, rtx_test::have_num_clobbers (), true, false);
4146 /* Make sure that the C test is true. */
4147 if (maybe_eval_c_test (c_test
) != 1)
4148 s
= add_decision (s
, rtx_test::c_test (c_test
), true, false);
4150 /* Accept the pattern. */
4151 add_decision (s
, rtx_test::accept (acceptance
), true, false);
4154 /* Like match_pattern_1, but (if merge_states_p) try to merge the
4155 decisions with what's already in S, to reduce the amount of
4159 match_pattern (state
*s
, rtx top_pattern
, const char *c_test
,
4160 acceptance_type acceptance
)
4165 /* Add the decisions to a fresh state and then merge the full tree
4166 into the existing one. */
4167 match_pattern_1 (&root
, top_pattern
, c_test
, acceptance
);
4168 merge_into_state (s
, &root
);
4171 match_pattern_1 (s
, top_pattern
, c_test
, acceptance
);
4174 /* Begin the output file. */
4180 /* Generated automatically by the program `genrecog' from the target\n\
4181 machine description file. */\n\
4183 #include \"config.h\"\n\
4184 #include \"system.h\"\n\
4185 #include \"coretypes.h\"\n\
4186 #include \"tm.h\"\n\
4187 #include \"rtl.h\"\n\
4188 #include \"tm_p.h\"\n\
4189 #include \"hashtab.h\"\n\
4190 #include \"hash-set.h\"\n\
4191 #include \"vec.h\"\n\
4192 #include \"machmode.h\"\n\
4193 #include \"hard-reg-set.h\"\n\
4194 #include \"input.h\"\n\
4195 #include \"function.h\"\n\
4196 #include \"insn-config.h\"\n\
4197 #include \"recog.h\"\n\
4198 #include \"output.h\"\n\
4199 #include \"flags.h\"\n\
4200 #include \"hard-reg-set.h\"\n\
4201 #include \"predict.h\"\n\
4202 #include \"basic-block.h\"\n\
4203 #include \"resource.h\"\n\
4204 #include \"diagnostic-core.h\"\n\
4205 #include \"reload.h\"\n\
4206 #include \"regs.h\"\n\
4207 #include \"tm-constrs.h\"\n\
4208 #include \"predict.h\"\n\
4212 /* `recog' contains a decision tree that recognizes whether the rtx\n\
4213 X0 is a valid instruction.\n\
4215 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
4216 returns a nonnegative number which is the insn code number for the\n\
4217 pattern that matched. This is the same as the order in the machine\n\
4218 description of the entry that matched. This number can be used as an\n\
4219 index into `insn_data' and other tables.\n");
4221 The third parameter to recog is an optional pointer to an int. If\n\
4222 present, recog will accept a pattern if it matches except for missing\n\
4223 CLOBBER expressions at the end. In that case, the value pointed to by\n\
4224 the optional pointer will be set to the number of CLOBBERs that need\n\
4225 to be added (it should be initialized to zero by the caller). If it");
4227 is set nonzero, the caller should allocate a PARALLEL of the\n\
4228 appropriate size, copy the initial entries, and call add_clobbers\n\
4229 (found in insn-emit.c) to fill in the CLOBBERs.\n\
4233 The function split_insns returns 0 if the rtl could not\n\
4234 be split or the split rtl as an INSN list if it can be.\n\
4236 The function peephole2_insns returns 0 if the rtl could not\n\
4237 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
4238 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
4242 /* Return the C type of a parameter with type TYPE. */
4245 parameter_type_string (parameter::type_enum type
)
4249 case parameter::UNSET
:
4252 case parameter::CODE
:
4255 case parameter::MODE
:
4256 return "machine_mode";
4258 case parameter::INT
:
4261 case parameter::UINT
:
4262 return "unsigned int";
4264 case parameter::WIDE_INT
:
4265 return "HOST_WIDE_INT";
4270 /* Return true if ACCEPTANCE requires only a single C statement even in
4271 a backtracking context. */
4274 single_statement_p (const acceptance_type
&acceptance
)
4276 if (acceptance
.partial_p
)
4277 /* We need to handle failures of the subroutine. */
4279 switch (acceptance
.type
)
4286 /* False if we need to assign to pnum_clobbers. */
4287 return acceptance
.u
.full
.u
.num_clobbers
== 0;
4290 /* We need to assign to pmatch_len_ and handle null returns from the
4291 peephole2 routine. */
4297 /* Return the C failure value for a routine of type TYPE. */
4300 get_failure_return (routine_type type
)
4315 /* Indicates whether a block of code always returns or whether it can fall
4323 /* Information used while writing out code. */
