re PR other/63387 (Optimize pairs of isnan() calls into a single isunordered())
[official-gcc.git] / gcc / dwarf2out.c
blobcc7ac84e48ac4ac8969f90920373a08eba3bbfeb
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992-2015 Free Software Foundation, Inc.
3 Contributed by Gary Funck (gary@intrepid.com).
4 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
5 Extensively modified by Jason Merrill (jason@cygnus.com).
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* TODO: Emit .debug_line header even when there are no functions, since
24 the file numbers are used by .debug_info. Alternately, leave
25 out locations for types and decls.
26 Avoid talking about ctors and op= for PODs.
27 Factor out common prologue sequences into multiple CIEs. */
29 /* The first part of this file deals with the DWARF 2 frame unwind
30 information, which is also used by the GCC efficient exception handling
31 mechanism. The second part, controlled only by an #ifdef
32 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
33 information. */
35 /* DWARF2 Abbreviation Glossary:
37 CFA = Canonical Frame Address
38 a fixed address on the stack which identifies a call frame.
39 We define it to be the value of SP just before the call insn.
40 The CFA register and offset, which may change during the course
41 of the function, are used to calculate its value at runtime.
43 CFI = Call Frame Instruction
44 an instruction for the DWARF2 abstract machine
46 CIE = Common Information Entry
47 information describing information common to one or more FDEs
49 DIE = Debugging Information Entry
51 FDE = Frame Description Entry
52 information describing the stack call frame, in particular,
53 how to restore registers
55 DW_CFA_... = DWARF2 CFA call frame instruction
56 DW_TAG_... = DWARF2 DIE tag */
58 #include "config.h"
59 #include "system.h"
60 #include "coretypes.h"
61 #include "tm.h"
62 #include "rtl.h"
63 #include "hash-set.h"
64 #include "machmode.h"
65 #include "vec.h"
66 #include "double-int.h"
67 #include "input.h"
68 #include "alias.h"
69 #include "symtab.h"
70 #include "wide-int.h"
71 #include "inchash.h"
72 #include "real.h"
73 #include "tree.h"
74 #include "fold-const.h"
75 #include "stringpool.h"
76 #include "stor-layout.h"
77 #include "varasm.h"
78 #include "hashtab.h"
79 #include "hard-reg-set.h"
80 #include "function.h"
81 #include "emit-rtl.h"
82 #include "hash-table.h"
83 #include "version.h"
84 #include "flags.h"
85 #include "regs.h"
86 #include "rtlhash.h"
87 #include "insn-config.h"
88 #include "reload.h"
89 #include "output.h"
90 #include "statistics.h"
91 #include "fixed-value.h"
92 #include "expmed.h"
93 #include "dojump.h"
94 #include "explow.h"
95 #include "calls.h"
96 #include "stmt.h"
97 #include "expr.h"
98 #include "except.h"
99 #include "dwarf2.h"
100 #include "dwarf2out.h"
101 #include "dwarf2asm.h"
102 #include "toplev.h"
103 #include "md5.h"
104 #include "tm_p.h"
105 #include "diagnostic.h"
106 #include "tree-pretty-print.h"
107 #include "debug.h"
108 #include "target.h"
109 #include "common/common-target.h"
110 #include "langhooks.h"
111 #include "hash-map.h"
112 #include "is-a.h"
113 #include "plugin-api.h"
114 #include "ipa-ref.h"
115 #include "cgraph.h"
116 #include "ira.h"
117 #include "lra.h"
118 #include "dumpfile.h"
119 #include "opts.h"
120 #include "tree-dfa.h"
121 #include "gdb/gdb-index.h"
122 #include "rtl-iter.h"
124 static void dwarf2out_source_line (unsigned int, const char *, int, bool);
125 static rtx_insn *last_var_location_insn;
126 static rtx_insn *cached_next_real_insn;
127 static void dwarf2out_decl (tree);
129 #ifdef VMS_DEBUGGING_INFO
130 int vms_file_stats_name (const char *, long long *, long *, char *, int *);
132 /* Define this macro to be a nonzero value if the directory specifications
133 which are output in the debug info should end with a separator. */
134 #define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 1
135 /* Define this macro to evaluate to a nonzero value if GCC should refrain
136 from generating indirect strings in DWARF2 debug information, for instance
137 if your target is stuck with an old version of GDB that is unable to
138 process them properly or uses VMS Debug. */
139 #define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 1
140 #else
141 #define DWARF2_DIR_SHOULD_END_WITH_SEPARATOR 0
142 #define DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET 0
143 #endif
145 /* ??? Poison these here until it can be done generically. They've been
146 totally replaced in this file; make sure it stays that way. */
147 #undef DWARF2_UNWIND_INFO
148 #undef DWARF2_FRAME_INFO
149 #if (GCC_VERSION >= 3000)
150 #pragma GCC poison DWARF2_UNWIND_INFO DWARF2_FRAME_INFO
151 #endif
153 /* The size of the target's pointer type. */
154 #ifndef PTR_SIZE
155 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
156 #endif
158 /* Array of RTXes referenced by the debugging information, which therefore
159 must be kept around forever. */
160 static GTY(()) vec<rtx, va_gc> *used_rtx_array;
162 /* A pointer to the base of a list of incomplete types which might be
163 completed at some later time. incomplete_types_list needs to be a
164 vec<tree, va_gc> *because we want to tell the garbage collector about
165 it. */
166 static GTY(()) vec<tree, va_gc> *incomplete_types;
168 /* A pointer to the base of a table of references to declaration
169 scopes. This table is a display which tracks the nesting
170 of declaration scopes at the current scope and containing
171 scopes. This table is used to find the proper place to
172 define type declaration DIE's. */
173 static GTY(()) vec<tree, va_gc> *decl_scope_table;
175 /* Pointers to various DWARF2 sections. */
176 static GTY(()) section *debug_info_section;
177 static GTY(()) section *debug_skeleton_info_section;
178 static GTY(()) section *debug_abbrev_section;
179 static GTY(()) section *debug_skeleton_abbrev_section;
180 static GTY(()) section *debug_aranges_section;
181 static GTY(()) section *debug_addr_section;
182 static GTY(()) section *debug_macinfo_section;
183 static GTY(()) section *debug_line_section;
184 static GTY(()) section *debug_skeleton_line_section;
185 static GTY(()) section *debug_loc_section;
186 static GTY(()) section *debug_pubnames_section;
187 static GTY(()) section *debug_pubtypes_section;
188 static GTY(()) section *debug_str_section;
189 static GTY(()) section *debug_str_dwo_section;
190 static GTY(()) section *debug_str_offsets_section;
191 static GTY(()) section *debug_ranges_section;
192 static GTY(()) section *debug_frame_section;
194 /* Maximum size (in bytes) of an artificially generated label. */
195 #define MAX_ARTIFICIAL_LABEL_BYTES 30
197 /* According to the (draft) DWARF 3 specification, the initial length
198 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
199 bytes are 0xffffffff, followed by the length stored in the next 8
200 bytes.
202 However, the SGI/MIPS ABI uses an initial length which is equal to
203 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
205 #ifndef DWARF_INITIAL_LENGTH_SIZE
206 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
207 #endif
209 /* Round SIZE up to the nearest BOUNDARY. */
210 #define DWARF_ROUND(SIZE,BOUNDARY) \
211 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
213 /* CIE identifier. */
214 #if HOST_BITS_PER_WIDE_INT >= 64
215 #define DWARF_CIE_ID \
216 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
217 #else
218 #define DWARF_CIE_ID DW_CIE_ID
219 #endif
222 /* A vector for a table that contains frame description
223 information for each routine. */
224 #define NOT_INDEXED (-1U)
225 #define NO_INDEX_ASSIGNED (-2U)
227 static GTY(()) vec<dw_fde_ref, va_gc> *fde_vec;
229 struct GTY((for_user)) indirect_string_node {
230 const char *str;
231 unsigned int refcount;
232 enum dwarf_form form;
233 char *label;
234 unsigned int index;
237 struct indirect_string_hasher : ggc_hasher<indirect_string_node *>
239 typedef const char *compare_type;
241 static hashval_t hash (indirect_string_node *);
242 static bool equal (indirect_string_node *, const char *);
245 static GTY (()) hash_table<indirect_string_hasher> *debug_str_hash;
247 /* With split_debug_info, both the comp_dir and dwo_name go in the
248 main object file, rather than the dwo, similar to the force_direct
249 parameter elsewhere but with additional complications:
251 1) The string is needed in both the main object file and the dwo.
252 That is, the comp_dir and dwo_name will appear in both places.
254 2) Strings can use three forms: DW_FORM_string, DW_FORM_strp or
255 DW_FORM_GNU_str_index.
257 3) GCC chooses the form to use late, depending on the size and
258 reference count.
260 Rather than forcing the all debug string handling functions and
261 callers to deal with these complications, simply use a separate,
262 special-cased string table for any attribute that should go in the
263 main object file. This limits the complexity to just the places
264 that need it. */
266 static GTY (()) hash_table<indirect_string_hasher> *skeleton_debug_str_hash;
268 static GTY(()) int dw2_string_counter;
270 /* True if the compilation unit places functions in more than one section. */
271 static GTY(()) bool have_multiple_function_sections = false;
273 /* Whether the default text and cold text sections have been used at all. */
275 static GTY(()) bool text_section_used = false;
276 static GTY(()) bool cold_text_section_used = false;
278 /* The default cold text section. */
279 static GTY(()) section *cold_text_section;
281 /* The DIE for C++14 'auto' in a function return type. */
282 static GTY(()) dw_die_ref auto_die;
284 /* The DIE for C++14 'decltype(auto)' in a function return type. */
285 static GTY(()) dw_die_ref decltype_auto_die;
287 /* Forward declarations for functions defined in this file. */
289 static char *stripattributes (const char *);
290 static void output_call_frame_info (int);
291 static void dwarf2out_note_section_used (void);
293 /* Personality decl of current unit. Used only when assembler does not support
294 personality CFI. */
295 static GTY(()) rtx current_unit_personality;
297 /* Data and reference forms for relocatable data. */
298 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
299 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
301 #ifndef DEBUG_FRAME_SECTION
302 #define DEBUG_FRAME_SECTION ".debug_frame"
303 #endif
305 #ifndef FUNC_BEGIN_LABEL
306 #define FUNC_BEGIN_LABEL "LFB"
307 #endif
309 #ifndef FUNC_END_LABEL
310 #define FUNC_END_LABEL "LFE"
311 #endif
313 #ifndef PROLOGUE_END_LABEL
314 #define PROLOGUE_END_LABEL "LPE"
315 #endif
317 #ifndef EPILOGUE_BEGIN_LABEL
318 #define EPILOGUE_BEGIN_LABEL "LEB"
319 #endif
321 #ifndef FRAME_BEGIN_LABEL
322 #define FRAME_BEGIN_LABEL "Lframe"
323 #endif
324 #define CIE_AFTER_SIZE_LABEL "LSCIE"
325 #define CIE_END_LABEL "LECIE"
326 #define FDE_LABEL "LSFDE"
327 #define FDE_AFTER_SIZE_LABEL "LASFDE"
328 #define FDE_END_LABEL "LEFDE"
329 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
330 #define LINE_NUMBER_END_LABEL "LELT"
331 #define LN_PROLOG_AS_LABEL "LASLTP"
332 #define LN_PROLOG_END_LABEL "LELTP"
333 #define DIE_LABEL_PREFIX "DW"
335 /* Match the base name of a file to the base name of a compilation unit. */
337 static int
338 matches_main_base (const char *path)
340 /* Cache the last query. */
341 static const char *last_path = NULL;
342 static int last_match = 0;
343 if (path != last_path)
345 const char *base;
346 int length = base_of_path (path, &base);
347 last_path = path;
348 last_match = (length == main_input_baselength
349 && memcmp (base, main_input_basename, length) == 0);
351 return last_match;
354 #ifdef DEBUG_DEBUG_STRUCT
356 static int
357 dump_struct_debug (tree type, enum debug_info_usage usage,
358 enum debug_struct_file criterion, int generic,
359 int matches, int result)
361 /* Find the type name. */
362 tree type_decl = TYPE_STUB_DECL (type);
363 tree t = type_decl;
364 const char *name = 0;
365 if (TREE_CODE (t) == TYPE_DECL)
366 t = DECL_NAME (t);
367 if (t)
368 name = IDENTIFIER_POINTER (t);
370 fprintf (stderr, " struct %d %s %s %s %s %d %p %s\n",
371 criterion,
372 DECL_IN_SYSTEM_HEADER (type_decl) ? "sys" : "usr",
373 matches ? "bas" : "hdr",
374 generic ? "gen" : "ord",
375 usage == DINFO_USAGE_DFN ? ";" :
376 usage == DINFO_USAGE_DIR_USE ? "." : "*",
377 result,
378 (void*) type_decl, name);
379 return result;
381 #define DUMP_GSTRUCT(type, usage, criterion, generic, matches, result) \
382 dump_struct_debug (type, usage, criterion, generic, matches, result)
384 #else
386 #define DUMP_GSTRUCT(type, usage, criterion, generic, matches, result) \
387 (result)
389 #endif
391 /* Get the number of HOST_WIDE_INTs needed to represent the precision
392 of the number. */
394 static unsigned int
395 get_full_len (const wide_int &op)
397 return ((op.get_precision () + HOST_BITS_PER_WIDE_INT - 1)
398 / HOST_BITS_PER_WIDE_INT);
401 static bool
402 should_emit_struct_debug (tree type, enum debug_info_usage usage)
404 enum debug_struct_file criterion;
405 tree type_decl;
406 bool generic = lang_hooks.types.generic_p (type);
408 if (generic)
409 criterion = debug_struct_generic[usage];
410 else
411 criterion = debug_struct_ordinary[usage];
413 if (criterion == DINFO_STRUCT_FILE_NONE)
414 return DUMP_GSTRUCT (type, usage, criterion, generic, false, false);
415 if (criterion == DINFO_STRUCT_FILE_ANY)
416 return DUMP_GSTRUCT (type, usage, criterion, generic, false, true);
418 type_decl = TYPE_STUB_DECL (TYPE_MAIN_VARIANT (type));
420 if (type_decl != NULL)
422 if (criterion == DINFO_STRUCT_FILE_SYS && DECL_IN_SYSTEM_HEADER (type_decl))
423 return DUMP_GSTRUCT (type, usage, criterion, generic, false, true);
425 if (matches_main_base (DECL_SOURCE_FILE (type_decl)))
426 return DUMP_GSTRUCT (type, usage, criterion, generic, true, true);
429 return DUMP_GSTRUCT (type, usage, criterion, generic, false, false);
432 /* Return a pointer to a copy of the section string name S with all
433 attributes stripped off, and an asterisk prepended (for assemble_name). */
435 static inline char *
436 stripattributes (const char *s)
438 char *stripped = XNEWVEC (char, strlen (s) + 2);
439 char *p = stripped;
441 *p++ = '*';
443 while (*s && *s != ',')
444 *p++ = *s++;
446 *p = '\0';
447 return stripped;
450 /* Switch [BACK] to eh_frame_section. If we don't have an eh_frame_section,
451 switch to the data section instead, and write out a synthetic start label
452 for collect2 the first time around. */
454 static void
455 switch_to_eh_frame_section (bool back)
457 tree label;
459 #ifdef EH_FRAME_SECTION_NAME
460 if (eh_frame_section == 0)
462 int flags;
464 if (EH_TABLES_CAN_BE_READ_ONLY)
466 int fde_encoding;
467 int per_encoding;
468 int lsda_encoding;
470 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
471 /*global=*/0);
472 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
473 /*global=*/1);
474 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
475 /*global=*/0);
476 flags = ((! flag_pic
477 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
478 && (fde_encoding & 0x70) != DW_EH_PE_aligned
479 && (per_encoding & 0x70) != DW_EH_PE_absptr
480 && (per_encoding & 0x70) != DW_EH_PE_aligned
481 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
482 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
483 ? 0 : SECTION_WRITE);
485 else
486 flags = SECTION_WRITE;
487 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
489 #endif /* EH_FRAME_SECTION_NAME */
491 if (eh_frame_section)
492 switch_to_section (eh_frame_section);
493 else
495 /* We have no special eh_frame section. Put the information in
496 the data section and emit special labels to guide collect2. */
497 switch_to_section (data_section);
499 if (!back)
501 label = get_file_function_name ("F");
502 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
503 targetm.asm_out.globalize_label (asm_out_file,
504 IDENTIFIER_POINTER (label));
505 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
510 /* Switch [BACK] to the eh or debug frame table section, depending on
511 FOR_EH. */
513 static void
514 switch_to_frame_table_section (int for_eh, bool back)
516 if (for_eh)
517 switch_to_eh_frame_section (back);
518 else
520 if (!debug_frame_section)
521 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
522 SECTION_DEBUG, NULL);
523 switch_to_section (debug_frame_section);
527 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
529 enum dw_cfi_oprnd_type
530 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
532 switch (cfi)
534 case DW_CFA_nop:
535 case DW_CFA_GNU_window_save:
536 case DW_CFA_remember_state:
537 case DW_CFA_restore_state:
538 return dw_cfi_oprnd_unused;
540 case DW_CFA_set_loc:
541 case DW_CFA_advance_loc1:
542 case DW_CFA_advance_loc2:
543 case DW_CFA_advance_loc4:
544 case DW_CFA_MIPS_advance_loc8:
545 return dw_cfi_oprnd_addr;
547 case DW_CFA_offset:
548 case DW_CFA_offset_extended:
549 case DW_CFA_def_cfa:
550 case DW_CFA_offset_extended_sf:
551 case DW_CFA_def_cfa_sf:
552 case DW_CFA_restore:
553 case DW_CFA_restore_extended:
554 case DW_CFA_undefined:
555 case DW_CFA_same_value:
556 case DW_CFA_def_cfa_register:
557 case DW_CFA_register:
558 case DW_CFA_expression:
559 return dw_cfi_oprnd_reg_num;
561 case DW_CFA_def_cfa_offset:
562 case DW_CFA_GNU_args_size:
563 case DW_CFA_def_cfa_offset_sf:
564 return dw_cfi_oprnd_offset;
566 case DW_CFA_def_cfa_expression:
567 return dw_cfi_oprnd_loc;
569 default:
570 gcc_unreachable ();
574 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
576 enum dw_cfi_oprnd_type
577 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
579 switch (cfi)
581 case DW_CFA_def_cfa:
582 case DW_CFA_def_cfa_sf:
583 case DW_CFA_offset:
584 case DW_CFA_offset_extended_sf:
585 case DW_CFA_offset_extended:
586 return dw_cfi_oprnd_offset;
588 case DW_CFA_register:
589 return dw_cfi_oprnd_reg_num;
591 case DW_CFA_expression:
592 return dw_cfi_oprnd_loc;
594 default:
595 return dw_cfi_oprnd_unused;
599 /* Output one FDE. */
601 static void
602 output_fde (dw_fde_ref fde, bool for_eh, bool second,
603 char *section_start_label, int fde_encoding, char *augmentation,
604 bool any_lsda_needed, int lsda_encoding)
606 const char *begin, *end;
607 static unsigned int j;
608 char l1[20], l2[20];
610 targetm.asm_out.emit_unwind_label (asm_out_file, fde->decl, for_eh,
611 /* empty */ 0);
612 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL,
613 for_eh + j);
614 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + j);
615 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + j);
616 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
617 dw2_asm_output_data (4, 0xffffffff, "Initial length escape value"
618 " indicating 64-bit DWARF extension");
619 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
620 "FDE Length");
621 ASM_OUTPUT_LABEL (asm_out_file, l1);
623 if (for_eh)
624 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
625 else
626 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
627 debug_frame_section, "FDE CIE offset");
629 begin = second ? fde->dw_fde_second_begin : fde->dw_fde_begin;
630 end = second ? fde->dw_fde_second_end : fde->dw_fde_end;
632 if (for_eh)
634 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, begin);
635 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
636 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref, false,
637 "FDE initial location");
638 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
639 end, begin, "FDE address range");
641 else
643 dw2_asm_output_addr (DWARF2_ADDR_SIZE, begin, "FDE initial location");
644 dw2_asm_output_delta (DWARF2_ADDR_SIZE, end, begin, "FDE address range");
647 if (augmentation[0])
649 if (any_lsda_needed)
651 int size = size_of_encoded_value (lsda_encoding);
653 if (lsda_encoding == DW_EH_PE_aligned)
655 int offset = ( 4 /* Length */
656 + 4 /* CIE offset */
657 + 2 * size_of_encoded_value (fde_encoding)
658 + 1 /* Augmentation size */ );
659 int pad = -offset & (PTR_SIZE - 1);
661 size += pad;
662 gcc_assert (size_of_uleb128 (size) == 1);
665 dw2_asm_output_data_uleb128 (size, "Augmentation size");
667 if (fde->uses_eh_lsda)
669 ASM_GENERATE_INTERNAL_LABEL (l1, second ? "LLSDAC" : "LLSDA",
670 fde->funcdef_number);
671 dw2_asm_output_encoded_addr_rtx (lsda_encoding,
672 gen_rtx_SYMBOL_REF (Pmode, l1),
673 false,
674 "Language Specific Data Area");
676 else
678 if (lsda_encoding == DW_EH_PE_aligned)
679 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
680 dw2_asm_output_data (size_of_encoded_value (lsda_encoding), 0,
681 "Language Specific Data Area (none)");
684 else
685 dw2_asm_output_data_uleb128 (0, "Augmentation size");
688 /* Loop through the Call Frame Instructions associated with this FDE. */
689 fde->dw_fde_current_label = begin;
691 size_t from, until, i;
693 from = 0;
694 until = vec_safe_length (fde->dw_fde_cfi);
696 if (fde->dw_fde_second_begin == NULL)
698 else if (!second)
699 until = fde->dw_fde_switch_cfi_index;
700 else
701 from = fde->dw_fde_switch_cfi_index;
703 for (i = from; i < until; i++)
704 output_cfi ((*fde->dw_fde_cfi)[i], fde, for_eh);
707 /* If we are to emit a ref/link from function bodies to their frame tables,
708 do it now. This is typically performed to make sure that tables
709 associated with functions are dragged with them and not discarded in
710 garbage collecting links. We need to do this on a per function basis to
711 cope with -ffunction-sections. */
713 #ifdef ASM_OUTPUT_DWARF_TABLE_REF
714 /* Switch to the function section, emit the ref to the tables, and
715 switch *back* into the table section. */
716 switch_to_section (function_section (fde->decl));
717 ASM_OUTPUT_DWARF_TABLE_REF (section_start_label);
718 switch_to_frame_table_section (for_eh, true);
719 #endif
721 /* Pad the FDE out to an address sized boundary. */
722 ASM_OUTPUT_ALIGN (asm_out_file,
723 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
724 ASM_OUTPUT_LABEL (asm_out_file, l2);
726 j += 2;
729 /* Return true if frame description entry FDE is needed for EH. */
731 static bool
732 fde_needed_for_eh_p (dw_fde_ref fde)
734 if (flag_asynchronous_unwind_tables)
735 return true;
737 if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde->decl))
738 return true;
740 if (fde->uses_eh_lsda)
741 return true;
743 /* If exceptions are enabled, we have collected nothrow info. */
744 if (flag_exceptions && (fde->all_throwers_are_sibcalls || fde->nothrow))
745 return false;
747 return true;
750 /* Output the call frame information used to record information
751 that relates to calculating the frame pointer, and records the
752 location of saved registers. */
754 static void
755 output_call_frame_info (int for_eh)
757 unsigned int i;
758 dw_fde_ref fde;
759 dw_cfi_ref cfi;
760 char l1[20], l2[20], section_start_label[20];
761 bool any_lsda_needed = false;
762 char augmentation[6];
763 int augmentation_size;
764 int fde_encoding = DW_EH_PE_absptr;
765 int per_encoding = DW_EH_PE_absptr;
766 int lsda_encoding = DW_EH_PE_absptr;
767 int return_reg;
768 rtx personality = NULL;
769 int dw_cie_version;
771 /* Don't emit a CIE if there won't be any FDEs. */
772 if (!fde_vec)
773 return;
775 /* Nothing to do if the assembler's doing it all. */
776 if (dwarf2out_do_cfi_asm ())
777 return;
779 /* If we don't have any functions we'll want to unwind out of, don't emit
780 any EH unwind information. If we make FDEs linkonce, we may have to
781 emit an empty label for an FDE that wouldn't otherwise be emitted. We
782 want to avoid having an FDE kept around when the function it refers to
783 is discarded. Example where this matters: a primary function template
784 in C++ requires EH information, an explicit specialization doesn't. */
785 if (for_eh)
787 bool any_eh_needed = false;
789 FOR_EACH_VEC_ELT (*fde_vec, i, fde)
791 if (fde->uses_eh_lsda)
792 any_eh_needed = any_lsda_needed = true;
793 else if (fde_needed_for_eh_p (fde))
794 any_eh_needed = true;
795 else if (TARGET_USES_WEAK_UNWIND_INFO)
796 targetm.asm_out.emit_unwind_label (asm_out_file, fde->decl, 1, 1);
799 if (!any_eh_needed)
800 return;
803 /* We're going to be generating comments, so turn on app. */
804 if (flag_debug_asm)
805 app_enable ();
807 /* Switch to the proper frame section, first time. */
808 switch_to_frame_table_section (for_eh, false);
810 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
811 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
813 /* Output the CIE. */
814 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
815 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
816 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
817 dw2_asm_output_data (4, 0xffffffff,
818 "Initial length escape value indicating 64-bit DWARF extension");
819 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
820 "Length of Common Information Entry");
821 ASM_OUTPUT_LABEL (asm_out_file, l1);
823 /* Now that the CIE pointer is PC-relative for EH,
824 use 0 to identify the CIE. */
825 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
826 (for_eh ? 0 : DWARF_CIE_ID),
827 "CIE Identifier Tag");
829 /* Use the CIE version 3 for DWARF3; allow DWARF2 to continue to
830 use CIE version 1, unless that would produce incorrect results
831 due to overflowing the return register column. */
832 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
833 dw_cie_version = 1;
834 if (return_reg >= 256 || dwarf_version > 2)
835 dw_cie_version = 3;
836 dw2_asm_output_data (1, dw_cie_version, "CIE Version");
838 augmentation[0] = 0;
839 augmentation_size = 0;
841 personality = current_unit_personality;
842 if (for_eh)
844 char *p;
846 /* Augmentation:
847 z Indicates that a uleb128 is present to size the
848 augmentation section.
849 L Indicates the encoding (and thus presence) of
850 an LSDA pointer in the FDE augmentation.
851 R Indicates a non-default pointer encoding for
852 FDE code pointers.
853 P Indicates the presence of an encoding + language
854 personality routine in the CIE augmentation. */
856 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
857 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
858 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
860 p = augmentation + 1;
861 if (personality)
863 *p++ = 'P';
864 augmentation_size += 1 + size_of_encoded_value (per_encoding);
865 assemble_external_libcall (personality);
867 if (any_lsda_needed)
869 *p++ = 'L';
870 augmentation_size += 1;
872 if (fde_encoding != DW_EH_PE_absptr)
874 *p++ = 'R';
875 augmentation_size += 1;
877 if (p > augmentation + 1)
879 augmentation[0] = 'z';
880 *p = '\0';
883 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
884 if (personality && per_encoding == DW_EH_PE_aligned)
886 int offset = ( 4 /* Length */
887 + 4 /* CIE Id */
888 + 1 /* CIE version */
889 + strlen (augmentation) + 1 /* Augmentation */
890 + size_of_uleb128 (1) /* Code alignment */
891 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
892 + 1 /* RA column */
893 + 1 /* Augmentation size */
894 + 1 /* Personality encoding */ );
895 int pad = -offset & (PTR_SIZE - 1);
897 augmentation_size += pad;
899 /* Augmentations should be small, so there's scarce need to
900 iterate for a solution. Die if we exceed one uleb128 byte. */
901 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
905 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
906 if (dw_cie_version >= 4)
908 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "CIE Address Size");
909 dw2_asm_output_data (1, 0, "CIE Segment Size");
911 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
912 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
913 "CIE Data Alignment Factor");
915 if (dw_cie_version == 1)
916 dw2_asm_output_data (1, return_reg, "CIE RA Column");
917 else
918 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
920 if (augmentation[0])
922 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
923 if (personality)
925 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
926 eh_data_format_name (per_encoding));
927 dw2_asm_output_encoded_addr_rtx (per_encoding,
928 personality,
929 true, NULL);
932 if (any_lsda_needed)
933 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
934 eh_data_format_name (lsda_encoding));
936 if (fde_encoding != DW_EH_PE_absptr)
937 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
938 eh_data_format_name (fde_encoding));
941 FOR_EACH_VEC_ELT (*cie_cfi_vec, i, cfi)
942 output_cfi (cfi, NULL, for_eh);
944 /* Pad the CIE out to an address sized boundary. */
945 ASM_OUTPUT_ALIGN (asm_out_file,
946 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
947 ASM_OUTPUT_LABEL (asm_out_file, l2);
949 /* Loop through all of the FDE's. */
950 FOR_EACH_VEC_ELT (*fde_vec, i, fde)
952 unsigned int k;
954 /* Don't emit EH unwind info for leaf functions that don't need it. */
955 if (for_eh && !fde_needed_for_eh_p (fde))
956 continue;
958 for (k = 0; k < (fde->dw_fde_second_begin ? 2 : 1); k++)
959 output_fde (fde, for_eh, k, section_start_label, fde_encoding,
960 augmentation, any_lsda_needed, lsda_encoding);
963 if (for_eh && targetm.terminate_dw2_eh_frame_info)
964 dw2_asm_output_data (4, 0, "End of Table");
966 /* Turn off app to make assembly quicker. */
967 if (flag_debug_asm)
968 app_disable ();
971 /* Emit .cfi_startproc and .cfi_personality/.cfi_lsda if needed. */
973 static void
974 dwarf2out_do_cfi_startproc (bool second)
976 int enc;
977 rtx ref;
978 rtx personality = get_personality_function (current_function_decl);
980 fprintf (asm_out_file, "\t.cfi_startproc\n");
982 if (personality)
984 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
985 ref = personality;
987 /* ??? The GAS support isn't entirely consistent. We have to
988 handle indirect support ourselves, but PC-relative is done
989 in the assembler. Further, the assembler can't handle any
990 of the weirder relocation types. */
991 if (enc & DW_EH_PE_indirect)
992 ref = dw2_force_const_mem (ref, true);
994 fprintf (asm_out_file, "\t.cfi_personality %#x,", enc);
995 output_addr_const (asm_out_file, ref);
996 fputc ('\n', asm_out_file);
999 if (crtl->uses_eh_lsda)
1001 char lab[20];
1003 enc = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1004 ASM_GENERATE_INTERNAL_LABEL (lab, second ? "LLSDAC" : "LLSDA",
1005 current_function_funcdef_no);
1006 ref = gen_rtx_SYMBOL_REF (Pmode, lab);
1007 SYMBOL_REF_FLAGS (ref) = SYMBOL_FLAG_LOCAL;
1009 if (enc & DW_EH_PE_indirect)
1010 ref = dw2_force_const_mem (ref, true);
1012 fprintf (asm_out_file, "\t.cfi_lsda %#x,", enc);
1013 output_addr_const (asm_out_file, ref);
1014 fputc ('\n', asm_out_file);
1018 /* Allocate CURRENT_FDE. Immediately initialize all we can, noting that
1019 this allocation may be done before pass_final. */
1021 dw_fde_ref
1022 dwarf2out_alloc_current_fde (void)
1024 dw_fde_ref fde;
1026 fde = ggc_cleared_alloc<dw_fde_node> ();
1027 fde->decl = current_function_decl;
1028 fde->funcdef_number = current_function_funcdef_no;
1029 fde->fde_index = vec_safe_length (fde_vec);
1030 fde->all_throwers_are_sibcalls = crtl->all_throwers_are_sibcalls;
1031 fde->uses_eh_lsda = crtl->uses_eh_lsda;
1032 fde->nothrow = crtl->nothrow;
1033 fde->drap_reg = INVALID_REGNUM;
1034 fde->vdrap_reg = INVALID_REGNUM;
1036 /* Record the FDE associated with this function. */
1037 cfun->fde = fde;
1038 vec_safe_push (fde_vec, fde);
1040 return fde;
1043 /* Output a marker (i.e. a label) for the beginning of a function, before
1044 the prologue. */
1046 void
1047 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
1048 const char *file ATTRIBUTE_UNUSED)
1050 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1051 char * dup_label;
1052 dw_fde_ref fde;
1053 section *fnsec;
1054 bool do_frame;
1056 current_function_func_begin_label = NULL;
1058 do_frame = dwarf2out_do_frame ();
1060 /* ??? current_function_func_begin_label is also used by except.c for
1061 call-site information. We must emit this label if it might be used. */
1062 if (!do_frame
1063 && (!flag_exceptions
1064 || targetm_common.except_unwind_info (&global_options) == UI_SJLJ))
1065 return;
1067 fnsec = function_section (current_function_decl);
1068 switch_to_section (fnsec);
1069 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
1070 current_function_funcdef_no);
1071 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
1072 current_function_funcdef_no);
1073 dup_label = xstrdup (label);
1074 current_function_func_begin_label = dup_label;
1076 /* We can elide the fde allocation if we're not emitting debug info. */
1077 if (!do_frame)
1078 return;
1080 /* Cater to the various TARGET_ASM_OUTPUT_MI_THUNK implementations that
1081 emit insns as rtx but bypass the bulk of rest_of_compilation, which
1082 would include pass_dwarf2_frame. If we've not created the FDE yet,
1083 do so now. */
1084 fde = cfun->fde;
1085 if (fde == NULL)
1086 fde = dwarf2out_alloc_current_fde ();
1088 /* Initialize the bits of CURRENT_FDE that were not available earlier. */
1089 fde->dw_fde_begin = dup_label;
1090 fde->dw_fde_current_label = dup_label;
1091 fde->in_std_section = (fnsec == text_section
1092 || (cold_text_section && fnsec == cold_text_section));
1094 /* We only want to output line number information for the genuine dwarf2
1095 prologue case, not the eh frame case. */
1096 #ifdef DWARF2_DEBUGGING_INFO
1097 if (file)
1098 dwarf2out_source_line (line, file, 0, true);
1099 #endif
1101 if (dwarf2out_do_cfi_asm ())
1102 dwarf2out_do_cfi_startproc (false);
1103 else
1105 rtx personality = get_personality_function (current_function_decl);
1106 if (!current_unit_personality)
1107 current_unit_personality = personality;
1109 /* We cannot keep a current personality per function as without CFI
1110 asm, at the point where we emit the CFI data, there is no current
1111 function anymore. */
1112 if (personality && current_unit_personality != personality)
1113 sorry ("multiple EH personalities are supported only with assemblers "
1114 "supporting .cfi_personality directive");
1118 /* Output a marker (i.e. a label) for the end of the generated code
1119 for a function prologue. This gets called *after* the prologue code has
1120 been generated. */
1122 void
1123 dwarf2out_vms_end_prologue (unsigned int line ATTRIBUTE_UNUSED,
1124 const char *file ATTRIBUTE_UNUSED)
1126 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1128 /* Output a label to mark the endpoint of the code generated for this
1129 function. */
1130 ASM_GENERATE_INTERNAL_LABEL (label, PROLOGUE_END_LABEL,
1131 current_function_funcdef_no);
1132 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, PROLOGUE_END_LABEL,
1133 current_function_funcdef_no);
1134 cfun->fde->dw_fde_vms_end_prologue = xstrdup (label);
1137 /* Output a marker (i.e. a label) for the beginning of the generated code
1138 for a function epilogue. This gets called *before* the prologue code has
1139 been generated. */
1141 void
1142 dwarf2out_vms_begin_epilogue (unsigned int line ATTRIBUTE_UNUSED,
1143 const char *file ATTRIBUTE_UNUSED)
1145 dw_fde_ref fde = cfun->fde;
1146 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1148 if (fde->dw_fde_vms_begin_epilogue)
1149 return;
1151 /* Output a label to mark the endpoint of the code generated for this
1152 function. */
1153 ASM_GENERATE_INTERNAL_LABEL (label, EPILOGUE_BEGIN_LABEL,
1154 current_function_funcdef_no);
1155 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, EPILOGUE_BEGIN_LABEL,
1156 current_function_funcdef_no);
1157 fde->dw_fde_vms_begin_epilogue = xstrdup (label);
1160 /* Output a marker (i.e. a label) for the absolute end of the generated code
1161 for a function definition. This gets called *after* the epilogue code has
1162 been generated. */
1164 void
1165 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
1166 const char *file ATTRIBUTE_UNUSED)
1168 dw_fde_ref fde;
1169 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1171 last_var_location_insn = NULL;
1172 cached_next_real_insn = NULL;
1174 if (dwarf2out_do_cfi_asm ())
1175 fprintf (asm_out_file, "\t.cfi_endproc\n");
1177 /* Output a label to mark the endpoint of the code generated for this
1178 function. */
1179 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
1180 current_function_funcdef_no);
1181 ASM_OUTPUT_LABEL (asm_out_file, label);
1182 fde = cfun->fde;
1183 gcc_assert (fde != NULL);
1184 if (fde->dw_fde_second_begin == NULL)
1185 fde->dw_fde_end = xstrdup (label);
1188 void
1189 dwarf2out_frame_finish (void)
1191 /* Output call frame information. */
1192 if (targetm.debug_unwind_info () == UI_DWARF2)
1193 output_call_frame_info (0);
1195 /* Output another copy for the unwinder. */
1196 if ((flag_unwind_tables || flag_exceptions)
1197 && targetm_common.except_unwind_info (&global_options) == UI_DWARF2)
1198 output_call_frame_info (1);
1201 /* Note that the current function section is being used for code. */
1203 static void
1204 dwarf2out_note_section_used (void)
1206 section *sec = current_function_section ();
1207 if (sec == text_section)
1208 text_section_used = true;
1209 else if (sec == cold_text_section)
1210 cold_text_section_used = true;
1213 static void var_location_switch_text_section (void);
1214 static void set_cur_line_info_table (section *);
1216 void
1217 dwarf2out_switch_text_section (void)
1219 section *sect;
1220 dw_fde_ref fde = cfun->fde;
1222 gcc_assert (cfun && fde && fde->dw_fde_second_begin == NULL);
1224 if (!in_cold_section_p)
1226 fde->dw_fde_end = crtl->subsections.cold_section_end_label;
1227 fde->dw_fde_second_begin = crtl->subsections.hot_section_label;
1228 fde->dw_fde_second_end = crtl->subsections.hot_section_end_label;
1230 else
1232 fde->dw_fde_end = crtl->subsections.hot_section_end_label;
1233 fde->dw_fde_second_begin = crtl->subsections.cold_section_label;
1234 fde->dw_fde_second_end = crtl->subsections.cold_section_end_label;
1236 have_multiple_function_sections = true;
1238 /* There is no need to mark used sections when not debugging. */
1239 if (cold_text_section != NULL)
1240 dwarf2out_note_section_used ();
1242 if (dwarf2out_do_cfi_asm ())
1243 fprintf (asm_out_file, "\t.cfi_endproc\n");
1245 /* Now do the real section switch. */
1246 sect = current_function_section ();
1247 switch_to_section (sect);
1249 fde->second_in_std_section
1250 = (sect == text_section
1251 || (cold_text_section && sect == cold_text_section));
1253 if (dwarf2out_do_cfi_asm ())
1254 dwarf2out_do_cfi_startproc (true);
1256 var_location_switch_text_section ();
1258 if (cold_text_section != NULL)
1259 set_cur_line_info_table (sect);
1262 /* And now, the subset of the debugging information support code necessary
1263 for emitting location expressions. */
1265 /* Data about a single source file. */
1266 struct GTY((for_user)) dwarf_file_data {
1267 const char * filename;
1268 int emitted_number;
1271 typedef struct GTY(()) deferred_locations_struct
1273 tree variable;
1274 dw_die_ref die;
1275 } deferred_locations;
1278 static GTY(()) vec<deferred_locations, va_gc> *deferred_locations_list;
1281 /* Describe an entry into the .debug_addr section. */
1283 enum ate_kind {
1284 ate_kind_rtx,
1285 ate_kind_rtx_dtprel,
1286 ate_kind_label
1289 typedef struct GTY((for_user)) addr_table_entry_struct {
1290 enum ate_kind kind;
1291 unsigned int refcount;
1292 unsigned int index;
1293 union addr_table_entry_struct_union
1295 rtx GTY ((tag ("0"))) rtl;
1296 char * GTY ((tag ("1"))) label;
1298 GTY ((desc ("%1.kind"))) addr;
1300 addr_table_entry;
1302 /* Location lists are ranges + location descriptions for that range,
1303 so you can track variables that are in different places over
1304 their entire life. */
1305 typedef struct GTY(()) dw_loc_list_struct {
1306 dw_loc_list_ref dw_loc_next;
1307 const char *begin; /* Label and addr_entry for start of range */
1308 addr_table_entry *begin_entry;
1309 const char *end; /* Label for end of range */
1310 char *ll_symbol; /* Label for beginning of location list.
1311 Only on head of list */
1312 const char *section; /* Section this loclist is relative to */
1313 dw_loc_descr_ref expr;
1314 hashval_t hash;
1315 /* True if all addresses in this and subsequent lists are known to be
1316 resolved. */
1317 bool resolved_addr;
1318 /* True if this list has been replaced by dw_loc_next. */
1319 bool replaced;
1320 bool emitted;
1321 /* True if the range should be emitted even if begin and end
1322 are the same. */
1323 bool force;
1324 } dw_loc_list_node;
1326 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
1328 /* Convert a DWARF stack opcode into its string name. */
1330 static const char *
1331 dwarf_stack_op_name (unsigned int op)
1333 const char *name = get_DW_OP_name (op);
1335 if (name != NULL)
1336 return name;
1338 return "OP_<unknown>";
1341 /* Return a pointer to a newly allocated location description. Location
1342 descriptions are simple expression terms that can be strung
1343 together to form more complicated location (address) descriptions. */
1345 static inline dw_loc_descr_ref
1346 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
1347 unsigned HOST_WIDE_INT oprnd2)
1349 dw_loc_descr_ref descr = ggc_cleared_alloc<dw_loc_descr_node> ();
1351 descr->dw_loc_opc = op;
1352 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
1353 descr->dw_loc_oprnd1.val_entry = NULL;
1354 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
1355 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
1356 descr->dw_loc_oprnd2.val_entry = NULL;
1357 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
1359 return descr;
1362 /* Return a pointer to a newly allocated location description for
1363 REG and OFFSET. */
1365 static inline dw_loc_descr_ref
1366 new_reg_loc_descr (unsigned int reg, unsigned HOST_WIDE_INT offset)
1368 if (reg <= 31)
1369 return new_loc_descr ((enum dwarf_location_atom) (DW_OP_breg0 + reg),
1370 offset, 0);
1371 else
1372 return new_loc_descr (DW_OP_bregx, reg, offset);
1375 /* Add a location description term to a location description expression. */
1377 static inline void
1378 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
1380 dw_loc_descr_ref *d;
1382 /* Find the end of the chain. */
1383 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
1386 *d = descr;
1389 /* Compare two location operands for exact equality. */
1391 static bool
1392 dw_val_equal_p (dw_val_node *a, dw_val_node *b)
1394 if (a->val_class != b->val_class)
1395 return false;
1396 switch (a->val_class)
1398 case dw_val_class_none:
1399 return true;
1400 case dw_val_class_addr:
1401 return rtx_equal_p (a->v.val_addr, b->v.val_addr);
1403 case dw_val_class_offset:
1404 case dw_val_class_unsigned_const:
1405 case dw_val_class_const:
1406 case dw_val_class_range_list:
1407 case dw_val_class_lineptr:
1408 case dw_val_class_macptr:
1409 /* These are all HOST_WIDE_INT, signed or unsigned. */
1410 return a->v.val_unsigned == b->v.val_unsigned;
1412 case dw_val_class_loc:
1413 return a->v.val_loc == b->v.val_loc;
1414 case dw_val_class_loc_list:
1415 return a->v.val_loc_list == b->v.val_loc_list;
1416 case dw_val_class_die_ref:
1417 return a->v.val_die_ref.die == b->v.val_die_ref.die;
1418 case dw_val_class_fde_ref:
1419 return a->v.val_fde_index == b->v.val_fde_index;
1420 case dw_val_class_lbl_id:
1421 case dw_val_class_high_pc:
1422 return strcmp (a->v.val_lbl_id, b->v.val_lbl_id) == 0;
1423 case dw_val_class_str:
1424 return a->v.val_str == b->v.val_str;
1425 case dw_val_class_flag:
1426 return a->v.val_flag == b->v.val_flag;
1427 case dw_val_class_file:
1428 return a->v.val_file == b->v.val_file;
1429 case dw_val_class_decl_ref:
1430 return a->v.val_decl_ref == b->v.val_decl_ref;
1432 case dw_val_class_const_double:
1433 return (a->v.val_double.high == b->v.val_double.high
1434 && a->v.val_double.low == b->v.val_double.low);
1436 case dw_val_class_wide_int:
1437 return *a->v.val_wide == *b->v.val_wide;
1439 case dw_val_class_vec:
1441 size_t a_len = a->v.val_vec.elt_size * a->v.val_vec.length;
1442 size_t b_len = b->v.val_vec.elt_size * b->v.val_vec.length;
1444 return (a_len == b_len
1445 && !memcmp (a->v.val_vec.array, b->v.val_vec.array, a_len));
1448 case dw_val_class_data8:
1449 return memcmp (a->v.val_data8, b->v.val_data8, 8) == 0;
1451 case dw_val_class_vms_delta:
1452 return (!strcmp (a->v.val_vms_delta.lbl1, b->v.val_vms_delta.lbl1)
1453 && !strcmp (a->v.val_vms_delta.lbl1, b->v.val_vms_delta.lbl1));
1455 gcc_unreachable ();
1458 /* Compare two location atoms for exact equality. */
1460 static bool
1461 loc_descr_equal_p_1 (dw_loc_descr_ref a, dw_loc_descr_ref b)
1463 if (a->dw_loc_opc != b->dw_loc_opc)
1464 return false;
1466 /* ??? This is only ever set for DW_OP_constNu, for N equal to the
1467 address size, but since we always allocate cleared storage it
1468 should be zero for other types of locations. */
1469 if (a->dtprel != b->dtprel)
1470 return false;
1472 return (dw_val_equal_p (&a->dw_loc_oprnd1, &b->dw_loc_oprnd1)
1473 && dw_val_equal_p (&a->dw_loc_oprnd2, &b->dw_loc_oprnd2));
1476 /* Compare two complete location expressions for exact equality. */
1478 bool
1479 loc_descr_equal_p (dw_loc_descr_ref a, dw_loc_descr_ref b)
1481 while (1)
1483 if (a == b)
1484 return true;
1485 if (a == NULL || b == NULL)
1486 return false;
1487 if (!loc_descr_equal_p_1 (a, b))
1488 return false;
1490 a = a->dw_loc_next;
1491 b = b->dw_loc_next;
1496 /* Add a constant OFFSET to a location expression. */
1498 static void
1499 loc_descr_plus_const (dw_loc_descr_ref *list_head, HOST_WIDE_INT offset)
1501 dw_loc_descr_ref loc;
1502 HOST_WIDE_INT *p;
1504 gcc_assert (*list_head != NULL);
1506 if (!offset)
1507 return;
1509 /* Find the end of the chain. */
1510 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
1513 p = NULL;
1514 if (loc->dw_loc_opc == DW_OP_fbreg
1515 || (loc->dw_loc_opc >= DW_OP_breg0 && loc->dw_loc_opc <= DW_OP_breg31))
1516 p = &loc->dw_loc_oprnd1.v.val_int;
1517 else if (loc->dw_loc_opc == DW_OP_bregx)
1518 p = &loc->dw_loc_oprnd2.v.val_int;
1520 /* If the last operation is fbreg, breg{0..31,x}, optimize by adjusting its
1521 offset. Don't optimize if an signed integer overflow would happen. */
1522 if (p != NULL
1523 && ((offset > 0 && *p <= INTTYPE_MAXIMUM (HOST_WIDE_INT) - offset)
1524 || (offset < 0 && *p >= INTTYPE_MINIMUM (HOST_WIDE_INT) - offset)))
1525 *p += offset;
1527 else if (offset > 0)
1528 loc->dw_loc_next = new_loc_descr (DW_OP_plus_uconst, offset, 0);
1530 else
1532 loc->dw_loc_next = int_loc_descriptor (-offset);
1533 add_loc_descr (&loc->dw_loc_next, new_loc_descr (DW_OP_minus, 0, 0));
1537 /* Add a constant OFFSET to a location list. */
1539 static void
1540 loc_list_plus_const (dw_loc_list_ref list_head, HOST_WIDE_INT offset)
1542 dw_loc_list_ref d;
1543 for (d = list_head; d != NULL; d = d->dw_loc_next)
1544 loc_descr_plus_const (&d->expr, offset);
1547 #define DWARF_REF_SIZE \
1548 (dwarf_version == 2 ? DWARF2_ADDR_SIZE : DWARF_OFFSET_SIZE)
1550 static unsigned long int get_base_type_offset (dw_die_ref);
1552 /* Return the size of a location descriptor. */
1554 static unsigned long
1555 size_of_loc_descr (dw_loc_descr_ref loc)
1557 unsigned long size = 1;
1559 switch (loc->dw_loc_opc)
1561 case DW_OP_addr:
1562 size += DWARF2_ADDR_SIZE;
1563 break;
1564 case DW_OP_GNU_addr_index:
1565 case DW_OP_GNU_const_index:
1566 gcc_assert (loc->dw_loc_oprnd1.val_entry->index != NO_INDEX_ASSIGNED);
1567 size += size_of_uleb128 (loc->dw_loc_oprnd1.val_entry->index);
1568 break;
1569 case DW_OP_const1u:
1570 case DW_OP_const1s:
1571 size += 1;
1572 break;
1573 case DW_OP_const2u:
1574 case DW_OP_const2s:
1575 size += 2;
1576 break;
1577 case DW_OP_const4u:
1578 case DW_OP_const4s:
1579 size += 4;
1580 break;
1581 case DW_OP_const8u:
1582 case DW_OP_const8s:
1583 size += 8;
1584 break;
1585 case DW_OP_constu:
1586 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1587 break;
1588 case DW_OP_consts:
1589 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
1590 break;
1591 case DW_OP_pick:
1592 size += 1;
1593 break;
1594 case DW_OP_plus_uconst:
1595 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1596 break;
1597 case DW_OP_skip:
1598 case DW_OP_bra:
1599 size += 2;
1600 break;
1601 case DW_OP_breg0:
1602 case DW_OP_breg1:
1603 case DW_OP_breg2:
1604 case DW_OP_breg3:
1605 case DW_OP_breg4:
1606 case DW_OP_breg5:
1607 case DW_OP_breg6:
1608 case DW_OP_breg7:
1609 case DW_OP_breg8:
1610 case DW_OP_breg9:
1611 case DW_OP_breg10:
1612 case DW_OP_breg11:
1613 case DW_OP_breg12:
1614 case DW_OP_breg13:
1615 case DW_OP_breg14:
1616 case DW_OP_breg15:
1617 case DW_OP_breg16:
1618 case DW_OP_breg17:
1619 case DW_OP_breg18:
1620 case DW_OP_breg19:
1621 case DW_OP_breg20:
1622 case DW_OP_breg21:
1623 case DW_OP_breg22:
1624 case DW_OP_breg23:
1625 case DW_OP_breg24:
1626 case DW_OP_breg25:
1627 case DW_OP_breg26:
1628 case DW_OP_breg27:
1629 case DW_OP_breg28:
1630 case DW_OP_breg29:
1631 case DW_OP_breg30:
1632 case DW_OP_breg31:
1633 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
1634 break;
1635 case DW_OP_regx:
1636 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1637 break;
1638 case DW_OP_fbreg:
1639 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
1640 break;
1641 case DW_OP_bregx:
1642 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1643 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
1644 break;
1645 case DW_OP_piece:
1646 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1647 break;
1648 case DW_OP_bit_piece:
1649 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1650 size += size_of_uleb128 (loc->dw_loc_oprnd2.v.val_unsigned);
1651 break;
1652 case DW_OP_deref_size:
1653 case DW_OP_xderef_size:
1654 size += 1;
1655 break;
1656 case DW_OP_call2:
1657 size += 2;
1658 break;
1659 case DW_OP_call4:
1660 size += 4;
1661 break;
1662 case DW_OP_call_ref:
1663 size += DWARF_REF_SIZE;
1664 break;
1665 case DW_OP_implicit_value:
1666 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned)
1667 + loc->dw_loc_oprnd1.v.val_unsigned;
1668 break;
1669 case DW_OP_GNU_implicit_pointer:
1670 size += DWARF_REF_SIZE + size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
1671 break;
1672 case DW_OP_GNU_entry_value:
1674 unsigned long op_size = size_of_locs (loc->dw_loc_oprnd1.v.val_loc);
1675 size += size_of_uleb128 (op_size) + op_size;
1676 break;
1678 case DW_OP_GNU_const_type:
1680 unsigned long o
1681 = get_base_type_offset (loc->dw_loc_oprnd1.v.val_die_ref.die);
1682 size += size_of_uleb128 (o) + 1;
1683 switch (loc->dw_loc_oprnd2.val_class)
1685 case dw_val_class_vec:
1686 size += loc->dw_loc_oprnd2.v.val_vec.length
1687 * loc->dw_loc_oprnd2.v.val_vec.elt_size;
1688 break;
1689 case dw_val_class_const:
1690 size += HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT;
1691 break;
1692 case dw_val_class_const_double:
1693 size += HOST_BITS_PER_DOUBLE_INT / BITS_PER_UNIT;
1694 break;
1695 case dw_val_class_wide_int:
1696 size += (get_full_len (*loc->dw_loc_oprnd2.v.val_wide)
1697 * HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT);
1698 break;
1699 default:
1700 gcc_unreachable ();
1702 break;
1704 case DW_OP_GNU_regval_type:
1706 unsigned long o
1707 = get_base_type_offset (loc->dw_loc_oprnd2.v.val_die_ref.die);
1708 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned)
1709 + size_of_uleb128 (o);
1711 break;
1712 case DW_OP_GNU_deref_type:
1714 unsigned long o
1715 = get_base_type_offset (loc->dw_loc_oprnd2.v.val_die_ref.die);
1716 size += 1 + size_of_uleb128 (o);
1718 break;
1719 case DW_OP_GNU_convert:
1720 case DW_OP_GNU_reinterpret:
1721 if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const)
1722 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
1723 else
1725 unsigned long o
1726 = get_base_type_offset (loc->dw_loc_oprnd1.v.val_die_ref.die);
1727 size += size_of_uleb128 (o);
1729 break;
1730 case DW_OP_GNU_parameter_ref:
1731 size += 4;
1732 break;
1733 default:
1734 break;
1737 return size;
1740 /* Return the size of a series of location descriptors. */
1742 unsigned long
1743 size_of_locs (dw_loc_descr_ref loc)
1745 dw_loc_descr_ref l;
1746 unsigned long size;
1748 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
1749 field, to avoid writing to a PCH file. */
1750 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
1752 if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
1753 break;
1754 size += size_of_loc_descr (l);
1756 if (! l)
1757 return size;
1759 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
1761 l->dw_loc_addr = size;
1762 size += size_of_loc_descr (l);
1765 return size;
1768 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
1769 static void get_ref_die_offset_label (char *, dw_die_ref);
1770 static unsigned long int get_ref_die_offset (dw_die_ref);
1772 /* Output location description stack opcode's operands (if any).
1773 The for_eh_or_skip parameter controls whether register numbers are
1774 converted using DWARF2_FRAME_REG_OUT, which is needed in the case that
1775 hard reg numbers have been processed via DWARF_FRAME_REGNUM (i.e. for unwind
1776 info). This should be suppressed for the cases that have not been converted
1777 (i.e. symbolic debug info), by setting the parameter < 0. See PR47324. */
1779 static void
1780 output_loc_operands (dw_loc_descr_ref loc, int for_eh_or_skip)
1782 dw_val_ref val1 = &loc->dw_loc_oprnd1;
1783 dw_val_ref val2 = &loc->dw_loc_oprnd2;
1785 switch (loc->dw_loc_opc)
1787 #ifdef DWARF2_DEBUGGING_INFO
1788 case DW_OP_const2u:
1789 case DW_OP_const2s:
1790 dw2_asm_output_data (2, val1->v.val_int, NULL);
1791 break;
1792 case DW_OP_const4u:
1793 if (loc->dtprel)
1795 gcc_assert (targetm.asm_out.output_dwarf_dtprel);
1796 targetm.asm_out.output_dwarf_dtprel (asm_out_file, 4,
1797 val1->v.val_addr);
1798 fputc ('\n', asm_out_file);
1799 break;
1801 /* FALLTHRU */
1802 case DW_OP_const4s:
1803 dw2_asm_output_data (4, val1->v.val_int, NULL);
1804 break;
1805 case DW_OP_const8u:
1806 if (loc->dtprel)
1808 gcc_assert (targetm.asm_out.output_dwarf_dtprel);
1809 targetm.asm_out.output_dwarf_dtprel (asm_out_file, 8,
1810 val1->v.val_addr);
1811 fputc ('\n', asm_out_file);
1812 break;
1814 /* FALLTHRU */
1815 case DW_OP_const8s:
1816 gcc_assert (HOST_BITS_PER_WIDE_INT >= 64);
1817 dw2_asm_output_data (8, val1->v.val_int, NULL);
1818 break;
1819 case DW_OP_skip:
1820 case DW_OP_bra:
1822 int offset;
1824 gcc_assert (val1->val_class == dw_val_class_loc);
1825 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
1827 dw2_asm_output_data (2, offset, NULL);
1829 break;
1830 case DW_OP_implicit_value:
1831 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
1832 switch (val2->val_class)
1834 case dw_val_class_const:
1835 dw2_asm_output_data (val1->v.val_unsigned, val2->v.val_int, NULL);
1836 break;
1837 case dw_val_class_vec:
1839 unsigned int elt_size = val2->v.val_vec.elt_size;
1840 unsigned int len = val2->v.val_vec.length;
1841 unsigned int i;
1842 unsigned char *p;
1844 if (elt_size > sizeof (HOST_WIDE_INT))
1846 elt_size /= 2;
1847 len *= 2;
1849 for (i = 0, p = val2->v.val_vec.array;
1850 i < len;
1851 i++, p += elt_size)
1852 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
1853 "fp or vector constant word %u", i);
1855 break;
1856 case dw_val_class_const_double:
1858 unsigned HOST_WIDE_INT first, second;
1860 if (WORDS_BIG_ENDIAN)
1862 first = val2->v.val_double.high;
1863 second = val2->v.val_double.low;
1865 else
1867 first = val2->v.val_double.low;
1868 second = val2->v.val_double.high;
1870 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
1871 first, NULL);
1872 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
1873 second, NULL);
1875 break;
1876 case dw_val_class_wide_int:
1878 int i;
1879 int len = get_full_len (*val2->v.val_wide);
1880 if (WORDS_BIG_ENDIAN)
1881 for (i = len - 1; i >= 0; --i)
1882 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
1883 val2->v.val_wide->elt (i), NULL);
1884 else
1885 for (i = 0; i < len; ++i)
1886 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
1887 val2->v.val_wide->elt (i), NULL);
1889 break;
1890 case dw_val_class_addr:
1891 gcc_assert (val1->v.val_unsigned == DWARF2_ADDR_SIZE);
1892 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val2->v.val_addr, NULL);
1893 break;
1894 default:
1895 gcc_unreachable ();
1897 break;
1898 #else
1899 case DW_OP_const2u:
1900 case DW_OP_const2s:
1901 case DW_OP_const4u:
1902 case DW_OP_const4s:
1903 case DW_OP_const8u:
1904 case DW_OP_const8s:
1905 case DW_OP_skip:
1906 case DW_OP_bra:
1907 case DW_OP_implicit_value:
1908 /* We currently don't make any attempt to make sure these are
1909 aligned properly like we do for the main unwind info, so
1910 don't support emitting things larger than a byte if we're
1911 only doing unwinding. */
1912 gcc_unreachable ();
1913 #endif
1914 case DW_OP_const1u:
1915 case DW_OP_const1s:
1916 dw2_asm_output_data (1, val1->v.val_int, NULL);
1917 break;
1918 case DW_OP_constu:
1919 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
1920 break;
1921 case DW_OP_consts:
1922 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
1923 break;
1924 case DW_OP_pick:
1925 dw2_asm_output_data (1, val1->v.val_int, NULL);
1926 break;
1927 case DW_OP_plus_uconst:
1928 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
1929 break;
1930 case DW_OP_breg0:
1931 case DW_OP_breg1:
1932 case DW_OP_breg2:
1933 case DW_OP_breg3:
1934 case DW_OP_breg4:
1935 case DW_OP_breg5:
1936 case DW_OP_breg6:
1937 case DW_OP_breg7:
1938 case DW_OP_breg8:
1939 case DW_OP_breg9:
1940 case DW_OP_breg10:
1941 case DW_OP_breg11:
1942 case DW_OP_breg12:
1943 case DW_OP_breg13:
1944 case DW_OP_breg14:
1945 case DW_OP_breg15:
1946 case DW_OP_breg16:
1947 case DW_OP_breg17:
1948 case DW_OP_breg18:
1949 case DW_OP_breg19:
1950 case DW_OP_breg20:
1951 case DW_OP_breg21:
1952 case DW_OP_breg22:
1953 case DW_OP_breg23:
1954 case DW_OP_breg24:
1955 case DW_OP_breg25:
1956 case DW_OP_breg26:
1957 case DW_OP_breg27:
1958 case DW_OP_breg28:
1959 case DW_OP_breg29:
1960 case DW_OP_breg30:
1961 case DW_OP_breg31:
1962 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
1963 break;
1964 case DW_OP_regx:
1966 unsigned r = val1->v.val_unsigned;
1967 if (for_eh_or_skip >= 0)
1968 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
1969 gcc_assert (size_of_uleb128 (r)
1970 == size_of_uleb128 (val1->v.val_unsigned));
1971 dw2_asm_output_data_uleb128 (r, NULL);
1973 break;
1974 case DW_OP_fbreg:
1975 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
1976 break;
1977 case DW_OP_bregx:
1979 unsigned r = val1->v.val_unsigned;
1980 if (for_eh_or_skip >= 0)
1981 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
1982 gcc_assert (size_of_uleb128 (r)
1983 == size_of_uleb128 (val1->v.val_unsigned));
1984 dw2_asm_output_data_uleb128 (r, NULL);
1985 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
1987 break;
1988 case DW_OP_piece:
1989 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
1990 break;
1991 case DW_OP_bit_piece:
1992 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
1993 dw2_asm_output_data_uleb128 (val2->v.val_unsigned, NULL);
1994 break;
1995 case DW_OP_deref_size:
1996 case DW_OP_xderef_size:
1997 dw2_asm_output_data (1, val1->v.val_int, NULL);
1998 break;
2000 case DW_OP_addr:
2001 if (loc->dtprel)
2003 if (targetm.asm_out.output_dwarf_dtprel)
2005 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
2006 DWARF2_ADDR_SIZE,
2007 val1->v.val_addr);
2008 fputc ('\n', asm_out_file);
2010 else
2011 gcc_unreachable ();
2013 else
2015 #ifdef DWARF2_DEBUGGING_INFO
2016 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2017 #else
2018 gcc_unreachable ();
2019 #endif
2021 break;
2023 case DW_OP_GNU_addr_index:
2024 case DW_OP_GNU_const_index:
2025 gcc_assert (loc->dw_loc_oprnd1.val_entry->index != NO_INDEX_ASSIGNED);
2026 dw2_asm_output_data_uleb128 (loc->dw_loc_oprnd1.val_entry->index,
2027 "(index into .debug_addr)");
2028 break;
2030 case DW_OP_GNU_implicit_pointer:
2032 char label[MAX_ARTIFICIAL_LABEL_BYTES
2033 + HOST_BITS_PER_WIDE_INT / 2 + 2];
2034 gcc_assert (val1->val_class == dw_val_class_die_ref);
2035 get_ref_die_offset_label (label, val1->v.val_die_ref.die);
2036 dw2_asm_output_offset (DWARF_REF_SIZE, label, debug_info_section, NULL);
2037 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
2039 break;
2041 case DW_OP_GNU_entry_value:
2042 dw2_asm_output_data_uleb128 (size_of_locs (val1->v.val_loc), NULL);
2043 output_loc_sequence (val1->v.val_loc, for_eh_or_skip);
2044 break;
2046 case DW_OP_GNU_const_type:
2048 unsigned long o = get_base_type_offset (val1->v.val_die_ref.die), l;
2049 gcc_assert (o);
2050 dw2_asm_output_data_uleb128 (o, NULL);
2051 switch (val2->val_class)
2053 case dw_val_class_const:
2054 l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
2055 dw2_asm_output_data (1, l, NULL);
2056 dw2_asm_output_data (l, val2->v.val_int, NULL);
2057 break;
2058 case dw_val_class_vec:
2060 unsigned int elt_size = val2->v.val_vec.elt_size;
2061 unsigned int len = val2->v.val_vec.length;
2062 unsigned int i;
2063 unsigned char *p;
2065 l = len * elt_size;
2066 dw2_asm_output_data (1, l, NULL);
2067 if (elt_size > sizeof (HOST_WIDE_INT))
2069 elt_size /= 2;
2070 len *= 2;
2072 for (i = 0, p = val2->v.val_vec.array;
2073 i < len;
2074 i++, p += elt_size)
2075 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
2076 "fp or vector constant word %u", i);
2078 break;
2079 case dw_val_class_const_double:
2081 unsigned HOST_WIDE_INT first, second;
2082 l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
2084 dw2_asm_output_data (1, 2 * l, NULL);
2085 if (WORDS_BIG_ENDIAN)
2087 first = val2->v.val_double.high;
2088 second = val2->v.val_double.low;
2090 else
2092 first = val2->v.val_double.low;
2093 second = val2->v.val_double.high;
2095 dw2_asm_output_data (l, first, NULL);
2096 dw2_asm_output_data (l, second, NULL);
2098 break;
2099 case dw_val_class_wide_int:
2101 int i;
2102 int len = get_full_len (*val2->v.val_wide);
2103 l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
2105 dw2_asm_output_data (1, len * l, NULL);
2106 if (WORDS_BIG_ENDIAN)
2107 for (i = len - 1; i >= 0; --i)
2108 dw2_asm_output_data (l, val2->v.val_wide->elt (i), NULL);
2109 else
2110 for (i = 0; i < len; ++i)
2111 dw2_asm_output_data (l, val2->v.val_wide->elt (i), NULL);
2113 break;
2114 default:
2115 gcc_unreachable ();
2118 break;
2119 case DW_OP_GNU_regval_type:
2121 unsigned r = val1->v.val_unsigned;
2122 unsigned long o = get_base_type_offset (val2->v.val_die_ref.die);
2123 gcc_assert (o);
2124 if (for_eh_or_skip >= 0)
2126 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2127 gcc_assert (size_of_uleb128 (r)
2128 == size_of_uleb128 (val1->v.val_unsigned));
2130 dw2_asm_output_data_uleb128 (r, NULL);
2131 dw2_asm_output_data_uleb128 (o, NULL);
2133 break;
2134 case DW_OP_GNU_deref_type:
2136 unsigned long o = get_base_type_offset (val2->v.val_die_ref.die);
2137 gcc_assert (o);
2138 dw2_asm_output_data (1, val1->v.val_int, NULL);
2139 dw2_asm_output_data_uleb128 (o, NULL);
2141 break;
2142 case DW_OP_GNU_convert:
2143 case DW_OP_GNU_reinterpret:
2144 if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const)
2145 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2146 else
2148 unsigned long o = get_base_type_offset (val1->v.val_die_ref.die);
2149 gcc_assert (o);
2150 dw2_asm_output_data_uleb128 (o, NULL);
2152 break;
2154 case DW_OP_GNU_parameter_ref:
2156 unsigned long o;
2157 gcc_assert (val1->val_class == dw_val_class_die_ref);
2158 o = get_ref_die_offset (val1->v.val_die_ref.die);
2159 dw2_asm_output_data (4, o, NULL);
2161 break;
2163 default:
2164 /* Other codes have no operands. */
2165 break;
2169 /* Output a sequence of location operations.
2170 The for_eh_or_skip parameter controls whether register numbers are
2171 converted using DWARF2_FRAME_REG_OUT, which is needed in the case that
2172 hard reg numbers have been processed via DWARF_FRAME_REGNUM (i.e. for unwind
2173 info). This should be suppressed for the cases that have not been converted
2174 (i.e. symbolic debug info), by setting the parameter < 0. See PR47324. */
2176 void
2177 output_loc_sequence (dw_loc_descr_ref loc, int for_eh_or_skip)
2179 for (; loc != NULL; loc = loc->dw_loc_next)
2181 enum dwarf_location_atom opc = loc->dw_loc_opc;
2182 /* Output the opcode. */
2183 if (for_eh_or_skip >= 0
2184 && opc >= DW_OP_breg0 && opc <= DW_OP_breg31)
2186 unsigned r = (opc - DW_OP_breg0);
2187 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2188 gcc_assert (r <= 31);
2189 opc = (enum dwarf_location_atom) (DW_OP_breg0 + r);
2191 else if (for_eh_or_skip >= 0
2192 && opc >= DW_OP_reg0 && opc <= DW_OP_reg31)
2194 unsigned r = (opc - DW_OP_reg0);
2195 r = DWARF2_FRAME_REG_OUT (r, for_eh_or_skip);
2196 gcc_assert (r <= 31);
2197 opc = (enum dwarf_location_atom) (DW_OP_reg0 + r);
2200 dw2_asm_output_data (1, opc,
2201 "%s", dwarf_stack_op_name (opc));
2203 /* Output the operand(s) (if any). */
2204 output_loc_operands (loc, for_eh_or_skip);
2208 /* Output location description stack opcode's operands (if any).
2209 The output is single bytes on a line, suitable for .cfi_escape. */
2211 static void
2212 output_loc_operands_raw (dw_loc_descr_ref loc)
2214 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2215 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2217 switch (loc->dw_loc_opc)
2219 case DW_OP_addr:
2220 case DW_OP_GNU_addr_index:
2221 case DW_OP_GNU_const_index:
2222 case DW_OP_implicit_value:
2223 /* We cannot output addresses in .cfi_escape, only bytes. */
2224 gcc_unreachable ();
2226 case DW_OP_const1u:
2227 case DW_OP_const1s:
2228 case DW_OP_pick:
2229 case DW_OP_deref_size:
2230 case DW_OP_xderef_size:
2231 fputc (',', asm_out_file);
2232 dw2_asm_output_data_raw (1, val1->v.val_int);
2233 break;
2235 case DW_OP_const2u:
2236 case DW_OP_const2s:
2237 fputc (',', asm_out_file);
2238 dw2_asm_output_data_raw (2, val1->v.val_int);
2239 break;
2241 case DW_OP_const4u:
2242 case DW_OP_const4s:
2243 fputc (',', asm_out_file);
2244 dw2_asm_output_data_raw (4, val1->v.val_int);
2245 break;
2247 case DW_OP_const8u:
2248 case DW_OP_const8s:
2249 gcc_assert (HOST_BITS_PER_WIDE_INT >= 64);
2250 fputc (',', asm_out_file);
2251 dw2_asm_output_data_raw (8, val1->v.val_int);
2252 break;
2254 case DW_OP_skip:
2255 case DW_OP_bra:
2257 int offset;
2259 gcc_assert (val1->val_class == dw_val_class_loc);
2260 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2262 fputc (',', asm_out_file);
2263 dw2_asm_output_data_raw (2, offset);
2265 break;
2267 case DW_OP_regx:
2269 unsigned r = DWARF2_FRAME_REG_OUT (val1->v.val_unsigned, 1);
2270 gcc_assert (size_of_uleb128 (r)
2271 == size_of_uleb128 (val1->v.val_unsigned));
2272 fputc (',', asm_out_file);
2273 dw2_asm_output_data_uleb128_raw (r);
2275 break;
2277 case DW_OP_constu:
2278 case DW_OP_plus_uconst:
2279 case DW_OP_piece:
2280 fputc (',', asm_out_file);
2281 dw2_asm_output_data_uleb128_raw (val1->v.val_unsigned);
2282 break;
2284 case DW_OP_bit_piece:
2285 fputc (',', asm_out_file);
2286 dw2_asm_output_data_uleb128_raw (val1->v.val_unsigned);
2287 dw2_asm_output_data_uleb128_raw (val2->v.val_unsigned);
2288 break;
2290 case DW_OP_consts:
2291 case DW_OP_breg0:
2292 case DW_OP_breg1:
2293 case DW_OP_breg2:
2294 case DW_OP_breg3:
2295 case DW_OP_breg4:
2296 case DW_OP_breg5:
2297 case DW_OP_breg6:
2298 case DW_OP_breg7:
2299 case DW_OP_breg8:
2300 case DW_OP_breg9:
2301 case DW_OP_breg10:
2302 case DW_OP_breg11:
2303 case DW_OP_breg12:
2304 case DW_OP_breg13:
2305 case DW_OP_breg14:
2306 case DW_OP_breg15:
2307 case DW_OP_breg16:
2308 case DW_OP_breg17:
2309 case DW_OP_breg18:
2310 case DW_OP_breg19:
2311 case DW_OP_breg20:
2312 case DW_OP_breg21:
2313 case DW_OP_breg22:
2314 case DW_OP_breg23:
2315 case DW_OP_breg24:
2316 case DW_OP_breg25:
2317 case DW_OP_breg26:
2318 case DW_OP_breg27:
2319 case DW_OP_breg28:
2320 case DW_OP_breg29:
2321 case DW_OP_breg30:
2322 case DW_OP_breg31:
2323 case DW_OP_fbreg:
2324 fputc (',', asm_out_file);
2325 dw2_asm_output_data_sleb128_raw (val1->v.val_int);
2326 break;
2328 case DW_OP_bregx:
2330 unsigned r = DWARF2_FRAME_REG_OUT (val1->v.val_unsigned, 1);
2331 gcc_assert (size_of_uleb128 (r)
2332 == size_of_uleb128 (val1->v.val_unsigned));
2333 fputc (',', asm_out_file);
2334 dw2_asm_output_data_uleb128_raw (r);
2335 fputc (',', asm_out_file);
2336 dw2_asm_output_data_sleb128_raw (val2->v.val_int);
2338 break;
2340 case DW_OP_GNU_implicit_pointer:
2341 case DW_OP_GNU_entry_value:
2342 case DW_OP_GNU_const_type:
2343 case DW_OP_GNU_regval_type:
2344 case DW_OP_GNU_deref_type:
2345 case DW_OP_GNU_convert:
2346 case DW_OP_GNU_reinterpret:
2347 case DW_OP_GNU_parameter_ref:
2348 gcc_unreachable ();
2349 break;
2351 default:
2352 /* Other codes have no operands. */
2353 break;
2357 void
2358 output_loc_sequence_raw (dw_loc_descr_ref loc)
2360 while (1)
2362 enum dwarf_location_atom opc = loc->dw_loc_opc;
2363 /* Output the opcode. */
2364 if (opc >= DW_OP_breg0 && opc <= DW_OP_breg31)
2366 unsigned r = (opc - DW_OP_breg0);
2367 r = DWARF2_FRAME_REG_OUT (r, 1);
2368 gcc_assert (r <= 31);
2369 opc = (enum dwarf_location_atom) (DW_OP_breg0 + r);
2371 else if (opc >= DW_OP_reg0 && opc <= DW_OP_reg31)
2373 unsigned r = (opc - DW_OP_reg0);
2374 r = DWARF2_FRAME_REG_OUT (r, 1);
2375 gcc_assert (r <= 31);
2376 opc = (enum dwarf_location_atom) (DW_OP_reg0 + r);
2378 /* Output the opcode. */
2379 fprintf (asm_out_file, "%#x", opc);
2380 output_loc_operands_raw (loc);
2382 if (!loc->dw_loc_next)
2383 break;
2384 loc = loc->dw_loc_next;
2386 fputc (',', asm_out_file);
2390 /* This function builds a dwarf location descriptor sequence from a
2391 dw_cfa_location, adding the given OFFSET to the result of the
2392 expression. */
2394 struct dw_loc_descr_node *
2395 build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
2397 struct dw_loc_descr_node *head, *tmp;
2399 offset += cfa->offset;
2401 if (cfa->indirect)
2403 head = new_reg_loc_descr (cfa->reg, cfa->base_offset);
2404 head->dw_loc_oprnd1.val_class = dw_val_class_const;
2405 head->dw_loc_oprnd1.val_entry = NULL;
2406 tmp = new_loc_descr (DW_OP_deref, 0, 0);
2407 add_loc_descr (&head, tmp);
2408 if (offset != 0)
2410 tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
2411 add_loc_descr (&head, tmp);
2414 else
2415 head = new_reg_loc_descr (cfa->reg, offset);
2417 return head;
2420 /* This function builds a dwarf location descriptor sequence for
2421 the address at OFFSET from the CFA when stack is aligned to
2422 ALIGNMENT byte. */
2424 struct dw_loc_descr_node *
2425 build_cfa_aligned_loc (dw_cfa_location *cfa,
2426 HOST_WIDE_INT offset, HOST_WIDE_INT alignment)
2428 struct dw_loc_descr_node *head;
2429 unsigned int dwarf_fp
2430 = DWARF_FRAME_REGNUM (HARD_FRAME_POINTER_REGNUM);
2432 /* When CFA is defined as FP+OFFSET, emulate stack alignment. */
2433 if (cfa->reg == HARD_FRAME_POINTER_REGNUM && cfa->indirect == 0)
2435 head = new_reg_loc_descr (dwarf_fp, 0);
2436 add_loc_descr (&head, int_loc_descriptor (alignment));
2437 add_loc_descr (&head, new_loc_descr (DW_OP_and, 0, 0));
2438 loc_descr_plus_const (&head, offset);
2440 else
2441 head = new_reg_loc_descr (dwarf_fp, offset);
2442 return head;
2445 /* And now, the support for symbolic debugging information. */
2447 /* .debug_str support. */
2449 static void dwarf2out_init (const char *);
2450 static void dwarf2out_finish (const char *);
2451 static void dwarf2out_assembly_start (void);
2452 static void dwarf2out_define (unsigned int, const char *);
2453 static void dwarf2out_undef (unsigned int, const char *);
2454 static void dwarf2out_start_source_file (unsigned, const char *);
2455 static void dwarf2out_end_source_file (unsigned);
2456 static void dwarf2out_function_decl (tree);
2457 static void dwarf2out_begin_block (unsigned, unsigned);
2458 static void dwarf2out_end_block (unsigned, unsigned);
2459 static bool dwarf2out_ignore_block (const_tree);
2460 static void dwarf2out_global_decl (tree);
2461 static void dwarf2out_type_decl (tree, int);
2462 static void dwarf2out_imported_module_or_decl (tree, tree, tree, bool);
2463 static void dwarf2out_imported_module_or_decl_1 (tree, tree, tree,
2464 dw_die_ref);
2465 static void dwarf2out_abstract_function (tree);
2466 static void dwarf2out_var_location (rtx_insn *);
2467 static void dwarf2out_begin_function (tree);
2468 static void dwarf2out_end_function (unsigned int);
2469 static void dwarf2out_set_name (tree, tree);
2471 /* The debug hooks structure. */
2473 const struct gcc_debug_hooks dwarf2_debug_hooks =
2475 dwarf2out_init,
2476 dwarf2out_finish,
2477 dwarf2out_assembly_start,
2478 dwarf2out_define,
2479 dwarf2out_undef,
2480 dwarf2out_start_source_file,
2481 dwarf2out_end_source_file,
2482 dwarf2out_begin_block,
2483 dwarf2out_end_block,
2484 dwarf2out_ignore_block,
2485 dwarf2out_source_line,
2486 dwarf2out_begin_prologue,
2487 #if VMS_DEBUGGING_INFO
2488 dwarf2out_vms_end_prologue,
2489 dwarf2out_vms_begin_epilogue,
2490 #else
2491 debug_nothing_int_charstar,
2492 debug_nothing_int_charstar,
2493 #endif
2494 dwarf2out_end_epilogue,
2495 dwarf2out_begin_function,
2496 dwarf2out_end_function, /* end_function */
2497 dwarf2out_function_decl, /* function_decl */
2498 dwarf2out_global_decl,
2499 dwarf2out_type_decl, /* type_decl */
2500 dwarf2out_imported_module_or_decl,
2501 debug_nothing_tree, /* deferred_inline_function */
2502 /* The DWARF 2 backend tries to reduce debugging bloat by not
2503 emitting the abstract description of inline functions until
2504 something tries to reference them. */
2505 dwarf2out_abstract_function, /* outlining_inline_function */
2506 debug_nothing_rtx_code_label, /* label */
2507 debug_nothing_int, /* handle_pch */
2508 dwarf2out_var_location,
2509 dwarf2out_switch_text_section,
2510 dwarf2out_set_name,
2511 1, /* start_end_main_source_file */
2512 TYPE_SYMTAB_IS_DIE /* tree_type_symtab_field */
2515 /* NOTE: In the comments in this file, many references are made to
2516 "Debugging Information Entries". This term is abbreviated as `DIE'
2517 throughout the remainder of this file. */
2519 /* An internal representation of the DWARF output is built, and then
2520 walked to generate the DWARF debugging info. The walk of the internal
2521 representation is done after the entire program has been compiled.
2522 The types below are used to describe the internal representation. */
2524 /* Whether to put type DIEs into their own section .debug_types instead
2525 of making them part of the .debug_info section. Only supported for
2526 Dwarf V4 or higher and the user didn't disable them through
2527 -fno-debug-types-section. It is more efficient to put them in a
2528 separate comdat sections since the linker will then be able to
2529 remove duplicates. But not all tools support .debug_types sections
2530 yet. */
2532 #define use_debug_types (dwarf_version >= 4 && flag_debug_types_section)
2534 /* Various DIE's use offsets relative to the beginning of the
2535 .debug_info section to refer to each other. */
2537 typedef long int dw_offset;
2539 /* Define typedefs here to avoid circular dependencies. */
2541 typedef struct dw_attr_struct *dw_attr_ref;
2542 typedef struct dw_line_info_struct *dw_line_info_ref;
2543 typedef struct pubname_struct *pubname_ref;
2544 typedef struct dw_ranges_struct *dw_ranges_ref;
2545 typedef struct dw_ranges_by_label_struct *dw_ranges_by_label_ref;
2546 typedef struct comdat_type_struct *comdat_type_node_ref;
2548 /* The entries in the line_info table more-or-less mirror the opcodes
2549 that are used in the real dwarf line table. Arrays of these entries
2550 are collected per section when DWARF2_ASM_LINE_DEBUG_INFO is not
2551 supported. */
2553 enum dw_line_info_opcode {
2554 /* Emit DW_LNE_set_address; the operand is the label index. */
2555 LI_set_address,
2557 /* Emit a row to the matrix with the given line. This may be done
2558 via any combination of DW_LNS_copy, DW_LNS_advance_line, and
2559 special opcodes. */
2560 LI_set_line,
2562 /* Emit a DW_LNS_set_file. */
2563 LI_set_file,
2565 /* Emit a DW_LNS_set_column. */
2566 LI_set_column,
2568 /* Emit a DW_LNS_negate_stmt; the operand is ignored. */
2569 LI_negate_stmt,
2571 /* Emit a DW_LNS_set_prologue_end/epilogue_begin; the operand is ignored. */
2572 LI_set_prologue_end,
2573 LI_set_epilogue_begin,
2575 /* Emit a DW_LNE_set_discriminator. */
2576 LI_set_discriminator
2579 typedef struct GTY(()) dw_line_info_struct {
2580 enum dw_line_info_opcode opcode;
2581 unsigned int val;
2582 } dw_line_info_entry;
2585 typedef struct GTY(()) dw_line_info_table_struct {
2586 /* The label that marks the end of this section. */
2587 const char *end_label;
2589 /* The values for the last row of the matrix, as collected in the table.
2590 These are used to minimize the changes to the next row. */
2591 unsigned int file_num;
2592 unsigned int line_num;
2593 unsigned int column_num;
2594 int discrim_num;
2595 bool is_stmt;
2596 bool in_use;
2598 vec<dw_line_info_entry, va_gc> *entries;
2599 } dw_line_info_table;
2601 typedef dw_line_info_table *dw_line_info_table_p;
2604 /* Each DIE attribute has a field specifying the attribute kind,
2605 a link to the next attribute in the chain, and an attribute value.
2606 Attributes are typically linked below the DIE they modify. */
2608 typedef struct GTY(()) dw_attr_struct {
2609 enum dwarf_attribute dw_attr;
2610 dw_val_node dw_attr_val;
2612 dw_attr_node;
2615 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
2616 The children of each node form a circular list linked by
2617 die_sib. die_child points to the node *before* the "first" child node. */
2619 typedef struct GTY((chain_circular ("%h.die_sib"), for_user)) die_struct {
2620 union die_symbol_or_type_node
2622 const char * GTY ((tag ("0"))) die_symbol;
2623 comdat_type_node_ref GTY ((tag ("1"))) die_type_node;
2625 GTY ((desc ("%0.comdat_type_p"))) die_id;
2626 vec<dw_attr_node, va_gc> *die_attr;
2627 dw_die_ref die_parent;
2628 dw_die_ref die_child;
2629 dw_die_ref die_sib;
2630 dw_die_ref die_definition; /* ref from a specification to its definition */
2631 dw_offset die_offset;
2632 unsigned long die_abbrev;
2633 int die_mark;
2634 unsigned int decl_id;
2635 enum dwarf_tag die_tag;
2636 /* Die is used and must not be pruned as unused. */
2637 BOOL_BITFIELD die_perennial_p : 1;
2638 BOOL_BITFIELD comdat_type_p : 1; /* DIE has a type signature */
2639 /* Lots of spare bits. */
2641 die_node;
2643 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
2644 #define FOR_EACH_CHILD(die, c, expr) do { \
2645 c = die->die_child; \
2646 if (c) do { \
2647 c = c->die_sib; \
2648 expr; \
2649 } while (c != die->die_child); \
2650 } while (0)
2652 /* The pubname structure */
2654 typedef struct GTY(()) pubname_struct {
2655 dw_die_ref die;
2656 const char *name;
2658 pubname_entry;
2661 struct GTY(()) dw_ranges_struct {
2662 /* If this is positive, it's a block number, otherwise it's a
2663 bitwise-negated index into dw_ranges_by_label. */
2664 int num;
2667 /* A structure to hold a macinfo entry. */
2669 typedef struct GTY(()) macinfo_struct {
2670 unsigned char code;
2671 unsigned HOST_WIDE_INT lineno;
2672 const char *info;
2674 macinfo_entry;
2677 struct GTY(()) dw_ranges_by_label_struct {
2678 const char *begin;
2679 const char *end;
2682 /* The comdat type node structure. */
2683 typedef struct GTY(()) comdat_type_struct
2685 dw_die_ref root_die;
2686 dw_die_ref type_die;
2687 dw_die_ref skeleton_die;
2688 char signature[DWARF_TYPE_SIGNATURE_SIZE];
2689 struct comdat_type_struct *next;
2691 comdat_type_node;
2693 /* The limbo die list structure. */
2694 typedef struct GTY(()) limbo_die_struct {
2695 dw_die_ref die;
2696 tree created_for;
2697 struct limbo_die_struct *next;
2699 limbo_die_node;
2701 typedef struct skeleton_chain_struct
2703 dw_die_ref old_die;
2704 dw_die_ref new_die;
2705 struct skeleton_chain_struct *parent;
2707 skeleton_chain_node;
2709 /* Define a macro which returns nonzero for a TYPE_DECL which was
2710 implicitly generated for a type.
2712 Note that, unlike the C front-end (which generates a NULL named
2713 TYPE_DECL node for each complete tagged type, each array type,
2714 and each function type node created) the C++ front-end generates
2715 a _named_ TYPE_DECL node for each tagged type node created.
2716 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
2717 generate a DW_TAG_typedef DIE for them. Likewise with the Ada
2718 front-end, but for each type, tagged or not. */
2720 #define TYPE_DECL_IS_STUB(decl) \
2721 (DECL_NAME (decl) == NULL_TREE \
2722 || (DECL_ARTIFICIAL (decl) \
2723 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
2724 /* This is necessary for stub decls that \
2725 appear in nested inline functions. */ \
2726 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
2727 && (decl_ultimate_origin (decl) \
2728 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
2730 /* Information concerning the compilation unit's programming
2731 language, and compiler version. */
2733 /* Fixed size portion of the DWARF compilation unit header. */
2734 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
2735 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
2737 /* Fixed size portion of the DWARF comdat type unit header. */
2738 #define DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE \
2739 (DWARF_COMPILE_UNIT_HEADER_SIZE + DWARF_TYPE_SIGNATURE_SIZE \
2740 + DWARF_OFFSET_SIZE)
2742 /* Fixed size portion of public names info. */
2743 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
2745 /* Fixed size portion of the address range info. */
2746 #define DWARF_ARANGES_HEADER_SIZE \
2747 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
2748 DWARF2_ADDR_SIZE * 2) \
2749 - DWARF_INITIAL_LENGTH_SIZE)
2751 /* Size of padding portion in the address range info. It must be
2752 aligned to twice the pointer size. */
2753 #define DWARF_ARANGES_PAD_SIZE \
2754 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
2755 DWARF2_ADDR_SIZE * 2) \
2756 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
2758 /* Use assembler line directives if available. */
2759 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
2760 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
2761 #define DWARF2_ASM_LINE_DEBUG_INFO 1
2762 #else
2763 #define DWARF2_ASM_LINE_DEBUG_INFO 0
2764 #endif
2765 #endif
2767 /* Minimum line offset in a special line info. opcode.
2768 This value was chosen to give a reasonable range of values. */
2769 #define DWARF_LINE_BASE -10
2771 /* First special line opcode - leave room for the standard opcodes. */
2772 #define DWARF_LINE_OPCODE_BASE ((int)DW_LNS_set_isa + 1)
2774 /* Range of line offsets in a special line info. opcode. */
2775 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
2777 /* Flag that indicates the initial value of the is_stmt_start flag.
2778 In the present implementation, we do not mark any lines as
2779 the beginning of a source statement, because that information
2780 is not made available by the GCC front-end. */
2781 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
2783 /* Maximum number of operations per instruction bundle. */
2784 #ifndef DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN
2785 #define DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN 1
2786 #endif
2788 /* This location is used by calc_die_sizes() to keep track
2789 the offset of each DIE within the .debug_info section. */
2790 static unsigned long next_die_offset;
2792 /* Record the root of the DIE's built for the current compilation unit. */
2793 static GTY(()) dw_die_ref single_comp_unit_die;
2795 /* A list of type DIEs that have been separated into comdat sections. */
2796 static GTY(()) comdat_type_node *comdat_type_list;
2798 /* A list of DIEs with a NULL parent waiting to be relocated. */
2799 static GTY(()) limbo_die_node *limbo_die_list;
2801 /* A list of DIEs for which we may have to generate
2802 DW_AT_{,MIPS_}linkage_name once their DECL_ASSEMBLER_NAMEs are set. */
2803 static GTY(()) limbo_die_node *deferred_asm_name;
2805 struct dwarf_file_hasher : ggc_hasher<dwarf_file_data *>
2807 typedef const char *compare_type;
2809 static hashval_t hash (dwarf_file_data *);
2810 static bool equal (dwarf_file_data *, const char *);
2813 /* Filenames referenced by this compilation unit. */
2814 static GTY(()) hash_table<dwarf_file_hasher> *file_table;
2816 struct decl_die_hasher : ggc_hasher<die_node *>
2818 typedef tree compare_type;
2820 static hashval_t hash (die_node *);
2821 static bool equal (die_node *, tree);
2823 /* A hash table of references to DIE's that describe declarations.
2824 The key is a DECL_UID() which is a unique number identifying each decl. */
2825 static GTY (()) hash_table<decl_die_hasher> *decl_die_table;
2827 struct block_die_hasher : ggc_hasher<die_struct *>
2829 static hashval_t hash (die_struct *);
2830 static bool equal (die_struct *, die_struct *);
2833 /* A hash table of references to DIE's that describe COMMON blocks.
2834 The key is DECL_UID() ^ die_parent. */
2835 static GTY (()) hash_table<block_die_hasher> *common_block_die_table;
2837 typedef struct GTY(()) die_arg_entry_struct {
2838 dw_die_ref die;
2839 tree arg;
2840 } die_arg_entry;
2843 /* Node of the variable location list. */
2844 struct GTY ((chain_next ("%h.next"))) var_loc_node {
2845 /* Either NOTE_INSN_VAR_LOCATION, or, for SRA optimized variables,
2846 EXPR_LIST chain. For small bitsizes, bitsize is encoded
2847 in mode of the EXPR_LIST node and first EXPR_LIST operand
2848 is either NOTE_INSN_VAR_LOCATION for a piece with a known
2849 location or NULL for padding. For larger bitsizes,
2850 mode is 0 and first operand is a CONCAT with bitsize
2851 as first CONCAT operand and NOTE_INSN_VAR_LOCATION resp.
2852 NULL as second operand. */
2853 rtx GTY (()) loc;
2854 const char * GTY (()) label;
2855 struct var_loc_node * GTY (()) next;
2858 /* Variable location list. */
2859 struct GTY ((for_user)) var_loc_list_def {
2860 struct var_loc_node * GTY (()) first;
2862 /* Pointer to the last but one or last element of the
2863 chained list. If the list is empty, both first and
2864 last are NULL, if the list contains just one node
2865 or the last node certainly is not redundant, it points
2866 to the last node, otherwise points to the last but one.