4327 /* The type of routine that we're generating. */
4330 /* Maps position ids to xN variable numbers. The entry is only valid if
4331 it is less than the length of VAR_TO_ID, but this holds for every position
4332 tested by a state when writing out that state. */
4333 auto_vec
<unsigned int> id_to_var
;
4335 /* Maps xN variable numbers to position ids. */
4336 auto_vec
<unsigned int> var_to_id
;
4338 /* Index N is true if variable xN has already been set. */
4339 auto_vec
<bool> seen_vars
;
4342 /* Return true if D is a call to a pattern routine and if there is some X
4343 such that the transition for pattern result N goes to a successful return
4344 with code X+N. When returning true, set *BASE_OUT to this X and *COUNT_OUT
4345 to the number of return values. (We know that every PATTERN decision has
4346 a transition for every successful return.) */
4349 terminal_pattern_p (decision
*d
, unsigned int *base_out
,
4350 unsigned int *count_out
)
4352 if (d
->test
.kind
!= rtx_test::PATTERN
)
4354 unsigned int base
= 0;
4355 unsigned int count
= 0;
4356 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
4358 if (trans
->is_param
|| trans
->labels
.length () != 1)
4360 decision
*subd
= trans
->to
->singleton ();
4361 if (!subd
|| subd
->test
.kind
!= rtx_test::ACCEPT
)
4363 unsigned int this_base
= (subd
->test
.u
.acceptance
.u
.full
.code
4364 - trans
->labels
[0]);
4365 if (trans
== d
->first
)
4367 else if (base
!= this_base
)
4376 /* Return true if TEST doesn't test an rtx or if the rtx it tests is
4377 already available in state OS. */
4380 test_position_available_p (output_state
*os
, const rtx_test
&test
)
4383 || test
.pos_operand
>= 0
4384 || os
->seen_vars
[os
->id_to_var
[test
.pos
->id
]]);
4387 /* Like printf, but print INDENT spaces at the beginning. */
4389 static void ATTRIBUTE_PRINTF_2
4390 printf_indent (unsigned int indent
, const char *format
, ...)
4393 va_start (ap
, format
);
4394 printf ("%*s", indent
, "");
4395 vprintf (format
, ap
);
4399 /* Emit code to initialize the variable associated with POS, if it isn't
4400 already valid in state OS. Indent each line by INDENT spaces. Update
4401 OS with the new state. */
4404 change_state (output_state
*os
, position
*pos
, unsigned int indent
)
4406 unsigned int var
= os
->id_to_var
[pos
->id
];
4407 gcc_assert (var
< os
->var_to_id
.length () && os
->var_to_id
[var
] == pos
->id
);
4408 if (os
->seen_vars
[var
])
4412 case POS_PEEP2_INSN
:
4413 printf_indent (indent
, "x%d = PATTERN (peep2_next_insn (%d));\n",
4418 change_state (os
, pos
->base
, indent
);
4419 printf_indent (indent
, "x%d = XEXP (x%d, %d);\n",
4420 var
, os
->id_to_var
[pos
->base
->id
], pos
->arg
);
4424 change_state (os
, pos
->base
, indent
);
4425 printf_indent (indent
, "x%d = XVECEXP (x%d, 0, %d);\n",
4426 var
, os
->id_to_var
[pos
->base
->id
], pos
->arg
);
4429 os
->seen_vars
[var
] = true;
4432 /* Print the enumerator constant for CODE -- the upcase version of
4436 print_code (enum rtx_code code
)
4439 for (p
= GET_RTX_NAME (code
); *p
; p
++)
4440 putchar (TOUPPER (*p
));
4443 /* Emit a uint64_t as an integer constant expression. We need to take
4444 special care to avoid "decimal constant is so large that it is unsigned"
4445 warnings in the resulting code. */
4448 print_host_wide_int (uint64_t val
)
4450 uint64_t min
= uint64_t (1) << (HOST_BITS_PER_WIDE_INT
- 1);
4452 printf ("(" HOST_WIDE_INT_PRINT_DEC_C
" - 1)", val
+ 1);
4454 printf (HOST_WIDE_INT_PRINT_DEC_C
, val
);
4457 /* Print the C expression for actual parameter PARAM. */
4460 print_parameter_value (const parameter
¶m
)
4463 printf ("i%d", (int) param
.value
+ 1);
4467 case parameter::UNSET
:
4471 case parameter::CODE
:
4472 print_code ((enum rtx_code
) param
.value
);
4475 case parameter::MODE
:
4476 printf ("%smode", GET_MODE_NAME ((machine_mode
) param
.value
));
4479 case parameter::INT
:
4480 printf ("%d", (int) param
.value
);
4483 case parameter::UINT
:
4484 printf ("%u", (unsigned int) param
.value
);
4487 case parameter::WIDE_INT
:
4488 print_host_wide_int (param
.value
);
4493 /* Print the C expression for the rtx tested by TEST. */
4496 print_test_rtx (output_state
*os
, const rtx_test
&test
)
4498 if (test
.pos_operand
>= 0)
4499 printf ("operands[%d]", test
.pos_operand
);
4501 printf ("x%d", os
->id_to_var
[test
.pos
->id
]);
4504 /* Print the C expression for non-boolean test TEST. */
4507 print_nonbool_test (output_state
*os
, const rtx_test
&test
)
4511 case rtx_test::CODE
:
4512 printf ("GET_CODE (");
4513 print_test_rtx (os
, test
);
4517 case rtx_test::MODE
:
4518 printf ("GET_MODE (");
4519 print_test_rtx (os
, test
);
4523 case rtx_test::VECLEN
:
4524 printf ("XVECLEN (");
4525 print_test_rtx (os
, test
);
4529 case rtx_test::INT_FIELD
:
4531 print_test_rtx (os
, test
);
4532 printf (", %d)", test
.u
.opno
);
4535 case rtx_test::REGNO_FIELD
:
4537 print_test_rtx (os
, test
);
4541 case rtx_test::WIDE_INT_FIELD
:
4543 print_test_rtx (os
, test
);
4544 printf (", %d)", test
.u
.opno
);
4547 case rtx_test::PATTERN
:
4549 pattern_routine
*routine
= test
.u
.pattern
->routine
;
4550 printf ("pattern%d (", routine
->pattern_id
);
4551 const char *sep
= "";
4554 print_test_rtx (os
, test
);
4557 if (routine
->insn_p
)
4559 printf ("%sinsn", sep
);
4562 if (routine
->pnum_clobbers_p
)
4564 printf ("%spnum_clobbers", sep
);
4567 for (unsigned int i
= 0; i
< test
.u
.pattern
->params
.length (); ++i
)
4569 fputs (sep
, stdout
);
4570 print_parameter_value (test
.u
.pattern
->params
[i
]);
4577 case rtx_test::PEEP2_COUNT
:
4578 case rtx_test::VECLEN_GE
:
4579 case rtx_test::SAVED_CONST_INT
:
4580 case rtx_test::DUPLICATE
:
4581 case rtx_test::PREDICATE
:
4582 case rtx_test::SET_OP
:
4583 case rtx_test::HAVE_NUM_CLOBBERS
:
4584 case rtx_test::C_TEST
:
4585 case rtx_test::ACCEPT
:
4590 /* IS_PARAM and LABEL are taken from a transition whose source
4591 decision performs TEST. Print the C code for the label. */
4594 print_label_value (const rtx_test
&test
, bool is_param
, uint64_t value
)
4596 print_parameter_value (parameter (transition_parameter_type (test
.kind
),
4600 /* If IS_PARAM, print code to compare TEST with the C variable i<VALUE+1>.
4601 If !IS_PARAM, print code to compare TEST with the C constant VALUE.
4602 Test for inequality if INVERT_P, otherwise test for equality. */
4605 print_test (output_state
*os
, const rtx_test
&test
, bool is_param
,
4606 uint64_t value
, bool invert_p
)
4610 /* Handle the non-boolean TESTs. */
4611 case rtx_test::CODE
:
4612 case rtx_test::MODE
:
4613 case rtx_test::VECLEN
:
4614 case rtx_test::REGNO_FIELD
:
4615 case rtx_test::INT_FIELD
:
4616 case rtx_test::WIDE_INT_FIELD
:
4617 case rtx_test::PATTERN
:
4618 print_nonbool_test (os
, test
);
4619 printf (" %s ", invert_p
? "!=" : "==");
4620 print_label_value (test
, is_param
, value
);
4623 case rtx_test::SAVED_CONST_INT
:
4624 gcc_assert (!is_param
&& value
== 1);
4625 print_test_rtx (os
, test
);
4626 printf (" %s const_int_rtx[MAX_SAVED_CONST_INT + ",
4627 invert_p
? "!=" : "==");
4628 print_parameter_value (parameter (parameter::INT
,
4629 test
.u
.integer
.is_param
,
4630 test
.u
.integer
.value
));
4634 case rtx_test::PEEP2_COUNT
:
4635 gcc_assert (!is_param
&& value
== 1);
4636 printf ("peep2_current_count %s %d", invert_p
? "<" : ">=",
4640 case rtx_test::VECLEN_GE
:
4641 gcc_assert (!is_param
&& value
== 1);
4642 printf ("XVECLEN (");
4643 print_test_rtx (os
, test
);
4644 printf (", 0) %s %d", invert_p
? "<" : ">=", test
.u
.min_len
);
4647 case rtx_test::PREDICATE
:
4648 gcc_assert (!is_param
&& value
== 1);
4649 printf ("%s%s (", invert_p
? "!" : "", test
.u
.predicate
.data
->name
);
4650 print_test_rtx (os
, test
);
4652 print_parameter_value (parameter (parameter::MODE
,
4653 test
.u
.predicate
.mode_is_param
,
4654 test
.u
.predicate
.mode
));
4658 case rtx_test::DUPLICATE
:
4659 gcc_assert (!is_param
&& value
== 1);
4660 printf ("%srtx_equal_p (", invert_p
? "!" : "");
4661 print_test_rtx (os
, test
);
4662 printf (", operands[%d])", test
.u
.opno
);
4665 case rtx_test::HAVE_NUM_CLOBBERS
:
4666 gcc_assert (!is_param
&& value
== 1);
4667 printf ("pnum_clobbers %s NULL", invert_p
? "==" : "!=");
4670 case rtx_test::C_TEST
:
4671 gcc_assert (!is_param
&& value
== 1);
4674 print_c_condition (test
.u
.string
);
4677 case rtx_test::ACCEPT
:
4678 case rtx_test::SET_OP
:
4683 static exit_state
print_decision (output_state
*, decision
*,
4684 unsigned int, bool);
4686 /* Print code to perform S, indent each line by INDENT spaces.