2867 Do not mark it for GC because it is marked through the chain. */
2868 struct var_loc_node * GTY ((skip ("%h"))) last;
2870 /* Pointer to the last element before section switch,
2871 if NULL, either sections weren't switched or first
2872 is after section switch. */
2873 struct var_loc_node * GTY ((skip ("%h"))) last_before_switch;
2875 /* DECL_UID of the variable decl. */
2876 unsigned int decl_id;
2878 typedef struct var_loc_list_def var_loc_list;
2880 /* Call argument location list. */
2881 struct GTY ((chain_next ("%h.next"))) call_arg_loc_node {
2882 rtx GTY (()) call_arg_loc_note;
2883 const char * GTY (()) label;
2884 tree GTY (()) block;
2885 bool tail_call_p;
2886 rtx GTY (()) symbol_ref;
2887 struct call_arg_loc_node * GTY (()) next;
2891 struct decl_loc_hasher : ggc_hasher<var_loc_list *>
2893 typedef const_tree compare_type;
2895 static hashval_t hash (var_loc_list *);
2896 static bool equal (var_loc_list *, const_tree);
2899 /* Table of decl location linked lists. */
2900 static GTY (()) hash_table<decl_loc_hasher> *decl_loc_table;
2902 /* Head and tail of call_arg_loc chain. */
2903 static GTY (()) struct call_arg_loc_node *call_arg_locations;
2904 static struct call_arg_loc_node *call_arg_loc_last;
2906 /* Number of call sites in the current function. */
2907 static int call_site_count = -1;
2908 /* Number of tail call sites in the current function. */
2909 static int tail_call_site_count = -1;
2911 /* Vector mapping block numbers to DW_TAG_{lexical_block,inlined_subroutine}
2912 DIEs. */
2913 static vec<dw_die_ref> block_map;
2915 /* A cached location list. */
2916 struct GTY ((for_user)) cached_dw_loc_list_def {
2917 /* The DECL_UID of the decl that this entry describes. */
2918 unsigned int decl_id;
2920 /* The cached location list. */
2921 dw_loc_list_ref loc_list;
2923 typedef struct cached_dw_loc_list_def cached_dw_loc_list;
2925 struct dw_loc_list_hasher : ggc_hasher<cached_dw_loc_list *>
2928 typedef const_tree compare_type;
2930 static hashval_t hash (cached_dw_loc_list *);
2931 static bool equal (cached_dw_loc_list *, const_tree);
2934 /* Table of cached location lists. */
2935 static GTY (()) hash_table<dw_loc_list_hasher> *cached_dw_loc_list_table;
2937 /* A pointer to the base of a list of references to DIE's that
2938 are uniquely identified by their tag, presence/absence of
2939 children DIE's, and list of attribute/value pairs. */
2940 static GTY((length ("abbrev_die_table_allocated")))
2941 dw_die_ref *abbrev_die_table;
2943 /* Number of elements currently allocated for abbrev_die_table. */
2944 static GTY(()) unsigned abbrev_die_table_allocated;
2946 /* Number of elements in type_die_table currently in use. */
2947 static GTY(()) unsigned abbrev_die_table_in_use;
2949 /* Size (in elements) of increments by which we may expand the
2950 abbrev_die_table. */
2951 #define ABBREV_DIE_TABLE_INCREMENT 256
2953 /* A global counter for generating labels for line number data. */
2954 static unsigned int line_info_label_num;
2956 /* The current table to which we should emit line number information
2957 for the current function. This will be set up at the beginning of
2958 assembly for the function. */
2959 static dw_line_info_table *cur_line_info_table;
2961 /* The two default tables of line number info. */
2962 static GTY(()) dw_line_info_table *text_section_line_info;
2963 static GTY(()) dw_line_info_table *cold_text_section_line_info;
2965 /* The set of all non-default tables of line number info. */
2966 static GTY(()) vec<dw_line_info_table_p, va_gc> *separate_line_info;
2968 /* A flag to tell pubnames/types export if there is an info section to
2969 refer to. */
2970 static bool info_section_emitted;
2972 /* A pointer to the base of a table that contains a list of publicly
2973 accessible names. */
2974 static GTY (()) vec<pubname_entry, va_gc> *pubname_table;
2976 /* A pointer to the base of a table that contains a list of publicly
2977 accessible types. */
2978 static GTY (()) vec<pubname_entry, va_gc> *pubtype_table;
2980 /* A pointer to the base of a table that contains a list of macro
2981 defines/undefines (and file start/end markers). */
2982 static GTY (()) vec<macinfo_entry, va_gc> *macinfo_table;
2984 /* True if .debug_macinfo or .debug_macros section is going to be
2985 emitted. */
2986 #define have_macinfo \
2987 (debug_info_level >= DINFO_LEVEL_VERBOSE \
2988 && !macinfo_table->is_empty ())
2990 /* Array of dies for which we should generate .debug_ranges info. */
2991 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
2993 /* Number of elements currently allocated for ranges_table. */
2994 static GTY(()) unsigned ranges_table_allocated;
2996 /* Number of elements in ranges_table currently in use. */
2997 static GTY(()) unsigned ranges_table_in_use;
2999 /* Array of pairs of labels referenced in ranges_table. */
3000 static GTY ((length ("ranges_by_label_allocated")))
3001 dw_ranges_by_label_ref ranges_by_label;
3003 /* Number of elements currently allocated for ranges_by_label. */
3004 static GTY(()) unsigned ranges_by_label_allocated;
3006 /* Number of elements in ranges_by_label currently in use. */
3007 static GTY(()) unsigned ranges_by_label_in_use;
3009 /* Size (in elements) of increments by which we may expand the
3010 ranges_table. */
3011 #define RANGES_TABLE_INCREMENT 64
3013 /* Whether we have location lists that need outputting */
3014 static GTY(()) bool have_location_lists;
3016 /* Unique label counter. */
3017 static GTY(()) unsigned int loclabel_num;
3019 /* Unique label counter for point-of-call tables. */
3020 static GTY(()) unsigned int poc_label_num;
3022 /* The last file entry emitted by maybe_emit_file(). */
3023 static GTY(()) struct dwarf_file_data * last_emitted_file;
3025 /* Number of internal labels generated by gen_internal_sym(). */
3026 static GTY(()) int label_num;
3028 /* Cached result of previous call to lookup_filename. */
3029 static GTY(()) struct dwarf_file_data * file_table_last_lookup;
3031 static GTY(()) vec<die_arg_entry, va_gc> *tmpl_value_parm_die_table;
3033 /* Instances of generic types for which we need to generate debug
3034 info that describe their generic parameters and arguments. That
3035 generation needs to happen once all types are properly laid out so
3036 we do it at the end of compilation. */
3037 static GTY(()) vec<tree, va_gc> *generic_type_instances;
3039 /* Offset from the "steady-state frame pointer" to the frame base,
3040 within the current function. */
3041 static HOST_WIDE_INT frame_pointer_fb_offset;
3042 static bool frame_pointer_fb_offset_valid;
3044 static vec<dw_die_ref> base_types;
3046 /* Flags to represent a set of attribute classes for attributes that represent
3047 a scalar value (bounds, pointers, ...). */
3048 enum dw_scalar_form
3050 dw_scalar_form_constant = 0x01,
3051 dw_scalar_form_exprloc = 0x02,
3052 dw_scalar_form_reference = 0x04
3055 /* Forward declarations for functions defined in this file. */
3057 static int is_pseudo_reg (const_rtx);
3058 static tree type_main_variant (tree);
3059 static int is_tagged_type (const_tree);
3060 static const char *dwarf_tag_name (unsigned);
3061 static const char *dwarf_attr_name (unsigned);
3062 static const char *dwarf_form_name (unsigned);
3063 static tree decl_ultimate_origin (const_tree);
3064 static tree decl_class_context (tree);
3065 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3066 static inline enum dw_val_class AT_class (dw_attr_ref);
3067 static inline unsigned int AT_index (dw_attr_ref);
3068 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3069 static inline unsigned AT_flag (dw_attr_ref);
3070 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3071 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3072 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3073 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3074 static void add_AT_double (dw_die_ref, enum dwarf_attribute,
3075 HOST_WIDE_INT, unsigned HOST_WIDE_INT);
3076 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3077 unsigned int, unsigned char *);
3078 static void add_AT_data8 (dw_die_ref, enum dwarf_attribute, unsigned char *);
3079 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3080 static inline const char *AT_string (dw_attr_ref);
3081 static enum dwarf_form AT_string_form (dw_attr_ref);
3082 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3083 static void add_AT_specification (dw_die_ref, dw_die_ref);
3084 static inline dw_die_ref AT_ref (dw_attr_ref);
3085 static inline int AT_ref_external (dw_attr_ref);
3086 static inline void set_AT_ref_external (dw_attr_ref, int);
3087 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3088 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3089 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3090 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3091 dw_loc_list_ref);
3092 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3093 static addr_table_entry *add_addr_table_entry (void *, enum ate_kind);
3094 static void remove_addr_table_entry (addr_table_entry *);
3095 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx, bool);
3096 static inline rtx AT_addr (dw_attr_ref);
3097 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3098 static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
3099 static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
3100 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3101 unsigned HOST_WIDE_INT);
3102 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3103 unsigned long, bool);
3104 static inline const char *AT_lbl (dw_attr_ref);
3105 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3106 static const char *get_AT_low_pc (dw_die_ref);
3107 static const char *get_AT_hi_pc (dw_die_ref);
3108 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3109 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3110 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3111 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3112 static bool is_cxx (void);
3113 static bool is_fortran (void);
3114 static bool is_ada (void);
3115 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3116 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3117 static void add_child_die (dw_die_ref, dw_die_ref);
3118 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3119 static dw_die_ref lookup_type_die (tree);
3120 static dw_die_ref strip_naming_typedef (tree, dw_die_ref);
3121 static dw_die_ref lookup_type_die_strip_naming_typedef (tree);
3122 static void equate_type_number_to_die (tree, dw_die_ref);
3123 static dw_die_ref lookup_decl_die (tree);
3124 static var_loc_list *lookup_decl_loc (const_tree);
3125 static void equate_decl_number_to_die (tree, dw_die_ref);
3126 static struct var_loc_node *add_var_loc_to_decl (tree, rtx, const char *);
3127 static void print_spaces (FILE *);
3128 static void print_die (dw_die_ref, FILE *);
3129 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3130 static dw_die_ref pop_compile_unit (dw_die_ref);
3131 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3132 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3133 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3134 static void checksum_sleb128 (HOST_WIDE_INT, struct md5_ctx *);
3135 static void checksum_uleb128 (unsigned HOST_WIDE_INT, struct md5_ctx *);
3136 static void loc_checksum_ordered (dw_loc_descr_ref, struct md5_ctx *);
3137 static void attr_checksum_ordered (enum dwarf_tag, dw_attr_ref,
3138 struct md5_ctx *, int *);
3139 struct checksum_attributes;
3140 static void collect_checksum_attributes (struct checksum_attributes *, dw_die_ref);
3141 static void die_checksum_ordered (dw_die_ref, struct md5_ctx *, int *);
3142 static void checksum_die_context (dw_die_ref, struct md5_ctx *);
3143 static void generate_type_signature (dw_die_ref, comdat_type_node *);
3144 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3145 static int same_dw_val_p (const dw_val_node *, const dw_val_node *, int *);
3146 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3147 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3148 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3149 static void compute_section_prefix (dw_die_ref);
3150 static int is_type_die (dw_die_ref);
3151 static int is_comdat_die (dw_die_ref);
3152 static int is_symbol_die (dw_die_ref);
3153 static inline bool is_template_instantiation (dw_die_ref);
3154 static void assign_symbol_names (dw_die_ref);
3155 static void break_out_includes (dw_die_ref);
3156 static int is_declaration_die (dw_die_ref);
3157 static int should_move_die_to_comdat (dw_die_ref);
3158 static dw_die_ref clone_as_declaration (dw_die_ref);
3159 static dw_die_ref clone_die (dw_die_ref);
3160 static dw_die_ref clone_tree (dw_die_ref);
3161 static dw_die_ref copy_declaration_context (dw_die_ref, dw_die_ref);
3162 static void generate_skeleton_ancestor_tree (skeleton_chain_node *);
3163 static void generate_skeleton_bottom_up (skeleton_chain_node *);
3164 static dw_die_ref generate_skeleton (dw_die_ref);
3165 static dw_die_ref remove_child_or_replace_with_skeleton (dw_die_ref,
3166 dw_die_ref,
3167 dw_die_ref);
3168 static void break_out_comdat_types (dw_die_ref);
3169 static void copy_decls_for_unworthy_types (dw_die_ref);
3171 static void add_sibling_attributes (dw_die_ref);
3172 static void output_location_lists (dw_die_ref);
3173 static int constant_size (unsigned HOST_WIDE_INT);
3174 static unsigned long size_of_die (dw_die_ref);
3175 static void calc_die_sizes (dw_die_ref);
3176 static void calc_base_type_die_sizes (void);
3177 static void mark_dies (dw_die_ref);
3178 static void unmark_dies (dw_die_ref);
3179 static void unmark_all_dies (dw_die_ref);
3180 static unsigned long size_of_pubnames (vec<pubname_entry, va_gc> *);
3181 static unsigned long size_of_aranges (void);
3182 static enum dwarf_form value_format (dw_attr_ref);
3183 static void output_value_format (dw_attr_ref);
3184 static void output_abbrev_section (void);
3185 static void output_die_abbrevs (unsigned long, dw_die_ref);
3186 static void output_die_symbol (dw_die_ref);
3187 static void output_die (dw_die_ref);
3188 static void output_compilation_unit_header (void);
3189 static void output_comp_unit (dw_die_ref, int);
3190 static void output_comdat_type_unit (comdat_type_node *);
3191 static const char *dwarf2_name (tree, int);
3192 static void add_pubname (tree, dw_die_ref);
3193 static void add_enumerator_pubname (const char *, dw_die_ref);
3194 static void add_pubname_string (const char *, dw_die_ref);
3195 static void add_pubtype (tree, dw_die_ref);
3196 static void output_pubnames (vec<pubname_entry, va_gc> *);
3197 static void output_aranges (unsigned long);
3198 static unsigned int add_ranges_num (int);
3199 static unsigned int add_ranges (const_tree);
3200 static void add_ranges_by_labels (dw_die_ref, const char *, const char *,
3201 bool *, bool);
3202 static void output_ranges (void);
3203 static dw_line_info_table *new_line_info_table (void);
3204 static void output_line_info (bool);
3205 static void output_file_names (void);
3206 static dw_die_ref base_type_die (tree);
3207 static int is_base_type (tree);
3208 static dw_die_ref subrange_type_die (tree, tree, tree, dw_die_ref);
3209 static int decl_quals (const_tree);
3210 static dw_die_ref modified_type_die (tree, int, dw_die_ref);
3211 static dw_die_ref generic_parameter_die (tree, tree, bool, dw_die_ref);
3212 static dw_die_ref template_parameter_pack_die (tree, tree, dw_die_ref);
3213 static int type_is_enum (const_tree);
3214 static unsigned int dbx_reg_number (const_rtx);
3215 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
3216 static dw_loc_descr_ref reg_loc_descriptor (rtx, enum var_init_status);
3217 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int,
3218 enum var_init_status);
3219 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx,
3220 enum var_init_status);
3221 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT,
3222 enum var_init_status);
3223 static int is_based_loc (const_rtx);
3224 static bool resolve_one_addr (rtx *);
3225 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx,
3226 enum var_init_status);
3227 static dw_loc_descr_ref loc_descriptor (rtx, machine_mode mode,
3228 enum var_init_status);
3229 struct loc_descr_context;
3230 static dw_loc_list_ref loc_list_from_tree (tree, int,
3231 const struct loc_descr_context *);
3232 static dw_loc_descr_ref loc_descriptor_from_tree (tree, int,
3233 const struct loc_descr_context *);
3234 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3235 static tree field_type (const_tree);
3236 static unsigned int simple_type_align_in_bits (const_tree);
3237 static unsigned int simple_decl_align_in_bits (const_tree);
3238 static unsigned HOST_WIDE_INT simple_type_size_in_bits (const_tree);
3239 static HOST_WIDE_INT field_byte_offset (const_tree);
3240 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3241 dw_loc_list_ref);
3242 static void add_data_member_location_attribute (dw_die_ref, tree);
3243 static bool add_const_value_attribute (dw_die_ref, rtx);
3244 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
3245 static void insert_wide_int (const wide_int &, unsigned char *, int);
3246 static void insert_float (const_rtx, unsigned char *);
3247 static rtx rtl_for_decl_location (tree);
3248 static bool add_location_or_const_value_attribute (dw_die_ref, tree, bool,
3249 enum dwarf_attribute);
3250 static bool tree_add_const_value_attribute (dw_die_ref, tree);
3251 static bool tree_add_const_value_attribute_for_decl (dw_die_ref, tree);
3252 static void add_name_attribute (dw_die_ref, const char *);
3253 static void add_gnat_descriptive_type_attribute (dw_die_ref, tree, dw_die_ref);
3254 static void add_comp_dir_attribute (dw_die_ref);
3255 static void add_scalar_info (dw_die_ref, enum dwarf_attribute, tree, int,
3256 const struct loc_descr_context *);
3257 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree,
3258 const struct loc_descr_context *);
3259 static void add_subscript_info (dw_die_ref, tree, bool);
3260 static void add_byte_size_attribute (dw_die_ref, tree);
3261 static void add_bit_offset_attribute (dw_die_ref, tree);
3262 static void add_bit_size_attribute (dw_die_ref, tree);
3263 static void add_prototyped_attribute (dw_die_ref, tree);
3264 static dw_die_ref add_abstract_origin_attribute (dw_die_ref, tree);
3265 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3266 static void add_src_coords_attributes (dw_die_ref, tree);
3267 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3268 static void push_decl_scope (tree);
3269 static void pop_decl_scope (void);
3270 static dw_die_ref scope_die_for (tree, dw_die_ref);
3271 static inline int local_scope_p (dw_die_ref);
3272 static inline int class_scope_p (dw_die_ref);
3273 static inline int class_or_namespace_scope_p (dw_die_ref);
3274 static void add_type_attribute (dw_die_ref, tree, int, dw_die_ref);
3275 static void add_calling_convention_attribute (dw_die_ref, tree);
3276 static const char *type_tag (const_tree);
3277 static tree member_declared_type (const_tree);
3278 #if 0
3279 static const char *decl_start_label (tree);
3280 #endif
3281 static void gen_array_type_die (tree, dw_die_ref);
3282 static void gen_descr_array_type_die (tree, struct array_descr_info *, dw_die_ref);
3283 #if 0
3284 static void gen_entry_point_die (tree, dw_die_ref);
3285 #endif
3286 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
3287 static dw_die_ref gen_formal_parameter_die (tree, tree, bool, dw_die_ref);
3288 static dw_die_ref gen_formal_parameter_pack_die (tree, tree, dw_die_ref, tree*);
3289 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3290 static void gen_formal_types_die (tree, dw_die_ref);
3291 static void gen_subprogram_die (tree, dw_die_ref);
3292 static void gen_variable_die (tree, tree, dw_die_ref);
3293 static void gen_const_die (tree, dw_die_ref);
3294 static void gen_label_die (tree, dw_die_ref);
3295 static void gen_lexical_block_die (tree, dw_die_ref);
3296 static void gen_inlined_subroutine_die (tree, dw_die_ref);
3297 static void gen_field_die (tree, dw_die_ref);
3298 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3299 static dw_die_ref gen_compile_unit_die (const char *);
3300 static void gen_inheritance_die (tree, tree, dw_die_ref);
3301 static void gen_member_die (tree, dw_die_ref);
3302 static void gen_struct_or_union_type_die (tree, dw_die_ref,
3303 enum debug_info_usage);
3304 static void gen_subroutine_type_die (tree, dw_die_ref);
3305 static void gen_typedef_die (tree, dw_die_ref);
3306 static void gen_type_die (tree, dw_die_ref);
3307 static void gen_block_die (tree, dw_die_ref);
3308 static void decls_for_scope (tree, dw_die_ref);
3309 static inline int is_redundant_typedef (const_tree);
3310 static bool is_naming_typedef_decl (const_tree);
3311 static inline dw_die_ref get_context_die (tree);
3312 static void gen_namespace_die (tree, dw_die_ref);
3313 static dw_die_ref gen_namelist_decl (tree, dw_die_ref, tree);
3314 static dw_die_ref gen_decl_die (tree, tree, dw_die_ref);
3315 static dw_die_ref force_decl_die (tree);
3316 static dw_die_ref force_type_die (tree);
3317 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
3318 static dw_die_ref declare_in_namespace (tree, dw_die_ref);
3319 static struct dwarf_file_data * lookup_filename (const char *);
3320 static void retry_incomplete_types (void);
3321 static void gen_type_die_for_member (tree, tree, dw_die_ref);
3322 static void gen_generic_params_dies (tree);
3323 static void gen_tagged_type_die (tree, dw_die_ref, enum debug_info_usage);
3324 static void gen_type_die_with_usage (tree, dw_die_ref, enum debug_info_usage);
3325 static void splice_child_die (dw_die_ref, dw_die_ref);
3326 static int file_info_cmp (const void *, const void *);
3327 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
3328 const char *, const char *);
3329 static void output_loc_list (dw_loc_list_ref);
3330 static char *gen_internal_sym (const char *);
3331 static bool want_pubnames (void);
3333 static void prune_unmark_dies (dw_die_ref);
3334 static void prune_unused_types_mark_generic_parms_dies (dw_die_ref);
3335 static void prune_unused_types_mark (dw_die_ref, int);
3336 static void prune_unused_types_walk (dw_die_ref);
3337 static void prune_unused_types_walk_attribs (dw_die_ref);
3338 static void prune_unused_types_prune (dw_die_ref);
3339 static void prune_unused_types (void);
3340 static int maybe_emit_file (struct dwarf_file_data *fd);
3341 static inline const char *AT_vms_delta1 (dw_attr_ref);
3342 static inline const char *AT_vms_delta2 (dw_attr_ref);
3343 static inline void add_AT_vms_delta (dw_die_ref, enum dwarf_attribute,
3344 const char *, const char *);
3345 static void append_entry_to_tmpl_value_parm_die_table (dw_die_ref, tree);
3346 static void gen_remaining_tmpl_value_param_die_attribute (void);
3347 static bool generic_type_p (tree);
3348 static void schedule_generic_params_dies_gen (tree t);
3349 static void gen_scheduled_generic_parms_dies (void);
3351 static const char *comp_dir_string (void);
3353 static void hash_loc_operands (dw_loc_descr_ref, inchash::hash &);
3355 /* enum for tracking thread-local variables whose address is really an offset
3356 relative to the TLS pointer, which will need link-time relocation, but will
3357 not need relocation by the DWARF consumer. */
3359 enum dtprel_bool
3361 dtprel_false = 0,
3362 dtprel_true = 1
3365 /* Return the operator to use for an address of a variable. For dtprel_true, we
3366 use DW_OP_const*. For regular variables, which need both link-time
3367 relocation and consumer-level relocation (e.g., to account for shared objects
3368 loaded at a random address), we use DW_OP_addr*. */
3370 static inline enum dwarf_location_atom
3371 dw_addr_op (enum dtprel_bool dtprel)
3373 if (dtprel == dtprel_true)
3374 return (dwarf_split_debug_info ? DW_OP_GNU_const_index
3375 : (DWARF2_ADDR_SIZE == 4 ? DW_OP_const4u : DW_OP_const8u));
3376 else
3377 return dwarf_split_debug_info ? DW_OP_GNU_addr_index : DW_OP_addr;
3380 /* Return a pointer to a newly allocated address location description. If
3381 dwarf_split_debug_info is true, then record the address with the appropriate
3382 relocation. */
3383 static inline dw_loc_descr_ref
3384 new_addr_loc_descr (rtx addr, enum dtprel_bool dtprel)
3386 dw_loc_descr_ref ref = new_loc_descr (dw_addr_op (dtprel), 0, 0);
3388 ref->dw_loc_oprnd1.val_class = dw_val_class_addr;
3389 ref->dw_loc_oprnd1.v.val_addr = addr;
3390 ref->dtprel = dtprel;
3391 if (dwarf_split_debug_info)
3392 ref->dw_loc_oprnd1.val_entry
3393 = add_addr_table_entry (addr,
3394 dtprel ? ate_kind_rtx_dtprel : ate_kind_rtx);
3395 else
3396 ref->dw_loc_oprnd1.val_entry = NULL;
3398 return ref;
3401 /* Section names used to hold DWARF debugging information. */
3403 #ifndef DEBUG_INFO_SECTION
3404 #define DEBUG_INFO_SECTION ".debug_info"
3405 #endif
3406 #ifndef DEBUG_DWO_INFO_SECTION
3407 #define DEBUG_DWO_INFO_SECTION ".debug_info.dwo"
3408 #endif
3409 #ifndef DEBUG_ABBREV_SECTION
3410 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3411 #endif
3412 #ifndef DEBUG_DWO_ABBREV_SECTION
3413 #define DEBUG_DWO_ABBREV_SECTION ".debug_abbrev.dwo"
3414 #endif
3415 #ifndef DEBUG_ARANGES_SECTION
3416 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3417 #endif
3418 #ifndef DEBUG_ADDR_SECTION
3419 #define DEBUG_ADDR_SECTION ".debug_addr"
3420 #endif
3421 #ifndef DEBUG_NORM_MACINFO_SECTION
3422 #define DEBUG_NORM_MACINFO_SECTION ".debug_macinfo"
3423 #endif
3424 #ifndef DEBUG_DWO_MACINFO_SECTION
3425 #define DEBUG_DWO_MACINFO_SECTION ".debug_macinfo.dwo"
3426 #endif
3427 #ifndef DEBUG_MACINFO_SECTION
3428 #define DEBUG_MACINFO_SECTION \
3429 (!dwarf_split_debug_info \
3430 ? (DEBUG_NORM_MACINFO_SECTION) : (DEBUG_DWO_MACINFO_SECTION))
3431 #endif
3432 #ifndef DEBUG_NORM_MACRO_SECTION
3433 #define DEBUG_NORM_MACRO_SECTION ".debug_macro"
3434 #endif
3435 #ifndef DEBUG_DWO_MACRO_SECTION
3436 #define DEBUG_DWO_MACRO_SECTION ".debug_macro.dwo"
3437 #endif
3438 #ifndef DEBUG_MACRO_SECTION
3439 #define DEBUG_MACRO_SECTION \
3440 (!dwarf_split_debug_info \
3441 ? (DEBUG_NORM_MACRO_SECTION) : (DEBUG_DWO_MACRO_SECTION))
3442 #endif
3443 #ifndef DEBUG_LINE_SECTION
3444 #define DEBUG_LINE_SECTION ".debug_line"
3445 #endif
3446 #ifndef DEBUG_DWO_LINE_SECTION
3447 #define DEBUG_DWO_LINE_SECTION ".debug_line.dwo"
3448 #endif
3449 #ifndef DEBUG_LOC_SECTION
3450 #define DEBUG_LOC_SECTION ".debug_loc"
3451 #endif
3452 #ifndef DEBUG_DWO_LOC_SECTION
3453 #define DEBUG_DWO_LOC_SECTION ".debug_loc.dwo"
3454 #endif
3455 #ifndef DEBUG_PUBNAMES_SECTION
3456 #define DEBUG_PUBNAMES_SECTION \
3457 ((debug_generate_pub_sections == 2) \
3458 ? ".debug_gnu_pubnames" : ".debug_pubnames")
3459 #endif
3460 #ifndef DEBUG_PUBTYPES_SECTION
3461 #define DEBUG_PUBTYPES_SECTION \
3462 ((debug_generate_pub_sections == 2) \
3463 ? ".debug_gnu_pubtypes" : ".debug_pubtypes")
3464 #endif
3465 #define DEBUG_NORM_STR_OFFSETS_SECTION ".debug_str_offsets"
3466 #define DEBUG_DWO_STR_OFFSETS_SECTION ".debug_str_offsets.dwo"
3467 #ifndef DEBUG_STR_OFFSETS_SECTION
3468 #define DEBUG_STR_OFFSETS_SECTION \
3469 (!dwarf_split_debug_info \
3470 ? (DEBUG_NORM_STR_OFFSETS_SECTION) : (DEBUG_DWO_STR_OFFSETS_SECTION))
3471 #endif
3472 #ifndef DEBUG_STR_DWO_SECTION
3473 #define DEBUG_STR_DWO_SECTION ".debug_str.dwo"
3474 #endif
3475 #ifndef DEBUG_STR_SECTION
3476 #define DEBUG_STR_SECTION ".debug_str"
3477 #endif
3478 #ifndef DEBUG_RANGES_SECTION
3479 #define DEBUG_RANGES_SECTION ".debug_ranges"
3480 #endif
3482 /* Standard ELF section names for compiled code and data. */
3483 #ifndef TEXT_SECTION_NAME
3484 #define TEXT_SECTION_NAME ".text"
3485 #endif
3487 /* Section flags for .debug_macinfo/.debug_macro section. */
3488 #define DEBUG_MACRO_SECTION_FLAGS \
3489 (dwarf_split_debug_info ? SECTION_DEBUG | SECTION_EXCLUDE : SECTION_DEBUG)
3491 /* Section flags for .debug_str section. */
3492 #define DEBUG_STR_SECTION_FLAGS \
3493 (HAVE_GAS_SHF_MERGE && flag_merge_debug_strings \
3494 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
3495 : SECTION_DEBUG)
3497 /* Section flags for .debug_str.dwo section. */
3498 #define DEBUG_STR_DWO_SECTION_FLAGS (SECTION_DEBUG | SECTION_EXCLUDE)
3500 /* Labels we insert at beginning sections we can reference instead of
3501 the section names themselves. */
3503 #ifndef TEXT_SECTION_LABEL
3504 #define TEXT_SECTION_LABEL "Ltext"
3505 #endif
3506 #ifndef COLD_TEXT_SECTION_LABEL
3507 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
3508 #endif
3509 #ifndef DEBUG_LINE_SECTION_LABEL
3510 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3511 #endif
3512 #ifndef DEBUG_SKELETON_LINE_SECTION_LABEL
3513 #define DEBUG_SKELETON_LINE_SECTION_LABEL "Lskeleton_debug_line"
3514 #endif
3515 #ifndef DEBUG_INFO_SECTION_LABEL
3516 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3517 #endif
3518 #ifndef DEBUG_SKELETON_INFO_SECTION_LABEL
3519 #define DEBUG_SKELETON_INFO_SECTION_LABEL "Lskeleton_debug_info"
3520 #endif
3521 #ifndef DEBUG_ABBREV_SECTION_LABEL
3522 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3523 #endif
3524 #ifndef DEBUG_SKELETON_ABBREV_SECTION_LABEL
3525 #define DEBUG_SKELETON_ABBREV_SECTION_LABEL "Lskeleton_debug_abbrev"
3526 #endif
3527 #ifndef DEBUG_ADDR_SECTION_LABEL
3528 #define DEBUG_ADDR_SECTION_LABEL "Ldebug_addr"
3529 #endif
3530 #ifndef DEBUG_LOC_SECTION_LABEL
3531 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3532 #endif
3533 #ifndef DEBUG_RANGES_SECTION_LABEL
3534 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3535 #endif
3536 #ifndef DEBUG_MACINFO_SECTION_LABEL
3537 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3538 #endif
3539 #ifndef DEBUG_MACRO_SECTION_LABEL
3540 #define DEBUG_MACRO_SECTION_LABEL "Ldebug_macro"
3541 #endif
3542 #define SKELETON_COMP_DIE_ABBREV 1
3543 #define SKELETON_TYPE_DIE_ABBREV 2
3545 /* Definitions of defaults for formats and names of various special
3546 (artificial) labels which may be generated within this file (when the -g
3547 options is used and DWARF2_DEBUGGING_INFO is in effect.
3548 If necessary, these may be overridden from within the tm.h file, but
3549 typically, overriding these defaults is unnecessary. */
3551 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3552 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3553 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3554 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3555 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3556 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3557 static char debug_skeleton_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3558 static char debug_skeleton_abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3559 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3560 static char debug_addr_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3561 static char debug_skeleton_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3562 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3563 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3564 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3566 #ifndef TEXT_END_LABEL
3567 #define TEXT_END_LABEL "Letext"
3568 #endif
3569 #ifndef COLD_END_LABEL
3570 #define COLD_END_LABEL "Letext_cold"
3571 #endif
3572 #ifndef BLOCK_BEGIN_LABEL
3573 #define BLOCK_BEGIN_LABEL "LBB"
3574 #endif
3575 #ifndef BLOCK_END_LABEL
3576 #define BLOCK_END_LABEL "LBE"
3577 #endif
3578 #ifndef LINE_CODE_LABEL
3579 #define LINE_CODE_LABEL "LM"
3580 #endif
3583 /* Return the root of the DIE's built for the current compilation unit. */
3584 static dw_die_ref
3585 comp_unit_die (void)
3587 if (!single_comp_unit_die)
3588 single_comp_unit_die = gen_compile_unit_die (NULL);
3589 return single_comp_unit_die;
3592 /* We allow a language front-end to designate a function that is to be
3593 called to "demangle" any name before it is put into a DIE. */
3595 static const char *(*demangle_name_func) (const char *);
3597 void
3598 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
3600 demangle_name_func = func;
3603 /* Test if rtl node points to a pseudo register. */
3605 static inline int
3606 is_pseudo_reg (const_rtx rtl)
3608 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3609 || (GET_CODE (rtl) == SUBREG
3610 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3613 /* Return a reference to a type, with its const and volatile qualifiers
3614 removed. */
3616 static inline tree
3617 type_main_variant (tree type)
3619 type = TYPE_MAIN_VARIANT (type);
3621 /* ??? There really should be only one main variant among any group of
3622 variants of a given type (and all of the MAIN_VARIANT values for all
3623 members of the group should point to that one type) but sometimes the C
3624 front-end messes this up for array types, so we work around that bug
3625 here. */
3626 if (TREE_CODE (type) == ARRAY_TYPE)
3627 while (type != TYPE_MAIN_VARIANT (type))
3628 type = TYPE_MAIN_VARIANT (type);
3630 return type;
3633 /* Return nonzero if the given type node represents a tagged type. */
3635 static inline int
3636 is_tagged_type (const_tree type)
3638 enum tree_code code = TREE_CODE (type);
3640 return (code == RECORD_TYPE || code == UNION_TYPE
3641 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
3644 /* Set label to debug_info_section_label + die_offset of a DIE reference. */
3646 static void
3647 get_ref_die_offset_label (char *label, dw_die_ref ref)
3649 sprintf (label, "%s+%ld", debug_info_section_label, ref->die_offset);
3652 /* Return die_offset of a DIE reference to a base type. */
3654 static unsigned long int
3655 get_base_type_offset (dw_die_ref ref)
3657 if (ref->die_offset)
3658 return ref->die_offset;
3659 if (comp_unit_die ()->die_abbrev)
3661 calc_base_type_die_sizes ();
3662 gcc_assert (ref->die_offset);
3664 return ref->die_offset;
3667 /* Return die_offset of a DIE reference other than base type. */
3669 static unsigned long int
3670 get_ref_die_offset (dw_die_ref ref)
3672 gcc_assert (ref->die_offset);
3673 return ref->die_offset;
3676 /* Convert a DIE tag into its string name. */
3678 static const char *
3679 dwarf_tag_name (unsigned int tag)
3681 const char *name = get_DW_TAG_name (tag);
3683 if (name != NULL)
3684 return name;
3686 return "DW_TAG_<unknown>";
3689 /* Convert a DWARF attribute code into its string name. */
3691 static const char *
3692 dwarf_attr_name (unsigned int attr)
3694 const char *name;
3696 switch (attr)
3698 #if VMS_DEBUGGING_INFO
3699 case DW_AT_HP_prologue:
3700 return "DW_AT_HP_prologue";
3701 #else
3702 case DW_AT_MIPS_loop_unroll_factor:
3703 return "DW_AT_MIPS_loop_unroll_factor";
3704 #endif
3706 #if VMS_DEBUGGING_INFO
3707 case DW_AT_HP_epilogue:
3708 return "DW_AT_HP_epilogue";
3709 #else
3710 case DW_AT_MIPS_stride:
3711 return "DW_AT_MIPS_stride";
3712 #endif
3715 name = get_DW_AT_name (attr);
3717 if (name != NULL)
3718 return name;
3720 return "DW_AT_<unknown>";
3723 /* Convert a DWARF value form code into its string name. */
3725 static const char *
3726 dwarf_form_name (unsigned int form)
3728 const char *name = get_DW_FORM_name (form);
3730 if (name != NULL)
3731 return name;
3733 return "DW_FORM_<unknown>";
3736 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
3737 instance of an inlined instance of a decl which is local to an inline
3738 function, so we have to trace all of the way back through the origin chain
3739 to find out what sort of node actually served as the original seed for the
3740 given block. */
3742 static tree
3743 decl_ultimate_origin (const_tree decl)
3745 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
3746 return NULL_TREE;
3748 /* DECL_ABSTRACT_ORIGIN can point to itself; ignore that if
3749 we're trying to output the abstract instance of this function. */
3750 if (DECL_ABSTRACT_P (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
3751 return NULL_TREE;
3753 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
3754 most distant ancestor, this should never happen. */
3755 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
3757 return DECL_ABSTRACT_ORIGIN (decl);
3760 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
3761 of a virtual function may refer to a base class, so we check the 'this'
3762 parameter. */
3764 static tree
3765 decl_class_context (tree decl)
3767 tree context = NULL_TREE;
3769 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
3770 context = DECL_CONTEXT (decl);
3771 else
3772 context = TYPE_MAIN_VARIANT
3773 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
3775 if (context && !TYPE_P (context))
3776 context = NULL_TREE;
3778 return context;
3781 /* Add an attribute/value pair to a DIE. */
3783 static inline void
3784 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
3786 /* Maybe this should be an assert? */
3787 if (die == NULL)
3788 return;
3790 vec_safe_reserve (die->die_attr, 1);
3791 vec_safe_push (die->die_attr, *attr);
3794 static inline enum dw_val_class
3795 AT_class (dw_attr_ref a)
3797 return a->dw_attr_val.val_class;
3800 /* Return the index for any attribute that will be referenced with a
3801 DW_FORM_GNU_addr_index or DW_FORM_GNU_str_index. String indices
3802 are stored in dw_attr_val.v.val_str for reference counting
3803 pruning. */
3805 static inline unsigned int
3806 AT_index (dw_attr_ref a)
3808 if (AT_class (a) == dw_val_class_str)
3809 return a->dw_attr_val.v.val_str->index;
3810 else if (a->dw_attr_val.val_entry != NULL)
3811 return a->dw_attr_val.val_entry->index;
3812 return NOT_INDEXED;
3815 /* Add a flag value attribute to a DIE. */
3817 static inline void
3818 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
3820 dw_attr_node attr;
3822 attr.dw_attr = attr_kind;
3823 attr.dw_attr_val.val_class = dw_val_class_flag;
3824 attr.dw_attr_val.val_entry = NULL;
3825 attr.dw_attr_val.v.val_flag = flag;
3826 add_dwarf_attr (die, &attr);
3829 static inline unsigned
3830 AT_flag (dw_attr_ref a)
3832 gcc_assert (a && AT_class (a) == dw_val_class_flag);
3833 return a->dw_attr_val.v.val_flag;
3836 /* Add a signed integer attribute value to a DIE. */
3838 static inline void
3839 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
3841 dw_attr_node attr;
3843 attr.dw_attr = attr_kind;
3844 attr.dw_attr_val.val_class = dw_val_class_const;
3845 attr.dw_attr_val.val_entry = NULL;
3846 attr.dw_attr_val.v.val_int = int_val;
3847 add_dwarf_attr (die, &attr);
3850 static inline HOST_WIDE_INT
3851 AT_int (dw_attr_ref a)
3853 gcc_assert (a && AT_class (a) == dw_val_class_const);
3854 return a->dw_attr_val.v.val_int;
3857 /* Add an unsigned integer attribute value to a DIE. */
3859 static inline void
3860 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
3861 unsigned HOST_WIDE_INT unsigned_val)
3863 dw_attr_node attr;
3865 attr.dw_attr = attr_kind;
3866 attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
3867 attr.dw_attr_val.val_entry = NULL;
3868 attr.dw_attr_val.v.val_unsigned = unsigned_val;
3869 add_dwarf_attr (die, &attr);
3872 static inline unsigned HOST_WIDE_INT
3873 AT_unsigned (dw_attr_ref a)
3875 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
3876 return a->dw_attr_val.v.val_unsigned;
3879 /* Add an unsigned wide integer attribute value to a DIE. */
3881 static inline void
3882 add_AT_wide (dw_die_ref die, enum dwarf_attribute attr_kind,
3883 const wide_int& w)
3885 dw_attr_node attr;
3887 attr.dw_attr = attr_kind;
3888 attr.dw_attr_val.val_class = dw_val_class_wide_int;
3889 attr.dw_attr_val.val_entry = NULL;
3890 attr.dw_attr_val.v.val_wide = ggc_alloc<wide_int> ();
3891 *attr.dw_attr_val.v.val_wide = w;
3892 add_dwarf_attr (die, &attr);
3895 /* Add an unsigned double integer attribute value to a DIE. */
3897 static inline void
3898 add_AT_double (dw_die_ref die, enum dwarf_attribute attr_kind,
3899 HOST_WIDE_INT high, unsigned HOST_WIDE_INT low)
3901 dw_attr_node attr;
3903 attr.dw_attr = attr_kind;
3904 attr.dw_attr_val.val_class = dw_val_class_const_double;
3905 attr.dw_attr_val.val_entry = NULL;
3906 attr.dw_attr_val.v.val_double.high = high;
3907 attr.dw_attr_val.v.val_double.low = low;
3908 add_dwarf_attr (die, &attr);
3911 /* Add a floating point attribute value to a DIE and return it. */
3913 static inline void
3914 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
3915 unsigned int length, unsigned int elt_size, unsigned char *array)
3917 dw_attr_node attr;
3919 attr.dw_attr = attr_kind;
3920 attr.dw_attr_val.val_class = dw_val_class_vec;
3921 attr.dw_attr_val.val_entry = NULL;
3922 attr.dw_attr_val.v.val_vec.length = length;
3923 attr.dw_attr_val.v.val_vec.elt_size = elt_size;
3924 attr.dw_attr_val.v.val_vec.array = array;
3925 add_dwarf_attr (die, &attr);
3928 /* Add an 8-byte data attribute value to a DIE. */
3930 static inline void
3931 add_AT_data8 (dw_die_ref die, enum dwarf_attribute attr_kind,
3932 unsigned char data8[8])
3934 dw_attr_node attr;
3936 attr.dw_attr = attr_kind;
3937 attr.dw_attr_val.val_class = dw_val_class_data8;
3938 attr.dw_attr_val.val_entry = NULL;
3939 memcpy (attr.dw_attr_val.v.val_data8, data8, 8);
3940 add_dwarf_attr (die, &attr);
3943 /* Add DW_AT_low_pc and DW_AT_high_pc to a DIE. When using
3944 dwarf_split_debug_info, address attributes in dies destined for the
3945 final executable have force_direct set to avoid using indexed
3946 references. */
3948 static inline void
3949 add_AT_low_high_pc (dw_die_ref die, const char *lbl_low, const char *lbl_high,
3950 bool force_direct)
3952 dw_attr_node attr;
3953 char * lbl_id;
3955 lbl_id = xstrdup (lbl_low);
3956 attr.dw_attr = DW_AT_low_pc;
3957 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
3958 attr.dw_attr_val.v.val_lbl_id = lbl_id;
3959 if (dwarf_split_debug_info && !force_direct)
3960 attr.dw_attr_val.val_entry
3961 = add_addr_table_entry (lbl_id, ate_kind_label);
3962 else
3963 attr.dw_attr_val.val_entry = NULL;
3964 add_dwarf_attr (die, &attr);
3966 attr.dw_attr = DW_AT_high_pc;
3967 if (dwarf_version < 4)
3968 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
3969 else
3970 attr.dw_attr_val.val_class = dw_val_class_high_pc;
3971 lbl_id = xstrdup (lbl_high);
3972 attr.dw_attr_val.v.val_lbl_id = lbl_id;
3973 if (attr.dw_attr_val.val_class == dw_val_class_lbl_id
3974 && dwarf_split_debug_info && !force_direct)
3975 attr.dw_attr_val.val_entry
3976 = add_addr_table_entry (lbl_id, ate_kind_label);
3977 else
3978 attr.dw_attr_val.val_entry = NULL;
3979 add_dwarf_attr (die, &attr);
3982 /* Hash and equality functions for debug_str_hash. */
3984 hashval_t
3985 indirect_string_hasher::hash (indirect_string_node *x)
3987 return htab_hash_string (x->str);
3990 bool
3991 indirect_string_hasher::equal (indirect_string_node *x1, const char *x2)
3993 return strcmp (x1->str, x2) == 0;
3996 /* Add STR to the given string hash table. */
3998 static struct indirect_string_node *
3999 find_AT_string_in_table (const char *str,
4000 hash_table<indirect_string_hasher> *table)
4002 struct indirect_string_node *node;
4004 indirect_string_node **slot
4005 = table->find_slot_with_hash (str, htab_hash_string (str), INSERT);
4006 if (*slot == NULL)
4008 node = ggc_cleared_alloc<indirect_string_node> ();
4009 node->str = ggc_strdup (str);
4010 *slot = node;
4012 else
4013 node = *slot;
4015 node->refcount++;
4016 return node;
4019 /* Add STR to the indirect string hash table. */
4021 static struct indirect_string_node *
4022 find_AT_string (const char *str)
4024 if (! debug_str_hash)
4025 debug_str_hash = hash_table<indirect_string_hasher>::create_ggc (10);
4027 return find_AT_string_in_table (str, debug_str_hash);
4030 /* Add a string attribute value to a DIE. */
4032 static inline void
4033 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4035 dw_attr_node attr;
4036 struct indirect_string_node *node;
4038 node = find_AT_string (str);
4040 attr.dw_attr = attr_kind;
4041 attr.dw_attr_val.val_class = dw_val_class_str;
4042 attr.dw_attr_val.val_entry = NULL;
4043 attr.dw_attr_val.v.val_str = node;
4044 add_dwarf_attr (die, &attr);
4047 static inline const char *
4048 AT_string (dw_attr_ref a)
4050 gcc_assert (a && AT_class (a) == dw_val_class_str);
4051 return a->dw_attr_val.v.val_str->str;
4054 /* Call this function directly to bypass AT_string_form's logic to put
4055 the string inline in the die. */
4057 static void
4058 set_indirect_string (struct indirect_string_node *node)
4060 char label[32];
4061 /* Already indirect is a no op. */
4062 if (node->form == DW_FORM_strp || node->form == DW_FORM_GNU_str_index)
4064 gcc_assert (node->label);
4065 return;
4067 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4068 ++dw2_string_counter;
4069 node->label = xstrdup (label);
4071 if (!dwarf_split_debug_info)
4073 node->form = DW_FORM_strp;
4074 node->index = NOT_INDEXED;
4076 else
4078 node->form = DW_FORM_GNU_str_index;
4079 node->index = NO_INDEX_ASSIGNED;
4083 /* Find out whether a string should be output inline in DIE
4084 or out-of-line in .debug_str section. */
4086 static enum dwarf_form
4087 find_string_form (struct indirect_string_node *node)
4089 unsigned int len;
4091 if (node->form)
4092 return node->form;
4094 len = strlen (node->str) + 1;
4096 /* If the string is shorter or equal to the size of the reference, it is
4097 always better to put it inline. */
4098 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4099 return node->form = DW_FORM_string;
4101 /* If we cannot expect the linker to merge strings in .debug_str
4102 section, only put it into .debug_str if it is worth even in this
4103 single module. */
4104 if (DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
4105 || ((debug_str_section->common.flags & SECTION_MERGE) == 0
4106 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len))
4107 return node->form = DW_FORM_string;
4109 set_indirect_string (node);
4111 return node->form;
4114 /* Find out whether the string referenced from the attribute should be
4115 output inline in DIE or out-of-line in .debug_str section. */
4117 static enum dwarf_form
4118 AT_string_form (dw_attr_ref a)
4120 gcc_assert (a && AT_class (a) == dw_val_class_str);
4121 return find_string_form (a->dw_attr_val.v.val_str);
4124 /* Add a DIE reference attribute value to a DIE. */
4126 static inline void
4127 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4129 dw_attr_node attr;
4131 #ifdef ENABLE_CHECKING
4132 gcc_assert (targ_die != NULL);
4133 #else
4134 /* With LTO we can end up trying to reference something we didn't create
4135 a DIE for. Avoid crashing later on a NULL referenced DIE. */
4136 if (targ_die == NULL)
4137 return;
4138 #endif
4140 attr.dw_attr = attr_kind;
4141 attr.dw_attr_val.val_class = dw_val_class_die_ref;
4142 attr.dw_attr_val.val_entry = NULL;
4143 attr.dw_attr_val.v.val_die_ref.die = targ_die;
4144 attr.dw_attr_val.v.val_die_ref.external = 0;
4145 add_dwarf_attr (die, &attr);
4148 /* Change DIE reference REF to point to NEW_DIE instead. */
4150 static inline void
4151 change_AT_die_ref (dw_attr_ref ref, dw_die_ref new_die)
4153 gcc_assert (ref->dw_attr_val.val_class == dw_val_class_die_ref);
4154 ref->dw_attr_val.v.val_die_ref.die = new_die;
4155 ref->dw_attr_val.v.val_die_ref.external = 0;
4158 /* Add an AT_specification attribute to a DIE, and also make the back
4159 pointer from the specification to the definition. */
4161 static inline void
4162 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4164 add_AT_die_ref (die, DW_AT_specification, targ_die);
4165 gcc_assert (!targ_die->die_definition);
4166 targ_die->die_definition = die;
4169 static inline dw_die_ref
4170 AT_ref (dw_attr_ref a)
4172 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4173 return a->dw_attr_val.v.val_die_ref.die;
4176 static inline int
4177 AT_ref_external (dw_attr_ref a)
4179 if (a && AT_class (a) == dw_val_class_die_ref)
4180 return a->dw_attr_val.v.val_die_ref.external;
4182 return 0;
4185 static inline void
4186 set_AT_ref_external (dw_attr_ref a, int i)
4188 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4189 a->dw_attr_val.v.val_die_ref.external = i;
4192 /* Add an FDE reference attribute value to a DIE. */
4194 static inline void
4195 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4197 dw_attr_node attr;
4199 attr.dw_attr = attr_kind;
4200 attr.dw_attr_val.val_class = dw_val_class_fde_ref;
4201 attr.dw_attr_val.val_entry = NULL;
4202 attr.dw_attr_val.v.val_fde_index = targ_fde;
4203 add_dwarf_attr (die, &attr);
4206 /* Add a location description attribute value to a DIE. */
4208 static inline void
4209 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4211 dw_attr_node attr;
4213 attr.dw_attr = attr_kind;
4214 attr.dw_attr_val.val_class = dw_val_class_loc;
4215 attr.dw_attr_val.val_entry = NULL;
4216 attr.dw_attr_val.v.val_loc = loc;
4217 add_dwarf_attr (die, &attr);
4220 static inline dw_loc_descr_ref
4221 AT_loc (dw_attr_ref a)
4223 gcc_assert (a && AT_class (a) == dw_val_class_loc);
4224 return a->dw_attr_val.v.val_loc;
4227 static inline void
4228 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4230 dw_attr_node attr;
4232 attr.dw_attr = attr_kind;
4233 attr.dw_attr_val.val_class = dw_val_class_loc_list;
4234 attr.dw_attr_val.val_entry = NULL;
4235 attr.dw_attr_val.v.val_loc_list = loc_list;
4236 add_dwarf_attr (die, &attr);
4237 have_location_lists = true;
4240 static inline dw_loc_list_ref
4241 AT_loc_list (dw_attr_ref a)
4243 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
4244 return a->dw_attr_val.v.val_loc_list;
4247 static inline dw_loc_list_ref *
4248 AT_loc_list_ptr (dw_attr_ref a)
4250 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
4251 return &a->dw_attr_val.v.val_loc_list;
4254 struct addr_hasher : ggc_hasher<addr_table_entry *>
4256 static hashval_t hash (addr_table_entry *);
4257 static bool equal (addr_table_entry *, addr_table_entry *);
4260 /* Table of entries into the .debug_addr section. */
4262 static GTY (()) hash_table<addr_hasher> *addr_index_table;
4264 /* Hash an address_table_entry. */
4266 hashval_t
4267 addr_hasher::hash (addr_table_entry *a)
4269 inchash::hash hstate;
4270 switch (a->kind)
4272 case ate_kind_rtx:
4273 hstate.add_int (0);
4274 break;
4275 case ate_kind_rtx_dtprel:
4276 hstate.add_int (1);
4277 break;
4278 case ate_kind_label:
4279 return htab_hash_string (a->addr.label);
4280 default:
4281 gcc_unreachable ();
4283 inchash::add_rtx (a->addr.rtl, hstate);
4284 return hstate.end ();
4287 /* Determine equality for two address_table_entries. */
4289 bool
4290 addr_hasher::equal (addr_table_entry *a1, addr_table_entry *a2)
4292 if (a1->kind != a2->kind)
4293 return 0;
4294 switch (a1->kind)
4296 case ate_kind_rtx:
4297 case ate_kind_rtx_dtprel:
4298 return rtx_equal_p (a1->addr.rtl, a2->addr.rtl);
4299 case ate_kind_label:
4300 return strcmp (a1->addr.label, a2->addr.label) == 0;
4301 default:
4302 gcc_unreachable ();
4306 /* Initialize an addr_table_entry. */
4308 void
4309 init_addr_table_entry (addr_table_entry *e, enum ate_kind kind, void *addr)
4311 e->kind = kind;
4312 switch (kind)
4314 case ate_kind_rtx:
4315 case ate_kind_rtx_dtprel:
4316 e->addr.rtl = (rtx) addr;
4317 break;
4318 case ate_kind_label:
4319 e->addr.label = (char *) addr;
4320 break;
4322 e->refcount = 0;
4323 e->index = NO_INDEX_ASSIGNED;
4326 /* Add attr to the address table entry to the table. Defer setting an
4327 index until output time. */
4329 static addr_table_entry *
4330 add_addr_table_entry (void *addr, enum ate_kind kind)
4332 addr_table_entry *node;
4333 addr_table_entry finder;
4335 gcc_assert (dwarf_split_debug_info);
4336 if (! addr_index_table)
4337 addr_index_table = hash_table<addr_hasher>::create_ggc (10);
4338 init_addr_table_entry (&finder, kind, addr);
4339 addr_table_entry **slot = addr_index_table->find_slot (&finder, INSERT);
4341 if (*slot == HTAB_EMPTY_ENTRY)
4343 node = ggc_cleared_alloc<addr_table_entry> ();
4344 init_addr_table_entry (node, kind, addr);
4345 *slot = node;
4347 else
4348 node = *slot;
4350 node->refcount++;
4351 return node;
4354 /* Remove an entry from the addr table by decrementing its refcount.
4355 Strictly, decrementing the refcount would be enough, but the
4356 assertion that the entry is actually in the table has found
4357 bugs. */
4359 static void
4360 remove_addr_table_entry (addr_table_entry *entry)
4362 gcc_assert (dwarf_split_debug_info && addr_index_table);
4363 /* After an index is assigned, the table is frozen. */
4364 gcc_assert (entry->refcount > 0 && entry->index == NO_INDEX_ASSIGNED);
4365 entry->refcount--;
4368 /* Given a location list, remove all addresses it refers to from the
4369 address_table. */
4371 static void
4372 remove_loc_list_addr_table_entries (dw_loc_descr_ref descr)
4374 for (; descr; descr = descr->dw_loc_next)
4375 if (descr->dw_loc_oprnd1.val_entry != NULL)
4377 gcc_assert (descr->dw_loc_oprnd1.val_entry->index == NO_INDEX_ASSIGNED);
4378 remove_addr_table_entry (descr->dw_loc_oprnd1.val_entry);
4382 /* A helper function for dwarf2out_finish called through
4383 htab_traverse. Assign an addr_table_entry its index. All entries
4384 must be collected into the table when this function is called,
4385 because the indexing code relies on htab_traverse to traverse nodes
4386 in the same order for each run. */
4389 index_addr_table_entry (addr_table_entry **h, unsigned int *index)
4391 addr_table_entry *node = *h;
4393 /* Don't index unreferenced nodes. */
4394 if (node->refcount == 0)
4395 return 1;
4397 gcc_assert (node->index == NO_INDEX_ASSIGNED);
4398 node->index = *index;
4399 *index += 1;
4401 return 1;
4404 /* Add an address constant attribute value to a DIE. When using
4405 dwarf_split_debug_info, address attributes in dies destined for the
4406 final executable should be direct references--setting the parameter
4407 force_direct ensures this behavior. */
4409 static inline void
4410 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr,
4411 bool force_direct)
4413 dw_attr_node attr;
4415 attr.dw_attr = attr_kind;
4416 attr.dw_attr_val.val_class = dw_val_class_addr;
4417 attr.dw_attr_val.v.val_addr = addr;
4418 if (dwarf_split_debug_info && !force_direct)
4419 attr.dw_attr_val.val_entry = add_addr_table_entry (addr, ate_kind_rtx);
4420 else
4421 attr.dw_attr_val.val_entry = NULL;
4422 add_dwarf_attr (die, &attr);
4425 /* Get the RTX from to an address DIE attribute. */
4427 static inline rtx
4428 AT_addr (dw_attr_ref a)
4430 gcc_assert (a && AT_class (a) == dw_val_class_addr);
4431 return a->dw_attr_val.v.val_addr;
4434 /* Add a file attribute value to a DIE. */
4436 static inline void
4437 add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
4438 struct dwarf_file_data *fd)
4440 dw_attr_node attr;
4442 attr.dw_attr = attr_kind;
4443 attr.dw_attr_val.val_class = dw_val_class_file;
4444 attr.dw_attr_val.val_entry = NULL;
4445 attr.dw_attr_val.v.val_file = fd;
4446 add_dwarf_attr (die, &attr);
4449 /* Get the dwarf_file_data from a file DIE attribute. */
4451 static inline struct dwarf_file_data *
4452 AT_file (dw_attr_ref a)
4454 gcc_assert (a && AT_class (a) == dw_val_class_file);
4455 return a->dw_attr_val.v.val_file;
4458 /* Add a vms delta attribute value to a DIE. */
4460 static inline void
4461 add_AT_vms_delta (dw_die_ref die, enum dwarf_attribute attr_kind,
4462 const char *lbl1, const char *lbl2)
4464 dw_attr_node attr;
4466 attr.dw_attr = attr_kind;
4467 attr.dw_attr_val.val_class = dw_val_class_vms_delta;
4468 attr.dw_attr_val.val_entry = NULL;
4469 attr.dw_attr_val.v.val_vms_delta.lbl1 = xstrdup (lbl1);
4470 attr.dw_attr_val.v.val_vms_delta.lbl2 = xstrdup (lbl2);
4471 add_dwarf_attr (die, &attr);
4474 /* Add a label identifier attribute value to a DIE. */
4476 static inline void
4477 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind,
4478 const char *lbl_id)
4480 dw_attr_node attr;
4482 attr.dw_attr = attr_kind;
4483 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
4484 attr.dw_attr_val.val_entry = NULL;
4485 attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4486 if (dwarf_split_debug_info)
4487 attr.dw_attr_val.val_entry
4488 = add_addr_table_entry (attr.dw_attr_val.v.val_lbl_id,
4489 ate_kind_label);
4490 add_dwarf_attr (die, &attr);
4493 /* Add a section offset attribute value to a DIE, an offset into the
4494 debug_line section. */
4496 static inline void
4497 add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
4498 const char *label)
4500 dw_attr_node attr;
4502 attr.dw_attr = attr_kind;
4503 attr.dw_attr_val.val_class = dw_val_class_lineptr;
4504 attr.dw_attr_val.val_entry = NULL;
4505 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
4506 add_dwarf_attr (die, &attr);
4509 /* Add a section offset attribute value to a DIE, an offset into the
4510 debug_macinfo section. */
4512 static inline void
4513 add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
4514 const char *label)
4516 dw_attr_node attr;
4518 attr.dw_attr = attr_kind;
4519 attr.dw_attr_val.val_class = dw_val_class_macptr;
4520 attr.dw_attr_val.val_entry = NULL;
4521 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
4522 add_dwarf_attr (die, &attr);
4525 /* Add an offset attribute value to a DIE. */
4527 static inline void
4528 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
4529 unsigned HOST_WIDE_INT offset)
4531 dw_attr_node attr;
4533 attr.dw_attr = attr_kind;
4534 attr.dw_attr_val.val_class = dw_val_class_offset;
4535 attr.dw_attr_val.val_entry = NULL;
4536 attr.dw_attr_val.v.val_offset = offset;
4537 add_dwarf_attr (die, &attr);
4540 /* Add a range_list attribute value to a DIE. When using
4541 dwarf_split_debug_info, address attributes in dies destined for the
4542 final executable should be direct references--setting the parameter
4543 force_direct ensures this behavior. */
4545 #define UNRELOCATED_OFFSET ((addr_table_entry *) 1)
4546 #define RELOCATED_OFFSET (NULL)
4548 static void
4549 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
4550 long unsigned int offset, bool force_direct)
4552 dw_attr_node attr;
4554 attr.dw_attr = attr_kind;
4555 attr.dw_attr_val.val_class = dw_val_class_range_list;
4556 /* For the range_list attribute, use val_entry to store whether the
4557 offset should follow split-debug-info or normal semantics. This
4558 value is read in output_range_list_offset. */
4559 if (dwarf_split_debug_info && !force_direct)
4560 attr.dw_attr_val.val_entry = UNRELOCATED_OFFSET;
4561 else
4562 attr.dw_attr_val.val_entry = RELOCATED_OFFSET;
4563 attr.dw_attr_val.v.val_offset = offset;
4564 add_dwarf_attr (die, &attr);
4567 /* Return the start label of a delta attribute. */
4569 static inline const char *
4570 AT_vms_delta1 (dw_attr_ref a)
4572 gcc_assert (a && (AT_class (a) == dw_val_class_vms_delta));
4573 return a->dw_attr_val.v.val_vms_delta.lbl1;
4576 /* Return the end label of a delta attribute. */
4578 static inline const char *
4579 AT_vms_delta2 (dw_attr_ref a)
4581 gcc_assert (a && (AT_class (a) == dw_val_class_vms_delta));
4582 return a->dw_attr_val.v.val_vms_delta.lbl2;
4585 static inline const char *
4586 AT_lbl (dw_attr_ref a)
4588 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
4589 || AT_class (a) == dw_val_class_lineptr
4590 || AT_class (a) == dw_val_class_macptr
4591 || AT_class (a) == dw_val_class_high_pc));
4592 return a->dw_attr_val.v.val_lbl_id;
4595 /* Get the attribute of type attr_kind. */
4597 static dw_attr_ref
4598 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4600 dw_attr_ref a;
4601 unsigned ix;
4602 dw_die_ref spec = NULL;
4604 if (! die)
4605 return NULL;
4607 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
4608 if (a->dw_attr == attr_kind)
4609 return a;
4610 else if (a->dw_attr == DW_AT_specification
4611 || a->dw_attr == DW_AT_abstract_origin)
4612 spec = AT_ref (a);
4614 if (spec)
4615 return get_AT (spec, attr_kind);
4617 return NULL;
4620 /* Returns the parent of the declaration of DIE. */
4622 static dw_die_ref
4623 get_die_parent (dw_die_ref die)
4625 dw_die_ref t;
4627 if (!die)
4628 return NULL;
4630 if ((t = get_AT_ref (die, DW_AT_abstract_origin))
4631 || (t = get_AT_ref (die, DW_AT_specification)))
4632 die = t;
4634 return die->die_parent;
4637 /* Return the "low pc" attribute value, typically associated with a subprogram
4638 DIE. Return null if the "low pc" attribute is either not present, or if it
4639 cannot be represented as an assembler label identifier. */
4641 static inline const char *
4642 get_AT_low_pc (dw_die_ref die)
4644 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
4646 return a ? AT_lbl (a) : NULL;
4649 /* Return the "high pc" attribute value, typically associated with a subprogram
4650 DIE. Return null if the "high pc" attribute is either not present, or if it
4651 cannot be represented as an assembler label identifier. */
4653 static inline const char *
4654 get_AT_hi_pc (dw_die_ref die)
4656 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
4658 return a ? AT_lbl (a) : NULL;
4661 /* Return the value of the string attribute designated by ATTR_KIND, or
4662 NULL if it is not present. */
4664 static inline const char *
4665 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
4667 dw_attr_ref a = get_AT (die, attr_kind);
4669 return a ? AT_string (a) : NULL;
4672 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
4673 if it is not present. */
4675 static inline int
4676 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
4678 dw_attr_ref a = get_AT (die, attr_kind);
4680 return a ? AT_flag (a) : 0;
4683 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4684 if it is not present. */
4686 static inline unsigned
4687 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
4689 dw_attr_ref a = get_AT (die, attr_kind);
4691 return a ? AT_unsigned (a) : 0;
4694 static inline dw_die_ref
4695 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
4697 dw_attr_ref a = get_AT (die, attr_kind);
4699 return a ? AT_ref (a) : NULL;
4702 static inline struct dwarf_file_data *
4703 get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
4705 dw_attr_ref a = get_AT (die, attr_kind);
4707 return a ? AT_file (a) : NULL;
4710 /* Return TRUE if the language is C++. */
4712 static inline bool
4713 is_cxx (void)
4715 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
4717 return (lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus
4718 || lang == DW_LANG_C_plus_plus_11 || lang == DW_LANG_C_plus_plus_14);
4721 /* Return TRUE if the language is Java. */
4723 static inline bool
4724 is_java (void)
4726 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
4728 return lang == DW_LANG_Java;
4731 /* Return TRUE if the language is Fortran. */
4733 static inline bool
4734 is_fortran (void)
4736 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
4738 return (lang == DW_LANG_Fortran77
4739 || lang == DW_LANG_Fortran90
4740 || lang == DW_LANG_Fortran95
4741 || lang == DW_LANG_Fortran03
4742 || lang == DW_LANG_Fortran08);
4745 /* Return TRUE if the language is Ada. */
4747 static inline bool
4748 is_ada (void)
4750 unsigned int lang = get_AT_unsigned (comp_unit_die (), DW_AT_language);
4752 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
4755 /* Remove the specified attribute if present. */
4757 static void
4758 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4760 dw_attr_ref a;
4761 unsigned ix;
4763 if (! die)
4764 return;
4766 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
4767 if (a->dw_attr == attr_kind)
4769 if (AT_class (a) == dw_val_class_str)
4770 if (a->dw_attr_val.v.val_str->refcount)
4771 a->dw_attr_val.v.val_str->refcount--;
4773 /* vec::ordered_remove should help reduce the number of abbrevs
4774 that are needed. */
4775 die->die_attr->ordered_remove (ix);
4776 return;
4780 /* Remove CHILD from its parent. PREV must have the property that
4781 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
4783 static void
4784 remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
4786 gcc_assert (child->die_parent == prev->die_parent);
4787 gcc_assert (prev->die_sib == child);
4788 if (prev == child)
4790 gcc_assert (child->die_parent->die_child == child);
4791 prev = NULL;
4793 else
4794 prev->die_sib = child->die_sib;
4795 if (child->die_parent->die_child == child)
4796 child->die_parent->die_child = prev;
4799 /* Replace OLD_CHILD with NEW_CHILD. PREV must have the property that
4800 PREV->DIE_SIB == OLD_CHILD. Does not alter OLD_CHILD. */
4802 static void
4803 replace_child (dw_die_ref old_child, dw_die_ref new_child, dw_die_ref prev)
4805 dw_die_ref parent = old_child->die_parent;
4807 gcc_assert (parent == prev->die_parent);
4808 gcc_assert (prev->die_sib == old_child);
4810 new_child->die_parent = parent;
4811 if (prev == old_child)
4813 gcc_assert (parent->die_child == old_child);
4814 new_child->die_sib = new_child;
4816 else
4818 prev->die_sib = new_child;
4819 new_child->die_sib = old_child->die_sib;
4821 if (old_child->die_parent->die_child == old_child)
4822 old_child->die_parent->die_child = new_child;
4825 /* Move all children from OLD_PARENT to NEW_PARENT. */
4827 static void
4828 move_all_children (dw_die_ref old_parent, dw_die_ref new_parent)
4830 dw_die_ref c;
4831 new_parent->die_child = old_parent->die_child;
4832 old_parent->die_child = NULL;
4833 FOR_EACH_CHILD (new_parent, c, c->die_parent = new_parent);
4836 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
4837 matches TAG. */
4839 static void
4840 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
4842 dw_die_ref c;
4844 c = die->die_child;
4845 if (c) do {
4846 dw_die_ref prev = c;
4847 c = c->die_sib;
4848 while (c->die_tag == tag)
4850 remove_child_with_prev (c, prev);
4851 /* Might have removed every child. */
4852 if (c == c->die_sib)
4853 return;
4854 c = c->die_sib;
4856 } while (c != die->die_child);
4859 /* Add a CHILD_DIE as the last child of DIE. */
4861 static void
4862 add_child_die (dw_die_ref die, dw_die_ref child_die)
4864 /* FIXME this should probably be an assert. */
4865 if (! die || ! child_die)
4866 return;
4867 gcc_assert (die != child_die);
4869 child_die->die_parent = die;
4870 if (die->die_child)
4872 child_die->die_sib = die->die_child->die_sib;
4873 die->die_child->die_sib = child_die;
4875 else
4876 child_die->die_sib = child_die;
4877 die->die_child = child_die;
4880 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
4881 is the specification, to the end of PARENT's list of children.
4882 This is done by removing and re-adding it. */
4884 static void
4885 splice_child_die (dw_die_ref parent, dw_die_ref child)
4887 dw_die_ref p;
4889 /* We want the declaration DIE from inside the class, not the
4890 specification DIE at toplevel. */
4891 if (child->die_parent != parent)
4893 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
4895 if (tmp)
4896 child = tmp;
4899 gcc_assert (child->die_parent == parent
4900 || (child->die_parent
4901 == get_AT_ref (parent, DW_AT_specification)));
4903 for (p = child->die_parent->die_child; ; p = p->die_sib)
4904 if (p->die_sib == child)
4906 remove_child_with_prev (child, p);
4907 break;
4910 add_child_die (parent, child);
4913 /* Return a pointer to a newly created DIE node. */
4915 static inline dw_die_ref
4916 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
4918 dw_die_ref die = ggc_cleared_alloc<die_node> ();
4920 die->die_tag = tag_value;
4922 if (parent_die != NULL)
4923 add_child_die (parent_die, die);
4924 else
4926 limbo_die_node *limbo_node;
4928 limbo_node = ggc_cleared_alloc<limbo_die_node> ();
4929 limbo_node->die = die;
4930 limbo_node->created_for = t;
4931 limbo_node->next = limbo_die_list;
4932 limbo_die_list = limbo_node;
4935 return die;
4938 /* Return the DIE associated with the given type specifier. */
4940 static inline dw_die_ref
4941 lookup_type_die (tree type)
4943 return TYPE_SYMTAB_DIE (type);
4946 /* Given a TYPE_DIE representing the type TYPE, if TYPE is an
4947 anonymous type named by the typedef TYPE_DIE, return the DIE of the
4948 anonymous type instead the one of the naming typedef. */
4950 static inline dw_die_ref
4951 strip_naming_typedef (tree type, dw_die_ref type_die)
4953 if (type
4954 && TREE_CODE (type) == RECORD_TYPE
4955 && type_die
4956 && type_die->die_tag == DW_TAG_typedef
4957 && is_naming_typedef_decl (TYPE_NAME (type)))
4958 type_die = get_AT_ref (type_die, DW_AT_type);
4959 return type_die;
4962 /* Like lookup_type_die, but if type is an anonymous type named by a
4963 typedef[1], return the DIE of the anonymous type instead the one of
4964 the naming typedef. This is because in gen_typedef_die, we did
4965 equate the anonymous struct named by the typedef with the DIE of
4966 the naming typedef. So by default, lookup_type_die on an anonymous
4967 struct yields the DIE of the naming typedef.
4969 [1]: Read the comment of is_naming_typedef_decl to learn about what
4970 a naming typedef is. */
4972 static inline dw_die_ref
4973 lookup_type_die_strip_naming_typedef (tree type)
4975 dw_die_ref die = lookup_type_die (type);
4976 return strip_naming_typedef (type, die);
4979 /* Equate a DIE to a given type specifier. */
4981 static inline void
4982 equate_type_number_to_die (tree type, dw_die_ref type_die)
4984 TYPE_SYMTAB_DIE (type) = type_die;
4987 /* Returns a hash value for X (which really is a die_struct). */
4989 inline hashval_t
4990 decl_die_hasher::hash (die_node *x)
4992 return (hashval_t) x->decl_id;
4995 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
4997 inline bool
4998 decl_die_hasher::equal (die_node *x, tree y)
5000 return (x->decl_id == DECL_UID (y));
5003 /* Return the DIE associated with a given declaration. */
5005 static inline dw_die_ref
5006 lookup_decl_die (tree decl)
5008 return decl_die_table->find_with_hash (decl, DECL_UID (decl));
5011 /* Returns a hash value for X (which really is a var_loc_list). */
5013 inline hashval_t
5014 decl_loc_hasher::hash (var_loc_list *x)
5016 return (hashval_t) x->decl_id;
5019 /* Return nonzero if decl_id of var_loc_list X is the same as
5020 UID of decl *Y. */
5022 inline bool
5023 decl_loc_hasher::equal (var_loc_list *x, const_tree y)
5025 return (x->decl_id == DECL_UID (y));
5028 /* Return the var_loc list associated with a given declaration. */
5030 static inline var_loc_list *
5031 lookup_decl_loc (const_tree decl)
5033 if (!decl_loc_table)
5034 return NULL;
5035 return decl_loc_table->find_with_hash (decl, DECL_UID (decl));
5038 /* Returns a hash value for X (which really is a cached_dw_loc_list_list). */
5040 inline hashval_t
5041 dw_loc_list_hasher::hash (cached_dw_loc_list *x)
5043 return (hashval_t) x->decl_id;
5046 /* Return nonzero if decl_id of cached_dw_loc_list X is the same as
5047 UID of decl *Y. */
5049 inline bool
5050 dw_loc_list_hasher::equal (cached_dw_loc_list *x, const_tree y)
5052 return (x->decl_id == DECL_UID (y));
5055 /* Equate a DIE to a particular declaration. */
5057 static void
5058 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5060 unsigned int decl_id = DECL_UID (decl);
5062 *decl_die_table->find_slot_with_hash (decl, decl_id, INSERT) = decl_die;
5063 decl_die->decl_id = decl_id;
5066 /* Return how many bits covers PIECE EXPR_LIST. */
5068 static HOST_WIDE_INT
5069 decl_piece_bitsize (rtx piece)
5071 int ret = (int) GET_MODE (piece);
5072 if (ret)
5073 return ret;
5074 gcc_assert (GET_CODE (XEXP (piece, 0)) == CONCAT
5075 && CONST_INT_P (XEXP (XEXP (piece, 0), 0)));
5076 return INTVAL (XEXP (XEXP (piece, 0), 0));
5079 /* Return pointer to the location of location note in PIECE EXPR_LIST. */
5081 static rtx *
5082 decl_piece_varloc_ptr (rtx piece)
5084 if ((int) GET_MODE (piece))
5085 return &XEXP (piece, 0);
5086 else
5087 return &XEXP (XEXP (piece, 0), 1);
5090 /* Create an EXPR_LIST for location note LOC_NOTE covering BITSIZE bits.
5091 Next is the chain of following piece nodes. */
5093 static rtx_expr_list *
5094 decl_piece_node (rtx loc_note, HOST_WIDE_INT bitsize, rtx next)
5096 if (bitsize > 0 && bitsize <= (int) MAX_MACHINE_MODE)
5097 return alloc_EXPR_LIST (bitsize, loc_note, next);
5098 else
5099 return alloc_EXPR_LIST (0, gen_rtx_CONCAT (VOIDmode,
5100 GEN_INT (bitsize),
5101 loc_note), next);
5104 /* Return rtx that should be stored into loc field for
5105 LOC_NOTE and BITPOS/BITSIZE. */
5107 static rtx
5108 construct_piece_list (rtx loc_note, HOST_WIDE_INT bitpos,
5109 HOST_WIDE_INT bitsize)
5111 if (bitsize != -1)
5113 loc_note = decl_piece_node (loc_note, bitsize, NULL_RTX);
5114 if (bitpos != 0)
5115 loc_note = decl_piece_node (NULL_RTX, bitpos, loc_note);
5117 return loc_note;
5120 /* This function either modifies location piece list *DEST in
5121 place (if SRC and INNER is NULL), or copies location piece list
5122 *SRC to *DEST while modifying it. Location BITPOS is modified
5123 to contain LOC_NOTE, any pieces overlapping it are removed resp.
5124 not copied and if needed some padding around it is added.
5125 When modifying in place, DEST should point to EXPR_LIST where
5126 earlier pieces cover PIECE_BITPOS bits, when copying SRC points
5127 to the start of the whole list and INNER points to the EXPR_LIST
5128 where earlier pieces cover PIECE_BITPOS bits. */
5130 static void
5131 adjust_piece_list (rtx *dest, rtx *src, rtx *inner,
5132 HOST_WIDE_INT bitpos, HOST_WIDE_INT piece_bitpos,
5133 HOST_WIDE_INT bitsize, rtx loc_note)
5135 HOST_WIDE_INT diff;
5136 bool copy = inner != NULL;
5138 if (copy)
5140 /* First copy all nodes preceding the current bitpos. */
5141 while (src != inner)
5143 *dest = decl_piece_node (*decl_piece_varloc_ptr (*src),
5144 decl_piece_bitsize (*src), NULL_RTX);
5145 dest = &XEXP (*dest, 1);
5146 src = &XEXP (*src, 1);
5149 /* Add padding if needed. */
5150 if (bitpos != piece_bitpos)
5152 *dest = decl_piece_node (NULL_RTX, bitpos - piece_bitpos,
5153 copy ? NULL_RTX : *dest);
5154 dest = &XEXP (*dest, 1);
5156 else if (*dest && decl_piece_bitsize (*dest) == bitsize)
5158 gcc_assert (!copy);
5159 /* A piece with correct bitpos and bitsize already exist,
5160 just update the location for it and return. */
5161 *decl_piece_varloc_ptr (*dest) = loc_note;
5162 return;
5164 /* Add the piece that changed. */
5165 *dest = decl_piece_node (loc_note, bitsize, copy ? NULL_RTX : *dest);
5166 dest = &XEXP (*dest, 1);
5167 /* Skip over pieces that overlap it. */
5168 diff = bitpos - piece_bitpos + bitsize;
5169 if (!copy)
5170 src = dest;
5171 while (diff > 0 && *src)
5173 rtx piece = *src;
5174 diff -= decl_piece_bitsize (piece);
5175 if (copy)
5176 src = &XEXP (piece, 1);
5177 else
5179 *src = XEXP (piece, 1);
5180 free_EXPR_LIST_node (piece);
5183 /* Add padding if needed. */
5184 if (diff < 0 && *src)
5186 if (!copy)
5187 dest = src;
5188 *dest = decl_piece_node (NULL_RTX, -diff, copy ? NULL_RTX : *dest);
5189 dest = &XEXP (*dest, 1);
5191 if (!copy)
5192 return;
5193 /* Finally copy all nodes following it. */
5194 while (*src)
5196 *dest = decl_piece_node (*decl_piece_varloc_ptr (*src),
5197 decl_piece_bitsize (*src), NULL_RTX);
5198 dest = &XEXP (*dest, 1);
5199 src = &XEXP (*src, 1);
5203 /* Add a variable location node to the linked list for DECL. */
5205 static struct var_loc_node *
5206 add_var_loc_to_decl (tree decl, rtx loc_note, const char *label)
5208 unsigned int decl_id;
5209 var_loc_list *temp;
5210 struct var_loc_node *loc = NULL;
5211 HOST_WIDE_INT bitsize = -1, bitpos = -1;
5213 if (TREE_CODE (decl) == VAR_DECL
5214 && DECL_HAS_DEBUG_EXPR_P (decl))
5216 tree realdecl = DECL_DEBUG_EXPR (decl);
5217 if (handled_component_p (realdecl)
5218 || (TREE_CODE (realdecl) == MEM_REF
5219 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5221 HOST_WIDE_INT maxsize;
5222 tree innerdecl;
5223 innerdecl
5224 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize, &maxsize);
5225 if (!DECL_P (innerdecl)
5226 || DECL_IGNORED_P (innerdecl)
5227 || TREE_STATIC (innerdecl)
5228 || bitsize <= 0
5229 || bitpos + bitsize > 256
5230 || bitsize != maxsize)
5231 return NULL;
5232 decl = innerdecl;
5236 decl_id = DECL_UID (decl);
5237 var_loc_list **slot
5238 = decl_loc_table->find_slot_with_hash (decl, decl_id, INSERT);
5239 if (*slot == NULL)
5241 temp = ggc_cleared_alloc<var_loc_list> ();
5242 temp->decl_id = decl_id;
5243 *slot = temp;
5245 else
5246 temp = *slot;
5248 /* For PARM_DECLs try to keep around the original incoming value,
5249 even if that means we'll emit a zero-range .debug_loc entry. */
5250 if (temp->last
5251 && temp->first == temp->last
5252 && TREE_CODE (decl) == PARM_DECL
5253 && NOTE_P (temp->first->loc)
5254 && NOTE_VAR_LOCATION_DECL (temp->first->loc) == decl
5255 && DECL_INCOMING_RTL (decl)
5256 && NOTE_VAR_LOCATION_LOC (temp->first->loc)
5257 && GET_CODE (NOTE_VAR_LOCATION_LOC (temp->first->loc))
5258 == GET_CODE (DECL_INCOMING_RTL (decl))
5259 && prev_real_insn (temp->first->loc) == NULL_RTX
5260 && (bitsize != -1
5261 || !rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->first->loc),
5262 NOTE_VAR_LOCATION_LOC (loc_note))
5263 || (NOTE_VAR_LOCATION_STATUS (temp->first->loc)
5264 != NOTE_VAR_LOCATION_STATUS (loc_note))))
5266 loc = ggc_cleared_alloc<var_loc_node> ();
5267 temp->first->next = loc;
5268 temp->last = loc;
5269 loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
5271 else if (temp->last)
5273 struct var_loc_node *last = temp->last, *unused = NULL;
5274 rtx *piece_loc = NULL, last_loc_note;
5275 HOST_WIDE_INT piece_bitpos = 0;
5276 if (last->next)
5278 last = last->next;
5279 gcc_assert (last->next == NULL);
5281 if (bitsize != -1 && GET_CODE (last->loc) == EXPR_LIST)
5283 piece_loc = &last->loc;
5286 HOST_WIDE_INT cur_bitsize = decl_piece_bitsize (*piece_loc);
5287 if (piece_bitpos + cur_bitsize > bitpos)
5288 break;
5289 piece_bitpos += cur_bitsize;
5290 piece_loc = &XEXP (*piece_loc, 1);
5292 while (*piece_loc);
5294 /* TEMP->LAST here is either pointer to the last but one or
5295 last element in the chained list, LAST is pointer to the
5296 last element. */
5297 if (label && strcmp (last->label, label) == 0)
5299 /* For SRA optimized variables if there weren't any real
5300 insns since last note, just modify the last node. */
5301 if (piece_loc != NULL)
5303 adjust_piece_list (piece_loc, NULL, NULL,
5304 bitpos, piece_bitpos, bitsize, loc_note);
5305 return NULL;
5307 /* If the last note doesn't cover any instructions, remove it. */
5308 if (temp->last != last)
5310 temp->last->next = NULL;
5311 unused = last;
5312 last = temp->last;
5313 gcc_assert (strcmp (last->label, label) != 0);
5315 else
5317 gcc_assert (temp->first == temp->last
5318 || (temp->first->next == temp->last
5319 && TREE_CODE (decl) == PARM_DECL));
5320 memset (temp->last, '\0', sizeof (*temp->last));
5321 temp->last->loc = construct_piece_list (loc_note, bitpos, bitsize);
5322 return temp->last;
5325 if (bitsize == -1 && NOTE_P (last->loc))
5326 last_loc_note = last->loc;
5327 else if (piece_loc != NULL
5328 && *piece_loc != NULL_RTX
5329 && piece_bitpos == bitpos
5330 && decl_piece_bitsize (*piece_loc) == bitsize)
5331 last_loc_note = *decl_piece_varloc_ptr (*piece_loc);
5332 else
5333 last_loc_note = NULL_RTX;
5334 /* If the current location is the same as the end of the list,
5335 and either both or neither of the locations is uninitialized,
5336 we have nothing to do. */
5337 if (last_loc_note == NULL_RTX
5338 || (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (last_loc_note),
5339 NOTE_VAR_LOCATION_LOC (loc_note)))
5340 || ((NOTE_VAR_LOCATION_STATUS (last_loc_note)
5341 != NOTE_VAR_LOCATION_STATUS (loc_note))
5342 && ((NOTE_VAR_LOCATION_STATUS (last_loc_note)
5343 == VAR_INIT_STATUS_UNINITIALIZED)
5344 || (NOTE_VAR_LOCATION_STATUS (loc_note)
5345 == VAR_INIT_STATUS_UNINITIALIZED))))
5347 /* Add LOC to the end of list and update LAST. If the last
5348 element of the list has been removed above, reuse its
5349 memory for the new node, otherwise allocate a new one. */
5350 if (unused)
5352 loc = unused;
5353 memset (loc, '\0', sizeof (*loc));
5355 else
5356 loc = ggc_cleared_alloc<var_loc_node> ();
5357 if (bitsize == -1 || piece_loc == NULL)
5358 loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
5359 else
5360 adjust_piece_list (&loc->loc, &last->loc, piece_loc,
5361 bitpos, piece_bitpos, bitsize, loc_note);
5362 last->next = loc;
5363 /* Ensure TEMP->LAST will point either to the new last but one
5364 element of the chain, or to the last element in it. */
5365 if (last != temp->last)
5366 temp->last = last;
5368 else if (unused)
5369 ggc_free (unused);
5371 else
5373 loc = ggc_cleared_alloc<var_loc_node> ();
5374 temp->first = loc;
5375 temp->last = loc;
5376 loc->loc = construct_piece_list (loc_note, bitpos, bitsize);
5378 return loc;
5381 /* Keep track of the number of spaces used to indent the
5382 output of the debugging routines that print the structure of
5383 the DIE internal representation. */
5384 static int print_indent;
5386 /* Indent the line the number of spaces given by print_indent. */
5388 static inline void
5389 print_spaces (FILE *outfile)
5391 fprintf (outfile, "%*s", print_indent, "");
5394 /* Print a type signature in hex. */
5396 static inline void
5397 print_signature (FILE *outfile, char *sig)
5399 int i;
5401 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
5402 fprintf (outfile, "%02x", sig[i] & 0xff);
5405 static void print_loc_descr (dw_loc_descr_ref, FILE *);
5407 /* Print the value associated to the VAL DWARF value node to OUTFILE. If
5408 RECURSE, output location descriptor operations. */
5410 static void
5411 print_dw_val (dw_val_node *val, bool recurse, FILE *outfile)
5413 switch (val->val_class)
5415 case dw_val_class_addr:
5416 fprintf (outfile, "address");
5417 break;
5418 case dw_val_class_offset:
5419 fprintf (outfile, "offset");
5420 break;
5421 case dw_val_class_loc:
5422 fprintf (outfile, "location descriptor");
5423 if (val->v.val_loc == NULL)
5424 fprintf (outfile, " -> <null>\n");
5425 else if (recurse)
5427 fprintf (outfile, ":\n");
5428 print_indent += 4;
5429 print_loc_descr (val->v.val_loc, outfile);
5430 print_indent -= 4;
5432 else
5433 fprintf (outfile, " (%p)\n", (void *) val->v.val_loc);
5434 break;
5435 case dw_val_class_loc_list:
5436 fprintf (outfile, "location list -> label:%s",
5437 val->v.val_loc_list->ll_symbol);
5438 break;
5439 case dw_val_class_range_list:
5440 fprintf (outfile, "range list");
5441 break;
5442 case dw_val_class_const:
5443 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, val->v.val_int);
5444 break;
5445 case dw_val_class_unsigned_const:
5446 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, val->v.val_unsigned);
5447 break;
5448 case dw_val_class_const_double:
5449 fprintf (outfile, "constant (" HOST_WIDE_INT_PRINT_DEC","\
5450 HOST_WIDE_INT_PRINT_UNSIGNED")",
5451 val->v.val_double.high,
5452 val->v.val_double.low);
5453 break;
5454 case dw_val_class_wide_int:
5456 int i = val->v.val_wide->get_len ();
5457 fprintf (outfile, "constant (");
5458 gcc_assert (i > 0);
5459 if (val->v.val_wide->elt (i - 1) == 0)
5460 fprintf (outfile, "0x");
5461 fprintf (outfile, HOST_WIDE_INT_PRINT_HEX,
5462 val->v.val_wide->elt (--i));
5463 while (--i >= 0)
5464 fprintf (outfile, HOST_WIDE_INT_PRINT_PADDED_HEX,
5465 val->v.val_wide->elt (i));
5466 fprintf (outfile, ")");
5467 break;
5469 case dw_val_class_vec:
5470 fprintf (outfile, "floating-point or vector constant");
5471 break;
5472 case dw_val_class_flag:
5473 fprintf (outfile, "%u", val->v.val_flag);
5474 break;
5475 case dw_val_class_die_ref:
5476 if (val->v.val_die_ref.die != NULL)
5478 dw_die_ref die = val->v.val_die_ref.die;
5480 if (die->comdat_type_p)
5482 fprintf (outfile, "die -> signature: ");
5483 print_signature (outfile,
5484 die->die_id.die_type_node->signature);
5486 else if (die->die_id.die_symbol)
5487 fprintf (outfile, "die -> label: %s", die->die_id.die_symbol);
5488 else
5489 fprintf (outfile, "die -> %ld", die->die_offset);
5490 fprintf (outfile, " (%p)", (void *) die);
5492 else
5493 fprintf (outfile, "die -> <null>");
5494 break;
5495 case dw_val_class_vms_delta:
5496 fprintf (outfile, "delta: @slotcount(%s-%s)",
5497 val->v.val_vms_delta.lbl2, val->v.val_vms_delta.lbl1);
5498 break;
5499 case dw_val_class_lbl_id:
5500 case dw_val_class_lineptr:
5501 case dw_val_class_macptr:
5502 case dw_val_class_high_pc:
5503 fprintf (outfile, "label: %s", val->v.val_lbl_id);
5504 break;
5505 case dw_val_class_str:
5506 if (val->v.val_str->str != NULL)
5507 fprintf (outfile, "\"%s\"", val->v.val_str->str);
5508 else
5509 fprintf (outfile, "<null>");
5510 break;
5511 case dw_val_class_file:
5512 fprintf (outfile, "\"%s\" (%d)", val->v.val_file->filename,
5513 val->v.val_file->emitted_number);
5514 break;
5515 case dw_val_class_data8:
5517 int i;
5519 for (i = 0; i < 8; i++)
5520 fprintf (outfile, "%02x", val->v.val_data8[i]);
5521 break;
5523 default:
5524 break;
5528 /* Likewise, for a DIE attribute. */
5530 static void
5531 print_attribute (dw_attr_ref a, bool recurse, FILE *outfile)
5533 print_dw_val (&a->dw_attr_val, recurse, outfile);
5537 /* Print the list of operands in the LOC location description to OUTFILE. This
5538 routine is a debugging aid only. */
5540 static void
5541 print_loc_descr (dw_loc_descr_ref loc, FILE *outfile)
5543 dw_loc_descr_ref l = loc;
5545 if (loc == NULL)
5547 print_spaces (outfile);
5548 fprintf (outfile, "<null>\n");
5549 return;
5552 for (l = loc; l != NULL; l = l->dw_loc_next)
5554 print_spaces (outfile);
5555 fprintf (outfile, "(%p) %s",
5556 (void *) l,
5557 dwarf_stack_op_name (l->dw_loc_opc));
5558 if (l->dw_loc_oprnd1.val_class != dw_val_class_none)
5560 fprintf (outfile, " ");
5561 print_dw_val (&l->dw_loc_oprnd1, false, outfile);
5563 if (l->dw_loc_oprnd2.val_class != dw_val_class_none)
5565 fprintf (outfile, ", ");
5566 print_dw_val (&l->dw_loc_oprnd2, false, outfile);
5568 fprintf (outfile, "\n");
5572 /* Print the information associated with a given DIE, and its children.
5573 This routine is a debugging aid only. */
5575 static void
5576 print_die (dw_die_ref die, FILE *outfile)
5578 dw_attr_ref a;
5579 dw_die_ref c;
5580 unsigned ix;
5582 print_spaces (outfile);
5583 fprintf (outfile, "DIE %4ld: %s (%p)\n",
5584 die->die_offset, dwarf_tag_name (die->die_tag),
5585 (void*) die);
5586 print_spaces (outfile);
5587 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5588 fprintf (outfile, " offset: %ld", die->die_offset);
5589 fprintf (outfile, " mark: %d\n", die->die_mark);
5591 if (die->comdat_type_p)
5593 print_spaces (outfile);
5594 fprintf (outfile, " signature: ");
5595 print_signature (outfile, die->die_id.die_type_node->signature);
5596 fprintf (outfile, "\n");
5599 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
5601 print_spaces (outfile);
5602 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5604 print_attribute (a, true, outfile);
5605 fprintf (outfile, "\n");
5608 if (die->die_child != NULL)
5610 print_indent += 4;
5611 FOR_EACH_CHILD (die, c, print_die (c, outfile));
5612 print_indent -= 4;
5614 if (print_indent == 0)
5615 fprintf (outfile, "\n");
5618 /* Print the list of operations in the LOC location description. */
5620 DEBUG_FUNCTION void
5621 debug_dwarf_loc_descr (dw_loc_descr_ref loc)
5623 print_loc_descr (loc, stderr);
5626 /* Print the information collected for a given DIE. */
5628 DEBUG_FUNCTION void
5629 debug_dwarf_die (dw_die_ref die)
5631 print_die (die, stderr);
5634 DEBUG_FUNCTION void
5635 debug (die_struct &ref)
5637 print_die (&ref, stderr);
5640 DEBUG_FUNCTION void
5641 debug (die_struct *ptr)
5643 if (ptr)
5644 debug (*ptr);
5645 else
5646 fprintf (stderr, "<nil>\n");
5650 /* Print all DWARF information collected for the compilation unit.
5651 This routine is a debugging aid only. */
5653 DEBUG_FUNCTION void
5654 debug_dwarf (void)
5656 print_indent = 0;
5657 print_die (comp_unit_die (), stderr);
5660 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5661 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5662 DIE that marks the start of the DIEs for this include file. */
5664 static dw_die_ref
5665 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5667 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5668 dw_die_ref new_unit = gen_compile_unit_die (filename);
5670 new_unit->die_sib = old_unit;
5671 return new_unit;
5674 /* Close an include-file CU and reopen the enclosing one. */
5676 static dw_die_ref
5677 pop_compile_unit (dw_die_ref old_unit)
5679 dw_die_ref new_unit = old_unit->die_sib;
5681 old_unit->die_sib = NULL;
5682 return new_unit;
5685 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5686 #define CHECKSUM_BLOCK(FOO, SIZE) md5_process_bytes ((FOO), (SIZE), ctx)
5687 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5689 /* Calculate the checksum of a location expression. */
5691 static inline void
5692 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5694 int tem;
5695 inchash::hash hstate;
5696 hashval_t hash;
5698 tem = (loc->dtprel << 8) | ((unsigned int) loc->dw_loc_opc);
5699 CHECKSUM (tem);
5700 hash_loc_operands (loc, hstate);
5701 hash = hstate.end();
5702 CHECKSUM (hash);
5705 /* Calculate the checksum of an attribute. */
5707 static void
5708 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5710 dw_loc_descr_ref loc;
5711 rtx r;
5713 CHECKSUM (at->dw_attr);
5715 /* We don't care that this was compiled with a different compiler
5716 snapshot; if the output is the same, that's what matters. */
5717 if (at->dw_attr == DW_AT_producer)
5718 return;
5720 switch (AT_class (at))
5722 case dw_val_class_const:
5723 CHECKSUM (at->dw_attr_val.v.val_int);
5724 break;
5725 case dw_val_class_unsigned_const:
5726 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5727 break;
5728 case dw_val_class_const_double:
5729 CHECKSUM (at->dw_attr_val.v.val_double);
5730 break;
5731 case dw_val_class_wide_int:
5732 CHECKSUM_BLOCK (at->dw_attr_val.v.val_wide->get_val (),
5733 get_full_len (*at->dw_attr_val.v.val_wide)
5734 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
5735 break;
5736 case dw_val_class_vec:
5737 CHECKSUM_BLOCK (at->dw_attr_val.v.val_vec.array,
5738 (at->dw_attr_val.v.val_vec.length
5739 * at->dw_attr_val.v.val_vec.elt_size));
5740 break;
5741 case dw_val_class_flag:
5742 CHECKSUM (at->dw_attr_val.v.val_flag);
5743 break;
5744 case dw_val_class_str:
5745 CHECKSUM_STRING (AT_string (at));
5746 break;
5748 case dw_val_class_addr:
5749 r = AT_addr (at);
5750 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5751 CHECKSUM_STRING (XSTR (r, 0));
5752 break;
5754 case dw_val_class_offset:
5755 CHECKSUM (at->dw_attr_val.v.val_offset);
5756 break;
5758 case dw_val_class_loc:
5759 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5760 loc_checksum (loc, ctx);
5761 break;
5763 case dw_val_class_die_ref:
5764 die_checksum (AT_ref (at), ctx, mark);
5765 break;
5767 case dw_val_class_fde_ref:
5768 case dw_val_class_vms_delta:
5769 case dw_val_class_lbl_id:
5770 case dw_val_class_lineptr:
5771 case dw_val_class_macptr:
5772 case dw_val_class_high_pc:
5773 break;
5775 case dw_val_class_file:
5776 CHECKSUM_STRING (AT_file (at)->filename);
5777 break;
5779 case dw_val_class_data8:
5780 CHECKSUM (at->dw_attr_val.v.val_data8);
5781 break;
5783 default:
5784 break;
5788 /* Calculate the checksum of a DIE. */
5790 static void
5791 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5793 dw_die_ref c;
5794 dw_attr_ref a;
5795 unsigned ix;
5797 /* To avoid infinite recursion. */
5798 if (die->die_mark)
5800 CHECKSUM (die->die_mark);
5801 return;
5803 die->die_mark = ++(*mark);
5805 CHECKSUM (die->die_tag);
5807 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
5808 attr_checksum (a, ctx, mark);
5810 FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
5813 #undef CHECKSUM
5814 #undef CHECKSUM_BLOCK
5815 #undef CHECKSUM_STRING
5817 /* For DWARF-4 types, include the trailing NULL when checksumming strings. */
5818 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5819 #define CHECKSUM_BLOCK(FOO, SIZE) md5_process_bytes ((FOO), (SIZE), ctx)
5820 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO) + 1, ctx)
5821 #define CHECKSUM_SLEB128(FOO) checksum_sleb128 ((FOO), ctx)
5822 #define CHECKSUM_ULEB128(FOO) checksum_uleb128 ((FOO), ctx)
5823 #define CHECKSUM_ATTR(FOO) \
5824 if (FOO) attr_checksum_ordered (die->die_tag, (FOO), ctx, mark)
5826 /* Calculate the checksum of a number in signed LEB128 format. */
5828 static void
5829 checksum_sleb128 (HOST_WIDE_INT value, struct md5_ctx *ctx)
5831 unsigned char byte;
5832 bool more;
5834 while (1)
5836 byte = (value & 0x7f);
5837 value >>= 7;
5838 more = !((value == 0 && (byte & 0x40) == 0)
5839 || (value == -1 && (byte & 0x40) != 0));
5840 if (more)
5841 byte |= 0x80;
5842 CHECKSUM (byte);
5843 if (!more)
5844 break;
5848 /* Calculate the checksum of a number in unsigned LEB128 format. */
5850 static void
5851 checksum_uleb128 (unsigned HOST_WIDE_INT value, struct md5_ctx *ctx)
5853 while (1)
5855 unsigned char byte = (value & 0x7f);
5856 value >>= 7;
5857 if (value != 0)
5858 /* More bytes to follow. */
5859 byte |= 0x80;
5860 CHECKSUM (byte);
5861 if (value == 0)
5862 break;
5866 /* Checksum the context of the DIE. This adds the names of any
5867 surrounding namespaces or structures to the checksum. */
5869 static void
5870 checksum_die_context (dw_die_ref die, struct md5_ctx *ctx)
5872 const char *name;
5873 dw_die_ref spec;
5874 int tag = die->die_tag;
5876 if (tag != DW_TAG_namespace
5877 && tag != DW_TAG_structure_type
5878 && tag != DW_TAG_class_type)
5879 return;
5881 name = get_AT_string (die, DW_AT_name);
5883 spec = get_AT_ref (die, DW_AT_specification);
5884 if (spec != NULL)
5885 die = spec;
5887 if (die->die_parent != NULL)
5888 checksum_die_context (die->die_parent, ctx);
5890 CHECKSUM_ULEB128 ('C');
5891 CHECKSUM_ULEB128 (tag);
5892 if (name != NULL)
5893 CHECKSUM_STRING (name);
5896 /* Calculate the checksum of a location expression. */
5898 static inline void
5899 loc_checksum_ordered (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5901 /* Special case for lone DW_OP_plus_uconst: checksum as if the location
5902 were emitted as a DW_FORM_sdata instead of a location expression. */
5903 if (loc->dw_loc_opc == DW_OP_plus_uconst && loc->dw_loc_next == NULL)
5905 CHECKSUM_ULEB128 (DW_FORM_sdata);
5906 CHECKSUM_SLEB128 ((HOST_WIDE_INT) loc->dw_loc_oprnd1.v.val_unsigned);
5907 return;
5910 /* Otherwise, just checksum the raw location expression. */
5911 while (loc != NULL)
5913 inchash::hash hstate;
5914 hashval_t hash;
5916 CHECKSUM_ULEB128 (loc->dtprel);
5917 CHECKSUM_ULEB128 (loc->dw_loc_opc);
5918 hash_loc_operands (loc, hstate);
5919 hash = hstate.end ();
5920 CHECKSUM (hash);
5921 loc = loc->dw_loc_next;
5925 /* Calculate the checksum of an attribute. */
5927 static void
5928 attr_checksum_ordered (enum dwarf_tag tag, dw_attr_ref at,
5929 struct md5_ctx *ctx, int *mark)
5931 dw_loc_descr_ref loc;
5932 rtx r;
5934 if (AT_class (at) == dw_val_class_die_ref)
5936 dw_die_ref target_die = AT_ref (at);
5938 /* For pointer and reference types, we checksum only the (qualified)
5939 name of the target type (if there is a name). For friend entries,
5940 we checksum only the (qualified) name of the target type or function.
5941 This allows the checksum to remain the same whether the target type
5942 is complete or not. */
5943 if ((at->dw_attr == DW_AT_type
5944 && (tag == DW_TAG_pointer_type
5945 || tag == DW_TAG_reference_type
5946 || tag == DW_TAG_rvalue_reference_type
5947 || tag == DW_TAG_ptr_to_member_type))
5948 || (at->dw_attr == DW_AT_friend
5949 && tag == DW_TAG_friend))
5951 dw_attr_ref name_attr = get_AT (target_die, DW_AT_name);
5953 if (name_attr != NULL)
5955 dw_die_ref decl = get_AT_ref (target_die, DW_AT_specification);
5957 if (decl == NULL)
5958 decl = target_die;
5959 CHECKSUM_ULEB128 ('N');
5960 CHECKSUM_ULEB128 (at->dw_attr);
5961 if (decl->die_parent != NULL)
5962 checksum_die_context (decl->die_parent, ctx);
5963 CHECKSUM_ULEB128 ('E');
5964 CHECKSUM_STRING (AT_string (name_attr));
5965 return;
5969 /* For all other references to another DIE, we check to see if the
5970 target DIE has already been visited. If it has, we emit a
5971 backward reference; if not, we descend recursively. */
5972 if (target_die->die_mark > 0)
5974 CHECKSUM_ULEB128 ('R');
5975 CHECKSUM_ULEB128 (at->dw_attr);
5976 CHECKSUM_ULEB128 (target_die->die_mark);
5978 else
5980 dw_die_ref decl = get_AT_ref (target_die, DW_AT_specification);
5982 if (decl == NULL)
5983 decl = target_die;
5984 target_die->die_mark = ++(*mark);
5985 CHECKSUM_ULEB128 ('T');
5986 CHECKSUM_ULEB128 (at->dw_attr);
5987 if (decl->die_parent != NULL)
5988 checksum_die_context (decl->die_parent, ctx);
5989 die_checksum_ordered (target_die, ctx, mark);
5991 return;
5994 CHECKSUM_ULEB128 ('A');
5995 CHECKSUM_ULEB128 (at->dw_attr);
5997 switch (AT_class (at))
5999 case dw_val_class_const:
6000 CHECKSUM_ULEB128 (DW_FORM_sdata);
6001 CHECKSUM_SLEB128 (at->dw_attr_val.v.val_int);
6002 break;
6004 case dw_val_class_unsigned_const:
6005 CHECKSUM_ULEB128 (DW_FORM_sdata);
6006 CHECKSUM_SLEB128 ((int) at->dw_attr_val.v.val_unsigned);
6007 break;
6009 case dw_val_class_const_double:
6010 CHECKSUM_ULEB128 (DW_FORM_block);
6011 CHECKSUM_ULEB128 (sizeof (at->dw_attr_val.v.val_double));
6012 CHECKSUM (at->dw_attr_val.v.val_double);
6013 break;
6015 case dw_val_class_wide_int:
6016 CHECKSUM_ULEB128 (DW_FORM_block);
6017 CHECKSUM_ULEB128 (get_full_len (*at->dw_attr_val.v.val_wide)
6018 * HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT);
6019 CHECKSUM_BLOCK (at->dw_attr_val.v.val_wide->get_val (),
6020 get_full_len (*at->dw_attr_val.v.val_wide)
6021 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
6022 break;
6024 case dw_val_class_vec:
6025 CHECKSUM_ULEB128 (DW_FORM_block);
6026 CHECKSUM_ULEB128 (at->dw_attr_val.v.val_vec.length
6027 * at->dw_attr_val.v.val_vec.elt_size);
6028 CHECKSUM_BLOCK (at->dw_attr_val.v.val_vec.array,
6029 (at->dw_attr_val.v.val_vec.length
6030 * at->dw_attr_val.v.val_vec.elt_size));
6031 break;
6033 case dw_val_class_flag:
6034 CHECKSUM_ULEB128 (DW_FORM_flag);
6035 CHECKSUM_ULEB128 (at->dw_attr_val.v.val_flag ? 1 : 0);
6036 break;
6038 case dw_val_class_str:
6039 CHECKSUM_ULEB128 (DW_FORM_string);
6040 CHECKSUM_STRING (AT_string (at));
6041 break;
6043 case dw_val_class_addr:
6044 r = AT_addr (at);
6045 gcc_assert (GET_CODE (r) == SYMBOL_REF);
6046 CHECKSUM_ULEB128 (DW_FORM_string);
6047 CHECKSUM_STRING (XSTR (r, 0));
6048 break;
6050 case dw_val_class_offset:
6051 CHECKSUM_ULEB128 (DW_FORM_sdata);
6052 CHECKSUM_ULEB128 (at->dw_attr_val.v.val_offset);
6053 break;
6055 case dw_val_class_loc:
6056 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
6057 loc_checksum_ordered (loc, ctx);
6058 break;
6060 case dw_val_class_fde_ref:
6061 case dw_val_class_lbl_id:
6062 case dw_val_class_lineptr:
6063 case dw_val_class_macptr:
6064 case dw_val_class_high_pc:
6065 break;
6067 case dw_val_class_file:
6068 CHECKSUM_ULEB128 (DW_FORM_string);
6069 CHECKSUM_STRING (AT_file (at)->filename);
6070 break;
6072 case dw_val_class_data8:
6073 CHECKSUM (at->dw_attr_val.v.val_data8);
6074 break;
6076 default:
6077 break;
6081 struct checksum_attributes
6083 dw_attr_ref at_name;
6084 dw_attr_ref at_type;
6085 dw_attr_ref at_friend;
6086 dw_attr_ref at_accessibility;
6087 dw_attr_ref at_address_class;
6088 dw_attr_ref at_allocated;
6089 dw_attr_ref at_artificial;
6090 dw_attr_ref at_associated;
6091 dw_attr_ref at_binary_scale;
6092 dw_attr_ref at_bit_offset;
6093 dw_attr_ref at_bit_size;
6094 dw_attr_ref at_bit_stride;
6095 dw_attr_ref at_byte_size;
6096 dw_attr_ref at_byte_stride;
6097 dw_attr_ref at_const_value;
6098 dw_attr_ref at_containing_type;
6099 dw_attr_ref at_count;
6100 dw_attr_ref at_data_location;
6101 dw_attr_ref at_data_member_location;
6102 dw_attr_ref at_decimal_scale;
6103 dw_attr_ref at_decimal_sign;
6104 dw_attr_ref at_default_value;
6105 dw_attr_ref at_digit_count;
6106 dw_attr_ref at_discr;
6107 dw_attr_ref at_discr_list;
6108 dw_attr_ref at_discr_value;
6109 dw_attr_ref at_encoding;
6110 dw_attr_ref at_endianity;
6111 dw_attr_ref at_explicit;
6112 dw_attr_ref at_is_optional;
6113 dw_attr_ref at_location;
6114 dw_attr_ref at_lower_bound;
6115 dw_attr_ref at_mutable;
6116 dw_attr_ref at_ordering;
6117 dw_attr_ref at_picture_string;
6118 dw_attr_ref at_prototyped;
6119 dw_attr_ref at_small;
6120 dw_attr_ref at_segment;
6121 dw_attr_ref at_string_length;
6122 dw_attr_ref at_threads_scaled;
6123 dw_attr_ref at_upper_bound;
6124 dw_attr_ref at_use_location;
6125 dw_attr_ref at_use_UTF8;
6126 dw_attr_ref at_variable_parameter;
6127 dw_attr_ref at_virtuality;
6128 dw_attr_ref at_visibility;
6129 dw_attr_ref at_vtable_elem_location;
6132 /* Collect the attributes that we will want to use for the checksum. */
6134 static void
6135 collect_checksum_attributes (struct checksum_attributes *attrs, dw_die_ref die)
6137 dw_attr_ref a;
6138 unsigned ix;
6140 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
6142 switch (a->dw_attr)
6144 case DW_AT_name:
6145 attrs->at_name = a;
6146 break;
6147 case DW_AT_type:
6148 attrs->at_type = a;
6149 break;
6150 case DW_AT_friend:
6151 attrs->at_friend = a;
6152 break;
6153 case DW_AT_accessibility:
6154 attrs->at_accessibility = a;
6155 break;
6156 case DW_AT_address_class:
6157 attrs->at_address_class = a;
6158 break;
6159 case DW_AT_allocated:
6160 attrs->at_allocated = a;
6161 break;
6162 case DW_AT_artificial:
6163 attrs->at_artificial = a;
6164 break;
6165 case DW_AT_associated:
6166 attrs->at_associated = a;
6167 break;
6168 case DW_AT_binary_scale:
6169 attrs->at_binary_scale = a;
6170 break;
6171 case DW_AT_bit_offset:
6172 attrs->at_bit_offset = a;
6173 break;
6174 case DW_AT_bit_size:
6175 attrs->at_bit_size = a;
6176 break;
6177 case DW_AT_bit_stride:
6178 attrs->at_bit_stride = a;
6179 break;
6180 case DW_AT_byte_size:
6181 attrs->at_byte_size = a;
6182 break;
6183 case DW_AT_byte_stride:
6184 attrs->at_byte_stride = a;
6185 break;
6186 case DW_AT_const_value:
6187 attrs->at_const_value = a;
6188 break;
6189 case DW_AT_containing_type:
6190 attrs->at_containing_type = a;
6191 break;
6192 case DW_AT_count:
6193 attrs->at_count = a;
6194 break;
6195 case DW_AT_data_location:
6196 attrs->at_data_location = a;
6197 break;
6198 case DW_AT_data_member_location:
6199 attrs->at_data_member_location = a;
6200 break;
6201 case DW_AT_decimal_scale:
6202 attrs->at_decimal_scale = a;
6203 break;
6204 case DW_AT_decimal_sign:
6205 attrs->at_decimal_sign = a;
6206 break;
6207 case DW_AT_default_value:
6208 attrs->at_default_value = a;
6209 break;
6210 case DW_AT_digit_count:
6211 attrs->at_digit_count = a;
6212 break;
6213 case DW_AT_discr:
6214 attrs->at_discr = a;
6215 break;
6216 case DW_AT_discr_list:
6217 attrs->at_discr_list = a;
6218 break;
6219 case DW_AT_discr_value:
6220 attrs->at_discr_value = a;
6221 break;
6222 case DW_AT_encoding:
6223 attrs->at_encoding = a;
6224 break;
6225 case DW_AT_endianity:
6226 attrs->at_endianity = a;
6227 break;
6228 case DW_AT_explicit:
6229 attrs->at_explicit = a;
6230 break;
6231 case DW_AT_is_optional:
6232 attrs->at_is_optional = a;
6233 break;
6234 case DW_AT_location:
6235 attrs->at_location = a;
6236 break;
6237 case DW_AT_lower_bound:
6238 attrs->at_lower_bound = a;
6239 break;
6240 case DW_AT_mutable:
6241 attrs->at_mutable = a;
6242 break;
6243 case DW_AT_ordering:
6244 attrs->at_ordering = a;
6245 break;
6246 case DW_AT_picture_string:
6247 attrs->at_picture_string = a;
6248 break;
6249 case DW_AT_prototyped:
6250 attrs->at_prototyped = a;
6251 break;
6252 case DW_AT_small:
6253 attrs->at_small = a;
6254 break;
6255 case DW_AT_segment:
6256 attrs->at_segment = a;
6257 break;
6258 case DW_AT_string_length:
6259 attrs->at_string_length = a;
6260 break;
6261 case DW_AT_threads_scaled:
6262 attrs->at_threads_scaled = a;
6263 break;
6264 case DW_AT_upper_bound:
6265 attrs->at_upper_bound = a;
6266 break;
6267 case DW_AT_use_location:
6268 attrs->at_use_location = a;
6269 break;
6270 case DW_AT_use_UTF8:
6271 attrs->at_use_UTF8 = a;
6272 break;
6273 case DW_AT_variable_parameter:
6274 attrs->at_variable_parameter = a;
6275 break;
6276 case DW_AT_virtuality:
6277 attrs->at_virtuality = a;
6278 break;
6279 case DW_AT_visibility:
6280 attrs->at_visibility = a;
6281 break;
6282 case DW_AT_vtable_elem_location:
6283 attrs->at_vtable_elem_location = a;
6284 break;
6285 default:
6286 break;
6291 /* Calculate the checksum of a DIE, using an ordered subset of attributes. */
6293 static void
6294 die_checksum_ordered (dw_die_ref die, struct md5_ctx *ctx, int *mark)
6296 dw_die_ref c;
6297 dw_die_ref decl;
6298 struct checksum_attributes attrs;
6300 CHECKSUM_ULEB128 ('D');
6301 CHECKSUM_ULEB128 (die->die_tag);
6303 memset (&attrs, 0, sizeof (attrs));
6305 decl = get_AT_ref (die, DW_AT_specification);
6306 if (decl != NULL)
6307 collect_checksum_attributes (&attrs, decl);
6308 collect_checksum_attributes (&attrs, die);
6310 CHECKSUM_ATTR (attrs.at_name);
6311 CHECKSUM_ATTR (attrs.at_accessibility);
6312 CHECKSUM_ATTR (attrs.at_address_class);
6313 CHECKSUM_ATTR (attrs.at_allocated);
6314 CHECKSUM_ATTR (attrs.at_artificial);
6315 CHECKSUM_ATTR (attrs.at_associated);
6316 CHECKSUM_ATTR (attrs.at_binary_scale);
6317 CHECKSUM_ATTR (attrs.at_bit_offset);
6318 CHECKSUM_ATTR (attrs.at_bit_size);
6319 CHECKSUM_ATTR (attrs.at_bit_stride);
6320 CHECKSUM_ATTR (attrs.at_byte_size);
6321 CHECKSUM_ATTR (attrs.at_byte_stride);
6322 CHECKSUM_ATTR (attrs.at_const_value);
6323 CHECKSUM_ATTR (attrs.at_containing_type);
6324 CHECKSUM_ATTR (attrs.at_count);
6325 CHECKSUM_ATTR (attrs.at_data_location);
6326 CHECKSUM_ATTR (attrs.at_data_member_location);
6327 CHECKSUM_ATTR (attrs.at_decimal_scale);
6328 CHECKSUM_ATTR (attrs.at_decimal_sign);
6329 CHECKSUM_ATTR (attrs.at_default_value);
6330 CHECKSUM_ATTR (attrs.at_digit_count);
6331 CHECKSUM_ATTR (attrs.at_discr);
6332 CHECKSUM_ATTR (attrs.at_discr_list);
6333 CHECKSUM_ATTR (attrs.at_discr_value);
6334 CHECKSUM_ATTR (attrs.at_encoding);
6335 CHECKSUM_ATTR (attrs.at_endianity);
6336 CHECKSUM_ATTR (attrs.at_explicit);
6337 CHECKSUM_ATTR (attrs.at_is_optional);
6338 CHECKSUM_ATTR (attrs.at_location);
6339 CHECKSUM_ATTR (attrs.at_lower_bound);
6340 CHECKSUM_ATTR (attrs.at_mutable);
6341 CHECKSUM_ATTR (attrs.at_ordering);
6342 CHECKSUM_ATTR (attrs.at_picture_string);
6343 CHECKSUM_ATTR (attrs.at_prototyped);
6344 CHECKSUM_ATTR (attrs.at_small);
6345 CHECKSUM_ATTR (attrs.at_segment);
6346 CHECKSUM_ATTR (attrs.at_string_length);
6347 CHECKSUM_ATTR (attrs.at_threads_scaled);
6348 CHECKSUM_ATTR (attrs.at_upper_bound);
6349 CHECKSUM_ATTR (attrs.at_use_location);
6350 CHECKSUM_ATTR (attrs.at_use_UTF8);
6351 CHECKSUM_ATTR (attrs.at_variable_parameter);
6352 CHECKSUM_ATTR (attrs.at_virtuality);
6353 CHECKSUM_ATTR (attrs.at_visibility);
6354 CHECKSUM_ATTR (attrs.at_vtable_elem_location);
6355 CHECKSUM_ATTR (attrs.at_type);
6356 CHECKSUM_ATTR (attrs.at_friend);
6358 /* Checksum the child DIEs. */
6359 c = die->die_child;
6360 if (c) do {
6361 dw_attr_ref name_attr;
6363 c = c->die_sib;
6364 name_attr = get_AT (c, DW_AT_name);
6365 if (is_template_instantiation (c))
6367 /* Ignore instantiations of member type and function templates. */
6369 else if (name_attr != NULL
6370 && (is_type_die (c) || c->die_tag == DW_TAG_subprogram))
6372 /* Use a shallow checksum for named nested types and member
6373 functions. */
6374 CHECKSUM_ULEB128 ('S');
6375 CHECKSUM_ULEB128 (c->die_tag);
6376 CHECKSUM_STRING (AT_string (name_attr));
6378 else
6380 /* Use a deep checksum for other children. */
6381 /* Mark this DIE so it gets processed when unmarking. */
6382 if (c->die_mark == 0)
6383 c->die_mark = -1;
6384 die_checksum_ordered (c, ctx, mark);
6386 } while (c != die->die_child);
6388 CHECKSUM_ULEB128 (0);
6391 /* Add a type name and tag to a hash. */
6392 static void
6393 die_odr_checksum (int tag, const char *name, md5_ctx *ctx)
6395 CHECKSUM_ULEB128 (tag);
6396 CHECKSUM_STRING (name);
6399 #undef CHECKSUM
6400 #undef CHECKSUM_STRING
6401 #undef CHECKSUM_ATTR
6402 #undef CHECKSUM_LEB128
6403 #undef CHECKSUM_ULEB128
6405 /* Generate the type signature for DIE. This is computed by generating an
6406 MD5 checksum over the DIE's tag, its relevant attributes, and its
6407 children. Attributes that are references to other DIEs are processed
6408 by recursion, using the MARK field to prevent infinite recursion.
6409 If the DIE is nested inside a namespace or another type, we also
6410 need to include that context in the signature. The lower 64 bits
6411 of the resulting MD5 checksum comprise the signature. */
6413 static void
6414 generate_type_signature (dw_die_ref die, comdat_type_node *type_node)
6416 int mark;
6417 const char *name;
6418 unsigned char checksum[16];
6419 struct md5_ctx ctx;
6420 dw_die_ref decl;
6421 dw_die_ref parent;
6423 name = get_AT_string (die, DW_AT_name);
6424 decl = get_AT_ref (die, DW_AT_specification);
6425 parent = get_die_parent (die);
6427 /* First, compute a signature for just the type name (and its surrounding
6428 context, if any. This is stored in the type unit DIE for link-time
6429 ODR (one-definition rule) checking. */
6431 if (is_cxx () && name != NULL)
6433 md5_init_ctx (&ctx);
6435 /* Checksum the names of surrounding namespaces and structures. */
6436 if (parent != NULL)
6437 checksum_die_context (parent, &ctx);
6439 /* Checksum the current DIE. */
6440 die_odr_checksum (die->die_tag, name, &ctx);
6441 md5_finish_ctx (&ctx, checksum);
6443 add_AT_data8 (type_node->root_die, DW_AT_GNU_odr_signature, &checksum[8]);
6446 /* Next, compute the complete type signature. */
6448 md5_init_ctx (&ctx);
6449 mark = 1;
6450 die->die_mark = mark;
6452 /* Checksum the names of surrounding namespaces and structures. */
6453 if (parent != NULL)
6454 checksum_die_context (parent, &ctx);
6456 /* Checksum the DIE and its children. */
6457 die_checksum_ordered (die, &ctx, &mark);
6458 unmark_all_dies (die);
6459 md5_finish_ctx (&ctx, checksum);
6461 /* Store the signature in the type node and link the type DIE and the
6462 type node together. */
6463 memcpy (type_node->signature, &checksum[16 - DWARF_TYPE_SIGNATURE_SIZE],
6464 DWARF_TYPE_SIGNATURE_SIZE);
6465 die->comdat_type_p = true;
6466 die->die_id.die_type_node = type_node;
6467 type_node->type_die = die;
6469 /* If the DIE is a specification, link its declaration to the type node
6470 as well. */
6471 if (decl != NULL)
6473 decl->comdat_type_p = true;
6474 decl->die_id.die_type_node = type_node;
6478 /* Do the location expressions look same? */
6479 static inline int
6480 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
6482 return loc1->dw_loc_opc == loc2->dw_loc_opc
6483 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
6484 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
6487 /* Do the values look the same? */
6488 static int
6489 same_dw_val_p (const dw_val_node *v1, const dw_val_node *v2, int *mark)
6491 dw_loc_descr_ref loc1, loc2;
6492 rtx r1, r2;
6494 if (v1->val_class != v2->val_class)
6495 return 0;
6497 switch (v1->val_class)
6499 case dw_val_class_const:
6500 return v1->v.val_int == v2->v.val_int;
6501 case dw_val_class_unsigned_const:
6502 return v1->v.val_unsigned == v2->v.val_unsigned;
6503 case dw_val_class_const_double:
6504 return v1->v.val_double.high == v2->v.val_double.high
6505 && v1->v.val_double.low == v2->v.val_double.low;
6506 case dw_val_class_wide_int:
6507 return *v1->v.val_wide == *v2->v.val_wide;
6508 case dw_val_class_vec:
6509 if (v1->v.val_vec.length != v2->v.val_vec.length
6510 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
6511 return 0;
6512 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
6513 v1->v.val_vec.length * v1->v.val_vec.elt_size))
6514 return 0;
6515 return 1;
6516 case dw_val_class_flag:
6517 return v1->v.val_flag == v2->v.val_flag;
6518 case dw_val_class_str:
6519 return !strcmp (v1->v.val_str->str, v2->v.val_str->str);
6521 case dw_val_class_addr:
6522 r1 = v1->v.val_addr;
6523 r2 = v2->v.val_addr;
6524 if (GET_CODE (r1) != GET_CODE (r2))
6525 return 0;
6526 return !rtx_equal_p (r1, r2);
6528 case dw_val_class_offset:
6529 return v1->v.val_offset == v2->v.val_offset;
6531 case dw_val_class_loc:
6532 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6533 loc1 && loc2;
6534 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6535 if (!same_loc_p (loc1, loc2, mark))
6536 return 0;
6537 return !loc1 && !loc2;
6539 case dw_val_class_die_ref:
6540 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6542 case dw_val_class_fde_ref:
6543 case dw_val_class_vms_delta:
6544 case dw_val_class_lbl_id:
6545 case dw_val_class_lineptr:
6546 case dw_val_class_macptr:
6547 case dw_val_class_high_pc:
6548 return 1;
6550 case dw_val_class_file:
6551 return v1->v.val_file == v2->v.val_file;
6553 case dw_val_class_data8:
6554 return !memcmp (v1->v.val_data8, v2->v.val_data8, 8);
6556 default:
6557 return 1;
6561 /* Do the attributes look the same? */
6563 static int
6564 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
6566 if (at1->dw_attr != at2->dw_attr)
6567 return 0;
6569 /* We don't care that this was compiled with a different compiler
6570 snapshot; if the output is the same, that's what matters. */
6571 if (at1->dw_attr == DW_AT_producer)
6572 return 1;
6574 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6577 /* Do the dies look the same? */
6579 static int
6580 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6582 dw_die_ref c1, c2;
6583 dw_attr_ref a1;
6584 unsigned ix;
6586 /* To avoid infinite recursion. */
6587 if (die1->die_mark)
6588 return die1->die_mark == die2->die_mark;
6589 die1->die_mark = die2->die_mark = ++(*mark);
6591 if (die1->die_tag != die2->die_tag)
6592 return 0;
6594 if (vec_safe_length (die1->die_attr) != vec_safe_length (die2->die_attr))
6595 return 0;
6597 FOR_EACH_VEC_SAFE_ELT (die1->die_attr, ix, a1)
6598 if (!same_attr_p (a1, &(*die2->die_attr)[ix], mark))
6599 return 0;
6601 c1 = die1->die_child;
6602 c2 = die2->die_child;
6603 if (! c1)
6605 if (c2)
6606 return 0;
6608 else
6609 for (;;)
6611 if (!same_die_p (c1, c2, mark))
6612 return 0;
6613 c1 = c1->die_sib;
6614 c2 = c2->die_sib;
6615 if (c1 == die1->die_child)
6617 if (c2 == die2->die_child)
6618 break;
6619 else
6620 return 0;
6624 return 1;
6627 /* Do the dies look the same? Wrapper around same_die_p. */
6629 static int
6630 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6632 int mark = 0;
6633 int ret = same_die_p (die1, die2, &mark);
6635 unmark_all_dies (die1);
6636 unmark_all_dies (die2);
6638 return ret;
6641 /* The prefix to attach to symbols on DIEs in the current comdat debug
6642 info section. */
6643 static const char *comdat_symbol_id;
6645 /* The index of the current symbol within the current comdat CU. */
6646 static unsigned int comdat_symbol_number;
6648 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6649 children, and set comdat_symbol_id accordingly. */
6651 static void
6652 compute_section_prefix (dw_die_ref unit_die)
6654 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6655 const char *base = die_name ? lbasename (die_name) : "anonymous";
6656 char *name = XALLOCAVEC (char, strlen (base) + 64);
6657 char *p;
6658 int i, mark;
6659 unsigned char checksum[16];
6660 struct md5_ctx ctx;
6662 /* Compute the checksum of the DIE, then append part of it as hex digits to
6663 the name filename of the unit. */
6665 md5_init_ctx (&ctx);
6666 mark = 0;
6667 die_checksum (unit_die, &ctx, &mark);
6668 unmark_all_dies (unit_die);
6669 md5_finish_ctx (&ctx, checksum);
6671 sprintf (name, "%s.", base);
6672 clean_symbol_name (name);
6674 p = name + strlen (name);
6675 for (i = 0; i < 4; i++)
6677 sprintf (p, "%.2x", checksum[i]);
6678 p += 2;
6681 comdat_symbol_id = unit_die->die_id.die_symbol = xstrdup (name);
6682 comdat_symbol_number = 0;
6685 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6687 static int
6688 is_type_die (dw_die_ref die)
6690 switch (die->die_tag)
6692 case DW_TAG_array_type:
6693 case DW_TAG_class_type:
6694 case DW_TAG_interface_type:
6695 case DW_TAG_enumeration_type:
6696 case DW_TAG_pointer_type:
6697 case DW_TAG_reference_type:
6698 case DW_TAG_rvalue_reference_type:
6699 case DW_TAG_string_type:
6700 case DW_TAG_structure_type:
6701 case DW_TAG_subroutine_type:
6702 case DW_TAG_union_type:
6703 case DW_TAG_ptr_to_member_type:
6704 case DW_TAG_set_type:
6705 case DW_TAG_subrange_type:
6706 case DW_TAG_base_type:
6707 case DW_TAG_const_type:
6708 case DW_TAG_file_type:
6709 case DW_TAG_packed_type:
6710 case DW_TAG_volatile_type:
6711 case DW_TAG_typedef:
6712 return 1;
6713 default:
6714 return 0;
6718 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6719 Basically, we want to choose the bits that are likely to be shared between
6720 compilations (types) and leave out the bits that are specific to individual
6721 compilations (functions). */
6723 static int
6724 is_comdat_die (dw_die_ref c)
6726 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6727 we do for stabs. The advantage is a greater likelihood of sharing between
6728 objects that don't include headers in the same order (and therefore would
6729 put the base types in a different comdat). jason 8/28/00 */
6731 if (c->die_tag == DW_TAG_base_type)
6732 return 0;
6734 if (c->die_tag == DW_TAG_pointer_type
6735 || c->die_tag == DW_TAG_reference_type
6736 || c->die_tag == DW_TAG_rvalue_reference_type
6737 || c->die_tag == DW_TAG_const_type
6738 || c->die_tag == DW_TAG_volatile_type)
6740 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6742 return t ? is_comdat_die (t) : 0;
6745 return is_type_die (c);
6748 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6749 compilation unit. */
6751 static int
6752 is_symbol_die (dw_die_ref c)
6754 return (is_type_die (c)
6755 || is_declaration_die (c)
6756 || c->die_tag == DW_TAG_namespace
6757 || c->die_tag == DW_TAG_module);
6760 /* Returns true iff C is a compile-unit DIE. */
6762 static inline bool
6763 is_cu_die (dw_die_ref c)
6765 return c && c->die_tag == DW_TAG_compile_unit;
6768 /* Returns true iff C is a unit DIE of some sort. */
6770 static inline bool
6771 is_unit_die (dw_die_ref c)
6773 return c && (c->die_tag == DW_TAG_compile_unit
6774 || c->die_tag == DW_TAG_partial_unit
6775 || c->die_tag == DW_TAG_type_unit);
6778 /* Returns true iff C is a namespace DIE. */
6780 static inline bool
6781 is_namespace_die (dw_die_ref c)
6783 return c && c->die_tag == DW_TAG_namespace;
6786 /* Returns true iff C is a class or structure DIE. */
6788 static inline bool
6789 is_class_die (dw_die_ref c)
6791 return c && (c->die_tag == DW_TAG_class_type
6792 || c->die_tag == DW_TAG_structure_type);
6795 /* Return non-zero if this DIE is a template parameter. */
6797 static inline bool
6798 is_template_parameter (dw_die_ref die)
6800 switch (die->die_tag)
6802 case DW_TAG_template_type_param:
6803 case DW_TAG_template_value_param:
6804 case DW_TAG_GNU_template_template_param:
6805 case DW_TAG_GNU_template_parameter_pack:
6806 return true;
6807 default:
6808 return false;
6812 /* Return non-zero if this DIE represents a template instantiation. */
6814 static inline bool
6815 is_template_instantiation (dw_die_ref die)
6817 dw_die_ref c;
6819 if (!is_type_die (die) && die->die_tag != DW_TAG_subprogram)
6820 return false;
6821 FOR_EACH_CHILD (die, c, if (is_template_parameter (c)) return true);
6822 return false;
6825 static char *
6826 gen_internal_sym (const char *prefix)
6828 char buf[256];
6830 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6831 return xstrdup (buf);
6834 /* Assign symbols to all worthy DIEs under DIE. */
6836 static void
6837 assign_symbol_names (dw_die_ref die)
6839 dw_die_ref c;
6841 if (is_symbol_die (die) && !die->comdat_type_p)
6843 if (comdat_symbol_id)
6845 char *p = XALLOCAVEC (char, strlen (comdat_symbol_id) + 64);
6847 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6848 comdat_symbol_id, comdat_symbol_number++);
6849 die->die_id.die_symbol = xstrdup (p);
6851 else
6852 die->die_id.die_symbol = gen_internal_sym ("LDIE");
6855 FOR_EACH_CHILD (die, c, assign_symbol_names (c));
6858 struct cu_hash_table_entry
6860 dw_die_ref cu;
6861 unsigned min_comdat_num, max_comdat_num;
6862 struct cu_hash_table_entry *next;
6865 /* Helpers to manipulate hash table of CUs. */
6867 struct cu_hash_table_entry_hasher
6869 typedef cu_hash_table_entry *value_type;
6870 typedef die_struct *compare_type;
6871 static inline hashval_t hash (const cu_hash_table_entry *);
6872 static inline bool equal (const cu_hash_table_entry *, const die_struct *);
6873 static inline void remove (cu_hash_table_entry *);
6876 inline hashval_t
6877 cu_hash_table_entry_hasher::hash (const cu_hash_table_entry *entry)
6879 return htab_hash_string (entry->cu->die_id.die_symbol);
6882 inline bool
6883 cu_hash_table_entry_hasher::equal (const cu_hash_table_entry *entry1,
6884 const die_struct *entry2)
6886 return !strcmp (entry1->cu->die_id.die_symbol, entry2->die_id.die_symbol);
6889 inline void
6890 cu_hash_table_entry_hasher::remove (cu_hash_table_entry *entry)
6892 struct cu_hash_table_entry *next;
6894 while (entry)
6896 next = entry->next;
6897 free (entry);
6898 entry = next;
6902 typedef hash_table<cu_hash_table_entry_hasher> cu_hash_type;
6904 /* Check whether we have already seen this CU and set up SYM_NUM
6905 accordingly. */
6906 static int
6907 check_duplicate_cu (dw_die_ref cu, cu_hash_type *htable, unsigned int *sym_num)
6909 struct cu_hash_table_entry dummy;
6910 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6912 dummy.max_comdat_num = 0;
6914 slot = htable->find_slot_with_hash (cu,
6915 htab_hash_string (cu->die_id.die_symbol),
6916 INSERT);
6917 entry = *slot;
6919 for (; entry; last = entry, entry = entry->next)
6921 if (same_die_p_wrap (cu, entry->cu))
6922 break;
6925 if (entry)
6927 *sym_num = entry->min_comdat_num;
6928 return 1;
6931 entry = XCNEW (struct cu_hash_table_entry);
6932 entry->cu = cu;
6933 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6934 entry->next = *slot;
6935 *slot = entry;
6937 return 0;
6940 /* Record SYM_NUM to record of CU in HTABLE. */
6941 static void
6942 record_comdat_symbol_number (dw_die_ref cu, cu_hash_type *htable,
6943 unsigned int sym_num)
6945 struct cu_hash_table_entry **slot, *entry;
6947 slot = htable->find_slot_with_hash (cu,
6948 htab_hash_string (cu->die_id.die_symbol),
6949 NO_INSERT);
6950 entry = *slot;
6952 entry->max_comdat_num = sym_num;
6955 /* Traverse the DIE (which is always comp_unit_die), and set up
6956 additional compilation units for each of the include files we see
6957 bracketed by BINCL/EINCL. */
6959 static void
6960 break_out_includes (dw_die_ref die)
6962 dw_die_ref c;
6963 dw_die_ref unit = NULL;
6964 limbo_die_node *node, **pnode;
6966 c = die->die_child;
6967 if (c) do {
6968 dw_die_ref prev = c;
6969 c = c->die_sib;
6970 while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6971 || (unit && is_comdat_die (c)))
6973 dw_die_ref next = c->die_sib;
6975 /* This DIE is for a secondary CU; remove it from the main one. */
6976 remove_child_with_prev (c, prev);
6978 if (c->die_tag == DW_TAG_GNU_BINCL)
6979 unit = push_new_compile_unit (unit, c);
6980 else if (c->die_tag == DW_TAG_GNU_EINCL)
6981 unit = pop_compile_unit (unit);
6982 else
6983 add_child_die (unit, c);
6984 c = next;
6985 if (c == die->die_child)
6986 break;
6988 } while (c != die->die_child);
6990 #if 0
6991 /* We can only use this in debugging, since the frontend doesn't check
6992 to make sure that we leave every include file we enter. */
6993 gcc_assert (!unit);
6994 #endif
6996 assign_symbol_names (die);
6997 cu_hash_type cu_hash_table (10);
6998 for (node = limbo_die_list, pnode = &limbo_die_list;
6999 node;
7000 node = node->next)
7002 int is_dupl;
7004 compute_section_prefix (node->die);
7005 is_dupl = check_duplicate_cu (node->die, &cu_hash_table,
7006 &comdat_symbol_number);
7007 assign_symbol_names (node->die);
7008 if (is_dupl)
7009 *pnode = node->next;
7010 else
7012 pnode = &node->next;
7013 record_comdat_symbol_number (node->die, &cu_hash_table,
7014 comdat_symbol_number);
7019 /* Return non-zero if this DIE is a declaration. */
7021 static int
7022 is_declaration_die (dw_die_ref die)
7024 dw_attr_ref a;
7025 unsigned ix;
7027 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7028 if (a->dw_attr == DW_AT_declaration)
7029 return 1;
7031 return 0;
7034 /* Return non-zero if this DIE is nested inside a subprogram. */
7036 static int
7037 is_nested_in_subprogram (dw_die_ref die)
7039 dw_die_ref decl = get_AT_ref (die, DW_AT_specification);
7041 if (decl == NULL)
7042 decl = die;
7043 return local_scope_p (decl);
7046 /* Return non-zero if this DIE contains a defining declaration of a
7047 subprogram. */
7049 static int
7050 contains_subprogram_definition (dw_die_ref die)
7052 dw_die_ref c;
7054 if (die->die_tag == DW_TAG_subprogram && ! is_declaration_die (die))
7055 return 1;
7056 FOR_EACH_CHILD (die, c, if (contains_subprogram_definition (c)) return 1);
7057 return 0;
7060 /* Return non-zero if this is a type DIE that should be moved to a
7061 COMDAT .debug_types section. */
7063 static int
7064 should_move_die_to_comdat (dw_die_ref die)
7066 switch (die->die_tag)
7068 case DW_TAG_class_type:
7069 case DW_TAG_structure_type:
7070 case DW_TAG_enumeration_type:
7071 case DW_TAG_union_type:
7072 /* Don't move declarations, inlined instances, types nested in a
7073 subprogram, or types that contain subprogram definitions. */
7074 if (is_declaration_die (die)
7075 || get_AT (die, DW_AT_abstract_origin)
7076 || is_nested_in_subprogram (die)
7077 || contains_subprogram_definition (die))
7078 return 0;
7079 return 1;
7080 case DW_TAG_array_type:
7081 case DW_TAG_interface_type:
7082 case DW_TAG_pointer_type:
7083 case DW_TAG_reference_type:
7084 case DW_TAG_rvalue_reference_type:
7085 case DW_TAG_string_type:
7086 case DW_TAG_subroutine_type:
7087 case DW_TAG_ptr_to_member_type:
7088 case DW_TAG_set_type:
7089 case DW_TAG_subrange_type:
7090 case DW_TAG_base_type:
7091 case DW_TAG_const_type:
7092 case DW_TAG_file_type:
7093 case DW_TAG_packed_type:
7094 case DW_TAG_volatile_type:
7095 case DW_TAG_typedef:
7096 default:
7097 return 0;
7101 /* Make a clone of DIE. */
7103 static dw_die_ref
7104 clone_die (dw_die_ref die)
7106 dw_die_ref clone;
7107 dw_attr_ref a;
7108 unsigned ix;
7110 clone = ggc_cleared_alloc<die_node> ();
7111 clone->die_tag = die->die_tag;
7113 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7114 add_dwarf_attr (clone, a);
7116 return clone;
7119 /* Make a clone of the tree rooted at DIE. */
7121 static dw_die_ref
7122 clone_tree (dw_die_ref die)
7124 dw_die_ref c;
7125 dw_die_ref clone = clone_die (die);
7127 FOR_EACH_CHILD (die, c, add_child_die (clone, clone_tree (c)));
7129 return clone;
7132 /* Make a clone of DIE as a declaration. */
7134 static dw_die_ref
7135 clone_as_declaration (dw_die_ref die)
7137 dw_die_ref clone;
7138 dw_die_ref decl;
7139 dw_attr_ref a;
7140 unsigned ix;
7142 /* If the DIE is already a declaration, just clone it. */
7143 if (is_declaration_die (die))
7144 return clone_die (die);
7146 /* If the DIE is a specification, just clone its declaration DIE. */
7147 decl = get_AT_ref (die, DW_AT_specification);
7148 if (decl != NULL)
7150 clone = clone_die (decl);
7151 if (die->comdat_type_p)
7152 add_AT_die_ref (clone, DW_AT_signature, die);
7153 return clone;
7156 clone = ggc_cleared_alloc<die_node> ();
7157 clone->die_tag = die->die_tag;
7159 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7161 /* We don't want to copy over all attributes.
7162 For example we don't want DW_AT_byte_size because otherwise we will no
7163 longer have a declaration and GDB will treat it as a definition. */
7165 switch (a->dw_attr)
7167 case DW_AT_abstract_origin:
7168 case DW_AT_artificial:
7169 case DW_AT_containing_type:
7170 case DW_AT_external:
7171 case DW_AT_name:
7172 case DW_AT_type:
7173 case DW_AT_virtuality:
7174 case DW_AT_linkage_name:
7175 case DW_AT_MIPS_linkage_name:
7176 add_dwarf_attr (clone, a);
7177 break;
7178 case DW_AT_byte_size:
7179 default:
7180 break;
7184 if (die->comdat_type_p)
7185 add_AT_die_ref (clone, DW_AT_signature, die);
7187 add_AT_flag (clone, DW_AT_declaration, 1);
7188 return clone;
7192 /* Structure to map a DIE in one CU to its copy in a comdat type unit. */
7194 struct decl_table_entry
7196 dw_die_ref orig;
7197 dw_die_ref copy;
7200 /* Helpers to manipulate hash table of copied declarations. */
7202 /* Hashtable helpers. */
7204 struct decl_table_entry_hasher : typed_free_remove <decl_table_entry>
7206 typedef decl_table_entry *value_type;
7207 typedef die_struct *compare_type;
7208 static inline hashval_t hash (const decl_table_entry *);
7209 static inline bool equal (const decl_table_entry *, const die_struct *);
7212 inline hashval_t
7213 decl_table_entry_hasher::hash (const decl_table_entry *entry)
7215 return htab_hash_pointer (entry->orig);
7218 inline bool
7219 decl_table_entry_hasher::equal (const decl_table_entry *entry1,
7220 const die_struct *entry2)
7222 return entry1->orig == entry2;
7225 typedef hash_table<decl_table_entry_hasher> decl_hash_type;
7227 /* Copy DIE and its ancestors, up to, but not including, the compile unit
7228 or type unit entry, to a new tree. Adds the new tree to UNIT and returns
7229 a pointer to the copy of DIE. If DECL_TABLE is provided, it is used
7230 to check if the ancestor has already been copied into UNIT. */
7232 static dw_die_ref
7233 copy_ancestor_tree (dw_die_ref unit, dw_die_ref die,
7234 decl_hash_type *decl_table)
7236 dw_die_ref parent = die->die_parent;
7237 dw_die_ref new_parent = unit;
7238 dw_die_ref copy;
7239 decl_table_entry **slot = NULL;
7240 struct decl_table_entry *entry = NULL;
7242 if (decl_table)
7244 /* Check if the entry has already been copied to UNIT. */
7245 slot = decl_table->find_slot_with_hash (die, htab_hash_pointer (die),
7246 INSERT);
7247 if (*slot != HTAB_EMPTY_ENTRY)
7249 entry = *slot;
7250 return entry->copy;
7253 /* Record in DECL_TABLE that DIE has been copied to UNIT. */
7254 entry = XCNEW (struct decl_table_entry);
7255 entry->orig = die;
7256 entry->copy = NULL;
7257 *slot = entry;
7260 if (parent != NULL)
7262 dw_die_ref spec = get_AT_ref (parent, DW_AT_specification);
7263 if (spec != NULL)
7264 parent = spec;
7265 if (!is_unit_die (parent))
7266 new_parent = copy_ancestor_tree (unit, parent, decl_table);
7269 copy = clone_as_declaration (die);
7270 add_child_die (new_parent, copy);
7272 if (decl_table)
7274 /* Record the pointer to the copy. */
7275 entry->copy = copy;
7278 return copy;
7280 /* Copy the declaration context to the new type unit DIE. This includes
7281 any surrounding namespace or type declarations. If the DIE has an
7282 AT_specification attribute, it also includes attributes and children
7283 attached to the specification, and returns a pointer to the original
7284 parent of the declaration DIE. Returns NULL otherwise. */
7286 static dw_die_ref
7287 copy_declaration_context (dw_die_ref unit, dw_die_ref die)
7289 dw_die_ref decl;
7290 dw_die_ref new_decl;
7291 dw_die_ref orig_parent = NULL;
7293 decl = get_AT_ref (die, DW_AT_specification);
7294 if (decl == NULL)
7295 decl = die;
7296 else
7298 unsigned ix;
7299 dw_die_ref c;
7300 dw_attr_ref a;
7302 /* The original DIE will be changed to a declaration, and must
7303 be moved to be a child of the original declaration DIE. */
7304 orig_parent = decl->die_parent;
7306 /* Copy the type node pointer from the new DIE to the original
7307 declaration DIE so we can forward references later. */
7308 decl->comdat_type_p = true;
7309 decl->die_id.die_type_node = die->die_id.die_type_node;
7311 remove_AT (die, DW_AT_specification);
7313 FOR_EACH_VEC_SAFE_ELT (decl->die_attr, ix, a)
7315 if (a->dw_attr != DW_AT_name
7316 && a->dw_attr != DW_AT_declaration
7317 && a->dw_attr != DW_AT_external)
7318 add_dwarf_attr (die, a);
7321 FOR_EACH_CHILD (decl, c, add_child_die (die, clone_tree (c)));
7324 if (decl->die_parent != NULL
7325 && !is_unit_die (decl->die_parent))
7327 new_decl = copy_ancestor_tree (unit, decl, NULL);
7328 if (new_decl != NULL)
7330 remove_AT (new_decl, DW_AT_signature);
7331 add_AT_specification (die, new_decl);
7335 return orig_parent;
7338 /* Generate the skeleton ancestor tree for the given NODE, then clone
7339 the DIE and add the clone into the tree. */
7341 static void
7342 generate_skeleton_ancestor_tree (skeleton_chain_node *node)
7344 if (node->new_die != NULL)
7345 return;
7347 node->new_die = clone_as_declaration (node->old_die);
7349 if (node->parent != NULL)
7351 generate_skeleton_ancestor_tree (node->parent);
7352 add_child_die (node->parent->new_die, node->new_die);
7356 /* Generate a skeleton tree of DIEs containing any declarations that are
7357 found in the original tree. We traverse the tree looking for declaration
7358 DIEs, and construct the skeleton from the bottom up whenever we find one. */
7360 static void
7361 generate_skeleton_bottom_up (skeleton_chain_node *parent)
7363 skeleton_chain_node node;
7364 dw_die_ref c;
7365 dw_die_ref first;
7366 dw_die_ref prev = NULL;
7367 dw_die_ref next = NULL;
7369 node.parent = parent;
7371 first = c = parent->old_die->die_child;
7372 if (c)
7373 next = c->die_sib;
7374 if (c) do {
7375 if (prev == NULL || prev->die_sib == c)
7376 prev = c;
7377 c = next;
7378 next = (c == first ? NULL : c->die_sib);
7379 node.old_die = c;
7380 node.new_die = NULL;
7381 if (is_declaration_die (c))
7383 if (is_template_instantiation (c))
7385 /* Instantiated templates do not need to be cloned into the
7386 type unit. Just move the DIE and its children back to
7387 the skeleton tree (in the main CU). */
7388 remove_child_with_prev (c, prev);
7389 add_child_die (parent->new_die, c);
7390 c = prev;
7392 else
7394 /* Clone the existing DIE, move the original to the skeleton
7395 tree (which is in the main CU), and put the clone, with
7396 all the original's children, where the original came from
7397 (which is about to be moved to the type unit). */
7398 dw_die_ref clone = clone_die (c);
7399 move_all_children (c, clone);
7401 /* If the original has a DW_AT_object_pointer attribute,
7402 it would now point to a child DIE just moved to the
7403 cloned tree, so we need to remove that attribute from
7404 the original. */
7405 remove_AT (c, DW_AT_object_pointer);
7407 replace_child (c, clone, prev);
7408 generate_skeleton_ancestor_tree (parent);
7409 add_child_die (parent->new_die, c);
7410 node.new_die = c;
7411 c = clone;
7414 generate_skeleton_bottom_up (&node);
7415 } while (next != NULL);
7418 /* Wrapper function for generate_skeleton_bottom_up. */
7420 static dw_die_ref
7421 generate_skeleton (dw_die_ref die)
7423 skeleton_chain_node node;
7425 node.old_die = die;
7426 node.new_die = NULL;
7427 node.parent = NULL;
7429 /* If this type definition is nested inside another type,
7430 and is not an instantiation of a template, always leave
7431 at least a declaration in its place. */
7432 if (die->die_parent != NULL
7433 && is_type_die (die->die_parent)
7434 && !is_template_instantiation (die))
7435 node.new_die = clone_as_declaration (die);
7437 generate_skeleton_bottom_up (&node);
7438 return node.new_die;
7441 /* Remove the CHILD DIE from its parent, possibly replacing it with a cloned
7442 declaration. The original DIE is moved to a new compile unit so that
7443 existing references to it follow it to the new location. If any of the
7444 original DIE's descendants is a declaration, we need to replace the
7445 original DIE with a skeleton tree and move the declarations back into the
7446 skeleton tree. */
7448 static dw_die_ref
7449 remove_child_or_replace_with_skeleton (dw_die_ref unit, dw_die_ref child,
7450 dw_die_ref prev)
7452 dw_die_ref skeleton, orig_parent;
7454 /* Copy the declaration context to the type unit DIE. If the returned
7455 ORIG_PARENT is not NULL, the skeleton needs to be added as a child of
7456 that DIE. */
7457 orig_parent = copy_declaration_context (unit, child);
7459 skeleton = generate_skeleton (child);
7460 if (skeleton == NULL)
7461 remove_child_with_prev (child, prev);
7462 else
7464 skeleton->comdat_type_p = true;
7465 skeleton->die_id.die_type_node = child->die_id.die_type_node;
7467 /* If the original DIE was a specification, we need to put
7468 the skeleton under the parent DIE of the declaration.
7469 This leaves the original declaration in the tree, but
7470 it will be pruned later since there are no longer any
7471 references to it. */
7472 if (orig_parent != NULL)
7474 remove_child_with_prev (child, prev);
7475 add_child_die (orig_parent, skeleton);
7477 else
7478 replace_child (child, skeleton, prev);
7481 return skeleton;
7484 /* Traverse the DIE and set up additional .debug_types sections for each
7485 type worthy of being placed in a COMDAT section. */
7487 static void
7488 break_out_comdat_types (dw_die_ref die)
7490 dw_die_ref c;
7491 dw_die_ref first;
7492 dw_die_ref prev = NULL;
7493 dw_die_ref next = NULL;
7494 dw_die_ref unit = NULL;
7496 first = c = die->die_child;
7497 if (c)
7498 next = c->die_sib;
7499 if (c) do {
7500 if (prev == NULL || prev->die_sib == c)
7501 prev = c;
7502 c = next;
7503 next = (c == first ? NULL : c->die_sib);
7504 if (should_move_die_to_comdat (c))
7506 dw_die_ref replacement;
7507 comdat_type_node_ref type_node;
7509 /* Break out nested types into their own type units. */
7510 break_out_comdat_types (c);
7512 /* Create a new type unit DIE as the root for the new tree, and
7513 add it to the list of comdat types. */
7514 unit = new_die (DW_TAG_type_unit, NULL, NULL);
7515 add_AT_unsigned (unit, DW_AT_language,
7516 get_AT_unsigned (comp_unit_die (), DW_AT_language));
7517 type_node = ggc_cleared_alloc<comdat_type_node> ();
7518 type_node->root_die = unit;
7519 type_node->next = comdat_type_list;
7520 comdat_type_list = type_node;
7522 /* Generate the type signature. */
7523 generate_type_signature (c, type_node);
7525 /* Copy the declaration context, attributes, and children of the
7526 declaration into the new type unit DIE, then remove this DIE
7527 from the main CU (or replace it with a skeleton if necessary). */
7528 replacement = remove_child_or_replace_with_skeleton (unit, c, prev);
7529 type_node->skeleton_die = replacement;
7531 /* Add the DIE to the new compunit. */
7532 add_child_die (unit, c);
7534 if (replacement != NULL)
7535 c = replacement;
7537 else if (c->die_tag == DW_TAG_namespace
7538 || c->die_tag == DW_TAG_class_type
7539 || c->die_tag == DW_TAG_structure_type
7540 || c->die_tag == DW_TAG_union_type)
7542 /* Look for nested types that can be broken out. */
7543 break_out_comdat_types (c);
7545 } while (next != NULL);
7548 /* Like clone_tree, but copy DW_TAG_subprogram DIEs as declarations.
7549 Enter all the cloned children into the hash table decl_table. */
7551 static dw_die_ref
7552 clone_tree_partial (dw_die_ref die, decl_hash_type *decl_table)
7554 dw_die_ref c;
7555 dw_die_ref clone;
7556 struct decl_table_entry *entry;
7557 decl_table_entry **slot;
7559 if (die->die_tag == DW_TAG_subprogram)
7560 clone = clone_as_declaration (die);
7561 else
7562 clone = clone_die (die);
7564 slot = decl_table->find_slot_with_hash (die,
7565 htab_hash_pointer (die), INSERT);
7567 /* Assert that DIE isn't in the hash table yet. If it would be there
7568 before, the ancestors would be necessarily there as well, therefore
7569 clone_tree_partial wouldn't be called. */
7570 gcc_assert (*slot == HTAB_EMPTY_ENTRY);
7572 entry = XCNEW (struct decl_table_entry);
7573 entry->orig = die;
7574 entry->copy = clone;
7575 *slot = entry;
7577 if (die->die_tag != DW_TAG_subprogram)
7578 FOR_EACH_CHILD (die, c,
7579 add_child_die (clone, clone_tree_partial (c, decl_table)));
7581 return clone;
7584 /* Walk the DIE and its children, looking for references to incomplete
7585 or trivial types that are unmarked (i.e., that are not in the current
7586 type_unit). */
7588 static void
7589 copy_decls_walk (dw_die_ref unit, dw_die_ref die, decl_hash_type *decl_table)
7591 dw_die_ref c;
7592 dw_attr_ref a;
7593 unsigned ix;
7595 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7597 if (AT_class (a) == dw_val_class_die_ref)
7599 dw_die_ref targ = AT_ref (a);
7600 decl_table_entry **slot;
7601 struct decl_table_entry *entry;
7603 if (targ->die_mark != 0 || targ->comdat_type_p)
7604 continue;
7606 slot = decl_table->find_slot_with_hash (targ,
7607 htab_hash_pointer (targ),
7608 INSERT);
7610 if (*slot != HTAB_EMPTY_ENTRY)
7612 /* TARG has already been copied, so we just need to
7613 modify the reference to point to the copy. */
7614 entry = *slot;
7615 a->dw_attr_val.v.val_die_ref.die = entry->copy;
7617 else
7619 dw_die_ref parent = unit;
7620 dw_die_ref copy = clone_die (targ);
7622 /* Record in DECL_TABLE that TARG has been copied.
7623 Need to do this now, before the recursive call,
7624 because DECL_TABLE may be expanded and SLOT
7625 would no longer be a valid pointer. */
7626 entry = XCNEW (struct decl_table_entry);
7627 entry->orig = targ;
7628 entry->copy = copy;
7629 *slot = entry;
7631 /* If TARG is not a declaration DIE, we need to copy its
7632 children. */
7633 if (!is_declaration_die (targ))
7635 FOR_EACH_CHILD (
7636 targ, c,
7637 add_child_die (copy,
7638 clone_tree_partial (c, decl_table)));
7641 /* Make sure the cloned tree is marked as part of the
7642 type unit. */
7643 mark_dies (copy);
7645 /* If TARG has surrounding context, copy its ancestor tree
7646 into the new type unit. */
7647 if (targ->die_parent != NULL
7648 && !is_unit_die (targ->die_parent))
7649 parent = copy_ancestor_tree (unit, targ->die_parent,
7650 decl_table);
7652 add_child_die (parent, copy);
7653 a->dw_attr_val.v.val_die_ref.die = copy;
7655 /* Make sure the newly-copied DIE is walked. If it was
7656 installed in a previously-added context, it won't
7657 get visited otherwise. */
7658 if (parent != unit)
7660 /* Find the highest point of the newly-added tree,
7661 mark each node along the way, and walk from there. */
7662 parent->die_mark = 1;
7663 while (parent->die_parent
7664 && parent->die_parent->die_mark == 0)
7666 parent = parent->die_parent;
7667 parent->die_mark = 1;
7669 copy_decls_walk (unit, parent, decl_table);
7675 FOR_EACH_CHILD (die, c, copy_decls_walk (unit, c, decl_table));
7678 /* Copy declarations for "unworthy" types into the new comdat section.
7679 Incomplete types, modified types, and certain other types aren't broken
7680 out into comdat sections of their own, so they don't have a signature,
7681 and we need to copy the declaration into the same section so that we
7682 don't have an external reference. */
7684 static void
7685 copy_decls_for_unworthy_types (dw_die_ref unit)
7687 mark_dies (unit);
7688 decl_hash_type decl_table (10);
7689 copy_decls_walk (unit, unit, &decl_table);
7690 unmark_dies (unit);
7693 /* Traverse the DIE and add a sibling attribute if it may have the
7694 effect of speeding up access to siblings. To save some space,
7695 avoid generating sibling attributes for DIE's without children. */
7697 static void
7698 add_sibling_attributes (dw_die_ref die)
7700 dw_die_ref c;
7702 if (! die->die_child)
7703 return;
7705 if (die->die_parent && die != die->die_parent->die_child)
7706 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
7708 FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
7711 /* Output all location lists for the DIE and its children. */
7713 static void
7714 output_location_lists (dw_die_ref die)
7716 dw_die_ref c;
7717 dw_attr_ref a;
7718 unsigned ix;
7720 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7721 if (AT_class (a) == dw_val_class_loc_list)
7722 output_loc_list (AT_loc_list (a));
7724 FOR_EACH_CHILD (die, c, output_location_lists (c));
7727 /* We want to limit the number of external references, because they are
7728 larger than local references: a relocation takes multiple words, and
7729 even a sig8 reference is always eight bytes, whereas a local reference
7730 can be as small as one byte (though DW_FORM_ref is usually 4 in GCC).
7731 So if we encounter multiple external references to the same type DIE, we
7732 make a local typedef stub for it and redirect all references there.
7734 This is the element of the hash table for keeping track of these
7735 references. */
7737 struct external_ref
7739 dw_die_ref type;
7740 dw_die_ref stub;
7741 unsigned n_refs;
7744 /* Hashtable helpers. */
7746 struct external_ref_hasher : typed_free_remove <external_ref>
7748 typedef external_ref *value_type;
7749 typedef external_ref *compare_type;
7750 static inline hashval_t hash (const external_ref *);
7751 static inline bool equal (const external_ref *, const external_ref *);
7754 inline hashval_t
7755 external_ref_hasher::hash (const external_ref *r)
7757 dw_die_ref die = r->type;
7758 hashval_t h = 0;
7760 /* We can't use the address of the DIE for hashing, because
7761 that will make the order of the stub DIEs non-deterministic. */
7762 if (! die->comdat_type_p)
7763 /* We have a symbol; use it to compute a hash. */
7764 h = htab_hash_string (die->die_id.die_symbol);
7765 else
7767 /* We have a type signature; use a subset of the bits as the hash.
7768 The 8-byte signature is at least as large as hashval_t. */
7769 comdat_type_node_ref type_node = die->die_id.die_type_node;
7770 memcpy (&h, type_node->signature, sizeof (h));
7772 return h;
7775 inline bool
7776 external_ref_hasher::equal (const external_ref *r1, const external_ref *r2)
7778 return r1->type == r2->type;
7781 typedef hash_table<external_ref_hasher> external_ref_hash_type;
7783 /* Return a pointer to the external_ref for references to DIE. */
7785 static struct external_ref *
7786 lookup_external_ref (external_ref_hash_type *map, dw_die_ref die)
7788 struct external_ref ref, *ref_p;
7789 external_ref **slot;
7791 ref.type = die;
7792 slot = map->find_slot (&ref, INSERT);
7793 if (*slot != HTAB_EMPTY_ENTRY)
7794 return *slot;
7796 ref_p = XCNEW (struct external_ref);
7797 ref_p->type = die;
7798 *slot = ref_p;
7799 return ref_p;
7802 /* Subroutine of optimize_external_refs, below.
7804 If we see a type skeleton, record it as our stub. If we see external
7805 references, remember how many we've seen. */
7807 static void
7808 optimize_external_refs_1 (dw_die_ref die, external_ref_hash_type *map)
7810 dw_die_ref c;
7811 dw_attr_ref a;
7812 unsigned ix;
7813 struct external_ref *ref_p;
7815 if (is_type_die (die)
7816 && (c = get_AT_ref (die, DW_AT_signature)))
7818 /* This is a local skeleton; use it for local references. */
7819 ref_p = lookup_external_ref (map, c);
7820 ref_p->stub = die;
7823 /* Scan the DIE references, and remember any that refer to DIEs from
7824 other CUs (i.e. those which are not marked). */
7825 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7826 if (AT_class (a) == dw_val_class_die_ref
7827 && (c = AT_ref (a))->die_mark == 0
7828 && is_type_die (c))
7830 ref_p = lookup_external_ref (map, c);
7831 ref_p->n_refs++;
7834 FOR_EACH_CHILD (die, c, optimize_external_refs_1 (c, map));
7837 /* htab_traverse callback function for optimize_external_refs, below. SLOT
7838 points to an external_ref, DATA is the CU we're processing. If we don't
7839 already have a local stub, and we have multiple refs, build a stub. */
7842 dwarf2_build_local_stub (external_ref **slot, dw_die_ref data)
7844 struct external_ref *ref_p = *slot;
7846 if (ref_p->stub == NULL && ref_p->n_refs > 1 && !dwarf_strict)
7848 /* We have multiple references to this type, so build a small stub.
7849 Both of these forms are a bit dodgy from the perspective of the
7850 DWARF standard, since technically they should have names. */
7851 dw_die_ref cu = data;
7852 dw_die_ref type = ref_p->type;
7853 dw_die_ref stub = NULL;
7855 if (type->comdat_type_p)
7857 /* If we refer to this type via sig8, use AT_signature. */
7858 stub = new_die (type->die_tag, cu, NULL_TREE);
7859 add_AT_die_ref (stub, DW_AT_signature, type);
7861 else
7863 /* Otherwise, use a typedef with no name. */
7864 stub = new_die (DW_TAG_typedef, cu, NULL_TREE);
7865 add_AT_die_ref (stub, DW_AT_type, type);
7868 stub->die_mark++;
7869 ref_p->stub = stub;
7871 return 1;
7874 /* DIE is a unit; look through all the DIE references to see if there are
7875 any external references to types, and if so, create local stubs for
7876 them which will be applied in build_abbrev_table. This is useful because
7877 references to local DIEs are smaller. */
7879 static external_ref_hash_type *
7880 optimize_external_refs (dw_die_ref die)
7882 external_ref_hash_type *map = new external_ref_hash_type (10);
7883 optimize_external_refs_1 (die, map);
7884 map->traverse <dw_die_ref, dwarf2_build_local_stub> (die);
7885 return map;
7888 /* The format of each DIE (and its attribute value pairs) is encoded in an
7889 abbreviation table. This routine builds the abbreviation table and assigns
7890 a unique abbreviation id for each abbreviation entry. The children of each
7891 die are visited recursively. */
7893 static void
7894 build_abbrev_table (dw_die_ref die, external_ref_hash_type *extern_map)
7896 unsigned long abbrev_id;
7897 unsigned int n_alloc;
7898 dw_die_ref c;
7899 dw_attr_ref a;
7900 unsigned ix;
7902 /* Scan the DIE references, and replace any that refer to
7903 DIEs from other CUs (i.e. those which are not marked) with
7904 the local stubs we built in optimize_external_refs. */
7905 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
7906 if (AT_class (a) == dw_val_class_die_ref
7907 && (c = AT_ref (a))->die_mark == 0)
7909 struct external_ref *ref_p;
7910 gcc_assert (AT_ref (a)->comdat_type_p || AT_ref (a)->die_id.die_symbol);
7912 ref_p = lookup_external_ref (extern_map, c);
7913 if (ref_p->stub && ref_p->stub != die)
7914 change_AT_die_ref (a, ref_p->stub);
7915 else
7916 /* We aren't changing this reference, so mark it external. */
7917 set_AT_ref_external (a, 1);
7920 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
7922 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
7923 dw_attr_ref die_a, abbrev_a;
7924 unsigned ix;
7925 bool ok = true;
7927 if (abbrev->die_tag != die->die_tag)
7928 continue;
7929 if ((abbrev->die_child != NULL) != (die->die_child != NULL))
7930 continue;
7932 if (vec_safe_length (abbrev->die_attr) != vec_safe_length (die->die_attr))
7933 continue;
7935 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, die_a)
7937 abbrev_a = &(*abbrev->die_attr)[ix];
7938 if ((abbrev_a->dw_attr != die_a->dw_attr)
7939 || (value_format (abbrev_a) != value_format (die_a)))
7941 ok = false;
7942 break;
7945 if (ok)
7946 break;
7949 if (abbrev_id >= abbrev_die_table_in_use)
7951 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
7953 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
7954 abbrev_die_table = GGC_RESIZEVEC (dw_die_ref, abbrev_die_table,
7955 n_alloc);
7957 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
7958 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
7959 abbrev_die_table_allocated = n_alloc;
7962 ++abbrev_die_table_in_use;
7963 abbrev_die_table[abbrev_id] = die;
7966 die->die_abbrev = abbrev_id;
7967 FOR_EACH_CHILD (die, c, build_abbrev_table (c, extern_map));
7970 /* Return the power-of-two number of bytes necessary to represent VALUE. */
7972 static int
7973 constant_size (unsigned HOST_WIDE_INT value)
7975 int log;
7977 if (value == 0)
7978 log = 0;
7979 else
7980 log = floor_log2 (value);
7982 log = log / 8;
7983 log = 1 << (floor_log2 (log) + 1);
7985 return log;
7988 /* Return the size of a DIE as it is represented in the
7989 .debug_info section. */
7991 static unsigned long
7992 size_of_die (dw_die_ref die)
7994 unsigned long size = 0;
7995 dw_attr_ref a;
7996 unsigned ix;
7997 enum dwarf_form form;
7999 size += size_of_uleb128 (die->die_abbrev);
8000 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8002 switch (AT_class (a))
8004 case dw_val_class_addr:
8005 if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
8007 gcc_assert (AT_index (a) != NO_INDEX_ASSIGNED);
8008 size += size_of_uleb128 (AT_index (a));
8010 else
8011 size += DWARF2_ADDR_SIZE;
8012 break;
8013 case dw_val_class_offset:
8014 size += DWARF_OFFSET_SIZE;
8015 break;
8016 case dw_val_class_loc:
8018 unsigned long lsize = size_of_locs (AT_loc (a));
8020 /* Block length. */
8021 if (dwarf_version >= 4)
8022 size += size_of_uleb128 (lsize);
8023 else
8024 size += constant_size (lsize);
8025 size += lsize;
8027 break;
8028 case dw_val_class_loc_list:
8029 if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
8031 gcc_assert (AT_index (a) != NO_INDEX_ASSIGNED);
8032 size += size_of_uleb128 (AT_index (a));
8034 else
8035 size += DWARF_OFFSET_SIZE;
8036 break;
8037 case dw_val_class_range_list:
8038 size += DWARF_OFFSET_SIZE;
8039 break;
8040 case dw_val_class_const:
8041 size += size_of_sleb128 (AT_int (a));
8042 break;
8043 case dw_val_class_unsigned_const:
8045 int csize = constant_size (AT_unsigned (a));
8046 if (dwarf_version == 3
8047 && a->dw_attr == DW_AT_data_member_location
8048 && csize >= 4)
8049 size += size_of_uleb128 (AT_unsigned (a));
8050 else
8051 size += csize;
8053 break;
8054 case dw_val_class_const_double:
8055 size += HOST_BITS_PER_DOUBLE_INT / HOST_BITS_PER_CHAR;
8056 if (HOST_BITS_PER_WIDE_INT >= 64)
8057 size++; /* block */
8058 break;
8059 case dw_val_class_wide_int:
8060 size += (get_full_len (*a->dw_attr_val.v.val_wide)
8061 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
8062 if (get_full_len (*a->dw_attr_val.v.val_wide) * HOST_BITS_PER_WIDE_INT
8063 > 64)
8064 size++; /* block */
8065 break;
8066 case dw_val_class_vec:
8067 size += constant_size (a->dw_attr_val.v.val_vec.length
8068 * a->dw_attr_val.v.val_vec.elt_size)
8069 + a->dw_attr_val.v.val_vec.length
8070 * a->dw_attr_val.v.val_vec.elt_size; /* block */
8071 break;
8072 case dw_val_class_flag:
8073 if (dwarf_version >= 4)
8074 /* Currently all add_AT_flag calls pass in 1 as last argument,
8075 so DW_FORM_flag_present can be used. If that ever changes,
8076 we'll need to use DW_FORM_flag and have some optimization
8077 in build_abbrev_table that will change those to
8078 DW_FORM_flag_present if it is set to 1 in all DIEs using
8079 the same abbrev entry. */
8080 gcc_assert (a->dw_attr_val.v.val_flag == 1);
8081 else
8082 size += 1;
8083 break;
8084 case dw_val_class_die_ref:
8085 if (AT_ref_external (a))
8087 /* In DWARF4, we use DW_FORM_ref_sig8; for earlier versions
8088 we use DW_FORM_ref_addr. In DWARF2, DW_FORM_ref_addr
8089 is sized by target address length, whereas in DWARF3
8090 it's always sized as an offset. */
8091 if (use_debug_types)
8092 size += DWARF_TYPE_SIGNATURE_SIZE;
8093 else if (dwarf_version == 2)
8094 size += DWARF2_ADDR_SIZE;
8095 else
8096 size += DWARF_OFFSET_SIZE;
8098 else
8099 size += DWARF_OFFSET_SIZE;
8100 break;
8101 case dw_val_class_fde_ref:
8102 size += DWARF_OFFSET_SIZE;
8103 break;
8104 case dw_val_class_lbl_id:
8105 if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
8107 gcc_assert (AT_index (a) != NO_INDEX_ASSIGNED);
8108 size += size_of_uleb128 (AT_index (a));
8110 else
8111 size += DWARF2_ADDR_SIZE;
8112 break;
8113 case dw_val_class_lineptr:
8114 case dw_val_class_macptr:
8115 size += DWARF_OFFSET_SIZE;
8116 break;
8117 case dw_val_class_str:
8118 form = AT_string_form (a);
8119 if (form == DW_FORM_strp)
8120 size += DWARF_OFFSET_SIZE;
8121 else if (form == DW_FORM_GNU_str_index)
8122 size += size_of_uleb128 (AT_index (a));
8123 else
8124 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
8125 break;
8126 case dw_val_class_file:
8127 size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
8128 break;
8129 case dw_val_class_data8:
8130 size += 8;
8131 break;
8132 case dw_val_class_vms_delta:
8133 size += DWARF_OFFSET_SIZE;
8134 break;
8135 case dw_val_class_high_pc:
8136 size += DWARF2_ADDR_SIZE;
8137 break;
8138 default:
8139 gcc_unreachable ();
8143 return size;
8146 /* Size the debugging information associated with a given DIE. Visits the
8147 DIE's children recursively. Updates the global variable next_die_offset, on
8148 each time through. Uses the current value of next_die_offset to update the
8149 die_offset field in each DIE. */
8151 static void
8152 calc_die_sizes (dw_die_ref die)
8154 dw_die_ref c;
8156 gcc_assert (die->die_offset == 0
8157 || (unsigned long int) die->die_offset == next_die_offset);
8158 die->die_offset = next_die_offset;
8159 next_die_offset += size_of_die (die);
8161 FOR_EACH_CHILD (die, c, calc_die_sizes (c));
8163 if (die->die_child != NULL)
8164 /* Count the null byte used to terminate sibling lists. */
8165 next_die_offset += 1;
8168 /* Size just the base type children at the start of the CU.
8169 This is needed because build_abbrev needs to size locs
8170 and sizing of type based stack ops needs to know die_offset
8171 values for the base types. */
8173 static void
8174 calc_base_type_die_sizes (void)
8176 unsigned long die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
8177 unsigned int i;
8178 dw_die_ref base_type;
8179 #if ENABLE_ASSERT_CHECKING
8180 dw_die_ref prev = comp_unit_die ()->die_child;
8181 #endif
8183 die_offset += size_of_die (comp_unit_die ());
8184 for (i = 0; base_types.iterate (i, &base_type); i++)
8186 #if ENABLE_ASSERT_CHECKING
8187 gcc_assert (base_type->die_offset == 0
8188 && prev->die_sib == base_type
8189 && base_type->die_child == NULL
8190 && base_type->die_abbrev);
8191 prev = base_type;
8192 #endif
8193 base_type->die_offset = die_offset;
8194 die_offset += size_of_die (base_type);
8198 /* Set the marks for a die and its children. We do this so
8199 that we know whether or not a reference needs to use FORM_ref_addr; only
8200 DIEs in the same CU will be marked. We used to clear out the offset
8201 and use that as the flag, but ran into ordering problems. */
8203 static void
8204 mark_dies (dw_die_ref die)
8206 dw_die_ref c;
8208 gcc_assert (!die->die_mark);
8210 die->die_mark = 1;
8211 FOR_EACH_CHILD (die, c, mark_dies (c));
8214 /* Clear the marks for a die and its children. */
8216 static void
8217 unmark_dies (dw_die_ref die)
8219 dw_die_ref c;
8221 if (! use_debug_types)
8222 gcc_assert (die->die_mark);
8224 die->die_mark = 0;
8225 FOR_EACH_CHILD (die, c, unmark_dies (c));
8228 /* Clear the marks for a die, its children and referred dies. */
8230 static void
8231 unmark_all_dies (dw_die_ref die)
8233 dw_die_ref c;
8234 dw_attr_ref a;
8235 unsigned ix;
8237 if (!die->die_mark)
8238 return;
8239 die->die_mark = 0;
8241 FOR_EACH_CHILD (die, c, unmark_all_dies (c));
8243 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8244 if (AT_class (a) == dw_val_class_die_ref)
8245 unmark_all_dies (AT_ref (a));
8248 /* Calculate if the entry should appear in the final output file. It may be
8249 from a pruned a type. */
8251 static bool
8252 include_pubname_in_output (vec<pubname_entry, va_gc> *table, pubname_entry *p)
8254 /* By limiting gnu pubnames to definitions only, gold can generate a
8255 gdb index without entries for declarations, which don't include
8256 enough information to be useful. */
8257 if (debug_generate_pub_sections == 2 && is_declaration_die (p->die))
8258 return false;
8260 if (table == pubname_table)
8262 /* Enumerator names are part of the pubname table, but the
8263 parent DW_TAG_enumeration_type die may have been pruned.