4687 IS_FINAL is true if there are no fallback decisions to test on failure;
4688 if the state fails then the entire routine fails. */
4691 print_state (output_state
*os
, state
*s
, unsigned int indent
, bool is_final
)
4693 exit_state es
= ES_FALLTHROUGH
;
4694 for (decision
*d
= s
->first
; d
; d
= d
->next
)
4695 es
= print_decision (os
, d
, indent
, is_final
&& !d
->next
);
4696 if (es
!= ES_RETURNED
&& is_final
)
4698 printf_indent (indent
, "return %s;\n", get_failure_return (os
->type
));
4704 /* Print the code for subroutine call ACCEPTANCE (for which partial_p
4705 is known to be true). Return the C condition that indicates a successful
4709 print_subroutine_call (const acceptance_type
&acceptance
)
4711 switch (acceptance
.type
)
4717 printf ("recog_%d (x1, insn, pnum_clobbers)",
4718 acceptance
.u
.subroutine_id
);
4722 printf ("split_%d (x1, insn)", acceptance
.u
.subroutine_id
);
4723 return "!= NULL_RTX";
4726 printf ("peephole2_%d (x1, insn, pmatch_len_)",
4727 acceptance
.u
.subroutine_id
);
4728 return "!= NULL_RTX";
4733 /* Print code for the successful match described by ACCEPTANCE.
4734 INDENT and IS_FINAL are as for print_state. */
4737 print_acceptance (const acceptance_type
&acceptance
, unsigned int indent
,
4740 if (acceptance
.partial_p
)
4742 /* Defer the rest of the match to a subroutine. */
4745 printf_indent (indent
, "return ");
4746 print_subroutine_call (acceptance
);
4752 printf_indent (indent
, "res = ");
4753 const char *res_test
= print_subroutine_call (acceptance
);
4755 printf_indent (indent
, "if (res %s)\n", res_test
);
4756 printf_indent (indent
+ 2, "return res;\n");
4757 return ES_FALLTHROUGH
;
4760 switch (acceptance
.type
)
4763 printf_indent (indent
, "return %d;\n", acceptance
.u
.full
.code
);
4767 if (acceptance
.u
.full
.u
.num_clobbers
!= 0)
4768 printf_indent (indent
, "*pnum_clobbers = %d;\n",
4769 acceptance
.u
.full
.u
.num_clobbers
);
4770 printf_indent (indent
, "return %d; /* %s */\n", acceptance
.u
.full
.code
,
4771 get_insn_name (acceptance
.u
.full
.code
));
4775 printf_indent (indent
, "return gen_split_%d (insn, operands);\n",
4776 acceptance
.u
.full
.code
);
4780 printf_indent (indent
, "*pmatch_len_ = %d;\n",
4781 acceptance
.u
.full
.u
.match_len
);
4784 printf_indent (indent
, "return gen_peephole2_%d (insn, operands);\n",
4785 acceptance
.u
.full
.code
);
4790 printf_indent (indent
, "res = gen_peephole2_%d (insn, operands);\n",
4791 acceptance
.u
.full
.code
);
4792 printf_indent (indent
, "if (res != NULL_RTX)\n");
4793 printf_indent (indent
+ 2, "return res;\n");
4794 return ES_FALLTHROUGH
;
4800 /* Print code to perform D. INDENT and IS_FINAL are as for print_state. */
4803 print_decision (output_state
*os
, decision
*d
, unsigned int indent
,
4807 unsigned int base
, count
;
4809 /* Make sure the rtx under test is available either in operands[] or
4810 in an xN variable. */
4811 if (d
->test
.pos
&& d
->test
.pos_operand
< 0)
4812 change_state (os
, d
->test
.pos
, indent
);
4814 /* Look for cases where a pattern routine P1 calls another pattern routine
4815 P2 and where P1 returns X + BASE whenever P2 returns X. If IS_FINAL
4816 is true and BASE is zero we can simply use:
4818 return patternN (...);
4820 Otherwise we can use:
4822 res = patternN (...);
4826 However, if BASE is nonzero and patternN only returns 0 or -1,
4827 the usual "return BASE;" is better than "return res + BASE;".