8264 Don't output them if that is the case. */
8265 if (p->die->die_tag == DW_TAG_enumerator &&
8266 (p->die->die_parent == NULL
8267 || !p->die->die_parent->die_perennial_p))
8268 return false;
8270 /* Everything else in the pubname table is included. */
8271 return true;
8274 /* The pubtypes table shouldn't include types that have been
8275 pruned. */
8276 return (p->die->die_offset != 0
8277 || !flag_eliminate_unused_debug_types);
8280 /* Return the size of the .debug_pubnames or .debug_pubtypes table
8281 generated for the compilation unit. */
8283 static unsigned long
8284 size_of_pubnames (vec<pubname_entry, va_gc> *names)
8286 unsigned long size;
8287 unsigned i;
8288 pubname_ref p;
8289 int space_for_flags = (debug_generate_pub_sections == 2) ? 1 : 0;
8291 size = DWARF_PUBNAMES_HEADER_SIZE;
8292 FOR_EACH_VEC_ELT (*names, i, p)
8293 if (include_pubname_in_output (names, p))
8294 size += strlen (p->name) + DWARF_OFFSET_SIZE + 1 + space_for_flags;
8296 size += DWARF_OFFSET_SIZE;
8297 return size;
8300 /* Return the size of the information in the .debug_aranges section. */
8302 static unsigned long
8303 size_of_aranges (void)
8305 unsigned long size;
8307 size = DWARF_ARANGES_HEADER_SIZE;
8309 /* Count the address/length pair for this compilation unit. */
8310 if (text_section_used)
8311 size += 2 * DWARF2_ADDR_SIZE;
8312 if (cold_text_section_used)
8313 size += 2 * DWARF2_ADDR_SIZE;
8314 if (have_multiple_function_sections)
8316 unsigned fde_idx;
8317 dw_fde_ref fde;
8319 FOR_EACH_VEC_ELT (*fde_vec, fde_idx, fde)
8321 if (DECL_IGNORED_P (fde->decl))
8322 continue;
8323 if (!fde->in_std_section)
8324 size += 2 * DWARF2_ADDR_SIZE;
8325 if (fde->dw_fde_second_begin && !fde->second_in_std_section)
8326 size += 2 * DWARF2_ADDR_SIZE;
8330 /* Count the two zero words used to terminated the address range table. */
8331 size += 2 * DWARF2_ADDR_SIZE;
8332 return size;
8335 /* Select the encoding of an attribute value. */
8337 static enum dwarf_form
8338 value_format (dw_attr_ref a)
8340 switch (AT_class (a))
8342 case dw_val_class_addr:
8343 /* Only very few attributes allow DW_FORM_addr. */
8344 switch (a->dw_attr)
8346 case DW_AT_low_pc:
8347 case DW_AT_high_pc:
8348 case DW_AT_entry_pc:
8349 case DW_AT_trampoline:
8350 return (AT_index (a) == NOT_INDEXED
8351 ? DW_FORM_addr : DW_FORM_GNU_addr_index);
8352 default:
8353 break;
8355 switch (DWARF2_ADDR_SIZE)
8357 case 1:
8358 return DW_FORM_data1;
8359 case 2:
8360 return DW_FORM_data2;
8361 case 4:
8362 return DW_FORM_data4;
8363 case 8:
8364 return DW_FORM_data8;
8365 default:
8366 gcc_unreachable ();
8368 case dw_val_class_range_list:
8369 case dw_val_class_loc_list:
8370 if (dwarf_version >= 4)
8371 return DW_FORM_sec_offset;
8372 /* FALLTHRU */
8373 case dw_val_class_vms_delta:
8374 case dw_val_class_offset:
8375 switch (DWARF_OFFSET_SIZE)
8377 case 4:
8378 return DW_FORM_data4;
8379 case 8:
8380 return DW_FORM_data8;
8381 default:
8382 gcc_unreachable ();
8384 case dw_val_class_loc:
8385 if (dwarf_version >= 4)
8386 return DW_FORM_exprloc;
8387 switch (constant_size (size_of_locs (AT_loc (a))))
8389 case 1:
8390 return DW_FORM_block1;
8391 case 2:
8392 return DW_FORM_block2;
8393 case 4:
8394 return DW_FORM_block4;
8395 default:
8396 gcc_unreachable ();
8398 case dw_val_class_const:
8399 return DW_FORM_sdata;
8400 case dw_val_class_unsigned_const:
8401 switch (constant_size (AT_unsigned (a)))
8403 case 1:
8404 return DW_FORM_data1;
8405 case 2:
8406 return DW_FORM_data2;
8407 case 4:
8408 /* In DWARF3 DW_AT_data_member_location with
8409 DW_FORM_data4 or DW_FORM_data8 is a loclistptr, not
8410 constant, so we need to use DW_FORM_udata if we need
8411 a large constant. */
8412 if (dwarf_version == 3 && a->dw_attr == DW_AT_data_member_location)
8413 return DW_FORM_udata;
8414 return DW_FORM_data4;
8415 case 8:
8416 if (dwarf_version == 3 && a->dw_attr == DW_AT_data_member_location)
8417 return DW_FORM_udata;
8418 return DW_FORM_data8;
8419 default:
8420 gcc_unreachable ();
8422 case dw_val_class_const_double:
8423 switch (HOST_BITS_PER_WIDE_INT)
8425 case 8:
8426 return DW_FORM_data2;
8427 case 16:
8428 return DW_FORM_data4;
8429 case 32:
8430 return DW_FORM_data8;
8431 case 64:
8432 default:
8433 return DW_FORM_block1;
8435 case dw_val_class_wide_int:
8436 switch (get_full_len (*a->dw_attr_val.v.val_wide) * HOST_BITS_PER_WIDE_INT)
8438 case 8:
8439 return DW_FORM_data1;
8440 case 16:
8441 return DW_FORM_data2;
8442 case 32:
8443 return DW_FORM_data4;
8444 case 64:
8445 return DW_FORM_data8;
8446 default:
8447 return DW_FORM_block1;
8449 case dw_val_class_vec:
8450 switch (constant_size (a->dw_attr_val.v.val_vec.length
8451 * a->dw_attr_val.v.val_vec.elt_size))
8453 case 1:
8454 return DW_FORM_block1;
8455 case 2:
8456 return DW_FORM_block2;
8457 case 4:
8458 return DW_FORM_block4;
8459 default:
8460 gcc_unreachable ();
8462 case dw_val_class_flag:
8463 if (dwarf_version >= 4)
8465 /* Currently all add_AT_flag calls pass in 1 as last argument,
8466 so DW_FORM_flag_present can be used. If that ever changes,
8467 we'll need to use DW_FORM_flag and have some optimization
8468 in build_abbrev_table that will change those to
8469 DW_FORM_flag_present if it is set to 1 in all DIEs using
8470 the same abbrev entry. */
8471 gcc_assert (a->dw_attr_val.v.val_flag == 1);
8472 return DW_FORM_flag_present;
8474 return DW_FORM_flag;
8475 case dw_val_class_die_ref:
8476 if (AT_ref_external (a))
8477 return use_debug_types ? DW_FORM_ref_sig8 : DW_FORM_ref_addr;
8478 else
8479 return DW_FORM_ref;
8480 case dw_val_class_fde_ref:
8481 return DW_FORM_data;
8482 case dw_val_class_lbl_id:
8483 return (AT_index (a) == NOT_INDEXED
8484 ? DW_FORM_addr : DW_FORM_GNU_addr_index);
8485 case dw_val_class_lineptr:
8486 case dw_val_class_macptr:
8487 return dwarf_version >= 4 ? DW_FORM_sec_offset : DW_FORM_data;
8488 case dw_val_class_str:
8489 return AT_string_form (a);
8490 case dw_val_class_file:
8491 switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
8493 case 1:
8494 return DW_FORM_data1;
8495 case 2:
8496 return DW_FORM_data2;
8497 case 4:
8498 return DW_FORM_data4;
8499 default:
8500 gcc_unreachable ();
8503 case dw_val_class_data8:
8504 return DW_FORM_data8;
8506 case dw_val_class_high_pc:
8507 switch (DWARF2_ADDR_SIZE)
8509 case 1:
8510 return DW_FORM_data1;
8511 case 2:
8512 return DW_FORM_data2;
8513 case 4:
8514 return DW_FORM_data4;
8515 case 8:
8516 return DW_FORM_data8;
8517 default:
8518 gcc_unreachable ();
8521 default:
8522 gcc_unreachable ();
8526 /* Output the encoding of an attribute value. */
8528 static void
8529 output_value_format (dw_attr_ref a)
8531 enum dwarf_form form = value_format (a);
8533 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
8536 /* Given a die and id, produce the appropriate abbreviations. */
8538 static void
8539 output_die_abbrevs (unsigned long abbrev_id, dw_die_ref abbrev)
8541 unsigned ix;
8542 dw_attr_ref a_attr;
8544 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
8545 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
8546 dwarf_tag_name (abbrev->die_tag));
8548 if (abbrev->die_child != NULL)
8549 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
8550 else
8551 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
8553 for (ix = 0; vec_safe_iterate (abbrev->die_attr, ix, &a_attr); ix++)
8555 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
8556 dwarf_attr_name (a_attr->dw_attr));
8557 output_value_format (a_attr);
8560 dw2_asm_output_data (1, 0, NULL);
8561 dw2_asm_output_data (1, 0, NULL);
8565 /* Output the .debug_abbrev section which defines the DIE abbreviation
8566 table. */
8568 static void
8569 output_abbrev_section (void)
8571 unsigned long abbrev_id;
8573 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
8574 output_die_abbrevs (abbrev_id, abbrev_die_table[abbrev_id]);
8576 /* Terminate the table. */
8577 dw2_asm_output_data (1, 0, NULL);
8580 /* Output a symbol we can use to refer to this DIE from another CU. */
8582 static inline void
8583 output_die_symbol (dw_die_ref die)
8585 const char *sym = die->die_id.die_symbol;
8587 gcc_assert (!die->comdat_type_p);
8589 if (sym == 0)
8590 return;
8592 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
8593 /* We make these global, not weak; if the target doesn't support
8594 .linkonce, it doesn't support combining the sections, so debugging
8595 will break. */
8596 targetm.asm_out.globalize_label (asm_out_file, sym);
8598 ASM_OUTPUT_LABEL (asm_out_file, sym);
8601 /* Return a new location list, given the begin and end range, and the
8602 expression. */
8604 static inline dw_loc_list_ref
8605 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
8606 const char *section)
8608 dw_loc_list_ref retlist = ggc_cleared_alloc<dw_loc_list_node> ();
8610 retlist->begin = begin;
8611 retlist->begin_entry = NULL;
8612 retlist->end = end;
8613 retlist->expr = expr;
8614 retlist->section = section;
8616 return retlist;
8619 /* Generate a new internal symbol for this location list node, if it
8620 hasn't got one yet. */
8622 static inline void
8623 gen_llsym (dw_loc_list_ref list)
8625 gcc_assert (!list->ll_symbol);
8626 list->ll_symbol = gen_internal_sym ("LLST");
8629 /* Output the location list given to us. */
8631 static void
8632 output_loc_list (dw_loc_list_ref list_head)
8634 dw_loc_list_ref curr = list_head;
8636 if (list_head->emitted)
8637 return;
8638 list_head->emitted = true;
8640 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
8642 /* Walk the location list, and output each range + expression. */
8643 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
8645 unsigned long size;
8646 /* Don't output an entry that starts and ends at the same address. */
8647 if (strcmp (curr->begin, curr->end) == 0 && !curr->force)
8648 continue;
8649 size = size_of_locs (curr->expr);
8650 /* If the expression is too large, drop it on the floor. We could
8651 perhaps put it into DW_TAG_dwarf_procedure and refer to that
8652 in the expression, but >= 64KB expressions for a single value
8653 in a single range are unlikely very useful. */
8654 if (size > 0xffff)
8655 continue;
8656 if (dwarf_split_debug_info)
8658 dw2_asm_output_data (1, DW_LLE_GNU_start_length_entry,
8659 "Location list start/length entry (%s)",
8660 list_head->ll_symbol);
8661 dw2_asm_output_data_uleb128 (curr->begin_entry->index,
8662 "Location list range start index (%s)",
8663 curr->begin);
8664 /* The length field is 4 bytes. If we ever need to support
8665 an 8-byte length, we can add a new DW_LLE code or fall back
8666 to DW_LLE_GNU_start_end_entry. */
8667 dw2_asm_output_delta (4, curr->end, curr->begin,
8668 "Location list range length (%s)",
8669 list_head->ll_symbol);
8671 else if (!have_multiple_function_sections)
8673 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
8674 "Location list begin address (%s)",
8675 list_head->ll_symbol);
8676 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
8677 "Location list end address (%s)",
8678 list_head->ll_symbol);
8680 else
8682 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
8683 "Location list begin address (%s)",
8684 list_head->ll_symbol);
8685 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
8686 "Location list end address (%s)",
8687 list_head->ll_symbol);
8690 /* Output the block length for this list of location operations. */
8691 gcc_assert (size <= 0xffff);
8692 dw2_asm_output_data (2, size, "%s", "Location expression size");
8694 output_loc_sequence (curr->expr, -1);
8697 if (dwarf_split_debug_info)
8698 dw2_asm_output_data (1, DW_LLE_GNU_end_of_list_entry,
8699 "Location list terminator (%s)",
8700 list_head->ll_symbol);
8701 else
8703 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
8704 "Location list terminator begin (%s)",
8705 list_head->ll_symbol);
8706 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
8707 "Location list terminator end (%s)",
8708 list_head->ll_symbol);
8712 /* Output a range_list offset into the debug_range section. Emit a
8713 relocated reference if val_entry is NULL, otherwise, emit an
8714 indirect reference. */
8716 static void
8717 output_range_list_offset (dw_attr_ref a)
8719 const char *name = dwarf_attr_name (a->dw_attr);
8721 if (a->dw_attr_val.val_entry == RELOCATED_OFFSET)
8723 char *p = strchr (ranges_section_label, '\0');
8724 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX, a->dw_attr_val.v.val_offset);
8725 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
8726 debug_ranges_section, "%s", name);
8727 *p = '\0';
8729 else
8730 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
8731 "%s (offset from %s)", name, ranges_section_label);
8734 /* Output the offset into the debug_loc section. */
8736 static void
8737 output_loc_list_offset (dw_attr_ref a)
8739 char *sym = AT_loc_list (a)->ll_symbol;
8741 gcc_assert (sym);
8742 if (dwarf_split_debug_info)
8743 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym, loc_section_label,
8744 "%s", dwarf_attr_name (a->dw_attr));
8745 else
8746 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
8747 "%s", dwarf_attr_name (a->dw_attr));
8750 /* Output an attribute's index or value appropriately. */
8752 static void
8753 output_attr_index_or_value (dw_attr_ref a)
8755 const char *name = dwarf_attr_name (a->dw_attr);
8757 if (dwarf_split_debug_info && AT_index (a) != NOT_INDEXED)
8759 dw2_asm_output_data_uleb128 (AT_index (a), "%s", name);
8760 return;
8762 switch (AT_class (a))
8764 case dw_val_class_addr:
8765 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
8766 break;
8767 case dw_val_class_high_pc:
8768 case dw_val_class_lbl_id:
8769 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
8770 break;
8771 case dw_val_class_loc_list:
8772 output_loc_list_offset (a);
8773 break;
8774 default:
8775 gcc_unreachable ();
8779 /* Output a type signature. */
8781 static inline void
8782 output_signature (const char *sig, const char *name)
8784 int i;
8786 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
8787 dw2_asm_output_data (1, sig[i], i == 0 ? "%s" : NULL, name);
8790 /* Output the DIE and its attributes. Called recursively to generate
8791 the definitions of each child DIE. */
8793 static void
8794 output_die (dw_die_ref die)
8796 dw_attr_ref a;
8797 dw_die_ref c;
8798 unsigned long size;
8799 unsigned ix;
8801 /* If someone in another CU might refer to us, set up a symbol for
8802 them to point to. */
8803 if (! die->comdat_type_p && die->die_id.die_symbol)
8804 output_die_symbol (die);
8806 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (%#lx) %s)",
8807 (unsigned long)die->die_offset,
8808 dwarf_tag_name (die->die_tag));
8810 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
8812 const char *name = dwarf_attr_name (a->dw_attr);
8814 switch (AT_class (a))
8816 case dw_val_class_addr:
8817 output_attr_index_or_value (a);
8818 break;
8820 case dw_val_class_offset:
8821 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
8822 "%s", name);
8823 break;
8825 case dw_val_class_range_list:
8826 output_range_list_offset (a);
8827 break;
8829 case dw_val_class_loc:
8830 size = size_of_locs (AT_loc (a));
8832 /* Output the block length for this list of location operations. */
8833 if (dwarf_version >= 4)
8834 dw2_asm_output_data_uleb128 (size, "%s", name);
8835 else
8836 dw2_asm_output_data (constant_size (size), size, "%s", name);
8838 output_loc_sequence (AT_loc (a), -1);
8839 break;
8841 case dw_val_class_const:
8842 /* ??? It would be slightly more efficient to use a scheme like is
8843 used for unsigned constants below, but gdb 4.x does not sign
8844 extend. Gdb 5.x does sign extend. */
8845 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
8846 break;
8848 case dw_val_class_unsigned_const:
8850 int csize = constant_size (AT_unsigned (a));
8851 if (dwarf_version == 3
8852 && a->dw_attr == DW_AT_data_member_location
8853 && csize >= 4)
8854 dw2_asm_output_data_uleb128 (AT_unsigned (a), "%s", name);
8855 else
8856 dw2_asm_output_data (csize, AT_unsigned (a), "%s", name);
8858 break;
8860 case dw_val_class_const_double:
8862 unsigned HOST_WIDE_INT first, second;
8864 if (HOST_BITS_PER_WIDE_INT >= 64)
8865 dw2_asm_output_data (1,
8866 HOST_BITS_PER_DOUBLE_INT
8867 / HOST_BITS_PER_CHAR,
8868 NULL);
8870 if (WORDS_BIG_ENDIAN)
8872 first = a->dw_attr_val.v.val_double.high;
8873 second = a->dw_attr_val.v.val_double.low;
8875 else
8877 first = a->dw_attr_val.v.val_double.low;
8878 second = a->dw_attr_val.v.val_double.high;
8881 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
8882 first, "%s", name);
8883 dw2_asm_output_data (HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR,
8884 second, NULL);
8886 break;
8888 case dw_val_class_wide_int:
8890 int i;
8891 int len = get_full_len (*a->dw_attr_val.v.val_wide);
8892 int l = HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR;
8893 if (len * HOST_BITS_PER_WIDE_INT > 64)
8894 dw2_asm_output_data (1, get_full_len (*a->dw_attr_val.v.val_wide) * l,
8895 NULL);
8897 if (WORDS_BIG_ENDIAN)
8898 for (i = len - 1; i >= 0; --i)
8900 dw2_asm_output_data (l, a->dw_attr_val.v.val_wide->elt (i),
8901 "%s", name);
8902 name = NULL;
8904 else
8905 for (i = 0; i < len; ++i)
8907 dw2_asm_output_data (l, a->dw_attr_val.v.val_wide->elt (i),
8908 "%s", name);
8909 name = NULL;
8912 break;
8914 case dw_val_class_vec:
8916 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
8917 unsigned int len = a->dw_attr_val.v.val_vec.length;
8918 unsigned int i;
8919 unsigned char *p;
8921 dw2_asm_output_data (constant_size (len * elt_size),
8922 len * elt_size, "%s", name);
8923 if (elt_size > sizeof (HOST_WIDE_INT))
8925 elt_size /= 2;
8926 len *= 2;
8928 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
8929 i < len;
8930 i++, p += elt_size)
8931 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
8932 "fp or vector constant word %u", i);
8933 break;
8936 case dw_val_class_flag:
8937 if (dwarf_version >= 4)
8939 /* Currently all add_AT_flag calls pass in 1 as last argument,
8940 so DW_FORM_flag_present can be used. If that ever changes,
8941 we'll need to use DW_FORM_flag and have some optimization
8942 in build_abbrev_table that will change those to
8943 DW_FORM_flag_present if it is set to 1 in all DIEs using
8944 the same abbrev entry. */
8945 gcc_assert (AT_flag (a) == 1);
8946 if (flag_debug_asm)
8947 fprintf (asm_out_file, "\t\t\t%s %s\n",
8948 ASM_COMMENT_START, name);
8949 break;
8951 dw2_asm_output_data (1, AT_flag (a), "%s", name);
8952 break;
8954 case dw_val_class_loc_list:
8955 output_attr_index_or_value (a);
8956 break;
8958 case dw_val_class_die_ref:
8959 if (AT_ref_external (a))
8961 if (AT_ref (a)->comdat_type_p)
8963 comdat_type_node_ref type_node =
8964 AT_ref (a)->die_id.die_type_node;
8966 gcc_assert (type_node);
8967 output_signature (type_node->signature, name);
8969 else
8971 const char *sym = AT_ref (a)->die_id.die_symbol;
8972 int size;
8974 gcc_assert (sym);
8975 /* In DWARF2, DW_FORM_ref_addr is sized by target address
8976 length, whereas in DWARF3 it's always sized as an
8977 offset. */
8978 if (dwarf_version == 2)
8979 size = DWARF2_ADDR_SIZE;
8980 else
8981 size = DWARF_OFFSET_SIZE;
8982 dw2_asm_output_offset (size, sym, debug_info_section, "%s",
8983 name);
8986 else
8988 gcc_assert (AT_ref (a)->die_offset);
8989 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
8990 "%s", name);
8992 break;
8994 case dw_val_class_fde_ref:
8996 char l1[20];
8998 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
8999 a->dw_attr_val.v.val_fde_index * 2);
9000 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
9001 "%s", name);
9003 break;
9005 case dw_val_class_vms_delta:
9006 #ifdef ASM_OUTPUT_DWARF_VMS_DELTA
9007 dw2_asm_output_vms_delta (DWARF_OFFSET_SIZE,
9008 AT_vms_delta2 (a), AT_vms_delta1 (a),
9009 "%s", name);
9010 #else
9011 dw2_asm_output_delta (DWARF_OFFSET_SIZE,
9012 AT_vms_delta2 (a), AT_vms_delta1 (a),
9013 "%s", name);
9014 #endif
9015 break;
9017 case dw_val_class_lbl_id:
9018 output_attr_index_or_value (a);
9019 break;
9021 case dw_val_class_lineptr:
9022 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
9023 debug_line_section, "%s", name);
9024 break;
9026 case dw_val_class_macptr:
9027 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
9028 debug_macinfo_section, "%s", name);
9029 break;
9031 case dw_val_class_str:
9032 if (a->dw_attr_val.v.val_str->form == DW_FORM_strp)
9033 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
9034 a->dw_attr_val.v.val_str->label,
9035 debug_str_section,
9036 "%s: \"%s\"", name, AT_string (a));
9037 else if (a->dw_attr_val.v.val_str->form == DW_FORM_GNU_str_index)
9038 dw2_asm_output_data_uleb128 (AT_index (a),
9039 "%s: \"%s\"", name, AT_string (a));
9040 else
9041 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
9042 break;
9044 case dw_val_class_file:
9046 int f = maybe_emit_file (a->dw_attr_val.v.val_file);
9048 dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
9049 a->dw_attr_val.v.val_file->filename);
9050 break;
9053 case dw_val_class_data8:
9055 int i;
9057 for (i = 0; i < 8; i++)
9058 dw2_asm_output_data (1, a->dw_attr_val.v.val_data8[i],
9059 i == 0 ? "%s" : NULL, name);
9060 break;
9063 case dw_val_class_high_pc:
9064 dw2_asm_output_delta (DWARF2_ADDR_SIZE, AT_lbl (a),
9065 get_AT_low_pc (die), "DW_AT_high_pc");
9066 break;
9068 default:
9069 gcc_unreachable ();
9073 FOR_EACH_CHILD (die, c, output_die (c));
9075 /* Add null byte to terminate sibling list. */
9076 if (die->die_child != NULL)
9077 dw2_asm_output_data (1, 0, "end of children of DIE %#lx",
9078 (unsigned long) die->die_offset);
9081 /* Output the compilation unit that appears at the beginning of the
9082 .debug_info section, and precedes the DIE descriptions. */
9084 static void
9085 output_compilation_unit_header (void)
9087 /* We don't support actual DWARFv5 units yet, we just use some
9088 DWARFv5 draft DIE tags in DWARFv4 format. */
9089 int ver = dwarf_version < 5 ? dwarf_version : 4;
9091 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
9092 dw2_asm_output_data (4, 0xffffffff,
9093 "Initial length escape value indicating 64-bit DWARF extension");
9094 dw2_asm_output_data (DWARF_OFFSET_SIZE,
9095 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
9096 "Length of Compilation Unit Info");
9097 dw2_asm_output_data (2, ver, "DWARF version number");
9098 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
9099 debug_abbrev_section,
9100 "Offset Into Abbrev. Section");
9101 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
9104 /* Output the compilation unit DIE and its children. */
9106 static void
9107 output_comp_unit (dw_die_ref die, int output_if_empty)
9109 const char *secname, *oldsym;
9110 char *tmp;
9112 /* Unless we are outputting main CU, we may throw away empty ones. */
9113 if (!output_if_empty && die->die_child == NULL)
9114 return;
9116 /* Even if there are no children of this DIE, we must output the information
9117 about the compilation unit. Otherwise, on an empty translation unit, we
9118 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
9119 will then complain when examining the file. First mark all the DIEs in
9120 this CU so we know which get local refs. */
9121 mark_dies (die);
9123 external_ref_hash_type *extern_map = optimize_external_refs (die);
9125 build_abbrev_table (die, extern_map);
9127 delete extern_map;
9129 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
9130 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
9131 calc_die_sizes (die);
9133 oldsym = die->die_id.die_symbol;
9134 if (oldsym)
9136 tmp = XALLOCAVEC (char, strlen (oldsym) + 24);
9138 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
9139 secname = tmp;
9140 die->die_id.die_symbol = NULL;
9141 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
9143 else
9145 switch_to_section (debug_info_section);
9146 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
9147 info_section_emitted = true;
9150 /* Output debugging information. */
9151 output_compilation_unit_header ();
9152 output_die (die);
9154 /* Leave the marks on the main CU, so we can check them in
9155 output_pubnames. */
9156 if (oldsym)
9158 unmark_dies (die);
9159 die->die_id.die_symbol = oldsym;
9163 /* Whether to generate the DWARF accelerator tables in .debug_pubnames
9164 and .debug_pubtypes. This is configured per-target, but can be
9165 overridden by the -gpubnames or -gno-pubnames options. */
9167 static inline bool
9168 want_pubnames (void)
9170 if (debug_info_level <= DINFO_LEVEL_TERSE)
9171 return false;
9172 if (debug_generate_pub_sections != -1)
9173 return debug_generate_pub_sections;
9174 return targetm.want_debug_pub_sections;
9177 /* Add the DW_AT_GNU_pubnames and DW_AT_GNU_pubtypes attributes. */
9179 static void
9180 add_AT_pubnames (dw_die_ref die)
9182 if (want_pubnames ())
9183 add_AT_flag (die, DW_AT_GNU_pubnames, 1);
9186 /* Add a string attribute value to a skeleton DIE. */
9188 static inline void
9189 add_skeleton_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind,
9190 const char *str)
9192 dw_attr_node attr;
9193 struct indirect_string_node *node;
9195 if (! skeleton_debug_str_hash)
9196 skeleton_debug_str_hash
9197 = hash_table<indirect_string_hasher>::create_ggc (10);
9199 node = find_AT_string_in_table (str, skeleton_debug_str_hash);
9200 find_string_form (node);
9201 if (node->form == DW_FORM_GNU_str_index)
9202 node->form = DW_FORM_strp;
9204 attr.dw_attr = attr_kind;
9205 attr.dw_attr_val.val_class = dw_val_class_str;
9206 attr.dw_attr_val.val_entry = NULL;
9207 attr.dw_attr_val.v.val_str = node;
9208 add_dwarf_attr (die, &attr);
9211 /* Helper function to generate top-level dies for skeleton debug_info and
9212 debug_types. */
9214 static void
9215 add_top_level_skeleton_die_attrs (dw_die_ref die)
9217 const char *dwo_file_name = concat (aux_base_name, ".dwo", NULL);
9218 const char *comp_dir = comp_dir_string ();
9220 add_skeleton_AT_string (die, DW_AT_GNU_dwo_name, dwo_file_name);
9221 if (comp_dir != NULL)
9222 add_skeleton_AT_string (die, DW_AT_comp_dir, comp_dir);
9223 add_AT_pubnames (die);
9224 add_AT_lineptr (die, DW_AT_GNU_addr_base, debug_addr_section_label);
9227 /* Output skeleton debug sections that point to the dwo file. */
9229 static void
9230 output_skeleton_debug_sections (dw_die_ref comp_unit)
9232 /* We don't support actual DWARFv5 units yet, we just use some
9233 DWARFv5 draft DIE tags in DWARFv4 format. */
9234 int ver = dwarf_version < 5 ? dwarf_version : 4;
9236 /* These attributes will be found in the full debug_info section. */
9237 remove_AT (comp_unit, DW_AT_producer);
9238 remove_AT (comp_unit, DW_AT_language);
9240 switch_to_section (debug_skeleton_info_section);
9241 ASM_OUTPUT_LABEL (asm_out_file, debug_skeleton_info_section_label);
9243 /* Produce the skeleton compilation-unit header. This one differs enough from
9244 a normal CU header that it's better not to call output_compilation_unit
9245 header. */
9246 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
9247 dw2_asm_output_data (4, 0xffffffff,
9248 "Initial length escape value indicating 64-bit DWARF extension");
9250 dw2_asm_output_data (DWARF_OFFSET_SIZE,
9251 DWARF_COMPILE_UNIT_HEADER_SIZE
9252 - DWARF_INITIAL_LENGTH_SIZE
9253 + size_of_die (comp_unit),
9254 "Length of Compilation Unit Info");
9255 dw2_asm_output_data (2, ver, "DWARF version number");
9256 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_skeleton_abbrev_section_label,
9257 debug_abbrev_section,
9258 "Offset Into Abbrev. Section");
9259 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
9261 comp_unit->die_abbrev = SKELETON_COMP_DIE_ABBREV;
9262 output_die (comp_unit);
9264 /* Build the skeleton debug_abbrev section. */
9265 switch_to_section (debug_skeleton_abbrev_section);
9266 ASM_OUTPUT_LABEL (asm_out_file, debug_skeleton_abbrev_section_label);
9268 output_die_abbrevs (SKELETON_COMP_DIE_ABBREV, comp_unit);
9270 dw2_asm_output_data (1, 0, "end of skeleton .debug_abbrev");
9273 /* Output a comdat type unit DIE and its children. */
9275 static void
9276 output_comdat_type_unit (comdat_type_node *node)
9278 const char *secname;
9279 char *tmp;
9280 int i;
9281 #if defined (OBJECT_FORMAT_ELF)
9282 tree comdat_key;
9283 #endif
9285 /* First mark all the DIEs in this CU so we know which get local refs. */
9286 mark_dies (node->root_die);
9288 external_ref_hash_type *extern_map = optimize_external_refs (node->root_die);
9290 build_abbrev_table (node->root_die, extern_map);
9292 delete extern_map;
9293 extern_map = NULL;
9295 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
9296 next_die_offset = DWARF_COMDAT_TYPE_UNIT_HEADER_SIZE;
9297 calc_die_sizes (node->root_die);
9299 #if defined (OBJECT_FORMAT_ELF)
9300 if (!dwarf_split_debug_info)
9301 secname = ".debug_types";
9302 else
9303 secname = ".debug_types.dwo";
9305 tmp = XALLOCAVEC (char, 4 + DWARF_TYPE_SIGNATURE_SIZE * 2);
9306 sprintf (tmp, "wt.");
9307 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
9308 sprintf (tmp + 3 + i * 2, "%02x", node->signature[i] & 0xff);
9309 comdat_key = get_identifier (tmp);
9310 targetm.asm_out.named_section (secname,
9311 SECTION_DEBUG | SECTION_LINKONCE,
9312 comdat_key);
9313 #else
9314 tmp = XALLOCAVEC (char, 18 + DWARF_TYPE_SIGNATURE_SIZE * 2);
9315 sprintf (tmp, ".gnu.linkonce.wt.");
9316 for (i = 0; i < DWARF_TYPE_SIGNATURE_SIZE; i++)
9317 sprintf (tmp + 17 + i * 2, "%02x", node->signature[i] & 0xff);
9318 secname = tmp;
9319 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
9320 #endif
9322 /* Output debugging information. */
9323 output_compilation_unit_header ();
9324 output_signature (node->signature, "Type Signature");
9325 dw2_asm_output_data (DWARF_OFFSET_SIZE, node->type_die->die_offset,
9326 "Offset to Type DIE");
9327 output_die (node->root_die);
9329 unmark_dies (node->root_die);
9332 /* Return the DWARF2/3 pubname associated with a decl. */
9334 static const char *
9335 dwarf2_name (tree decl, int scope)
9337 if (DECL_NAMELESS (decl))
9338 return NULL;
9339 return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
9342 /* Add a new entry to .debug_pubnames if appropriate. */
9344 static void
9345 add_pubname_string (const char *str, dw_die_ref die)
9347 pubname_entry e;
9349 e.die = die;
9350 e.name = xstrdup (str);
9351 vec_safe_push (pubname_table, e);
9354 static void
9355 add_pubname (tree decl, dw_die_ref die)
9357 if (!want_pubnames ())
9358 return;
9360 /* Don't add items to the table when we expect that the consumer will have
9361 just read the enclosing die. For example, if the consumer is looking at a
9362 class_member, it will either be inside the class already, or will have just
9363 looked up the class to find the member. Either way, searching the class is
9364 faster than searching the index. */
9365 if ((TREE_PUBLIC (decl) && !class_scope_p (die->die_parent))
9366 || is_cu_die (die->die_parent) || is_namespace_die (die->die_parent))
9368 const char *name = dwarf2_name (decl, 1);
9370 if (name)
9371 add_pubname_string (name, die);
9375 /* Add an enumerator to the pubnames section. */
9377 static void
9378 add_enumerator_pubname (const char *scope_name, dw_die_ref die)
9380 pubname_entry e;
9382 gcc_assert (scope_name);
9383 e.name = concat (scope_name, get_AT_string (die, DW_AT_name), NULL);
9384 e.die = die;
9385 vec_safe_push (pubname_table, e);
9388 /* Add a new entry to .debug_pubtypes if appropriate. */
9390 static void
9391 add_pubtype (tree decl, dw_die_ref die)
9393 pubname_entry e;
9395 if (!want_pubnames ())
9396 return;
9398 if ((TREE_PUBLIC (decl)
9399 || is_cu_die (die->die_parent) || is_namespace_die (die->die_parent))
9400 && (die->die_tag == DW_TAG_typedef || COMPLETE_TYPE_P (decl)))
9402 tree scope = NULL;
9403 const char *scope_name = "";
9404 const char *sep = is_cxx () ? "::" : ".";
9405 const char *name;
9407 scope = TYPE_P (decl) ? TYPE_CONTEXT (decl) : NULL;
9408 if (scope && TREE_CODE (scope) == NAMESPACE_DECL)
9410 scope_name = lang_hooks.dwarf_name (scope, 1);
9411 if (scope_name != NULL && scope_name[0] != '\0')
9412 scope_name = concat (scope_name, sep, NULL);
9413 else
9414 scope_name = "";
9417 if (TYPE_P (decl))
9418 name = type_tag (decl);
9419 else
9420 name = lang_hooks.dwarf_name (decl, 1);
9422 /* If we don't have a name for the type, there's no point in adding
9423 it to the table. */
9424 if (name != NULL && name[0] != '\0')
9426 e.die = die;
9427 e.name = concat (scope_name, name, NULL);
9428 vec_safe_push (pubtype_table, e);
9431 /* Although it might be more consistent to add the pubinfo for the
9432 enumerators as their dies are created, they should only be added if the
9433 enum type meets the criteria above. So rather than re-check the parent
9434 enum type whenever an enumerator die is created, just output them all
9435 here. This isn't protected by the name conditional because anonymous
9436 enums don't have names. */
9437 if (die->die_tag == DW_TAG_enumeration_type)
9439 dw_die_ref c;
9441 FOR_EACH_CHILD (die, c, add_enumerator_pubname (scope_name, c));
9446 /* Output a single entry in the pubnames table. */
9448 static void
9449 output_pubname (dw_offset die_offset, pubname_entry *entry)
9451 dw_die_ref die = entry->die;
9452 int is_static = get_AT_flag (die, DW_AT_external) ? 0 : 1;
9454 dw2_asm_output_data (DWARF_OFFSET_SIZE, die_offset, "DIE offset");
9456 if (debug_generate_pub_sections == 2)
9458 /* This logic follows gdb's method for determining the value of the flag
9459 byte. */
9460 uint32_t flags = GDB_INDEX_SYMBOL_KIND_NONE;
9461 switch (die->die_tag)
9463 case DW_TAG_typedef:
9464 case DW_TAG_base_type:
9465 case DW_TAG_subrange_type:
9466 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, GDB_INDEX_SYMBOL_KIND_TYPE);
9467 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, 1);
9468 break;
9469 case DW_TAG_enumerator:
9470 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
9471 GDB_INDEX_SYMBOL_KIND_VARIABLE);
9472 if (!is_cxx () && !is_java ())
9473 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, 1);
9474 break;
9475 case DW_TAG_subprogram:
9476 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
9477 GDB_INDEX_SYMBOL_KIND_FUNCTION);
9478 if (!is_ada ())
9479 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, is_static);
9480 break;
9481 case DW_TAG_constant:
9482 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
9483 GDB_INDEX_SYMBOL_KIND_VARIABLE);
9484 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, is_static);
9485 break;
9486 case DW_TAG_variable:
9487 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags,
9488 GDB_INDEX_SYMBOL_KIND_VARIABLE);
9489 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, is_static);
9490 break;
9491 case DW_TAG_namespace:
9492 case DW_TAG_imported_declaration:
9493 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, GDB_INDEX_SYMBOL_KIND_TYPE);
9494 break;
9495 case DW_TAG_class_type:
9496 case DW_TAG_interface_type:
9497 case DW_TAG_structure_type:
9498 case DW_TAG_union_type:
9499 case DW_TAG_enumeration_type:
9500 GDB_INDEX_SYMBOL_KIND_SET_VALUE(flags, GDB_INDEX_SYMBOL_KIND_TYPE);
9501 if (!is_cxx () && !is_java ())
9502 GDB_INDEX_SYMBOL_STATIC_SET_VALUE(flags, 1);
9503 break;
9504 default:
9505 /* An unusual tag. Leave the flag-byte empty. */
9506 break;
9508 dw2_asm_output_data (1, flags >> GDB_INDEX_CU_BITSIZE,
9509 "GDB-index flags");
9512 dw2_asm_output_nstring (entry->name, -1, "external name");
9516 /* Output the public names table used to speed up access to externally
9517 visible names; or the public types table used to find type definitions. */
9519 static void
9520 output_pubnames (vec<pubname_entry, va_gc> *names)
9522 unsigned i;
9523 unsigned long pubnames_length = size_of_pubnames (names);
9524 pubname_ref pub;
9526 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
9527 dw2_asm_output_data (4, 0xffffffff,
9528 "Initial length escape value indicating 64-bit DWARF extension");
9529 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length, "Pub Info Length");
9531 /* Version number for pubnames/pubtypes is independent of dwarf version. */
9532 dw2_asm_output_data (2, 2, "DWARF Version");
9534 if (dwarf_split_debug_info)
9535 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_skeleton_info_section_label,
9536 debug_skeleton_info_section,
9537 "Offset of Compilation Unit Info");
9538 else
9539 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
9540 debug_info_section,
9541 "Offset of Compilation Unit Info");
9542 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
9543 "Compilation Unit Length");
9545 FOR_EACH_VEC_ELT (*names, i, pub)
9547 if (include_pubname_in_output (names, pub))
9549 dw_offset die_offset = pub->die->die_offset;
9551 /* We shouldn't see pubnames for DIEs outside of the main CU. */
9552 if (names == pubname_table && pub->die->die_tag != DW_TAG_enumerator)
9553 gcc_assert (pub->die->die_mark);
9555 /* If we're putting types in their own .debug_types sections,
9556 the .debug_pubtypes table will still point to the compile
9557 unit (not the type unit), so we want to use the offset of
9558 the skeleton DIE (if there is one). */
9559 if (pub->die->comdat_type_p && names == pubtype_table)
9561 comdat_type_node_ref type_node = pub->die->die_id.die_type_node;
9563 if (type_node != NULL)
9564 die_offset = (type_node->skeleton_die != NULL
9565 ? type_node->skeleton_die->die_offset
9566 : comp_unit_die ()->die_offset);
9569 output_pubname (die_offset, pub);
9573 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
9576 /* Output public names and types tables if necessary. */
9578 static void
9579 output_pubtables (void)
9581 if (!want_pubnames () || !info_section_emitted)
9582 return;
9584 switch_to_section (debug_pubnames_section);
9585 output_pubnames (pubname_table);
9586 /* ??? Only defined by DWARF3, but emitted by Darwin for DWARF2.
9587 It shouldn't hurt to emit it always, since pure DWARF2 consumers
9588 simply won't look for the section. */
9589 switch_to_section (debug_pubtypes_section);
9590 output_pubnames (pubtype_table);
9594 /* Output the information that goes into the .debug_aranges table.
9595 Namely, define the beginning and ending address range of the
9596 text section generated for this compilation unit. */
9598 static void
9599 output_aranges (unsigned long aranges_length)
9601 unsigned i;
9603 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
9604 dw2_asm_output_data (4, 0xffffffff,
9605 "Initial length escape value indicating 64-bit DWARF extension");
9606 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
9607 "Length of Address Ranges Info");
9608 /* Version number for aranges is still 2, even up to DWARF5. */
9609 dw2_asm_output_data (2, 2, "DWARF Version");
9610 if (dwarf_split_debug_info)
9611 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_skeleton_info_section_label,
9612 debug_skeleton_info_section,
9613 "Offset of Compilation Unit Info");
9614 else
9615 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
9616 debug_info_section,
9617 "Offset of Compilation Unit Info");
9618 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
9619 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
9621 /* We need to align to twice the pointer size here. */
9622 if (DWARF_ARANGES_PAD_SIZE)
9624 /* Pad using a 2 byte words so that padding is correct for any
9625 pointer size. */
9626 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
9627 2 * DWARF2_ADDR_SIZE);
9628 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
9629 dw2_asm_output_data (2, 0, NULL);
9632 /* It is necessary not to output these entries if the sections were
9633 not used; if the sections were not used, the length will be 0 and
9634 the address may end up as 0 if the section is discarded by ld
9635 --gc-sections, leaving an invalid (0, 0) entry that can be
9636 confused with the terminator. */
9637 if (text_section_used)
9639 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
9640 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
9641 text_section_label, "Length");
9643 if (cold_text_section_used)
9645 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
9646 "Address");
9647 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
9648 cold_text_section_label, "Length");
9651 if (have_multiple_function_sections)
9653 unsigned fde_idx;
9654 dw_fde_ref fde;
9656 FOR_EACH_VEC_ELT (*fde_vec, fde_idx, fde)
9658 if (DECL_IGNORED_P (fde->decl))
9659 continue;
9660 if (!fde->in_std_section)
9662 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
9663 "Address");
9664 dw2_asm_output_delta (DWARF2_ADDR_SIZE, fde->dw_fde_end,
9665 fde->dw_fde_begin, "Length");
9667 if (fde->dw_fde_second_begin && !fde->second_in_std_section)
9669 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_second_begin,
9670 "Address");
9671 dw2_asm_output_delta (DWARF2_ADDR_SIZE, fde->dw_fde_second_end,
9672 fde->dw_fde_second_begin, "Length");
9677 /* Output the terminator words. */
9678 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
9679 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
9682 /* Add a new entry to .debug_ranges. Return the offset at which it
9683 was placed. */
9685 static unsigned int
9686 add_ranges_num (int num)
9688 unsigned int in_use = ranges_table_in_use;
9690 if (in_use == ranges_table_allocated)
9692 ranges_table_allocated += RANGES_TABLE_INCREMENT;
9693 ranges_table = GGC_RESIZEVEC (struct dw_ranges_struct, ranges_table,
9694 ranges_table_allocated);
9695 memset (ranges_table + ranges_table_in_use, 0,
9696 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
9699 ranges_table[in_use].num = num;
9700 ranges_table_in_use = in_use + 1;
9702 return in_use * 2 * DWARF2_ADDR_SIZE;
9705 /* Add a new entry to .debug_ranges corresponding to a block, or a
9706 range terminator if BLOCK is NULL. */
9708 static unsigned int
9709 add_ranges (const_tree block)
9711 return add_ranges_num (block ? BLOCK_NUMBER (block) : 0);
9714 /* Add a new entry to .debug_ranges corresponding to a pair of labels.
9715 When using dwarf_split_debug_info, address attributes in dies destined
9716 for the final executable should be direct references--setting the
9717 parameter force_direct ensures this behavior. */
9719 static void
9720 add_ranges_by_labels (dw_die_ref die, const char *begin, const char *end,
9721 bool *added, bool force_direct)
9723 unsigned int in_use = ranges_by_label_in_use;
9724 unsigned int offset;
9726 if (in_use == ranges_by_label_allocated)
9728 ranges_by_label_allocated += RANGES_TABLE_INCREMENT;
9729 ranges_by_label = GGC_RESIZEVEC (struct dw_ranges_by_label_struct,
9730 ranges_by_label,
9731 ranges_by_label_allocated);
9732 memset (ranges_by_label + ranges_by_label_in_use, 0,
9733 RANGES_TABLE_INCREMENT
9734 * sizeof (struct dw_ranges_by_label_struct));
9737 ranges_by_label[in_use].begin = begin;
9738 ranges_by_label[in_use].end = end;
9739 ranges_by_label_in_use = in_use + 1;
9741 offset = add_ranges_num (-(int)in_use - 1);
9742 if (!*added)
9744 add_AT_range_list (die, DW_AT_ranges, offset, force_direct);
9745 *added = true;
9749 static void
9750 output_ranges (void)
9752 unsigned i;
9753 static const char *const start_fmt = "Offset %#x";
9754 const char *fmt = start_fmt;
9756 for (i = 0; i < ranges_table_in_use; i++)
9758 int block_num = ranges_table[i].num;
9760 if (block_num > 0)
9762 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
9763 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
9765 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
9766 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
9768 /* If all code is in the text section, then the compilation
9769 unit base address defaults to DW_AT_low_pc, which is the
9770 base of the text section. */
9771 if (!have_multiple_function_sections)
9773 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
9774 text_section_label,
9775 fmt, i * 2 * DWARF2_ADDR_SIZE);
9776 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
9777 text_section_label, NULL);
9780 /* Otherwise, the compilation unit base address is zero,
9781 which allows us to use absolute addresses, and not worry
9782 about whether the target supports cross-section
9783 arithmetic. */
9784 else
9786 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
9787 fmt, i * 2 * DWARF2_ADDR_SIZE);
9788 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
9791 fmt = NULL;
9794 /* Negative block_num stands for an index into ranges_by_label. */
9795 else if (block_num < 0)
9797 int lab_idx = - block_num - 1;
9799 if (!have_multiple_function_sections)
9801 gcc_unreachable ();
9802 #if 0
9803 /* If we ever use add_ranges_by_labels () for a single
9804 function section, all we have to do is to take out
9805 the #if 0 above. */
9806 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
9807 ranges_by_label[lab_idx].begin,
9808 text_section_label,
9809 fmt, i * 2 * DWARF2_ADDR_SIZE);
9810 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
9811 ranges_by_label[lab_idx].end,
9812 text_section_label, NULL);
9813 #endif
9815 else
9817 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
9818 ranges_by_label[lab_idx].begin,
9819 fmt, i * 2 * DWARF2_ADDR_SIZE);
9820 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
9821 ranges_by_label[lab_idx].end,
9822 NULL);
9825 else
9827 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
9828 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
9829 fmt = start_fmt;
9834 /* Data structure containing information about input files. */
9835 struct file_info
9837 const char *path; /* Complete file name. */
9838 const char *fname; /* File name part. */
9839 int length; /* Length of entire string. */
9840 struct dwarf_file_data * file_idx; /* Index in input file table. */
9841 int dir_idx; /* Index in directory table. */
9844 /* Data structure containing information about directories with source
9845 files. */
9846 struct dir_info
9848 const char *path; /* Path including directory name. */
9849 int length; /* Path length. */
9850 int prefix; /* Index of directory entry which is a prefix. */
9851 int count; /* Number of files in this directory. */
9852 int dir_idx; /* Index of directory used as base. */
9855 /* Callback function for file_info comparison. We sort by looking at
9856 the directories in the path. */
9858 static int
9859 file_info_cmp (const void *p1, const void *p2)
9861 const struct file_info *const s1 = (const struct file_info *) p1;
9862 const struct file_info *const s2 = (const struct file_info *) p2;
9863 const unsigned char *cp1;
9864 const unsigned char *cp2;
9866 /* Take care of file names without directories. We need to make sure that
9867 we return consistent values to qsort since some will get confused if
9868 we return the same value when identical operands are passed in opposite
9869 orders. So if neither has a directory, return 0 and otherwise return
9870 1 or -1 depending on which one has the directory. */
9871 if ((s1->path == s1->fname || s2->path == s2->fname))
9872 return (s2->path == s2->fname) - (s1->path == s1->fname);
9874 cp1 = (const unsigned char *) s1->path;
9875 cp2 = (const unsigned char *) s2->path;
9877 while (1)
9879 ++cp1;
9880 ++cp2;
9881 /* Reached the end of the first path? If so, handle like above. */
9882 if ((cp1 == (const unsigned char *) s1->fname)
9883 || (cp2 == (const unsigned char *) s2->fname))
9884 return ((cp2 == (const unsigned char *) s2->fname)
9885 - (cp1 == (const unsigned char *) s1->fname));
9887 /* Character of current path component the same? */
9888 else if (*cp1 != *cp2)
9889 return *cp1 - *cp2;
9893 struct file_name_acquire_data
9895 struct file_info *files;
9896 int used_files;
9897 int max_files;
9900 /* Traversal function for the hash table. */
9903 file_name_acquire (dwarf_file_data **slot, file_name_acquire_data *fnad)
9905 struct dwarf_file_data *d = *slot;
9906 struct file_info *fi;
9907 const char *f;
9909 gcc_assert (fnad->max_files >= d->emitted_number);
9911 if (! d->emitted_number)
9912 return 1;
9914 gcc_assert (fnad->max_files != fnad->used_files);
9916 fi = fnad->files + fnad->used_files++;
9918 /* Skip all leading "./". */
9919 f = d->filename;
9920 while (f[0] == '.' && IS_DIR_SEPARATOR (f[1]))
9921 f += 2;
9923 /* Create a new array entry. */
9924 fi->path = f;
9925 fi->length = strlen (f);
9926 fi->file_idx = d;
9928 /* Search for the file name part. */
9929 f = strrchr (f, DIR_SEPARATOR);
9930 #if defined (DIR_SEPARATOR_2)
9932 char *g = strrchr (fi->path, DIR_SEPARATOR_2);
9934 if (g != NULL)
9936 if (f == NULL || f < g)
9937 f = g;
9940 #endif
9942 fi->fname = f == NULL ? fi->path : f + 1;
9943 return 1;
9946 /* Output the directory table and the file name table. We try to minimize
9947 the total amount of memory needed. A heuristic is used to avoid large
9948 slowdowns with many input files. */
9950 static void
9951 output_file_names (void)
9953 struct file_name_acquire_data fnad;
9954 int numfiles;
9955 struct file_info *files;
9956 struct dir_info *dirs;
9957 int *saved;
9958 int *savehere;
9959 int *backmap;
9960 int ndirs;
9961 int idx_offset;
9962 int i;
9964 if (!last_emitted_file)
9966 dw2_asm_output_data (1, 0, "End directory table");
9967 dw2_asm_output_data (1, 0, "End file name table");
9968 return;
9971 numfiles = last_emitted_file->emitted_number;
9973 /* Allocate the various arrays we need. */
9974 files = XALLOCAVEC (struct file_info, numfiles);
9975 dirs = XALLOCAVEC (struct dir_info, numfiles);
9977 fnad.files = files;
9978 fnad.used_files = 0;
9979 fnad.max_files = numfiles;
9980 file_table->traverse<file_name_acquire_data *, file_name_acquire> (&fnad);
9981 gcc_assert (fnad.used_files == fnad.max_files);
9983 qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
9985 /* Find all the different directories used. */
9986 dirs[0].path = files[0].path;
9987 dirs[0].length = files[0].fname - files[0].path;
9988 dirs[0].prefix = -1;
9989 dirs[0].count = 1;
9990 dirs[0].dir_idx = 0;
9991 files[0].dir_idx = 0;
9992 ndirs = 1;
9994 for (i = 1; i < numfiles; i++)
9995 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
9996 && memcmp (dirs[ndirs - 1].path, files[i].path,
9997 dirs[ndirs - 1].length) == 0)
9999 /* Same directory as last entry. */
10000 files[i].dir_idx = ndirs - 1;
10001 ++dirs[ndirs - 1].count;
10003 else
10005 int j;
10007 /* This is a new directory. */
10008 dirs[ndirs].path = files[i].path;
10009 dirs[ndirs].length = files[i].fname - files[i].path;
10010 dirs[ndirs].count = 1;
10011 dirs[ndirs].dir_idx = ndirs;
10012 files[i].dir_idx = ndirs;
10014 /* Search for a prefix. */
10015 dirs[ndirs].prefix = -1;
10016 for (j = 0; j < ndirs; j++)
10017 if (dirs[j].length < dirs[ndirs].length
10018 && dirs[j].length > 1
10019 && (dirs[ndirs].prefix == -1
10020 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
10021 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
10022 dirs[ndirs].prefix = j;
10024 ++ndirs;
10027 /* Now to the actual work. We have to find a subset of the directories which
10028 allow expressing the file name using references to the directory table
10029 with the least amount of characters. We do not do an exhaustive search
10030 where we would have to check out every combination of every single
10031 possible prefix. Instead we use a heuristic which provides nearly optimal
10032 results in most cases and never is much off. */
10033 saved = XALLOCAVEC (int, ndirs);
10034 savehere = XALLOCAVEC (int, ndirs);
10036 memset (saved, '\0', ndirs * sizeof (saved[0]));
10037 for (i = 0; i < ndirs; i++)
10039 int j;
10040 int total;
10042 /* We can always save some space for the current directory. But this
10043 does not mean it will be enough to justify adding the directory. */
10044 savehere[i] = dirs[i].length;
10045 total = (savehere[i] - saved[i]) * dirs[i].count;
10047 for (j = i + 1; j < ndirs; j++)
10049 savehere[j] = 0;
10050 if (saved[j] < dirs[i].length)
10052 /* Determine whether the dirs[i] path is a prefix of the
10053 dirs[j] path. */
10054 int k;
10056 k = dirs[j].prefix;
10057 while (k != -1 && k != (int) i)
10058 k = dirs[k].prefix;
10060 if (k == (int) i)
10062 /* Yes it is. We can possibly save some memory by
10063 writing the filenames in dirs[j] relative to
10064 dirs[i]. */
10065 savehere[j] = dirs[i].length;
10066 total += (savehere[j] - saved[j]) * dirs[j].count;
10071 /* Check whether we can save enough to justify adding the dirs[i]
10072 directory. */
10073 if (total > dirs[i].length + 1)
10075 /* It's worthwhile adding. */
10076 for (j = i; j < ndirs; j++)
10077 if (savehere[j] > 0)
10079 /* Remember how much we saved for this directory so far. */
10080 saved[j] = savehere[j];
10082 /* Remember the prefix directory. */
10083 dirs[j].dir_idx = i;
10088 /* Emit the directory name table. */
10089 idx_offset = dirs[0].length > 0 ? 1 : 0;
10090 for (i = 1 - idx_offset; i < ndirs; i++)
10091 dw2_asm_output_nstring (dirs[i].path,
10092 dirs[i].length
10093 - !DWARF2_DIR_SHOULD_END_WITH_SEPARATOR,
10094 "Directory Entry: %#x", i + idx_offset);
10096 dw2_asm_output_data (1, 0, "End directory table");
10098 /* We have to emit them in the order of emitted_number since that's
10099 used in the debug info generation. To do this efficiently we
10100 generate a back-mapping of the indices first. */
10101 backmap = XALLOCAVEC (int, numfiles);
10102 for (i = 0; i < numfiles; i++)
10103 backmap[files[i].file_idx->emitted_number - 1] = i;
10105 /* Now write all the file names. */
10106 for (i = 0; i < numfiles; i++)
10108 int file_idx = backmap[i];
10109 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
10111 #ifdef VMS_DEBUGGING_INFO
10112 #define MAX_VMS_VERSION_LEN 6 /* ";32768" */
10114 /* Setting these fields can lead to debugger miscomparisons,
10115 but VMS Debug requires them to be set correctly. */
10117 int ver;
10118 long long cdt;
10119 long siz;
10120 int maxfilelen = strlen (files[file_idx].path)
10121 + dirs[dir_idx].length
10122 + MAX_VMS_VERSION_LEN + 1;
10123 char *filebuf = XALLOCAVEC (char, maxfilelen);
10125 vms_file_stats_name (files[file_idx].path, 0, 0, 0, &ver);
10126 snprintf (filebuf, maxfilelen, "%s;%d",
10127 files[file_idx].path + dirs[dir_idx].length, ver);
10129 dw2_asm_output_nstring
10130 (filebuf, -1, "File Entry: %#x", (unsigned) i + 1);
10132 /* Include directory index. */
10133 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
10135 /* Modification time. */
10136 dw2_asm_output_data_uleb128
10137 ((vms_file_stats_name (files[file_idx].path, &cdt, 0, 0, 0) == 0)
10138 ? cdt : 0,
10139 NULL);
10141 /* File length in bytes. */
10142 dw2_asm_output_data_uleb128
10143 ((vms_file_stats_name (files[file_idx].path, 0, &siz, 0, 0) == 0)
10144 ? siz : 0,
10145 NULL);
10146 #else
10147 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
10148 "File Entry: %#x", (unsigned) i + 1);
10150 /* Include directory index. */
10151 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
10153 /* Modification time. */
10154 dw2_asm_output_data_uleb128 (0, NULL);
10156 /* File length in bytes. */
10157 dw2_asm_output_data_uleb128 (0, NULL);
10158 #endif /* VMS_DEBUGGING_INFO */
10161 dw2_asm_output_data (1, 0, "End file name table");
10165 /* Output one line number table into the .debug_line section. */
10167 static void
10168 output_one_line_info_table (dw_line_info_table *table)
10170 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
10171 unsigned int current_line = 1;
10172 bool current_is_stmt = DWARF_LINE_DEFAULT_IS_STMT_START;
10173 dw_line_info_entry *ent;
10174 size_t i;
10176 FOR_EACH_VEC_SAFE_ELT (table->entries, i, ent)
10178 switch (ent->opcode)
10180 case LI_set_address:
10181 /* ??? Unfortunately, we have little choice here currently, and
10182 must always use the most general form. GCC does not know the
10183 address delta itself, so we can't use DW_LNS_advance_pc. Many
10184 ports do have length attributes which will give an upper bound
10185 on the address range. We could perhaps use length attributes
10186 to determine when it is safe to use DW_LNS_fixed_advance_pc. */
10187 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, ent->val);
10189 /* This can handle any delta. This takes
10190 4+DWARF2_ADDR_SIZE bytes. */
10191 dw2_asm_output_data (1, 0, "set address %s", line_label);
10192 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
10193 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
10194 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
10195 break;
10197 case LI_set_line:
10198 if (ent->val == current_line)
10200 /* We still need to start a new row, so output a copy insn. */
10201 dw2_asm_output_data (1, DW_LNS_copy,
10202 "copy line %u", current_line);
10204 else
10206 int line_offset = ent->val - current_line;
10207 int line_delta = line_offset - DWARF_LINE_BASE;
10209 current_line = ent->val;
10210 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
10212 /* This can handle deltas from -10 to 234, using the current
10213 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE.
10214 This takes 1 byte. */
10215 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
10216 "line %u", current_line);
10218 else
10220 /* This can handle any delta. This takes at least 4 bytes,
10221 depending on the value being encoded. */
10222 dw2_asm_output_data (1, DW_LNS_advance_line,
10223 "advance to line %u", current_line);
10224 dw2_asm_output_data_sleb128 (line_offset, NULL);
10225 dw2_asm_output_data (1, DW_LNS_copy, NULL);
10228 break;
10230 case LI_set_file:
10231 dw2_asm_output_data (1, DW_LNS_set_file, "set file %u", ent->val);
10232 dw2_asm_output_data_uleb128 (ent->val, "%u", ent->val);
10233 break;
10235 case LI_set_column:
10236 dw2_asm_output_data (1, DW_LNS_set_column, "column %u", ent->val);
10237 dw2_asm_output_data_uleb128 (ent->val, "%u", ent->val);
10238 break;
10240 case LI_negate_stmt:
10241 current_is_stmt = !current_is_stmt;
10242 dw2_asm_output_data (1, DW_LNS_negate_stmt,
10243 "is_stmt %d", current_is_stmt);
10244 break;
10246 case LI_set_prologue_end:
10247 dw2_asm_output_data (1, DW_LNS_set_prologue_end,
10248 "set prologue end");
10249 break;
10251 case LI_set_epilogue_begin:
10252 dw2_asm_output_data (1, DW_LNS_set_epilogue_begin,
10253 "set epilogue begin");
10254 break;
10256 case LI_set_discriminator:
10257 dw2_asm_output_data (1, 0, "discriminator %u", ent->val);
10258 dw2_asm_output_data_uleb128 (1 + size_of_uleb128 (ent->val), NULL);
10259 dw2_asm_output_data (1, DW_LNE_set_discriminator, NULL);
10260 dw2_asm_output_data_uleb128 (ent->val, NULL);
10261 break;
10265 /* Emit debug info for the address of the end of the table. */
10266 dw2_asm_output_data (1, 0, "set address %s", table->end_label);
10267 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
10268 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
10269 dw2_asm_output_addr (DWARF2_ADDR_SIZE, table->end_label, NULL);
10271 dw2_asm_output_data (1, 0, "end sequence");
10272 dw2_asm_output_data_uleb128 (1, NULL);
10273 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
10276 /* Output the source line number correspondence information. This
10277 information goes into the .debug_line section. */
10279 static void
10280 output_line_info (bool prologue_only)
10282 char l1[20], l2[20], p1[20], p2[20];
10283 /* We don't support DWARFv5 line tables yet. */
10284 int ver = dwarf_version < 5 ? dwarf_version : 4;
10285 bool saw_one = false;
10286 int opc;
10288 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
10289 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
10290 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
10291 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
10293 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
10294 dw2_asm_output_data (4, 0xffffffff,
10295 "Initial length escape value indicating 64-bit DWARF extension");
10296 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
10297 "Length of Source Line Info");
10298 ASM_OUTPUT_LABEL (asm_out_file, l1);
10300 dw2_asm_output_data (2, ver, "DWARF Version");
10301 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
10302 ASM_OUTPUT_LABEL (asm_out_file, p1);
10304 /* Define the architecture-dependent minimum instruction length (in bytes).
10305 In this implementation of DWARF, this field is used for information
10306 purposes only. Since GCC generates assembly language, we have no
10307 a priori knowledge of how many instruction bytes are generated for each
10308 source line, and therefore can use only the DW_LNE_set_address and
10309 DW_LNS_fixed_advance_pc line information commands. Accordingly, we fix
10310 this as '1', which is "correct enough" for all architectures,
10311 and don't let the target override. */
10312 dw2_asm_output_data (1, 1, "Minimum Instruction Length");
10314 if (ver >= 4)
10315 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_MAX_OPS_PER_INSN,
10316 "Maximum Operations Per Instruction");
10317 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
10318 "Default is_stmt_start flag");
10319 dw2_asm_output_data (1, DWARF_LINE_BASE,
10320 "Line Base Value (Special Opcodes)");
10321 dw2_asm_output_data (1, DWARF_LINE_RANGE,
10322 "Line Range Value (Special Opcodes)");
10323 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
10324 "Special Opcode Base");
10326 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
10328 int n_op_args;
10329 switch (opc)
10331 case DW_LNS_advance_pc:
10332 case DW_LNS_advance_line:
10333 case DW_LNS_set_file:
10334 case DW_LNS_set_column:
10335 case DW_LNS_fixed_advance_pc:
10336 case DW_LNS_set_isa:
10337 n_op_args = 1;
10338 break;
10339 default:
10340 n_op_args = 0;
10341 break;
10344 dw2_asm_output_data (1, n_op_args, "opcode: %#x has %d args",
10345 opc, n_op_args);
10348 /* Write out the information about the files we use. */
10349 output_file_names ();
10350 ASM_OUTPUT_LABEL (asm_out_file, p2);
10351 if (prologue_only)
10353 /* Output the marker for the end of the line number info. */
10354 ASM_OUTPUT_LABEL (asm_out_file, l2);
10355 return;
10358 if (separate_line_info)
10360 dw_line_info_table *table;
10361 size_t i;
10363 FOR_EACH_VEC_ELT (*separate_line_info, i, table)
10364 if (table->in_use)
10366 output_one_line_info_table (table);
10367 saw_one = true;
10370 if (cold_text_section_line_info && cold_text_section_line_info->in_use)
10372 output_one_line_info_table (cold_text_section_line_info);
10373 saw_one = true;
10376 /* ??? Some Darwin linkers crash on a .debug_line section with no
10377 sequences. Further, merely a DW_LNE_end_sequence entry is not
10378 sufficient -- the address column must also be initialized.
10379 Make sure to output at least one set_address/end_sequence pair,
10380 choosing .text since that section is always present. */
10381 if (text_section_line_info->in_use || !saw_one)
10382 output_one_line_info_table (text_section_line_info);
10384 /* Output the marker for the end of the line number info. */
10385 ASM_OUTPUT_LABEL (asm_out_file, l2);
10388 /* Given a pointer to a tree node for some base type, return a pointer to
10389 a DIE that describes the given type.
10391 This routine must only be called for GCC type nodes that correspond to
10392 Dwarf base (fundamental) types. */
10394 static dw_die_ref
10395 base_type_die (tree type)
10397 dw_die_ref base_type_result;
10398 enum dwarf_type encoding;
10400 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
10401 return 0;
10403 /* If this is a subtype that should not be emitted as a subrange type,
10404 use the base type. See subrange_type_for_debug_p. */
10405 if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != NULL_TREE)
10406 type = TREE_TYPE (type);
10408 switch (TREE_CODE (type))
10410 case INTEGER_TYPE:
10411 if ((dwarf_version >= 4 || !dwarf_strict)
10412 && TYPE_NAME (type)
10413 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10414 && DECL_IS_BUILTIN (TYPE_NAME (type))
10415 && DECL_NAME (TYPE_NAME (type)))
10417 const char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
10418 if (strcmp (name, "char16_t") == 0
10419 || strcmp (name, "char32_t") == 0)
10421 encoding = DW_ATE_UTF;
10422 break;
10425 if (TYPE_STRING_FLAG (type))
10427 if (TYPE_UNSIGNED (type))
10428 encoding = DW_ATE_unsigned_char;
10429 else
10430 encoding = DW_ATE_signed_char;
10432 else if (TYPE_UNSIGNED (type))
10433 encoding = DW_ATE_unsigned;
10434 else
10435 encoding = DW_ATE_signed;
10436 break;
10438 case REAL_TYPE:
10439 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
10441 if (dwarf_version >= 3 || !dwarf_strict)
10442 encoding = DW_ATE_decimal_float;
10443 else
10444 encoding = DW_ATE_lo_user;
10446 else
10447 encoding = DW_ATE_float;
10448 break;
10450 case FIXED_POINT_TYPE:
10451 if (!(dwarf_version >= 3 || !dwarf_strict))
10452 encoding = DW_ATE_lo_user;
10453 else if (TYPE_UNSIGNED (type))
10454 encoding = DW_ATE_unsigned_fixed;
10455 else
10456 encoding = DW_ATE_signed_fixed;
10457 break;
10459 /* Dwarf2 doesn't know anything about complex ints, so use
10460 a user defined type for it. */
10461 case COMPLEX_TYPE:
10462 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
10463 encoding = DW_ATE_complex_float;
10464 else
10465 encoding = DW_ATE_lo_user;
10466 break;
10468 case BOOLEAN_TYPE:
10469 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
10470 encoding = DW_ATE_boolean;
10471 break;
10473 default:
10474 /* No other TREE_CODEs are Dwarf fundamental types. */
10475 gcc_unreachable ();
10478 base_type_result = new_die (DW_TAG_base_type, comp_unit_die (), type);
10480 add_AT_unsigned (base_type_result, DW_AT_byte_size,
10481 int_size_in_bytes (type));
10482 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
10483 add_pubtype (type, base_type_result);
10485 return base_type_result;
10488 /* A C++ function with deduced return type can have a TEMPLATE_TYPE_PARM
10489 named 'auto' in its type: return true for it, false otherwise. */
10491 static inline bool
10492 is_cxx_auto (tree type)
10494 if (is_cxx ())
10496 tree name = TYPE_IDENTIFIER (type);
10497 if (name == get_identifier ("auto")
10498 || name == get_identifier ("decltype(auto)"))
10499 return true;
10501 return false;
10504 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
10505 given input type is a Dwarf "fundamental" type. Otherwise return null. */
10507 static inline int
10508 is_base_type (tree type)
10510 switch (TREE_CODE (type))
10512 case ERROR_MARK:
10513 case VOID_TYPE:
10514 case INTEGER_TYPE:
10515 case REAL_TYPE:
10516 case FIXED_POINT_TYPE:
10517 case COMPLEX_TYPE:
10518 case BOOLEAN_TYPE:
10519 case POINTER_BOUNDS_TYPE:
10520 return 1;
10522 case ARRAY_TYPE:
10523 case RECORD_TYPE:
10524 case UNION_TYPE:
10525 case QUAL_UNION_TYPE:
10526 case ENUMERAL_TYPE:
10527 case FUNCTION_TYPE:
10528 case METHOD_TYPE:
10529 case POINTER_TYPE:
10530 case REFERENCE_TYPE:
10531 case NULLPTR_TYPE:
10532 case OFFSET_TYPE:
10533 case LANG_TYPE:
10534 case VECTOR_TYPE:
10535 return 0;
10537 default:
10538 if (is_cxx_auto (type))
10539 return 0;
10540 gcc_unreachable ();
10543 return 0;
10546 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
10547 node, return the size in bits for the type if it is a constant, or else
10548 return the alignment for the type if the type's size is not constant, or
10549 else return BITS_PER_WORD if the type actually turns out to be an
10550 ERROR_MARK node. */
10552 static inline unsigned HOST_WIDE_INT
10553 simple_type_size_in_bits (const_tree type)
10555 if (TREE_CODE (type) == ERROR_MARK)
10556 return BITS_PER_WORD;
10557 else if (TYPE_SIZE (type) == NULL_TREE)
10558 return 0;
10559 else if (tree_fits_uhwi_p (TYPE_SIZE (type)))
10560 return tree_to_uhwi (TYPE_SIZE (type));
10561 else
10562 return TYPE_ALIGN (type);
10565 /* Similarly, but return an offset_int instead of UHWI. */
10567 static inline offset_int
10568 offset_int_type_size_in_bits (const_tree type)
10570 if (TREE_CODE (type) == ERROR_MARK)
10571 return BITS_PER_WORD;
10572 else if (TYPE_SIZE (type) == NULL_TREE)
10573 return 0;
10574 else if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
10575 return wi::to_offset (TYPE_SIZE (type));
10576 else
10577 return TYPE_ALIGN (type);
10580 /* Given a pointer to a tree node for a subrange type, return a pointer
10581 to a DIE that describes the given type. */
10583 static dw_die_ref
10584 subrange_type_die (tree type, tree low, tree high, dw_die_ref context_die)
10586 dw_die_ref subrange_die;
10587 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
10589 if (context_die == NULL)
10590 context_die = comp_unit_die ();
10592 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
10594 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
10596 /* The size of the subrange type and its base type do not match,
10597 so we need to generate a size attribute for the subrange type. */
10598 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
10601 if (low)
10602 add_bound_info (subrange_die, DW_AT_lower_bound, low, NULL);
10603 if (high)
10604 add_bound_info (subrange_die, DW_AT_upper_bound, high, NULL);
10606 return subrange_die;
10609 /* Returns the (const and/or volatile) cv_qualifiers associated with
10610 the decl node. This will normally be augmented with the
10611 cv_qualifiers of the underlying type in add_type_attribute. */
10613 static int
10614 decl_quals (const_tree decl)
10616 return ((TREE_READONLY (decl)
10617 ? TYPE_QUAL_CONST : TYPE_UNQUALIFIED)
10618 | (TREE_THIS_VOLATILE (decl)
10619 ? TYPE_QUAL_VOLATILE : TYPE_UNQUALIFIED));
10622 /* Determine the TYPE whose qualifiers match the largest strict subset
10623 of the given TYPE_QUALS, and return its qualifiers. Ignore all
10624 qualifiers outside QUAL_MASK. */
10626 static int
10627 get_nearest_type_subqualifiers (tree type, int type_quals, int qual_mask)
10629 tree t;
10630 int best_rank = 0, best_qual = 0, max_rank;
10632 type_quals &= qual_mask;
10633 max_rank = popcount_hwi (type_quals) - 1;
10635 for (t = TYPE_MAIN_VARIANT (type); t && best_rank < max_rank;
10636 t = TYPE_NEXT_VARIANT (t))
10638 int q = TYPE_QUALS (t) & qual_mask;
10640 if ((q & type_quals) == q && q != type_quals
10641 && check_base_type (t, type))
10643 int rank = popcount_hwi (q);
10645 if (rank > best_rank)
10647 best_rank = rank;
10648 best_qual = q;
10653 return best_qual;
10656 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
10657 entry that chains various modifiers in front of the given type. */
10659 static dw_die_ref
10660 modified_type_die (tree type, int cv_quals, dw_die_ref context_die)
10662 enum tree_code code = TREE_CODE (type);
10663 dw_die_ref mod_type_die;
10664 dw_die_ref sub_die = NULL;
10665 tree item_type = NULL;
10666 tree qualified_type;
10667 tree name, low, high;
10668 dw_die_ref mod_scope;
10669 /* Only these cv-qualifiers are currently handled. */
10670 const int cv_qual_mask = (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE
10671 | TYPE_QUAL_RESTRICT | TYPE_QUAL_ATOMIC);
10673 if (code == ERROR_MARK)
10674 return NULL;
10676 cv_quals &= cv_qual_mask;
10678 /* Don't emit DW_TAG_restrict_type for DWARFv2, since it is a type
10679 tag modifier (and not an attribute) old consumers won't be able
10680 to handle it. */
10681 if (dwarf_version < 3)
10682 cv_quals &= ~TYPE_QUAL_RESTRICT;
10684 /* Likewise for DW_TAG_atomic_type for DWARFv5. */
10685 if (dwarf_version < 5)
10686 cv_quals &= ~TYPE_QUAL_ATOMIC;
10688 /* See if we already have the appropriately qualified variant of
10689 this type. */
10690 qualified_type = get_qualified_type (type, cv_quals);
10692 if (qualified_type == sizetype
10693 && TYPE_NAME (qualified_type)
10694 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL)
10696 tree t = TREE_TYPE (TYPE_NAME (qualified_type));
10698 gcc_checking_assert (TREE_CODE (t) == INTEGER_TYPE
10699 && TYPE_PRECISION (t)
10700 == TYPE_PRECISION (qualified_type)
10701 && TYPE_UNSIGNED (t)
10702 == TYPE_UNSIGNED (qualified_type));
10703 qualified_type = t;
10706 /* If we do, then we can just use its DIE, if it exists. */
10707 if (qualified_type)
10709 mod_type_die = lookup_type_die (qualified_type);
10710 if (mod_type_die)
10711 return mod_type_die;
10714 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
10716 /* Handle C typedef types. */
10717 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name)
10718 && !DECL_ARTIFICIAL (name))
10720 tree dtype = TREE_TYPE (name);
10722 if (qualified_type == dtype)
10724 /* For a named type, use the typedef. */
10725 gen_type_die (qualified_type, context_die);
10726 return lookup_type_die (qualified_type);
10728 else
10730 int dquals = TYPE_QUALS_NO_ADDR_SPACE (dtype);
10731 dquals &= cv_qual_mask;
10732 if ((dquals & ~cv_quals) != TYPE_UNQUALIFIED
10733 || (cv_quals == dquals && DECL_ORIGINAL_TYPE (name) != type))
10734 /* cv-unqualified version of named type. Just use
10735 the unnamed type to which it refers. */
10736 return modified_type_die (DECL_ORIGINAL_TYPE (name),
10737 cv_quals, context_die);
10738 /* Else cv-qualified version of named type; fall through. */
10742 mod_scope = scope_die_for (type, context_die);
10744 if (cv_quals)
10746 struct qual_info { int q; enum dwarf_tag t; };
10747 static const struct qual_info qual_info[] =
10749 { TYPE_QUAL_ATOMIC, DW_TAG_atomic_type },
10750 { TYPE_QUAL_RESTRICT, DW_TAG_restrict_type },
10751 { TYPE_QUAL_VOLATILE, DW_TAG_volatile_type },
10752 { TYPE_QUAL_CONST, DW_TAG_const_type },
10754 int sub_quals;
10755 unsigned i;
10757 /* Determine a lesser qualified type that most closely matches
10758 this one. Then generate DW_TAG_* entries for the remaining
10759 qualifiers. */
10760 sub_quals = get_nearest_type_subqualifiers (type, cv_quals,
10761 cv_qual_mask);
10762 mod_type_die = modified_type_die (type, sub_quals, context_die);
10764 for (i = 0; i < sizeof (qual_info) / sizeof (qual_info[0]); i++)
10765 if (qual_info[i].q & cv_quals & ~sub_quals)
10767 dw_die_ref d = new_die (qual_info[i].t, mod_scope, type);
10768 if (mod_type_die)
10769 add_AT_die_ref (d, DW_AT_type, mod_type_die);
10770 mod_type_die = d;
10773 else if (code == POINTER_TYPE)
10775 mod_type_die = new_die (DW_TAG_pointer_type, mod_scope, type);
10776 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
10777 simple_type_size_in_bits (type) / BITS_PER_UNIT);
10778 item_type = TREE_TYPE (type);
10779 if (!ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (item_type)))
10780 add_AT_unsigned (mod_type_die, DW_AT_address_class,
10781 TYPE_ADDR_SPACE (item_type));
10783 else if (code == REFERENCE_TYPE)
10785 if (TYPE_REF_IS_RVALUE (type) && dwarf_version >= 4)
10786 mod_type_die = new_die (DW_TAG_rvalue_reference_type, mod_scope,
10787 type);
10788 else
10789 mod_type_die = new_die (DW_TAG_reference_type, mod_scope, type);
10790 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
10791 simple_type_size_in_bits (type) / BITS_PER_UNIT);
10792 item_type = TREE_TYPE (type);
10793 if (!ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (item_type)))
10794 add_AT_unsigned (mod_type_die, DW_AT_address_class,
10795 TYPE_ADDR_SPACE (item_type));
10797 else if (code == INTEGER_TYPE
10798 && TREE_TYPE (type) != NULL_TREE
10799 && subrange_type_for_debug_p (type, &low, &high))
10801 mod_type_die = subrange_type_die (type, low, high, context_die);
10802 item_type = TREE_TYPE (type);
10804 else if (is_base_type (type))
10805 mod_type_die = base_type_die (type);
10806 else
10808 gen_type_die (type, context_die);
10810 /* We have to get the type_main_variant here (and pass that to the
10811 `lookup_type_die' routine) because the ..._TYPE node we have
10812 might simply be a *copy* of some original type node (where the
10813 copy was created to help us keep track of typedef names) and
10814 that copy might have a different TYPE_UID from the original
10815 ..._TYPE node. */
10816 if (TREE_CODE (type) != VECTOR_TYPE)
10817 return lookup_type_die (type_main_variant (type));
10818 else
10819 /* Vectors have the debugging information in the type,
10820 not the main variant. */
10821 return lookup_type_die (type);
10824 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
10825 don't output a DW_TAG_typedef, since there isn't one in the
10826 user's program; just attach a DW_AT_name to the type.
10827 Don't attach a DW_AT_name to DW_TAG_const_type or DW_TAG_volatile_type
10828 if the base type already has the same name. */
10829 if (name
10830 && ((TREE_CODE (name) != TYPE_DECL
10831 && (qualified_type == TYPE_MAIN_VARIANT (type)
10832 || (cv_quals == TYPE_UNQUALIFIED)))
10833 || (TREE_CODE (name) == TYPE_DECL
10834 && TREE_TYPE (name) == qualified_type
10835 && DECL_NAME (name))))
10837 if (TREE_CODE (name) == TYPE_DECL)
10838 /* Could just call add_name_and_src_coords_attributes here,
10839 but since this is a builtin type it doesn't have any
10840 useful source coordinates anyway. */
10841 name = DECL_NAME (name);
10842 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
10844 /* This probably indicates a bug. */
10845 else if (mod_type_die && mod_type_die->die_tag == DW_TAG_base_type)
10847 name = TYPE_IDENTIFIER (type);
10848 add_name_attribute (mod_type_die,
10849 name ? IDENTIFIER_POINTER (name) : "__unknown__");
10852 if (qualified_type)
10853 equate_type_number_to_die (qualified_type, mod_type_die);
10855 if (item_type)
10856 /* We must do this after the equate_type_number_to_die call, in case
10857 this is a recursive type. This ensures that the modified_type_die
10858 recursion will terminate even if the type is recursive. Recursive
10859 types are possible in Ada. */
10860 sub_die = modified_type_die (item_type,
10861 TYPE_QUALS_NO_ADDR_SPACE (item_type),
10862 context_die);
10864 if (sub_die != NULL)
10865 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
10867 add_gnat_descriptive_type_attribute (mod_type_die, type, context_die);
10868 if (TYPE_ARTIFICIAL (type))
10869 add_AT_flag (mod_type_die, DW_AT_artificial, 1);
10871 return mod_type_die;
10874 /* Generate DIEs for the generic parameters of T.
10875 T must be either a generic type or a generic function.
10876 See http://gcc.gnu.org/wiki/TemplateParmsDwarf for more. */
10878 static void
10879 gen_generic_params_dies (tree t)
10881 tree parms, args;
10882 int parms_num, i;
10883 dw_die_ref die = NULL;
10884 int non_default;
10886 if (!t || (TYPE_P (t) && !COMPLETE_TYPE_P (t)))
10887 return;
10889 if (TYPE_P (t))
10890 die = lookup_type_die (t);
10891 else if (DECL_P (t))
10892 die = lookup_decl_die (t);
10894 gcc_assert (die);
10896 parms = lang_hooks.get_innermost_generic_parms (t);
10897 if (!parms)
10898 /* T has no generic parameter. It means T is neither a generic type
10899 or function. End of story. */
10900 return;
10902 parms_num = TREE_VEC_LENGTH (parms);
10903 args = lang_hooks.get_innermost_generic_args (t);
10904 if (TREE_CHAIN (args) && TREE_CODE (TREE_CHAIN (args)) == INTEGER_CST)
10905 non_default = int_cst_value (TREE_CHAIN (args));
10906 else
10907 non_default = TREE_VEC_LENGTH (args);
10908 for (i = 0; i < parms_num; i++)
10910 tree parm, arg, arg_pack_elems;
10911 dw_die_ref parm_die;
10913 parm = TREE_VEC_ELT (parms, i);
10914 arg = TREE_VEC_ELT (args, i);
10915 arg_pack_elems = lang_hooks.types.get_argument_pack_elems (arg);
10916 gcc_assert (parm && TREE_VALUE (parm) && arg);
10918 if (parm && TREE_VALUE (parm) && arg)
10920 /* If PARM represents a template parameter pack,
10921 emit a DW_TAG_GNU_template_parameter_pack DIE, followed
10922 by DW_TAG_template_*_parameter DIEs for the argument
10923 pack elements of ARG. Note that ARG would then be
10924 an argument pack. */
10925 if (arg_pack_elems)
10926 parm_die = template_parameter_pack_die (TREE_VALUE (parm),
10927 arg_pack_elems,
10928 die);
10929 else
10930 parm_die = generic_parameter_die (TREE_VALUE (parm), arg,
10931 true /* emit name */, die);
10932 if (i >= non_default)
10933 add_AT_flag (parm_die, DW_AT_default_value, 1);
10938 /* Create and return a DIE for PARM which should be
10939 the representation of a generic type parameter.
10940 For instance, in the C++ front end, PARM would be a template parameter.
10941 ARG is the argument to PARM.
10942 EMIT_NAME_P if tree, the DIE will have DW_AT_name attribute set to the
10943 name of the PARM.
10944 PARENT_DIE is the parent DIE which the new created DIE should be added to,
10945 as a child node. */
10947 static dw_die_ref
10948 generic_parameter_die (tree parm, tree arg,
10949 bool emit_name_p,
10950 dw_die_ref parent_die)
10952 dw_die_ref tmpl_die = NULL;
10953 const char *name = NULL;
10955 if (!parm || !DECL_NAME (parm) || !arg)
10956 return NULL;
10958 /* We support non-type generic parameters and arguments,
10959 type generic parameters and arguments, as well as
10960 generic generic parameters (a.k.a. template template parameters in C++)
10961 and arguments. */
10962 if (TREE_CODE (parm) == PARM_DECL)
10963 /* PARM is a nontype generic parameter */
10964 tmpl_die = new_die (DW_TAG_template_value_param, parent_die, parm);
10965 else if (TREE_CODE (parm) == TYPE_DECL)
10966 /* PARM is a type generic parameter. */
10967 tmpl_die = new_die (DW_TAG_template_type_param, parent_die, parm);
10968 else if (lang_hooks.decls.generic_generic_parameter_decl_p (parm))
10969 /* PARM is a generic generic parameter.
10970 Its DIE is a GNU extension. It shall have a
10971 DW_AT_name attribute to represent the name of the template template
10972 parameter, and a DW_AT_GNU_template_name attribute to represent the
10973 name of the template template argument. */
10974 tmpl_die = new_die (DW_TAG_GNU_template_template_param,
10975 parent_die, parm);
10976 else
10977 gcc_unreachable ();
10979 if (tmpl_die)
10981 tree tmpl_type;
10983 /* If PARM is a generic parameter pack, it means we are
10984 emitting debug info for a template argument pack element.
10985 In other terms, ARG is a template argument pack element.
10986 In that case, we don't emit any DW_AT_name attribute for
10987 the die. */
10988 if (emit_name_p)
10990 name = IDENTIFIER_POINTER (DECL_NAME (parm));
10991 gcc_assert (name);
10992 add_AT_string (tmpl_die, DW_AT_name, name);
10995 if (!lang_hooks.decls.generic_generic_parameter_decl_p (parm))
10997 /* DWARF3, 5.6.8 says if PARM is a non-type generic parameter
10998 TMPL_DIE should have a child DW_AT_type attribute that is set
10999 to the type of the argument to PARM, which is ARG.
11000 If PARM is a type generic parameter, TMPL_DIE should have a
11001 child DW_AT_type that is set to ARG. */
11002 tmpl_type = TYPE_P (arg) ? arg : TREE_TYPE (arg);
11003 add_type_attribute (tmpl_die, tmpl_type,
11004 (TREE_THIS_VOLATILE (tmpl_type)
11005 ? TYPE_QUAL_VOLATILE : TYPE_UNQUALIFIED),
11006 parent_die);
11008 else
11010 /* So TMPL_DIE is a DIE representing a
11011 a generic generic template parameter, a.k.a template template
11012 parameter in C++ and arg is a template. */
11014 /* The DW_AT_GNU_template_name attribute of the DIE must be set
11015 to the name of the argument. */
11016 name = dwarf2_name (TYPE_P (arg) ? TYPE_NAME (arg) : arg, 1);
11017 if (name)
11018 add_AT_string (tmpl_die, DW_AT_GNU_template_name, name);
11021 if (TREE_CODE (parm) == PARM_DECL)
11022 /* So PARM is a non-type generic parameter.
11023 DWARF3 5.6.8 says we must set a DW_AT_const_value child
11024 attribute of TMPL_DIE which value represents the value
11025 of ARG.
11026 We must be careful here:
11027 The value of ARG might reference some function decls.
11028 We might currently be emitting debug info for a generic
11029 type and types are emitted before function decls, we don't
11030 know if the function decls referenced by ARG will actually be
11031 emitted after cgraph computations.
11032 So must defer the generation of the DW_AT_const_value to
11033 after cgraph is ready. */
11034 append_entry_to_tmpl_value_parm_die_table (tmpl_die, arg);
11037 return tmpl_die;
11040 /* Generate and return a DW_TAG_GNU_template_parameter_pack DIE representing.
11041 PARM_PACK must be a template parameter pack. The returned DIE
11042 will be child DIE of PARENT_DIE. */
11044 static dw_die_ref
11045 template_parameter_pack_die (tree parm_pack,
11046 tree parm_pack_args,
11047 dw_die_ref parent_die)
11049 dw_die_ref die;
11050 int j;
11052 gcc_assert (parent_die && parm_pack);
11054 die = new_die (DW_TAG_GNU_template_parameter_pack, parent_die, parm_pack);
11055 add_name_and_src_coords_attributes (die, parm_pack);
11056 for (j = 0; j < TREE_VEC_LENGTH (parm_pack_args); j++)
11057 generic_parameter_die (parm_pack,
11058 TREE_VEC_ELT (parm_pack_args, j),
11059 false /* Don't emit DW_AT_name */,
11060 die);
11061 return die;
11064 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
11065 an enumerated type. */
11067 static inline int
11068 type_is_enum (const_tree type)
11070 return TREE_CODE (type) == ENUMERAL_TYPE;
11073 /* Return the DBX register number described by a given RTL node. */
11075 static unsigned int
11076 dbx_reg_number (const_rtx rtl)
11078 unsigned regno = REGNO (rtl);
11080 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
11082 #ifdef LEAF_REG_REMAP
11083 if (crtl->uses_only_leaf_regs)
11085 int leaf_reg = LEAF_REG_REMAP (regno);
11086 if (leaf_reg != -1)
11087 regno = (unsigned) leaf_reg;
11089 #endif
11091 regno = DBX_REGISTER_NUMBER (regno);
11092 gcc_assert (regno != INVALID_REGNUM);
11093 return regno;
11096 /* Optionally add a DW_OP_piece term to a location description expression.
11097 DW_OP_piece is only added if the location description expression already
11098 doesn't end with DW_OP_piece. */
11100 static void
11101 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
11103 dw_loc_descr_ref loc;
11105 if (*list_head != NULL)
11107 /* Find the end of the chain. */
11108 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
11111 if (loc->dw_loc_opc != DW_OP_piece)
11112 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
11116 /* Return a location descriptor that designates a machine register or
11117 zero if there is none. */
11119 static dw_loc_descr_ref
11120 reg_loc_descriptor (rtx rtl, enum var_init_status initialized)
11122 rtx regs;
11124 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
11125 return 0;
11127 /* We only use "frame base" when we're sure we're talking about the
11128 post-prologue local stack frame. We do this by *not* running
11129 register elimination until this point, and recognizing the special
11130 argument pointer and soft frame pointer rtx's.
11131 Use DW_OP_fbreg offset DW_OP_stack_value in this case. */
11132 if ((rtl == arg_pointer_rtx || rtl == frame_pointer_rtx)
11133 && eliminate_regs (rtl, VOIDmode, NULL_RTX) != rtl)
11135 dw_loc_descr_ref result = NULL;
11137 if (dwarf_version >= 4 || !dwarf_strict)
11139 result = mem_loc_descriptor (rtl, GET_MODE (rtl), VOIDmode,
11140 initialized);
11141 if (result)
11142 add_loc_descr (&result,
11143 new_loc_descr (DW_OP_stack_value, 0, 0));
11145 return result;
11148 regs = targetm.dwarf_register_span (rtl);
11150 if (REG_NREGS (rtl) > 1 || regs)
11151 return multiple_reg_loc_descriptor (rtl, regs, initialized);
11152 else
11154 unsigned int dbx_regnum = dbx_reg_number (rtl);
11155 if (dbx_regnum == IGNORED_DWARF_REGNUM)
11156 return 0;
11157 return one_reg_loc_descriptor (dbx_regnum, initialized);
11161 /* Return a location descriptor that designates a machine register for
11162 a given hard register number. */
11164 static dw_loc_descr_ref
11165 one_reg_loc_descriptor (unsigned int regno, enum var_init_status initialized)
11167 dw_loc_descr_ref reg_loc_descr;
11169 if (regno <= 31)
11170 reg_loc_descr
11171 = new_loc_descr ((enum dwarf_location_atom) (DW_OP_reg0 + regno), 0, 0);
11172 else
11173 reg_loc_descr = new_loc_descr (DW_OP_regx, regno, 0);
11175 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
11176 add_loc_descr (&reg_loc_descr, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
11178 return reg_loc_descr;
11181 /* Given an RTL of a register, return a location descriptor that
11182 designates a value that spans more than one register. */
11184 static dw_loc_descr_ref
11185 multiple_reg_loc_descriptor (rtx rtl, rtx regs,
11186 enum var_init_status initialized)
11188 int size, i;
11189 dw_loc_descr_ref loc_result = NULL;
11191 /* Simple, contiguous registers. */
11192 if (regs == NULL_RTX)
11194 unsigned reg = REGNO (rtl);
11195 int nregs;
11197 #ifdef LEAF_REG_REMAP
11198 if (crtl->uses_only_leaf_regs)
11200 int leaf_reg = LEAF_REG_REMAP (reg);
11201 if (leaf_reg != -1)
11202 reg = (unsigned) leaf_reg;
11204 #endif
11206 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
11207 nregs = REG_NREGS (rtl);
11209 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
11211 loc_result = NULL;
11212 while (nregs--)
11214 dw_loc_descr_ref t;
11216 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg),
11217 VAR_INIT_STATUS_INITIALIZED);
11218 add_loc_descr (&loc_result, t);
11219 add_loc_descr_op_piece (&loc_result, size);
11220 ++reg;
11222 return loc_result;
11225 /* Now onto stupid register sets in non contiguous locations. */
11227 gcc_assert (GET_CODE (regs) == PARALLEL);
11229 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
11230 loc_result = NULL;
11232 for (i = 0; i < XVECLEN (regs, 0); ++i)
11234 dw_loc_descr_ref t;
11236 t = one_reg_loc_descriptor (dbx_reg_number (XVECEXP (regs, 0, i)),
11237 VAR_INIT_STATUS_INITIALIZED);
11238 add_loc_descr (&loc_result, t);
11239 add_loc_descr_op_piece (&loc_result, size);
11242 if (loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
11243 add_loc_descr (&loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
11244 return loc_result;
11247 static unsigned long size_of_int_loc_descriptor (HOST_WIDE_INT);
11249 /* Return a location descriptor that designates a constant i,
11250 as a compound operation from constant (i >> shift), constant shift
11251 and DW_OP_shl. */
11253 static dw_loc_descr_ref
11254 int_shift_loc_descriptor (HOST_WIDE_INT i, int shift)
11256 dw_loc_descr_ref ret = int_loc_descriptor (i >> shift);
11257 add_loc_descr (&ret, int_loc_descriptor (shift));
11258 add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0));
11259 return ret;
11262 /* Return a location descriptor that designates a constant. */
11264 static dw_loc_descr_ref
11265 int_loc_descriptor (HOST_WIDE_INT i)
11267 enum dwarf_location_atom op;
11269 /* Pick the smallest representation of a constant, rather than just
11270 defaulting to the LEB encoding. */
11271 if (i >= 0)
11273 int clz = clz_hwi (i);
11274 int ctz = ctz_hwi (i);
11275 if (i <= 31)
11276 op = (enum dwarf_location_atom) (DW_OP_lit0 + i);
11277 else if (i <= 0xff)
11278 op = DW_OP_const1u;
11279 else if (i <= 0xffff)
11280 op = DW_OP_const2u;
11281 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 5
11282 && clz + 5 + 255 >= HOST_BITS_PER_WIDE_INT)
11283 /* DW_OP_litX DW_OP_litY DW_OP_shl takes just 3 bytes and
11284 DW_OP_litX DW_OP_const1u Y DW_OP_shl takes just 4 bytes,
11285 while DW_OP_const4u is 5 bytes. */
11286 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 5);
11287 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
11288 && clz + 8 + 31 >= HOST_BITS_PER_WIDE_INT)
11289 /* DW_OP_const1u X DW_OP_litY DW_OP_shl takes just 4 bytes,
11290 while DW_OP_const4u is 5 bytes. */
11291 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 8);
11292 else if (HOST_BITS_PER_WIDE_INT == 32 || i <= 0xffffffff)
11293 op = DW_OP_const4u;
11294 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
11295 && clz + 8 + 255 >= HOST_BITS_PER_WIDE_INT)
11296 /* DW_OP_const1u X DW_OP_const1u Y DW_OP_shl takes just 5 bytes,
11297 while DW_OP_constu of constant >= 0x100000000 takes at least
11298 6 bytes. */
11299 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 8);
11300 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 16
11301 && clz + 16 + (size_of_uleb128 (i) > 5 ? 255 : 31)
11302 >= HOST_BITS_PER_WIDE_INT)
11303 /* DW_OP_const2u X DW_OP_litY DW_OP_shl takes just 5 bytes,
11304 DW_OP_const2u X DW_OP_const1u Y DW_OP_shl takes 6 bytes,
11305 while DW_OP_constu takes in this case at least 6 bytes. */
11306 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 16);
11307 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 32
11308 && clz + 32 + 31 >= HOST_BITS_PER_WIDE_INT
11309 && size_of_uleb128 (i) > 6)
11310 /* DW_OP_const4u X DW_OP_litY DW_OP_shl takes just 7 bytes. */
11311 return int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT - clz - 32);
11312 else
11313 op = DW_OP_constu;
11315 else
11317 if (i >= -0x80)
11318 op = DW_OP_const1s;
11319 else if (i >= -0x8000)
11320 op = DW_OP_const2s;
11321 else if (HOST_BITS_PER_WIDE_INT == 32 || i >= -0x80000000)
11323 if (size_of_int_loc_descriptor (i) < 5)
11325 dw_loc_descr_ref ret = int_loc_descriptor (-i);
11326 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
11327 return ret;
11329 op = DW_OP_const4s;
11331 else
11333 if (size_of_int_loc_descriptor (i)
11334 < (unsigned long) 1 + size_of_sleb128 (i))
11336 dw_loc_descr_ref ret = int_loc_descriptor (-i);
11337 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
11338 return ret;
11340 op = DW_OP_consts;
11344 return new_loc_descr (op, i, 0);
11347 /* Return size_of_locs (int_shift_loc_descriptor (i, shift))
11348 without actually allocating it. */
11350 static unsigned long
11351 size_of_int_shift_loc_descriptor (HOST_WIDE_INT i, int shift)
11353 return size_of_int_loc_descriptor (i >> shift)
11354 + size_of_int_loc_descriptor (shift)
11355 + 1;
11358 /* Return size_of_locs (int_loc_descriptor (i)) without
11359 actually allocating it. */
11361 static unsigned long
11362 size_of_int_loc_descriptor (HOST_WIDE_INT i)
11364 unsigned long s;
11366 if (i >= 0)
11368 int clz, ctz;
11369 if (i <= 31)
11370 return 1;
11371 else if (i <= 0xff)
11372 return 2;
11373 else if (i <= 0xffff)
11374 return 3;
11375 clz = clz_hwi (i);
11376 ctz = ctz_hwi (i);
11377 if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 5
11378 && clz + 5 + 255 >= HOST_BITS_PER_WIDE_INT)
11379 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
11380 - clz - 5);
11381 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
11382 && clz + 8 + 31 >= HOST_BITS_PER_WIDE_INT)
11383 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
11384 - clz - 8);
11385 else if (HOST_BITS_PER_WIDE_INT == 32 || i <= 0xffffffff)
11386 return 5;
11387 s = size_of_uleb128 ((unsigned HOST_WIDE_INT) i);
11388 if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 8
11389 && clz + 8 + 255 >= HOST_BITS_PER_WIDE_INT)
11390 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
11391 - clz - 8);
11392 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 16
11393 && clz + 16 + (s > 5 ? 255 : 31) >= HOST_BITS_PER_WIDE_INT)
11394 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
11395 - clz - 16);
11396 else if (clz + ctz >= HOST_BITS_PER_WIDE_INT - 32
11397 && clz + 32 + 31 >= HOST_BITS_PER_WIDE_INT
11398 && s > 6)
11399 return size_of_int_shift_loc_descriptor (i, HOST_BITS_PER_WIDE_INT
11400 - clz - 32);
11401 else
11402 return 1 + s;
11404 else
11406 if (i >= -0x80)
11407 return 2;
11408 else if (i >= -0x8000)
11409 return 3;
11410 else if (HOST_BITS_PER_WIDE_INT == 32 || i >= -0x80000000)
11412 if (-(unsigned HOST_WIDE_INT) i != (unsigned HOST_WIDE_INT) i)
11414 s = size_of_int_loc_descriptor (-i) + 1;
11415 if (s < 5)
11416 return s;
11418 return 5;
11420 else
11422 unsigned long r = 1 + size_of_sleb128 (i);
11423 if (-(unsigned HOST_WIDE_INT) i != (unsigned HOST_WIDE_INT) i)
11425 s = size_of_int_loc_descriptor (-i) + 1;
11426 if (s < r)
11427 return s;
11429 return r;
11434 /* Return loc description representing "address" of integer value.
11435 This can appear only as toplevel expression. */
11437 static dw_loc_descr_ref
11438 address_of_int_loc_descriptor (int size, HOST_WIDE_INT i)
11440 int litsize;
11441 dw_loc_descr_ref loc_result = NULL;
11443 if (!(dwarf_version >= 4 || !dwarf_strict))
11444 return NULL;
11446 litsize = size_of_int_loc_descriptor (i);
11447 /* Determine if DW_OP_stack_value or DW_OP_implicit_value
11448 is more compact. For DW_OP_stack_value we need:
11449 litsize + 1 (DW_OP_stack_value)
11450 and for DW_OP_implicit_value:
11451 1 (DW_OP_implicit_value) + 1 (length) + size. */
11452 if ((int) DWARF2_ADDR_SIZE >= size && litsize + 1 <= 1 + 1 + size)
11454 loc_result = int_loc_descriptor (i);
11455 add_loc_descr (&loc_result,
11456 new_loc_descr (DW_OP_stack_value, 0, 0));
11457 return loc_result;
11460 loc_result = new_loc_descr (DW_OP_implicit_value,
11461 size, 0);
11462 loc_result->dw_loc_oprnd2.val_class = dw_val_class_const;
11463 loc_result->dw_loc_oprnd2.v.val_int = i;
11464 return loc_result;
11467 /* Return a location descriptor that designates a base+offset location. */
11469 static dw_loc_descr_ref
11470 based_loc_descr (rtx reg, HOST_WIDE_INT offset,
11471 enum var_init_status initialized)
11473 unsigned int regno;
11474 dw_loc_descr_ref result;
11475 dw_fde_ref fde = cfun->fde;
11477 /* We only use "frame base" when we're sure we're talking about the
11478 post-prologue local stack frame. We do this by *not* running
11479 register elimination until this point, and recognizing the special
11480 argument pointer and soft frame pointer rtx's. */
11481 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
11483 rtx elim = (ira_use_lra_p
11484 ? lra_eliminate_regs (reg, VOIDmode, NULL_RTX)
11485 : eliminate_regs (reg, VOIDmode, NULL_RTX));
11487 if (elim != reg)
11489 if (GET_CODE (elim) == PLUS)
11491 offset += INTVAL (XEXP (elim, 1));
11492 elim = XEXP (elim, 0);
11494 gcc_assert ((SUPPORTS_STACK_ALIGNMENT
11495 && (elim == hard_frame_pointer_rtx
11496 || elim == stack_pointer_rtx))
11497 || elim == (frame_pointer_needed
11498 ? hard_frame_pointer_rtx
11499 : stack_pointer_rtx));
11501 /* If drap register is used to align stack, use frame
11502 pointer + offset to access stack variables. If stack
11503 is aligned without drap, use stack pointer + offset to
11504 access stack variables. */
11505 if (crtl->stack_realign_tried
11506 && reg == frame_pointer_rtx)
11508 int base_reg
11509 = DWARF_FRAME_REGNUM ((fde && fde->drap_reg != INVALID_REGNUM)
11510 ? HARD_FRAME_POINTER_REGNUM
11511 : REGNO (elim));
11512 return new_reg_loc_descr (base_reg, offset);
11515 gcc_assert (frame_pointer_fb_offset_valid);
11516 offset += frame_pointer_fb_offset;
11517 return new_loc_descr (DW_OP_fbreg, offset, 0);
11521 regno = REGNO (reg);
11522 #ifdef LEAF_REG_REMAP
11523 if (crtl->uses_only_leaf_regs)
11525 int leaf_reg = LEAF_REG_REMAP (regno);
11526 if (leaf_reg != -1)
11527 regno = (unsigned) leaf_reg;
11529 #endif
11530 regno = DWARF_FRAME_REGNUM (regno);
11532 if (!optimize && fde
11533 && (fde->drap_reg == regno || fde->vdrap_reg == regno))
11535 /* Use cfa+offset to represent the location of arguments passed
11536 on the stack when drap is used to align stack.
11537 Only do this when not optimizing, for optimized code var-tracking
11538 is supposed to track where the arguments live and the register
11539 used as vdrap or drap in some spot might be used for something
11540 else in other part of the routine. */
11541 return new_loc_descr (DW_OP_fbreg, offset, 0);
11544 if (regno <= 31)
11545 result = new_loc_descr ((enum dwarf_location_atom) (DW_OP_breg0 + regno),
11546 offset, 0);
11547 else
11548 result = new_loc_descr (DW_OP_bregx, regno, offset);
11550 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
11551 add_loc_descr (&result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
11553 return result;
11556 /* Return true if this RTL expression describes a base+offset calculation. */
11558 static inline int
11559 is_based_loc (const_rtx rtl)
11561 return (GET_CODE (rtl) == PLUS
11562 && ((REG_P (XEXP (rtl, 0))
11563 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
11564 && CONST_INT_P (XEXP (rtl, 1)))));
11567 /* Try to handle TLS MEMs, for which mem_loc_descriptor on XEXP (mem, 0)
11568 failed. */
11570 static dw_loc_descr_ref
11571 tls_mem_loc_descriptor (rtx mem)
11573 tree base;
11574 dw_loc_descr_ref loc_result;
11576 if (MEM_EXPR (mem) == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
11577 return NULL;
11579 base = get_base_address (MEM_EXPR (mem));
11580 if (base == NULL
11581 || TREE_CODE (base) != VAR_DECL
11582 || !DECL_THREAD_LOCAL_P (base))
11583 return NULL;
11585 loc_result = loc_descriptor_from_tree (MEM_EXPR (mem), 1, NULL);
11586 if (loc_result == NULL)
11587 return NULL;
11589 if (MEM_OFFSET (mem))
11590 loc_descr_plus_const (&loc_result, MEM_OFFSET (mem));
11592 return loc_result;
11595 /* Output debug info about reason why we failed to expand expression as dwarf
11596 expression. */
11598 static void
11599 expansion_failed (tree expr, rtx rtl, char const *reason)
11601 if (dump_file && (dump_flags & TDF_DETAILS))
11603 fprintf (dump_file, "Failed to expand as dwarf: ");
11604 if (expr)
11605 print_generic_expr (dump_file, expr, dump_flags);
11606 if (rtl)
11608 fprintf (dump_file, "\n");
11609 print_rtl (dump_file, rtl);
11611 fprintf (dump_file, "\nReason: %s\n", reason);
11615 /* Helper function for const_ok_for_output. */
11617 static bool
11618 const_ok_for_output_1 (rtx rtl)
11620 if (GET_CODE (rtl) == UNSPEC)
11622 /* If delegitimize_address couldn't do anything with the UNSPEC, assume
11623 we can't express it in the debug info. */
11624 #ifdef ENABLE_CHECKING
11625 /* Don't complain about TLS UNSPECs, those are just too hard to
11626 delegitimize. Note this could be a non-decl SYMBOL_REF such as
11627 one in a constant pool entry, so testing SYMBOL_REF_TLS_MODEL
11628 rather than DECL_THREAD_LOCAL_P is not just an optimization. */
11629 if (XVECLEN (rtl, 0) == 0
11630 || GET_CODE (XVECEXP (rtl, 0, 0)) != SYMBOL_REF
11631 || SYMBOL_REF_TLS_MODEL (XVECEXP (rtl, 0, 0)) == TLS_MODEL_NONE)
11632 inform (current_function_decl
11633 ? DECL_SOURCE_LOCATION (current_function_decl)
11634 : UNKNOWN_LOCATION,
11635 #if NUM_UNSPEC_VALUES > 0
11636 "non-delegitimized UNSPEC %s (%d) found in variable location",
11637 ((XINT (rtl, 1) >= 0 && XINT (rtl, 1) < NUM_UNSPEC_VALUES)
11638 ? unspec_strings[XINT (rtl, 1)] : "unknown"),
11639 XINT (rtl, 1));
11640 #else
11641 "non-delegitimized UNSPEC %d found in variable location",
11642 XINT (rtl, 1));
11643 #endif
11644 #endif
11645 expansion_failed (NULL_TREE, rtl,
11646 "UNSPEC hasn't been delegitimized.\n");
11647 return false;
11650 if (targetm.const_not_ok_for_debug_p (rtl))
11652 expansion_failed (NULL_TREE, rtl,
11653 "Expression rejected for debug by the backend.\n");
11654 return false;
11657 /* FIXME: Refer to PR60655. It is possible for simplification
11658 of rtl expressions in var tracking to produce such expressions.
11659 We should really identify / validate expressions
11660 enclosed in CONST that can be handled by assemblers on various
11661 targets and only handle legitimate cases here. */
11662 if (GET_CODE (rtl) != SYMBOL_REF)
11664 if (GET_CODE (rtl) == NOT)
11665 return false;
11666 return true;
11669 if (CONSTANT_POOL_ADDRESS_P (rtl))
11671 bool marked;
11672 get_pool_constant_mark (rtl, &marked);
11673 /* If all references to this pool constant were optimized away,
11674 it was not output and thus we can't represent it. */
11675 if (!marked)
11677 expansion_failed (NULL_TREE, rtl,
11678 "Constant was removed from constant pool.\n");
11679 return false;
11683 if (SYMBOL_REF_TLS_MODEL (rtl) != TLS_MODEL_NONE)
11684 return false;
11686 /* Avoid references to external symbols in debug info, on several targets
11687 the linker might even refuse to link when linking a shared library,
11688 and in many other cases the relocations for .debug_info/.debug_loc are
11689 dropped, so the address becomes zero anyway. Hidden symbols, guaranteed
11690 to be defined within the same shared library or executable are fine. */
11691 if (SYMBOL_REF_EXTERNAL_P (rtl))
11693 tree decl = SYMBOL_REF_DECL (rtl);
11695 if (decl == NULL || !targetm.binds_local_p (decl))
11697 expansion_failed (NULL_TREE, rtl,
11698 "Symbol not defined in current TU.\n");
11699 return false;
11703 return true;
11706 /* Return true if constant RTL can be emitted in DW_OP_addr or
11707 DW_AT_const_value. TLS SYMBOL_REFs, external SYMBOL_REFs or
11708 non-marked constant pool SYMBOL_REFs can't be referenced in it. */
11710 static bool
11711 const_ok_for_output (rtx rtl)
11713 if (GET_CODE (rtl) == SYMBOL_REF)
11714 return const_ok_for_output_1 (rtl);
11716 if (GET_CODE (rtl) == CONST)
11718 subrtx_var_iterator::array_type array;
11719 FOR_EACH_SUBRTX_VAR (iter, array, XEXP (rtl, 0), ALL)
11720 if (!const_ok_for_output_1 (*iter))
11721 return false;
11722 return true;
11725 return true;
11728 /* Return a reference to DW_TAG_base_type corresponding to MODE and UNSIGNEDP
11729 if possible, NULL otherwise. */
11731 static dw_die_ref
11732 base_type_for_mode (machine_mode mode, bool unsignedp)
11734 dw_die_ref type_die;
11735 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
11737 if (type == NULL)
11738 return NULL;
11739 switch (TREE_CODE (type))
11741 case INTEGER_TYPE:
11742 case REAL_TYPE:
11743 break;
11744 default:
11745 return NULL;
11747 type_die = lookup_type_die (type);
11748 if (!type_die)
11749 type_die = modified_type_die (type, TYPE_UNQUALIFIED, comp_unit_die ());
11750 if (type_die == NULL || type_die->die_tag != DW_TAG_base_type)
11751 return NULL;
11752 return type_die;
11755 /* For OP descriptor assumed to be in unsigned MODE, convert it to a unsigned
11756 type matching MODE, or, if MODE is narrower than or as wide as
11757 DWARF2_ADDR_SIZE, untyped. Return NULL if the conversion is not
11758 possible. */
11760 static dw_loc_descr_ref
11761 convert_descriptor_to_mode (machine_mode mode, dw_loc_descr_ref op)
11763 machine_mode outer_mode = mode;
11764 dw_die_ref type_die;
11765 dw_loc_descr_ref cvt;
11767 if (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE)
11769 add_loc_descr (&op, new_loc_descr (DW_OP_GNU_convert, 0, 0));
11770 return op;
11772 type_die = base_type_for_mode (outer_mode, 1);
11773 if (type_die == NULL)
11774 return NULL;
11775 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
11776 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
11777 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
11778 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
11779 add_loc_descr (&op, cvt);
11780 return op;
11783 /* Return location descriptor for comparison OP with operands OP0 and OP1. */
11785 static dw_loc_descr_ref
11786 compare_loc_descriptor (enum dwarf_location_atom op, dw_loc_descr_ref op0,
11787 dw_loc_descr_ref op1)
11789 dw_loc_descr_ref ret = op0;
11790 add_loc_descr (&ret, op1);
11791 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
11792 if (STORE_FLAG_VALUE != 1)
11794 add_loc_descr (&ret, int_loc_descriptor (STORE_FLAG_VALUE));
11795 add_loc_descr (&ret, new_loc_descr (DW_OP_mul, 0, 0));
11797 return ret;
11800 /* Return location descriptor for signed comparison OP RTL. */
11802 static dw_loc_descr_ref
11803 scompare_loc_descriptor (enum dwarf_location_atom op, rtx rtl,
11804 machine_mode mem_mode)
11806 machine_mode op_mode = GET_MODE (XEXP (rtl, 0));
11807 dw_loc_descr_ref op0, op1;
11808 int shift;
11810 if (op_mode == VOIDmode)
11811 op_mode = GET_MODE (XEXP (rtl, 1));
11812 if (op_mode == VOIDmode)
11813 return NULL;
11815 if (dwarf_strict
11816 && (GET_MODE_CLASS (op_mode) != MODE_INT
11817 || GET_MODE_SIZE (op_mode) > DWARF2_ADDR_SIZE))
11818 return NULL;
11820 op0 = mem_loc_descriptor (XEXP (rtl, 0), op_mode, mem_mode,
11821 VAR_INIT_STATUS_INITIALIZED);
11822 op1 = mem_loc_descriptor (XEXP (rtl, 1), op_mode, mem_mode,
11823 VAR_INIT_STATUS_INITIALIZED);
11825 if (op0 == NULL || op1 == NULL)
11826 return NULL;
11828 if (GET_MODE_CLASS (op_mode) != MODE_INT
11829 || GET_MODE_SIZE (op_mode) == DWARF2_ADDR_SIZE)
11830 return compare_loc_descriptor (op, op0, op1);
11832 if (GET_MODE_SIZE (op_mode) > DWARF2_ADDR_SIZE)
11834 dw_die_ref type_die = base_type_for_mode (op_mode, 0);
11835 dw_loc_descr_ref cvt;
11837 if (type_die == NULL)
11838 return NULL;
11839 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
11840 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
11841 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
11842 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
11843 add_loc_descr (&op0, cvt);
11844 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
11845 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
11846 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
11847 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
11848 add_loc_descr (&op1, cvt);
11849 return compare_loc_descriptor (op, op0, op1);
11852 shift = (DWARF2_ADDR_SIZE - GET_MODE_SIZE (op_mode)) * BITS_PER_UNIT;
11853 /* For eq/ne, if the operands are known to be zero-extended,
11854 there is no need to do the fancy shifting up. */
11855 if (op == DW_OP_eq || op == DW_OP_ne)
11857 dw_loc_descr_ref last0, last1;
11858 for (last0 = op0; last0->dw_loc_next != NULL; last0 = last0->dw_loc_next)
11860 for (last1 = op1; last1->dw_loc_next != NULL; last1 = last1->dw_loc_next)
11862 /* deref_size zero extends, and for constants we can check
11863 whether they are zero extended or not. */
11864 if (((last0->dw_loc_opc == DW_OP_deref_size
11865 && last0->dw_loc_oprnd1.v.val_int <= GET_MODE_SIZE (op_mode))
11866 || (CONST_INT_P (XEXP (rtl, 0))
11867 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (rtl, 0))
11868 == (INTVAL (XEXP (rtl, 0)) & GET_MODE_MASK (op_mode))))
11869 && ((last1->dw_loc_opc == DW_OP_deref_size
11870 && last1->dw_loc_oprnd1.v.val_int <= GET_MODE_SIZE (op_mode))
11871 || (CONST_INT_P (XEXP (rtl, 1))
11872 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (rtl, 1))
11873 == (INTVAL (XEXP (rtl, 1)) & GET_MODE_MASK (op_mode)))))
11874 return compare_loc_descriptor (op, op0, op1);
11876 /* EQ/NE comparison against constant in narrower type than
11877 DWARF2_ADDR_SIZE can be performed either as
11878 DW_OP_const1u <shift> DW_OP_shl DW_OP_const* <cst << shift>
11879 DW_OP_{eq,ne}
11881 DW_OP_const*u <mode_mask> DW_OP_and DW_OP_const* <cst & mode_mask>
11882 DW_OP_{eq,ne}. Pick whatever is shorter. */
11883 if (CONST_INT_P (XEXP (rtl, 1))
11884 && GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
11885 && (size_of_int_loc_descriptor (shift) + 1
11886 + size_of_int_loc_descriptor (INTVAL (XEXP (rtl, 1)) << shift)
11887 >= size_of_int_loc_descriptor (GET_MODE_MASK (op_mode)) + 1
11888 + size_of_int_loc_descriptor (INTVAL (XEXP (rtl, 1))
11889 & GET_MODE_MASK (op_mode))))
11891 add_loc_descr (&op0, int_loc_descriptor (GET_MODE_MASK (op_mode)));
11892 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
11893 op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1))
11894 & GET_MODE_MASK (op_mode));
11895 return compare_loc_descriptor (op, op0, op1);
11898 add_loc_descr (&op0, int_loc_descriptor (shift));
11899 add_loc_descr (&op0, new_loc_descr (DW_OP_shl, 0, 0));
11900 if (CONST_INT_P (XEXP (rtl, 1)))
11901 op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1)) << shift);
11902 else
11904 add_loc_descr (&op1, int_loc_descriptor (shift));
11905 add_loc_descr (&op1, new_loc_descr (DW_OP_shl, 0, 0));
11907 return compare_loc_descriptor (op, op0, op1);
11910 /* Return location descriptor for unsigned comparison OP RTL. */
11912 static dw_loc_descr_ref
11913 ucompare_loc_descriptor (enum dwarf_location_atom op, rtx rtl,
11914 machine_mode mem_mode)
11916 machine_mode op_mode = GET_MODE (XEXP (rtl, 0));
11917 dw_loc_descr_ref op0, op1;
11919 if (op_mode == VOIDmode)
11920 op_mode = GET_MODE (XEXP (rtl, 1));
11921 if (op_mode == VOIDmode)
11922 return NULL;
11923 if (GET_MODE_CLASS (op_mode) != MODE_INT)
11924 return NULL;
11926 if (dwarf_strict && GET_MODE_SIZE (op_mode) > DWARF2_ADDR_SIZE)
11927 return NULL;
11929 op0 = mem_loc_descriptor (XEXP (rtl, 0), op_mode, mem_mode,
11930 VAR_INIT_STATUS_INITIALIZED);
11931 op1 = mem_loc_descriptor (XEXP (rtl, 1), op_mode, mem_mode,
11932 VAR_INIT_STATUS_INITIALIZED);
11934 if (op0 == NULL || op1 == NULL)
11935 return NULL;
11937 if (GET_MODE_SIZE (op_mode) < DWARF2_ADDR_SIZE)
11939 HOST_WIDE_INT mask = GET_MODE_MASK (op_mode);
11940 dw_loc_descr_ref last0, last1;
11941 for (last0 = op0; last0->dw_loc_next != NULL; last0 = last0->dw_loc_next)
11943 for (last1 = op1; last1->dw_loc_next != NULL; last1 = last1->dw_loc_next)
11945 if (CONST_INT_P (XEXP (rtl, 0)))
11946 op0 = int_loc_descriptor (INTVAL (XEXP (rtl, 0)) & mask);
11947 /* deref_size zero extends, so no need to mask it again. */
11948 else if (last0->dw_loc_opc != DW_OP_deref_size
11949 || last0->dw_loc_oprnd1.v.val_int > GET_MODE_SIZE (op_mode))
11951 add_loc_descr (&op0, int_loc_descriptor (mask));
11952 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
11954 if (CONST_INT_P (XEXP (rtl, 1)))
11955 op1 = int_loc_descriptor (INTVAL (XEXP (rtl, 1)) & mask);
11956 /* deref_size zero extends, so no need to mask it again. */
11957 else if (last1->dw_loc_opc != DW_OP_deref_size
11958 || last1->dw_loc_oprnd1.v.val_int > GET_MODE_SIZE (op_mode))
11960 add_loc_descr (&op1, int_loc_descriptor (mask));
11961 add_loc_descr (&op1, new_loc_descr (DW_OP_and, 0, 0));
11964 else if (GET_MODE_SIZE (op_mode) == DWARF2_ADDR_SIZE)
11966 HOST_WIDE_INT bias = 1;
11967 bias <<= (DWARF2_ADDR_SIZE * BITS_PER_UNIT - 1);
11968 add_loc_descr (&op0, new_loc_descr (DW_OP_plus_uconst, bias, 0));
11969 if (CONST_INT_P (XEXP (rtl, 1)))
11970 op1 = int_loc_descriptor ((unsigned HOST_WIDE_INT) bias
11971 + INTVAL (XEXP (rtl, 1)));
11972 else
11973 add_loc_descr (&op1, new_loc_descr (DW_OP_plus_uconst,
11974 bias, 0));
11976 return compare_loc_descriptor (op, op0, op1);
11979 /* Return location descriptor for {U,S}{MIN,MAX}. */
11981 static dw_loc_descr_ref
11982 minmax_loc_descriptor (rtx rtl, machine_mode mode,
11983 machine_mode mem_mode)
11985 enum dwarf_location_atom op;
11986 dw_loc_descr_ref op0, op1, ret;
11987 dw_loc_descr_ref bra_node, drop_node;
11989 if (dwarf_strict
11990 && (GET_MODE_CLASS (mode) != MODE_INT
11991 || GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE))
11992 return NULL;
11994 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
11995 VAR_INIT_STATUS_INITIALIZED);
11996 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
11997 VAR_INIT_STATUS_INITIALIZED);
11999 if (op0 == NULL || op1 == NULL)
12000 return NULL;
12002 add_loc_descr (&op0, new_loc_descr (DW_OP_dup, 0, 0));
12003 add_loc_descr (&op1, new_loc_descr (DW_OP_swap, 0, 0));
12004 add_loc_descr (&op1, new_loc_descr (DW_OP_over, 0, 0));
12005 if (GET_CODE (rtl) == UMIN || GET_CODE (rtl) == UMAX)
12007 if (GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE)
12009 HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12010 add_loc_descr (&op0, int_loc_descriptor (mask));
12011 add_loc_descr (&op0, new_loc_descr (DW_OP_and, 0, 0));
12012 add_loc_descr (&op1, int_loc_descriptor (mask));
12013 add_loc_descr (&op1, new_loc_descr (DW_OP_and, 0, 0));
12015 else if (GET_MODE_SIZE (mode) == DWARF2_ADDR_SIZE)
12017 HOST_WIDE_INT bias = 1;
12018 bias <<= (DWARF2_ADDR_SIZE * BITS_PER_UNIT - 1);
12019 add_loc_descr (&op0, new_loc_descr (DW_OP_plus_uconst, bias, 0));
12020 add_loc_descr (&op1, new_loc_descr (DW_OP_plus_uconst, bias, 0));
12023 else if (GET_MODE_CLASS (mode) == MODE_INT
12024 && GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE)
12026 int shift = (DWARF2_ADDR_SIZE - GET_MODE_SIZE (mode)) * BITS_PER_UNIT;
12027 add_loc_descr (&op0, int_loc_descriptor (shift));
12028 add_loc_descr (&op0, new_loc_descr (DW_OP_shl, 0, 0));
12029 add_loc_descr (&op1, int_loc_descriptor (shift));
12030 add_loc_descr (&op1, new_loc_descr (DW_OP_shl, 0, 0));
12032 else if (GET_MODE_CLASS (mode) == MODE_INT
12033 && GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE)
12035 dw_die_ref type_die = base_type_for_mode (mode, 0);
12036 dw_loc_descr_ref cvt;
12037 if (type_die == NULL)
12038 return NULL;
12039 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12040 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12041 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12042 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12043 add_loc_descr (&op0, cvt);
12044 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12045 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12046 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12047 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12048 add_loc_descr (&op1, cvt);
12051 if (GET_CODE (rtl) == SMIN || GET_CODE (rtl) == UMIN)
12052 op = DW_OP_lt;
12053 else
12054 op = DW_OP_gt;
12055 ret = op0;
12056 add_loc_descr (&ret, op1);
12057 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
12058 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
12059 add_loc_descr (&ret, bra_node);
12060 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12061 drop_node = new_loc_descr (DW_OP_drop, 0, 0);
12062 add_loc_descr (&ret, drop_node);
12063 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
12064 bra_node->dw_loc_oprnd1.v.val_loc = drop_node;
12065 if ((GET_CODE (rtl) == SMIN || GET_CODE (rtl) == SMAX)
12066 && GET_MODE_CLASS (mode) == MODE_INT
12067 && GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE)
12068 ret = convert_descriptor_to_mode (mode, ret);
12069 return ret;
12072 /* Helper function for mem_loc_descriptor. Perform OP binary op,
12073 but after converting arguments to type_die, afterwards
12074 convert back to unsigned. */
12076 static dw_loc_descr_ref
12077 typed_binop (enum dwarf_location_atom op, rtx rtl, dw_die_ref type_die,
12078 machine_mode mode, machine_mode mem_mode)
12080 dw_loc_descr_ref cvt, op0, op1;
12082 if (type_die == NULL)
12083 return NULL;
12084 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12085 VAR_INIT_STATUS_INITIALIZED);
12086 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
12087 VAR_INIT_STATUS_INITIALIZED);
12088 if (op0 == NULL || op1 == NULL)
12089 return NULL;
12090 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12091 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12092 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12093 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12094 add_loc_descr (&op0, cvt);
12095 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12096 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12097 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12098 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12099 add_loc_descr (&op1, cvt);
12100 add_loc_descr (&op0, op1);
12101 add_loc_descr (&op0, new_loc_descr (op, 0, 0));
12102 return convert_descriptor_to_mode (mode, op0);
12105 /* CLZ (where constV is CLZ_DEFINED_VALUE_AT_ZERO computed value,
12106 const0 is DW_OP_lit0 or corresponding typed constant,
12107 const1 is DW_OP_lit1 or corresponding typed constant
12108 and constMSB is constant with just the MSB bit set
12109 for the mode):
12110 DW_OP_dup DW_OP_bra <L1> DW_OP_drop constV DW_OP_skip <L4>
12111 L1: const0 DW_OP_swap
12112 L2: DW_OP_dup constMSB DW_OP_and DW_OP_bra <L3> const1 DW_OP_shl
12113 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
12114 L3: DW_OP_drop
12115 L4: DW_OP_nop
12117 CTZ is similar:
12118 DW_OP_dup DW_OP_bra <L1> DW_OP_drop constV DW_OP_skip <L4>
12119 L1: const0 DW_OP_swap
12120 L2: DW_OP_dup const1 DW_OP_and DW_OP_bra <L3> const1 DW_OP_shr
12121 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
12122 L3: DW_OP_drop
12123 L4: DW_OP_nop
12125 FFS is similar:
12126 DW_OP_dup DW_OP_bra <L1> DW_OP_drop const0 DW_OP_skip <L4>
12127 L1: const1 DW_OP_swap
12128 L2: DW_OP_dup const1 DW_OP_and DW_OP_bra <L3> const1 DW_OP_shr
12129 DW_OP_swap DW_OP_plus_uconst <1> DW_OP_swap DW_OP_skip <L2>
12130 L3: DW_OP_drop
12131 L4: DW_OP_nop */
12133 static dw_loc_descr_ref
12134 clz_loc_descriptor (rtx rtl, machine_mode mode,
12135 machine_mode mem_mode)
12137 dw_loc_descr_ref op0, ret, tmp;
12138 HOST_WIDE_INT valv;
12139 dw_loc_descr_ref l1jump, l1label;
12140 dw_loc_descr_ref l2jump, l2label;
12141 dw_loc_descr_ref l3jump, l3label;
12142 dw_loc_descr_ref l4jump, l4label;
12143 rtx msb;
12145 if (GET_MODE_CLASS (mode) != MODE_INT
12146 || GET_MODE (XEXP (rtl, 0)) != mode)
12147 return NULL;
12149 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12150 VAR_INIT_STATUS_INITIALIZED);
12151 if (op0 == NULL)
12152 return NULL;
12153 ret = op0;
12154 if (GET_CODE (rtl) == CLZ)
12156 if (!CLZ_DEFINED_VALUE_AT_ZERO (mode, valv))
12157 valv = GET_MODE_BITSIZE (mode);
12159 else if (GET_CODE (rtl) == FFS)
12160 valv = 0;
12161 else if (!CTZ_DEFINED_VALUE_AT_ZERO (mode, valv))
12162 valv = GET_MODE_BITSIZE (mode);
12163 add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0));
12164 l1jump = new_loc_descr (DW_OP_bra, 0, 0);
12165 add_loc_descr (&ret, l1jump);
12166 add_loc_descr (&ret, new_loc_descr (DW_OP_drop, 0, 0));
12167 tmp = mem_loc_descriptor (GEN_INT (valv), mode, mem_mode,
12168 VAR_INIT_STATUS_INITIALIZED);
12169 if (tmp == NULL)
12170 return NULL;
12171 add_loc_descr (&ret, tmp);
12172 l4jump = new_loc_descr (DW_OP_skip, 0, 0);
12173 add_loc_descr (&ret, l4jump);
12174 l1label = mem_loc_descriptor (GET_CODE (rtl) == FFS
12175 ? const1_rtx : const0_rtx,
12176 mode, mem_mode,
12177 VAR_INIT_STATUS_INITIALIZED);
12178 if (l1label == NULL)
12179 return NULL;
12180 add_loc_descr (&ret, l1label);
12181 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12182 l2label = new_loc_descr (DW_OP_dup, 0, 0);
12183 add_loc_descr (&ret, l2label);
12184 if (GET_CODE (rtl) != CLZ)
12185 msb = const1_rtx;
12186 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
12187 msb = GEN_INT ((unsigned HOST_WIDE_INT) 1
12188 << (GET_MODE_BITSIZE (mode) - 1));
12189 else
12190 msb = immed_wide_int_const
12191 (wi::set_bit_in_zero (GET_MODE_PRECISION (mode) - 1,
12192 GET_MODE_PRECISION (mode)), mode);
12193 if (GET_CODE (msb) == CONST_INT && INTVAL (msb) < 0)
12194 tmp = new_loc_descr (HOST_BITS_PER_WIDE_INT == 32
12195 ? DW_OP_const4u : HOST_BITS_PER_WIDE_INT == 64
12196 ? DW_OP_const8u : DW_OP_constu, INTVAL (msb), 0);
12197 else
12198 tmp = mem_loc_descriptor (msb, mode, mem_mode,
12199 VAR_INIT_STATUS_INITIALIZED);
12200 if (tmp == NULL)
12201 return NULL;
12202 add_loc_descr (&ret, tmp);
12203 add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0));
12204 l3jump = new_loc_descr (DW_OP_bra, 0, 0);
12205 add_loc_descr (&ret, l3jump);
12206 tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode,
12207 VAR_INIT_STATUS_INITIALIZED);
12208 if (tmp == NULL)
12209 return NULL;
12210 add_loc_descr (&ret, tmp);
12211 add_loc_descr (&ret, new_loc_descr (GET_CODE (rtl) == CLZ
12212 ? DW_OP_shl : DW_OP_shr, 0, 0));
12213 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12214 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, 1, 0));
12215 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12216 l2jump = new_loc_descr (DW_OP_skip, 0, 0);
12217 add_loc_descr (&ret, l2jump);
12218 l3label = new_loc_descr (DW_OP_drop, 0, 0);
12219 add_loc_descr (&ret, l3label);
12220 l4label = new_loc_descr (DW_OP_nop, 0, 0);
12221 add_loc_descr (&ret, l4label);
12222 l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
12223 l1jump->dw_loc_oprnd1.v.val_loc = l1label;
12224 l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
12225 l2jump->dw_loc_oprnd1.v.val_loc = l2label;
12226 l3jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
12227 l3jump->dw_loc_oprnd1.v.val_loc = l3label;
12228 l4jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
12229 l4jump->dw_loc_oprnd1.v.val_loc = l4label;
12230 return ret;
12233 /* POPCOUNT (const0 is DW_OP_lit0 or corresponding typed constant,
12234 const1 is DW_OP_lit1 or corresponding typed constant):
12235 const0 DW_OP_swap
12236 L1: DW_OP_dup DW_OP_bra <L2> DW_OP_dup DW_OP_rot const1 DW_OP_and
12237 DW_OP_plus DW_OP_swap const1 DW_OP_shr DW_OP_skip <L1>
12238 L2: DW_OP_drop
12240 PARITY is similar:
12241 L1: DW_OP_dup DW_OP_bra <L2> DW_OP_dup DW_OP_rot const1 DW_OP_and
12242 DW_OP_xor DW_OP_swap const1 DW_OP_shr DW_OP_skip <L1>
12243 L2: DW_OP_drop */
12245 static dw_loc_descr_ref
12246 popcount_loc_descriptor (rtx rtl, machine_mode mode,
12247 machine_mode mem_mode)
12249 dw_loc_descr_ref op0, ret, tmp;
12250 dw_loc_descr_ref l1jump, l1label;
12251 dw_loc_descr_ref l2jump, l2label;
12253 if (GET_MODE_CLASS (mode) != MODE_INT
12254 || GET_MODE (XEXP (rtl, 0)) != mode)
12255 return NULL;
12257 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12258 VAR_INIT_STATUS_INITIALIZED);
12259 if (op0 == NULL)
12260 return NULL;
12261 ret = op0;
12262 tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode,
12263 VAR_INIT_STATUS_INITIALIZED);
12264 if (tmp == NULL)
12265 return NULL;
12266 add_loc_descr (&ret, tmp);
12267 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12268 l1label = new_loc_descr (DW_OP_dup, 0, 0);
12269 add_loc_descr (&ret, l1label);
12270 l2jump = new_loc_descr (DW_OP_bra, 0, 0);
12271 add_loc_descr (&ret, l2jump);
12272 add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0));
12273 add_loc_descr (&ret, new_loc_descr (DW_OP_rot, 0, 0));
12274 tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode,
12275 VAR_INIT_STATUS_INITIALIZED);
12276 if (tmp == NULL)
12277 return NULL;
12278 add_loc_descr (&ret, tmp);
12279 add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0));
12280 add_loc_descr (&ret, new_loc_descr (GET_CODE (rtl) == POPCOUNT
12281 ? DW_OP_plus : DW_OP_xor, 0, 0));
12282 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12283 tmp = mem_loc_descriptor (const1_rtx, mode, mem_mode,
12284 VAR_INIT_STATUS_INITIALIZED);
12285 add_loc_descr (&ret, tmp);
12286 add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
12287 l1jump = new_loc_descr (DW_OP_skip, 0, 0);
12288 add_loc_descr (&ret, l1jump);
12289 l2label = new_loc_descr (DW_OP_drop, 0, 0);
12290 add_loc_descr (&ret, l2label);
12291 l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
12292 l1jump->dw_loc_oprnd1.v.val_loc = l1label;
12293 l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
12294 l2jump->dw_loc_oprnd1.v.val_loc = l2label;
12295 return ret;
12298 /* BSWAP (constS is initial shift count, either 56 or 24):
12299 constS const0
12300 L1: DW_OP_pick <2> constS DW_OP_pick <3> DW_OP_minus DW_OP_shr
12301 const255 DW_OP_and DW_OP_pick <2> DW_OP_shl DW_OP_or
12302 DW_OP_swap DW_OP_dup const0 DW_OP_eq DW_OP_bra <L2> const8
12303 DW_OP_minus DW_OP_swap DW_OP_skip <L1>
12304 L2: DW_OP_drop DW_OP_swap DW_OP_drop */
12306 static dw_loc_descr_ref
12307 bswap_loc_descriptor (rtx rtl, machine_mode mode,
12308 machine_mode mem_mode)
12310 dw_loc_descr_ref op0, ret, tmp;
12311 dw_loc_descr_ref l1jump, l1label;
12312 dw_loc_descr_ref l2jump, l2label;
12314 if (GET_MODE_CLASS (mode) != MODE_INT
12315 || BITS_PER_UNIT != 8
12316 || (GET_MODE_BITSIZE (mode) != 32
12317 && GET_MODE_BITSIZE (mode) != 64))
12318 return NULL;
12320 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12321 VAR_INIT_STATUS_INITIALIZED);
12322 if (op0 == NULL)
12323 return NULL;
12325 ret = op0;
12326 tmp = mem_loc_descriptor (GEN_INT (GET_MODE_BITSIZE (mode) - 8),
12327 mode, mem_mode,
12328 VAR_INIT_STATUS_INITIALIZED);
12329 if (tmp == NULL)
12330 return NULL;
12331 add_loc_descr (&ret, tmp);
12332 tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode,
12333 VAR_INIT_STATUS_INITIALIZED);
12334 if (tmp == NULL)
12335 return NULL;
12336 add_loc_descr (&ret, tmp);
12337 l1label = new_loc_descr (DW_OP_pick, 2, 0);
12338 add_loc_descr (&ret, l1label);
12339 tmp = mem_loc_descriptor (GEN_INT (GET_MODE_BITSIZE (mode) - 8),
12340 mode, mem_mode,
12341 VAR_INIT_STATUS_INITIALIZED);
12342 add_loc_descr (&ret, tmp);
12343 add_loc_descr (&ret, new_loc_descr (DW_OP_pick, 3, 0));
12344 add_loc_descr (&ret, new_loc_descr (DW_OP_minus, 0, 0));
12345 add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
12346 tmp = mem_loc_descriptor (GEN_INT (255), mode, mem_mode,
12347 VAR_INIT_STATUS_INITIALIZED);
12348 if (tmp == NULL)
12349 return NULL;
12350 add_loc_descr (&ret, tmp);
12351 add_loc_descr (&ret, new_loc_descr (DW_OP_and, 0, 0));
12352 add_loc_descr (&ret, new_loc_descr (DW_OP_pick, 2, 0));
12353 add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0));
12354 add_loc_descr (&ret, new_loc_descr (DW_OP_or, 0, 0));
12355 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12356 add_loc_descr (&ret, new_loc_descr (DW_OP_dup, 0, 0));
12357 tmp = mem_loc_descriptor (const0_rtx, mode, mem_mode,
12358 VAR_INIT_STATUS_INITIALIZED);
12359 add_loc_descr (&ret, tmp);
12360 add_loc_descr (&ret, new_loc_descr (DW_OP_eq, 0, 0));
12361 l2jump = new_loc_descr (DW_OP_bra, 0, 0);
12362 add_loc_descr (&ret, l2jump);
12363 tmp = mem_loc_descriptor (GEN_INT (8), mode, mem_mode,
12364 VAR_INIT_STATUS_INITIALIZED);
12365 add_loc_descr (&ret, tmp);
12366 add_loc_descr (&ret, new_loc_descr (DW_OP_minus, 0, 0));
12367 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12368 l1jump = new_loc_descr (DW_OP_skip, 0, 0);
12369 add_loc_descr (&ret, l1jump);
12370 l2label = new_loc_descr (DW_OP_drop, 0, 0);
12371 add_loc_descr (&ret, l2label);
12372 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12373 add_loc_descr (&ret, new_loc_descr (DW_OP_drop, 0, 0));
12374 l1jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
12375 l1jump->dw_loc_oprnd1.v.val_loc = l1label;
12376 l2jump->dw_loc_oprnd1.val_class = dw_val_class_loc;
12377 l2jump->dw_loc_oprnd1.v.val_loc = l2label;
12378 return ret;
12381 /* ROTATE (constMASK is mode mask, BITSIZE is bitsize of mode):
12382 DW_OP_over DW_OP_over DW_OP_shl [ constMASK DW_OP_and ] DW_OP_rot
12383 [ DW_OP_swap constMASK DW_OP_and DW_OP_swap ] DW_OP_neg
12384 DW_OP_plus_uconst <BITSIZE> DW_OP_shr DW_OP_or
12386 ROTATERT is similar:
12387 DW_OP_over DW_OP_over DW_OP_neg DW_OP_plus_uconst <BITSIZE>
12388 DW_OP_shl [ constMASK DW_OP_and ] DW_OP_rot
12389 [ DW_OP_swap constMASK DW_OP_and DW_OP_swap ] DW_OP_shr DW_OP_or */
12391 static dw_loc_descr_ref
12392 rotate_loc_descriptor (rtx rtl, machine_mode mode,
12393 machine_mode mem_mode)
12395 rtx rtlop1 = XEXP (rtl, 1);
12396 dw_loc_descr_ref op0, op1, ret, mask[2] = { NULL, NULL };
12397 int i;
12399 if (GET_MODE_CLASS (mode) != MODE_INT)
12400 return NULL;
12402 if (GET_MODE (rtlop1) != VOIDmode
12403 && GET_MODE_BITSIZE (GET_MODE (rtlop1)) < GET_MODE_BITSIZE (mode))
12404 rtlop1 = gen_rtx_ZERO_EXTEND (mode, rtlop1);
12405 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12406 VAR_INIT_STATUS_INITIALIZED);
12407 op1 = mem_loc_descriptor (rtlop1, mode, mem_mode,
12408 VAR_INIT_STATUS_INITIALIZED);
12409 if (op0 == NULL || op1 == NULL)
12410 return NULL;
12411 if (GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE)
12412 for (i = 0; i < 2; i++)
12414 if (GET_MODE_BITSIZE (mode) < HOST_BITS_PER_WIDE_INT)
12415 mask[i] = mem_loc_descriptor (GEN_INT (GET_MODE_MASK (mode)),
12416 mode, mem_mode,
12417 VAR_INIT_STATUS_INITIALIZED);
12418 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
12419 mask[i] = new_loc_descr (HOST_BITS_PER_WIDE_INT == 32
12420 ? DW_OP_const4u
12421 : HOST_BITS_PER_WIDE_INT == 64
12422 ? DW_OP_const8u : DW_OP_constu,
12423 GET_MODE_MASK (mode), 0);
12424 else
12425 mask[i] = NULL;
12426 if (mask[i] == NULL)
12427 return NULL;
12428 add_loc_descr (&mask[i], new_loc_descr (DW_OP_and, 0, 0));
12430 ret = op0;
12431 add_loc_descr (&ret, op1);
12432 add_loc_descr (&ret, new_loc_descr (DW_OP_over, 0, 0));
12433 add_loc_descr (&ret, new_loc_descr (DW_OP_over, 0, 0));
12434 if (GET_CODE (rtl) == ROTATERT)
12436 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
12437 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst,
12438 GET_MODE_BITSIZE (mode), 0));
12440 add_loc_descr (&ret, new_loc_descr (DW_OP_shl, 0, 0));
12441 if (mask[0] != NULL)
12442 add_loc_descr (&ret, mask[0]);
12443 add_loc_descr (&ret, new_loc_descr (DW_OP_rot, 0, 0));
12444 if (mask[1] != NULL)
12446 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12447 add_loc_descr (&ret, mask[1]);
12448 add_loc_descr (&ret, new_loc_descr (DW_OP_swap, 0, 0));
12450 if (GET_CODE (rtl) == ROTATE)
12452 add_loc_descr (&ret, new_loc_descr (DW_OP_neg, 0, 0));
12453 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst,
12454 GET_MODE_BITSIZE (mode), 0));
12456 add_loc_descr (&ret, new_loc_descr (DW_OP_shr, 0, 0));
12457 add_loc_descr (&ret, new_loc_descr (DW_OP_or, 0, 0));
12458 return ret;
12461 /* Helper function for mem_loc_descriptor. Return DW_OP_GNU_parameter_ref
12462 for DEBUG_PARAMETER_REF RTL. */
12464 static dw_loc_descr_ref
12465 parameter_ref_descriptor (rtx rtl)
12467 dw_loc_descr_ref ret;
12468 dw_die_ref ref;
12470 if (dwarf_strict)
12471 return NULL;
12472 gcc_assert (TREE_CODE (DEBUG_PARAMETER_REF_DECL (rtl)) == PARM_DECL);
12473 ref = lookup_decl_die (DEBUG_PARAMETER_REF_DECL (rtl));
12474 ret = new_loc_descr (DW_OP_GNU_parameter_ref, 0, 0);
12475 if (ref)
12477 ret->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12478 ret->dw_loc_oprnd1.v.val_die_ref.die = ref;
12479 ret->dw_loc_oprnd1.v.val_die_ref.external = 0;
12481 else
12483 ret->dw_loc_oprnd1.val_class = dw_val_class_decl_ref;
12484 ret->dw_loc_oprnd1.v.val_decl_ref = DEBUG_PARAMETER_REF_DECL (rtl);
12486 return ret;
12489 /* The following routine converts the RTL for a variable or parameter
12490 (resident in memory) into an equivalent Dwarf representation of a
12491 mechanism for getting the address of that same variable onto the top of a
12492 hypothetical "address evaluation" stack.
12494 When creating memory location descriptors, we are effectively transforming
12495 the RTL for a memory-resident object into its Dwarf postfix expression
12496 equivalent. This routine recursively descends an RTL tree, turning
12497 it into Dwarf postfix code as it goes.
12499 MODE is the mode that should be assumed for the rtl if it is VOIDmode.
12501 MEM_MODE is the mode of the memory reference, needed to handle some
12502 autoincrement addressing modes.
12504 Return 0 if we can't represent the location. */
12506 dw_loc_descr_ref
12507 mem_loc_descriptor (rtx rtl, machine_mode mode,
12508 machine_mode mem_mode,
12509 enum var_init_status initialized)
12511 dw_loc_descr_ref mem_loc_result = NULL;
12512 enum dwarf_location_atom op;
12513 dw_loc_descr_ref op0, op1;
12514 rtx inner = NULL_RTX;
12516 if (mode == VOIDmode)
12517 mode = GET_MODE (rtl);
12519 /* Note that for a dynamically sized array, the location we will generate a
12520 description of here will be the lowest numbered location which is
12521 actually within the array. That's *not* necessarily the same as the
12522 zeroth element of the array. */
12524 rtl = targetm.delegitimize_address (rtl);
12526 if (mode != GET_MODE (rtl) && GET_MODE (rtl) != VOIDmode)
12527 return NULL;
12529 switch (GET_CODE (rtl))
12531 case POST_INC:
12532 case POST_DEC:
12533 case POST_MODIFY:
12534 return mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode, initialized);
12536 case SUBREG:
12537 /* The case of a subreg may arise when we have a local (register)
12538 variable or a formal (register) parameter which doesn't quite fill
12539 up an entire register. For now, just assume that it is
12540 legitimate to make the Dwarf info refer to the whole register which
12541 contains the given subreg. */
12542 if (!subreg_lowpart_p (rtl))
12543 break;
12544 inner = SUBREG_REG (rtl);
12545 case TRUNCATE:
12546 if (inner == NULL_RTX)
12547 inner = XEXP (rtl, 0);
12548 if (GET_MODE_CLASS (mode) == MODE_INT
12549 && GET_MODE_CLASS (GET_MODE (inner)) == MODE_INT
12550 && (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
12551 #ifdef POINTERS_EXTEND_UNSIGNED
12552 || (mode == Pmode && mem_mode != VOIDmode)
12553 #endif
12555 && GET_MODE_SIZE (GET_MODE (inner)) <= DWARF2_ADDR_SIZE)
12557 mem_loc_result = mem_loc_descriptor (inner,
12558 GET_MODE (inner),
12559 mem_mode, initialized);
12560 break;
12562 if (dwarf_strict)
12563 break;
12564 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (inner)))
12565 break;
12566 if (GET_MODE_SIZE (mode) != GET_MODE_SIZE (GET_MODE (inner))
12567 && (GET_MODE_CLASS (mode) != MODE_INT
12568 || GET_MODE_CLASS (GET_MODE (inner)) != MODE_INT))
12569 break;
12570 else
12572 dw_die_ref type_die;
12573 dw_loc_descr_ref cvt;
12575 mem_loc_result = mem_loc_descriptor (inner,
12576 GET_MODE (inner),
12577 mem_mode, initialized);
12578 if (mem_loc_result == NULL)
12579 break;
12580 type_die = base_type_for_mode (mode,
12581 GET_MODE_CLASS (mode) == MODE_INT);
12582 if (type_die == NULL)
12584 mem_loc_result = NULL;
12585 break;
12587 if (GET_MODE_SIZE (mode)
12588 != GET_MODE_SIZE (GET_MODE (inner)))
12589 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12590 else
12591 cvt = new_loc_descr (DW_OP_GNU_reinterpret, 0, 0);
12592 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12593 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
12594 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12595 add_loc_descr (&mem_loc_result, cvt);
12597 break;
12599 case REG:
12600 if (GET_MODE_CLASS (mode) != MODE_INT
12601 || (GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE
12602 && rtl != arg_pointer_rtx
12603 && rtl != frame_pointer_rtx
12604 #ifdef POINTERS_EXTEND_UNSIGNED
12605 && (mode != Pmode || mem_mode == VOIDmode)
12606 #endif
12609 dw_die_ref type_die;
12610 unsigned int dbx_regnum;
12612 if (dwarf_strict)
12613 break;
12614 if (REGNO (rtl) > FIRST_PSEUDO_REGISTER)
12615 break;
12616 type_die = base_type_for_mode (mode,
12617 GET_MODE_CLASS (mode) == MODE_INT);
12618 if (type_die == NULL)
12619 break;
12621 dbx_regnum = dbx_reg_number (rtl);
12622 if (dbx_regnum == IGNORED_DWARF_REGNUM)
12623 break;
12624 mem_loc_result = new_loc_descr (DW_OP_GNU_regval_type,
12625 dbx_regnum, 0);
12626 mem_loc_result->dw_loc_oprnd2.val_class = dw_val_class_die_ref;
12627 mem_loc_result->dw_loc_oprnd2.v.val_die_ref.die = type_die;
12628 mem_loc_result->dw_loc_oprnd2.v.val_die_ref.external = 0;
12629 break;
12631 /* Whenever a register number forms a part of the description of the
12632 method for calculating the (dynamic) address of a memory resident
12633 object, DWARF rules require the register number be referred to as
12634 a "base register". This distinction is not based in any way upon
12635 what category of register the hardware believes the given register
12636 belongs to. This is strictly DWARF terminology we're dealing with
12637 here. Note that in cases where the location of a memory-resident
12638 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
12639 OP_CONST (0)) the actual DWARF location descriptor that we generate
12640 may just be OP_BASEREG (basereg). This may look deceptively like
12641 the object in question was allocated to a register (rather than in
12642 memory) so DWARF consumers need to be aware of the subtle
12643 distinction between OP_REG and OP_BASEREG. */
12644 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
12645 mem_loc_result = based_loc_descr (rtl, 0, VAR_INIT_STATUS_INITIALIZED);
12646 else if (stack_realign_drap
12647 && crtl->drap_reg
12648 && crtl->args.internal_arg_pointer == rtl
12649 && REGNO (crtl->drap_reg) < FIRST_PSEUDO_REGISTER)
12651 /* If RTL is internal_arg_pointer, which has been optimized
12652 out, use DRAP instead. */
12653 mem_loc_result = based_loc_descr (crtl->drap_reg, 0,
12654 VAR_INIT_STATUS_INITIALIZED);
12656 break;
12658 case SIGN_EXTEND:
12659 case ZERO_EXTEND:
12660 if (GET_MODE_CLASS (mode) != MODE_INT)
12661 break;
12662 op0 = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (XEXP (rtl, 0)),
12663 mem_mode, VAR_INIT_STATUS_INITIALIZED);
12664 if (op0 == 0)
12665 break;
12666 else if (GET_CODE (rtl) == ZERO_EXTEND
12667 && GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
12668 && GET_MODE_BITSIZE (GET_MODE (XEXP (rtl, 0)))
12669 < HOST_BITS_PER_WIDE_INT
12670 /* If DW_OP_const{1,2,4}u won't be used, it is shorter
12671 to expand zero extend as two shifts instead of
12672 masking. */
12673 && GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0))) <= 4)
12675 machine_mode imode = GET_MODE (XEXP (rtl, 0));
12676 mem_loc_result = op0;
12677 add_loc_descr (&mem_loc_result,
12678 int_loc_descriptor (GET_MODE_MASK (imode)));
12679 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_and, 0, 0));
12681 else if (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE)
12683 int shift = DWARF2_ADDR_SIZE
12684 - GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0)));
12685 shift *= BITS_PER_UNIT;
12686 if (GET_CODE (rtl) == SIGN_EXTEND)
12687 op = DW_OP_shra;
12688 else
12689 op = DW_OP_shr;
12690 mem_loc_result = op0;
12691 add_loc_descr (&mem_loc_result, int_loc_descriptor (shift));
12692 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_shl, 0, 0));
12693 add_loc_descr (&mem_loc_result, int_loc_descriptor (shift));
12694 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
12696 else if (!dwarf_strict)
12698 dw_die_ref type_die1, type_die2;
12699 dw_loc_descr_ref cvt;
12701 type_die1 = base_type_for_mode (GET_MODE (XEXP (rtl, 0)),
12702 GET_CODE (rtl) == ZERO_EXTEND);
12703 if (type_die1 == NULL)
12704 break;
12705 type_die2 = base_type_for_mode (mode, 1);
12706 if (type_die2 == NULL)
12707 break;
12708 mem_loc_result = op0;
12709 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12710 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12711 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die1;
12712 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12713 add_loc_descr (&mem_loc_result, cvt);
12714 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
12715 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
12716 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die2;
12717 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
12718 add_loc_descr (&mem_loc_result, cvt);
12720 break;
12722 case MEM:
12724 rtx new_rtl = avoid_constant_pool_reference (rtl);
12725 if (new_rtl != rtl)
12727 mem_loc_result = mem_loc_descriptor (new_rtl, mode, mem_mode,
12728 initialized);
12729 if (mem_loc_result != NULL)
12730 return mem_loc_result;
12733 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0),
12734 get_address_mode (rtl), mode,
12735 VAR_INIT_STATUS_INITIALIZED);
12736 if (mem_loc_result == NULL)
12737 mem_loc_result = tls_mem_loc_descriptor (rtl);
12738 if (mem_loc_result != NULL)
12740 if (GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE
12741 || GET_MODE_CLASS (mode) != MODE_INT)
12743 dw_die_ref type_die;
12744 dw_loc_descr_ref deref;
12746 if (dwarf_strict)
12747 return NULL;
12748 type_die
12749 = base_type_for_mode (mode, GET_MODE_CLASS (mode) == MODE_INT);
12750 if (type_die == NULL)
12751 return NULL;
12752 deref = new_loc_descr (DW_OP_GNU_deref_type,
12753 GET_MODE_SIZE (mode), 0);
12754 deref->dw_loc_oprnd2.val_class = dw_val_class_die_ref;
12755 deref->dw_loc_oprnd2.v.val_die_ref.die = type_die;
12756 deref->dw_loc_oprnd2.v.val_die_ref.external = 0;
12757 add_loc_descr (&mem_loc_result, deref);
12759 else if (GET_MODE_SIZE (mode) == DWARF2_ADDR_SIZE)
12760 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
12761 else
12762 add_loc_descr (&mem_loc_result,
12763 new_loc_descr (DW_OP_deref_size,
12764 GET_MODE_SIZE (mode), 0));
12766 break;
12768 case LO_SUM:
12769 return mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode, initialized);
12771 case LABEL_REF:
12772 /* Some ports can transform a symbol ref into a label ref, because
12773 the symbol ref is too far away and has to be dumped into a constant
12774 pool. */
12775 case CONST:
12776 case SYMBOL_REF:
12777 if ((GET_MODE_CLASS (mode) != MODE_INT
12778 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
12779 || (GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE
12780 #ifdef POINTERS_EXTEND_UNSIGNED
12781 && (mode != Pmode || mem_mode == VOIDmode)
12782 #endif
12784 break;
12785 if (GET_CODE (rtl) == SYMBOL_REF
12786 && SYMBOL_REF_TLS_MODEL (rtl) != TLS_MODEL_NONE)
12788 dw_loc_descr_ref temp;
12790 /* If this is not defined, we have no way to emit the data. */
12791 if (!targetm.have_tls || !targetm.asm_out.output_dwarf_dtprel)
12792 break;
12794 temp = new_addr_loc_descr (rtl, dtprel_true);
12796 mem_loc_result = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
12797 add_loc_descr (&mem_loc_result, temp);
12799 break;
12802 if (!const_ok_for_output (rtl))
12804 if (GET_CODE (rtl) == CONST)
12805 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12806 initialized);
12807 break;
12810 symref:
12811 mem_loc_result = new_addr_loc_descr (rtl, dtprel_false);
12812 vec_safe_push (used_rtx_array, rtl);
12813 break;
12815 case CONCAT:
12816 case CONCATN:
12817 case VAR_LOCATION:
12818 case DEBUG_IMPLICIT_PTR:
12819 expansion_failed (NULL_TREE, rtl,
12820 "CONCAT/CONCATN/VAR_LOCATION is handled only by loc_descriptor");
12821 return 0;
12823 case ENTRY_VALUE:
12824 if (dwarf_strict)
12825 return NULL;
12826 if (REG_P (ENTRY_VALUE_EXP (rtl)))
12828 if (GET_MODE_CLASS (mode) != MODE_INT
12829 || GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE)
12830 op0 = mem_loc_descriptor (ENTRY_VALUE_EXP (rtl), mode,
12831 VOIDmode, VAR_INIT_STATUS_INITIALIZED);
12832 else
12834 unsigned int dbx_regnum = dbx_reg_number (ENTRY_VALUE_EXP (rtl));
12835 if (dbx_regnum == IGNORED_DWARF_REGNUM)
12836 return NULL;
12837 op0 = one_reg_loc_descriptor (dbx_regnum,
12838 VAR_INIT_STATUS_INITIALIZED);
12841 else if (MEM_P (ENTRY_VALUE_EXP (rtl))
12842 && REG_P (XEXP (ENTRY_VALUE_EXP (rtl), 0)))
12844 op0 = mem_loc_descriptor (ENTRY_VALUE_EXP (rtl), mode,
12845 VOIDmode, VAR_INIT_STATUS_INITIALIZED);
12846 if (op0 && op0->dw_loc_opc == DW_OP_fbreg)
12847 return NULL;
12849 else
12850 gcc_unreachable ();
12851 if (op0 == NULL)
12852 return NULL;
12853 mem_loc_result = new_loc_descr (DW_OP_GNU_entry_value, 0, 0);
12854 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_loc;
12855 mem_loc_result->dw_loc_oprnd1.v.val_loc = op0;
12856 break;
12858 case DEBUG_PARAMETER_REF:
12859 mem_loc_result = parameter_ref_descriptor (rtl);
12860 break;
12862 case PRE_MODIFY:
12863 /* Extract the PLUS expression nested inside and fall into
12864 PLUS code below. */
12865 rtl = XEXP (rtl, 1);
12866 goto plus;
12868 case PRE_INC:
12869 case PRE_DEC:
12870 /* Turn these into a PLUS expression and fall into the PLUS code
12871 below. */
12872 rtl = gen_rtx_PLUS (mode, XEXP (rtl, 0),
12873 gen_int_mode (GET_CODE (rtl) == PRE_INC
12874 ? GET_MODE_UNIT_SIZE (mem_mode)
12875 : -GET_MODE_UNIT_SIZE (mem_mode),
12876 mode));
12878 /* ... fall through ... */
12880 case PLUS:
12881 plus:
12882 if (is_based_loc (rtl)
12883 && (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
12884 || XEXP (rtl, 0) == arg_pointer_rtx
12885 || XEXP (rtl, 0) == frame_pointer_rtx)
12886 && GET_MODE_CLASS (mode) == MODE_INT)
12887 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
12888 INTVAL (XEXP (rtl, 1)),
12889 VAR_INIT_STATUS_INITIALIZED);
12890 else
12892 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12893 VAR_INIT_STATUS_INITIALIZED);
12894 if (mem_loc_result == 0)
12895 break;
12897 if (CONST_INT_P (XEXP (rtl, 1))
12898 && GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE)
12899 loc_descr_plus_const (&mem_loc_result, INTVAL (XEXP (rtl, 1)));
12900 else
12902 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
12903 VAR_INIT_STATUS_INITIALIZED);
12904 if (op1 == 0)
12905 return NULL;
12906 add_loc_descr (&mem_loc_result, op1);
12907 add_loc_descr (&mem_loc_result,
12908 new_loc_descr (DW_OP_plus, 0, 0));
12911 break;
12913 /* If a pseudo-reg is optimized away, it is possible for it to
12914 be replaced with a MEM containing a multiply or shift. */
12915 case MINUS:
12916 op = DW_OP_minus;
12917 goto do_binop;
12919 case MULT:
12920 op = DW_OP_mul;
12921 goto do_binop;
12923 case DIV:
12924 if (!dwarf_strict
12925 && GET_MODE_CLASS (mode) == MODE_INT
12926 && GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE)
12928 mem_loc_result = typed_binop (DW_OP_div, rtl,
12929 base_type_for_mode (mode, 0),
12930 mode, mem_mode);
12931 break;
12933 op = DW_OP_div;
12934 goto do_binop;
12936 case UMOD:
12937 op = DW_OP_mod;
12938 goto do_binop;
12940 case ASHIFT:
12941 op = DW_OP_shl;
12942 goto do_shift;
12944 case ASHIFTRT:
12945 op = DW_OP_shra;
12946 goto do_shift;
12948 case LSHIFTRT:
12949 op = DW_OP_shr;
12950 goto do_shift;
12952 do_shift:
12953 if (GET_MODE_CLASS (mode) != MODE_INT)
12954 break;
12955 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12956 VAR_INIT_STATUS_INITIALIZED);
12958 rtx rtlop1 = XEXP (rtl, 1);
12959 if (GET_MODE (rtlop1) != VOIDmode
12960 && GET_MODE_BITSIZE (GET_MODE (rtlop1))
12961 < GET_MODE_BITSIZE (mode))
12962 rtlop1 = gen_rtx_ZERO_EXTEND (mode, rtlop1);
12963 op1 = mem_loc_descriptor (rtlop1, mode, mem_mode,
12964 VAR_INIT_STATUS_INITIALIZED);
12967 if (op0 == 0 || op1 == 0)
12968 break;
12970 mem_loc_result = op0;
12971 add_loc_descr (&mem_loc_result, op1);
12972 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
12973 break;
12975 case AND:
12976 op = DW_OP_and;
12977 goto do_binop;
12979 case IOR:
12980 op = DW_OP_or;
12981 goto do_binop;
12983 case XOR:
12984 op = DW_OP_xor;
12985 goto do_binop;
12987 do_binop:
12988 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
12989 VAR_INIT_STATUS_INITIALIZED);
12990 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
12991 VAR_INIT_STATUS_INITIALIZED);
12993 if (op0 == 0 || op1 == 0)
12994 break;
12996 mem_loc_result = op0;
12997 add_loc_descr (&mem_loc_result, op1);
12998 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
12999 break;
13001 case MOD:
13002 if (GET_MODE_SIZE (mode) > DWARF2_ADDR_SIZE && !dwarf_strict)
13004 mem_loc_result = typed_binop (DW_OP_mod, rtl,
13005 base_type_for_mode (mode, 0),
13006 mode, mem_mode);
13007 break;
13010 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
13011 VAR_INIT_STATUS_INITIALIZED);
13012 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
13013 VAR_INIT_STATUS_INITIALIZED);
13015 if (op0 == 0 || op1 == 0)
13016 break;
13018 mem_loc_result = op0;
13019 add_loc_descr (&mem_loc_result, op1);
13020 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_over, 0, 0));
13021 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_over, 0, 0));
13022 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_div, 0, 0));
13023 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
13024 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_minus, 0, 0));
13025 break;
13027 case UDIV:
13028 if (!dwarf_strict && GET_MODE_CLASS (mode) == MODE_INT)
13030 if (GET_MODE_CLASS (mode) > DWARF2_ADDR_SIZE)
13032 op = DW_OP_div;
13033 goto do_binop;
13035 mem_loc_result = typed_binop (DW_OP_div, rtl,
13036 base_type_for_mode (mode, 1),
13037 mode, mem_mode);
13039 break;
13041 case NOT:
13042 op = DW_OP_not;
13043 goto do_unop;
13045 case ABS:
13046 op = DW_OP_abs;
13047 goto do_unop;
13049 case NEG:
13050 op = DW_OP_neg;
13051 goto do_unop;
13053 do_unop:
13054 op0 = mem_loc_descriptor (XEXP (rtl, 0), mode, mem_mode,
13055 VAR_INIT_STATUS_INITIALIZED);
13057 if (op0 == 0)
13058 break;
13060 mem_loc_result = op0;
13061 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
13062 break;
13064 case CONST_INT:
13065 if (GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
13066 #ifdef POINTERS_EXTEND_UNSIGNED
13067 || (mode == Pmode
13068 && mem_mode != VOIDmode
13069 && trunc_int_for_mode (INTVAL (rtl), ptr_mode) == INTVAL (rtl))
13070 #endif
13073 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
13074 break;
13076 if (!dwarf_strict
13077 && (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT
13078 || GET_MODE_BITSIZE (mode) == HOST_BITS_PER_DOUBLE_INT))
13080 dw_die_ref type_die = base_type_for_mode (mode, 1);
13081 machine_mode amode;
13082 if (type_die == NULL)
13083 return NULL;
13084 amode = mode_for_size (DWARF2_ADDR_SIZE * BITS_PER_UNIT,
13085 MODE_INT, 0);
13086 if (INTVAL (rtl) >= 0
13087 && amode != BLKmode
13088 && trunc_int_for_mode (INTVAL (rtl), amode) == INTVAL (rtl)
13089 /* const DW_OP_GNU_convert <XXX> vs.
13090 DW_OP_GNU_const_type <XXX, 1, const>. */
13091 && size_of_int_loc_descriptor (INTVAL (rtl)) + 1 + 1
13092 < (unsigned long) 1 + 1 + 1 + GET_MODE_SIZE (mode))
13094 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
13095 op0 = new_loc_descr (DW_OP_GNU_convert, 0, 0);
13096 op0->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13097 op0->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13098 op0->dw_loc_oprnd1.v.val_die_ref.external = 0;
13099 add_loc_descr (&mem_loc_result, op0);
13100 return mem_loc_result;
13102 mem_loc_result = new_loc_descr (DW_OP_GNU_const_type, 0,
13103 INTVAL (rtl));
13104 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13105 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13106 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.external = 0;
13107 if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
13108 mem_loc_result->dw_loc_oprnd2.val_class = dw_val_class_const;
13109 else
13111 mem_loc_result->dw_loc_oprnd2.val_class
13112 = dw_val_class_const_double;
13113 mem_loc_result->dw_loc_oprnd2.v.val_double
13114 = double_int::from_shwi (INTVAL (rtl));
13117 break;
13119 case CONST_DOUBLE:
13120 if (!dwarf_strict)
13122 dw_die_ref type_die;
13124 /* Note that if TARGET_SUPPORTS_WIDE_INT == 0, a
13125 CONST_DOUBLE rtx could represent either a large integer
13126 or a floating-point constant. If TARGET_SUPPORTS_WIDE_INT != 0,
13127 the value is always a floating point constant.
13129 When it is an integer, a CONST_DOUBLE is used whenever
13130 the constant requires 2 HWIs to be adequately represented.
13131 We output CONST_DOUBLEs as blocks. */
13132 if (mode == VOIDmode
13133 || (GET_MODE (rtl) == VOIDmode
13134 && GET_MODE_BITSIZE (mode) != HOST_BITS_PER_DOUBLE_INT))
13135 break;
13136 type_die = base_type_for_mode (mode,
13137 GET_MODE_CLASS (mode) == MODE_INT);
13138 if (type_die == NULL)
13139 return NULL;
13140 mem_loc_result = new_loc_descr (DW_OP_GNU_const_type, 0, 0);
13141 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13142 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13143 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.external = 0;
13144 #if TARGET_SUPPORTS_WIDE_INT == 0
13145 if (!SCALAR_FLOAT_MODE_P (mode))
13147 mem_loc_result->dw_loc_oprnd2.val_class
13148 = dw_val_class_const_double;
13149 mem_loc_result->dw_loc_oprnd2.v.val_double
13150 = rtx_to_double_int (rtl);
13152 else
13153 #endif
13155 unsigned int length = GET_MODE_SIZE (mode);
13156 unsigned char *array = ggc_vec_alloc<unsigned char> (length);
13158 insert_float (rtl, array);
13159 mem_loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
13160 mem_loc_result->dw_loc_oprnd2.v.val_vec.length = length / 4;
13161 mem_loc_result->dw_loc_oprnd2.v.val_vec.elt_size = 4;
13162 mem_loc_result->dw_loc_oprnd2.v.val_vec.array = array;
13165 break;
13167 case CONST_WIDE_INT:
13168 if (!dwarf_strict)
13170 dw_die_ref type_die;
13172 type_die = base_type_for_mode (mode,
13173 GET_MODE_CLASS (mode) == MODE_INT);
13174 if (type_die == NULL)
13175 return NULL;
13176 mem_loc_result = new_loc_descr (DW_OP_GNU_const_type, 0, 0);
13177 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13178 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13179 mem_loc_result->dw_loc_oprnd1.v.val_die_ref.external = 0;
13180 mem_loc_result->dw_loc_oprnd2.val_class
13181 = dw_val_class_wide_int;
13182 mem_loc_result->dw_loc_oprnd2.v.val_wide = ggc_alloc<wide_int> ();
13183 *mem_loc_result->dw_loc_oprnd2.v.val_wide = std::make_pair (rtl, mode);
13185 break;
13187 case EQ:
13188 mem_loc_result = scompare_loc_descriptor (DW_OP_eq, rtl, mem_mode);
13189 break;
13191 case GE:
13192 mem_loc_result = scompare_loc_descriptor (DW_OP_ge, rtl, mem_mode);
13193 break;
13195 case GT:
13196 mem_loc_result = scompare_loc_descriptor (DW_OP_gt, rtl, mem_mode);
13197 break;
13199 case LE:
13200 mem_loc_result = scompare_loc_descriptor (DW_OP_le, rtl, mem_mode);
13201 break;
13203 case LT:
13204 mem_loc_result = scompare_loc_descriptor (DW_OP_lt, rtl, mem_mode);
13205 break;
13207 case NE:
13208 mem_loc_result = scompare_loc_descriptor (DW_OP_ne, rtl, mem_mode);
13209 break;
13211 case GEU:
13212 mem_loc_result = ucompare_loc_descriptor (DW_OP_ge, rtl, mem_mode);
13213 break;
13215 case GTU:
13216 mem_loc_result = ucompare_loc_descriptor (DW_OP_gt, rtl, mem_mode);
13217 break;
13219 case LEU:
13220 mem_loc_result = ucompare_loc_descriptor (DW_OP_le, rtl, mem_mode);
13221 break;
13223 case LTU:
13224 mem_loc_result = ucompare_loc_descriptor (DW_OP_lt, rtl, mem_mode);
13225 break;
13227 case UMIN:
13228 case UMAX:
13229 if (GET_MODE_CLASS (mode) != MODE_INT)
13230 break;
13231 /* FALLTHRU */
13232 case SMIN:
13233 case SMAX:
13234 mem_loc_result = minmax_loc_descriptor (rtl, mode, mem_mode);
13235 break;
13237 case ZERO_EXTRACT:
13238 case SIGN_EXTRACT:
13239 if (CONST_INT_P (XEXP (rtl, 1))
13240 && CONST_INT_P (XEXP (rtl, 2))
13241 && ((unsigned) INTVAL (XEXP (rtl, 1))
13242 + (unsigned) INTVAL (XEXP (rtl, 2))
13243 <= GET_MODE_BITSIZE (mode))
13244 && GET_MODE_CLASS (mode) == MODE_INT
13245 && GET_MODE_SIZE (mode) <= DWARF2_ADDR_SIZE
13246 && GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0))) <= DWARF2_ADDR_SIZE)
13248 int shift, size;
13249 op0 = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (XEXP (rtl, 0)),
13250 mem_mode, VAR_INIT_STATUS_INITIALIZED);
13251 if (op0 == 0)
13252 break;
13253 if (GET_CODE (rtl) == SIGN_EXTRACT)
13254 op = DW_OP_shra;
13255 else
13256 op = DW_OP_shr;
13257 mem_loc_result = op0;
13258 size = INTVAL (XEXP (rtl, 1));
13259 shift = INTVAL (XEXP (rtl, 2));
13260 if (BITS_BIG_ENDIAN)
13261 shift = GET_MODE_BITSIZE (GET_MODE (XEXP (rtl, 0)))
13262 - shift - size;
13263 if (shift + size != (int) DWARF2_ADDR_SIZE)
13265 add_loc_descr (&mem_loc_result,
13266 int_loc_descriptor (DWARF2_ADDR_SIZE
13267 - shift - size));
13268 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_shl, 0, 0));
13270 if (size != (int) DWARF2_ADDR_SIZE)
13272 add_loc_descr (&mem_loc_result,
13273 int_loc_descriptor (DWARF2_ADDR_SIZE - size));
13274 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
13277 break;
13279 case IF_THEN_ELSE:
13281 dw_loc_descr_ref op2, bra_node, drop_node;
13282 op0 = mem_loc_descriptor (XEXP (rtl, 0),
13283 GET_MODE (XEXP (rtl, 0)) == VOIDmode
13284 ? word_mode : GET_MODE (XEXP (rtl, 0)),
13285 mem_mode, VAR_INIT_STATUS_INITIALIZED);
13286 op1 = mem_loc_descriptor (XEXP (rtl, 1), mode, mem_mode,
13287 VAR_INIT_STATUS_INITIALIZED);
13288 op2 = mem_loc_descriptor (XEXP (rtl, 2), mode, mem_mode,
13289 VAR_INIT_STATUS_INITIALIZED);
13290 if (op0 == NULL || op1 == NULL || op2 == NULL)
13291 break;
13293 mem_loc_result = op1;
13294 add_loc_descr (&mem_loc_result, op2);
13295 add_loc_descr (&mem_loc_result, op0);
13296 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
13297 add_loc_descr (&mem_loc_result, bra_node);
13298 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_swap, 0, 0));
13299 drop_node = new_loc_descr (DW_OP_drop, 0, 0);
13300 add_loc_descr (&mem_loc_result, drop_node);
13301 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
13302 bra_node->dw_loc_oprnd1.v.val_loc = drop_node;
13304 break;
13306 case FLOAT_EXTEND:
13307 case FLOAT_TRUNCATE:
13308 case FLOAT:
13309 case UNSIGNED_FLOAT:
13310 case FIX:
13311 case UNSIGNED_FIX:
13312 if (!dwarf_strict)
13314 dw_die_ref type_die;
13315 dw_loc_descr_ref cvt;
13317 op0 = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (XEXP (rtl, 0)),
13318 mem_mode, VAR_INIT_STATUS_INITIALIZED);
13319 if (op0 == NULL)
13320 break;
13321 if (GET_MODE_CLASS (GET_MODE (XEXP (rtl, 0))) == MODE_INT
13322 && (GET_CODE (rtl) == FLOAT
13323 || GET_MODE_SIZE (GET_MODE (XEXP (rtl, 0)))
13324 <= DWARF2_ADDR_SIZE))
13326 type_die = base_type_for_mode (GET_MODE (XEXP (rtl, 0)),
13327 GET_CODE (rtl) == UNSIGNED_FLOAT);
13328 if (type_die == NULL)
13329 break;
13330 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
13331 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13332 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13333 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
13334 add_loc_descr (&op0, cvt);
13336 type_die = base_type_for_mode (mode, GET_CODE (rtl) == UNSIGNED_FIX);
13337 if (type_die == NULL)
13338 break;
13339 cvt = new_loc_descr (DW_OP_GNU_convert, 0, 0);
13340 cvt->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13341 cvt->dw_loc_oprnd1.v.val_die_ref.die = type_die;
13342 cvt->dw_loc_oprnd1.v.val_die_ref.external = 0;
13343 add_loc_descr (&op0, cvt);
13344 if (GET_MODE_CLASS (mode) == MODE_INT
13345 && (GET_CODE (rtl) == FIX
13346 || GET_MODE_SIZE (mode) < DWARF2_ADDR_SIZE))
13348 op0 = convert_descriptor_to_mode (mode, op0);
13349 if (op0 == NULL)
13350 break;
13352 mem_loc_result = op0;
13354 break;
13356 case CLZ:
13357 case CTZ:
13358 case FFS:
13359 mem_loc_result = clz_loc_descriptor (rtl, mode, mem_mode);
13360 break;
13362 case POPCOUNT:
13363 case PARITY:
13364 mem_loc_result = popcount_loc_descriptor (rtl, mode, mem_mode);
13365 break;
13367 case BSWAP:
13368 mem_loc_result = bswap_loc_descriptor (rtl, mode, mem_mode);
13369 break;
13371 case ROTATE:
13372 case ROTATERT:
13373 mem_loc_result = rotate_loc_descriptor (rtl, mode, mem_mode);
13374 break;
13376 case COMPARE:
13377 /* In theory, we could implement the above. */
13378 /* DWARF cannot represent the unsigned compare operations
13379 natively. */
13380 case SS_MULT:
13381 case US_MULT:
13382 case SS_DIV:
13383 case US_DIV:
13384 case SS_PLUS:
13385 case US_PLUS:
13386 case SS_MINUS:
13387 case US_MINUS:
13388 case SS_NEG:
13389 case US_NEG:
13390 case SS_ABS:
13391 case SS_ASHIFT:
13392 case US_ASHIFT:
13393 case SS_TRUNCATE:
13394 case US_TRUNCATE:
13395 case UNORDERED:
13396 case ORDERED:
13397 case UNEQ:
13398 case UNGE:
13399 case UNGT:
13400 case UNLE:
13401 case UNLT:
13402 case LTGT:
13403 case FRACT_CONVERT:
13404 case UNSIGNED_FRACT_CONVERT:
13405 case SAT_FRACT:
13406 case UNSIGNED_SAT_FRACT:
13407 case SQRT:
13408 case ASM_OPERANDS:
13409 case VEC_MERGE:
13410 case VEC_SELECT:
13411 case VEC_CONCAT:
13412 case VEC_DUPLICATE:
13413 case UNSPEC:
13414 case HIGH:
13415 case FMA:
13416 case STRICT_LOW_PART:
13417 case CONST_VECTOR:
13418 case CONST_FIXED:
13419 case CLRSB:
13420 case CLOBBER:
13421 /* If delegitimize_address couldn't do anything with the UNSPEC, we
13422 can't express it in the debug info. This can happen e.g. with some
13423 TLS UNSPECs. */
13424 break;
13426 case CONST_STRING:
13427 resolve_one_addr (&rtl);
13428 goto symref;
13430 default:
13431 #ifdef ENABLE_CHECKING
13432 print_rtl (stderr, rtl);
13433 gcc_unreachable ();
13434 #else
13435 break;
13436 #endif
13439 if (mem_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
13440 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
13442 return mem_loc_result;
13445 /* Return a descriptor that describes the concatenation of two locations.
13446 This is typically a complex variable. */
13448 static dw_loc_descr_ref
13449 concat_loc_descriptor (rtx x0, rtx x1, enum var_init_status initialized)
13451 dw_loc_descr_ref cc_loc_result = NULL;
13452 dw_loc_descr_ref x0_ref
13453 = loc_descriptor (x0, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
13454 dw_loc_descr_ref x1_ref
13455 = loc_descriptor (x1, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
13457 if (x0_ref == 0 || x1_ref == 0)
13458 return 0;
13460 cc_loc_result = x0_ref;
13461 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
13463 add_loc_descr (&cc_loc_result, x1_ref);
13464 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
13466 if (initialized == VAR_INIT_STATUS_UNINITIALIZED)
13467 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
13469 return cc_loc_result;
13472 /* Return a descriptor that describes the concatenation of N
13473 locations. */
13475 static dw_loc_descr_ref
13476 concatn_loc_descriptor (rtx concatn, enum var_init_status initialized)
13478 unsigned int i;
13479 dw_loc_descr_ref cc_loc_result = NULL;
13480 unsigned int n = XVECLEN (concatn, 0);
13482 for (i = 0; i < n; ++i)
13484 dw_loc_descr_ref ref;
13485 rtx x = XVECEXP (concatn, 0, i);
13487 ref = loc_descriptor (x, VOIDmode, VAR_INIT_STATUS_INITIALIZED);
13488 if (ref == NULL)
13489 return NULL;
13491 add_loc_descr (&cc_loc_result, ref);
13492 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x)));
13495 if (cc_loc_result && initialized == VAR_INIT_STATUS_UNINITIALIZED)
13496 add_loc_descr (&cc_loc_result, new_loc_descr (DW_OP_GNU_uninit, 0, 0));
13498 return cc_loc_result;
13501 /* Helper function for loc_descriptor. Return DW_OP_GNU_implicit_pointer
13502 for DEBUG_IMPLICIT_PTR RTL. */
13504 static dw_loc_descr_ref
13505 implicit_ptr_descriptor (rtx rtl, HOST_WIDE_INT offset)
13507 dw_loc_descr_ref ret;
13508 dw_die_ref ref;
13510 if (dwarf_strict)
13511 return NULL;
13512 gcc_assert (TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl)) == VAR_DECL
13513 || TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl)) == PARM_DECL
13514 || TREE_CODE (DEBUG_IMPLICIT_PTR_DECL (rtl)) == RESULT_DECL);
13515 ref = lookup_decl_die (DEBUG_IMPLICIT_PTR_DECL (rtl));
13516 ret = new_loc_descr (DW_OP_GNU_implicit_pointer, 0, offset);
13517 ret->dw_loc_oprnd2.val_class = dw_val_class_const;
13518 if (ref)
13520 ret->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
13521 ret->dw_loc_oprnd1.v.val_die_ref.die = ref;
13522 ret->dw_loc_oprnd1.v.val_die_ref.external = 0;
13524 else
13526 ret->dw_loc_oprnd1.val_class = dw_val_class_decl_ref;
13527 ret->dw_loc_oprnd1.v.val_decl_ref = DEBUG_IMPLICIT_PTR_DECL (rtl);
13529 return ret;
13532 /* Output a proper Dwarf location descriptor for a variable or parameter
13533 which is either allocated in a register or in a memory location. For a
13534 register, we just generate an OP_REG and the register number. For a
13535 memory location we provide a Dwarf postfix expression describing how to
13536 generate the (dynamic) address of the object onto the address stack.
13538 MODE is mode of the decl if this loc_descriptor is going to be used in
13539 .debug_loc section where DW_OP_stack_value and DW_OP_implicit_value are
13540 allowed, VOIDmode otherwise.
13542 If we don't know how to describe it, return 0. */
13544 static dw_loc_descr_ref
13545 loc_descriptor (rtx rtl, machine_mode mode,
13546 enum var_init_status initialized)
13548 dw_loc_descr_ref loc_result = NULL;
13550 switch (GET_CODE (rtl))
13552 case SUBREG:
13553 /* The case of a subreg may arise when we have a local (register)
13554 variable or a formal (register) parameter which doesn't quite fill
13555 up an entire register. For now, just assume that it is
13556 legitimate to make the Dwarf info refer to the whole register which
13557 contains the given subreg. */
13558 if (REG_P (SUBREG_REG (rtl)) && subreg_lowpart_p (rtl))
13559 loc_result = loc_descriptor (SUBREG_REG (rtl),
13560 GET_MODE (SUBREG_REG (rtl)), initialized);
13561 else
13562 goto do_default;
13563 break;
13565 case REG:
13566 loc_result = reg_loc_descriptor (rtl, initialized);
13567 break;
13569 case MEM:
13570 loc_result = mem_loc_descriptor (XEXP (rtl, 0), get_address_mode (rtl),
13571 GET_MODE (rtl), initialized);
13572 if (loc_result == NULL)
13573 loc_result = tls_mem_loc_descriptor (rtl);
13574 if (loc_result == NULL)
13576 rtx new_rtl = avoid_constant_pool_reference (rtl);
13577 if (new_rtl != rtl)
13578 loc_result = loc_descriptor (new_rtl, mode, initialized);
13580 break;
13582 case CONCAT:
13583 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1),
13584 initialized);
13585 break;
13587 case CONCATN:
13588 loc_result = concatn_loc_descriptor (rtl, initialized);
13589 break;
13591 case VAR_LOCATION:
13592 /* Single part. */
13593 if (GET_CODE (PAT_VAR_LOCATION_LOC (rtl)) != PARALLEL)
13595 rtx loc = PAT_VAR_LOCATION_LOC (rtl);
13596 if (GET_CODE (loc) == EXPR_LIST)
13597 loc = XEXP (loc, 0);
13598 loc_result = loc_descriptor (loc, mode, initialized);
13599 break;
13602 rtl = XEXP (rtl, 1);
13603 /* FALLTHRU */
13605 case PARALLEL:
13607 rtvec par_elems = XVEC (rtl, 0);
13608 int num_elem = GET_NUM_ELEM (par_elems);
13609 machine_mode mode;
13610 int i;
13612 /* Create the first one, so we have something to add to. */
13613 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
13614 VOIDmode, initialized);
13615 if (loc_result == NULL)
13616 return NULL;
13617 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
13618 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
13619 for (i = 1; i < num_elem; i++)
13621 dw_loc_descr_ref temp;
13623 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
13624 VOIDmode, initialized);
13625 if (temp == NULL)
13626 return NULL;
13627 add_loc_descr (&loc_result, temp);
13628 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
13629 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
13632 break;
13634 case CONST_INT:
13635 if (mode != VOIDmode && mode != BLKmode)
13636 loc_result = address_of_int_loc_descriptor (GET_MODE_SIZE (mode),
13637 INTVAL (rtl));
13638 break;
13640 case CONST_DOUBLE:
13641 if (mode == VOIDmode)
13642 mode = GET_MODE (rtl);
13644 if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
13646 gcc_assert (mode == GET_MODE (rtl) || VOIDmode == GET_MODE (rtl));
13648 /* Note that a CONST_DOUBLE rtx could represent either an integer
13649 or a floating-point constant. A CONST_DOUBLE is used whenever
13650 the constant requires more than one word in order to be
13651 adequately represented. We output CONST_DOUBLEs as blocks. */
13652 loc_result = new_loc_descr (DW_OP_implicit_value,
13653 GET_MODE_SIZE (mode), 0);
13654 #if TARGET_SUPPORTS_WIDE_INT == 0
13655 if (!SCALAR_FLOAT_MODE_P (mode))
13657 loc_result->dw_loc_oprnd2.val_class = dw_val_class_const_double;
13658 loc_result->dw_loc_oprnd2.v.val_double
13659 = rtx_to_double_int (rtl);
13661 else
13662 #endif
13664 unsigned int length = GET_MODE_SIZE (mode);
13665 unsigned char *array = ggc_vec_alloc<unsigned char> (length);
13667 insert_float (rtl, array);
13668 loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
13669 loc_result->dw_loc_oprnd2.v.val_vec.length = length / 4;
13670 loc_result->dw_loc_oprnd2.v.val_vec.elt_size = 4;
13671 loc_result->dw_loc_oprnd2.v.val_vec.array = array;
13674 break;
13676 case CONST_WIDE_INT:
13677 if (mode == VOIDmode)
13678 mode = GET_MODE (rtl);
13680 if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
13682 loc_result = new_loc_descr (DW_OP_implicit_value,
13683 GET_MODE_SIZE (mode), 0);
13684 loc_result->dw_loc_oprnd2.val_class = dw_val_class_wide_int;
13685 loc_result->dw_loc_oprnd2.v.val_wide = ggc_alloc<wide_int> ();
13686 *loc_result->dw_loc_oprnd2.v.val_wide = std::make_pair (rtl, mode);
13688 break;
13690 case CONST_VECTOR:
13691 if (mode == VOIDmode)
13692 mode = GET_MODE (rtl);
13694 if (mode != VOIDmode && (dwarf_version >= 4 || !dwarf_strict))
13696 unsigned int elt_size = GET_MODE_UNIT_SIZE (GET_MODE (rtl));
13697 unsigned int length = CONST_VECTOR_NUNITS (rtl);
13698 unsigned char *array
13699 = ggc_vec_alloc<unsigned char> (length * elt_size);
13700 unsigned int i;
13701 unsigned char *p;
13702 machine_mode imode = GET_MODE_INNER (mode);
13704 gcc_assert (mode == GET_MODE (rtl) || VOIDmode == GET_MODE (rtl));
13705 switch (GET_MODE_CLASS (mode))
13707 case MODE_VECTOR_INT:
13708 for (i = 0, p = array; i < length; i++, p += elt_size)
13710 rtx elt = CONST_VECTOR_ELT (rtl, i);
13711 insert_wide_int (std::make_pair (elt, imode), p, elt_size);
13713 break;
13715 case MODE_VECTOR_FLOAT:
13716 for (i = 0, p = array; i < length; i++, p += elt_size)
13718 rtx elt = CONST_VECTOR_ELT (rtl, i);
13719 insert_float (elt, p);
13721 break;
13723 default:
13724 gcc_unreachable ();
13727 loc_result = new_loc_descr (DW_OP_implicit_value,
13728 length * elt_size, 0);
13729 loc_result->dw_loc_oprnd2.val_class = dw_val_class_vec;
13730 loc_result->dw_loc_oprnd2.v.val_vec.length = length;
13731 loc_result->dw_loc_oprnd2.v.val_vec.elt_size = elt_size;
13732 loc_result->dw_loc_oprnd2.v.val_vec.array = array;
13734 break;
13736 case CONST:
13737 if (mode == VOIDmode
13738 || CONST_SCALAR_INT_P (XEXP (rtl, 0))
13739 || CONST_DOUBLE_AS_FLOAT_P (XEXP (rtl, 0))
13740 || GET_CODE (XEXP (rtl, 0)) == CONST_VECTOR)
13742 loc_result = loc_descriptor (XEXP (rtl, 0), mode, initialized);
13743 break;
13745 /* FALLTHROUGH */
13746 case SYMBOL_REF:
13747 if (!const_ok_for_output (rtl))
13748 break;
13749 case LABEL_REF:
13750 if (mode != VOIDmode && GET_MODE_SIZE (mode) == DWARF2_ADDR_SIZE
13751 && (dwarf_version >= 4 || !dwarf_strict))
13753 loc_result = new_addr_loc_descr (rtl, dtprel_false);
13754 add_loc_descr (&loc_result, new_loc_descr (DW_OP_stack_value, 0, 0));
13755 vec_safe_push (used_rtx_array, rtl);
13757 break;
13759 case DEBUG_IMPLICIT_PTR:
13760 loc_result = implicit_ptr_descriptor (rtl, 0);
13761 break;
13763 case PLUS:
13764 if (GET_CODE (XEXP (rtl, 0)) == DEBUG_IMPLICIT_PTR
13765 && CONST_INT_P (XEXP (rtl, 1)))
13767 loc_result
13768 = implicit_ptr_descriptor (XEXP (rtl, 0), INTVAL (XEXP (rtl, 1)));
13769 break;
13771 /* FALLTHRU */
13772 do_default:
13773 default:
13774 if ((GET_MODE_CLASS (mode) == MODE_INT && GET_MODE (rtl) == mode
13775 && GET_MODE_SIZE (GET_MODE (rtl)) <= DWARF2_ADDR_SIZE
13776 && dwarf_version >= 4)
13777 || (!dwarf_strict && mode != VOIDmode && mode != BLKmode))
13779 /* Value expression. */
13780 loc_result = mem_loc_descriptor (rtl, mode, VOIDmode, initialized);
13781 if (loc_result)
13782 add_loc_descr (&loc_result,
13783 new_loc_descr (DW_OP_stack_value, 0, 0));
13785 break;
13788 return loc_result;
13791 /* We need to figure out what section we should use as the base for the
13792 address ranges where a given location is valid.
13793 1. If this particular DECL has a section associated with it, use that.
13794 2. If this function has a section associated with it, use that.
13795 3. Otherwise, use the text section.
13796 XXX: If you split a variable across multiple sections, we won't notice. */
13798 static const char *
13799 secname_for_decl (const_tree decl)
13801 const char *secname;
13803 if (VAR_OR_FUNCTION_DECL_P (decl)
13804 && (DECL_EXTERNAL (decl) || TREE_PUBLIC (decl) || TREE_STATIC (decl))
13805 && DECL_SECTION_NAME (decl))
13806 secname = DECL_SECTION_NAME (decl);
13807 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
13808 secname = DECL_SECTION_NAME (current_function_decl);
13809 else if (cfun && in_cold_section_p)
13810 secname = crtl->subsections.cold_section_label;
13811 else
13812 secname = text_section_label;
13814 return secname;
13817 /* Return true when DECL_BY_REFERENCE is defined and set for DECL. */
13819 static bool
13820 decl_by_reference_p (tree decl)
13822 return ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == RESULT_DECL
13823 || TREE_CODE (decl) == VAR_DECL)
13824 && DECL_BY_REFERENCE (decl));
13827 /* Helper function for dw_loc_list. Compute proper Dwarf location descriptor
13828 for VARLOC. */
13830 static dw_loc_descr_ref
13831 dw_loc_list_1 (tree loc, rtx varloc, int want_address,
13832 enum var_init_status initialized)
13834 int have_address = 0;
13835 dw_loc_descr_ref descr;
13836 machine_mode mode;
13838 if (want_address != 2)
13840 gcc_assert (GET_CODE (varloc) == VAR_LOCATION);
13841 /* Single part. */
13842 if (GET_CODE (PAT_VAR_LOCATION_LOC (varloc)) != PARALLEL)
13844 varloc = PAT_VAR_LOCATION_LOC (varloc);
13845 if (GET_CODE (varloc) == EXPR_LIST)
13846 varloc = XEXP (varloc, 0);
13847 mode = GET_MODE (varloc);
13848 if (MEM_P (varloc))
13850 rtx addr = XEXP (varloc, 0);
13851 descr = mem_loc_descriptor (addr, get_address_mode (varloc),
13852 mode, initialized);
13853 if (descr)
13854 have_address = 1;
13855 else
13857 rtx x = avoid_constant_pool_reference (varloc);
13858 if (x != varloc)
13859 descr = mem_loc_descriptor (x, mode, VOIDmode,
13860 initialized);
13863 else
13864 descr = mem_loc_descriptor (varloc, mode, VOIDmode, initialized);
13866 else
13867 return 0;
13869 else
13871 if (GET_CODE (varloc) == VAR_LOCATION)
13872 mode = DECL_MODE (PAT_VAR_LOCATION_DECL (varloc));
13873 else
13874 mode = DECL_MODE (loc);
13875 descr = loc_descriptor (varloc, mode, initialized);
13876 have_address = 1;
13879 if (!descr)
13880 return 0;
13882 if (want_address == 2 && !have_address
13883 && (dwarf_version >= 4 || !dwarf_strict))
13885 if (int_size_in_bytes (TREE_TYPE (loc)) > DWARF2_ADDR_SIZE)
13887 expansion_failed (loc, NULL_RTX,
13888 "DWARF address size mismatch");
13889 return 0;
13891 add_loc_descr (&descr, new_loc_descr (DW_OP_stack_value, 0, 0));
13892 have_address = 1;
13894 /* Show if we can't fill the request for an address. */
13895 if (want_address && !have_address)
13897 expansion_failed (loc, NULL_RTX,
13898 "Want address and only have value");
13899 return 0;
13902 /* If we've got an address and don't want one, dereference. */
13903 if (!want_address && have_address)
13905 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
13906 enum dwarf_location_atom op;
13908 if (size > DWARF2_ADDR_SIZE || size == -1)
13910 expansion_failed (loc, NULL_RTX,
13911 "DWARF address size mismatch");
13912 return 0;
13914 else if (size == DWARF2_ADDR_SIZE)
13915 op = DW_OP_deref;
13916 else
13917 op = DW_OP_deref_size;
13919 add_loc_descr (&descr, new_loc_descr (op, size, 0));
13922 return descr;
13925 /* Create a DW_OP_piece or DW_OP_bit_piece for bitsize, or return NULL
13926 if it is not possible. */
13928 static dw_loc_descr_ref
13929 new_loc_descr_op_bit_piece (HOST_WIDE_INT bitsize, HOST_WIDE_INT offset)
13931 if ((bitsize % BITS_PER_UNIT) == 0 && offset == 0)
13932 return new_loc_descr (DW_OP_piece, bitsize / BITS_PER_UNIT, 0);
13933 else if (dwarf_version >= 3 || !dwarf_strict)
13934 return new_loc_descr (DW_OP_bit_piece, bitsize, offset);
13935 else
13936 return NULL;
13939 /* Helper function for dw_loc_list. Compute proper Dwarf location descriptor
13940 for VAR_LOC_NOTE for variable DECL that has been optimized by SRA. */
13942 static dw_loc_descr_ref
13943 dw_sra_loc_expr (tree decl, rtx loc)
13945 rtx p;
13946 unsigned HOST_WIDE_INT padsize = 0;
13947 dw_loc_descr_ref descr, *descr_tail;
13948 unsigned HOST_WIDE_INT decl_size;
13949 rtx varloc;
13950 enum var_init_status initialized;
13952 if (DECL_SIZE (decl) == NULL
13953 || !tree_fits_uhwi_p (DECL_SIZE (decl)))
13954 return NULL;
13956 decl_size = tree_to_uhwi (DECL_SIZE (decl));
13957 descr = NULL;
13958 descr_tail = &descr;
13960 for (p = loc; p; p = XEXP (p, 1))
13962 unsigned HOST_WIDE_INT bitsize = decl_piece_bitsize (p);
13963 rtx loc_note = *decl_piece_varloc_ptr (p);
13964 dw_loc_descr_ref cur_descr;
13965 dw_loc_descr_ref *tail, last = NULL;
13966 unsigned HOST_WIDE_INT opsize = 0;
13968 if (loc_note == NULL_RTX
13969 || NOTE_VAR_LOCATION_LOC (loc_note) == NULL_RTX)
13971 padsize += bitsize;
13972 continue;
13974 initialized = NOTE_VAR_LOCATION_STATUS (loc_note);
13975 varloc = NOTE_VAR_LOCATION (loc_note);
13976 cur_descr = dw_loc_list_1 (decl, varloc, 2, initialized);
13977 if (cur_descr == NULL)
13979 padsize += bitsize;
13980 continue;
13983 /* Check that cur_descr either doesn't use
13984 DW_OP_*piece operations, or their sum is equal
13985 to bitsize. Otherwise we can't embed it. */
13986 for (tail = &cur_descr; *tail != NULL;
13987 tail = &(*tail)->dw_loc_next)
13988 if ((*tail)->dw_loc_opc == DW_OP_piece)
13990 opsize += (*tail)->dw_loc_oprnd1.v.val_unsigned
13991 * BITS_PER_UNIT;
13992 last = *tail;
13994 else if ((*tail)->dw_loc_opc == DW_OP_bit_piece)
13996 opsize += (*tail)->dw_loc_oprnd1.v.val_unsigned;
13997 last = *tail;
14000 if (last != NULL && opsize != bitsize)
14002 padsize += bitsize;
14003 /* Discard the current piece of the descriptor and release any
14004 addr_table entries it uses. */
14005 remove_loc_list_addr_table_entries (cur_descr);
14006 continue;
14009 /* If there is a hole, add DW_OP_*piece after empty DWARF
14010 expression, which means that those bits are optimized out. */
14011 if (padsize)
14013 if (padsize > decl_size)
14015 remove_loc_list_addr_table_entries (cur_descr);
14016 goto discard_descr;
14018 decl_size -= padsize;
14019 *descr_tail = new_loc_descr_op_bit_piece (padsize, 0);
14020 if (*descr_tail == NULL)
14022 remove_loc_list_addr_table_entries (cur_descr);
14023 goto discard_descr;
14025 descr_tail = &(*descr_tail)->dw_loc_next;
14026 padsize = 0;
14028 *descr_tail = cur_descr;
14029 descr_tail = tail;
14030 if (bitsize > decl_size)
14031 goto discard_descr;
14032 decl_size -= bitsize;
14033 if (last == NULL)
14035 HOST_WIDE_INT offset = 0;
14036 if (GET_CODE (varloc) == VAR_LOCATION
14037 && GET_CODE (PAT_VAR_LOCATION_LOC (varloc)) != PARALLEL)
14039 varloc = PAT_VAR_LOCATION_LOC (varloc);
14040 if (GET_CODE (varloc) == EXPR_LIST)
14041 varloc = XEXP (varloc, 0);
14045 if (GET_CODE (varloc) == CONST
14046 || GET_CODE (varloc) == SIGN_EXTEND
14047 || GET_CODE (varloc) == ZERO_EXTEND)
14048 varloc = XEXP (varloc, 0);
14049 else if (GET_CODE (varloc) == SUBREG)
14050 varloc = SUBREG_REG (varloc);
14051 else
14052 break;
14054 while (1);
14055 /* DW_OP_bit_size offset should be zero for register
14056 or implicit location descriptions and empty location
14057 descriptions, but for memory addresses needs big endian
14058 adjustment. */
14059 if (MEM_P (varloc))
14061 unsigned HOST_WIDE_INT memsize
14062 = MEM_SIZE (varloc) * BITS_PER_UNIT;
14063 if (memsize != bitsize)
14065 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN
14066 && (memsize > BITS_PER_WORD || bitsize > BITS_PER_WORD))
14067 goto discard_descr;
14068 if (memsize < bitsize)
14069 goto discard_descr;
14070 if (BITS_BIG_ENDIAN)
14071 offset = memsize - bitsize;
14075 *descr_tail = new_loc_descr_op_bit_piece (bitsize, offset);
14076 if (*descr_tail == NULL)
14077 goto discard_descr;
14078 descr_tail = &(*descr_tail)->dw_loc_next;
14082 /* If there were any non-empty expressions, add padding till the end of
14083 the decl. */
14084 if (descr != NULL && decl_size != 0)
14086 *descr_tail = new_loc_descr_op_bit_piece (decl_size, 0);
14087 if (*descr_tail == NULL)
14088 goto discard_descr;
14090 return descr;
14092 discard_descr:
14093 /* Discard the descriptor and release any addr_table entries it uses. */
14094 remove_loc_list_addr_table_entries (descr);
14095 return NULL;
14098 /* Return the dwarf representation of the location list LOC_LIST of
14099 DECL. WANT_ADDRESS has the same meaning as in loc_list_from_tree
14100 function. */
14102 static dw_loc_list_ref
14103 dw_loc_list (var_loc_list *loc_list, tree decl, int want_address)
14105 const char *endname, *secname;
14106 rtx varloc;
14107 enum var_init_status initialized;
14108 struct var_loc_node *node;
14109 dw_loc_descr_ref descr;
14110 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
14111 dw_loc_list_ref list = NULL;
14112 dw_loc_list_ref *listp = &list;
14114 /* Now that we know what section we are using for a base,
14115 actually construct the list of locations.