4828 If BASE is zero, "return res;" should be better than "return 0;",
4829 since no assignment to the return register is required. */
4830 if (os
->type
== SUBPATTERN
4831 && terminal_pattern_p (d
, &base
, &count
)
4832 && (base
== 0 || count
> 1))
4834 if (is_final
&& base
== 0)
4836 printf_indent (indent
, "return ");
4837 print_nonbool_test (os
, d
->test
);
4838 printf ("; /* [-1, %d] */\n", count
- 1);
4843 printf_indent (indent
, "res = ");
4844 print_nonbool_test (os
, d
->test
);
4846 printf_indent (indent
, "if (res >= 0)\n");
4847 printf_indent (indent
+ 2, "return res");
4849 printf (" + %d", base
);
4850 printf ("; /* [%d, %d] */\n", base
, base
+ count
- 1);
4851 return ES_FALLTHROUGH
;
4854 else if (d
->test
.kind
== rtx_test::ACCEPT
)
4855 return print_acceptance (d
->test
.u
.acceptance
, indent
, is_final
);
4856 else if (d
->test
.kind
== rtx_test::SET_OP
)
4858 printf_indent (indent
, "operands[%d] = ", d
->test
.u
.opno
);
4859 print_test_rtx (os
, d
->test
);
4861 return print_state (os
, d
->singleton ()->to
, indent
, is_final
);
4863 /* Handle decisions with a single transition and a single transition
4865 else if (d
->if_statement_p (&label
))
4867 transition
*trans
= d
->singleton ();
4868 if (mark_optional_transitions_p
&& trans
->optional
)
4869 printf_indent (indent
, "/* OPTIONAL IF */\n");
4871 /* Print the condition associated with TRANS. Invert it if IS_FINAL,
4872 so that we return immediately on failure and fall through on
4874 printf_indent (indent
, "if (");
4875 print_test (os
, d
->test
, trans
->is_param
, label
, is_final
);
4877 /* Look for following states that would be handled by this code
4878 on recursion. If they don't need any preparatory statements,
4879 include them in the current "if" statement rather than creating
4883 d
= trans
->to
->singleton ();
4885 || d
->test
.kind
== rtx_test::ACCEPT
4886 || d
->test
.kind
== rtx_test::SET_OP
4887 || !d
->if_statement_p (&label
)
4888 || !test_position_available_p (os
, d
->test
))
4892 if (mark_optional_transitions_p
&& trans
->optional
)
4893 printf_indent (indent
+ 4, "/* OPTIONAL IF */\n");
4894 printf_indent (indent
+ 4, "%s ", is_final
? "||" : "&&");
4895 print_test (os
, d
->test
, trans
->is_param
, label
, is_final
);
4899 /* Print the conditional code with INDENT + 2 and the fallthrough
4900 code with indent INDENT. */
4901 state
*to
= trans
->to
;
4904 /* We inverted the condition above, so return failure in the
4905 "if" body and fall through to the target of the transition. */
4906 printf_indent (indent
+ 2, "return %s;\n",
4907 get_failure_return (os
->type
));
4908 return print_state (os
, to
, indent
, is_final
);
4910 else if (to
->singleton ()
4911 && to
->first
->test
.kind
== rtx_test::ACCEPT
4912 && single_statement_p (to
->first
->test
.u
.acceptance
))
4914 /* The target of the transition is a simple "return" statement.
4915 It doesn't need any braces and doesn't fall through. */
4916 if (print_acceptance (to
->first
->test
.u
.acceptance
,
4917 indent
+ 2, true) != ES_RETURNED
)
4919 return ES_FALLTHROUGH
;
4923 /* The general case. Output code for the target of the transition
4924 in braces. This will not invalidate any of the xN variables
4925 that are already valid, but we mustn't rely on any that are
4926 set by the "if" body. */
4927 auto_vec
<bool, 32> old_seen
;
4928 old_seen
.safe_splice (os
->seen_vars
);
4930 printf_indent (indent
+ 2, "{\n");
4931 print_state (os
, trans
->to
, indent
+ 4, is_final
);
4932 printf_indent (indent
+ 2, "}\n");
4934 os
->seen_vars
.truncate (0);
4935 os
->seen_vars
.splice (old_seen
);
4936 return ES_FALLTHROUGH
;
4941 /* Output the decision as a switch statement. */
4942 printf_indent (indent
, "switch (");
4943 print_nonbool_test (os
, d
->test
);
4946 /* Each case statement starts with the same set of valid variables.