14116 The first location information is what is passed to the
14117 function that creates the location list, and the remaining
14118 locations just get added on to that list.
14119 Note that we only know the start address for a location
14120 (IE location changes), so to build the range, we use
14121 the range [current location start, next location start].
14122 This means we have to special case the last node, and generate
14123 a range of [last location start, end of function label]. */
14125 secname = secname_for_decl (decl);
14127 for (node = loc_list->first; node; node = node->next)
14128 if (GET_CODE (node->loc) == EXPR_LIST
14129 || NOTE_VAR_LOCATION_LOC (node->loc) != NULL_RTX)
14131 if (GET_CODE (node->loc) == EXPR_LIST)
14133 /* This requires DW_OP_{,bit_}piece, which is not usable
14134 inside DWARF expressions. */
14135 if (want_address != 2)
14136 continue;
14137 descr = dw_sra_loc_expr (decl, node->loc);
14138 if (descr == NULL)
14139 continue;
14141 else
14143 initialized = NOTE_VAR_LOCATION_STATUS (node->loc);
14144 varloc = NOTE_VAR_LOCATION (node->loc);
14145 descr = dw_loc_list_1 (decl, varloc, want_address, initialized);
14147 if (descr)
14149 bool range_across_switch = false;
14150 /* If section switch happens in between node->label
14151 and node->next->label (or end of function) and
14152 we can't emit it as a single entry list,
14153 emit two ranges, first one ending at the end
14154 of first partition and second one starting at the
14155 beginning of second partition. */
14156 if (node == loc_list->last_before_switch
14157 && (node != loc_list->first || loc_list->first->next)
14158 && current_function_decl)
14160 endname = cfun->fde->dw_fde_end;
14161 range_across_switch = true;
14163 /* The variable has a location between NODE->LABEL and
14164 NODE->NEXT->LABEL. */
14165 else if (node->next)
14166 endname = node->next->label;
14167 /* If the variable has a location at the last label
14168 it keeps its location until the end of function. */
14169 else if (!current_function_decl)
14170 endname = text_end_label;
14171 else
14173 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
14174 current_function_funcdef_no);
14175 endname = ggc_strdup (label_id);
14178 *listp = new_loc_list (descr, node->label, endname, secname);
14179 if (TREE_CODE (decl) == PARM_DECL
14180 && node == loc_list->first
14181 && NOTE_P (node->loc)
14182 && strcmp (node->label, endname) == 0)
14183 (*listp)->force = true;
14184 listp = &(*listp)->dw_loc_next;
14186 if (range_across_switch)
14188 if (GET_CODE (node->loc) == EXPR_LIST)
14189 descr = dw_sra_loc_expr (decl, node->loc);
14190 else
14192 initialized = NOTE_VAR_LOCATION_STATUS (node->loc);
14193 varloc = NOTE_VAR_LOCATION (node->loc);
14194 descr = dw_loc_list_1 (decl, varloc, want_address,
14195 initialized);
14197 gcc_assert (descr);
14198 /* The variable has a location between NODE->LABEL and
14199 NODE->NEXT->LABEL. */
14200 if (node->next)
14201 endname = node->next->label;
14202 else
14203 endname = cfun->fde->dw_fde_second_end;
14204 *listp = new_loc_list (descr,
14205 cfun->fde->dw_fde_second_begin,
14206 endname, secname);
14207 listp = &(*listp)->dw_loc_next;
14212 /* Try to avoid the overhead of a location list emitting a location
14213 expression instead, but only if we didn't have more than one
14214 location entry in the first place. If some entries were not
14215 representable, we don't want to pretend a single entry that was
14216 applies to the entire scope in which the variable is
14217 available. */
14218 if (list && loc_list->first->next)
14219 gen_llsym (list);
14221 return list;
14224 /* Return if the loc_list has only single element and thus can be represented
14225 as location description. */
14227 static bool
14228 single_element_loc_list_p (dw_loc_list_ref list)
14230 gcc_assert (!list->dw_loc_next || list->ll_symbol);
14231 return !list->ll_symbol;
14234 /* To each location in list LIST add loc descr REF. */
14236 static void
14237 add_loc_descr_to_each (dw_loc_list_ref list, dw_loc_descr_ref ref)
14239 dw_loc_descr_ref copy;
14240 add_loc_descr (&list->expr, ref);
14241 list = list->dw_loc_next;
14242 while (list)
14244 copy = ggc_alloc<dw_loc_descr_node> ();
14245 memcpy (copy, ref, sizeof (dw_loc_descr_node));
14246 add_loc_descr (&list->expr, copy);
14247 while (copy->dw_loc_next)
14249 dw_loc_descr_ref new_copy = ggc_alloc<dw_loc_descr_node> ();
14250 memcpy (new_copy, copy->dw_loc_next, sizeof (dw_loc_descr_node));
14251 copy->dw_loc_next = new_copy;
14252 copy = new_copy;
14254 list = list->dw_loc_next;
14258 /* Given two lists RET and LIST
14259 produce location list that is result of adding expression in LIST
14260 to expression in RET on each position in program.
14261 Might be destructive on both RET and LIST.
14263 TODO: We handle only simple cases of RET or LIST having at most one
14264 element. General case would inolve sorting the lists in program order
14265 and merging them that will need some additional work.
14266 Adding that will improve quality of debug info especially for SRA-ed
14267 structures. */
14269 static void
14270 add_loc_list (dw_loc_list_ref *ret, dw_loc_list_ref list)
14272 if (!list)
14273 return;
14274 if (!*ret)
14276 *ret = list;
14277 return;
14279 if (!list->dw_loc_next)
14281 add_loc_descr_to_each (*ret, list->expr);
14282 return;
14284 if (!(*ret)->dw_loc_next)
14286 add_loc_descr_to_each (list, (*ret)->expr);
14287 *ret = list;
14288 return;
14290 expansion_failed (NULL_TREE, NULL_RTX,
14291 "Don't know how to merge two non-trivial"
14292 " location lists.\n");
14293 *ret = NULL;
14294 return;
14297 /* LOC is constant expression. Try a luck, look it up in constant
14298 pool and return its loc_descr of its address. */
14300 static dw_loc_descr_ref
14301 cst_pool_loc_descr (tree loc)
14303 /* Get an RTL for this, if something has been emitted. */
14304 rtx rtl = lookup_constant_def (loc);
14306 if (!rtl || !MEM_P (rtl))
14308 gcc_assert (!rtl);
14309 return 0;
14311 gcc_assert (GET_CODE (XEXP (rtl, 0)) == SYMBOL_REF);
14313 /* TODO: We might get more coverage if we was actually delaying expansion
14314 of all expressions till end of compilation when constant pools are fully
14315 populated. */
14316 if (!TREE_ASM_WRITTEN (SYMBOL_REF_DECL (XEXP (rtl, 0))))
14318 expansion_failed (loc, NULL_RTX,
14319 "CST value in contant pool but not marked.");
14320 return 0;
14322 return mem_loc_descriptor (XEXP (rtl, 0), get_address_mode (rtl),
14323 GET_MODE (rtl), VAR_INIT_STATUS_INITIALIZED);
14326 /* Return dw_loc_list representing address of addr_expr LOC
14327 by looking for inner INDIRECT_REF expression and turning
14328 it into simple arithmetics.
14330 See loc_list_from_tree for the meaning of CONTEXT. */
14332 static dw_loc_list_ref
14333 loc_list_for_address_of_addr_expr_of_indirect_ref (tree loc, bool toplev,
14334 const loc_descr_context *context)
14336 tree obj, offset;
14337 HOST_WIDE_INT bitsize, bitpos, bytepos;
14338 machine_mode mode;
14339 int unsignedp, volatilep = 0;
14340 dw_loc_list_ref list_ret = NULL, list_ret1 = NULL;
14342 obj = get_inner_reference (TREE_OPERAND (loc, 0),
14343 &bitsize, &bitpos, &offset, &mode,
14344 &unsignedp, &volatilep, false);
14345 STRIP_NOPS (obj);
14346 if (bitpos % BITS_PER_UNIT)
14348 expansion_failed (loc, NULL_RTX, "bitfield access");
14349 return 0;
14351 if (!INDIRECT_REF_P (obj))
14353 expansion_failed (obj,
14354 NULL_RTX, "no indirect ref in inner refrence");
14355 return 0;
14357 if (!offset && !bitpos)
14358 list_ret = loc_list_from_tree (TREE_OPERAND (obj, 0), toplev ? 2 : 1,
14359 context);
14360 else if (toplev
14361 && int_size_in_bytes (TREE_TYPE (loc)) <= DWARF2_ADDR_SIZE
14362 && (dwarf_version >= 4 || !dwarf_strict))
14364 list_ret = loc_list_from_tree (TREE_OPERAND (obj, 0), 0, context);
14365 if (!list_ret)
14366 return 0;
14367 if (offset)
14369 /* Variable offset. */
14370 list_ret1 = loc_list_from_tree (offset, 0, context);
14371 if (list_ret1 == 0)
14372 return 0;
14373 add_loc_list (&list_ret, list_ret1);
14374 if (!list_ret)
14375 return 0;
14376 add_loc_descr_to_each (list_ret,
14377 new_loc_descr (DW_OP_plus, 0, 0));
14379 bytepos = bitpos / BITS_PER_UNIT;
14380 if (bytepos > 0)
14381 add_loc_descr_to_each (list_ret,
14382 new_loc_descr (DW_OP_plus_uconst,
14383 bytepos, 0));
14384 else if (bytepos < 0)
14385 loc_list_plus_const (list_ret, bytepos);
14386 add_loc_descr_to_each (list_ret,
14387 new_loc_descr (DW_OP_stack_value, 0, 0));
14389 return list_ret;
14393 /* Helper structure for location descriptions generation. */
14394 struct loc_descr_context
14396 /* The type that is implicitly referenced by DW_OP_push_object_address, or
14397 NULL_TREE if DW_OP_push_object_address in invalid for this location
14398 description. This is used when processing PLACEHOLDER_EXPR nodes. */
14399 tree context_type;
14400 /* The ..._DECL node that should be translated as a
14401 DW_OP_push_object_address operation. */
14402 tree base_decl;
14405 /* Generate Dwarf location list representing LOC.
14406 If WANT_ADDRESS is false, expression computing LOC will be computed
14407 If WANT_ADDRESS is 1, expression computing address of LOC will be returned
14408 if WANT_ADDRESS is 2, expression computing address useable in location
14409 will be returned (i.e. DW_OP_reg can be used
14410 to refer to register values).
14412 CONTEXT provides information to customize the location descriptions
14413 generation. Its context_type field specifies what type is implicitly
14414 referenced by DW_OP_push_object_address. If it is NULL_TREE, this operation
14415 will not be generated.
14417 If CONTEXT is NULL, the behavior is the same as if both context_type and
14418 base_decl fields were NULL_TREE. */
14420 static dw_loc_list_ref
14421 loc_list_from_tree (tree loc, int want_address,
14422 const struct loc_descr_context *context)
14424 dw_loc_descr_ref ret = NULL, ret1 = NULL;
14425 dw_loc_list_ref list_ret = NULL, list_ret1 = NULL;
14426 int have_address = 0;
14427 enum dwarf_location_atom op;
14429 /* ??? Most of the time we do not take proper care for sign/zero
14430 extending the values properly. Hopefully this won't be a real
14431 problem... */
14433 if (context != NULL
14434 && context->base_decl == loc
14435 && want_address == 0)
14437 if (dwarf_version >= 3 || !dwarf_strict)
14438 return new_loc_list (new_loc_descr (DW_OP_push_object_address, 0, 0),
14439 NULL, NULL, NULL);
14440 else
14441 return NULL;
14444 switch (TREE_CODE (loc))
14446 case ERROR_MARK:
14447 expansion_failed (loc, NULL_RTX, "ERROR_MARK");
14448 return 0;
14450 case PLACEHOLDER_EXPR:
14451 /* This case involves extracting fields from an object to determine the
14452 position of other fields. It is supposed to appear only as the first
14453 operand of COMPONENT_REF nodes and to reference precisely the type
14454 that the context allows. */
14455 if (context != NULL
14456 && TREE_TYPE (loc) == context->context_type
14457 && want_address >= 1)
14459 if (dwarf_version >= 3 || !dwarf_strict)
14461 ret = new_loc_descr (DW_OP_push_object_address, 0, 0);
14462 have_address = 1;
14463 break;
14465 else
14466 return NULL;
14468 else
14469 expansion_failed (loc, NULL_RTX,
14470 "PLACEHOLDER_EXPR for an unexpected type");
14471 break;
14473 case CALL_EXPR:
14474 expansion_failed (loc, NULL_RTX, "CALL_EXPR");
14475 /* There are no opcodes for these operations. */
14476 return 0;
14478 case PREINCREMENT_EXPR:
14479 case PREDECREMENT_EXPR:
14480 case POSTINCREMENT_EXPR:
14481 case POSTDECREMENT_EXPR:
14482 expansion_failed (loc, NULL_RTX, "PRE/POST INDCREMENT/DECREMENT");
14483 /* There are no opcodes for these operations. */
14484 return 0;
14486 case ADDR_EXPR:
14487 /* If we already want an address, see if there is INDIRECT_REF inside
14488 e.g. for &this->field. */
14489 if (want_address)
14491 list_ret = loc_list_for_address_of_addr_expr_of_indirect_ref
14492 (loc, want_address == 2, context);
14493 if (list_ret)
14494 have_address = 1;
14495 else if (decl_address_ip_invariant_p (TREE_OPERAND (loc, 0))
14496 && (ret = cst_pool_loc_descr (loc)))
14497 have_address = 1;
14499 /* Otherwise, process the argument and look for the address. */
14500 if (!list_ret && !ret)
14501 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 1, context);
14502 else
14504 if (want_address)
14505 expansion_failed (loc, NULL_RTX, "need address of ADDR_EXPR");
14506 return NULL;
14508 break;
14510 case VAR_DECL:
14511 if (DECL_THREAD_LOCAL_P (loc))
14513 rtx rtl;
14514 enum dwarf_location_atom tls_op;
14515 enum dtprel_bool dtprel = dtprel_false;
14517 if (targetm.have_tls)
14519 /* If this is not defined, we have no way to emit the
14520 data. */
14521 if (!targetm.asm_out.output_dwarf_dtprel)
14522 return 0;
14524 /* The way DW_OP_GNU_push_tls_address is specified, we
14525 can only look up addresses of objects in the current
14526 module. We used DW_OP_addr as first op, but that's
14527 wrong, because DW_OP_addr is relocated by the debug
14528 info consumer, while DW_OP_GNU_push_tls_address
14529 operand shouldn't be. */
14530 if (DECL_EXTERNAL (loc) && !targetm.binds_local_p (loc))
14531 return 0;
14532 dtprel = dtprel_true;
14533 tls_op = DW_OP_GNU_push_tls_address;
14535 else
14537 if (!targetm.emutls.debug_form_tls_address
14538 || !(dwarf_version >= 3 || !dwarf_strict))
14539 return 0;
14540 /* We stuffed the control variable into the DECL_VALUE_EXPR
14541 to signal (via DECL_HAS_VALUE_EXPR_P) that the decl should
14542 no longer appear in gimple code. We used the control
14543 variable in specific so that we could pick it up here. */
14544 loc = DECL_VALUE_EXPR (loc);
14545 tls_op = DW_OP_form_tls_address;
14548 rtl = rtl_for_decl_location (loc);
14549 if (rtl == NULL_RTX)
14550 return 0;
14552 if (!MEM_P (rtl))
14553 return 0;
14554 rtl = XEXP (rtl, 0);
14555 if (! CONSTANT_P (rtl))
14556 return 0;
14558 ret = new_addr_loc_descr (rtl, dtprel);
14559 ret1 = new_loc_descr (tls_op, 0, 0);
14560 add_loc_descr (&ret, ret1);
14562 have_address = 1;
14563 break;
14565 /* FALLTHRU */
14567 case PARM_DECL:
14568 case RESULT_DECL:
14569 if (DECL_HAS_VALUE_EXPR_P (loc))
14570 return loc_list_from_tree (DECL_VALUE_EXPR (loc),
14571 want_address, context);
14572 /* FALLTHRU */
14574 case FUNCTION_DECL:
14576 rtx rtl;
14577 var_loc_list *loc_list = lookup_decl_loc (loc);
14579 if (loc_list && loc_list->first)
14581 list_ret = dw_loc_list (loc_list, loc, want_address);
14582 have_address = want_address != 0;
14583 break;
14585 rtl = rtl_for_decl_location (loc);
14586 if (rtl == NULL_RTX)
14588 expansion_failed (loc, NULL_RTX, "DECL has no RTL");
14589 return 0;
14591 else if (CONST_INT_P (rtl))
14593 HOST_WIDE_INT val = INTVAL (rtl);
14594 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
14595 val &= GET_MODE_MASK (DECL_MODE (loc));
14596 ret = int_loc_descriptor (val);
14598 else if (GET_CODE (rtl) == CONST_STRING)
14600 expansion_failed (loc, NULL_RTX, "CONST_STRING");
14601 return 0;
14603 else if (CONSTANT_P (rtl) && const_ok_for_output (rtl))
14604 ret = new_addr_loc_descr (rtl, dtprel_false);
14605 else
14607 machine_mode mode, mem_mode;
14609 /* Certain constructs can only be represented at top-level. */
14610 if (want_address == 2)
14612 ret = loc_descriptor (rtl, VOIDmode,
14613 VAR_INIT_STATUS_INITIALIZED);
14614 have_address = 1;
14616 else
14618 mode = GET_MODE (rtl);
14619 mem_mode = VOIDmode;
14620 if (MEM_P (rtl))
14622 mem_mode = mode;
14623 mode = get_address_mode (rtl);
14624 rtl = XEXP (rtl, 0);
14625 have_address = 1;
14627 ret = mem_loc_descriptor (rtl, mode, mem_mode,
14628 VAR_INIT_STATUS_INITIALIZED);
14630 if (!ret)
14631 expansion_failed (loc, rtl,
14632 "failed to produce loc descriptor for rtl");
14635 break;
14637 case MEM_REF:
14638 if (!integer_zerop (TREE_OPERAND (loc, 1)))
14640 have_address = 1;
14641 goto do_plus;
14643 /* Fallthru. */
14644 case INDIRECT_REF:
14645 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0, context);
14646 have_address = 1;
14647 break;
14649 case TARGET_MEM_REF:
14650 case SSA_NAME:
14651 case DEBUG_EXPR_DECL:
14652 return NULL;
14654 case COMPOUND_EXPR:
14655 return loc_list_from_tree (TREE_OPERAND (loc, 1), want_address, context);
14657 CASE_CONVERT:
14658 case VIEW_CONVERT_EXPR:
14659 case SAVE_EXPR:
14660 case MODIFY_EXPR:
14661 return loc_list_from_tree (TREE_OPERAND (loc, 0), want_address, context);
14663 case COMPONENT_REF:
14664 case BIT_FIELD_REF:
14665 case ARRAY_REF:
14666 case ARRAY_RANGE_REF:
14667 case REALPART_EXPR:
14668 case IMAGPART_EXPR:
14670 tree obj, offset;
14671 HOST_WIDE_INT bitsize, bitpos, bytepos;
14672 machine_mode mode;
14673 int unsignedp, volatilep = 0;
14675 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
14676 &unsignedp, &volatilep, false);
14678 gcc_assert (obj != loc);
14680 list_ret = loc_list_from_tree (obj,
14681 want_address == 2
14682 && !bitpos && !offset ? 2 : 1,
14683 context);
14684 /* TODO: We can extract value of the small expression via shifting even
14685 for nonzero bitpos. */
14686 if (list_ret == 0)
14687 return 0;
14688 if (bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
14690 expansion_failed (loc, NULL_RTX,
14691 "bitfield access");
14692 return 0;
14695 if (offset != NULL_TREE)
14697 /* Variable offset. */
14698 list_ret1 = loc_list_from_tree (offset, 0, context);
14699 if (list_ret1 == 0)
14700 return 0;
14701 add_loc_list (&list_ret, list_ret1);
14702 if (!list_ret)
14703 return 0;
14704 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_plus, 0, 0));
14707 bytepos = bitpos / BITS_PER_UNIT;
14708 if (bytepos > 0)
14709 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
14710 else if (bytepos < 0)
14711 loc_list_plus_const (list_ret, bytepos);
14713 have_address = 1;
14714 break;
14717 case INTEGER_CST:
14718 if ((want_address || !tree_fits_shwi_p (loc))
14719 && (ret = cst_pool_loc_descr (loc)))
14720 have_address = 1;
14721 else if (want_address == 2
14722 && tree_fits_shwi_p (loc)
14723 && (ret = address_of_int_loc_descriptor
14724 (int_size_in_bytes (TREE_TYPE (loc)),
14725 tree_to_shwi (loc))))
14726 have_address = 1;
14727 else if (tree_fits_shwi_p (loc))
14728 ret = int_loc_descriptor (tree_to_shwi (loc));
14729 else
14731 expansion_failed (loc, NULL_RTX,
14732 "Integer operand is not host integer");
14733 return 0;
14735 break;
14737 case CONSTRUCTOR:
14738 case REAL_CST:
14739 case STRING_CST:
14740 case COMPLEX_CST:
14741 if ((ret = cst_pool_loc_descr (loc)))
14742 have_address = 1;
14743 else
14744 /* We can construct small constants here using int_loc_descriptor. */
14745 expansion_failed (loc, NULL_RTX,
14746 "constructor or constant not in constant pool");
14747 break;
14749 case TRUTH_AND_EXPR:
14750 case TRUTH_ANDIF_EXPR:
14751 case BIT_AND_EXPR:
14752 op = DW_OP_and;
14753 goto do_binop;
14755 case TRUTH_XOR_EXPR:
14756 case BIT_XOR_EXPR:
14757 op = DW_OP_xor;
14758 goto do_binop;
14760 case TRUTH_OR_EXPR:
14761 case TRUTH_ORIF_EXPR:
14762 case BIT_IOR_EXPR:
14763 op = DW_OP_or;
14764 goto do_binop;
14766 case FLOOR_DIV_EXPR:
14767 case CEIL_DIV_EXPR:
14768 case ROUND_DIV_EXPR:
14769 case TRUNC_DIV_EXPR:
14770 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
14771 return 0;
14772 op = DW_OP_div;
14773 goto do_binop;
14775 case MINUS_EXPR:
14776 op = DW_OP_minus;
14777 goto do_binop;
14779 case FLOOR_MOD_EXPR:
14780 case CEIL_MOD_EXPR:
14781 case ROUND_MOD_EXPR:
14782 case TRUNC_MOD_EXPR:
14783 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
14785 op = DW_OP_mod;
14786 goto do_binop;
14788 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0, context);
14789 list_ret1 = loc_list_from_tree (TREE_OPERAND (loc, 1), 0, context);
14790 if (list_ret == 0 || list_ret1 == 0)
14791 return 0;
14793 add_loc_list (&list_ret, list_ret1);
14794 if (list_ret == 0)
14795 return 0;
14796 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_over, 0, 0));
14797 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_over, 0, 0));
14798 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_div, 0, 0));
14799 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_mul, 0, 0));
14800 add_loc_descr_to_each (list_ret, new_loc_descr (DW_OP_minus, 0, 0));
14801 break;
14803 case MULT_EXPR:
14804 op = DW_OP_mul;
14805 goto do_binop;
14807 case LSHIFT_EXPR:
14808 op = DW_OP_shl;
14809 goto do_binop;
14811 case RSHIFT_EXPR:
14812 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
14813 goto do_binop;
14815 case POINTER_PLUS_EXPR:
14816 case PLUS_EXPR:
14817 do_plus:
14818 if (tree_fits_shwi_p (TREE_OPERAND (loc, 1)))
14820 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0, context);
14821 if (list_ret == 0)
14822 return 0;
14824 loc_list_plus_const (list_ret, tree_to_shwi (TREE_OPERAND (loc, 1)));
14825 break;
14828 op = DW_OP_plus;
14829 goto do_binop;
14831 case LE_EXPR:
14832 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
14833 return 0;
14835 op = DW_OP_le;
14836 goto do_binop;
14838 case GE_EXPR:
14839 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
14840 return 0;
14842 op = DW_OP_ge;
14843 goto do_binop;
14845 case LT_EXPR:
14846 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
14847 return 0;
14849 op = DW_OP_lt;
14850 goto do_binop;
14852 case GT_EXPR:
14853 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
14854 return 0;
14856 op = DW_OP_gt;
14857 goto do_binop;
14859 case EQ_EXPR:
14860 op = DW_OP_eq;
14861 goto do_binop;
14863 case NE_EXPR:
14864 op = DW_OP_ne;
14865 goto do_binop;
14867 do_binop:
14868 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0, context);
14869 list_ret1 = loc_list_from_tree (TREE_OPERAND (loc, 1), 0, context);
14870 if (list_ret == 0 || list_ret1 == 0)
14871 return 0;
14873 add_loc_list (&list_ret, list_ret1);
14874 if (list_ret == 0)
14875 return 0;
14876 add_loc_descr_to_each (list_ret, new_loc_descr (op, 0, 0));
14877 break;
14879 case TRUTH_NOT_EXPR:
14880 case BIT_NOT_EXPR:
14881 op = DW_OP_not;
14882 goto do_unop;
14884 case ABS_EXPR:
14885 op = DW_OP_abs;
14886 goto do_unop;
14888 case NEGATE_EXPR:
14889 op = DW_OP_neg;
14890 goto do_unop;
14892 do_unop:
14893 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0, context);
14894 if (list_ret == 0)
14895 return 0;
14897 add_loc_descr_to_each (list_ret, new_loc_descr (op, 0, 0));
14898 break;
14900 case MIN_EXPR:
14901 case MAX_EXPR:
14903 const enum tree_code code =
14904 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
14906 loc = build3 (COND_EXPR, TREE_TYPE (loc),
14907 build2 (code, integer_type_node,
14908 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
14909 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
14912 /* ... fall through ... */
14914 case COND_EXPR:
14916 dw_loc_descr_ref lhs
14917 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0, context);
14918 dw_loc_list_ref rhs
14919 = loc_list_from_tree (TREE_OPERAND (loc, 2), 0, context);
14920 dw_loc_descr_ref bra_node, jump_node, tmp;
14922 list_ret = loc_list_from_tree (TREE_OPERAND (loc, 0), 0, context);
14923 if (list_ret == 0 || lhs == 0 || rhs == 0)
14924 return 0;
14926 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
14927 add_loc_descr_to_each (list_ret, bra_node);
14929 add_loc_list (&list_ret, rhs);
14930 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
14931 add_loc_descr_to_each (list_ret, jump_node);
14933 add_loc_descr_to_each (list_ret, lhs);
14934 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
14935 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
14937 /* ??? Need a node to point the skip at. Use a nop. */
14938 tmp = new_loc_descr (DW_OP_nop, 0, 0);
14939 add_loc_descr_to_each (list_ret, tmp);
14940 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
14941 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
14943 break;
14945 case FIX_TRUNC_EXPR:
14946 return 0;
14948 default:
14949 /* Leave front-end specific codes as simply unknown. This comes
14950 up, for instance, with the C STMT_EXPR. */
14951 if ((unsigned int) TREE_CODE (loc)
14952 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
14954 expansion_failed (loc, NULL_RTX,
14955 "language specific tree node");
14956 return 0;
14959 #ifdef ENABLE_CHECKING
14960 /* Otherwise this is a generic code; we should just lists all of
14961 these explicitly. We forgot one. */
14962 gcc_unreachable ();
14963 #else
14964 /* In a release build, we want to degrade gracefully: better to
14965 generate incomplete debugging information than to crash. */
14966 return NULL;
14967 #endif
14970 if (!ret && !list_ret)
14971 return 0;
14973 if (want_address == 2 && !have_address
14974 && (dwarf_version >= 4 || !dwarf_strict))
14976 if (int_size_in_bytes (TREE_TYPE (loc)) > DWARF2_ADDR_SIZE)
14978 expansion_failed (loc, NULL_RTX,
14979 "DWARF address size mismatch");
14980 return 0;
14982 if (ret)
14983 add_loc_descr (&ret, new_loc_descr (DW_OP_stack_value, 0, 0));
14984 else
14985 add_loc_descr_to_each (list_ret,
14986 new_loc_descr (DW_OP_stack_value, 0, 0));
14987 have_address = 1;
14989 /* Show if we can't fill the request for an address. */
14990 if (want_address && !have_address)
14992 expansion_failed (loc, NULL_RTX,
14993 "Want address and only have value");
14994 return 0;
14997 gcc_assert (!ret || !list_ret);
14999 /* If we've got an address and don't want one, dereference. */
15000 if (!want_address && have_address)
15002 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
15004 if (size > DWARF2_ADDR_SIZE || size == -1)
15006 expansion_failed (loc, NULL_RTX,
15007 "DWARF address size mismatch");
15008 return 0;
15010 else if (size == DWARF2_ADDR_SIZE)
15011 op = DW_OP_deref;
15012 else
15013 op = DW_OP_deref_size;
15015 if (ret)
15016 add_loc_descr (&ret, new_loc_descr (op, size, 0));
15017 else
15018 add_loc_descr_to_each (list_ret, new_loc_descr (op, size, 0));
15020 if (ret)
15021 list_ret = new_loc_list (ret, NULL, NULL, NULL);
15023 return list_ret;
15026 /* Same as above but return only single location expression. */
15027 static dw_loc_descr_ref
15028 loc_descriptor_from_tree (tree loc, int want_address,
15029 const struct loc_descr_context *context)
15031 dw_loc_list_ref ret = loc_list_from_tree (loc, want_address, context);
15032 if (!ret)
15033 return NULL;
15034 if (ret->dw_loc_next)
15036 expansion_failed (loc, NULL_RTX,
15037 "Location list where only loc descriptor needed");
15038 return NULL;
15040 return ret->expr;
15043 /* Given a value, round it up to the lowest multiple of `boundary'
15044 which is not less than the value itself. */
15046 static inline HOST_WIDE_INT
15047 ceiling (HOST_WIDE_INT value, unsigned int boundary)
15049 return (((value + boundary - 1) / boundary) * boundary);
15052 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
15053 pointer to the declared type for the relevant field variable, or return
15054 `integer_type_node' if the given node turns out to be an
15055 ERROR_MARK node. */
15057 static inline tree
15058 field_type (const_tree decl)
15060 tree type;
15062 if (TREE_CODE (decl) == ERROR_MARK)
15063 return integer_type_node;
15065 type = DECL_BIT_FIELD_TYPE (decl);
15066 if (type == NULL_TREE)
15067 type = TREE_TYPE (decl);
15069 return type;
15072 /* Given a pointer to a tree node, return the alignment in bits for
15073 it, or else return BITS_PER_WORD if the node actually turns out to
15074 be an ERROR_MARK node. */
15076 static inline unsigned
15077 simple_type_align_in_bits (const_tree type)
15079 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
15082 static inline unsigned
15083 simple_decl_align_in_bits (const_tree decl)
15085 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
15088 /* Return the result of rounding T up to ALIGN. */
15090 static inline offset_int
15091 round_up_to_align (const offset_int &t, unsigned int align)
15093 return wi::udiv_trunc (t + align - 1, align) * align;
15096 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
15097 lowest addressed byte of the "containing object" for the given FIELD_DECL,
15098 or return 0 if we are unable to determine what that offset is, either
15099 because the argument turns out to be a pointer to an ERROR_MARK node, or
15100 because the offset is actually variable. (We can't handle the latter case
15101 just yet). */
15103 static HOST_WIDE_INT
15104 field_byte_offset (const_tree decl)
15106 offset_int object_offset_in_bits;
15107 offset_int object_offset_in_bytes;
15108 offset_int bitpos_int;
15110 if (TREE_CODE (decl) == ERROR_MARK)
15111 return 0;
15113 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
15115 /* We cannot yet cope with fields whose positions are variable, so
15116 for now, when we see such things, we simply return 0. Someday, we may
15117 be able to handle such cases, but it will be damn difficult. */
15118 if (TREE_CODE (bit_position (decl)) != INTEGER_CST)
15119 return 0;
15121 bitpos_int = wi::to_offset (bit_position (decl));
15123 if (PCC_BITFIELD_TYPE_MATTERS)
15125 tree type;
15126 tree field_size_tree;
15127 offset_int deepest_bitpos;
15128 offset_int field_size_in_bits;
15129 unsigned int type_align_in_bits;
15130 unsigned int decl_align_in_bits;
15131 offset_int type_size_in_bits;
15133 type = field_type (decl);
15134 type_size_in_bits = offset_int_type_size_in_bits (type);
15135 type_align_in_bits = simple_type_align_in_bits (type);
15137 field_size_tree = DECL_SIZE (decl);
15139 /* The size could be unspecified if there was an error, or for
15140 a flexible array member. */
15141 if (!field_size_tree)
15142 field_size_tree = bitsize_zero_node;
15144 /* If the size of the field is not constant, use the type size. */
15145 if (TREE_CODE (field_size_tree) == INTEGER_CST)
15146 field_size_in_bits = wi::to_offset (field_size_tree);
15147 else
15148 field_size_in_bits = type_size_in_bits;
15150 decl_align_in_bits = simple_decl_align_in_bits (decl);
15152 /* The GCC front-end doesn't make any attempt to keep track of the
15153 starting bit offset (relative to the start of the containing
15154 structure type) of the hypothetical "containing object" for a
15155 bit-field. Thus, when computing the byte offset value for the
15156 start of the "containing object" of a bit-field, we must deduce
15157 this information on our own. This can be rather tricky to do in
15158 some cases. For example, handling the following structure type
15159 definition when compiling for an i386/i486 target (which only
15160 aligns long long's to 32-bit boundaries) can be very tricky:
15162 struct S { int field1; long long field2:31; };
15164 Fortunately, there is a simple rule-of-thumb which can be used
15165 in such cases. When compiling for an i386/i486, GCC will
15166 allocate 8 bytes for the structure shown above. It decides to
15167 do this based upon one simple rule for bit-field allocation.
15168 GCC allocates each "containing object" for each bit-field at
15169 the first (i.e. lowest addressed) legitimate alignment boundary
15170 (based upon the required minimum alignment for the declared
15171 type of the field) which it can possibly use, subject to the
15172 condition that there is still enough available space remaining
15173 in the containing object (when allocated at the selected point)
15174 to fully accommodate all of the bits of the bit-field itself.
15176 This simple rule makes it obvious why GCC allocates 8 bytes for
15177 each object of the structure type shown above. When looking
15178 for a place to allocate the "containing object" for `field2',
15179 the compiler simply tries to allocate a 64-bit "containing
15180 object" at each successive 32-bit boundary (starting at zero)
15181 until it finds a place to allocate that 64- bit field such that
15182 at least 31 contiguous (and previously unallocated) bits remain
15183 within that selected 64 bit field. (As it turns out, for the
15184 example above, the compiler finds it is OK to allocate the
15185 "containing object" 64-bit field at bit-offset zero within the
15186 structure type.)
15188 Here we attempt to work backwards from the limited set of facts
15189 we're given, and we try to deduce from those facts, where GCC
15190 must have believed that the containing object started (within
15191 the structure type). The value we deduce is then used (by the
15192 callers of this routine) to generate DW_AT_location and
15193 DW_AT_bit_offset attributes for fields (both bit-fields and, in
15194 the case of DW_AT_location, regular fields as well). */
15196 /* Figure out the bit-distance from the start of the structure to
15197 the "deepest" bit of the bit-field. */
15198 deepest_bitpos = bitpos_int + field_size_in_bits;
15200 /* This is the tricky part. Use some fancy footwork to deduce
15201 where the lowest addressed bit of the containing object must
15202 be. */
15203 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
15205 /* Round up to type_align by default. This works best for
15206 bitfields. */
15207 object_offset_in_bits
15208 = round_up_to_align (object_offset_in_bits, type_align_in_bits);
15210 if (wi::gtu_p (object_offset_in_bits, bitpos_int))
15212 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
15214 /* Round up to decl_align instead. */
15215 object_offset_in_bits
15216 = round_up_to_align (object_offset_in_bits, decl_align_in_bits);
15219 else
15220 object_offset_in_bits = bitpos_int;
15222 object_offset_in_bytes
15223 = wi::lrshift (object_offset_in_bits, LOG2_BITS_PER_UNIT);
15224 return object_offset_in_bytes.to_shwi ();
15227 /* The following routines define various Dwarf attributes and any data
15228 associated with them. */
15230 /* Add a location description attribute value to a DIE.
15232 This emits location attributes suitable for whole variables and
15233 whole parameters. Note that the location attributes for struct fields are
15234 generated by the routine `data_member_location_attribute' below. */
15236 static inline void
15237 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
15238 dw_loc_list_ref descr)
15240 if (descr == 0)
15241 return;
15242 if (single_element_loc_list_p (descr))
15243 add_AT_loc (die, attr_kind, descr->expr);
15244 else
15245 add_AT_loc_list (die, attr_kind, descr);
15248 /* Add DW_AT_accessibility attribute to DIE if needed. */
15250 static void
15251 add_accessibility_attribute (dw_die_ref die, tree decl)
15253 /* In DWARF3+ the default is DW_ACCESS_private only in DW_TAG_class_type
15254 children, otherwise the default is DW_ACCESS_public. In DWARF2
15255 the default has always been DW_ACCESS_public. */
15256 if (TREE_PROTECTED (decl))
15257 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
15258 else if (TREE_PRIVATE (decl))
15260 if (dwarf_version == 2
15261 || die->die_parent == NULL
15262 || die->die_parent->die_tag != DW_TAG_class_type)
15263 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_private);
15265 else if (dwarf_version > 2
15266 && die->die_parent
15267 && die->die_parent->die_tag == DW_TAG_class_type)
15268 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
15271 /* Attach the specialized form of location attribute used for data members of
15272 struct and union types. In the special case of a FIELD_DECL node which
15273 represents a bit-field, the "offset" part of this special location
15274 descriptor must indicate the distance in bytes from the lowest-addressed
15275 byte of the containing struct or union type to the lowest-addressed byte of
15276 the "containing object" for the bit-field. (See the `field_byte_offset'
15277 function above).
15279 For any given bit-field, the "containing object" is a hypothetical object
15280 (of some integral or enum type) within which the given bit-field lives. The
15281 type of this hypothetical "containing object" is always the same as the
15282 declared type of the individual bit-field itself (for GCC anyway... the
15283 DWARF spec doesn't actually mandate this). Note that it is the size (in
15284 bytes) of the hypothetical "containing object" which will be given in the
15285 DW_AT_byte_size attribute for this bit-field. (See the
15286 `byte_size_attribute' function below.) It is also used when calculating the
15287 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
15288 function below.) */
15290 static void
15291 add_data_member_location_attribute (dw_die_ref die, tree decl)
15293 HOST_WIDE_INT offset;
15294 dw_loc_descr_ref loc_descr = 0;
15296 if (TREE_CODE (decl) == TREE_BINFO)
15298 /* We're working on the TAG_inheritance for a base class. */
15299 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
15301 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
15302 aren't at a fixed offset from all (sub)objects of the same
15303 type. We need to extract the appropriate offset from our
15304 vtable. The following dwarf expression means
15306 BaseAddr = ObAddr + *((*ObAddr) - Offset)
15308 This is specific to the V3 ABI, of course. */
15310 dw_loc_descr_ref tmp;
15312 /* Make a copy of the object address. */
15313 tmp = new_loc_descr (DW_OP_dup, 0, 0);
15314 add_loc_descr (&loc_descr, tmp);
15316 /* Extract the vtable address. */
15317 tmp = new_loc_descr (DW_OP_deref, 0, 0);
15318 add_loc_descr (&loc_descr, tmp);
15320 /* Calculate the address of the offset. */
15321 offset = tree_to_shwi (BINFO_VPTR_FIELD (decl));
15322 gcc_assert (offset < 0);
15324 tmp = int_loc_descriptor (-offset);
15325 add_loc_descr (&loc_descr, tmp);
15326 tmp = new_loc_descr (DW_OP_minus, 0, 0);
15327 add_loc_descr (&loc_descr, tmp);
15329 /* Extract the offset. */
15330 tmp = new_loc_descr (DW_OP_deref, 0, 0);
15331 add_loc_descr (&loc_descr, tmp);
15333 /* Add it to the object address. */
15334 tmp = new_loc_descr (DW_OP_plus, 0, 0);
15335 add_loc_descr (&loc_descr, tmp);
15337 else
15338 offset = tree_to_shwi (BINFO_OFFSET (decl));
15340 else
15341 offset = field_byte_offset (decl);
15343 if (! loc_descr)
15345 if (dwarf_version > 2)
15347 /* Don't need to output a location expression, just the constant. */
15348 if (offset < 0)
15349 add_AT_int (die, DW_AT_data_member_location, offset);
15350 else
15351 add_AT_unsigned (die, DW_AT_data_member_location, offset);
15352 return;
15354 else
15356 enum dwarf_location_atom op;
15358 /* The DWARF2 standard says that we should assume that the structure
15359 address is already on the stack, so we can specify a structure
15360 field address by using DW_OP_plus_uconst. */
15361 op = DW_OP_plus_uconst;
15362 loc_descr = new_loc_descr (op, offset, 0);
15366 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
15369 /* Writes integer values to dw_vec_const array. */
15371 static void
15372 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
15374 while (size != 0)
15376 *dest++ = val & 0xff;
15377 val >>= 8;
15378 --size;
15382 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
15384 static HOST_WIDE_INT
15385 extract_int (const unsigned char *src, unsigned int size)
15387 HOST_WIDE_INT val = 0;
15389 src += size;
15390 while (size != 0)
15392 val <<= 8;
15393 val |= *--src & 0xff;
15394 --size;
15396 return val;
15399 /* Writes wide_int values to dw_vec_const array. */
15401 static void
15402 insert_wide_int (const wide_int &val, unsigned char *dest, int elt_size)
15404 int i;
15406 if (elt_size <= HOST_BITS_PER_WIDE_INT/BITS_PER_UNIT)
15408 insert_int ((HOST_WIDE_INT) val.elt (0), elt_size, dest);
15409 return;
15412 /* We'd have to extend this code to support odd sizes. */
15413 gcc_assert (elt_size % (HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT) == 0);
15415 int n = elt_size / (HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT);
15417 if (WORDS_BIG_ENDIAN)
15418 for (i = n - 1; i >= 0; i--)
15420 insert_int ((HOST_WIDE_INT) val.elt (i), sizeof (HOST_WIDE_INT), dest);
15421 dest += sizeof (HOST_WIDE_INT);
15423 else
15424 for (i = 0; i < n; i++)
15426 insert_int ((HOST_WIDE_INT) val.elt (i), sizeof (HOST_WIDE_INT), dest);
15427 dest += sizeof (HOST_WIDE_INT);
15431 /* Writes floating point values to dw_vec_const array. */
15433 static void
15434 insert_float (const_rtx rtl, unsigned char *array)
15436 REAL_VALUE_TYPE rv;
15437 long val[4];
15438 int i;
15440 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
15441 real_to_target (val, &rv, GET_MODE (rtl));
15443 /* real_to_target puts 32-bit pieces in each long. Pack them. */
15444 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
15446 insert_int (val[i], 4, array);
15447 array += 4;
15451 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
15452 does not have a "location" either in memory or in a register. These
15453 things can arise in GNU C when a constant is passed as an actual parameter
15454 to an inlined function. They can also arise in C++ where declared
15455 constants do not necessarily get memory "homes". */
15457 static bool
15458 add_const_value_attribute (dw_die_ref die, rtx rtl)
15460 switch (GET_CODE (rtl))
15462 case CONST_INT:
15464 HOST_WIDE_INT val = INTVAL (rtl);
15466 if (val < 0)
15467 add_AT_int (die, DW_AT_const_value, val);
15468 else
15469 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
15471 return true;
15473 case CONST_WIDE_INT:
15474 add_AT_wide (die, DW_AT_const_value,
15475 std::make_pair (rtl, GET_MODE (rtl)));
15476 return true;
15478 case CONST_DOUBLE:
15479 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
15480 floating-point constant. A CONST_DOUBLE is used whenever the
15481 constant requires more than one word in order to be adequately
15482 represented. */
15484 machine_mode mode = GET_MODE (rtl);
15486 if (TARGET_SUPPORTS_WIDE_INT == 0 && !SCALAR_FLOAT_MODE_P (mode))
15487 add_AT_double (die, DW_AT_const_value,
15488 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
15489 else
15491 unsigned int length = GET_MODE_SIZE (mode);
15492 unsigned char *array = ggc_vec_alloc<unsigned char> (length);
15494 insert_float (rtl, array);
15495 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
15498 return true;
15500 case CONST_VECTOR:
15502 machine_mode mode = GET_MODE (rtl);
15503 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
15504 unsigned int length = CONST_VECTOR_NUNITS (rtl);
15505 unsigned char *array
15506 = ggc_vec_alloc<unsigned char> (length * elt_size);
15507 unsigned int i;
15508 unsigned char *p;
15509 machine_mode imode = GET_MODE_INNER (mode);
15511 switch (GET_MODE_CLASS (mode))
15513 case MODE_VECTOR_INT:
15514 for (i = 0, p = array; i < length; i++, p += elt_size)
15516 rtx elt = CONST_VECTOR_ELT (rtl, i);
15517 insert_wide_int (std::make_pair (elt, imode), p, elt_size);
15519 break;
15521 case MODE_VECTOR_FLOAT:
15522 for (i = 0, p = array; i < length; i++, p += elt_size)
15524 rtx elt = CONST_VECTOR_ELT (rtl, i);
15525 insert_float (elt, p);
15527 break;
15529 default:
15530 gcc_unreachable ();
15533 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
15535 return true;
15537 case CONST_STRING:
15538 if (dwarf_version >= 4 || !dwarf_strict)
15540 dw_loc_descr_ref loc_result;
15541 resolve_one_addr (&rtl);
15542 rtl_addr:
15543 loc_result = new_addr_loc_descr (rtl, dtprel_false);
15544 add_loc_descr (&loc_result, new_loc_descr (DW_OP_stack_value, 0, 0));
15545 add_AT_loc (die, DW_AT_location, loc_result);
15546 vec_safe_push (used_rtx_array, rtl);
15547 return true;
15549 return false;
15551 case CONST:
15552 if (CONSTANT_P (XEXP (rtl, 0)))
15553 return add_const_value_attribute (die, XEXP (rtl, 0));
15554 /* FALLTHROUGH */
15555 case SYMBOL_REF:
15556 if (!const_ok_for_output (rtl))
15557 return false;
15558 case LABEL_REF:
15559 if (dwarf_version >= 4 || !dwarf_strict)
15560 goto rtl_addr;
15561 return false;
15563 case PLUS:
15564 /* In cases where an inlined instance of an inline function is passed
15565 the address of an `auto' variable (which is local to the caller) we
15566 can get a situation where the DECL_RTL of the artificial local
15567 variable (for the inlining) which acts as a stand-in for the
15568 corresponding formal parameter (of the inline function) will look
15569 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
15570 exactly a compile-time constant expression, but it isn't the address
15571 of the (artificial) local variable either. Rather, it represents the
15572 *value* which the artificial local variable always has during its
15573 lifetime. We currently have no way to represent such quasi-constant
15574 values in Dwarf, so for now we just punt and generate nothing. */
15575 return false;
15577 case HIGH:
15578 case CONST_FIXED:
15579 return false;
15581 case MEM:
15582 if (GET_CODE (XEXP (rtl, 0)) == CONST_STRING
15583 && MEM_READONLY_P (rtl)
15584 && GET_MODE (rtl) == BLKmode)
15586 add_AT_string (die, DW_AT_const_value, XSTR (XEXP (rtl, 0), 0));
15587 return true;
15589 return false;
15591 default:
15592 /* No other kinds of rtx should be possible here. */
15593 gcc_unreachable ();
15595 return false;
15598 /* Determine whether the evaluation of EXPR references any variables
15599 or functions which aren't otherwise used (and therefore may not be
15600 output). */
15601 static tree
15602 reference_to_unused (tree * tp, int * walk_subtrees,
15603 void * data ATTRIBUTE_UNUSED)
15605 if (! EXPR_P (*tp) && ! CONSTANT_CLASS_P (*tp))
15606 *walk_subtrees = 0;
15608 if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
15609 && ! TREE_ASM_WRITTEN (*tp))
15610 return *tp;
15611 /* ??? The C++ FE emits debug information for using decls, so
15612 putting gcc_unreachable here falls over. See PR31899. For now
15613 be conservative. */
15614 else if (!symtab->global_info_ready
15615 && (TREE_CODE (*tp) == VAR_DECL || TREE_CODE (*tp) == FUNCTION_DECL))
15616 return *tp;
15617 else if (TREE_CODE (*tp) == VAR_DECL)
15619 varpool_node *node = varpool_node::get (*tp);
15620 if (!node || !node->definition)
15621 return *tp;
15623 else if (TREE_CODE (*tp) == FUNCTION_DECL
15624 && (!DECL_EXTERNAL (*tp) || DECL_DECLARED_INLINE_P (*tp)))
15626 /* The call graph machinery must have finished analyzing,
15627 optimizing and gimplifying the CU by now.
15628 So if *TP has no call graph node associated
15629 to it, it means *TP will not be emitted. */
15630 if (!cgraph_node::get (*tp))
15631 return *tp;
15633 else if (TREE_CODE (*tp) == STRING_CST && !TREE_ASM_WRITTEN (*tp))
15634 return *tp;
15636 return NULL_TREE;
15639 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
15640 for use in a later add_const_value_attribute call. */
15642 static rtx
15643 rtl_for_decl_init (tree init, tree type)
15645 rtx rtl = NULL_RTX;
15647 STRIP_NOPS (init);
15649 /* If a variable is initialized with a string constant without embedded
15650 zeros, build CONST_STRING. */
15651 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
15653 tree enttype = TREE_TYPE (type);
15654 tree domain = TYPE_DOMAIN (type);
15655 machine_mode mode = TYPE_MODE (enttype);
15657 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
15658 && domain
15659 && integer_zerop (TYPE_MIN_VALUE (domain))
15660 && compare_tree_int (TYPE_MAX_VALUE (domain),
15661 TREE_STRING_LENGTH (init) - 1) == 0
15662 && ((size_t) TREE_STRING_LENGTH (init)
15663 == strlen (TREE_STRING_POINTER (init)) + 1))
15665 rtl = gen_rtx_CONST_STRING (VOIDmode,
15666 ggc_strdup (TREE_STRING_POINTER (init)));
15667 rtl = gen_rtx_MEM (BLKmode, rtl);
15668 MEM_READONLY_P (rtl) = 1;
15671 /* Other aggregates, and complex values, could be represented using
15672 CONCAT: FIXME! */
15673 else if (AGGREGATE_TYPE_P (type)
15674 || (TREE_CODE (init) == VIEW_CONVERT_EXPR
15675 && AGGREGATE_TYPE_P (TREE_TYPE (TREE_OPERAND (init, 0))))
15676 || TREE_CODE (type) == COMPLEX_TYPE)
15678 /* Vectors only work if their mode is supported by the target.
15679 FIXME: generic vectors ought to work too. */
15680 else if (TREE_CODE (type) == VECTOR_TYPE
15681 && !VECTOR_MODE_P (TYPE_MODE (type)))
15683 /* If the initializer is something that we know will expand into an
15684 immediate RTL constant, expand it now. We must be careful not to
15685 reference variables which won't be output. */
15686 else if (initializer_constant_valid_p (init, type)
15687 && ! walk_tree (&init, reference_to_unused, NULL, NULL))
15689 /* Convert vector CONSTRUCTOR initializers to VECTOR_CST if
15690 possible. */
15691 if (TREE_CODE (type) == VECTOR_TYPE)
15692 switch (TREE_CODE (init))
15694 case VECTOR_CST:
15695 break;
15696 case CONSTRUCTOR:
15697 if (TREE_CONSTANT (init))
15699 vec<constructor_elt, va_gc> *elts = CONSTRUCTOR_ELTS (init);
15700 bool constant_p = true;
15701 tree value;
15702 unsigned HOST_WIDE_INT ix;
15704 /* Even when ctor is constant, it might contain non-*_CST
15705 elements (e.g. { 1.0/0.0 - 1.0/0.0, 0.0 }) and those don't
15706 belong into VECTOR_CST nodes. */
15707 FOR_EACH_CONSTRUCTOR_VALUE (elts, ix, value)
15708 if (!CONSTANT_CLASS_P (value))
15710 constant_p = false;
15711 break;
15714 if (constant_p)
15716 init = build_vector_from_ctor (type, elts);
15717 break;
15720 /* FALLTHRU */
15722 default:
15723 return NULL;
15726 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
15728 /* If expand_expr returns a MEM, it wasn't immediate. */
15729 gcc_assert (!rtl || !MEM_P (rtl));
15732 return rtl;
15735 /* Generate RTL for the variable DECL to represent its location. */
15737 static rtx
15738 rtl_for_decl_location (tree decl)
15740 rtx rtl;
15742 /* Here we have to decide where we are going to say the parameter "lives"
15743 (as far as the debugger is concerned). We only have a couple of
15744 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
15746 DECL_RTL normally indicates where the parameter lives during most of the
15747 activation of the function. If optimization is enabled however, this
15748 could be either NULL or else a pseudo-reg. Both of those cases indicate
15749 that the parameter doesn't really live anywhere (as far as the code
15750 generation parts of GCC are concerned) during most of the function's
15751 activation. That will happen (for example) if the parameter is never
15752 referenced within the function.
15754 We could just generate a location descriptor here for all non-NULL
15755 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
15756 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
15757 where DECL_RTL is NULL or is a pseudo-reg.
15759 Note however that we can only get away with using DECL_INCOMING_RTL as
15760 a backup substitute for DECL_RTL in certain limited cases. In cases
15761 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
15762 we can be sure that the parameter was passed using the same type as it is
15763 declared to have within the function, and that its DECL_INCOMING_RTL
15764 points us to a place where a value of that type is passed.
15766 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
15767 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
15768 because in these cases DECL_INCOMING_RTL points us to a value of some
15769 type which is *different* from the type of the parameter itself. Thus,
15770 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
15771 such cases, the debugger would end up (for example) trying to fetch a
15772 `float' from a place which actually contains the first part of a
15773 `double'. That would lead to really incorrect and confusing
15774 output at debug-time.
15776 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
15777 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
15778 are a couple of exceptions however. On little-endian machines we can
15779 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
15780 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
15781 an integral type that is smaller than TREE_TYPE (decl). These cases arise
15782 when (on a little-endian machine) a non-prototyped function has a
15783 parameter declared to be of type `short' or `char'. In such cases,
15784 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
15785 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
15786 passed `int' value. If the debugger then uses that address to fetch
15787 a `short' or a `char' (on a little-endian machine) the result will be
15788 the correct data, so we allow for such exceptional cases below.
15790 Note that our goal here is to describe the place where the given formal
15791 parameter lives during most of the function's activation (i.e. between the
15792 end of the prologue and the start of the epilogue). We'll do that as best
15793 as we can. Note however that if the given formal parameter is modified
15794 sometime during the execution of the function, then a stack backtrace (at
15795 debug-time) will show the function as having been called with the *new*
15796 value rather than the value which was originally passed in. This happens
15797 rarely enough that it is not a major problem, but it *is* a problem, and
15798 I'd like to fix it.
15800 A future version of dwarf2out.c may generate two additional attributes for
15801 any given DW_TAG_formal_parameter DIE which will describe the "passed
15802 type" and the "passed location" for the given formal parameter in addition
15803 to the attributes we now generate to indicate the "declared type" and the
15804 "active location" for each parameter. This additional set of attributes
15805 could be used by debuggers for stack backtraces. Separately, note that
15806 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
15807 This happens (for example) for inlined-instances of inline function formal
15808 parameters which are never referenced. This really shouldn't be
15809 happening. All PARM_DECL nodes should get valid non-NULL
15810 DECL_INCOMING_RTL values. FIXME. */
15812 /* Use DECL_RTL as the "location" unless we find something better. */
15813 rtl = DECL_RTL_IF_SET (decl);
15815 /* When generating abstract instances, ignore everything except
15816 constants, symbols living in memory, and symbols living in
15817 fixed registers. */
15818 if (! reload_completed)
15820 if (rtl
15821 && (CONSTANT_P (rtl)
15822 || (MEM_P (rtl)
15823 && CONSTANT_P (XEXP (rtl, 0)))
15824 || (REG_P (rtl)
15825 && TREE_CODE (decl) == VAR_DECL
15826 && TREE_STATIC (decl))))
15828 rtl = targetm.delegitimize_address (rtl);
15829 return rtl;
15831 rtl = NULL_RTX;
15833 else if (TREE_CODE (decl) == PARM_DECL)
15835 if (rtl == NULL_RTX
15836 || is_pseudo_reg (rtl)
15837 || (MEM_P (rtl)
15838 && is_pseudo_reg (XEXP (rtl, 0))
15839 && DECL_INCOMING_RTL (decl)
15840 && MEM_P (DECL_INCOMING_RTL (decl))
15841 && GET_MODE (rtl) == GET_MODE (DECL_INCOMING_RTL (decl))))
15843 tree declared_type = TREE_TYPE (decl);
15844 tree passed_type = DECL_ARG_TYPE (decl);
15845 machine_mode dmode = TYPE_MODE (declared_type);
15846 machine_mode pmode = TYPE_MODE (passed_type);
15848 /* This decl represents a formal parameter which was optimized out.
15849 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
15850 all cases where (rtl == NULL_RTX) just below. */
15851 if (dmode == pmode)
15852 rtl = DECL_INCOMING_RTL (decl);
15853 else if ((rtl == NULL_RTX || is_pseudo_reg (rtl))
15854 && SCALAR_INT_MODE_P (dmode)
15855 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
15856 && DECL_INCOMING_RTL (decl))
15858 rtx inc = DECL_INCOMING_RTL (decl);
15859 if (REG_P (inc))
15860 rtl = inc;
15861 else if (MEM_P (inc))
15863 if (BYTES_BIG_ENDIAN)
15864 rtl = adjust_address_nv (inc, dmode,
15865 GET_MODE_SIZE (pmode)
15866 - GET_MODE_SIZE (dmode));
15867 else
15868 rtl = inc;
15873 /* If the parm was passed in registers, but lives on the stack, then
15874 make a big endian correction if the mode of the type of the
15875 parameter is not the same as the mode of the rtl. */
15876 /* ??? This is the same series of checks that are made in dbxout.c before
15877 we reach the big endian correction code there. It isn't clear if all
15878 of these checks are necessary here, but keeping them all is the safe
15879 thing to do. */
15880 else if (MEM_P (rtl)
15881 && XEXP (rtl, 0) != const0_rtx
15882 && ! CONSTANT_P (XEXP (rtl, 0))
15883 /* Not passed in memory. */
15884 && !MEM_P (DECL_INCOMING_RTL (decl))
15885 /* Not passed by invisible reference. */
15886 && (!REG_P (XEXP (rtl, 0))
15887 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
15888 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
15889 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
15890 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
15891 #endif
15893 /* Big endian correction check. */
15894 && BYTES_BIG_ENDIAN
15895 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
15896 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
15897 < UNITS_PER_WORD))
15899 machine_mode addr_mode = get_address_mode (rtl);
15900 int offset = (UNITS_PER_WORD
15901 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
15903 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
15904 plus_constant (addr_mode, XEXP (rtl, 0), offset));
15907 else if (TREE_CODE (decl) == VAR_DECL
15908 && rtl
15909 && MEM_P (rtl)
15910 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
15911 && BYTES_BIG_ENDIAN)
15913 machine_mode addr_mode = get_address_mode (rtl);
15914 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
15915 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
15917 /* If a variable is declared "register" yet is smaller than
15918 a register, then if we store the variable to memory, it
15919 looks like we're storing a register-sized value, when in
15920 fact we are not. We need to adjust the offset of the
15921 storage location to reflect the actual value's bytes,
15922 else gdb will not be able to display it. */
15923 if (rsize > dsize)
15924 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
15925 plus_constant (addr_mode, XEXP (rtl, 0),
15926 rsize - dsize));
15929 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
15930 and will have been substituted directly into all expressions that use it.
15931 C does not have such a concept, but C++ and other languages do. */
15932 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
15933 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
15935 if (rtl)
15936 rtl = targetm.delegitimize_address (rtl);
15938 /* If we don't look past the constant pool, we risk emitting a
15939 reference to a constant pool entry that isn't referenced from
15940 code, and thus is not emitted. */
15941 if (rtl)
15942 rtl = avoid_constant_pool_reference (rtl);
15944 /* Try harder to get a rtl. If this symbol ends up not being emitted
15945 in the current CU, resolve_addr will remove the expression referencing
15946 it. */
15947 if (rtl == NULL_RTX
15948 && TREE_CODE (decl) == VAR_DECL
15949 && !DECL_EXTERNAL (decl)
15950 && TREE_STATIC (decl)
15951 && DECL_NAME (decl)
15952 && !DECL_HARD_REGISTER (decl)
15953 && DECL_MODE (decl) != VOIDmode)
15955 rtl = make_decl_rtl_for_debug (decl);
15956 if (!MEM_P (rtl)
15957 || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF
15958 || SYMBOL_REF_DECL (XEXP (rtl, 0)) != decl)
15959 rtl = NULL_RTX;
15962 return rtl;
15965 /* Check whether decl is a Fortran COMMON symbol. If not, NULL_TREE is
15966 returned. If so, the decl for the COMMON block is returned, and the
15967 value is the offset into the common block for the symbol. */
15969 static tree
15970 fortran_common (tree decl, HOST_WIDE_INT *value)
15972 tree val_expr, cvar;
15973 machine_mode mode;
15974 HOST_WIDE_INT bitsize, bitpos;
15975 tree offset;
15976 int unsignedp, volatilep = 0;
15978 /* If the decl isn't a VAR_DECL, or if it isn't static, or if
15979 it does not have a value (the offset into the common area), or if it
15980 is thread local (as opposed to global) then it isn't common, and shouldn't
15981 be handled as such. */
15982 if (TREE_CODE (decl) != VAR_DECL
15983 || !TREE_STATIC (decl)
15984 || !DECL_HAS_VALUE_EXPR_P (decl)
15985 || !is_fortran ())
15986 return NULL_TREE;
15988 val_expr = DECL_VALUE_EXPR (decl);
15989 if (TREE_CODE (val_expr) != COMPONENT_REF)
15990 return NULL_TREE;
15992 cvar = get_inner_reference (val_expr, &bitsize, &bitpos, &offset,
15993 &mode, &unsignedp, &volatilep, true);
15995 if (cvar == NULL_TREE
15996 || TREE_CODE (cvar) != VAR_DECL
15997 || DECL_ARTIFICIAL (cvar)
15998 || !TREE_PUBLIC (cvar))
15999 return NULL_TREE;
16001 *value = 0;
16002 if (offset != NULL)
16004 if (!tree_fits_shwi_p (offset))
16005 return NULL_TREE;
16006 *value = tree_to_shwi (offset);
16008 if (bitpos != 0)
16009 *value += bitpos / BITS_PER_UNIT;
16011 return cvar;
16014 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
16015 data attribute for a variable or a parameter. We generate the
16016 DW_AT_const_value attribute only in those cases where the given variable
16017 or parameter does not have a true "location" either in memory or in a
16018 register. This can happen (for example) when a constant is passed as an
16019 actual argument in a call to an inline function. (It's possible that
16020 these things can crop up in other ways also.) Note that one type of
16021 constant value which can be passed into an inlined function is a constant
16022 pointer. This can happen for example if an actual argument in an inlined
16023 function call evaluates to a compile-time constant address.
16025 CACHE_P is true if it is worth caching the location list for DECL,
16026 so that future calls can reuse it rather than regenerate it from scratch.
16027 This is true for BLOCK_NONLOCALIZED_VARS in inlined subroutines,
16028 since we will need to refer to them each time the function is inlined. */
16030 static bool
16031 add_location_or_const_value_attribute (dw_die_ref die, tree decl, bool cache_p,
16032 enum dwarf_attribute attr)
16034 rtx rtl;
16035 dw_loc_list_ref list;
16036 var_loc_list *loc_list;
16037 cached_dw_loc_list *cache;
16039 if (TREE_CODE (decl) == ERROR_MARK)
16040 return false;
16042 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
16043 || TREE_CODE (decl) == RESULT_DECL);
16045 /* Try to get some constant RTL for this decl, and use that as the value of
16046 the location. */
16048 rtl = rtl_for_decl_location (decl);
16049 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING)
16050 && add_const_value_attribute (die, rtl))
16051 return true;
16053 /* See if we have single element location list that is equivalent to
16054 a constant value. That way we are better to use add_const_value_attribute
16055 rather than expanding constant value equivalent. */
16056 loc_list = lookup_decl_loc (decl);
16057 if (loc_list
16058 && loc_list->first
16059 && loc_list->first->next == NULL
16060 && NOTE_P (loc_list->first->loc)
16061 && NOTE_VAR_LOCATION (loc_list->first->loc)
16062 && NOTE_VAR_LOCATION_LOC (loc_list->first->loc))
16064 struct var_loc_node *node;
16066 node = loc_list->first;
16067 rtl = NOTE_VAR_LOCATION_LOC (node->loc);
16068 if (GET_CODE (rtl) == EXPR_LIST)
16069 rtl = XEXP (rtl, 0);
16070 if ((CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING)
16071 && add_const_value_attribute (die, rtl))
16072 return true;
16074 /* If this decl is from BLOCK_NONLOCALIZED_VARS, we might need its
16075 list several times. See if we've already cached the contents. */
16076 list = NULL;
16077 if (loc_list == NULL || cached_dw_loc_list_table == NULL)
16078 cache_p = false;
16079 if (cache_p)
16081 cache = cached_dw_loc_list_table->find_with_hash (decl, DECL_UID (decl));
16082 if (cache)
16083 list = cache->loc_list;
16085 if (list == NULL)
16087 list = loc_list_from_tree (decl, decl_by_reference_p (decl) ? 0 : 2,
16088 NULL);
16089 /* It is usually worth caching this result if the decl is from
16090 BLOCK_NONLOCALIZED_VARS and if the list has at least two elements. */
16091 if (cache_p && list && list->dw_loc_next)
16093 cached_dw_loc_list **slot
16094 = cached_dw_loc_list_table->find_slot_with_hash (decl,
16095 DECL_UID (decl),
16096 INSERT);
16097 cache = ggc_cleared_alloc<cached_dw_loc_list> ();
16098 cache->decl_id = DECL_UID (decl);
16099 cache->loc_list = list;
16100 *slot = cache;
16103 if (list)
16105 add_AT_location_description (die, attr, list);
16106 return true;
16108 /* None of that worked, so it must not really have a location;
16109 try adding a constant value attribute from the DECL_INITIAL. */
16110 return tree_add_const_value_attribute_for_decl (die, decl);
16113 /* Add VARIABLE and DIE into deferred locations list. */
16115 static void
16116 defer_location (tree variable, dw_die_ref die)
16118 deferred_locations entry;
16119 entry.variable = variable;
16120 entry.die = die;
16121 vec_safe_push (deferred_locations_list, entry);
16124 /* Helper function for tree_add_const_value_attribute. Natively encode
16125 initializer INIT into an array. Return true if successful. */
16127 static bool
16128 native_encode_initializer (tree init, unsigned char *array, int size)
16130 tree type;
16132 if (init == NULL_TREE)
16133 return false;
16135 STRIP_NOPS (init);
16136 switch (TREE_CODE (init))
16138 case STRING_CST:
16139 type = TREE_TYPE (init);
16140 if (TREE_CODE (type) == ARRAY_TYPE)
16142 tree enttype = TREE_TYPE (type);
16143 machine_mode mode = TYPE_MODE (enttype);
16145 if (GET_MODE_CLASS (mode) != MODE_INT || GET_MODE_SIZE (mode) != 1)
16146 return false;
16147 if (int_size_in_bytes (type) != size)
16148 return false;
16149 if (size > TREE_STRING_LENGTH (init))
16151 memcpy (array, TREE_STRING_POINTER (init),
16152 TREE_STRING_LENGTH (init));
16153 memset (array + TREE_STRING_LENGTH (init),
16154 '\0', size - TREE_STRING_LENGTH (init));
16156 else
16157 memcpy (array, TREE_STRING_POINTER (init), size);
16158 return true;
16160 return false;
16161 case CONSTRUCTOR:
16162 type = TREE_TYPE (init);
16163 if (int_size_in_bytes (type) != size)
16164 return false;
16165 if (TREE_CODE (type) == ARRAY_TYPE)
16167 HOST_WIDE_INT min_index;
16168 unsigned HOST_WIDE_INT cnt;
16169 int curpos = 0, fieldsize;
16170 constructor_elt *ce;
16172 if (TYPE_DOMAIN (type) == NULL_TREE
16173 || !tree_fits_shwi_p (TYPE_MIN_VALUE (TYPE_DOMAIN (type))))
16174 return false;
16176 fieldsize = int_size_in_bytes (TREE_TYPE (type));
16177 if (fieldsize <= 0)
16178 return false;
16180 min_index = tree_to_shwi (TYPE_MIN_VALUE (TYPE_DOMAIN (type)));
16181 memset (array, '\0', size);
16182 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (init), cnt, ce)
16184 tree val = ce->value;
16185 tree index = ce->index;
16186 int pos = curpos;
16187 if (index && TREE_CODE (index) == RANGE_EXPR)
16188 pos = (tree_to_shwi (TREE_OPERAND (index, 0)) - min_index)
16189 * fieldsize;
16190 else if (index)
16191 pos = (tree_to_shwi (index) - min_index) * fieldsize;
16193 if (val)
16195 STRIP_NOPS (val);
16196 if (!native_encode_initializer (val, array + pos, fieldsize))
16197 return false;
16199 curpos = pos + fieldsize;
16200 if (index && TREE_CODE (index) == RANGE_EXPR)
16202 int count = tree_to_shwi (TREE_OPERAND (index, 1))
16203 - tree_to_shwi (TREE_OPERAND (index, 0));
16204 while (count-- > 0)
16206 if (val)
16207 memcpy (array + curpos, array + pos, fieldsize);
16208 curpos += fieldsize;
16211 gcc_assert (curpos <= size);
16213 return true;
16215 else if (TREE_CODE (type) == RECORD_TYPE
16216 || TREE_CODE (type) == UNION_TYPE)
16218 tree field = NULL_TREE;
16219 unsigned HOST_WIDE_INT cnt;
16220 constructor_elt *ce;
16222 if (int_size_in_bytes (type) != size)
16223 return false;
16225 if (TREE_CODE (type) == RECORD_TYPE)
16226 field = TYPE_FIELDS (type);
16228 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (init), cnt, ce)
16230 tree val = ce->value;
16231 int pos, fieldsize;
16233 if (ce->index != 0)
16234 field = ce->index;
16236 if (val)
16237 STRIP_NOPS (val);
16239 if (field == NULL_TREE || DECL_BIT_FIELD (field))
16240 return false;
16242 if (TREE_CODE (TREE_TYPE (field)) == ARRAY_TYPE
16243 && TYPE_DOMAIN (TREE_TYPE (field))
16244 && ! TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (field))))
16245 return false;
16246 else if (DECL_SIZE_UNIT (field) == NULL_TREE
16247 || !tree_fits_shwi_p (DECL_SIZE_UNIT (field)))
16248 return false;
16249 fieldsize = tree_to_shwi (DECL_SIZE_UNIT (field));
16250 pos = int_byte_position (field);
16251 gcc_assert (pos + fieldsize <= size);
16252 if (val
16253 && !native_encode_initializer (val, array + pos, fieldsize))
16254 return false;
16256 return true;
16258 return false;
16259 case VIEW_CONVERT_EXPR:
16260 case NON_LVALUE_EXPR:
16261 return native_encode_initializer (TREE_OPERAND (init, 0), array, size);
16262 default:
16263 return native_encode_expr (init, array, size) == size;
16267 /* Attach a DW_AT_const_value attribute to DIE. The value of the
16268 attribute is the const value T. */
16270 static bool
16271 tree_add_const_value_attribute (dw_die_ref die, tree t)
16273 tree init;
16274 tree type = TREE_TYPE (t);
16275 rtx rtl;
16277 if (!t || !TREE_TYPE (t) || TREE_TYPE (t) == error_mark_node)
16278 return false;
16280 init = t;
16281 gcc_assert (!DECL_P (init));
16283 rtl = rtl_for_decl_init (init, type);
16284 if (rtl)
16285 return add_const_value_attribute (die, rtl);
16286 /* If the host and target are sane, try harder. */
16287 else if (CHAR_BIT == 8 && BITS_PER_UNIT == 8
16288 && initializer_constant_valid_p (init, type))
16290 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (init));
16291 if (size > 0 && (int) size == size)
16293 unsigned char *array = ggc_cleared_vec_alloc<unsigned char> (size);
16295 if (native_encode_initializer (init, array, size))
16297 add_AT_vec (die, DW_AT_const_value, size, 1, array);
16298 return true;
16300 ggc_free (array);
16303 return false;
16306 /* Attach a DW_AT_const_value attribute to VAR_DIE. The value of the
16307 attribute is the const value of T, where T is an integral constant
16308 variable with static storage duration
16309 (so it can't be a PARM_DECL or a RESULT_DECL). */
16311 static bool
16312 tree_add_const_value_attribute_for_decl (dw_die_ref var_die, tree decl)
16315 if (!decl
16316 || (TREE_CODE (decl) != VAR_DECL
16317 && TREE_CODE (decl) != CONST_DECL)
16318 || (TREE_CODE (decl) == VAR_DECL
16319 && !TREE_STATIC (decl)))
16320 return false;
16322 if (TREE_READONLY (decl)
16323 && ! TREE_THIS_VOLATILE (decl)
16324 && DECL_INITIAL (decl))
16325 /* OK */;
16326 else
16327 return false;
16329 /* Don't add DW_AT_const_value if abstract origin already has one. */
16330 if (get_AT (var_die, DW_AT_const_value))
16331 return false;
16333 return tree_add_const_value_attribute (var_die, DECL_INITIAL (decl));
16336 /* Convert the CFI instructions for the current function into a
16337 location list. This is used for DW_AT_frame_base when we targeting
16338 a dwarf2 consumer that does not support the dwarf3
16339 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
16340 expressions. */
16342 static dw_loc_list_ref
16343 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
16345 int ix;
16346 dw_fde_ref fde;
16347 dw_loc_list_ref list, *list_tail;
16348 dw_cfi_ref cfi;
16349 dw_cfa_location last_cfa, next_cfa;
16350 const char *start_label, *last_label, *section;
16351 dw_cfa_location remember;
16353 fde = cfun->fde;
16354 gcc_assert (fde != NULL);
16356 section = secname_for_decl (current_function_decl);
16357 list_tail = &list;
16358 list = NULL;
16360 memset (&next_cfa, 0, sizeof (next_cfa));
16361 next_cfa.reg = INVALID_REGNUM;
16362 remember = next_cfa;
16364 start_label = fde->dw_fde_begin;
16366 /* ??? Bald assumption that the CIE opcode list does not contain
16367 advance opcodes. */
16368 FOR_EACH_VEC_ELT (*cie_cfi_vec, ix, cfi)
16369 lookup_cfa_1 (cfi, &next_cfa, &remember);
16371 last_cfa = next_cfa;
16372 last_label = start_label;
16374 if (fde->dw_fde_second_begin && fde->dw_fde_switch_cfi_index == 0)
16376 /* If the first partition contained no CFI adjustments, the
16377 CIE opcodes apply to the whole first partition. */
16378 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
16379 fde->dw_fde_begin, fde->dw_fde_end, section);
16380 list_tail =&(*list_tail)->dw_loc_next;
16381 start_label = last_label = fde->dw_fde_second_begin;
16384 FOR_EACH_VEC_SAFE_ELT (fde->dw_fde_cfi, ix, cfi)
16386 switch (cfi->dw_cfi_opc)
16388 case DW_CFA_set_loc:
16389 case DW_CFA_advance_loc1:
16390 case DW_CFA_advance_loc2:
16391 case DW_CFA_advance_loc4:
16392 if (!cfa_equal_p (&last_cfa, &next_cfa))
16394 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
16395 start_label, last_label, section);
16397 list_tail = &(*list_tail)->dw_loc_next;
16398 last_cfa = next_cfa;
16399 start_label = last_label;
16401 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
16402 break;
16404 case DW_CFA_advance_loc:
16405 /* The encoding is complex enough that we should never emit this. */
16406 gcc_unreachable ();
16408 default:
16409 lookup_cfa_1 (cfi, &next_cfa, &remember);
16410 break;
16412 if (ix + 1 == fde->dw_fde_switch_cfi_index)
16414 if (!cfa_equal_p (&last_cfa, &next_cfa))
16416 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
16417 start_label, last_label, section);
16419 list_tail = &(*list_tail)->dw_loc_next;
16420 last_cfa = next_cfa;
16421 start_label = last_label;
16423 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
16424 start_label, fde->dw_fde_end, section);
16425 list_tail = &(*list_tail)->dw_loc_next;
16426 start_label = last_label = fde->dw_fde_second_begin;
16430 if (!cfa_equal_p (&last_cfa, &next_cfa))
16432 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
16433 start_label, last_label, section);
16434 list_tail = &(*list_tail)->dw_loc_next;
16435 start_label = last_label;
16438 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
16439 start_label,
16440 fde->dw_fde_second_begin
16441 ? fde->dw_fde_second_end : fde->dw_fde_end,
16442 section);
16444 if (list && list->dw_loc_next)
16445 gen_llsym (list);
16447 return list;
16450 /* Compute a displacement from the "steady-state frame pointer" to the
16451 frame base (often the same as the CFA), and store it in
16452 frame_pointer_fb_offset. OFFSET is added to the displacement
16453 before the latter is negated. */
16455 static void
16456 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
16458 rtx reg, elim;
16460 #ifdef FRAME_POINTER_CFA_OFFSET
16461 reg = frame_pointer_rtx;
16462 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
16463 #else
16464 reg = arg_pointer_rtx;
16465 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
16466 #endif
16468 elim = (ira_use_lra_p
16469 ? lra_eliminate_regs (reg, VOIDmode, NULL_RTX)
16470 : eliminate_regs (reg, VOIDmode, NULL_RTX));
16471 if (GET_CODE (elim) == PLUS)
16473 offset += INTVAL (XEXP (elim, 1));
16474 elim = XEXP (elim, 0);
16477 frame_pointer_fb_offset = -offset;
16479 /* ??? AVR doesn't set up valid eliminations when there is no stack frame
16480 in which to eliminate. This is because it's stack pointer isn't
16481 directly accessible as a register within the ISA. To work around
16482 this, assume that while we cannot provide a proper value for
16483 frame_pointer_fb_offset, we won't need one either. */
16484 frame_pointer_fb_offset_valid
16485 = ((SUPPORTS_STACK_ALIGNMENT
16486 && (elim == hard_frame_pointer_rtx
16487 || elim == stack_pointer_rtx))
16488 || elim == (frame_pointer_needed
16489 ? hard_frame_pointer_rtx
16490 : stack_pointer_rtx));
16493 /* Generate a DW_AT_name attribute given some string value to be included as
16494 the value of the attribute. */
16496 static void
16497 add_name_attribute (dw_die_ref die, const char *name_string)
16499 if (name_string != NULL && *name_string != 0)
16501 if (demangle_name_func)
16502 name_string = (*demangle_name_func) (name_string);
16504 add_AT_string (die, DW_AT_name, name_string);
16508 /* Retrieve the descriptive type of TYPE, if any, make sure it has a
16509 DIE and attach a DW_AT_GNAT_descriptive_type attribute to the DIE
16510 of TYPE accordingly.
16512 ??? This is a temporary measure until after we're able to generate
16513 regular DWARF for the complex Ada type system. */
16515 static void
16516 add_gnat_descriptive_type_attribute (dw_die_ref die, tree type,
16517 dw_die_ref context_die)
16519 tree dtype;
16520 dw_die_ref dtype_die;
16522 if (!lang_hooks.types.descriptive_type)
16523 return;
16525 dtype = lang_hooks.types.descriptive_type (type);
16526 if (!dtype)
16527 return;
16529 dtype_die = lookup_type_die (dtype);
16530 if (!dtype_die)
16532 gen_type_die (dtype, context_die);
16533 dtype_die = lookup_type_die (dtype);
16534 gcc_assert (dtype_die);
16537 add_AT_die_ref (die, DW_AT_GNAT_descriptive_type, dtype_die);
16540 /* Retrieve the comp_dir string suitable for use with DW_AT_comp_dir. */
16542 static const char *
16543 comp_dir_string (void)
16545 const char *wd;
16546 char *wd1;
16547 static const char *cached_wd = NULL;
16549 if (cached_wd != NULL)
16550 return cached_wd;
16552 wd = get_src_pwd ();
16553 if (wd == NULL)
16554 return NULL;
16556 if (DWARF2_DIR_SHOULD_END_WITH_SEPARATOR)
16558 int wdlen;
16560 wdlen = strlen (wd);
16561 wd1 = ggc_vec_alloc<char> (wdlen + 2);
16562 strcpy (wd1, wd);
16563 wd1 [wdlen] = DIR_SEPARATOR;
16564 wd1 [wdlen + 1] = 0;
16565 wd = wd1;
16568 cached_wd = remap_debug_filename (wd);
16569 return cached_wd;
16572 /* Generate a DW_AT_comp_dir attribute for DIE. */
16574 static void
16575 add_comp_dir_attribute (dw_die_ref die)
16577 const char * wd = comp_dir_string ();
16578 if (wd != NULL)
16579 add_AT_string (die, DW_AT_comp_dir, wd);
16582 /* Given a tree node VALUE describing a scalar attribute ATTR (i.e. a bound, a
16583 pointer computation, ...), output a representation for that bound according
16584 to the accepted FORMS (see enum dw_scalar_form) and add it to DIE. See
16585 loc_list_from_tree for the meaning of CONTEXT. */
16587 static void
16588 add_scalar_info (dw_die_ref die, enum dwarf_attribute attr, tree value,
16589 int forms, const struct loc_descr_context *context)
16591 dw_die_ref ctx, decl_die;
16592 dw_loc_list_ref list;
16594 bool strip_conversions = true;
16596 while (strip_conversions)
16597 switch (TREE_CODE (value))
16599 case ERROR_MARK:
16600 case SAVE_EXPR:
16601 return;
16603 CASE_CONVERT:
16604 case VIEW_CONVERT_EXPR:
16605 value = TREE_OPERAND (value, 0);
16606 break;
16608 default:
16609 strip_conversions = false;
16610 break;
16613 /* If possible and permitted, output the attribute as a constant. */
16614 if ((forms & dw_scalar_form_constant) != 0
16615 && TREE_CODE (value) == INTEGER_CST)
16617 unsigned int prec = simple_type_size_in_bits (TREE_TYPE (value));
16619 /* If HOST_WIDE_INT is big enough then represent the bound as
16620 a constant value. We need to choose a form based on
16621 whether the type is signed or unsigned. We cannot just
16622 call add_AT_unsigned if the value itself is positive
16623 (add_AT_unsigned might add the unsigned value encoded as
16624 DW_FORM_data[1248]). Some DWARF consumers will lookup the
16625 bounds type and then sign extend any unsigned values found
16626 for signed types. This is needed only for
16627 DW_AT_{lower,upper}_bound, since for most other attributes,
16628 consumers will treat DW_FORM_data[1248] as unsigned values,
16629 regardless of the underlying type. */
16630 if (prec <= HOST_BITS_PER_WIDE_INT
16631 || tree_fits_uhwi_p (value))
16633 if (TYPE_UNSIGNED (TREE_TYPE (value)))
16634 add_AT_unsigned (die, attr, TREE_INT_CST_LOW (value));
16635 else
16636 add_AT_int (die, attr, TREE_INT_CST_LOW (value));
16638 else
16639 /* Otherwise represent the bound as an unsigned value with
16640 the precision of its type. The precision and signedness
16641 of the type will be necessary to re-interpret it
16642 unambiguously. */
16643 add_AT_wide (die, attr, value);
16644 return;
16647 /* Otherwise, if it's possible and permitted too, output a reference to
16648 another DIE. */
16649 if ((forms & dw_scalar_form_reference) != 0)
16651 tree decl = NULL_TREE;
16653 /* Some type attributes reference an outer type. For instance, the upper
16654 bound of an array may reference an embedding record (this happens in
16655 Ada). */
16656 if (TREE_CODE (value) == COMPONENT_REF
16657 && TREE_CODE (TREE_OPERAND (value, 0)) == PLACEHOLDER_EXPR
16658 && TREE_CODE (TREE_OPERAND (value, 1)) == FIELD_DECL)
16659 decl = TREE_OPERAND (value, 1);
16661 else if (TREE_CODE (value) == VAR_DECL
16662 || TREE_CODE (value) == PARM_DECL
16663 || TREE_CODE (value) == RESULT_DECL)
16664 decl = value;
16666 if (decl != NULL_TREE)
16668 dw_die_ref decl_die = lookup_decl_die (decl);
16670 /* ??? Can this happen, or should the variable have been bound
16671 first? Probably it can, since I imagine that we try to create
16672 the types of parameters in the order in which they exist in
16673 the list, and won't have created a forward reference to a
16674 later parameter. */
16675 if (decl_die != NULL)
16677 add_AT_die_ref (die, attr, decl_die);
16678 return;
16683 /* Last chance: try to create a stack operation procedure to evaluate the
16684 value. Do nothing if even that is not possible or permitted. */
16685 if ((forms & dw_scalar_form_exprloc) == 0)
16686 return;
16688 list = loc_list_from_tree (value, 2, context);
16689 if (list == NULL || single_element_loc_list_p (list))
16691 /* If this attribute is not a reference nor constant, it is
16692 a DWARF expression rather than location description. For that
16693 loc_list_from_tree (value, 0, &context) is needed. */
16694 dw_loc_list_ref list2 = loc_list_from_tree (value, 0, context);
16695 if (list2 && single_element_loc_list_p (list2))
16697 add_AT_loc (die, attr, list2->expr);
16698 return;
16702 /* If that failed to give a single element location list, fall back to
16703 outputting this as a reference... still if permitted. */
16704 if (list == NULL || (forms & dw_scalar_form_reference) == 0)
16705 return;
16707 if (current_function_decl == 0)
16708 ctx = comp_unit_die ();
16709 else
16710 ctx = lookup_decl_die (current_function_decl);
16712 decl_die = new_die (DW_TAG_variable, ctx, value);
16713 add_AT_flag (decl_die, DW_AT_artificial, 1);
16714 add_type_attribute (decl_die, TREE_TYPE (value), TYPE_QUAL_CONST, ctx);
16715 add_AT_location_description (decl_die, DW_AT_location, list);
16716 add_AT_die_ref (die, attr, decl_die);
16719 /* Return the default for DW_AT_lower_bound, or -1 if there is not any
16720 default. */
16722 static int
16723 lower_bound_default (void)
16725 switch (get_AT_unsigned (comp_unit_die (), DW_AT_language))
16727 case DW_LANG_C:
16728 case DW_LANG_C89:
16729 case DW_LANG_C99:
16730 case DW_LANG_C11:
16731 case DW_LANG_C_plus_plus:
16732 case DW_LANG_C_plus_plus_11:
16733 case DW_LANG_C_plus_plus_14:
16734 case DW_LANG_ObjC:
16735 case DW_LANG_ObjC_plus_plus:
16736 case DW_LANG_Java:
16737 return 0;
16738 case DW_LANG_Fortran77:
16739 case DW_LANG_Fortran90:
16740 case DW_LANG_Fortran95:
16741 case DW_LANG_Fortran03:
16742 case DW_LANG_Fortran08:
16743 return 1;
16744 case DW_LANG_UPC:
16745 case DW_LANG_D:
16746 case DW_LANG_Python:
16747 return dwarf_version >= 4 ? 0 : -1;
16748 case DW_LANG_Ada95:
16749 case DW_LANG_Ada83:
16750 case DW_LANG_Cobol74:
16751 case DW_LANG_Cobol85:
16752 case DW_LANG_Pascal83:
16753 case DW_LANG_Modula2:
16754 case DW_LANG_PLI:
16755 return dwarf_version >= 4 ? 1 : -1;
16756 default:
16757 return -1;
16761 /* Given a tree node describing an array bound (either lower or upper) output
16762 a representation for that bound. */
16764 static void
16765 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr,
16766 tree bound, const struct loc_descr_context *context)
16768 int dflt;
16770 while (1)
16771 switch (TREE_CODE (bound))
16773 /* Strip all conversions. */
16774 CASE_CONVERT:
16775 case VIEW_CONVERT_EXPR:
16776 bound = TREE_OPERAND (bound, 0);
16777 break;
16779 /* All fixed-bounds are represented by INTEGER_CST nodes. Lower bounds
16780 are even omitted when they are the default. */
16781 case INTEGER_CST:
16782 /* If the value for this bound is the default one, we can even omit the
16783 attribute. */
16784 if (bound_attr == DW_AT_lower_bound
16785 && tree_fits_shwi_p (bound)
16786 && (dflt = lower_bound_default ()) != -1
16787 && tree_to_shwi (bound) == dflt)
16788 return;
16790 /* FALLTHRU */
16792 default:
16793 add_scalar_info (subrange_die, bound_attr, bound,
16794 dw_scalar_form_constant
16795 | dw_scalar_form_exprloc
16796 | dw_scalar_form_reference,
16797 context);
16798 return;
16802 /* Add subscript info to TYPE_DIE, describing an array TYPE, collapsing
16803 possibly nested array subscripts in a flat sequence if COLLAPSE_P is true.
16804 Note that the block of subscript information for an array type also
16805 includes information about the element type of the given array type. */
16807 static void
16808 add_subscript_info (dw_die_ref type_die, tree type, bool collapse_p)
16810 unsigned dimension_number;
16811 tree lower, upper;
16812 dw_die_ref subrange_die;
16814 for (dimension_number = 0;
16815 TREE_CODE (type) == ARRAY_TYPE && (dimension_number == 0 || collapse_p);
16816 type = TREE_TYPE (type), dimension_number++)
16818 tree domain = TYPE_DOMAIN (type);
16820 if (TYPE_STRING_FLAG (type) && is_fortran () && dimension_number > 0)
16821 break;
16823 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
16824 and (in GNU C only) variable bounds. Handle all three forms
16825 here. */
16826 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
16827 if (domain)
16829 /* We have an array type with specified bounds. */
16830 lower = TYPE_MIN_VALUE (domain);
16831 upper = TYPE_MAX_VALUE (domain);
16833 /* Define the index type. */
16834 if (TREE_TYPE (domain))
16836 /* ??? This is probably an Ada unnamed subrange type. Ignore the
16837 TREE_TYPE field. We can't emit debug info for this
16838 because it is an unnamed integral type. */
16839 if (TREE_CODE (domain) == INTEGER_TYPE
16840 && TYPE_NAME (domain) == NULL_TREE
16841 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
16842 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
16844 else
16845 add_type_attribute (subrange_die, TREE_TYPE (domain),
16846 TYPE_UNQUALIFIED, type_die);
16849 /* ??? If upper is NULL, the array has unspecified length,
16850 but it does have a lower bound. This happens with Fortran
16851 dimension arr(N:*)
16852 Since the debugger is definitely going to need to know N
16853 to produce useful results, go ahead and output the lower
16854 bound solo, and hope the debugger can cope. */
16856 add_bound_info (subrange_die, DW_AT_lower_bound, lower, NULL);
16857 if (upper)
16858 add_bound_info (subrange_die, DW_AT_upper_bound, upper, NULL);
16861 /* Otherwise we have an array type with an unspecified length. The
16862 DWARF-2 spec does not say how to handle this; let's just leave out the
16863 bounds. */
16867 /* Add a DW_AT_byte_size attribute to DIE with TREE_NODE's size. */
16869 static void
16870 add_byte_size_attribute (dw_die_ref die, tree tree_node)
16872 dw_die_ref decl_die;
16873 HOST_WIDE_INT size;
16875 switch (TREE_CODE (tree_node))
16877 case ERROR_MARK:
16878 size = 0;
16879 break;
16880 case ENUMERAL_TYPE:
16881 case RECORD_TYPE:
16882 case UNION_TYPE:
16883 case QUAL_UNION_TYPE:
16884 if (TREE_CODE (TYPE_SIZE_UNIT (tree_node)) == VAR_DECL
16885 && (decl_die = lookup_decl_die (TYPE_SIZE_UNIT (tree_node))))
16887 add_AT_die_ref (die, DW_AT_byte_size, decl_die);
16888 return;
16890 size = int_size_in_bytes (tree_node);
16891 break;
16892 case FIELD_DECL:
16893 /* For a data member of a struct or union, the DW_AT_byte_size is
16894 generally given as the number of bytes normally allocated for an
16895 object of the *declared* type of the member itself. This is true
16896 even for bit-fields. */
16897 size = int_size_in_bytes (field_type (tree_node));
16898 break;
16899 default:
16900 gcc_unreachable ();
16903 /* Note that `size' might be -1 when we get to this point. If it is, that
16904 indicates that the byte size of the entity in question is variable. We
16905 have no good way of expressing this fact in Dwarf at the present time,
16906 when location description was not used by the caller code instead. */
16907 if (size >= 0)
16908 add_AT_unsigned (die, DW_AT_byte_size, size);
16911 /* For a FIELD_DECL node which represents a bit-field, output an attribute
16912 which specifies the distance in bits from the highest order bit of the
16913 "containing object" for the bit-field to the highest order bit of the
16914 bit-field itself.