4947 These are also the only variables will be valid on fallthrough. */
4948 auto_vec
<bool, 32> old_seen
;
4949 old_seen
.safe_splice (os
->seen_vars
);
4951 printf_indent (indent
+ 2, "{\n");
4952 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
4954 gcc_assert (!trans
->is_param
);
4955 if (mark_optional_transitions_p
&& trans
->optional
)
4956 printf_indent (indent
+ 2, "/* OPTIONAL CASE */\n");
4957 for (int_set::iterator j
= trans
->labels
.begin ();
4958 j
!= trans
->labels
.end (); ++j
)
4960 printf_indent (indent
+ 2, "case ");
4961 print_label_value (d
->test
, trans
->is_param
, *j
);
4964 if (print_state (os
, trans
->to
, indent
+ 4, is_final
))
4966 /* The state can fall through. Add an explicit break. */
4967 gcc_assert (!is_final
);
4968 printf_indent (indent
+ 4, "break;\n");
4972 /* Restore the original set of valid variables. */
4973 os
->seen_vars
.truncate (0);
4974 os
->seen_vars
.splice (old_seen
);
4976 /* Add a default case. */
4977 printf_indent (indent
+ 2, "default:\n");
4979 printf_indent (indent
+ 4, "return %s;\n",
4980 get_failure_return (os
->type
));
4982 printf_indent (indent
+ 4, "break;\n");
4983 printf_indent (indent
+ 2, "}\n");
4984 return is_final
? ES_RETURNED
: ES_FALLTHROUGH
;
4988 /* Make sure that OS has a position variable for POS. ROOT_P is true if
4989 POS is the root position for the routine. */
4992 assign_position_var (output_state
*os
, position
*pos
, bool root_p
)
4994 unsigned int idx
= os
->id_to_var
[pos
->id
];
4995 if (idx
< os
->var_to_id
.length () && os
->var_to_id
[idx
] == pos
->id
)
4997 if (!root_p
&& pos
->type
!= POS_PEEP2_INSN
)
4998 assign_position_var (os
, pos
->base
, false);
4999 os
->id_to_var
[pos
->id
] = os
->var_to_id
.length ();
5000 os
->var_to_id
.safe_push (pos
->id
);
5003 /* Make sure that OS has the position variables required by S. */
5006 assign_position_vars (output_state
*os
, state
*s
)
5008 for (decision
*d
= s
->first
; d
; d
= d
->next
)
5010 /* Positions associated with operands can be read from the
5011 operands[] array. */
5012 if (d
->test
.pos
&& d
->test
.pos_operand
< 0)
5013 assign_position_var (os
, d
->test
.pos
, false);
5014 for (transition
*trans
= d
->first
; trans
; trans
= trans
->next
)
5015 assign_position_vars (os
, trans
->to
);
5019 /* Print the open brace and variable definitions for a routine that
5020 implements S. ROOT is the deepest rtx from which S can access all
5021 relevant parts of the first instruction it matches. Initialize OS
5022 so that every relevant position has an rtx variable xN and so that
5023 only ROOT's variable has a valid value. */
5026 print_subroutine_start (output_state
*os
, state
*s
, position
*root
)
5028 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED"
5029 " = &recog_data.operand[0];\n");
5030 os
->var_to_id
.truncate (0);
5031 os
->seen_vars
.truncate (0);
5034 /* Create a fake entry for position 0 so that an id_to_var of 0
5035 is always invalid. This also makes the xN variables naturally
5036 1-based rather than 0-based. */
5037 os
->var_to_id
.safe_push (num_positions
);
5039 /* Associate ROOT with x1. */
5040 assign_position_var (os
, root
, true);
5042 /* Assign xN variables to all other relevant positions. */
5043 assign_position_vars (os
, s
);
5045 /* Output the variable declarations (except for ROOT's, which is
5046 passed in as a parameter). */
5047 unsigned int num_vars
= os
->var_to_id
.length ();
5050 for (unsigned int i
= 2; i
< num_vars
; ++i
)
5051 /* Print 8 rtx variables to a line. */
5053 i
== 2 ? " rtx" : (i
- 2) % 8 == 0 ? ";\n rtx" : ",", i
);
5057 /* Say that x1 is valid and the rest aren't. */
5058 os
->seen_vars
.safe_grow_cleared (num_vars
);
5059 os
->seen_vars
[1] = true;
5061 if (os
->type
== SUBPATTERN
|| os
->type
== RECOG
)
5062 printf (" int res ATTRIBUTE_UNUSED;\n");
5064 printf (" rtx res ATTRIBUTE_UNUSED;\n");
5067 /* Output the definition of pattern routine ROUTINE. */