16916 For any given bit-field, the "containing object" is a hypothetical object
16917 (of some integral or enum type) within which the given bit-field lives. The
16918 type of this hypothetical "containing object" is always the same as the
16919 declared type of the individual bit-field itself. The determination of the
16920 exact location of the "containing object" for a bit-field is rather
16921 complicated. It's handled by the `field_byte_offset' function (above).
16923 Note that it is the size (in bytes) of the hypothetical "containing object"
16924 which will be given in the DW_AT_byte_size attribute for this bit-field.
16925 (See `byte_size_attribute' above). */
16927 static inline void
16928 add_bit_offset_attribute (dw_die_ref die, tree decl)
16930 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
16931 tree type = DECL_BIT_FIELD_TYPE (decl);
16932 HOST_WIDE_INT bitpos_int;
16933 HOST_WIDE_INT highest_order_object_bit_offset;
16934 HOST_WIDE_INT highest_order_field_bit_offset;
16935 HOST_WIDE_INT bit_offset;
16937 /* Must be a field and a bit field. */
16938 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
16940 /* We can't yet handle bit-fields whose offsets are variable, so if we
16941 encounter such things, just return without generating any attribute
16942 whatsoever. Likewise for variable or too large size. */
16943 if (! tree_fits_shwi_p (bit_position (decl))
16944 || ! tree_fits_uhwi_p (DECL_SIZE (decl)))
16945 return;
16947 bitpos_int = int_bit_position (decl);
16949 /* Note that the bit offset is always the distance (in bits) from the
16950 highest-order bit of the "containing object" to the highest-order bit of
16951 the bit-field itself. Since the "high-order end" of any object or field
16952 is different on big-endian and little-endian machines, the computation
16953 below must take account of these differences. */
16954 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
16955 highest_order_field_bit_offset = bitpos_int;
16957 if (! BYTES_BIG_ENDIAN)
16959 highest_order_field_bit_offset += tree_to_shwi (DECL_SIZE (decl));
16960 highest_order_object_bit_offset += simple_type_size_in_bits (type);
16963 bit_offset
16964 = (! BYTES_BIG_ENDIAN
16965 ? highest_order_object_bit_offset - highest_order_field_bit_offset
16966 : highest_order_field_bit_offset - highest_order_object_bit_offset);
16968 if (bit_offset < 0)
16969 add_AT_int (die, DW_AT_bit_offset, bit_offset);
16970 else
16971 add_AT_unsigned (die, DW_AT_bit_offset, (unsigned HOST_WIDE_INT) bit_offset);
16974 /* For a FIELD_DECL node which represents a bit field, output an attribute
16975 which specifies the length in bits of the given field. */
16977 static inline void
16978 add_bit_size_attribute (dw_die_ref die, tree decl)
16980 /* Must be a field and a bit field. */
16981 gcc_assert (TREE_CODE (decl) == FIELD_DECL
16982 && DECL_BIT_FIELD_TYPE (decl));
16984 if (tree_fits_uhwi_p (DECL_SIZE (decl)))
16985 add_AT_unsigned (die, DW_AT_bit_size, tree_to_uhwi (DECL_SIZE (decl)));
16988 /* If the compiled language is ANSI C, then add a 'prototyped'
16989 attribute, if arg types are given for the parameters of a function. */
16991 static inline void
16992 add_prototyped_attribute (dw_die_ref die, tree func_type)
16994 switch (get_AT_unsigned (comp_unit_die (), DW_AT_language))
16996 case DW_LANG_C:
16997 case DW_LANG_C89:
16998 case DW_LANG_C99:
16999 case DW_LANG_C11:
17000 case DW_LANG_ObjC:
17001 if (prototype_p (func_type))
17002 add_AT_flag (die, DW_AT_prototyped, 1);
17003 break;
17004 default:
17005 break;
17009 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
17010 by looking in either the type declaration or object declaration
17011 equate table. */
17013 static inline dw_die_ref
17014 add_abstract_origin_attribute (dw_die_ref die, tree origin)
17016 dw_die_ref origin_die = NULL;
17018 if (TREE_CODE (origin) != FUNCTION_DECL)
17020 /* We may have gotten separated from the block for the inlined
17021 function, if we're in an exception handler or some such; make
17022 sure that the abstract function has been written out.
17024 Doing this for nested functions is wrong, however; functions are
17025 distinct units, and our context might not even be inline. */
17026 tree fn = origin;
17028 if (TYPE_P (fn))
17029 fn = TYPE_STUB_DECL (fn);
17031 fn = decl_function_context (fn);
17032 if (fn)
17033 dwarf2out_abstract_function (fn);
17036 if (DECL_P (origin))
17037 origin_die = lookup_decl_die (origin);
17038 else if (TYPE_P (origin))
17039 origin_die = lookup_type_die (origin);
17041 /* XXX: Functions that are never lowered don't always have correct block
17042 trees (in the case of java, they simply have no block tree, in some other
17043 languages). For these functions, there is nothing we can really do to
17044 output correct debug info for inlined functions in all cases. Rather
17045 than die, we'll just produce deficient debug info now, in that we will
17046 have variables without a proper abstract origin. In the future, when all
17047 functions are lowered, we should re-add a gcc_assert (origin_die)
17048 here. */
17050 if (origin_die)
17051 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
17052 return origin_die;
17055 /* We do not currently support the pure_virtual attribute. */
17057 static inline void
17058 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
17060 if (DECL_VINDEX (func_decl))
17062 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
17064 if (tree_fits_shwi_p (DECL_VINDEX (func_decl)))
17065 add_AT_loc (die, DW_AT_vtable_elem_location,
17066 new_loc_descr (DW_OP_constu,
17067 tree_to_shwi (DECL_VINDEX (func_decl)),
17068 0));
17070 /* GNU extension: Record what type this method came from originally. */
17071 if (debug_info_level > DINFO_LEVEL_TERSE
17072 && DECL_CONTEXT (func_decl))
17073 add_AT_die_ref (die, DW_AT_containing_type,
17074 lookup_type_die (DECL_CONTEXT (func_decl)));
17078 /* Add a DW_AT_linkage_name or DW_AT_MIPS_linkage_name attribute for the
17079 given decl. This used to be a vendor extension until after DWARF 4
17080 standardized it. */
17082 static void
17083 add_linkage_attr (dw_die_ref die, tree decl)
17085 const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
17087 /* Mimic what assemble_name_raw does with a leading '*'. */
17088 if (name[0] == '*')
17089 name = &name[1];
17091 if (dwarf_version >= 4)
17092 add_AT_string (die, DW_AT_linkage_name, name);
17093 else
17094 add_AT_string (die, DW_AT_MIPS_linkage_name, name);
17097 /* Add source coordinate attributes for the given decl. */
17099 static void
17100 add_src_coords_attributes (dw_die_ref die, tree decl)
17102 expanded_location s;
17104 if (LOCATION_LOCUS (DECL_SOURCE_LOCATION (decl)) == UNKNOWN_LOCATION)
17105 return;
17106 s = expand_location (DECL_SOURCE_LOCATION (decl));
17107 add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
17108 add_AT_unsigned (die, DW_AT_decl_line, s.line);
17111 /* Add DW_AT_{,MIPS_}linkage_name attribute for the given decl. */
17113 static void
17114 add_linkage_name (dw_die_ref die, tree decl)
17116 if (debug_info_level > DINFO_LEVEL_NONE
17117 && (TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
17118 && TREE_PUBLIC (decl)
17119 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl))
17120 && die->die_tag != DW_TAG_member)
17122 /* Defer until we have an assembler name set. */
17123 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
17125 limbo_die_node *asm_name;
17127 asm_name = ggc_cleared_alloc<limbo_die_node> ();
17128 asm_name->die = die;
17129 asm_name->created_for = decl;
17130 asm_name->next = deferred_asm_name;
17131 deferred_asm_name = asm_name;
17133 else if (DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl))
17134 add_linkage_attr (die, decl);
17138 /* Add a DW_AT_name attribute and source coordinate attribute for the
17139 given decl, but only if it actually has a name. */
17141 static void
17142 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
17144 tree decl_name;
17146 decl_name = DECL_NAME (decl);
17147 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
17149 const char *name = dwarf2_name (decl, 0);
17150 if (name)
17151 add_name_attribute (die, name);
17152 if (! DECL_ARTIFICIAL (decl))
17153 add_src_coords_attributes (die, decl);
17155 add_linkage_name (die, decl);
17158 #ifdef VMS_DEBUGGING_INFO
17159 /* Get the function's name, as described by its RTL. This may be different
17160 from the DECL_NAME name used in the source file. */
17161 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
17163 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
17164 XEXP (DECL_RTL (decl), 0), false);
17165 vec_safe_push (used_rtx_array, XEXP (DECL_RTL (decl), 0));
17167 #endif /* VMS_DEBUGGING_INFO */
17170 #ifdef VMS_DEBUGGING_INFO
17171 /* Output the debug main pointer die for VMS */
17173 void
17174 dwarf2out_vms_debug_main_pointer (void)
17176 char label[MAX_ARTIFICIAL_LABEL_BYTES];
17177 dw_die_ref die;
17179 /* Allocate the VMS debug main subprogram die. */
17180 die = ggc_cleared_alloc<die_node> ();
17181 die->die_tag = DW_TAG_subprogram;
17182 add_name_attribute (die, VMS_DEBUG_MAIN_POINTER);
17183 ASM_GENERATE_INTERNAL_LABEL (label, PROLOGUE_END_LABEL,
17184 current_function_funcdef_no);
17185 add_AT_lbl_id (die, DW_AT_entry_pc, label);
17187 /* Make it the first child of comp_unit_die (). */
17188 die->die_parent = comp_unit_die ();
17189 if (comp_unit_die ()->die_child)
17191 die->die_sib = comp_unit_die ()->die_child->die_sib;
17192 comp_unit_die ()->die_child->die_sib = die;
17194 else
17196 die->die_sib = die;
17197 comp_unit_die ()->die_child = die;
17200 #endif /* VMS_DEBUGGING_INFO */
17202 /* Push a new declaration scope. */
17204 static void
17205 push_decl_scope (tree scope)
17207 vec_safe_push (decl_scope_table, scope);
17210 /* Pop a declaration scope. */
17212 static inline void
17213 pop_decl_scope (void)
17215 decl_scope_table->pop ();
17218 /* walk_tree helper function for uses_local_type, below. */
17220 static tree
17221 uses_local_type_r (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
17223 if (!TYPE_P (*tp))
17224 *walk_subtrees = 0;
17225 else
17227 tree name = TYPE_NAME (*tp);
17228 if (name && DECL_P (name) && decl_function_context (name))
17229 return *tp;
17231 return NULL_TREE;
17234 /* If TYPE involves a function-local type (including a local typedef to a
17235 non-local type), returns that type; otherwise returns NULL_TREE. */
17237 static tree
17238 uses_local_type (tree type)
17240 tree used = walk_tree_without_duplicates (&type, uses_local_type_r, NULL);
17241 return used;
17244 /* Return the DIE for the scope that immediately contains this type.
17245 Non-named types that do not involve a function-local type get global
17246 scope. Named types nested in namespaces or other types get their
17247 containing scope. All other types (i.e. function-local named types) get
17248 the current active scope. */
17250 static dw_die_ref
17251 scope_die_for (tree t, dw_die_ref context_die)
17253 dw_die_ref scope_die = NULL;
17254 tree containing_scope;
17256 /* Non-types always go in the current scope. */
17257 gcc_assert (TYPE_P (t));
17259 /* Use the scope of the typedef, rather than the scope of the type
17260 it refers to. */
17261 if (TYPE_NAME (t) && DECL_P (TYPE_NAME (t)))
17262 containing_scope = DECL_CONTEXT (TYPE_NAME (t));
17263 else
17264 containing_scope = TYPE_CONTEXT (t);
17266 /* Use the containing namespace if there is one. */
17267 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
17269 if (context_die == lookup_decl_die (containing_scope))
17270 /* OK */;
17271 else if (debug_info_level > DINFO_LEVEL_TERSE)
17272 context_die = get_context_die (containing_scope);
17273 else
17274 containing_scope = NULL_TREE;
17277 /* Ignore function type "scopes" from the C frontend. They mean that
17278 a tagged type is local to a parmlist of a function declarator, but
17279 that isn't useful to DWARF. */
17280 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
17281 containing_scope = NULL_TREE;
17283 if (SCOPE_FILE_SCOPE_P (containing_scope))
17285 /* If T uses a local type keep it local as well, to avoid references
17286 to function-local DIEs from outside the function. */
17287 if (current_function_decl && uses_local_type (t))
17288 scope_die = context_die;
17289 else
17290 scope_die = comp_unit_die ();
17292 else if (TYPE_P (containing_scope))
17294 /* For types, we can just look up the appropriate DIE. */
17295 if (debug_info_level > DINFO_LEVEL_TERSE)
17296 scope_die = get_context_die (containing_scope);
17297 else
17299 scope_die = lookup_type_die_strip_naming_typedef (containing_scope);
17300 if (scope_die == NULL)
17301 scope_die = comp_unit_die ();
17304 else
17305 scope_die = context_die;
17307 return scope_die;
17310 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
17312 static inline int
17313 local_scope_p (dw_die_ref context_die)
17315 for (; context_die; context_die = context_die->die_parent)
17316 if (context_die->die_tag == DW_TAG_inlined_subroutine
17317 || context_die->die_tag == DW_TAG_subprogram)
17318 return 1;
17320 return 0;
17323 /* Returns nonzero if CONTEXT_DIE is a class. */
17325 static inline int
17326 class_scope_p (dw_die_ref context_die)
17328 return (context_die
17329 && (context_die->die_tag == DW_TAG_structure_type
17330 || context_die->die_tag == DW_TAG_class_type
17331 || context_die->die_tag == DW_TAG_interface_type
17332 || context_die->die_tag == DW_TAG_union_type));
17335 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
17336 whether or not to treat a DIE in this context as a declaration. */
17338 static inline int
17339 class_or_namespace_scope_p (dw_die_ref context_die)
17341 return (class_scope_p (context_die)
17342 || (context_die && context_die->die_tag == DW_TAG_namespace));
17345 /* Many forms of DIEs require a "type description" attribute. This
17346 routine locates the proper "type descriptor" die for the type given
17347 by 'type' plus any additional qualifiers given by 'cv_quals', and
17348 adds a DW_AT_type attribute below the given die. */
17350 static void
17351 add_type_attribute (dw_die_ref object_die, tree type, int cv_quals,
17352 dw_die_ref context_die)
17354 enum tree_code code = TREE_CODE (type);
17355 dw_die_ref type_die = NULL;
17357 /* ??? If this type is an unnamed subrange type of an integral, floating-point
17358 or fixed-point type, use the inner type. This is because we have no
17359 support for unnamed types in base_type_die. This can happen if this is
17360 an Ada subrange type. Correct solution is emit a subrange type die. */
17361 if ((code == INTEGER_TYPE || code == REAL_TYPE || code == FIXED_POINT_TYPE)
17362 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
17363 type = TREE_TYPE (type), code = TREE_CODE (type);
17365 if (code == ERROR_MARK
17366 /* Handle a special case. For functions whose return type is void, we
17367 generate *no* type attribute. (Note that no object may have type
17368 `void', so this only applies to function return types). */
17369 || code == VOID_TYPE)
17370 return;
17372 type_die = modified_type_die (type,
17373 cv_quals | TYPE_QUALS_NO_ADDR_SPACE (type),
17374 context_die);
17376 if (type_die != NULL)
17377 add_AT_die_ref (object_die, DW_AT_type, type_die);
17380 /* Given an object die, add the calling convention attribute for the
17381 function call type. */
17382 static void
17383 add_calling_convention_attribute (dw_die_ref subr_die, tree decl)
17385 enum dwarf_calling_convention value = DW_CC_normal;
17387 value = ((enum dwarf_calling_convention)
17388 targetm.dwarf_calling_convention (TREE_TYPE (decl)));
17390 if (is_fortran ()
17391 && !strcmp (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)), "MAIN__"))
17393 /* DWARF 2 doesn't provide a way to identify a program's source-level
17394 entry point. DW_AT_calling_convention attributes are only meant
17395 to describe functions' calling conventions. However, lacking a
17396 better way to signal the Fortran main program, we used this for
17397 a long time, following existing custom. Now, DWARF 4 has
17398 DW_AT_main_subprogram, which we add below, but some tools still
17399 rely on the old way, which we thus keep. */
17400 value = DW_CC_program;
17402 if (dwarf_version >= 4 || !dwarf_strict)
17403 add_AT_flag (subr_die, DW_AT_main_subprogram, 1);
17406 /* Only add the attribute if the backend requests it, and
17407 is not DW_CC_normal. */
17408 if (value && (value != DW_CC_normal))
17409 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
17412 /* Given a tree pointer to a struct, class, union, or enum type node, return
17413 a pointer to the (string) tag name for the given type, or zero if the type
17414 was declared without a tag. */
17416 static const char *
17417 type_tag (const_tree type)
17419 const char *name = 0;
17421 if (TYPE_NAME (type) != 0)
17423 tree t = 0;
17425 /* Find the IDENTIFIER_NODE for the type name. */
17426 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE
17427 && !TYPE_NAMELESS (type))
17428 t = TYPE_NAME (type);
17430 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
17431 a TYPE_DECL node, regardless of whether or not a `typedef' was
17432 involved. */
17433 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
17434 && ! DECL_IGNORED_P (TYPE_NAME (type)))
17436 /* We want to be extra verbose. Don't call dwarf_name if
17437 DECL_NAME isn't set. The default hook for decl_printable_name
17438 doesn't like that, and in this context it's correct to return
17439 0, instead of "<anonymous>" or the like. */
17440 if (DECL_NAME (TYPE_NAME (type))
17441 && !DECL_NAMELESS (TYPE_NAME (type)))
17442 name = lang_hooks.dwarf_name (TYPE_NAME (type), 2);
17445 /* Now get the name as a string, or invent one. */
17446 if (!name && t != 0)
17447 name = IDENTIFIER_POINTER (t);
17450 return (name == 0 || *name == '\0') ? 0 : name;
17453 /* Return the type associated with a data member, make a special check
17454 for bit field types. */
17456 static inline tree
17457 member_declared_type (const_tree member)
17459 return (DECL_BIT_FIELD_TYPE (member)
17460 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
17463 /* Get the decl's label, as described by its RTL. This may be different
17464 from the DECL_NAME name used in the source file. */
17466 #if 0
17467 static const char *
17468 decl_start_label (tree decl)
17470 rtx x;
17471 const char *fnname;
17473 x = DECL_RTL (decl);
17474 gcc_assert (MEM_P (x));
17476 x = XEXP (x, 0);
17477 gcc_assert (GET_CODE (x) == SYMBOL_REF);
17479 fnname = XSTR (x, 0);
17480 return fnname;
17482 #endif
17484 /* These routines generate the internal representation of the DIE's for
17485 the compilation unit. Debugging information is collected by walking
17486 the declaration trees passed in from dwarf2out_decl(). */
17488 static void
17489 gen_array_type_die (tree type, dw_die_ref context_die)
17491 dw_die_ref scope_die = scope_die_for (type, context_die);
17492 dw_die_ref array_die;
17494 /* GNU compilers represent multidimensional array types as sequences of one
17495 dimensional array types whose element types are themselves array types.
17496 We sometimes squish that down to a single array_type DIE with multiple
17497 subscripts in the Dwarf debugging info. The draft Dwarf specification
17498 say that we are allowed to do this kind of compression in C, because
17499 there is no difference between an array of arrays and a multidimensional
17500 array. We don't do this for Ada to remain as close as possible to the
17501 actual representation, which is especially important against the language
17502 flexibilty wrt arrays of variable size. */
17504 bool collapse_nested_arrays = !is_ada ();
17505 tree element_type;
17507 /* Emit DW_TAG_string_type for Fortran character types (with kind 1 only, as
17508 DW_TAG_string_type doesn't have DW_AT_type attribute). */
17509 if (TYPE_STRING_FLAG (type)
17510 && TREE_CODE (type) == ARRAY_TYPE
17511 && is_fortran ()
17512 && TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (char_type_node))
17514 HOST_WIDE_INT size;
17516 array_die = new_die (DW_TAG_string_type, scope_die, type);
17517 add_name_attribute (array_die, type_tag (type));
17518 equate_type_number_to_die (type, array_die);
17519 size = int_size_in_bytes (type);
17520 if (size >= 0)
17521 add_AT_unsigned (array_die, DW_AT_byte_size, size);
17522 else if (TYPE_DOMAIN (type) != NULL_TREE
17523 && TYPE_MAX_VALUE (TYPE_DOMAIN (type)) != NULL_TREE
17524 && DECL_P (TYPE_MAX_VALUE (TYPE_DOMAIN (type))))
17526 tree szdecl = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
17527 dw_loc_list_ref loc = loc_list_from_tree (szdecl, 2, NULL);
17529 size = int_size_in_bytes (TREE_TYPE (szdecl));
17530 if (loc && size > 0)
17532 add_AT_location_description (array_die, DW_AT_string_length, loc);
17533 if (size != DWARF2_ADDR_SIZE)
17534 add_AT_unsigned (array_die, DW_AT_byte_size, size);
17537 return;
17540 array_die = new_die (DW_TAG_array_type, scope_die, type);
17541 add_name_attribute (array_die, type_tag (type));
17542 equate_type_number_to_die (type, array_die);
17544 if (TREE_CODE (type) == VECTOR_TYPE)
17545 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
17547 /* For Fortran multidimensional arrays use DW_ORD_col_major ordering. */
17548 if (is_fortran ()
17549 && TREE_CODE (type) == ARRAY_TYPE
17550 && TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE
17551 && !TYPE_STRING_FLAG (TREE_TYPE (type)))
17552 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
17554 #if 0
17555 /* We default the array ordering. SDB will probably do
17556 the right things even if DW_AT_ordering is not present. It's not even
17557 an issue until we start to get into multidimensional arrays anyway. If
17558 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
17559 then we'll have to put the DW_AT_ordering attribute back in. (But if
17560 and when we find out that we need to put these in, we will only do so
17561 for multidimensional arrays. */
17562 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
17563 #endif
17565 if (TREE_CODE (type) == VECTOR_TYPE)
17567 /* For VECTOR_TYPEs we use an array die with appropriate bounds. */
17568 dw_die_ref subrange_die = new_die (DW_TAG_subrange_type, array_die, NULL);
17569 add_bound_info (subrange_die, DW_AT_lower_bound, size_zero_node, NULL);
17570 add_bound_info (subrange_die, DW_AT_upper_bound,
17571 size_int (TYPE_VECTOR_SUBPARTS (type) - 1), NULL);
17573 else
17574 add_subscript_info (array_die, type, collapse_nested_arrays);
17576 /* Add representation of the type of the elements of this array type and
17577 emit the corresponding DIE if we haven't done it already. */
17578 element_type = TREE_TYPE (type);
17579 if (collapse_nested_arrays)
17580 while (TREE_CODE (element_type) == ARRAY_TYPE)
17582 if (TYPE_STRING_FLAG (element_type) && is_fortran ())
17583 break;
17584 element_type = TREE_TYPE (element_type);
17587 add_type_attribute (array_die, element_type, TYPE_UNQUALIFIED, context_die);
17589 add_gnat_descriptive_type_attribute (array_die, type, context_die);
17590 if (TYPE_ARTIFICIAL (type))
17591 add_AT_flag (array_die, DW_AT_artificial, 1);
17593 if (get_AT (array_die, DW_AT_name))
17594 add_pubtype (type, array_die);
17597 /* This routine generates DIE for array with hidden descriptor, details
17598 are filled into *info by a langhook. */
17600 static void
17601 gen_descr_array_type_die (tree type, struct array_descr_info *info,
17602 dw_die_ref context_die)
17604 const dw_die_ref scope_die = scope_die_for (type, context_die);
17605 const dw_die_ref array_die = new_die (DW_TAG_array_type, scope_die, type);
17606 const struct loc_descr_context context = { type, info->base_decl };
17607 int dim;
17609 add_name_attribute (array_die, type_tag (type));
17610 equate_type_number_to_die (type, array_die);
17612 if (info->ndimensions > 1)
17613 switch (info->ordering)
17615 case array_descr_ordering_row_major:
17616 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
17617 break;
17618 case array_descr_ordering_column_major:
17619 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_col_major);
17620 break;
17621 default:
17622 break;
17625 if (dwarf_version >= 3 || !dwarf_strict)
17627 if (info->data_location)
17628 add_scalar_info (array_die, DW_AT_data_location, info->data_location,
17629 dw_scalar_form_exprloc, &context);
17630 if (info->associated)
17631 add_scalar_info (array_die, DW_AT_associated, info->associated,
17632 dw_scalar_form_constant
17633 | dw_scalar_form_exprloc
17634 | dw_scalar_form_reference, &context);
17635 if (info->allocated)
17636 add_scalar_info (array_die, DW_AT_allocated, info->allocated,
17637 dw_scalar_form_constant
17638 | dw_scalar_form_exprloc
17639 | dw_scalar_form_reference, &context);
17642 add_gnat_descriptive_type_attribute (array_die, type, context_die);
17644 for (dim = 0; dim < info->ndimensions; dim++)
17646 dw_die_ref subrange_die
17647 = new_die (DW_TAG_subrange_type, array_die, NULL);
17649 if (info->dimen[dim].bounds_type)
17650 add_type_attribute (subrange_die,
17651 info->dimen[dim].bounds_type, 0,
17652 context_die);
17653 if (info->dimen[dim].lower_bound)
17654 add_bound_info (subrange_die, DW_AT_lower_bound,
17655 info->dimen[dim].lower_bound, &context);
17656 if (info->dimen[dim].upper_bound)
17657 add_bound_info (subrange_die, DW_AT_upper_bound,
17658 info->dimen[dim].upper_bound, &context);
17659 if ((dwarf_version >= 3 || !dwarf_strict) && info->dimen[dim].stride)
17660 add_scalar_info (subrange_die, DW_AT_byte_stride,
17661 info->dimen[dim].stride,
17662 dw_scalar_form_constant
17663 | dw_scalar_form_exprloc
17664 | dw_scalar_form_reference,
17665 &context);
17668 gen_type_die (info->element_type, context_die);
17669 add_type_attribute (array_die, info->element_type, TYPE_UNQUALIFIED,
17670 context_die);
17672 if (get_AT (array_die, DW_AT_name))
17673 add_pubtype (type, array_die);
17676 #if 0
17677 static void
17678 gen_entry_point_die (tree decl, dw_die_ref context_die)
17680 tree origin = decl_ultimate_origin (decl);
17681 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
17683 if (origin != NULL)
17684 add_abstract_origin_attribute (decl_die, origin);
17685 else
17687 add_name_and_src_coords_attributes (decl_die, decl);
17688 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
17689 TYPE_UNQUALIFIED, context_die);
17692 if (DECL_ABSTRACT_P (decl))
17693 equate_decl_number_to_die (decl, decl_die);
17694 else
17695 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
17697 #endif
17699 /* Walk through the list of incomplete types again, trying once more to
17700 emit full debugging info for them. */
17702 static void
17703 retry_incomplete_types (void)
17705 int i;
17707 for (i = vec_safe_length (incomplete_types) - 1; i >= 0; i--)
17708 if (should_emit_struct_debug ((*incomplete_types)[i], DINFO_USAGE_DIR_USE))
17709 gen_type_die ((*incomplete_types)[i], comp_unit_die ());
17712 /* Determine what tag to use for a record type. */
17714 static enum dwarf_tag
17715 record_type_tag (tree type)
17717 if (! lang_hooks.types.classify_record)
17718 return DW_TAG_structure_type;
17720 switch (lang_hooks.types.classify_record (type))
17722 case RECORD_IS_STRUCT:
17723 return DW_TAG_structure_type;
17725 case RECORD_IS_CLASS:
17726 return DW_TAG_class_type;
17728 case RECORD_IS_INTERFACE:
17729 if (dwarf_version >= 3 || !dwarf_strict)
17730 return DW_TAG_interface_type;
17731 return DW_TAG_structure_type;
17733 default:
17734 gcc_unreachable ();
17738 /* Generate a DIE to represent an enumeration type. Note that these DIEs
17739 include all of the information about the enumeration values also. Each
17740 enumerated type name/value is listed as a child of the enumerated type
17741 DIE. */
17743 static dw_die_ref
17744 gen_enumeration_type_die (tree type, dw_die_ref context_die)
17746 dw_die_ref type_die = lookup_type_die (type);
17748 if (type_die == NULL)
17750 type_die = new_die (DW_TAG_enumeration_type,
17751 scope_die_for (type, context_die), type);
17752 equate_type_number_to_die (type, type_die);
17753 add_name_attribute (type_die, type_tag (type));
17754 if (dwarf_version >= 4 || !dwarf_strict)
17756 if (ENUM_IS_SCOPED (type))
17757 add_AT_flag (type_die, DW_AT_enum_class, 1);
17758 if (ENUM_IS_OPAQUE (type))
17759 add_AT_flag (type_die, DW_AT_declaration, 1);
17762 else if (! TYPE_SIZE (type))
17763 return type_die;
17764 else
17765 remove_AT (type_die, DW_AT_declaration);
17767 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
17768 given enum type is incomplete, do not generate the DW_AT_byte_size
17769 attribute or the DW_AT_element_list attribute. */
17770 if (TYPE_SIZE (type))
17772 tree link;
17774 TREE_ASM_WRITTEN (type) = 1;
17775 add_byte_size_attribute (type_die, type);
17776 if (dwarf_version >= 3 || !dwarf_strict)
17778 tree underlying = lang_hooks.types.enum_underlying_base_type (type);
17779 add_type_attribute (type_die, underlying, TYPE_UNQUALIFIED,
17780 context_die);
17782 if (TYPE_STUB_DECL (type) != NULL_TREE)
17784 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
17785 add_accessibility_attribute (type_die, TYPE_STUB_DECL (type));
17788 /* If the first reference to this type was as the return type of an
17789 inline function, then it may not have a parent. Fix this now. */
17790 if (type_die->die_parent == NULL)
17791 add_child_die (scope_die_for (type, context_die), type_die);
17793 for (link = TYPE_VALUES (type);
17794 link != NULL; link = TREE_CHAIN (link))
17796 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
17797 tree value = TREE_VALUE (link);
17799 add_name_attribute (enum_die,
17800 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
17802 if (TREE_CODE (value) == CONST_DECL)
17803 value = DECL_INITIAL (value);
17805 if (simple_type_size_in_bits (TREE_TYPE (value))
17806 <= HOST_BITS_PER_WIDE_INT || tree_fits_shwi_p (value))
17808 /* For constant forms created by add_AT_unsigned DWARF
17809 consumers (GDB, elfutils, etc.) always zero extend
17810 the value. Only when the actual value is negative
17811 do we need to use add_AT_int to generate a constant
17812 form that can represent negative values. */
17813 HOST_WIDE_INT val = TREE_INT_CST_LOW (value);
17814 if (TYPE_UNSIGNED (TREE_TYPE (value)) || val >= 0)
17815 add_AT_unsigned (enum_die, DW_AT_const_value,
17816 (unsigned HOST_WIDE_INT) val);
17817 else
17818 add_AT_int (enum_die, DW_AT_const_value, val);
17820 else
17821 /* Enumeration constants may be wider than HOST_WIDE_INT. Handle
17822 that here. TODO: This should be re-worked to use correct
17823 signed/unsigned double tags for all cases. */
17824 add_AT_wide (enum_die, DW_AT_const_value, value);
17827 add_gnat_descriptive_type_attribute (type_die, type, context_die);
17828 if (TYPE_ARTIFICIAL (type))
17829 add_AT_flag (type_die, DW_AT_artificial, 1);
17831 else
17832 add_AT_flag (type_die, DW_AT_declaration, 1);
17834 add_pubtype (type, type_die);
17836 return type_die;
17839 /* Generate a DIE to represent either a real live formal parameter decl or to
17840 represent just the type of some formal parameter position in some function
17841 type.
17843 Note that this routine is a bit unusual because its argument may be a
17844 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
17845 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
17846 node. If it's the former then this function is being called to output a
17847 DIE to represent a formal parameter object (or some inlining thereof). If
17848 it's the latter, then this function is only being called to output a
17849 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
17850 argument type of some subprogram type.
17851 If EMIT_NAME_P is true, name and source coordinate attributes
17852 are emitted. */
17854 static dw_die_ref
17855 gen_formal_parameter_die (tree node, tree origin, bool emit_name_p,
17856 dw_die_ref context_die)
17858 tree node_or_origin = node ? node : origin;
17859 tree ultimate_origin;
17860 dw_die_ref parm_die
17861 = new_die (DW_TAG_formal_parameter, context_die, node);
17863 switch (TREE_CODE_CLASS (TREE_CODE (node_or_origin)))
17865 case tcc_declaration:
17866 ultimate_origin = decl_ultimate_origin (node_or_origin);
17867 if (node || ultimate_origin)
17868 origin = ultimate_origin;
17869 if (origin != NULL)
17870 add_abstract_origin_attribute (parm_die, origin);
17871 else if (emit_name_p)
17872 add_name_and_src_coords_attributes (parm_die, node);
17873 if (origin == NULL
17874 || (! DECL_ABSTRACT_P (node_or_origin)
17875 && variably_modified_type_p (TREE_TYPE (node_or_origin),
17876 decl_function_context
17877 (node_or_origin))))
17879 tree type = TREE_TYPE (node_or_origin);
17880 if (decl_by_reference_p (node_or_origin))
17881 add_type_attribute (parm_die, TREE_TYPE (type),
17882 TYPE_UNQUALIFIED, context_die);
17883 else
17884 add_type_attribute (parm_die, type,
17885 decl_quals (node_or_origin),
17886 context_die);
17888 if (origin == NULL && DECL_ARTIFICIAL (node))
17889 add_AT_flag (parm_die, DW_AT_artificial, 1);
17891 if (node && node != origin)
17892 equate_decl_number_to_die (node, parm_die);
17893 if (! DECL_ABSTRACT_P (node_or_origin))
17894 add_location_or_const_value_attribute (parm_die, node_or_origin,
17895 node == NULL, DW_AT_location);
17897 break;
17899 case tcc_type:
17900 /* We were called with some kind of a ..._TYPE node. */
17901 add_type_attribute (parm_die, node_or_origin, TYPE_UNQUALIFIED,
17902 context_die);
17903 break;
17905 default:
17906 gcc_unreachable ();
17909 return parm_die;
17912 /* Generate and return a DW_TAG_GNU_formal_parameter_pack. Also generate
17913 children DW_TAG_formal_parameter DIEs representing the arguments of the
17914 parameter pack.
17916 PARM_PACK must be a function parameter pack.
17917 PACK_ARG is the first argument of the parameter pack. Its TREE_CHAIN
17918 must point to the subsequent arguments of the function PACK_ARG belongs to.
17919 SUBR_DIE is the DIE of the function PACK_ARG belongs to.
17920 If NEXT_ARG is non NULL, *NEXT_ARG is set to the function argument
17921 following the last one for which a DIE was generated. */
17923 static dw_die_ref
17924 gen_formal_parameter_pack_die (tree parm_pack,
17925 tree pack_arg,
17926 dw_die_ref subr_die,
17927 tree *next_arg)
17929 tree arg;
17930 dw_die_ref parm_pack_die;
17932 gcc_assert (parm_pack
17933 && lang_hooks.function_parameter_pack_p (parm_pack)
17934 && subr_die);
17936 parm_pack_die = new_die (DW_TAG_GNU_formal_parameter_pack, subr_die, parm_pack);
17937 add_src_coords_attributes (parm_pack_die, parm_pack);
17939 for (arg = pack_arg; arg; arg = DECL_CHAIN (arg))
17941 if (! lang_hooks.decls.function_parm_expanded_from_pack_p (arg,
17942 parm_pack))
17943 break;
17944 gen_formal_parameter_die (arg, NULL,
17945 false /* Don't emit name attribute. */,
17946 parm_pack_die);
17948 if (next_arg)
17949 *next_arg = arg;
17950 return parm_pack_die;
17953 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
17954 at the end of an (ANSI prototyped) formal parameters list. */
17956 static void
17957 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
17959 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
17962 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
17963 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
17964 parameters as specified in some function type specification (except for
17965 those which appear as part of a function *definition*). */
17967 static void
17968 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
17970 tree link;
17971 tree formal_type = NULL;
17972 tree first_parm_type;
17973 tree arg;
17975 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
17977 arg = DECL_ARGUMENTS (function_or_method_type);
17978 function_or_method_type = TREE_TYPE (function_or_method_type);
17980 else
17981 arg = NULL_TREE;
17983 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
17985 /* Make our first pass over the list of formal parameter types and output a
17986 DW_TAG_formal_parameter DIE for each one. */
17987 for (link = first_parm_type; link; )
17989 dw_die_ref parm_die;
17991 formal_type = TREE_VALUE (link);
17992 if (formal_type == void_type_node)
17993 break;
17995 /* Output a (nameless) DIE to represent the formal parameter itself. */
17996 if (!POINTER_BOUNDS_TYPE_P (formal_type))
17998 parm_die = gen_formal_parameter_die (formal_type, NULL,
17999 true /* Emit name attribute. */,
18000 context_die);
18001 if (TREE_CODE (function_or_method_type) == METHOD_TYPE
18002 && link == first_parm_type)
18004 add_AT_flag (parm_die, DW_AT_artificial, 1);
18005 if (dwarf_version >= 3 || !dwarf_strict)
18006 add_AT_die_ref (context_die, DW_AT_object_pointer, parm_die);
18008 else if (arg && DECL_ARTIFICIAL (arg))
18009 add_AT_flag (parm_die, DW_AT_artificial, 1);
18012 link = TREE_CHAIN (link);
18013 if (arg)
18014 arg = DECL_CHAIN (arg);
18017 /* If this function type has an ellipsis, add a
18018 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
18019 if (formal_type != void_type_node)
18020 gen_unspecified_parameters_die (function_or_method_type, context_die);
18022 /* Make our second (and final) pass over the list of formal parameter types
18023 and output DIEs to represent those types (as necessary). */
18024 for (link = TYPE_ARG_TYPES (function_or_method_type);
18025 link && TREE_VALUE (link);
18026 link = TREE_CHAIN (link))
18027 gen_type_die (TREE_VALUE (link), context_die);
18030 /* We want to generate the DIE for TYPE so that we can generate the
18031 die for MEMBER, which has been defined; we will need to refer back
18032 to the member declaration nested within TYPE. If we're trying to
18033 generate minimal debug info for TYPE, processing TYPE won't do the
18034 trick; we need to attach the member declaration by hand. */
18036 static void
18037 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
18039 gen_type_die (type, context_die);
18041 /* If we're trying to avoid duplicate debug info, we may not have
18042 emitted the member decl for this function. Emit it now. */
18043 if (TYPE_STUB_DECL (type)
18044 && TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
18045 && ! lookup_decl_die (member))
18047 dw_die_ref type_die;
18048 gcc_assert (!decl_ultimate_origin (member));
18050 push_decl_scope (type);
18051 type_die = lookup_type_die_strip_naming_typedef (type);
18052 if (TREE_CODE (member) == FUNCTION_DECL)
18053 gen_subprogram_die (member, type_die);
18054 else if (TREE_CODE (member) == FIELD_DECL)
18056 /* Ignore the nameless fields that are used to skip bits but handle
18057 C++ anonymous unions and structs. */
18058 if (DECL_NAME (member) != NULL_TREE
18059 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
18060 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
18062 gen_type_die (member_declared_type (member), type_die);
18063 gen_field_die (member, type_die);
18066 else
18067 gen_variable_die (member, NULL_TREE, type_die);
18069 pop_decl_scope ();
18073 /* Forward declare these functions, because they are mutually recursive
18074 with their set_block_* pairing functions. */
18075 static void set_decl_origin_self (tree);
18076 static void set_decl_abstract_flags (tree, vec<tree> &);
18078 /* Given a pointer to some BLOCK node, if the BLOCK_ABSTRACT_ORIGIN for the
18079 given BLOCK node is NULL, set the BLOCK_ABSTRACT_ORIGIN for the node so
18080 that it points to the node itself, thus indicating that the node is its
18081 own (abstract) origin. Additionally, if the BLOCK_ABSTRACT_ORIGIN for
18082 the given node is NULL, recursively descend the decl/block tree which
18083 it is the root of, and for each other ..._DECL or BLOCK node contained
18084 therein whose DECL_ABSTRACT_ORIGINs or BLOCK_ABSTRACT_ORIGINs are also
18085 still NULL, set *their* DECL_ABSTRACT_ORIGIN or BLOCK_ABSTRACT_ORIGIN
18086 values to point to themselves. */
18088 static void
18089 set_block_origin_self (tree stmt)
18091 if (BLOCK_ABSTRACT_ORIGIN (stmt) == NULL_TREE)
18093 BLOCK_ABSTRACT_ORIGIN (stmt) = stmt;
18096 tree local_decl;
18098 for (local_decl = BLOCK_VARS (stmt);
18099 local_decl != NULL_TREE;
18100 local_decl = DECL_CHAIN (local_decl))
18101 /* Do not recurse on nested functions since the inlining status
18102 of parent and child can be different as per the DWARF spec. */
18103 if (TREE_CODE (local_decl) != FUNCTION_DECL
18104 && !DECL_EXTERNAL (local_decl))
18105 set_decl_origin_self (local_decl);
18109 tree subblock;
18111 for (subblock = BLOCK_SUBBLOCKS (stmt);
18112 subblock != NULL_TREE;
18113 subblock = BLOCK_CHAIN (subblock))
18114 set_block_origin_self (subblock); /* Recurse. */
18119 /* Given a pointer to some ..._DECL node, if the DECL_ABSTRACT_ORIGIN for
18120 the given ..._DECL node is NULL, set the DECL_ABSTRACT_ORIGIN for the
18121 node to so that it points to the node itself, thus indicating that the
18122 node represents its own (abstract) origin. Additionally, if the
18123 DECL_ABSTRACT_ORIGIN for the given node is NULL, recursively descend
18124 the decl/block tree of which the given node is the root of, and for
18125 each other ..._DECL or BLOCK node contained therein whose
18126 DECL_ABSTRACT_ORIGINs or BLOCK_ABSTRACT_ORIGINs are also still NULL,
18127 set *their* DECL_ABSTRACT_ORIGIN or BLOCK_ABSTRACT_ORIGIN values to
18128 point to themselves. */
18130 static void
18131 set_decl_origin_self (tree decl)
18133 if (DECL_ABSTRACT_ORIGIN (decl) == NULL_TREE)
18135 DECL_ABSTRACT_ORIGIN (decl) = decl;
18136 if (TREE_CODE (decl) == FUNCTION_DECL)
18138 tree arg;
18140 for (arg = DECL_ARGUMENTS (decl); arg; arg = DECL_CHAIN (arg))
18141 DECL_ABSTRACT_ORIGIN (arg) = arg;
18142 if (DECL_INITIAL (decl) != NULL_TREE
18143 && DECL_INITIAL (decl) != error_mark_node)
18144 set_block_origin_self (DECL_INITIAL (decl));
18149 /* Given a pointer to some BLOCK node, set the BLOCK_ABSTRACT flag to 1
18150 and if it wasn't 1 before, push it to abstract_vec vector.
18151 For all local decls and all local sub-blocks (recursively) do it
18152 too. */
18154 static void
18155 set_block_abstract_flags (tree stmt, vec<tree> &abstract_vec)
18157 tree local_decl;
18158 tree subblock;
18159 unsigned int i;
18161 if (!BLOCK_ABSTRACT (stmt))
18163 abstract_vec.safe_push (stmt);
18164 BLOCK_ABSTRACT (stmt) = 1;
18167 for (local_decl = BLOCK_VARS (stmt);
18168 local_decl != NULL_TREE;
18169 local_decl = DECL_CHAIN (local_decl))
18170 if (! DECL_EXTERNAL (local_decl))
18171 set_decl_abstract_flags (local_decl, abstract_vec);
18173 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (stmt); i++)
18175 local_decl = BLOCK_NONLOCALIZED_VAR (stmt, i);
18176 if ((TREE_CODE (local_decl) == VAR_DECL && !TREE_STATIC (local_decl))
18177 || TREE_CODE (local_decl) == PARM_DECL)
18178 set_decl_abstract_flags (local_decl, abstract_vec);
18181 for (subblock = BLOCK_SUBBLOCKS (stmt);
18182 subblock != NULL_TREE;
18183 subblock = BLOCK_CHAIN (subblock))
18184 set_block_abstract_flags (subblock, abstract_vec);
18187 /* Given a pointer to some ..._DECL node, set DECL_ABSTRACT_P flag on it
18188 to 1 and if it wasn't 1 before, push to abstract_vec vector.
18189 In the case where the decl is a FUNCTION_DECL also set the abstract
18190 flags for all of the parameters, local vars, local
18191 blocks and sub-blocks (recursively). */
18193 static void
18194 set_decl_abstract_flags (tree decl, vec<tree> &abstract_vec)
18196 if (!DECL_ABSTRACT_P (decl))
18198 abstract_vec.safe_push (decl);
18199 DECL_ABSTRACT_P (decl) = 1;
18202 if (TREE_CODE (decl) == FUNCTION_DECL)
18204 tree arg;
18206 for (arg = DECL_ARGUMENTS (decl); arg; arg = DECL_CHAIN (arg))
18207 if (!DECL_ABSTRACT_P (arg))
18209 abstract_vec.safe_push (arg);
18210 DECL_ABSTRACT_P (arg) = 1;
18212 if (DECL_INITIAL (decl) != NULL_TREE
18213 && DECL_INITIAL (decl) != error_mark_node)
18214 set_block_abstract_flags (DECL_INITIAL (decl), abstract_vec);
18218 /* Generate the DWARF2 info for the "abstract" instance of a function which we
18219 may later generate inlined and/or out-of-line instances of. */
18221 static void
18222 dwarf2out_abstract_function (tree decl)
18224 dw_die_ref old_die;
18225 tree save_fn;
18226 tree context;
18227 hash_table<decl_loc_hasher> *old_decl_loc_table;
18228 hash_table<dw_loc_list_hasher> *old_cached_dw_loc_list_table;
18229 int old_call_site_count, old_tail_call_site_count;
18230 struct call_arg_loc_node *old_call_arg_locations;
18232 /* Make sure we have the actual abstract inline, not a clone. */
18233 decl = DECL_ORIGIN (decl);
18235 old_die = lookup_decl_die (decl);
18236 if (old_die && get_AT (old_die, DW_AT_inline))
18237 /* We've already generated the abstract instance. */
18238 return;
18240 /* We can be called while recursively when seeing block defining inlined subroutine
18241 DIE. Be sure to not clobber the outer location table nor use it or we would
18242 get locations in abstract instantces. */
18243 old_decl_loc_table = decl_loc_table;
18244 decl_loc_table = NULL;
18245 old_cached_dw_loc_list_table = cached_dw_loc_list_table;
18246 cached_dw_loc_list_table = NULL;
18247 old_call_arg_locations = call_arg_locations;
18248 call_arg_locations = NULL;
18249 old_call_site_count = call_site_count;
18250 call_site_count = -1;
18251 old_tail_call_site_count = tail_call_site_count;
18252 tail_call_site_count = -1;
18254 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
18255 we don't get confused by DECL_ABSTRACT_P. */
18256 if (debug_info_level > DINFO_LEVEL_TERSE)
18258 context = decl_class_context (decl);
18259 if (context)
18260 gen_type_die_for_member
18261 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die ());
18264 /* Pretend we've just finished compiling this function. */
18265 save_fn = current_function_decl;
18266 current_function_decl = decl;
18268 auto_vec<tree, 64> abstract_vec;
18269 set_decl_abstract_flags (decl, abstract_vec);
18270 dwarf2out_decl (decl);
18271 unsigned int i;
18272 tree t;
18273 FOR_EACH_VEC_ELT (abstract_vec, i, t)
18274 if (TREE_CODE (t) == BLOCK)
18275 BLOCK_ABSTRACT (t) = 0;
18276 else
18277 DECL_ABSTRACT_P (t) = 0;
18279 current_function_decl = save_fn;
18280 decl_loc_table = old_decl_loc_table;
18281 cached_dw_loc_list_table = old_cached_dw_loc_list_table;
18282 call_arg_locations = old_call_arg_locations;
18283 call_site_count = old_call_site_count;
18284 tail_call_site_count = old_tail_call_site_count;
18287 /* Helper function of premark_used_types() which gets called through
18288 htab_traverse.
18290 Marks the DIE of a given type in *SLOT as perennial, so it never gets
18291 marked as unused by prune_unused_types. */
18293 bool
18294 premark_used_types_helper (tree const &type, void *)
18296 dw_die_ref die;
18298 die = lookup_type_die (type);
18299 if (die != NULL)
18300 die->die_perennial_p = 1;
18301 return true;
18304 /* Helper function of premark_types_used_by_global_vars which gets called
18305 through htab_traverse.
18307 Marks the DIE of a given type in *SLOT as perennial, so it never gets
18308 marked as unused by prune_unused_types. The DIE of the type is marked
18309 only if the global variable using the type will actually be emitted. */
18312 premark_types_used_by_global_vars_helper (types_used_by_vars_entry **slot,
18313 void *)
18315 struct types_used_by_vars_entry *entry;
18316 dw_die_ref die;
18318 entry = (struct types_used_by_vars_entry *) *slot;
18319 gcc_assert (entry->type != NULL
18320 && entry->var_decl != NULL);
18321 die = lookup_type_die (entry->type);
18322 if (die)
18324 /* Ask cgraph if the global variable really is to be emitted.
18325 If yes, then we'll keep the DIE of ENTRY->TYPE. */
18326 varpool_node *node = varpool_node::get (entry->var_decl);
18327 if (node && node->definition)
18329 die->die_perennial_p = 1;
18330 /* Keep the parent DIEs as well. */
18331 while ((die = die->die_parent) && die->die_perennial_p == 0)
18332 die->die_perennial_p = 1;
18335 return 1;
18338 /* Mark all members of used_types_hash as perennial. */
18340 static void
18341 premark_used_types (struct function *fun)
18343 if (fun && fun->used_types_hash)
18344 fun->used_types_hash->traverse<void *, premark_used_types_helper> (NULL);
18347 /* Mark all members of types_used_by_vars_entry as perennial. */
18349 static void
18350 premark_types_used_by_global_vars (void)
18352 if (types_used_by_vars_hash)
18353 types_used_by_vars_hash
18354 ->traverse<void *, premark_types_used_by_global_vars_helper> (NULL);
18357 /* Generate a DW_TAG_GNU_call_site DIE in function DECL under SUBR_DIE
18358 for CA_LOC call arg loc node. */
18360 static dw_die_ref
18361 gen_call_site_die (tree decl, dw_die_ref subr_die,
18362 struct call_arg_loc_node *ca_loc)
18364 dw_die_ref stmt_die = NULL, die;
18365 tree block = ca_loc->block;
18367 while (block
18368 && block != DECL_INITIAL (decl)
18369 && TREE_CODE (block) == BLOCK)
18371 if (block_map.length () > BLOCK_NUMBER (block))
18372 stmt_die = block_map[BLOCK_NUMBER (block)];
18373 if (stmt_die)
18374 break;
18375 block = BLOCK_SUPERCONTEXT (block);
18377 if (stmt_die == NULL)
18378 stmt_die = subr_die;
18379 die = new_die (DW_TAG_GNU_call_site, stmt_die, NULL_TREE);
18380 add_AT_lbl_id (die, DW_AT_low_pc, ca_loc->label);
18381 if (ca_loc->tail_call_p)
18382 add_AT_flag (die, DW_AT_GNU_tail_call, 1);
18383 if (ca_loc->symbol_ref)
18385 dw_die_ref tdie = lookup_decl_die (SYMBOL_REF_DECL (ca_loc->symbol_ref));
18386 if (tdie)
18387 add_AT_die_ref (die, DW_AT_abstract_origin, tdie);
18388 else
18389 add_AT_addr (die, DW_AT_abstract_origin, ca_loc->symbol_ref, false);
18391 return die;
18394 /* Generate a DIE to represent a declared function (either file-scope or
18395 block-local). */
18397 static void
18398 gen_subprogram_die (tree decl, dw_die_ref context_die)
18400 tree origin = decl_ultimate_origin (decl);
18401 dw_die_ref subr_die;
18402 tree outer_scope;
18403 dw_die_ref old_die = lookup_decl_die (decl);
18404 int declaration = (current_function_decl != decl
18405 || class_or_namespace_scope_p (context_die));
18407 premark_used_types (DECL_STRUCT_FUNCTION (decl));
18409 /* It is possible to have both DECL_ABSTRACT_P and DECLARATION be true if we
18410 started to generate the abstract instance of an inline, decided to output
18411 its containing class, and proceeded to emit the declaration of the inline
18412 from the member list for the class. If so, DECLARATION takes priority;
18413 we'll get back to the abstract instance when done with the class. */
18415 /* The class-scope declaration DIE must be the primary DIE. */
18416 if (origin && declaration && class_or_namespace_scope_p (context_die))
18418 origin = NULL;
18419 gcc_assert (!old_die);
18422 /* Now that the C++ front end lazily declares artificial member fns, we
18423 might need to retrofit the declaration into its class. */
18424 if (!declaration && !origin && !old_die
18425 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
18426 && !class_or_namespace_scope_p (context_die)
18427 && debug_info_level > DINFO_LEVEL_TERSE)
18428 old_die = force_decl_die (decl);
18430 if (origin != NULL)
18432 gcc_assert (!declaration || local_scope_p (context_die));
18434 /* Fixup die_parent for the abstract instance of a nested
18435 inline function. */
18436 if (old_die && old_die->die_parent == NULL)
18437 add_child_die (context_die, old_die);
18439 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
18440 add_abstract_origin_attribute (subr_die, origin);
18441 /* This is where the actual code for a cloned function is.
18442 Let's emit linkage name attribute for it. This helps
18443 debuggers to e.g, set breakpoints into
18444 constructors/destructors when the user asks "break
18445 K::K". */
18446 add_linkage_name (subr_die, decl);
18448 else if (old_die)
18450 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
18451 struct dwarf_file_data * file_index = lookup_filename (s.file);
18453 if (!get_AT_flag (old_die, DW_AT_declaration)
18454 /* We can have a normal definition following an inline one in the
18455 case of redefinition of GNU C extern inlines.
18456 It seems reasonable to use AT_specification in this case. */
18457 && !get_AT (old_die, DW_AT_inline))
18459 /* Detect and ignore this case, where we are trying to output
18460 something we have already output. */
18461 return;
18464 /* If the definition comes from the same place as the declaration,
18465 maybe use the old DIE. We always want the DIE for this function
18466 that has the *_pc attributes to be under comp_unit_die so the
18467 debugger can find it. We also need to do this for abstract
18468 instances of inlines, since the spec requires the out-of-line copy
18469 to have the same parent. For local class methods, this doesn't
18470 apply; we just use the old DIE. */
18471 if ((is_cu_die (old_die->die_parent) || context_die == NULL)
18472 && (DECL_ARTIFICIAL (decl)
18473 || (get_AT_file (old_die, DW_AT_decl_file) == file_index
18474 && (get_AT_unsigned (old_die, DW_AT_decl_line)
18475 == (unsigned) s.line))))
18477 subr_die = old_die;
18479 /* Clear out the declaration attribute and the formal parameters.
18480 Do not remove all children, because it is possible that this
18481 declaration die was forced using force_decl_die(). In such
18482 cases die that forced declaration die (e.g. TAG_imported_module)
18483 is one of the children that we do not want to remove. */
18484 remove_AT (subr_die, DW_AT_declaration);
18485 remove_AT (subr_die, DW_AT_object_pointer);
18486 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
18488 else
18490 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
18491 add_AT_specification (subr_die, old_die);
18492 add_pubname (decl, subr_die);
18493 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
18494 add_AT_file (subr_die, DW_AT_decl_file, file_index);
18495 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
18496 add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
18498 /* If the prototype had an 'auto' or 'decltype(auto)' return type,
18499 emit the real type on the definition die. */
18500 if (is_cxx() && debug_info_level > DINFO_LEVEL_TERSE)
18502 dw_die_ref die = get_AT_ref (old_die, DW_AT_type);
18503 if (die == auto_die || die == decltype_auto_die)
18504 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
18505 TYPE_UNQUALIFIED, context_die);
18509 else
18511 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
18513 if (TREE_PUBLIC (decl))
18514 add_AT_flag (subr_die, DW_AT_external, 1);
18516 add_name_and_src_coords_attributes (subr_die, decl);
18517 add_pubname (decl, subr_die);
18518 if (debug_info_level > DINFO_LEVEL_TERSE)
18520 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
18521 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
18522 TYPE_UNQUALIFIED, context_die);
18525 add_pure_or_virtual_attribute (subr_die, decl);
18526 if (DECL_ARTIFICIAL (decl))
18527 add_AT_flag (subr_die, DW_AT_artificial, 1);
18529 if (TREE_THIS_VOLATILE (decl) && (dwarf_version >= 5 || !dwarf_strict))
18530 add_AT_flag (subr_die, DW_AT_noreturn, 1);
18532 add_accessibility_attribute (subr_die, decl);
18535 if (declaration)
18537 if (!old_die || !get_AT (old_die, DW_AT_inline))
18539 add_AT_flag (subr_die, DW_AT_declaration, 1);
18541 /* If this is an explicit function declaration then generate
18542 a DW_AT_explicit attribute. */
18543 if (lang_hooks.decls.function_decl_explicit_p (decl)
18544 && (dwarf_version >= 3 || !dwarf_strict))
18545 add_AT_flag (subr_die, DW_AT_explicit, 1);
18547 /* If this is a C++11 deleted special function member then generate
18548 a DW_AT_GNU_deleted attribute. */
18549 if (lang_hooks.decls.function_decl_deleted_p (decl)
18550 && (! dwarf_strict))
18551 add_AT_flag (subr_die, DW_AT_GNU_deleted, 1);
18553 /* The first time we see a member function, it is in the context of
18554 the class to which it belongs. We make sure of this by emitting
18555 the class first. The next time is the definition, which is
18556 handled above. The two may come from the same source text.
18558 Note that force_decl_die() forces function declaration die. It is
18559 later reused to represent definition. */
18560 equate_decl_number_to_die (decl, subr_die);
18563 else if (DECL_ABSTRACT_P (decl))
18565 if (DECL_DECLARED_INLINE_P (decl))
18567 if (cgraph_function_possibly_inlined_p (decl))
18568 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
18569 else
18570 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
18572 else
18574 if (cgraph_function_possibly_inlined_p (decl))
18575 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
18576 else
18577 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
18580 if (DECL_DECLARED_INLINE_P (decl)
18581 && lookup_attribute ("artificial", DECL_ATTRIBUTES (decl)))
18582 add_AT_flag (subr_die, DW_AT_artificial, 1);
18584 equate_decl_number_to_die (decl, subr_die);
18586 else if (!DECL_EXTERNAL (decl))
18588 HOST_WIDE_INT cfa_fb_offset;
18589 struct function *fun = DECL_STRUCT_FUNCTION (decl);
18591 if (!old_die || !get_AT (old_die, DW_AT_inline))
18592 equate_decl_number_to_die (decl, subr_die);
18594 gcc_checking_assert (fun);
18595 if (!flag_reorder_blocks_and_partition)
18597 dw_fde_ref fde = fun->fde;
18598 if (fde->dw_fde_begin)
18600 /* We have already generated the labels. */
18601 add_AT_low_high_pc (subr_die, fde->dw_fde_begin,
18602 fde->dw_fde_end, false);
18604 else
18606 /* Create start/end labels and add the range. */
18607 char label_id_low[MAX_ARTIFICIAL_LABEL_BYTES];
18608 char label_id_high[MAX_ARTIFICIAL_LABEL_BYTES];
18609 ASM_GENERATE_INTERNAL_LABEL (label_id_low, FUNC_BEGIN_LABEL,
18610 current_function_funcdef_no);
18611 ASM_GENERATE_INTERNAL_LABEL (label_id_high, FUNC_END_LABEL,
18612 current_function_funcdef_no);
18613 add_AT_low_high_pc (subr_die, label_id_low, label_id_high,
18614 false);
18617 #if VMS_DEBUGGING_INFO
18618 /* HP OpenVMS Industry Standard 64: DWARF Extensions
18619 Section 2.3 Prologue and Epilogue Attributes:
18620 When a breakpoint is set on entry to a function, it is generally
18621 desirable for execution to be suspended, not on the very first
18622 instruction of the function, but rather at a point after the
18623 function's frame has been set up, after any language defined local
18624 declaration processing has been completed, and before execution of
18625 the first statement of the function begins. Debuggers generally
18626 cannot properly determine where this point is. Similarly for a
18627 breakpoint set on exit from a function. The prologue and epilogue
18628 attributes allow a compiler to communicate the location(s) to use. */
18631 if (fde->dw_fde_vms_end_prologue)
18632 add_AT_vms_delta (subr_die, DW_AT_HP_prologue,
18633 fde->dw_fde_begin, fde->dw_fde_vms_end_prologue);
18635 if (fde->dw_fde_vms_begin_epilogue)
18636 add_AT_vms_delta (subr_die, DW_AT_HP_epilogue,
18637 fde->dw_fde_begin, fde->dw_fde_vms_begin_epilogue);
18639 #endif
18642 else
18644 /* Generate pubnames entries for the split function code ranges. */
18645 dw_fde_ref fde = fun->fde;
18647 if (fde->dw_fde_second_begin)
18649 if (dwarf_version >= 3 || !dwarf_strict)
18651 /* We should use ranges for non-contiguous code section
18652 addresses. Use the actual code range for the initial
18653 section, since the HOT/COLD labels might precede an
18654 alignment offset. */
18655 bool range_list_added = false;
18656 add_ranges_by_labels (subr_die, fde->dw_fde_begin,
18657 fde->dw_fde_end, &range_list_added,
18658 false);
18659 add_ranges_by_labels (subr_die, fde->dw_fde_second_begin,
18660 fde->dw_fde_second_end,
18661 &range_list_added, false);
18662 if (range_list_added)
18663 add_ranges (NULL);
18665 else
18667 /* There is no real support in DW2 for this .. so we make
18668 a work-around. First, emit the pub name for the segment
18669 containing the function label. Then make and emit a
18670 simplified subprogram DIE for the second segment with the
18671 name pre-fixed by __hot/cold_sect_of_. We use the same
18672 linkage name for the second die so that gdb will find both
18673 sections when given "b foo". */
18674 const char *name = NULL;
18675 tree decl_name = DECL_NAME (decl);
18676 dw_die_ref seg_die;
18678 /* Do the 'primary' section. */
18679 add_AT_low_high_pc (subr_die, fde->dw_fde_begin,
18680 fde->dw_fde_end, false);
18682 /* Build a minimal DIE for the secondary section. */
18683 seg_die = new_die (DW_TAG_subprogram,
18684 subr_die->die_parent, decl);
18686 if (TREE_PUBLIC (decl))
18687 add_AT_flag (seg_die, DW_AT_external, 1);
18689 if (decl_name != NULL
18690 && IDENTIFIER_POINTER (decl_name) != NULL)
18692 name = dwarf2_name (decl, 1);
18693 if (! DECL_ARTIFICIAL (decl))
18694 add_src_coords_attributes (seg_die, decl);
18696 add_linkage_name (seg_die, decl);
18698 gcc_assert (name != NULL);
18699 add_pure_or_virtual_attribute (seg_die, decl);
18700 if (DECL_ARTIFICIAL (decl))
18701 add_AT_flag (seg_die, DW_AT_artificial, 1);
18703 name = concat ("__second_sect_of_", name, NULL);
18704 add_AT_low_high_pc (seg_die, fde->dw_fde_second_begin,
18705 fde->dw_fde_second_end, false);
18706 add_name_attribute (seg_die, name);
18707 if (want_pubnames ())
18708 add_pubname_string (name, seg_die);
18711 else
18712 add_AT_low_high_pc (subr_die, fde->dw_fde_begin, fde->dw_fde_end,
18713 false);
18716 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
18718 /* We define the "frame base" as the function's CFA. This is more
18719 convenient for several reasons: (1) It's stable across the prologue
18720 and epilogue, which makes it better than just a frame pointer,
18721 (2) With dwarf3, there exists a one-byte encoding that allows us
18722 to reference the .debug_frame data by proxy, but failing that,
18723 (3) We can at least reuse the code inspection and interpretation
18724 code that determines the CFA position at various points in the
18725 function. */
18726 if (dwarf_version >= 3 && targetm.debug_unwind_info () == UI_DWARF2)
18728 dw_loc_descr_ref op = new_loc_descr (DW_OP_call_frame_cfa, 0, 0);
18729 add_AT_loc (subr_die, DW_AT_frame_base, op);
18731 else
18733 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
18734 if (list->dw_loc_next)
18735 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
18736 else
18737 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
18740 /* Compute a displacement from the "steady-state frame pointer" to
18741 the CFA. The former is what all stack slots and argument slots
18742 will reference in the rtl; the latter is what we've told the
18743 debugger about. We'll need to adjust all frame_base references
18744 by this displacement. */
18745 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
18747 if (fun->static_chain_decl)
18748 add_AT_location_description (subr_die, DW_AT_static_link,
18749 loc_list_from_tree (fun->static_chain_decl, 2, NULL));
18752 /* Generate child dies for template paramaters. */
18753 if (debug_info_level > DINFO_LEVEL_TERSE)
18754 gen_generic_params_dies (decl);
18756 /* Now output descriptions of the arguments for this function. This gets
18757 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
18758 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
18759 `...' at the end of the formal parameter list. In order to find out if
18760 there was a trailing ellipsis or not, we must instead look at the type
18761 associated with the FUNCTION_DECL. This will be a node of type
18762 FUNCTION_TYPE. If the chain of type nodes hanging off of this
18763 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
18764 an ellipsis at the end. */
18766 /* In the case where we are describing a mere function declaration, all we
18767 need to do here (and all we *can* do here) is to describe the *types* of
18768 its formal parameters. */
18769 if (debug_info_level <= DINFO_LEVEL_TERSE)
18771 else if (declaration)
18772 gen_formal_types_die (decl, subr_die);
18773 else
18775 /* Generate DIEs to represent all known formal parameters. */
18776 tree parm = DECL_ARGUMENTS (decl);
18777 tree generic_decl = lang_hooks.decls.get_generic_function_decl (decl);
18778 tree generic_decl_parm = generic_decl
18779 ? DECL_ARGUMENTS (generic_decl)
18780 : NULL;
18782 /* Now we want to walk the list of parameters of the function and
18783 emit their relevant DIEs.
18785 We consider the case of DECL being an instance of a generic function
18786 as well as it being a normal function.
18788 If DECL is an instance of a generic function we walk the
18789 parameters of the generic function declaration _and_ the parameters of
18790 DECL itself. This is useful because we want to emit specific DIEs for
18791 function parameter packs and those are declared as part of the
18792 generic function declaration. In that particular case,
18793 the parameter pack yields a DW_TAG_GNU_formal_parameter_pack DIE.
18794 That DIE has children DIEs representing the set of arguments
18795 of the pack. Note that the set of pack arguments can be empty.
18796 In that case, the DW_TAG_GNU_formal_parameter_pack DIE will not have any
18797 children DIE.
18799 Otherwise, we just consider the parameters of DECL. */
18800 while (generic_decl_parm || parm)
18802 if (generic_decl_parm
18803 && lang_hooks.function_parameter_pack_p (generic_decl_parm))
18804 gen_formal_parameter_pack_die (generic_decl_parm,
18805 parm, subr_die,
18806 &parm);
18807 else if (parm && !POINTER_BOUNDS_P (parm))
18809 dw_die_ref parm_die = gen_decl_die (parm, NULL, subr_die);
18811 if (parm == DECL_ARGUMENTS (decl)
18812 && TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE
18813 && parm_die
18814 && (dwarf_version >= 3 || !dwarf_strict))
18815 add_AT_die_ref (subr_die, DW_AT_object_pointer, parm_die);
18817 parm = DECL_CHAIN (parm);
18819 else if (parm)
18820 parm = DECL_CHAIN (parm);
18822 if (generic_decl_parm)
18823 generic_decl_parm = DECL_CHAIN (generic_decl_parm);
18826 /* Decide whether we need an unspecified_parameters DIE at the end.
18827 There are 2 more cases to do this for: 1) the ansi ... declaration -
18828 this is detectable when the end of the arg list is not a
18829 void_type_node 2) an unprototyped function declaration (not a
18830 definition). This just means that we have no info about the
18831 parameters at all. */
18832 if (prototype_p (TREE_TYPE (decl)))
18834 /* This is the prototyped case, check for.... */
18835 if (stdarg_p (TREE_TYPE (decl)))
18836 gen_unspecified_parameters_die (decl, subr_die);
18838 else if (DECL_INITIAL (decl) == NULL_TREE)
18839 gen_unspecified_parameters_die (decl, subr_die);
18842 /* Output Dwarf info for all of the stuff within the body of the function
18843 (if it has one - it may be just a declaration). */
18844 outer_scope = DECL_INITIAL (decl);
18846 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
18847 a function. This BLOCK actually represents the outermost binding contour
18848 for the function, i.e. the contour in which the function's formal
18849 parameters and labels get declared. Curiously, it appears that the front
18850 end doesn't actually put the PARM_DECL nodes for the current function onto
18851 the BLOCK_VARS list for this outer scope, but are strung off of the
18852 DECL_ARGUMENTS list for the function instead.
18854 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
18855 the LABEL_DECL nodes for the function however, and we output DWARF info
18856 for those in decls_for_scope. Just within the `outer_scope' there will be
18857 a BLOCK node representing the function's outermost pair of curly braces,
18858 and any blocks used for the base and member initializers of a C++
18859 constructor function. */
18860 if (! declaration && outer_scope && TREE_CODE (outer_scope) != ERROR_MARK)
18862 int call_site_note_count = 0;
18863 int tail_call_site_note_count = 0;
18865 /* Emit a DW_TAG_variable DIE for a named return value. */
18866 if (DECL_NAME (DECL_RESULT (decl)))
18867 gen_decl_die (DECL_RESULT (decl), NULL, subr_die);
18869 decls_for_scope (outer_scope, subr_die);
18871 if (call_arg_locations && !dwarf_strict)
18873 struct call_arg_loc_node *ca_loc;
18874 for (ca_loc = call_arg_locations; ca_loc; ca_loc = ca_loc->next)
18876 dw_die_ref die = NULL;
18877 rtx tloc = NULL_RTX, tlocc = NULL_RTX;
18878 rtx arg, next_arg;
18880 for (arg = NOTE_VAR_LOCATION (ca_loc->call_arg_loc_note);
18881 arg; arg = next_arg)
18883 dw_loc_descr_ref reg, val;
18884 machine_mode mode = GET_MODE (XEXP (XEXP (arg, 0), 1));
18885 dw_die_ref cdie, tdie = NULL;
18887 next_arg = XEXP (arg, 1);
18888 if (REG_P (XEXP (XEXP (arg, 0), 0))
18889 && next_arg
18890 && MEM_P (XEXP (XEXP (next_arg, 0), 0))
18891 && REG_P (XEXP (XEXP (XEXP (next_arg, 0), 0), 0))
18892 && REGNO (XEXP (XEXP (arg, 0), 0))
18893 == REGNO (XEXP (XEXP (XEXP (next_arg, 0), 0), 0)))
18894 next_arg = XEXP (next_arg, 1);
18895 if (mode == VOIDmode)
18897 mode = GET_MODE (XEXP (XEXP (arg, 0), 0));
18898 if (mode == VOIDmode)
18899 mode = GET_MODE (XEXP (arg, 0));
18901 if (mode == VOIDmode || mode == BLKmode)
18902 continue;
18903 if (XEXP (XEXP (arg, 0), 0) == pc_rtx)
18905 gcc_assert (ca_loc->symbol_ref == NULL_RTX);
18906 tloc = XEXP (XEXP (arg, 0), 1);
18907 continue;
18909 else if (GET_CODE (XEXP (XEXP (arg, 0), 0)) == CLOBBER
18910 && XEXP (XEXP (XEXP (arg, 0), 0), 0) == pc_rtx)
18912 gcc_assert (ca_loc->symbol_ref == NULL_RTX);
18913 tlocc = XEXP (XEXP (arg, 0), 1);
18914 continue;
18916 reg = NULL;
18917 if (REG_P (XEXP (XEXP (arg, 0), 0)))
18918 reg = reg_loc_descriptor (XEXP (XEXP (arg, 0), 0),
18919 VAR_INIT_STATUS_INITIALIZED);
18920 else if (MEM_P (XEXP (XEXP (arg, 0), 0)))
18922 rtx mem = XEXP (XEXP (arg, 0), 0);
18923 reg = mem_loc_descriptor (XEXP (mem, 0),
18924 get_address_mode (mem),
18925 GET_MODE (mem),
18926 VAR_INIT_STATUS_INITIALIZED);
18928 else if (GET_CODE (XEXP (XEXP (arg, 0), 0))
18929 == DEBUG_PARAMETER_REF)
18931 tree tdecl
18932 = DEBUG_PARAMETER_REF_DECL (XEXP (XEXP (arg, 0), 0));
18933 tdie = lookup_decl_die (tdecl);
18934 if (tdie == NULL)
18935 continue;
18937 else
18938 continue;
18939 if (reg == NULL
18940 && GET_CODE (XEXP (XEXP (arg, 0), 0))
18941 != DEBUG_PARAMETER_REF)
18942 continue;
18943 val = mem_loc_descriptor (XEXP (XEXP (arg, 0), 1), mode,
18944 VOIDmode,
18945 VAR_INIT_STATUS_INITIALIZED);
18946 if (val == NULL)
18947 continue;
18948 if (die == NULL)
18949 die = gen_call_site_die (decl, subr_die, ca_loc);
18950 cdie = new_die (DW_TAG_GNU_call_site_parameter, die,
18951 NULL_TREE);
18952 if (reg != NULL)
18953 add_AT_loc (cdie, DW_AT_location, reg);
18954 else if (tdie != NULL)
18955 add_AT_die_ref (cdie, DW_AT_abstract_origin, tdie);
18956 add_AT_loc (cdie, DW_AT_GNU_call_site_value, val);
18957 if (next_arg != XEXP (arg, 1))
18959 mode = GET_MODE (XEXP (XEXP (XEXP (arg, 1), 0), 1));
18960 if (mode == VOIDmode)
18961 mode = GET_MODE (XEXP (XEXP (XEXP (arg, 1), 0), 0));
18962 val = mem_loc_descriptor (XEXP (XEXP (XEXP (arg, 1),
18963 0), 1),
18964 mode, VOIDmode,
18965 VAR_INIT_STATUS_INITIALIZED);
18966 if (val != NULL)
18967 add_AT_loc (cdie, DW_AT_GNU_call_site_data_value, val);
18970 if (die == NULL
18971 && (ca_loc->symbol_ref || tloc))
18972 die = gen_call_site_die (decl, subr_die, ca_loc);
18973 if (die != NULL && (tloc != NULL_RTX || tlocc != NULL_RTX))
18975 dw_loc_descr_ref tval = NULL;
18977 if (tloc != NULL_RTX)
18978 tval = mem_loc_descriptor (tloc,
18979 GET_MODE (tloc) == VOIDmode
18980 ? Pmode : GET_MODE (tloc),
18981 VOIDmode,
18982 VAR_INIT_STATUS_INITIALIZED);
18983 if (tval)
18984 add_AT_loc (die, DW_AT_GNU_call_site_target, tval);
18985 else if (tlocc != NULL_RTX)
18987 tval = mem_loc_descriptor (tlocc,
18988 GET_MODE (tlocc) == VOIDmode
18989 ? Pmode : GET_MODE (tlocc),
18990 VOIDmode,
18991 VAR_INIT_STATUS_INITIALIZED);
18992 if (tval)
18993 add_AT_loc (die, DW_AT_GNU_call_site_target_clobbered,
18994 tval);
18997 if (die != NULL)
18999 call_site_note_count++;
19000 if (ca_loc->tail_call_p)
19001 tail_call_site_note_count++;
19005 call_arg_locations = NULL;
19006 call_arg_loc_last = NULL;
19007 if (tail_call_site_count >= 0
19008 && tail_call_site_count == tail_call_site_note_count
19009 && !dwarf_strict)
19011 if (call_site_count >= 0
19012 && call_site_count == call_site_note_count)
19013 add_AT_flag (subr_die, DW_AT_GNU_all_call_sites, 1);
19014 else
19015 add_AT_flag (subr_die, DW_AT_GNU_all_tail_call_sites, 1);
19017 call_site_count = -1;
19018 tail_call_site_count = -1;
19021 if (subr_die != old_die)
19022 /* Add the calling convention attribute if requested. */
19023 add_calling_convention_attribute (subr_die, decl);
19026 /* Returns a hash value for X (which really is a die_struct). */
19028 hashval_t
19029 block_die_hasher::hash (die_struct *d)
19031 return (hashval_t) d->decl_id ^ htab_hash_pointer (d->die_parent);
19034 /* Return nonzero if decl_id and die_parent of die_struct X is the same
19035 as decl_id and die_parent of die_struct Y. */
19037 bool
19038 block_die_hasher::equal (die_struct *x, die_struct *y)
19040 return x->decl_id == y->decl_id && x->die_parent == y->die_parent;
19043 /* Generate a DIE to represent a declared data object.
19044 Either DECL or ORIGIN must be non-null. */
19046 static void
19047 gen_variable_die (tree decl, tree origin, dw_die_ref context_die)
19049 HOST_WIDE_INT off = 0;
19050 tree com_decl;
19051 tree decl_or_origin = decl ? decl : origin;
19052 tree ultimate_origin;
19053 dw_die_ref var_die;
19054 dw_die_ref old_die = decl ? lookup_decl_die (decl) : NULL;
19055 dw_die_ref origin_die;
19056 bool declaration = (DECL_EXTERNAL (decl_or_origin)
19057 || class_or_namespace_scope_p (context_die));
19058 bool specialization_p = false;
19060 ultimate_origin = decl_ultimate_origin (decl_or_origin);
19061 if (decl || ultimate_origin)
19062 origin = ultimate_origin;
19063 com_decl = fortran_common (decl_or_origin, &off);
19065 /* Symbol in common gets emitted as a child of the common block, in the form
19066 of a data member. */
19067 if (com_decl)
19069 dw_die_ref com_die;
19070 dw_loc_list_ref loc;
19071 die_node com_die_arg;
19073 var_die = lookup_decl_die (decl_or_origin);
19074 if (var_die)
19076 if (get_AT (var_die, DW_AT_location) == NULL)
19078 loc = loc_list_from_tree (com_decl, off ? 1 : 2, NULL);
19079 if (loc)
19081 if (off)
19083 /* Optimize the common case. */
19084 if (single_element_loc_list_p (loc)
19085 && loc->expr->dw_loc_opc == DW_OP_addr
19086 && loc->expr->dw_loc_next == NULL
19087 && GET_CODE (loc->expr->dw_loc_oprnd1.v.val_addr)
19088 == SYMBOL_REF)
19090 rtx x = loc->expr->dw_loc_oprnd1.v.val_addr;
19091 loc->expr->dw_loc_oprnd1.v.val_addr
19092 = plus_constant (GET_MODE (x), x , off);
19094 else
19095 loc_list_plus_const (loc, off);
19097 add_AT_location_description (var_die, DW_AT_location, loc);
19098 remove_AT (var_die, DW_AT_declaration);
19101 return;
19104 if (common_block_die_table == NULL)
19105 common_block_die_table = hash_table<block_die_hasher>::create_ggc (10);
19107 com_die_arg.decl_id = DECL_UID (com_decl);
19108 com_die_arg.die_parent = context_die;
19109 com_die = common_block_die_table->find (&com_die_arg);
19110 loc = loc_list_from_tree (com_decl, 2, NULL);
19111 if (com_die == NULL)
19113 const char *cnam
19114 = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (com_decl));
19115 die_node **slot;
19117 com_die = new_die (DW_TAG_common_block, context_die, decl);
19118 add_name_and_src_coords_attributes (com_die, com_decl);
19119 if (loc)
19121 add_AT_location_description (com_die, DW_AT_location, loc);
19122 /* Avoid sharing the same loc descriptor between
19123 DW_TAG_common_block and DW_TAG_variable. */
19124 loc = loc_list_from_tree (com_decl, 2, NULL);
19126 else if (DECL_EXTERNAL (decl))
19127 add_AT_flag (com_die, DW_AT_declaration, 1);
19128 if (want_pubnames ())
19129 add_pubname_string (cnam, com_die); /* ??? needed? */
19130 com_die->decl_id = DECL_UID (com_decl);
19131 slot = common_block_die_table->find_slot (com_die, INSERT);
19132 *slot = com_die;
19134 else if (get_AT (com_die, DW_AT_location) == NULL && loc)
19136 add_AT_location_description (com_die, DW_AT_location, loc);
19137 loc = loc_list_from_tree (com_decl, 2, NULL);
19138 remove_AT (com_die, DW_AT_declaration);
19140 var_die = new_die (DW_TAG_variable, com_die, decl);
19141 add_name_and_src_coords_attributes (var_die, decl);
19142 add_type_attribute (var_die, TREE_TYPE (decl), decl_quals (decl),
19143 context_die);
19144 add_AT_flag (var_die, DW_AT_external, 1);
19145 if (loc)
19147 if (off)
19149 /* Optimize the common case. */
19150 if (single_element_loc_list_p (loc)
19151 && loc->expr->dw_loc_opc == DW_OP_addr
19152 && loc->expr->dw_loc_next == NULL
19153 && GET_CODE (loc->expr->dw_loc_oprnd1.v.val_addr) == SYMBOL_REF)
19155 rtx x = loc->expr->dw_loc_oprnd1.v.val_addr;
19156 loc->expr->dw_loc_oprnd1.v.val_addr
19157 = plus_constant (GET_MODE (x), x, off);
19159 else
19160 loc_list_plus_const (loc, off);
19162 add_AT_location_description (var_die, DW_AT_location, loc);
19164 else if (DECL_EXTERNAL (decl))
19165 add_AT_flag (var_die, DW_AT_declaration, 1);
19166 equate_decl_number_to_die (decl, var_die);
19167 return;
19170 /* If the compiler emitted a definition for the DECL declaration
19171 and if we already emitted a DIE for it, don't emit a second
19172 DIE for it again. Allow re-declarations of DECLs that are
19173 inside functions, though. */
19174 if (old_die && declaration && !local_scope_p (context_die))
19175 return;
19177 /* For static data members, the declaration in the class is supposed
19178 to have DW_TAG_member tag; the specification should still be
19179 DW_TAG_variable referencing the DW_TAG_member DIE. */
19180 if (declaration && class_scope_p (context_die))
19181 var_die = new_die (DW_TAG_member, context_die, decl);
19182 else
19183 var_die = new_die (DW_TAG_variable, context_die, decl);
19185 origin_die = NULL;
19186 if (origin != NULL)
19187 origin_die = add_abstract_origin_attribute (var_die, origin);
19189 /* Loop unrolling can create multiple blocks that refer to the same
19190 static variable, so we must test for the DW_AT_declaration flag.
19192 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
19193 copy decls and set the DECL_ABSTRACT_P flag on them instead of
19194 sharing them.
19196 ??? Duplicated blocks have been rewritten to use .debug_ranges.
19198 ??? The declare_in_namespace support causes us to get two DIEs for one
19199 variable, both of which are declarations. We want to avoid considering
19200 one to be a specification, so we must test that this DIE is not a
19201 declaration. */
19202 else if (old_die && TREE_STATIC (decl) && ! declaration
19203 && get_AT_flag (old_die, DW_AT_declaration) == 1)
19205 /* This is a definition of a C++ class level static. */
19206 add_AT_specification (var_die, old_die);
19207 specialization_p = true;
19208 if (DECL_NAME (decl))
19210 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
19211 struct dwarf_file_data * file_index = lookup_filename (s.file);
19213 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
19214 add_AT_file (var_die, DW_AT_decl_file, file_index);
19216 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
19217 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
19219 if (old_die->die_tag == DW_TAG_member)
19220 add_linkage_name (var_die, decl);
19223 else
19224 add_name_and_src_coords_attributes (var_die, decl);
19226 if ((origin == NULL && !specialization_p)
19227 || (origin != NULL
19228 && !DECL_ABSTRACT_P (decl_or_origin)
19229 && variably_modified_type_p (TREE_TYPE (decl_or_origin),
19230 decl_function_context
19231 (decl_or_origin))))
19233 tree type = TREE_TYPE (decl_or_origin);
19235 if (decl_by_reference_p (decl_or_origin))
19236 add_type_attribute (var_die, TREE_TYPE (type), TYPE_UNQUALIFIED,
19237 context_die);
19238 else
19239 add_type_attribute (var_die, type, decl_quals (decl_or_origin),
19240 context_die);
19243 if (origin == NULL && !specialization_p)
19245 if (TREE_PUBLIC (decl))
19246 add_AT_flag (var_die, DW_AT_external, 1);
19248 if (DECL_ARTIFICIAL (decl))
19249 add_AT_flag (var_die, DW_AT_artificial, 1);
19251 add_accessibility_attribute (var_die, decl);
19254 if (declaration)
19255 add_AT_flag (var_die, DW_AT_declaration, 1);
19257 if (decl && (DECL_ABSTRACT_P (decl) || declaration || old_die == NULL))
19258 equate_decl_number_to_die (decl, var_die);
19260 if (! declaration
19261 && (! DECL_ABSTRACT_P (decl_or_origin)
19262 /* Local static vars are shared between all clones/inlines,
19263 so emit DW_AT_location on the abstract DIE if DECL_RTL is
19264 already set. */
19265 || (TREE_CODE (decl_or_origin) == VAR_DECL
19266 && TREE_STATIC (decl_or_origin)
19267 && DECL_RTL_SET_P (decl_or_origin)))
19268 /* When abstract origin already has DW_AT_location attribute, no need
19269 to add it again. */
19270 && (origin_die == NULL || get_AT (origin_die, DW_AT_location) == NULL))
19272 if (TREE_CODE (decl_or_origin) == VAR_DECL && TREE_STATIC (decl_or_origin)
19273 && !TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl_or_origin)))
19274 defer_location (decl_or_origin, var_die);
19275 else
19276 add_location_or_const_value_attribute (var_die, decl_or_origin,
19277 decl == NULL, DW_AT_location);
19278 add_pubname (decl_or_origin, var_die);
19280 else
19281 tree_add_const_value_attribute_for_decl (var_die, decl_or_origin);
19284 /* Generate a DIE to represent a named constant. */
19286 static void
19287 gen_const_die (tree decl, dw_die_ref context_die)
19289 dw_die_ref const_die;
19290 tree type = TREE_TYPE (decl);
19292 const_die = new_die (DW_TAG_constant, context_die, decl);
19293 add_name_and_src_coords_attributes (const_die, decl);
19294 add_type_attribute (const_die, type, TYPE_QUAL_CONST, context_die);
19295 if (TREE_PUBLIC (decl))
19296 add_AT_flag (const_die, DW_AT_external, 1);
19297 if (DECL_ARTIFICIAL (decl))
19298 add_AT_flag (const_die, DW_AT_artificial, 1);
19299 tree_add_const_value_attribute_for_decl (const_die, decl);
19302 /* Generate a DIE to represent a label identifier. */
19304 static void
19305 gen_label_die (tree decl, dw_die_ref context_die)
19307 tree origin = decl_ultimate_origin (decl);
19308 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
19309 rtx insn;
19310 char label[MAX_ARTIFICIAL_LABEL_BYTES];
19312 if (origin != NULL)
19313 add_abstract_origin_attribute (lbl_die, origin);
19314 else
19315 add_name_and_src_coords_attributes (lbl_die, decl);
19317 if (DECL_ABSTRACT_P (decl))
19318 equate_decl_number_to_die (decl, lbl_die);
19319 else
19321 insn = DECL_RTL_IF_SET (decl);
19323 /* Deleted labels are programmer specified labels which have been
19324 eliminated because of various optimizations. We still emit them
19325 here so that it is possible to put breakpoints on them. */
19326 if (insn
19327 && (LABEL_P (insn)
19328 || ((NOTE_P (insn)
19329 && NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL))))
19331 /* When optimization is enabled (via -O) some parts of the compiler
19332 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
19333 represent source-level labels which were explicitly declared by
19334 the user. This really shouldn't be happening though, so catch
19335 it if it ever does happen. */
19336 gcc_assert (!as_a<rtx_insn *> (insn)->deleted ());
19338 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
19339 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
19341 else if (insn
19342 && NOTE_P (insn)
19343 && NOTE_KIND (insn) == NOTE_INSN_DELETED_DEBUG_LABEL
19344 && CODE_LABEL_NUMBER (insn) != -1)
19346 ASM_GENERATE_INTERNAL_LABEL (label, "LDL", CODE_LABEL_NUMBER (insn));
19347 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
19352 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
19353 attributes to the DIE for a block STMT, to describe where the inlined
19354 function was called from. This is similar to add_src_coords_attributes. */
19356 static inline void
19357 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
19359 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
19361 if (dwarf_version >= 3 || !dwarf_strict)
19363 add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
19364 add_AT_unsigned (die, DW_AT_call_line, s.line);
19369 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
19370 Add low_pc and high_pc attributes to the DIE for a block STMT. */
19372 static inline void
19373 add_high_low_attributes (tree stmt, dw_die_ref die)
19375 char label[MAX_ARTIFICIAL_LABEL_BYTES];
19377 if (BLOCK_FRAGMENT_CHAIN (stmt)
19378 && (dwarf_version >= 3 || !dwarf_strict))
19380 tree chain, superblock = NULL_TREE;
19381 dw_die_ref pdie;
19382 dw_attr_ref attr = NULL;
19384 if (inlined_function_outer_scope_p (stmt))
19386 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
19387 BLOCK_NUMBER (stmt));
19388 add_AT_lbl_id (die, DW_AT_entry_pc, label);
19391 /* Optimize duplicate .debug_ranges lists or even tails of
19392 lists. If this BLOCK has same ranges as its supercontext,
19393 lookup DW_AT_ranges attribute in the supercontext (and
19394 recursively so), verify that the ranges_table contains the
19395 right values and use it instead of adding a new .debug_range. */
19396 for (chain = stmt, pdie = die;
19397 BLOCK_SAME_RANGE (chain);
19398 chain = BLOCK_SUPERCONTEXT (chain))
19400 dw_attr_ref new_attr;
19402 pdie = pdie->die_parent;
19403 if (pdie == NULL)
19404 break;
19405 if (BLOCK_SUPERCONTEXT (chain) == NULL_TREE)
19406 break;
19407 new_attr = get_AT (pdie, DW_AT_ranges);
19408 if (new_attr == NULL
19409 || new_attr->dw_attr_val.val_class != dw_val_class_range_list)
19410 break;
19411 attr = new_attr;
19412 superblock = BLOCK_SUPERCONTEXT (chain);
19414 if (attr != NULL
19415 && (ranges_table[attr->dw_attr_val.v.val_offset
19416 / 2 / DWARF2_ADDR_SIZE].num
19417 == BLOCK_NUMBER (superblock))
19418 && BLOCK_FRAGMENT_CHAIN (superblock))
19420 unsigned long off = attr->dw_attr_val.v.val_offset
19421 / 2 / DWARF2_ADDR_SIZE;
19422 unsigned long supercnt = 0, thiscnt = 0;
19423 for (chain = BLOCK_FRAGMENT_CHAIN (superblock);
19424 chain; chain = BLOCK_FRAGMENT_CHAIN (chain))
19426 ++supercnt;
19427 gcc_checking_assert (ranges_table[off + supercnt].num
19428 == BLOCK_NUMBER (chain));
19430 gcc_checking_assert (ranges_table[off + supercnt + 1].num == 0);
19431 for (chain = BLOCK_FRAGMENT_CHAIN (stmt);
19432 chain; chain = BLOCK_FRAGMENT_CHAIN (chain))
19433 ++thiscnt;
19434 gcc_assert (supercnt >= thiscnt);
19435 add_AT_range_list (die, DW_AT_ranges,
19436 ((off + supercnt - thiscnt)
19437 * 2 * DWARF2_ADDR_SIZE),
19438 false);
19439 return;
19442 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt), false);
19444 chain = BLOCK_FRAGMENT_CHAIN (stmt);
19447 add_ranges (chain);
19448 chain = BLOCK_FRAGMENT_CHAIN (chain);
19450 while (chain);
19451 add_ranges (NULL);
19453 else
19455 char label_high[MAX_ARTIFICIAL_LABEL_BYTES];
19456 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
19457 BLOCK_NUMBER (stmt));
19458 ASM_GENERATE_INTERNAL_LABEL (label_high, BLOCK_END_LABEL,
19459 BLOCK_NUMBER (stmt));
19460 add_AT_low_high_pc (die, label, label_high, false);
19464 /* Generate a DIE for a lexical block. */
19466 static void
19467 gen_lexical_block_die (tree stmt, dw_die_ref context_die)
19469 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
19471 if (call_arg_locations)
19473 if (block_map.length () <= BLOCK_NUMBER (stmt))
19474 block_map.safe_grow_cleared (BLOCK_NUMBER (stmt) + 1);
19475 block_map[BLOCK_NUMBER (stmt)] = stmt_die;
19478 if (! BLOCK_ABSTRACT (stmt) && TREE_ASM_WRITTEN (stmt))
19479 add_high_low_attributes (stmt, stmt_die);
19481 decls_for_scope (stmt, stmt_die);
19484 /* Generate a DIE for an inlined subprogram. */
19486 static void
19487 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die)
19489 tree decl;
19491 /* The instance of function that is effectively being inlined shall not
19492 be abstract. */
19493 gcc_assert (! BLOCK_ABSTRACT (stmt));
19495 decl = block_ultimate_origin (stmt);
19497 /* Emit info for the abstract instance first, if we haven't yet. We
19498 must emit this even if the block is abstract, otherwise when we
19499 emit the block below (or elsewhere), we may end up trying to emit
19500 a die whose origin die hasn't been emitted, and crashing. */
19501 dwarf2out_abstract_function (decl);
19503 if (! BLOCK_ABSTRACT (stmt))
19505 dw_die_ref subr_die
19506 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
19508 if (call_arg_locations)
19510 if (block_map.length () <= BLOCK_NUMBER (stmt))
19511 block_map.safe_grow_cleared (BLOCK_NUMBER (stmt) + 1);
19512 block_map[BLOCK_NUMBER (stmt)] = subr_die;
19514 add_abstract_origin_attribute (subr_die, decl);
19515 if (TREE_ASM_WRITTEN (stmt))
19516 add_high_low_attributes (stmt, subr_die);
19517 add_call_src_coords_attributes (stmt, subr_die);
19519 decls_for_scope (stmt, subr_die);
19523 /* Generate a DIE for a field in a record, or structure. */
19525 static void
19526 gen_field_die (tree decl, dw_die_ref context_die)
19528 dw_die_ref decl_die;
19530 if (TREE_TYPE (decl) == error_mark_node)
19531 return;
19533 decl_die = new_die (DW_TAG_member, context_die, decl);
19534 add_name_and_src_coords_attributes (decl_die, decl);
19535 add_type_attribute (decl_die, member_declared_type (decl),
19536 decl_quals (decl), context_die);
19538 if (DECL_BIT_FIELD_TYPE (decl))
19540 add_byte_size_attribute (decl_die, decl);
19541 add_bit_size_attribute (decl_die, decl);
19542 add_bit_offset_attribute (decl_die, decl);
19545 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
19546 add_data_member_location_attribute (decl_die, decl);
19548 if (DECL_ARTIFICIAL (decl))
19549 add_AT_flag (decl_die, DW_AT_artificial, 1);
19551 add_accessibility_attribute (decl_die, decl);
19553 /* Equate decl number to die, so that we can look up this decl later on. */
19554 equate_decl_number_to_die (decl, decl_die);
19557 #if 0
19558 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
19559 Use modified_type_die instead.
19560 We keep this code here just in case these types of DIEs may be needed to
19561 represent certain things in other languages (e.g. Pascal) someday. */
19563 static void
19564 gen_pointer_type_die (tree type, dw_die_ref context_die)
19566 dw_die_ref ptr_die
19567 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
19569 equate_type_number_to_die (type, ptr_die);
19570 add_type_attribute (ptr_die, TREE_TYPE (type), TYPE_UNQUALIFIED,
19571 context_die);
19572 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
19575 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
19576 Use modified_type_die instead.
19577 We keep this code here just in case these types of DIEs may be needed to
19578 represent certain things in other languages (e.g. Pascal) someday. */
19580 static void
19581 gen_reference_type_die (tree type, dw_die_ref context_die)
19583 dw_die_ref ref_die, scope_die = scope_die_for (type, context_die);
19585 if (TYPE_REF_IS_RVALUE (type) && dwarf_version >= 4)
19586 ref_die = new_die (DW_TAG_rvalue_reference_type, scope_die, type);
19587 else
19588 ref_die = new_die (DW_TAG_reference_type, scope_die, type);
19590 equate_type_number_to_die (type, ref_die);
19591 add_type_attribute (ref_die, TREE_TYPE (type), TYPE_UNQUALIFIED,
19592 context_die);
19593 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
19595 #endif
19597 /* Generate a DIE for a pointer to a member type. */
19599 static void
19600 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
19602 dw_die_ref ptr_die
19603 = new_die (DW_TAG_ptr_to_member_type,
19604 scope_die_for (type, context_die), type);
19606 equate_type_number_to_die (type, ptr_die);
19607 add_AT_die_ref (ptr_die, DW_AT_containing_type,
19608 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
19609 add_type_attribute (ptr_die, TREE_TYPE (type), TYPE_UNQUALIFIED,
19610 context_die);
19613 typedef const char *dchar_p; /* For DEF_VEC_P. */
19615 static char *producer_string;
19617 /* Return a heap allocated producer string including command line options
19618 if -grecord-gcc-switches. */
19620 static char *
19621 gen_producer_string (void)
19623 size_t j;
19624 auto_vec<dchar_p> switches;
19625 const char *language_string = lang_hooks.name;
19626 char *producer, *tail;
19627 const char *p;
19628 size_t len = dwarf_record_gcc_switches ? 0 : 3;
19629 size_t plen = strlen (language_string) + 1 + strlen (version_string);
19631 for (j = 1; dwarf_record_gcc_switches && j < save_decoded_options_count; j++)
19632 switch (save_decoded_options[j].opt_index)
19634 case OPT_o:
19635 case OPT_d:
19636 case OPT_dumpbase:
19637 case OPT_dumpdir:
19638 case OPT_auxbase:
19639 case OPT_auxbase_strip:
19640 case OPT_quiet:
19641 case OPT_version:
19642 case OPT_v:
19643 case OPT_w:
19644 case OPT_L:
19645 case OPT_D:
19646 case OPT_I:
19647 case OPT_U:
19648 case OPT_SPECIAL_unknown:
19649 case OPT_SPECIAL_ignore:
19650 case OPT_SPECIAL_program_name:
19651 case OPT_SPECIAL_input_file:
19652 case OPT_grecord_gcc_switches:
19653 case OPT_gno_record_gcc_switches:
19654 case OPT__output_pch_:
19655 case OPT_fdiagnostics_show_location_:
19656 case OPT_fdiagnostics_show_option:
19657 case OPT_fdiagnostics_show_caret:
19658 case OPT_fdiagnostics_color_:
19659 case OPT_fverbose_asm:
19660 case OPT____:
19661 case OPT__sysroot_:
19662 case OPT_nostdinc:
19663 case OPT_nostdinc__:
19664 case OPT_fpreprocessed:
19665 case OPT_fltrans_output_list_:
19666 case OPT_fresolution_:
19667 /* Ignore these. */
19668 continue;
19669 default:
19670 if (cl_options[save_decoded_options[j].opt_index].flags
19671 & CL_NO_DWARF_RECORD)
19672 continue;
19673 gcc_checking_assert (save_decoded_options[j].canonical_option[0][0]
19674 == '-');
19675 switch (save_decoded_options[j].canonical_option[0][1])
19677 case 'M':
19678 case 'i':
19679 case 'W':
19680 continue;
19681 case 'f':
19682 if (strncmp (save_decoded_options[j].canonical_option[0] + 2,
19683 "dump", 4) == 0)
19684 continue;
19685 break;
19686 default:
19687 break;
19689 switches.safe_push (save_decoded_options[j].orig_option_with_args_text);
19690 len += strlen (save_decoded_options[j].orig_option_with_args_text) + 1;
19691 break;
19694 producer = XNEWVEC (char, plen + 1 + len + 1);
19695 tail = producer;
19696 sprintf (tail, "%s %s", language_string, version_string);
19697 tail += plen;
19699 FOR_EACH_VEC_ELT (switches, j, p)
19701 len = strlen (p);
19702 *tail = ' ';
19703 memcpy (tail + 1, p, len);
19704 tail += len + 1;
19707 *tail = '\0';
19708 return producer;
19711 /* Given a C and/or C++ language/version string return the "highest".