5070 print_pattern (output_state
*os
, pattern_routine
*routine
)
5072 printf ("\nstatic int\npattern%d (", routine
->pattern_id
);
5073 const char *sep
= "";
5074 /* Add the top-level rtx parameter, if any. */
5077 printf ("%srtx x1", sep
);
5080 /* Add the optional parameters. */
5081 if (routine
->insn_p
)
5083 /* We can't easily tell whether a C condition actually reads INSN,
5084 so add an ATTRIBUTE_UNUSED just in case. */
5085 printf ("%srtx_insn *insn ATTRIBUTE_UNUSED", sep
);
5088 if (routine
->pnum_clobbers_p
)
5090 printf ("%sint *pnum_clobbers", sep
);
5093 /* Add the "i" parameters. */
5094 for (unsigned int i
= 0; i
< routine
->param_types
.length (); ++i
)
5096 printf ("%s%s i%d", sep
,
5097 parameter_type_string (routine
->param_types
[i
]), i
+ 1);
5101 os
->type
= SUBPATTERN
;
5102 print_subroutine_start (os
, routine
->s
, routine
->pos
);
5103 print_state (os
, routine
->s
, 2, true);
5107 /* Output a routine of type TYPE that implements S. PROC_ID is the
5108 number of the subroutine associated with S, or 0 if S is the main
5112 print_subroutine (output_state
*os
, state
*s
, int proc_id
)
5114 /* For now, the top-level functions take a plain "rtx", and perform a
5115 checked cast to "rtx_insn *" for use throughout the rest of the
5116 function and the code it calls. */
5117 const char *insn_param
5118 = proc_id
> 0 ? "rtx_insn *insn" : "rtx uncast_insn";
5127 printf ("static int\nrecog_%d", proc_id
);
5129 printf ("int\nrecog");
5130 printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
5131 "\t%s ATTRIBUTE_UNUSED,\n"
5132 "\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", insn_param
);
5137 printf ("static rtx\nsplit_%d", proc_id
);
5139 printf ("rtx\nsplit_insns");
5140 printf (" (rtx x1 ATTRIBUTE_UNUSED, %s ATTRIBUTE_UNUSED)\n",
5146 printf ("static rtx\npeephole2_%d", proc_id
);
5148 printf ("rtx\npeephole2_insns");
5149 printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
5150 "\t%s ATTRIBUTE_UNUSED,\n"
5151 "\tint *pmatch_len_ ATTRIBUTE_UNUSED)\n", insn_param
);
5154 print_subroutine_start (os
, s
, &root_pos
);
5157 printf (" recog_data.insn = NULL;\n");
5158 printf (" rtx_insn *insn ATTRIBUTE_UNUSED;\n");
5159 printf (" insn = safe_as_a <rtx_insn *> (uncast_insn);\n");
5161 print_state (os
, s
, 2, true);
5165 /* Print out a routine of type TYPE that performs ROOT. */
5168 print_subroutine_group (output_state
*os
, routine_type type
, state
*root
)
5171 if (use_subroutines_p
)
5173 /* Split ROOT up into smaller pieces, both for readability and to
5174 help the compiler. */
5175 auto_vec
<state
*> subroutines
;
5176 find_subroutines (type
, root
, subroutines
);
5178 /* Output the subroutines (but not ROOT itself). */
5181 FOR_EACH_VEC_ELT (subroutines
, i
, s
)
5182 print_subroutine (os
, s
, i
+ 1);
5184 /* Output the main routine. */
5185 print_subroutine (os
, root
, 0);
5188 /* Return the rtx pattern specified by the list of rtxes in a
5189 define_insn or define_split. */
5192 add_implicit_parallel (rtvec vec
)
5194 if (GET_NUM_ELEM (vec
) == 1)
5195 return RTVEC_ELT (vec
, 0);
5198 rtx pattern
= rtx_alloc (PARALLEL
);
5199 XVEC (pattern
, 0) = vec
;
5204 /* Return the rtx pattern for the list of rtxes in a define_peephole2. */
5207 get_peephole2_pattern (rtvec vec
)
5210 rtx pattern
= rtx_alloc (SEQUENCE
);
5211 XVEC (pattern
, 0) = rtvec_alloc (GET_NUM_ELEM (vec
));
5212 for (i
= j
= 0; i
< GET_NUM_ELEM (vec
); i
++)
5214 rtx x
= RTVEC_ELT (vec
, i
);
5215 /* Ignore scratch register requirements. */
5216 if (GET_CODE (x
) != MATCH_SCRATCH
&& GET_CODE (x
) != MATCH_DUP
)
5218 XVECEXP (pattern
, 0, j
) = x
;
5222 XVECLEN (pattern
, 0) = j
;
5224 error_with_line (pattern_lineno
, "empty define_peephole2");
5228 /* Return true if *PATTERN_PTR is a PARALLEL in which at least one trailing
5229 rtx can be added automatically by add_clobbers. If so, update
5230 *ACCEPTANCE_PTR so that its num_clobbers field contains the number
5231 of such trailing rtxes and update *PATTERN_PTR so that it contains
5232 the pattern without those rtxes. */
5235 remove_clobbers (acceptance_type
*acceptance_ptr
, rtx
*pattern_ptr
)
5240 /* Find the last non-clobber in the parallel. */
5241 rtx pattern
= *pattern_ptr
;
5242 for (i
= XVECLEN (pattern
, 0); i
> 0; i
--)
5244 rtx x
= XVECEXP (pattern
, 0, i
- 1);
5245 if (GET_CODE (x
) != CLOBBER
5246 || (!REG_P (XEXP (x
, 0))
5247 && GET_CODE (XEXP (x
, 0)) != MATCH_SCRATCH
))
5251 if (i
== XVECLEN (pattern
, 0))
5254 /* Build a similar insn without the clobbers. */
5256 new_pattern
= XVECEXP (pattern
, 0, 0);
5259 new_pattern
= rtx_alloc (PARALLEL
);
5260 XVEC (new_pattern
, 0) = rtvec_alloc (i
);
5261 for (int j
= 0; j
< i
; ++j
)
5262 XVECEXP (new_pattern
, 0, j
) = XVECEXP (pattern
, 0, j
);
5266 acceptance_ptr
->u
.full
.u
.num_clobbers
= XVECLEN (pattern
, 0) - i
;
5267 *pattern_ptr
= new_pattern
;
5272 main (int argc
, char **argv
)
5275 state insn_root
, split_root
, peephole2_root
;
5277 progname
= "genrecog";
5279 if (!init_rtx_reader_args (argc
, argv
))
5280 return (FATAL_EXIT_CODE
);
5286 /* Read the machine description. */
5290 desc
= read_md_rtx (&pattern_lineno
, &next_insn_code
);
5294 acceptance_type acceptance
;
5295 acceptance
.partial_p
= false;
5296 acceptance
.u
.full
.code
= next_insn_code
;
5299 switch (GET_CODE (desc
))
5303 /* Match the instruction in the original .md form. */
5304 acceptance
.type
= RECOG
;
5305 acceptance
.u
.full
.u
.num_clobbers
= 0;
5306 pattern
= add_implicit_parallel (XVEC (desc
, 1));
5307 validate_pattern (pattern
, desc
, NULL_RTX
, 0);
5308 match_pattern (&insn_root
, pattern
, XSTR (desc
, 2), acceptance
);
5310 /* If the pattern is a PARALLEL with trailing CLOBBERs,
5311 allow recog_for_combine to match without the clobbers. */
5312 if (GET_CODE (pattern
) == PARALLEL
5313 && remove_clobbers (&acceptance
, &pattern
))
5314 match_pattern (&insn_root
, pattern
, XSTR (desc
, 2), acceptance
);
5319 acceptance
.type
= SPLIT
;
5320 pattern
= add_implicit_parallel (XVEC (desc
, 0));
5321 validate_pattern (pattern
, desc
, NULL_RTX
, 0);
5322 match_pattern (&split_root
, pattern
, XSTR (desc
, 1), acceptance
);
5324 /* Declare the gen_split routine that we'll call if the
5325 pattern matches. The definition comes from insn-emit.c. */
5326 printf ("extern rtx gen_split_%d (rtx_insn *, rtx *);\n",
5330 case DEFINE_PEEPHOLE2
:
5331 acceptance
.type
= PEEPHOLE2
;
5332 pattern
= get_peephole2_pattern (XVEC (desc
, 0));
5333 validate_pattern (pattern
, desc
, NULL_RTX
, 0);
5334 match_pattern (&peephole2_root
, pattern
, XSTR (desc
, 1), acceptance
);
5336 /* Declare the gen_peephole2 routine that we'll call if the
5337 pattern matches. The definition comes from insn-emit.c. */
5338 printf ("extern rtx gen_peephole2_%d (rtx_insn *, rtx *);\n",
5348 return FATAL_EXIT_CODE
;
5352 /* Optimize each routine in turn. */
5353 optimize_subroutine_group ("recog", &insn_root
);
5354 optimize_subroutine_group ("split_insns", &split_root
);
5355 optimize_subroutine_group ("peephole2_insns", &peephole2_root
);
5358 os
.id_to_var
.safe_grow_cleared (num_positions
);
5360 if (use_pattern_routines_p
)
5362 /* Look for common patterns and split them out into subroutines. */
5363 auto_vec
<merge_state_info
> states
;
5364 states
.safe_push (&insn_root
);
5365 states
.safe_push (&split_root
);
5366 states
.safe_push (&peephole2_root
);
5367 split_out_patterns (states
);
5369 /* Print out the routines that we just created. */
5371 pattern_routine
*routine
;
5372 FOR_EACH_VEC_ELT (patterns
, i
, routine
)
5373 print_pattern (&os
, routine
);
5376 /* Print out the matching routines. */
5377 print_subroutine_group (&os
, RECOG
, &insn_root
);
5378 print_subroutine_group (&os
, SPLIT
, &split_root
);
5379 print_subroutine_group (&os
, PEEPHOLE2
, &peephole2_root
);
5382 return (ferror (stdout
) != 0 ? FATAL_EXIT_CODE
: SUCCESS_EXIT_CODE
);