19712 C++ is assumed to be "higher" than C in this case. Used for merging
19713 LTO translation unit languages. */
19714 static const char *
19715 highest_c_language (const char *lang1, const char *lang2)
19717 if (strcmp ("GNU C++14", lang1) == 0 || strcmp ("GNU C++14", lang2) == 0)
19718 return "GNU C++14";
19719 if (strcmp ("GNU C++11", lang1) == 0 || strcmp ("GNU C++11", lang2) == 0)
19720 return "GNU C++11";
19721 if (strcmp ("GNU C++98", lang1) == 0 || strcmp ("GNU C++98", lang2) == 0)
19722 return "GNU C++98";
19724 if (strcmp ("GNU C11", lang1) == 0 || strcmp ("GNU C11", lang2) == 0)
19725 return "GNU C11";
19726 if (strcmp ("GNU C99", lang1) == 0 || strcmp ("GNU C99", lang2) == 0)
19727 return "GNU C99";
19728 if (strcmp ("GNU C89", lang1) == 0 || strcmp ("GNU C89", lang2) == 0)
19729 return "GNU C89";
19731 gcc_unreachable ();
19735 /* Generate the DIE for the compilation unit. */
19737 static dw_die_ref
19738 gen_compile_unit_die (const char *filename)
19740 dw_die_ref die;
19741 const char *language_string = lang_hooks.name;
19742 int language;
19744 die = new_die (DW_TAG_compile_unit, NULL, NULL);
19746 if (filename)
19748 add_name_attribute (die, filename);
19749 /* Don't add cwd for <built-in>. */
19750 if (!IS_ABSOLUTE_PATH (filename) && filename[0] != '<')
19751 add_comp_dir_attribute (die);
19754 add_AT_string (die, DW_AT_producer, producer_string ? producer_string : "");
19756 /* If our producer is LTO try to figure out a common language to use
19757 from the global list of translation units. */
19758 if (strcmp (language_string, "GNU GIMPLE") == 0)
19760 unsigned i;
19761 tree t;
19762 const char *common_lang = NULL;
19764 FOR_EACH_VEC_SAFE_ELT (all_translation_units, i, t)
19766 if (!TRANSLATION_UNIT_LANGUAGE (t))
19767 continue;
19768 if (!common_lang)
19769 common_lang = TRANSLATION_UNIT_LANGUAGE (t);
19770 else if (strcmp (common_lang, TRANSLATION_UNIT_LANGUAGE (t)) == 0)
19772 else if (strncmp (common_lang, "GNU C", 5) == 0
19773 && strncmp (TRANSLATION_UNIT_LANGUAGE (t), "GNU C", 5) == 0)
19774 /* Mixing C and C++ is ok, use C++ in that case. */
19775 common_lang = highest_c_language (common_lang,
19776 TRANSLATION_UNIT_LANGUAGE (t));
19777 else
19779 /* Fall back to C. */
19780 common_lang = NULL;
19781 break;
19785 if (common_lang)
19786 language_string = common_lang;
19789 language = DW_LANG_C;
19790 if (strncmp (language_string, "GNU C", 5) == 0
19791 && ISDIGIT (language_string[5]))
19793 language = DW_LANG_C89;
19794 if (dwarf_version >= 3 || !dwarf_strict)
19796 if (strcmp (language_string, "GNU C89") != 0)
19797 language = DW_LANG_C99;
19799 if (dwarf_version >= 5 /* || !dwarf_strict */)
19800 if (strcmp (language_string, "GNU C11") == 0)
19801 language = DW_LANG_C11;
19804 else if (strncmp (language_string, "GNU C++", 7) == 0)
19806 language = DW_LANG_C_plus_plus;
19807 if (dwarf_version >= 5 /* || !dwarf_strict */)
19809 if (strcmp (language_string, "GNU C++11") == 0)
19810 language = DW_LANG_C_plus_plus_11;
19811 else if (strcmp (language_string, "GNU C++14") == 0)
19812 language = DW_LANG_C_plus_plus_14;
19815 else if (strcmp (language_string, "GNU F77") == 0)
19816 language = DW_LANG_Fortran77;
19817 else if (strcmp (language_string, "GNU Pascal") == 0)
19818 language = DW_LANG_Pascal83;
19819 else if (dwarf_version >= 3 || !dwarf_strict)
19821 if (strcmp (language_string, "GNU Ada") == 0)
19822 language = DW_LANG_Ada95;
19823 else if (strncmp (language_string, "GNU Fortran", 11) == 0)
19825 language = DW_LANG_Fortran95;
19826 if (dwarf_version >= 5 /* || !dwarf_strict */)
19828 if (strcmp (language_string, "GNU Fortran2003") == 0)
19829 language = DW_LANG_Fortran03;
19830 else if (strcmp (language_string, "GNU Fortran2008") == 0)
19831 language = DW_LANG_Fortran08;
19834 else if (strcmp (language_string, "GNU Java") == 0)
19835 language = DW_LANG_Java;
19836 else if (strcmp (language_string, "GNU Objective-C") == 0)
19837 language = DW_LANG_ObjC;
19838 else if (strcmp (language_string, "GNU Objective-C++") == 0)
19839 language = DW_LANG_ObjC_plus_plus;
19840 else if (dwarf_version >= 5 || !dwarf_strict)
19842 if (strcmp (language_string, "GNU Go") == 0)
19843 language = DW_LANG_Go;
19846 /* Use a degraded Fortran setting in strict DWARF2 so is_fortran works. */
19847 else if (strncmp (language_string, "GNU Fortran", 11) == 0)
19848 language = DW_LANG_Fortran90;
19850 add_AT_unsigned (die, DW_AT_language, language);
19852 switch (language)
19854 case DW_LANG_Fortran77:
19855 case DW_LANG_Fortran90:
19856 case DW_LANG_Fortran95:
19857 case DW_LANG_Fortran03:
19858 case DW_LANG_Fortran08:
19859 /* Fortran has case insensitive identifiers and the front-end
19860 lowercases everything. */
19861 add_AT_unsigned (die, DW_AT_identifier_case, DW_ID_down_case);
19862 break;
19863 default:
19864 /* The default DW_ID_case_sensitive doesn't need to be specified. */
19865 break;
19867 return die;
19870 /* Generate the DIE for a base class. */
19872 static void
19873 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
19875 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
19877 add_type_attribute (die, BINFO_TYPE (binfo), TYPE_UNQUALIFIED, context_die);
19878 add_data_member_location_attribute (die, binfo);
19880 if (BINFO_VIRTUAL_P (binfo))
19881 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
19883 /* In DWARF3+ the default is DW_ACCESS_private only in DW_TAG_class_type
19884 children, otherwise the default is DW_ACCESS_public. In DWARF2
19885 the default has always been DW_ACCESS_private. */
19886 if (access == access_public_node)
19888 if (dwarf_version == 2
19889 || context_die->die_tag == DW_TAG_class_type)
19890 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
19892 else if (access == access_protected_node)
19893 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
19894 else if (dwarf_version > 2
19895 && context_die->die_tag != DW_TAG_class_type)
19896 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_private);
19899 /* Generate a DIE for a class member. */
19901 static void
19902 gen_member_die (tree type, dw_die_ref context_die)
19904 tree member;
19905 tree binfo = TYPE_BINFO (type);
19906 dw_die_ref child;
19908 /* If this is not an incomplete type, output descriptions of each of its
19909 members. Note that as we output the DIEs necessary to represent the
19910 members of this record or union type, we will also be trying to output
19911 DIEs to represent the *types* of those members. However the `type'
19912 function (above) will specifically avoid generating type DIEs for member
19913 types *within* the list of member DIEs for this (containing) type except
19914 for those types (of members) which are explicitly marked as also being
19915 members of this (containing) type themselves. The g++ front- end can
19916 force any given type to be treated as a member of some other (containing)
19917 type by setting the TYPE_CONTEXT of the given (member) type to point to
19918 the TREE node representing the appropriate (containing) type. */
19920 /* First output info about the base classes. */
19921 if (binfo)
19923 vec<tree, va_gc> *accesses = BINFO_BASE_ACCESSES (binfo);
19924 int i;
19925 tree base;
19927 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
19928 gen_inheritance_die (base,
19929 (accesses ? (*accesses)[i] : access_public_node),
19930 context_die);
19933 /* Now output info about the data members and type members. */
19934 for (member = TYPE_FIELDS (type); member; member = DECL_CHAIN (member))
19936 /* If we thought we were generating minimal debug info for TYPE
19937 and then changed our minds, some of the member declarations
19938 may have already been defined. Don't define them again, but
19939 do put them in the right order. */
19941 child = lookup_decl_die (member);
19942 if (child)
19943 splice_child_die (context_die, child);
19944 else
19945 gen_decl_die (member, NULL, context_die);
19948 /* We do not keep type methods in type variants. */
19949 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
19950 /* Now output info about the function members (if any). */
19951 if (TYPE_METHODS (type) != error_mark_node)
19952 for (member = TYPE_METHODS (type); member; member = DECL_CHAIN (member))
19954 /* Don't include clones in the member list. */
19955 if (DECL_ABSTRACT_ORIGIN (member))
19956 continue;
19957 /* Nor constructors for anonymous classes. */
19958 if (DECL_ARTIFICIAL (member)
19959 && dwarf2_name (member, 0) == NULL)
19960 continue;
19962 child = lookup_decl_die (member);
19963 if (child)
19964 splice_child_die (context_die, child);
19965 else
19966 gen_decl_die (member, NULL, context_die);
19970 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
19971 is set, we pretend that the type was never defined, so we only get the
19972 member DIEs needed by later specification DIEs. */
19974 static void
19975 gen_struct_or_union_type_die (tree type, dw_die_ref context_die,
19976 enum debug_info_usage usage)
19978 dw_die_ref type_die = lookup_type_die (type);
19979 dw_die_ref scope_die = 0;
19980 int nested = 0;
19981 int complete = (TYPE_SIZE (type)
19982 && (! TYPE_STUB_DECL (type)
19983 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
19984 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
19985 complete = complete && should_emit_struct_debug (type, usage);
19987 if (type_die && ! complete)
19988 return;
19990 if (TYPE_CONTEXT (type) != NULL_TREE
19991 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
19992 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
19993 nested = 1;
19995 scope_die = scope_die_for (type, context_die);
19997 /* Generate child dies for template paramaters. */
19998 if (!type_die && debug_info_level > DINFO_LEVEL_TERSE)
19999 schedule_generic_params_dies_gen (type);
20001 if (! type_die || (nested && is_cu_die (scope_die)))
20002 /* First occurrence of type or toplevel definition of nested class. */
20004 dw_die_ref old_die = type_die;
20006 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
20007 ? record_type_tag (type) : DW_TAG_union_type,
20008 scope_die, type);
20009 equate_type_number_to_die (type, type_die);
20010 if (old_die)
20011 add_AT_specification (type_die, old_die);
20012 else
20013 add_name_attribute (type_die, type_tag (type));
20015 else
20016 remove_AT (type_die, DW_AT_declaration);
20018 /* If this type has been completed, then give it a byte_size attribute and
20019 then give a list of members. */
20020 if (complete && !ns_decl)
20022 /* Prevent infinite recursion in cases where the type of some member of
20023 this type is expressed in terms of this type itself. */
20024 TREE_ASM_WRITTEN (type) = 1;
20025 add_byte_size_attribute (type_die, type);
20026 if (TYPE_STUB_DECL (type) != NULL_TREE)
20028 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
20029 add_accessibility_attribute (type_die, TYPE_STUB_DECL (type));
20032 /* If the first reference to this type was as the return type of an
20033 inline function, then it may not have a parent. Fix this now. */
20034 if (type_die->die_parent == NULL)
20035 add_child_die (scope_die, type_die);
20037 push_decl_scope (type);
20038 gen_member_die (type, type_die);
20039 pop_decl_scope ();
20041 add_gnat_descriptive_type_attribute (type_die, type, context_die);
20042 if (TYPE_ARTIFICIAL (type))
20043 add_AT_flag (type_die, DW_AT_artificial, 1);
20045 /* GNU extension: Record what type our vtable lives in. */
20046 if (TYPE_VFIELD (type))
20048 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
20050 gen_type_die (vtype, context_die);
20051 add_AT_die_ref (type_die, DW_AT_containing_type,
20052 lookup_type_die (vtype));
20055 else
20057 add_AT_flag (type_die, DW_AT_declaration, 1);
20059 /* We don't need to do this for function-local types. */
20060 if (TYPE_STUB_DECL (type)
20061 && ! decl_function_context (TYPE_STUB_DECL (type)))
20062 vec_safe_push (incomplete_types, type);
20065 if (get_AT (type_die, DW_AT_name))
20066 add_pubtype (type, type_die);
20069 /* Generate a DIE for a subroutine _type_. */
20071 static void
20072 gen_subroutine_type_die (tree type, dw_die_ref context_die)
20074 tree return_type = TREE_TYPE (type);
20075 dw_die_ref subr_die
20076 = new_die (DW_TAG_subroutine_type,
20077 scope_die_for (type, context_die), type);
20079 equate_type_number_to_die (type, subr_die);
20080 add_prototyped_attribute (subr_die, type);
20081 add_type_attribute (subr_die, return_type, TYPE_UNQUALIFIED, context_die);
20082 gen_formal_types_die (type, subr_die);
20084 if (get_AT (subr_die, DW_AT_name))
20085 add_pubtype (type, subr_die);
20088 /* Generate a DIE for a type definition. */
20090 static void
20091 gen_typedef_die (tree decl, dw_die_ref context_die)
20093 dw_die_ref type_die;
20094 tree origin;
20096 if (TREE_ASM_WRITTEN (decl))
20097 return;
20099 TREE_ASM_WRITTEN (decl) = 1;
20100 type_die = new_die (DW_TAG_typedef, context_die, decl);
20101 origin = decl_ultimate_origin (decl);
20102 if (origin != NULL)
20103 add_abstract_origin_attribute (type_die, origin);
20104 else
20106 tree type;
20108 add_name_and_src_coords_attributes (type_die, decl);
20109 if (DECL_ORIGINAL_TYPE (decl))
20111 type = DECL_ORIGINAL_TYPE (decl);
20113 gcc_assert (type != TREE_TYPE (decl));
20114 equate_type_number_to_die (TREE_TYPE (decl), type_die);
20116 else
20118 type = TREE_TYPE (decl);
20120 if (is_naming_typedef_decl (TYPE_NAME (type)))
20122 /* Here, we are in the case of decl being a typedef naming
20123 an anonymous type, e.g:
20124 typedef struct {...} foo;
20125 In that case TREE_TYPE (decl) is not a typedef variant
20126 type and TYPE_NAME of the anonymous type is set to the
20127 TYPE_DECL of the typedef. This construct is emitted by
20128 the C++ FE.
20130 TYPE is the anonymous struct named by the typedef
20131 DECL. As we need the DW_AT_type attribute of the
20132 DW_TAG_typedef to point to the DIE of TYPE, let's
20133 generate that DIE right away. add_type_attribute
20134 called below will then pick (via lookup_type_die) that
20135 anonymous struct DIE. */
20136 if (!TREE_ASM_WRITTEN (type))
20137 gen_tagged_type_die (type, context_die, DINFO_USAGE_DIR_USE);
20139 /* This is a GNU Extension. We are adding a
20140 DW_AT_linkage_name attribute to the DIE of the
20141 anonymous struct TYPE. The value of that attribute
20142 is the name of the typedef decl naming the anonymous
20143 struct. This greatly eases the work of consumers of
20144 this debug info. */
20145 add_linkage_attr (lookup_type_die (type), decl);
20149 add_type_attribute (type_die, type, decl_quals (decl), context_die);
20151 if (is_naming_typedef_decl (decl))
20152 /* We want that all subsequent calls to lookup_type_die with
20153 TYPE in argument yield the DW_TAG_typedef we have just
20154 created. */
20155 equate_type_number_to_die (type, type_die);
20157 add_accessibility_attribute (type_die, decl);
20160 if (DECL_ABSTRACT_P (decl))
20161 equate_decl_number_to_die (decl, type_die);
20163 if (get_AT (type_die, DW_AT_name))
20164 add_pubtype (decl, type_die);
20167 /* Generate a DIE for a struct, class, enum or union type. */
20169 static void
20170 gen_tagged_type_die (tree type,
20171 dw_die_ref context_die,
20172 enum debug_info_usage usage)
20174 int need_pop;
20176 if (type == NULL_TREE
20177 || !is_tagged_type (type))
20178 return;
20180 /* If this is a nested type whose containing class hasn't been written
20181 out yet, writing it out will cover this one, too. This does not apply
20182 to instantiations of member class templates; they need to be added to
20183 the containing class as they are generated. FIXME: This hurts the
20184 idea of combining type decls from multiple TUs, since we can't predict
20185 what set of template instantiations we'll get. */
20186 if (TYPE_CONTEXT (type)
20187 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
20188 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
20190 gen_type_die_with_usage (TYPE_CONTEXT (type), context_die, usage);
20192 if (TREE_ASM_WRITTEN (type))
20193 return;
20195 /* If that failed, attach ourselves to the stub. */
20196 push_decl_scope (TYPE_CONTEXT (type));
20197 context_die = lookup_type_die (TYPE_CONTEXT (type));
20198 need_pop = 1;
20200 else if (TYPE_CONTEXT (type) != NULL_TREE
20201 && (TREE_CODE (TYPE_CONTEXT (type)) == FUNCTION_DECL))
20203 /* If this type is local to a function that hasn't been written
20204 out yet, use a NULL context for now; it will be fixed up in
20205 decls_for_scope. */
20206 context_die = lookup_decl_die (TYPE_CONTEXT (type));
20207 /* A declaration DIE doesn't count; nested types need to go in the
20208 specification. */
20209 if (context_die && is_declaration_die (context_die))
20210 context_die = NULL;
20211 need_pop = 0;
20213 else
20215 context_die = declare_in_namespace (type, context_die);
20216 need_pop = 0;
20219 if (TREE_CODE (type) == ENUMERAL_TYPE)
20221 /* This might have been written out by the call to
20222 declare_in_namespace. */
20223 if (!TREE_ASM_WRITTEN (type))
20224 gen_enumeration_type_die (type, context_die);
20226 else
20227 gen_struct_or_union_type_die (type, context_die, usage);
20229 if (need_pop)
20230 pop_decl_scope ();
20232 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
20233 it up if it is ever completed. gen_*_type_die will set it for us
20234 when appropriate. */
20237 /* Generate a type description DIE. */
20239 static void
20240 gen_type_die_with_usage (tree type, dw_die_ref context_die,
20241 enum debug_info_usage usage)
20243 struct array_descr_info info;
20245 if (type == NULL_TREE || type == error_mark_node)
20246 return;
20248 #ifdef ENABLE_CHECKING
20249 if (type)
20250 verify_type (type);
20251 #endif
20253 if (TYPE_NAME (type) != NULL_TREE
20254 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
20255 && is_redundant_typedef (TYPE_NAME (type))
20256 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
20257 /* The DECL of this type is a typedef we don't want to emit debug
20258 info for but we want debug info for its underlying typedef.
20259 This can happen for e.g, the injected-class-name of a C++
20260 type. */
20261 type = DECL_ORIGINAL_TYPE (TYPE_NAME (type));
20263 /* If TYPE is a typedef type variant, let's generate debug info
20264 for the parent typedef which TYPE is a type of. */
20265 if (typedef_variant_p (type))
20267 if (TREE_ASM_WRITTEN (type))
20268 return;
20270 /* Prevent broken recursion; we can't hand off to the same type. */
20271 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
20273 /* Give typedefs the right scope. */
20274 context_die = scope_die_for (type, context_die);
20276 TREE_ASM_WRITTEN (type) = 1;
20278 gen_decl_die (TYPE_NAME (type), NULL, context_die);
20279 return;
20282 /* If type is an anonymous tagged type named by a typedef, let's
20283 generate debug info for the typedef. */
20284 if (is_naming_typedef_decl (TYPE_NAME (type)))
20286 /* Use the DIE of the containing namespace as the parent DIE of
20287 the type description DIE we want to generate. */
20288 if (DECL_CONTEXT (TYPE_NAME (type))
20289 && TREE_CODE (DECL_CONTEXT (TYPE_NAME (type))) == NAMESPACE_DECL)
20290 context_die = get_context_die (DECL_CONTEXT (TYPE_NAME (type)));
20292 gen_decl_die (TYPE_NAME (type), NULL, context_die);
20293 return;
20296 /* We are going to output a DIE to represent the unqualified version
20297 of this type (i.e. without any const or volatile qualifiers) so
20298 get the main variant (i.e. the unqualified version) of this type
20299 now. (Vectors are special because the debugging info is in the
20300 cloned type itself). */
20301 if (TREE_CODE (type) != VECTOR_TYPE)
20302 type = type_main_variant (type);
20304 /* If this is an array type with hidden descriptor, handle it first. */
20305 if (!TREE_ASM_WRITTEN (type)
20306 && lang_hooks.types.get_array_descr_info)
20308 memset (&info, 0, sizeof (info));
20309 if (lang_hooks.types.get_array_descr_info (type, &info))
20311 gen_descr_array_type_die (type, &info, context_die);
20312 TREE_ASM_WRITTEN (type) = 1;
20313 return;
20317 if (TREE_ASM_WRITTEN (type))
20318 return;
20320 switch (TREE_CODE (type))
20322 case ERROR_MARK:
20323 break;
20325 case POINTER_TYPE:
20326 case REFERENCE_TYPE:
20327 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
20328 ensures that the gen_type_die recursion will terminate even if the
20329 type is recursive. Recursive types are possible in Ada. */
20330 /* ??? We could perhaps do this for all types before the switch
20331 statement. */
20332 TREE_ASM_WRITTEN (type) = 1;
20334 /* For these types, all that is required is that we output a DIE (or a
20335 set of DIEs) to represent the "basis" type. */
20336 gen_type_die_with_usage (TREE_TYPE (type), context_die,
20337 DINFO_USAGE_IND_USE);
20338 break;
20340 case OFFSET_TYPE:
20341 /* This code is used for C++ pointer-to-data-member types.
20342 Output a description of the relevant class type. */
20343 gen_type_die_with_usage (TYPE_OFFSET_BASETYPE (type), context_die,
20344 DINFO_USAGE_IND_USE);
20346 /* Output a description of the type of the object pointed to. */
20347 gen_type_die_with_usage (TREE_TYPE (type), context_die,
20348 DINFO_USAGE_IND_USE);
20350 /* Now output a DIE to represent this pointer-to-data-member type
20351 itself. */
20352 gen_ptr_to_mbr_type_die (type, context_die);
20353 break;
20355 case FUNCTION_TYPE:
20356 /* Force out return type (in case it wasn't forced out already). */
20357 gen_type_die_with_usage (TREE_TYPE (type), context_die,
20358 DINFO_USAGE_DIR_USE);
20359 gen_subroutine_type_die (type, context_die);
20360 break;
20362 case METHOD_TYPE:
20363 /* Force out return type (in case it wasn't forced out already). */
20364 gen_type_die_with_usage (TREE_TYPE (type), context_die,
20365 DINFO_USAGE_DIR_USE);
20366 gen_subroutine_type_die (type, context_die);
20367 break;
20369 case ARRAY_TYPE:
20370 gen_array_type_die (type, context_die);
20371 break;
20373 case VECTOR_TYPE:
20374 gen_array_type_die (type, context_die);
20375 break;
20377 case ENUMERAL_TYPE:
20378 case RECORD_TYPE:
20379 case UNION_TYPE:
20380 case QUAL_UNION_TYPE:
20381 gen_tagged_type_die (type, context_die, usage);
20382 return;
20384 case VOID_TYPE:
20385 case INTEGER_TYPE:
20386 case REAL_TYPE:
20387 case FIXED_POINT_TYPE:
20388 case COMPLEX_TYPE:
20389 case BOOLEAN_TYPE:
20390 case POINTER_BOUNDS_TYPE:
20391 /* No DIEs needed for fundamental types. */
20392 break;
20394 case NULLPTR_TYPE:
20395 case LANG_TYPE:
20396 /* Just use DW_TAG_unspecified_type. */
20398 dw_die_ref type_die = lookup_type_die (type);
20399 if (type_die == NULL)
20401 tree name = TYPE_IDENTIFIER (type);
20402 type_die = new_die (DW_TAG_unspecified_type, comp_unit_die (),
20403 type);
20404 add_name_attribute (type_die, IDENTIFIER_POINTER (name));
20405 equate_type_number_to_die (type, type_die);
20408 break;
20410 default:
20411 if (is_cxx_auto (type))
20413 tree name = TYPE_IDENTIFIER (type);
20414 dw_die_ref *die = (name == get_identifier ("auto")
20415 ? &auto_die : &decltype_auto_die);
20416 if (!*die)
20418 *die = new_die (DW_TAG_unspecified_type,
20419 comp_unit_die (), NULL_TREE);
20420 add_name_attribute (*die, IDENTIFIER_POINTER (name));
20422 equate_type_number_to_die (type, *die);
20423 break;
20425 gcc_unreachable ();
20428 TREE_ASM_WRITTEN (type) = 1;
20431 static void
20432 gen_type_die (tree type, dw_die_ref context_die)
20434 gen_type_die_with_usage (type, context_die, DINFO_USAGE_DIR_USE);
20437 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
20438 things which are local to the given block. */
20440 static void
20441 gen_block_die (tree stmt, dw_die_ref context_die)
20443 int must_output_die = 0;
20444 bool inlined_func;
20446 /* Ignore blocks that are NULL. */
20447 if (stmt == NULL_TREE)
20448 return;
20450 inlined_func = inlined_function_outer_scope_p (stmt);
20452 /* If the block is one fragment of a non-contiguous block, do not
20453 process the variables, since they will have been done by the
20454 origin block. Do process subblocks. */
20455 if (BLOCK_FRAGMENT_ORIGIN (stmt))
20457 tree sub;
20459 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
20460 gen_block_die (sub, context_die);
20462 return;
20465 /* Determine if we need to output any Dwarf DIEs at all to represent this
20466 block. */
20467 if (inlined_func)
20468 /* The outer scopes for inlinings *must* always be represented. We
20469 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
20470 must_output_die = 1;
20471 else
20473 /* Determine if this block directly contains any "significant"
20474 local declarations which we will need to output DIEs for. */
20475 if (debug_info_level > DINFO_LEVEL_TERSE)
20476 /* We are not in terse mode so *any* local declaration counts
20477 as being a "significant" one. */
20478 must_output_die = ((BLOCK_VARS (stmt) != NULL
20479 || BLOCK_NUM_NONLOCALIZED_VARS (stmt))
20480 && (TREE_USED (stmt)
20481 || TREE_ASM_WRITTEN (stmt)
20482 || BLOCK_ABSTRACT (stmt)));
20483 else if ((TREE_USED (stmt)
20484 || TREE_ASM_WRITTEN (stmt)
20485 || BLOCK_ABSTRACT (stmt))
20486 && !dwarf2out_ignore_block (stmt))
20487 must_output_die = 1;
20490 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
20491 DIE for any block which contains no significant local declarations at
20492 all. Rather, in such cases we just call `decls_for_scope' so that any
20493 needed Dwarf info for any sub-blocks will get properly generated. Note
20494 that in terse mode, our definition of what constitutes a "significant"
20495 local declaration gets restricted to include only inlined function
20496 instances and local (nested) function definitions. */
20497 if (must_output_die)
20499 if (inlined_func)
20501 /* If STMT block is abstract, that means we have been called
20502 indirectly from dwarf2out_abstract_function.
20503 That function rightfully marks the descendent blocks (of
20504 the abstract function it is dealing with) as being abstract,
20505 precisely to prevent us from emitting any
20506 DW_TAG_inlined_subroutine DIE as a descendent
20507 of an abstract function instance. So in that case, we should
20508 not call gen_inlined_subroutine_die.
20510 Later though, when cgraph asks dwarf2out to emit info
20511 for the concrete instance of the function decl into which
20512 the concrete instance of STMT got inlined, the later will lead
20513 to the generation of a DW_TAG_inlined_subroutine DIE. */
20514 if (! BLOCK_ABSTRACT (stmt))
20515 gen_inlined_subroutine_die (stmt, context_die);
20517 else
20518 gen_lexical_block_die (stmt, context_die);
20520 else
20521 decls_for_scope (stmt, context_die);
20524 /* Process variable DECL (or variable with origin ORIGIN) within
20525 block STMT and add it to CONTEXT_DIE. */
20526 static void
20527 process_scope_var (tree stmt, tree decl, tree origin, dw_die_ref context_die)
20529 dw_die_ref die;
20530 tree decl_or_origin = decl ? decl : origin;
20532 if (TREE_CODE (decl_or_origin) == FUNCTION_DECL)
20533 die = lookup_decl_die (decl_or_origin);
20534 else if (TREE_CODE (decl_or_origin) == TYPE_DECL
20535 && TYPE_DECL_IS_STUB (decl_or_origin))
20536 die = lookup_type_die (TREE_TYPE (decl_or_origin));
20537 else
20538 die = NULL;
20540 if (die != NULL && die->die_parent == NULL)
20541 add_child_die (context_die, die);
20542 else if (TREE_CODE (decl_or_origin) == IMPORTED_DECL)
20543 dwarf2out_imported_module_or_decl_1 (decl_or_origin, DECL_NAME (decl_or_origin),
20544 stmt, context_die);
20545 else
20546 gen_decl_die (decl, origin, context_die);
20549 /* Generate all of the decls declared within a given scope and (recursively)
20550 all of its sub-blocks. */
20552 static void
20553 decls_for_scope (tree stmt, dw_die_ref context_die)
20555 tree decl;
20556 unsigned int i;
20557 tree subblocks;
20559 /* Ignore NULL blocks. */
20560 if (stmt == NULL_TREE)
20561 return;
20563 /* Output the DIEs to represent all of the data objects and typedefs
20564 declared directly within this block but not within any nested
20565 sub-blocks. Also, nested function and tag DIEs have been
20566 generated with a parent of NULL; fix that up now. We don't
20567 have to do this if we're at -g1. */
20568 if (debug_info_level > DINFO_LEVEL_TERSE)
20570 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = DECL_CHAIN (decl))
20571 process_scope_var (stmt, decl, NULL_TREE, context_die);
20572 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (stmt); i++)
20573 process_scope_var (stmt, NULL, BLOCK_NONLOCALIZED_VAR (stmt, i),
20574 context_die);
20577 /* Even if we're at -g1, we need to process the subblocks in order to get
20578 inlined call information. */
20580 /* Output the DIEs to represent all sub-blocks (and the items declared
20581 therein) of this block. */
20582 for (subblocks = BLOCK_SUBBLOCKS (stmt);
20583 subblocks != NULL;
20584 subblocks = BLOCK_CHAIN (subblocks))
20585 gen_block_die (subblocks, context_die);
20588 /* Is this a typedef we can avoid emitting? */
20590 static inline int
20591 is_redundant_typedef (const_tree decl)
20593 if (TYPE_DECL_IS_STUB (decl))
20594 return 1;
20596 if (DECL_ARTIFICIAL (decl)
20597 && DECL_CONTEXT (decl)
20598 && is_tagged_type (DECL_CONTEXT (decl))
20599 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
20600 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
20601 /* Also ignore the artificial member typedef for the class name. */
20602 return 1;
20604 return 0;
20607 /* Return TRUE if TYPE is a typedef that names a type for linkage
20608 purposes. This kind of typedefs is produced by the C++ FE for
20609 constructs like:
20611 typedef struct {...} foo;
20613 In that case, there is no typedef variant type produced for foo.
20614 Rather, the TREE_TYPE of the TYPE_DECL of foo is the anonymous
20615 struct type. */
20617 static bool
20618 is_naming_typedef_decl (const_tree decl)
20620 if (decl == NULL_TREE
20621 || TREE_CODE (decl) != TYPE_DECL
20622 || !is_tagged_type (TREE_TYPE (decl))
20623 || DECL_IS_BUILTIN (decl)
20624 || is_redundant_typedef (decl)
20625 /* It looks like Ada produces TYPE_DECLs that are very similar
20626 to C++ naming typedefs but that have different
20627 semantics. Let's be specific to c++ for now. */
20628 || !is_cxx ())
20629 return FALSE;
20631 return (DECL_ORIGINAL_TYPE (decl) == NULL_TREE
20632 && TYPE_NAME (TREE_TYPE (decl)) == decl
20633 && (TYPE_STUB_DECL (TREE_TYPE (decl))
20634 != TYPE_NAME (TREE_TYPE (decl))));
20637 /* Returns the DIE for a context. */
20639 static inline dw_die_ref
20640 get_context_die (tree context)
20642 if (context)
20644 /* Find die that represents this context. */
20645 if (TYPE_P (context))
20647 context = TYPE_MAIN_VARIANT (context);
20648 return strip_naming_typedef (context, force_type_die (context));
20650 else
20651 return force_decl_die (context);
20653 return comp_unit_die ();
20656 /* Returns the DIE for decl. A DIE will always be returned. */
20658 static dw_die_ref
20659 force_decl_die (tree decl)
20661 dw_die_ref decl_die;
20662 unsigned saved_external_flag;
20663 tree save_fn = NULL_TREE;
20664 decl_die = lookup_decl_die (decl);
20665 if (!decl_die)
20667 dw_die_ref context_die = get_context_die (DECL_CONTEXT (decl));
20669 decl_die = lookup_decl_die (decl);
20670 if (decl_die)
20671 return decl_die;
20673 switch (TREE_CODE (decl))
20675 case FUNCTION_DECL:
20676 /* Clear current_function_decl, so that gen_subprogram_die thinks
20677 that this is a declaration. At this point, we just want to force
20678 declaration die. */
20679 save_fn = current_function_decl;
20680 current_function_decl = NULL_TREE;
20681 gen_subprogram_die (decl, context_die);
20682 current_function_decl = save_fn;
20683 break;
20685 case VAR_DECL:
20686 /* Set external flag to force declaration die. Restore it after
20687 gen_decl_die() call. */
20688 saved_external_flag = DECL_EXTERNAL (decl);
20689 DECL_EXTERNAL (decl) = 1;
20690 gen_decl_die (decl, NULL, context_die);
20691 DECL_EXTERNAL (decl) = saved_external_flag;
20692 break;
20694 case NAMESPACE_DECL:
20695 if (dwarf_version >= 3 || !dwarf_strict)
20696 dwarf2out_decl (decl);
20697 else
20698 /* DWARF2 has neither DW_TAG_module, nor DW_TAG_namespace. */
20699 decl_die = comp_unit_die ();
20700 break;
20702 case TRANSLATION_UNIT_DECL:
20703 decl_die = comp_unit_die ();
20704 break;
20706 default:
20707 gcc_unreachable ();
20710 /* We should be able to find the DIE now. */
20711 if (!decl_die)
20712 decl_die = lookup_decl_die (decl);
20713 gcc_assert (decl_die);
20716 return decl_die;
20719 /* Returns the DIE for TYPE, that must not be a base type. A DIE is
20720 always returned. */
20722 static dw_die_ref
20723 force_type_die (tree type)
20725 dw_die_ref type_die;
20727 type_die = lookup_type_die (type);
20728 if (!type_die)
20730 dw_die_ref context_die = get_context_die (TYPE_CONTEXT (type));
20732 type_die = modified_type_die (type, TYPE_QUALS_NO_ADDR_SPACE (type),
20733 context_die);
20734 gcc_assert (type_die);
20736 return type_die;
20739 /* Force out any required namespaces to be able to output DECL,
20740 and return the new context_die for it, if it's changed. */
20742 static dw_die_ref
20743 setup_namespace_context (tree thing, dw_die_ref context_die)
20745 tree context = (DECL_P (thing)
20746 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
20747 if (context && TREE_CODE (context) == NAMESPACE_DECL)
20748 /* Force out the namespace. */
20749 context_die = force_decl_die (context);
20751 return context_die;
20754 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
20755 type) within its namespace, if appropriate.
20757 For compatibility with older debuggers, namespace DIEs only contain
20758 declarations; all definitions are emitted at CU scope. */
20760 static dw_die_ref
20761 declare_in_namespace (tree thing, dw_die_ref context_die)
20763 dw_die_ref ns_context;
20765 if (debug_info_level <= DINFO_LEVEL_TERSE)
20766 return context_die;
20768 /* External declarations in the local scope only need to be emitted
20769 once, not once in the namespace and once in the scope.
20771 This avoids declaring the `extern' below in the
20772 namespace DIE as well as in the innermost scope:
20774 namespace S
20776 int i=5;
20777 int foo()
20779 int i=8;
20780 extern int i;
20781 return i;
20785 if (DECL_P (thing) && DECL_EXTERNAL (thing) && local_scope_p (context_die))
20786 return context_die;
20788 /* If this decl is from an inlined function, then don't try to emit it in its
20789 namespace, as we will get confused. It would have already been emitted
20790 when the abstract instance of the inline function was emitted anyways. */
20791 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
20792 return context_die;
20794 ns_context = setup_namespace_context (thing, context_die);
20796 if (ns_context != context_die)
20798 if (is_fortran ())
20799 return ns_context;
20800 if (DECL_P (thing))
20801 gen_decl_die (thing, NULL, ns_context);
20802 else
20803 gen_type_die (thing, ns_context);
20805 return context_die;
20808 /* Generate a DIE for a namespace or namespace alias. */
20810 static void
20811 gen_namespace_die (tree decl, dw_die_ref context_die)
20813 dw_die_ref namespace_die;
20815 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
20816 they are an alias of. */
20817 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
20819 /* Output a real namespace or module. */
20820 context_die = setup_namespace_context (decl, comp_unit_die ());
20821 namespace_die = new_die (is_fortran ()
20822 ? DW_TAG_module : DW_TAG_namespace,
20823 context_die, decl);
20824 /* For Fortran modules defined in different CU don't add src coords. */
20825 if (namespace_die->die_tag == DW_TAG_module && DECL_EXTERNAL (decl))
20827 const char *name = dwarf2_name (decl, 0);
20828 if (name)
20829 add_name_attribute (namespace_die, name);
20831 else
20832 add_name_and_src_coords_attributes (namespace_die, decl);
20833 if (DECL_EXTERNAL (decl))
20834 add_AT_flag (namespace_die, DW_AT_declaration, 1);
20835 equate_decl_number_to_die (decl, namespace_die);
20837 else
20839 /* Output a namespace alias. */
20841 /* Force out the namespace we are an alias of, if necessary. */
20842 dw_die_ref origin_die
20843 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
20845 if (DECL_FILE_SCOPE_P (decl)
20846 || TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL)
20847 context_die = setup_namespace_context (decl, comp_unit_die ());
20848 /* Now create the namespace alias DIE. */
20849 namespace_die = new_die (DW_TAG_imported_declaration, context_die, decl);
20850 add_name_and_src_coords_attributes (namespace_die, decl);
20851 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
20852 equate_decl_number_to_die (decl, namespace_die);
20854 /* Bypass dwarf2_name's check for DECL_NAMELESS. */
20855 if (want_pubnames ())
20856 add_pubname_string (lang_hooks.dwarf_name (decl, 1), namespace_die);
20859 /* Generate Dwarf debug information for a decl described by DECL.
20860 The return value is currently only meaningful for PARM_DECLs,
20861 for all other decls it returns NULL. */
20863 static dw_die_ref
20864 gen_decl_die (tree decl, tree origin, dw_die_ref context_die)
20866 tree decl_or_origin = decl ? decl : origin;
20867 tree class_origin = NULL, ultimate_origin;
20869 if (DECL_P (decl_or_origin) && DECL_IGNORED_P (decl_or_origin))
20870 return NULL;
20872 /* Ignore pointer bounds decls. */
20873 if (DECL_P (decl_or_origin)
20874 && TREE_TYPE (decl_or_origin)
20875 && POINTER_BOUNDS_P (decl_or_origin))
20876 return NULL;
20878 switch (TREE_CODE (decl_or_origin))
20880 case ERROR_MARK:
20881 break;
20883 case CONST_DECL:
20884 if (!is_fortran () && !is_ada ())
20886 /* The individual enumerators of an enum type get output when we output
20887 the Dwarf representation of the relevant enum type itself. */
20888 break;
20891 /* Emit its type. */
20892 gen_type_die (TREE_TYPE (decl), context_die);
20894 /* And its containing namespace. */
20895 context_die = declare_in_namespace (decl, context_die);
20897 gen_const_die (decl, context_die);
20898 break;
20900 case FUNCTION_DECL:
20901 /* Don't output any DIEs to represent mere function declarations,
20902 unless they are class members or explicit block externs. */
20903 if (DECL_INITIAL (decl_or_origin) == NULL_TREE
20904 && DECL_FILE_SCOPE_P (decl_or_origin)
20905 && (current_function_decl == NULL_TREE
20906 || DECL_ARTIFICIAL (decl_or_origin)))
20907 break;
20909 #if 0
20910 /* FIXME */
20911 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
20912 on local redeclarations of global functions. That seems broken. */
20913 if (current_function_decl != decl)
20914 /* This is only a declaration. */;
20915 #endif
20917 /* If we're emitting a clone, emit info for the abstract instance. */
20918 if (origin || DECL_ORIGIN (decl) != decl)
20919 dwarf2out_abstract_function (origin
20920 ? DECL_ORIGIN (origin)
20921 : DECL_ABSTRACT_ORIGIN (decl));
20923 /* If we're emitting an out-of-line copy of an inline function,
20924 emit info for the abstract instance and set up to refer to it. */
20925 else if (cgraph_function_possibly_inlined_p (decl)
20926 && ! DECL_ABSTRACT_P (decl)
20927 && ! class_or_namespace_scope_p (context_die)
20928 /* dwarf2out_abstract_function won't emit a die if this is just
20929 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
20930 that case, because that works only if we have a die. */
20931 && DECL_INITIAL (decl) != NULL_TREE)
20933 dwarf2out_abstract_function (decl);
20934 set_decl_origin_self (decl);
20937 /* Otherwise we're emitting the primary DIE for this decl. */
20938 else if (debug_info_level > DINFO_LEVEL_TERSE)
20940 /* Before we describe the FUNCTION_DECL itself, make sure that we
20941 have its containing type. */
20942 if (!origin)
20943 origin = decl_class_context (decl);
20944 if (origin != NULL_TREE)
20945 gen_type_die (origin, context_die);
20947 /* And its return type. */
20948 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
20950 /* And its virtual context. */
20951 if (DECL_VINDEX (decl) != NULL_TREE)
20952 gen_type_die (DECL_CONTEXT (decl), context_die);
20954 /* Make sure we have a member DIE for decl. */
20955 if (origin != NULL_TREE)
20956 gen_type_die_for_member (origin, decl, context_die);
20958 /* And its containing namespace. */
20959 context_die = declare_in_namespace (decl, context_die);
20962 /* Now output a DIE to represent the function itself. */
20963 if (decl)
20964 gen_subprogram_die (decl, context_die);
20965 break;
20967 case TYPE_DECL:
20968 /* If we are in terse mode, don't generate any DIEs to represent any
20969 actual typedefs. */
20970 if (debug_info_level <= DINFO_LEVEL_TERSE)
20971 break;
20973 /* In the special case of a TYPE_DECL node representing the declaration
20974 of some type tag, if the given TYPE_DECL is marked as having been
20975 instantiated from some other (original) TYPE_DECL node (e.g. one which
20976 was generated within the original definition of an inline function) we
20977 used to generate a special (abbreviated) DW_TAG_structure_type,
20978 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. But nothing
20979 should be actually referencing those DIEs, as variable DIEs with that
20980 type would be emitted already in the abstract origin, so it was always
20981 removed during unused type prunning. Don't add anything in this
20982 case. */
20983 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
20984 break;
20986 if (is_redundant_typedef (decl))
20987 gen_type_die (TREE_TYPE (decl), context_die);
20988 else
20989 /* Output a DIE to represent the typedef itself. */
20990 gen_typedef_die (decl, context_die);
20991 break;
20993 case LABEL_DECL:
20994 if (debug_info_level >= DINFO_LEVEL_NORMAL)
20995 gen_label_die (decl, context_die);
20996 break;
20998 case VAR_DECL:
20999 case RESULT_DECL:
21000 /* If we are in terse mode, don't generate any DIEs to represent any
21001 variable declarations or definitions. */
21002 if (debug_info_level <= DINFO_LEVEL_TERSE)
21003 break;
21005 /* Output any DIEs that are needed to specify the type of this data
21006 object. */
21007 if (decl_by_reference_p (decl_or_origin))
21008 gen_type_die (TREE_TYPE (TREE_TYPE (decl_or_origin)), context_die);
21009 else
21010 gen_type_die (TREE_TYPE (decl_or_origin), context_die);
21012 /* And its containing type. */
21013 class_origin = decl_class_context (decl_or_origin);
21014 if (class_origin != NULL_TREE)
21015 gen_type_die_for_member (class_origin, decl_or_origin, context_die);
21017 /* And its containing namespace. */
21018 context_die = declare_in_namespace (decl_or_origin, context_die);
21020 /* Now output the DIE to represent the data object itself. This gets
21021 complicated because of the possibility that the VAR_DECL really
21022 represents an inlined instance of a formal parameter for an inline
21023 function. */
21024 ultimate_origin = decl_ultimate_origin (decl_or_origin);
21025 if (ultimate_origin != NULL_TREE
21026 && TREE_CODE (ultimate_origin) == PARM_DECL)
21027 gen_formal_parameter_die (decl, origin,
21028 true /* Emit name attribute. */,
21029 context_die);
21030 else
21031 gen_variable_die (decl, origin, context_die);
21032 break;
21034 case FIELD_DECL:
21035 /* Ignore the nameless fields that are used to skip bits but handle C++
21036 anonymous unions and structs. */
21037 if (DECL_NAME (decl) != NULL_TREE
21038 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
21039 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
21041 gen_type_die (member_declared_type (decl), context_die);
21042 gen_field_die (decl, context_die);
21044 break;
21046 case PARM_DECL:
21047 if (DECL_BY_REFERENCE (decl_or_origin))
21048 gen_type_die (TREE_TYPE (TREE_TYPE (decl_or_origin)), context_die);
21049 else
21050 gen_type_die (TREE_TYPE (decl_or_origin), context_die);
21051 return gen_formal_parameter_die (decl, origin,
21052 true /* Emit name attribute. */,
21053 context_die);
21055 case NAMESPACE_DECL:
21056 case IMPORTED_DECL:
21057 if (dwarf_version >= 3 || !dwarf_strict)
21058 gen_namespace_die (decl, context_die);
21059 break;
21061 case NAMELIST_DECL:
21062 gen_namelist_decl (DECL_NAME (decl), context_die,
21063 NAMELIST_DECL_ASSOCIATED_DECL (decl));
21064 break;
21066 default:
21067 /* Probably some frontend-internal decl. Assume we don't care. */
21068 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
21069 break;
21072 return NULL;
21075 /* Output debug information for global decl DECL. Called from toplev.c after
21076 compilation proper has finished. */
21078 static void
21079 dwarf2out_global_decl (tree decl)
21081 /* Output DWARF2 information for file-scope tentative data object
21082 declarations, file-scope (extern) function declarations (which
21083 had no corresponding body) and file-scope tagged type declarations
21084 and definitions which have not yet been forced out. */
21085 if ((TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
21086 && !POINTER_BOUNDS_P (decl))
21087 dwarf2out_decl (decl);
21090 /* Output debug information for type decl DECL. Called from toplev.c
21091 and from language front ends (to record built-in types). */
21092 static void
21093 dwarf2out_type_decl (tree decl, int local)
21095 if (!local)
21096 dwarf2out_decl (decl);
21099 /* Output debug information for imported module or decl DECL.
21100 NAME is non-NULL name in the lexical block if the decl has been renamed.
21101 LEXICAL_BLOCK is the lexical block (which TREE_CODE is a BLOCK)
21102 that DECL belongs to.
21103 LEXICAL_BLOCK_DIE is the DIE of LEXICAL_BLOCK. */
21104 static void
21105 dwarf2out_imported_module_or_decl_1 (tree decl,
21106 tree name,
21107 tree lexical_block,
21108 dw_die_ref lexical_block_die)
21110 expanded_location xloc;
21111 dw_die_ref imported_die = NULL;
21112 dw_die_ref at_import_die;
21114 if (TREE_CODE (decl) == IMPORTED_DECL)
21116 xloc = expand_location (DECL_SOURCE_LOCATION (decl));
21117 decl = IMPORTED_DECL_ASSOCIATED_DECL (decl);
21118 gcc_assert (decl);
21120 else
21121 xloc = expand_location (input_location);
21123 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
21125 at_import_die = force_type_die (TREE_TYPE (decl));
21126 /* For namespace N { typedef void T; } using N::T; base_type_die
21127 returns NULL, but DW_TAG_imported_declaration requires
21128 the DW_AT_import tag. Force creation of DW_TAG_typedef. */
21129 if (!at_import_die)
21131 gcc_assert (TREE_CODE (decl) == TYPE_DECL);
21132 gen_typedef_die (decl, get_context_die (DECL_CONTEXT (decl)));
21133 at_import_die = lookup_type_die (TREE_TYPE (decl));
21134 gcc_assert (at_import_die);
21137 else
21139 at_import_die = lookup_decl_die (decl);
21140 if (!at_import_die)
21142 /* If we're trying to avoid duplicate debug info, we may not have
21143 emitted the member decl for this field. Emit it now. */
21144 if (TREE_CODE (decl) == FIELD_DECL)
21146 tree type = DECL_CONTEXT (decl);
21148 if (TYPE_CONTEXT (type)
21149 && TYPE_P (TYPE_CONTEXT (type))
21150 && !should_emit_struct_debug (TYPE_CONTEXT (type),
21151 DINFO_USAGE_DIR_USE))
21152 return;
21153 gen_type_die_for_member (type, decl,
21154 get_context_die (TYPE_CONTEXT (type)));
21156 if (TREE_CODE (decl) == NAMELIST_DECL)
21157 at_import_die = gen_namelist_decl (DECL_NAME (decl),
21158 get_context_die (DECL_CONTEXT (decl)),
21159 NULL_TREE);
21160 else
21161 at_import_die = force_decl_die (decl);
21165 if (TREE_CODE (decl) == NAMESPACE_DECL)
21167 if (dwarf_version >= 3 || !dwarf_strict)
21168 imported_die = new_die (DW_TAG_imported_module,
21169 lexical_block_die,
21170 lexical_block);
21171 else
21172 return;
21174 else
21175 imported_die = new_die (DW_TAG_imported_declaration,
21176 lexical_block_die,
21177 lexical_block);
21179 add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
21180 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
21181 if (name)
21182 add_AT_string (imported_die, DW_AT_name,
21183 IDENTIFIER_POINTER (name));
21184 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
21187 /* Output debug information for imported module or decl DECL.
21188 NAME is non-NULL name in context if the decl has been renamed.
21189 CHILD is true if decl is one of the renamed decls as part of
21190 importing whole module. */
21192 static void
21193 dwarf2out_imported_module_or_decl (tree decl, tree name, tree context,
21194 bool child)
21196 /* dw_die_ref at_import_die; */
21197 dw_die_ref scope_die;
21199 if (debug_info_level <= DINFO_LEVEL_TERSE)
21200 return;
21202 gcc_assert (decl);
21204 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
21205 We need decl DIE for reference and scope die. First, get DIE for the decl
21206 itself. */
21208 /* Get the scope die for decl context. Use comp_unit_die for global module
21209 or decl. If die is not found for non globals, force new die. */
21210 if (context
21211 && TYPE_P (context)
21212 && !should_emit_struct_debug (context, DINFO_USAGE_DIR_USE))
21213 return;
21215 if (!(dwarf_version >= 3 || !dwarf_strict))
21216 return;
21218 scope_die = get_context_die (context);
21220 if (child)
21222 gcc_assert (scope_die->die_child);
21223 gcc_assert (scope_die->die_child->die_tag == DW_TAG_imported_module);
21224 gcc_assert (TREE_CODE (decl) != NAMESPACE_DECL);
21225 scope_die = scope_die->die_child;
21228 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
21229 dwarf2out_imported_module_or_decl_1 (decl, name, context, scope_die);
21233 /* Output debug information for namelists. */
21235 static dw_die_ref
21236 gen_namelist_decl (tree name, dw_die_ref scope_die, tree item_decls)
21238 dw_die_ref nml_die, nml_item_die, nml_item_ref_die;
21239 tree value;
21240 unsigned i;
21242 if (debug_info_level <= DINFO_LEVEL_TERSE)
21243 return NULL;
21245 gcc_assert (scope_die != NULL);
21246 nml_die = new_die (DW_TAG_namelist, scope_die, NULL);
21247 add_AT_string (nml_die, DW_AT_name, IDENTIFIER_POINTER (name));
21249 /* If there are no item_decls, we have a nondefining namelist, e.g.
21250 with USE association; hence, set DW_AT_declaration. */
21251 if (item_decls == NULL_TREE)
21253 add_AT_flag (nml_die, DW_AT_declaration, 1);
21254 return nml_die;
21257 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (item_decls), i, value)
21259 nml_item_ref_die = lookup_decl_die (value);
21260 if (!nml_item_ref_die)
21261 nml_item_ref_die = force_decl_die (value);
21263 nml_item_die = new_die (DW_TAG_namelist_item, nml_die, NULL);
21264 add_AT_die_ref (nml_item_die, DW_AT_namelist_items, nml_item_ref_die);
21266 return nml_die;
21270 /* Write the debugging output for DECL. */
21272 static void
21273 dwarf2out_decl (tree decl)
21275 dw_die_ref context_die = comp_unit_die ();
21277 switch (TREE_CODE (decl))
21279 case ERROR_MARK:
21280 return;
21282 case FUNCTION_DECL:
21283 /* What we would really like to do here is to filter out all mere
21284 file-scope declarations of file-scope functions which are never
21285 referenced later within this translation unit (and keep all of ones
21286 that *are* referenced later on) but we aren't clairvoyant, so we have
21287 no idea which functions will be referenced in the future (i.e. later
21288 on within the current translation unit). So here we just ignore all
21289 file-scope function declarations which are not also definitions. If
21290 and when the debugger needs to know something about these functions,
21291 it will have to hunt around and find the DWARF information associated
21292 with the definition of the function.
21294 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
21295 nodes represent definitions and which ones represent mere
21296 declarations. We have to check DECL_INITIAL instead. That's because
21297 the C front-end supports some weird semantics for "extern inline"
21298 function definitions. These can get inlined within the current
21299 translation unit (and thus, we need to generate Dwarf info for their
21300 abstract instances so that the Dwarf info for the concrete inlined
21301 instances can have something to refer to) but the compiler never
21302 generates any out-of-lines instances of such things (despite the fact
21303 that they *are* definitions).
21305 The important point is that the C front-end marks these "extern
21306 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
21307 them anyway. Note that the C++ front-end also plays some similar games
21308 for inline function definitions appearing within include files which
21309 also contain `#pragma interface' pragmas.
21311 If we are called from dwarf2out_abstract_function output a DIE
21312 anyway. We can end up here this way with early inlining and LTO
21313 where the inlined function is output in a different LTRANS unit
21314 or not at all. */
21315 if (DECL_INITIAL (decl) == NULL_TREE
21316 && ! DECL_ABSTRACT_P (decl))
21317 return;
21319 /* If we're a nested function, initially use a parent of NULL; if we're
21320 a plain function, this will be fixed up in decls_for_scope. If
21321 we're a method, it will be ignored, since we already have a DIE. */
21322 if (decl_function_context (decl)
21323 /* But if we're in terse mode, we don't care about scope. */
21324 && debug_info_level > DINFO_LEVEL_TERSE)
21325 context_die = NULL;
21326 break;
21328 case VAR_DECL:
21329 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
21330 declaration and if the declaration was never even referenced from
21331 within this entire compilation unit. We suppress these DIEs in
21332 order to save space in the .debug section (by eliminating entries
21333 which are probably useless). Note that we must not suppress
21334 block-local extern declarations (whether used or not) because that
21335 would screw-up the debugger's name lookup mechanism and cause it to
21336 miss things which really ought to be in scope at a given point. */
21337 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
21338 return;
21340 /* For local statics lookup proper context die. */
21341 if (TREE_STATIC (decl)
21342 && DECL_CONTEXT (decl)
21343 && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL)
21344 context_die = lookup_decl_die (DECL_CONTEXT (decl));
21346 /* If we are in terse mode, don't generate any DIEs to represent any
21347 variable declarations or definitions. */
21348 if (debug_info_level <= DINFO_LEVEL_TERSE)
21349 return;
21350 break;
21352 case CONST_DECL:
21353 if (debug_info_level <= DINFO_LEVEL_TERSE)
21354 return;
21355 if (!is_fortran () && !is_ada ())
21356 return;
21357 if (TREE_STATIC (decl) && decl_function_context (decl))
21358 context_die = lookup_decl_die (DECL_CONTEXT (decl));
21359 break;
21361 case NAMESPACE_DECL:
21362 case IMPORTED_DECL:
21363 if (debug_info_level <= DINFO_LEVEL_TERSE)
21364 return;
21365 if (lookup_decl_die (decl) != NULL)
21366 return;
21367 break;
21369 case TYPE_DECL:
21370 /* Don't emit stubs for types unless they are needed by other DIEs. */
21371 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
21372 return;
21374 /* Don't bother trying to generate any DIEs to represent any of the
21375 normal built-in types for the language we are compiling. */
21376 if (DECL_IS_BUILTIN (decl))
21377 return;
21379 /* If we are in terse mode, don't generate any DIEs for types. */
21380 if (debug_info_level <= DINFO_LEVEL_TERSE)
21381 return;
21383 /* If we're a function-scope tag, initially use a parent of NULL;
21384 this will be fixed up in decls_for_scope. */
21385 if (decl_function_context (decl))
21386 context_die = NULL;
21388 break;
21390 case NAMELIST_DECL:
21391 break;
21393 default:
21394 return;
21397 gen_decl_die (decl, NULL, context_die);
21400 /* Write the debugging output for DECL. */
21402 static void
21403 dwarf2out_function_decl (tree decl)
21405 dwarf2out_decl (decl);
21406 call_arg_locations = NULL;
21407 call_arg_loc_last = NULL;
21408 call_site_count = -1;
21409 tail_call_site_count = -1;
21410 block_map.release ();
21411 decl_loc_table->empty ();
21412 cached_dw_loc_list_table->empty ();
21415 /* Output a marker (i.e. a label) for the beginning of the generated code for
21416 a lexical block. */
21418 static void
21419 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
21420 unsigned int blocknum)
21422 switch_to_section (current_function_section ());
21423 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
21426 /* Output a marker (i.e. a label) for the end of the generated code for a
21427 lexical block. */
21429 static void
21430 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
21432 switch_to_section (current_function_section ());
21433 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
21436 /* Returns nonzero if it is appropriate not to emit any debugging
21437 information for BLOCK, because it doesn't contain any instructions.
21439 Don't allow this for blocks with nested functions or local classes
21440 as we would end up with orphans, and in the presence of scheduling
21441 we may end up calling them anyway. */
21443 static bool
21444 dwarf2out_ignore_block (const_tree block)
21446 tree decl;
21447 unsigned int i;
21449 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
21450 if (TREE_CODE (decl) == FUNCTION_DECL
21451 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
21452 return 0;
21453 for (i = 0; i < BLOCK_NUM_NONLOCALIZED_VARS (block); i++)
21455 decl = BLOCK_NONLOCALIZED_VAR (block, i);
21456 if (TREE_CODE (decl) == FUNCTION_DECL
21457 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
21458 return 0;
21461 return 1;
21464 /* Hash table routines for file_hash. */
21466 bool
21467 dwarf_file_hasher::equal (dwarf_file_data *p1, const char *p2)
21469 return filename_cmp (p1->filename, p2) == 0;
21472 hashval_t
21473 dwarf_file_hasher::hash (dwarf_file_data *p)
21475 return htab_hash_string (p->filename);
21478 /* Lookup FILE_NAME (in the list of filenames that we know about here in
21479 dwarf2out.c) and return its "index". The index of each (known) filename is
21480 just a unique number which is associated with only that one filename. We
21481 need such numbers for the sake of generating labels (in the .debug_sfnames
21482 section) and references to those files numbers (in the .debug_srcinfo
21483 and.debug_macinfo sections). If the filename given as an argument is not
21484 found in our current list, add it to the list and assign it the next
21485 available unique index number. In order to speed up searches, we remember
21486 the index of the filename was looked up last. This handles the majority of
21487 all searches. */
21489 static struct dwarf_file_data *
21490 lookup_filename (const char *file_name)
21492 struct dwarf_file_data * created;
21494 /* Check to see if the file name that was searched on the previous
21495 call matches this file name. If so, return the index. */
21496 if (file_table_last_lookup
21497 && (file_name == file_table_last_lookup->filename
21498 || filename_cmp (file_table_last_lookup->filename, file_name) == 0))
21499 return file_table_last_lookup;
21501 /* Didn't match the previous lookup, search the table. */
21502 dwarf_file_data **slot
21503 = file_table->find_slot_with_hash (file_name, htab_hash_string (file_name),
21504 INSERT);
21505 if (*slot)
21506 return *slot;
21508 created = ggc_alloc<dwarf_file_data> ();
21509 created->filename = file_name;
21510 created->emitted_number = 0;
21511 *slot = created;
21512 return created;
21515 /* If the assembler will construct the file table, then translate the compiler
21516 internal file table number into the assembler file table number, and emit
21517 a .file directive if we haven't already emitted one yet. The file table
21518 numbers are different because we prune debug info for unused variables and
21519 types, which may include filenames. */
21521 static int
21522 maybe_emit_file (struct dwarf_file_data * fd)
21524 if (! fd->emitted_number)
21526 if (last_emitted_file)
21527 fd->emitted_number = last_emitted_file->emitted_number + 1;
21528 else
21529 fd->emitted_number = 1;
21530 last_emitted_file = fd;
21532 if (DWARF2_ASM_LINE_DEBUG_INFO)
21534 fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
21535 output_quoted_string (asm_out_file,
21536 remap_debug_filename (fd->filename));
21537 fputc ('\n', asm_out_file);
21541 return fd->emitted_number;
21544 /* Schedule generation of a DW_AT_const_value attribute to DIE.
21545 That generation should happen after function debug info has been
21546 generated. The value of the attribute is the constant value of ARG. */
21548 static void
21549 append_entry_to_tmpl_value_parm_die_table (dw_die_ref die, tree arg)
21551 die_arg_entry entry;
21553 if (!die || !arg)
21554 return;
21556 if (!tmpl_value_parm_die_table)
21557 vec_alloc (tmpl_value_parm_die_table, 32);
21559 entry.die = die;
21560 entry.arg = arg;
21561 vec_safe_push (tmpl_value_parm_die_table, entry);
21564 /* Return TRUE if T is an instance of generic type, FALSE
21565 otherwise. */
21567 static bool
21568 generic_type_p (tree t)
21570 if (t == NULL_TREE || !TYPE_P (t))
21571 return false;
21572 return lang_hooks.get_innermost_generic_parms (t) != NULL_TREE;
21575 /* Schedule the generation of the generic parameter dies for the
21576 instance of generic type T. The proper generation itself is later
21577 done by gen_scheduled_generic_parms_dies. */
21579 static void
21580 schedule_generic_params_dies_gen (tree t)
21582 if (!generic_type_p (t))
21583 return;
21585 if (!generic_type_instances)
21586 vec_alloc (generic_type_instances, 256);
21588 vec_safe_push (generic_type_instances, t);
21591 /* Add a DW_AT_const_value attribute to DIEs that were scheduled
21592 by append_entry_to_tmpl_value_parm_die_table. This function must
21593 be called after function DIEs have been generated. */
21595 static void
21596 gen_remaining_tmpl_value_param_die_attribute (void)
21598 if (tmpl_value_parm_die_table)
21600 unsigned i;
21601 die_arg_entry *e;
21603 FOR_EACH_VEC_ELT (*tmpl_value_parm_die_table, i, e)
21604 tree_add_const_value_attribute (e->die, e->arg);
21608 /* Generate generic parameters DIEs for instances of generic types
21609 that have been previously scheduled by
21610 schedule_generic_params_dies_gen. This function must be called
21611 after all the types of the CU have been laid out. */
21613 static void
21614 gen_scheduled_generic_parms_dies (void)
21616 unsigned i;
21617 tree t;
21619 if (!generic_type_instances)
21620 return;
21622 FOR_EACH_VEC_ELT (*generic_type_instances, i, t)
21623 if (COMPLETE_TYPE_P (t))
21624 gen_generic_params_dies (t);
21628 /* Replace DW_AT_name for the decl with name. */
21630 static void
21631 dwarf2out_set_name (tree decl, tree name)
21633 dw_die_ref die;
21634 dw_attr_ref attr;
21635 const char *dname;
21637 die = TYPE_SYMTAB_DIE (decl);
21638 if (!die)
21639 return;
21641 dname = dwarf2_name (name, 0);
21642 if (!dname)
21643 return;
21645 attr = get_AT (die, DW_AT_name);
21646 if (attr)
21648 struct indirect_string_node *node;
21650 node = find_AT_string (dname);
21651 /* replace the string. */
21652 attr->dw_attr_val.v.val_str = node;
21655 else
21656 add_name_attribute (die, dname);
21659 /* True if before or during processing of the first function being emitted. */
21660 static bool in_first_function_p = true;
21661 /* True if loc_note during dwarf2out_var_location call might still be
21662 before first real instruction at address equal to .Ltext0. */
21663 static bool maybe_at_text_label_p = true;
21664 /* One above highest N where .LVLN label might be equal to .Ltext0 label. */
21665 static unsigned int first_loclabel_num_not_at_text_label;
21667 /* Called by the final INSN scan whenever we see a var location. We
21668 use it to drop labels in the right places, and throw the location in
21669 our lookup table. */
21671 static void
21672 dwarf2out_var_location (rtx_insn *loc_note)
21674 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES + 2];
21675 struct var_loc_node *newloc;
21676 rtx_insn *next_real, *next_note;
21677 static const char *last_label;
21678 static const char *last_postcall_label;
21679 static bool last_in_cold_section_p;
21680 static rtx_insn *expected_next_loc_note;
21681 tree decl;
21682 bool var_loc_p;
21684 if (!NOTE_P (loc_note))
21686 if (CALL_P (loc_note))
21688 call_site_count++;
21689 if (SIBLING_CALL_P (loc_note))
21690 tail_call_site_count++;
21692 return;
21695 var_loc_p = NOTE_KIND (loc_note) == NOTE_INSN_VAR_LOCATION;
21696 if (var_loc_p && !DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
21697 return;
21699 /* Optimize processing a large consecutive sequence of location
21700 notes so we don't spend too much time in next_real_insn. If the
21701 next insn is another location note, remember the next_real_insn
21702 calculation for next time. */
21703 next_real = cached_next_real_insn;
21704 if (next_real)
21706 if (expected_next_loc_note != loc_note)
21707 next_real = NULL;
21710 next_note = NEXT_INSN (loc_note);
21711 if (! next_note
21712 || next_note->deleted ()
21713 || ! NOTE_P (next_note)
21714 || (NOTE_KIND (next_note) != NOTE_INSN_VAR_LOCATION
21715 && NOTE_KIND (next_note) != NOTE_INSN_CALL_ARG_LOCATION))
21716 next_note = NULL;
21718 if (! next_real)
21719 next_real = next_real_insn (loc_note);
21721 if (next_note)
21723 expected_next_loc_note = next_note;
21724 cached_next_real_insn = next_real;
21726 else
21727 cached_next_real_insn = NULL;
21729 /* If there are no instructions which would be affected by this note,
21730 don't do anything. */
21731 if (var_loc_p
21732 && next_real == NULL_RTX
21733 && !NOTE_DURING_CALL_P (loc_note))
21734 return;
21736 if (next_real == NULL_RTX)
21737 next_real = get_last_insn ();
21739 /* If there were any real insns between note we processed last time
21740 and this note (or if it is the first note), clear
21741 last_{,postcall_}label so that they are not reused this time. */
21742 if (last_var_location_insn == NULL_RTX
21743 || last_var_location_insn != next_real
21744 || last_in_cold_section_p != in_cold_section_p)
21746 last_label = NULL;
21747 last_postcall_label = NULL;
21750 if (var_loc_p)
21752 decl = NOTE_VAR_LOCATION_DECL (loc_note);
21753 newloc = add_var_loc_to_decl (decl, loc_note,
21754 NOTE_DURING_CALL_P (loc_note)
21755 ? last_postcall_label : last_label);
21756 if (newloc == NULL)
21757 return;
21759 else
21761 decl = NULL_TREE;
21762 newloc = NULL;
21765 /* If there were no real insns between note we processed last time
21766 and this note, use the label we emitted last time. Otherwise
21767 create a new label and emit it. */
21768 if (last_label == NULL)
21770 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
21771 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
21772 loclabel_num++;
21773 last_label = ggc_strdup (loclabel);
21774 /* See if loclabel might be equal to .Ltext0. If yes,
21775 bump first_loclabel_num_not_at_text_label. */
21776 if (!have_multiple_function_sections
21777 && in_first_function_p
21778 && maybe_at_text_label_p)
21780 static rtx_insn *last_start;
21781 rtx_insn *insn;
21782 for (insn = loc_note; insn; insn = previous_insn (insn))
21783 if (insn == last_start)
21784 break;
21785 else if (!NONDEBUG_INSN_P (insn))
21786 continue;
21787 else
21789 rtx body = PATTERN (insn);
21790 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
21791 continue;
21792 /* Inline asm could occupy zero bytes. */
21793 else if (GET_CODE (body) == ASM_INPUT
21794 || asm_noperands (body) >= 0)
21795 continue;
21796 #ifdef HAVE_attr_length
21797 else if (get_attr_min_length (insn) == 0)
21798 continue;
21799 #endif
21800 else
21802 /* Assume insn has non-zero length. */
21803 maybe_at_text_label_p = false;
21804 break;
21807 if (maybe_at_text_label_p)
21809 last_start = loc_note;
21810 first_loclabel_num_not_at_text_label = loclabel_num;
21815 if (!var_loc_p)
21817 struct call_arg_loc_node *ca_loc
21818 = ggc_cleared_alloc<call_arg_loc_node> ();
21819 rtx_insn *prev = prev_real_insn (loc_note);
21820 rtx x;
21821 ca_loc->call_arg_loc_note = loc_note;
21822 ca_loc->next = NULL;
21823 ca_loc->label = last_label;
21824 gcc_assert (prev
21825 && (CALL_P (prev)
21826 || (NONJUMP_INSN_P (prev)
21827 && GET_CODE (PATTERN (prev)) == SEQUENCE
21828 && CALL_P (XVECEXP (PATTERN (prev), 0, 0)))));
21829 if (!CALL_P (prev))
21830 prev = as_a <rtx_sequence *> (PATTERN (prev))->insn (0);
21831 ca_loc->tail_call_p = SIBLING_CALL_P (prev);
21832 x = get_call_rtx_from (PATTERN (prev));
21833 if (x)
21835 x = XEXP (XEXP (x, 0), 0);
21836 if (GET_CODE (x) == SYMBOL_REF
21837 && SYMBOL_REF_DECL (x)
21838 && TREE_CODE (SYMBOL_REF_DECL (x)) == FUNCTION_DECL)
21839 ca_loc->symbol_ref = x;
21841 ca_loc->block = insn_scope (prev);
21842 if (call_arg_locations)
21843 call_arg_loc_last->next = ca_loc;
21844 else
21845 call_arg_locations = ca_loc;
21846 call_arg_loc_last = ca_loc;
21848 else if (!NOTE_DURING_CALL_P (loc_note))
21849 newloc->label = last_label;
21850 else
21852 if (!last_postcall_label)
21854 sprintf (loclabel, "%s-1", last_label);
21855 last_postcall_label = ggc_strdup (loclabel);
21857 newloc->label = last_postcall_label;
21860 last_var_location_insn = next_real;
21861 last_in_cold_section_p = in_cold_section_p;
21864 /* Note in one location list that text section has changed. */
21867 var_location_switch_text_section_1 (var_loc_list **slot, void *)
21869 var_loc_list *list = *slot;
21870 if (list->first)
21871 list->last_before_switch
21872 = list->last->next ? list->last->next : list->last;
21873 return 1;
21876 /* Note in all location lists that text section has changed. */
21878 static void
21879 var_location_switch_text_section (void)
21881 if (decl_loc_table == NULL)
21882 return;
21884 decl_loc_table->traverse<void *, var_location_switch_text_section_1> (NULL);
21887 /* Create a new line number table. */
21889 static dw_line_info_table *
21890 new_line_info_table (void)
21892 dw_line_info_table *table;
21894 table = ggc_cleared_alloc<dw_line_info_table_struct> ();
21895 table->file_num = 1;
21896 table->line_num = 1;
21897 table->is_stmt = DWARF_LINE_DEFAULT_IS_STMT_START;
21899 return table;
21902 /* Lookup the "current" table into which we emit line info, so
21903 that we don't have to do it for every source line. */
21905 static void
21906 set_cur_line_info_table (section *sec)
21908 dw_line_info_table *table;
21910 if (sec == text_section)
21911 table = text_section_line_info;
21912 else if (sec == cold_text_section)
21914 table = cold_text_section_line_info;
21915 if (!table)
21917 cold_text_section_line_info = table = new_line_info_table ();
21918 table->end_label = cold_end_label;
21921 else
21923 const char *end_label;
21925 if (flag_reorder_blocks_and_partition)
21927 if (in_cold_section_p)
21928 end_label = crtl->subsections.cold_section_end_label;
21929 else
21930 end_label = crtl->subsections.hot_section_end_label;
21932 else
21934 char label[MAX_ARTIFICIAL_LABEL_BYTES];
21935 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
21936 current_function_funcdef_no);
21937 end_label = ggc_strdup (label);
21940 table = new_line_info_table ();
21941 table->end_label = end_label;
21943 vec_safe_push (separate_line_info, table);
21946 if (DWARF2_ASM_LINE_DEBUG_INFO)
21947 table->is_stmt = (cur_line_info_table
21948 ? cur_line_info_table->is_stmt
21949 : DWARF_LINE_DEFAULT_IS_STMT_START);
21950 cur_line_info_table = table;
21954 /* We need to reset the locations at the beginning of each
21955 function. We can't do this in the end_function hook, because the
21956 declarations that use the locations won't have been output when
21957 that hook is called. Also compute have_multiple_function_sections here. */
21959 static void
21960 dwarf2out_begin_function (tree fun)
21962 section *sec = function_section (fun);
21964 if (sec != text_section)
21965 have_multiple_function_sections = true;
21967 if (flag_reorder_blocks_and_partition && !cold_text_section)
21969 gcc_assert (current_function_decl == fun);
21970 cold_text_section = unlikely_text_section ();
21971 switch_to_section (cold_text_section);
21972 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
21973 switch_to_section (sec);
21976 dwarf2out_note_section_used ();
21977 call_site_count = 0;
21978 tail_call_site_count = 0;
21980 set_cur_line_info_table (sec);
21983 /* Helper function of dwarf2out_end_function, called only after emitting
21984 the very first function into assembly. Check if some .debug_loc range
21985 might end with a .LVL* label that could be equal to .Ltext0.
21986 In that case we must force using absolute addresses in .debug_loc ranges,
21987 because this range could be .LVLN-.Ltext0 .. .LVLM-.Ltext0 for
21988 .LVLN == .LVLM == .Ltext0, thus 0 .. 0, which is a .debug_loc
21989 list terminator.
21990 Set have_multiple_function_sections to true in that case and
21991 terminate htab traversal. */
21994 find_empty_loc_ranges_at_text_label (var_loc_list **slot, int)
21996 var_loc_list *entry = *slot;
21997 struct var_loc_node *node;
21999 node = entry->first;
22000 if (node && node->next && node->next->label)
22002 unsigned int i;
22003 const char *label = node->next->label;
22004 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
22006 for (i = 0; i < first_loclabel_num_not_at_text_label; i++)
22008 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", i);
22009 if (strcmp (label, loclabel) == 0)
22011 have_multiple_function_sections = true;
22012 return 0;
22016 return 1;
22019 /* Hook called after emitting a function into assembly.
22020 This does something only for the very first function emitted. */
22022 static void
22023 dwarf2out_end_function (unsigned int)
22025 if (in_first_function_p
22026 && !have_multiple_function_sections
22027 && first_loclabel_num_not_at_text_label
22028 && decl_loc_table)
22029 decl_loc_table->traverse<int, find_empty_loc_ranges_at_text_label> (0);
22030 in_first_function_p = false;
22031 maybe_at_text_label_p = false;
22034 /* Add OPCODE+VAL as an entry at the end of the opcode array in TABLE. */
22036 static void
22037 push_dw_line_info_entry (dw_line_info_table *table,
22038 enum dw_line_info_opcode opcode, unsigned int val)
22040 dw_line_info_entry e;
22041 e.opcode = opcode;
22042 e.val = val;
22043 vec_safe_push (table->entries, e);
22046 /* Output a label to mark the beginning of a source code line entry
22047 and record information relating to this source line, in
22048 'line_info_table' for later output of the .debug_line section. */
22049 /* ??? The discriminator parameter ought to be unsigned. */
22051 static void
22052 dwarf2out_source_line (unsigned int line, const char *filename,
22053 int discriminator, bool is_stmt)
22055 unsigned int file_num;
22056 dw_line_info_table *table;
22058 if (debug_info_level < DINFO_LEVEL_TERSE || line == 0)
22059 return;
22061 /* The discriminator column was added in dwarf4. Simplify the below
22062 by simply removing it if we're not supposed to output it. */
22063 if (dwarf_version < 4 && dwarf_strict)
22064 discriminator = 0;
22066 table = cur_line_info_table;
22067 file_num = maybe_emit_file (lookup_filename (filename));
22069 /* ??? TODO: Elide duplicate line number entries. Traditionally,
22070 the debugger has used the second (possibly duplicate) line number
22071 at the beginning of the function to mark the end of the prologue.
22072 We could eliminate any other duplicates within the function. For
22073 Dwarf3, we ought to include the DW_LNS_set_prologue_end mark in
22074 that second line number entry. */
22075 /* Recall that this end-of-prologue indication is *not* the same thing
22076 as the end_prologue debug hook. The NOTE_INSN_PROLOGUE_END note,
22077 to which the hook corresponds, follows the last insn that was
22078 emitted by gen_prologue. What we need is to precede the first insn
22079 that had been emitted after NOTE_INSN_FUNCTION_BEG, i.e. the first
22080 insn that corresponds to something the user wrote. These may be
22081 very different locations once scheduling is enabled. */
22083 if (0 && file_num == table->file_num
22084 && line == table->line_num
22085 && discriminator == table->discrim_num
22086 && is_stmt == table->is_stmt)
22087 return;
22089 switch_to_section (current_function_section ());
22091 /* If requested, emit something human-readable. */
22092 if (flag_debug_asm)
22093 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START, filename, line);
22095 if (DWARF2_ASM_LINE_DEBUG_INFO)
22097 /* Emit the .loc directive understood by GNU as. */
22098 /* "\t.loc %u %u 0 is_stmt %u discriminator %u",
22099 file_num, line, is_stmt, discriminator */
22100 fputs ("\t.loc ", asm_out_file);
22101 fprint_ul (asm_out_file, file_num);
22102 putc (' ', asm_out_file);
22103 fprint_ul (asm_out_file, line);
22104 putc (' ', asm_out_file);
22105 putc ('0', asm_out_file);
22107 if (is_stmt != table->is_stmt)
22109 fputs (" is_stmt ", asm_out_file);
22110 putc (is_stmt ? '1' : '0', asm_out_file);
22112 if (SUPPORTS_DISCRIMINATOR && discriminator != 0)
22114 gcc_assert (discriminator > 0);
22115 fputs (" discriminator ", asm_out_file);
22116 fprint_ul (asm_out_file, (unsigned long) discriminator);
22118 putc ('\n', asm_out_file);
22120 else
22122 unsigned int label_num = ++line_info_label_num;
22124 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL, label_num);
22126 push_dw_line_info_entry (table, LI_set_address, label_num);
22127 if (file_num != table->file_num)
22128 push_dw_line_info_entry (table, LI_set_file, file_num);
22129 if (discriminator != table->discrim_num)
22130 push_dw_line_info_entry (table, LI_set_discriminator, discriminator);
22131 if (is_stmt != table->is_stmt)
22132 push_dw_line_info_entry (table, LI_negate_stmt, 0);
22133 push_dw_line_info_entry (table, LI_set_line, line);
22136 table->file_num = file_num;
22137 table->line_num = line;
22138 table->discrim_num = discriminator;
22139 table->is_stmt = is_stmt;
22140 table->in_use = true;
22143 /* Record the beginning of a new source file. */
22145 static void
22146 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
22148 if (flag_eliminate_dwarf2_dups)
22150 /* Record the beginning of the file for break_out_includes. */
22151 dw_die_ref bincl_die;
22153 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die (), NULL);
22154 add_AT_string (bincl_die, DW_AT_name, remap_debug_filename (filename));
22157 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
22159 macinfo_entry e;
22160 e.code = DW_MACINFO_start_file;
22161 e.lineno = lineno;
22162 e.info = ggc_strdup (filename);
22163 vec_safe_push (macinfo_table, e);
22167 /* Record the end of a source file. */
22169 static void
22170 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
22172 if (flag_eliminate_dwarf2_dups)
22173 /* Record the end of the file for break_out_includes. */
22174 new_die (DW_TAG_GNU_EINCL, comp_unit_die (), NULL);
22176 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
22178 macinfo_entry e;
22179 e.code = DW_MACINFO_end_file;
22180 e.lineno = lineno;
22181 e.info = NULL;
22182 vec_safe_push (macinfo_table, e);
22186 /* Called from debug_define in toplev.c. The `buffer' parameter contains
22187 the tail part of the directive line, i.e. the part which is past the
22188 initial whitespace, #, whitespace, directive-name, whitespace part. */
22190 static void
22191 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
22192 const char *buffer ATTRIBUTE_UNUSED)
22194 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
22196 macinfo_entry e;
22197 /* Insert a dummy first entry to be able to optimize the whole
22198 predefined macro block using DW_MACRO_GNU_transparent_include. */
22199 if (macinfo_table->is_empty () && lineno <= 1)
22201 e.code = 0;
22202 e.lineno = 0;
22203 e.info = NULL;
22204 vec_safe_push (macinfo_table, e);
22206 e.code = DW_MACINFO_define;
22207 e.lineno = lineno;
22208 e.info = ggc_strdup (buffer);
22209 vec_safe_push (macinfo_table, e);
22213 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
22214 the tail part of the directive line, i.e. the part which is past the
22215 initial whitespace, #, whitespace, directive-name, whitespace part. */
22217 static void
22218 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
22219 const char *buffer ATTRIBUTE_UNUSED)
22221 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
22223 macinfo_entry e;
22224 /* Insert a dummy first entry to be able to optimize the whole
22225 predefined macro block using DW_MACRO_GNU_transparent_include. */
22226 if (macinfo_table->is_empty () && lineno <= 1)
22228 e.code = 0;
22229 e.lineno = 0;
22230 e.info = NULL;
22231 vec_safe_push (macinfo_table, e);
22233 e.code = DW_MACINFO_undef;
22234 e.lineno = lineno;
22235 e.info = ggc_strdup (buffer);
22236 vec_safe_push (macinfo_table, e);
22240 /* Helpers to manipulate hash table of CUs. */
22242 struct macinfo_entry_hasher : typed_noop_remove <macinfo_entry>
22244 typedef macinfo_entry *value_type;
22245 typedef macinfo_entry *compare_type;
22246 static inline hashval_t hash (const macinfo_entry *);
22247 static inline bool equal (const macinfo_entry *, const macinfo_entry *);
22250 inline hashval_t
22251 macinfo_entry_hasher::hash (const macinfo_entry *entry)
22253 return htab_hash_string (entry->info);
22256 inline bool
22257 macinfo_entry_hasher::equal (const macinfo_entry *entry1,
22258 const macinfo_entry *entry2)
22260 return !strcmp (entry1->info, entry2->info);
22263 typedef hash_table<macinfo_entry_hasher> macinfo_hash_type;
22265 /* Output a single .debug_macinfo entry. */
22267 static void
22268 output_macinfo_op (macinfo_entry *ref)
22270 int file_num;
22271 size_t len;
22272 struct indirect_string_node *node;
22273 char label[MAX_ARTIFICIAL_LABEL_BYTES];
22274 struct dwarf_file_data *fd;
22276 switch (ref->code)
22278 case DW_MACINFO_start_file:
22279 fd = lookup_filename (ref->info);
22280 file_num = maybe_emit_file (fd);
22281 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
22282 dw2_asm_output_data_uleb128 (ref->lineno,
22283 "Included from line number %lu",
22284 (unsigned long) ref->lineno);
22285 dw2_asm_output_data_uleb128 (file_num, "file %s", ref->info);
22286 break;
22287 case DW_MACINFO_end_file:
22288 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
22289 break;
22290 case DW_MACINFO_define:
22291 case DW_MACINFO_undef:
22292 len = strlen (ref->info) + 1;
22293 if (!dwarf_strict
22294 && len > DWARF_OFFSET_SIZE
22295 && !DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
22296 && (debug_str_section->common.flags & SECTION_MERGE) != 0)
22298 ref->code = ref->code == DW_MACINFO_define
22299 ? DW_MACRO_GNU_define_indirect
22300 : DW_MACRO_GNU_undef_indirect;
22301 output_macinfo_op (ref);
22302 return;
22304 dw2_asm_output_data (1, ref->code,
22305 ref->code == DW_MACINFO_define
22306 ? "Define macro" : "Undefine macro");
22307 dw2_asm_output_data_uleb128 (ref->lineno, "At line number %lu",
22308 (unsigned long) ref->lineno);
22309 dw2_asm_output_nstring (ref->info, -1, "The macro");
22310 break;
22311 case DW_MACRO_GNU_define_indirect:
22312 case DW_MACRO_GNU_undef_indirect:
22313 node = find_AT_string (ref->info);
22314 gcc_assert (node
22315 && ((node->form == DW_FORM_strp)
22316 || (node->form == DW_FORM_GNU_str_index)));
22317 dw2_asm_output_data (1, ref->code,
22318 ref->code == DW_MACRO_GNU_define_indirect
22319 ? "Define macro indirect"
22320 : "Undefine macro indirect");
22321 dw2_asm_output_data_uleb128 (ref->lineno, "At line number %lu",
22322 (unsigned long) ref->lineno);
22323 if (node->form == DW_FORM_strp)
22324 dw2_asm_output_offset (DWARF_OFFSET_SIZE, node->label,
22325 debug_str_section, "The macro: \"%s\"",
22326 ref->info);
22327 else
22328 dw2_asm_output_data_uleb128 (node->index, "The macro: \"%s\"",
22329 ref->info);
22330 break;
22331 case DW_MACRO_GNU_transparent_include:
22332 dw2_asm_output_data (1, ref->code, "Transparent include");
22333 ASM_GENERATE_INTERNAL_LABEL (label,
22334 DEBUG_MACRO_SECTION_LABEL, ref->lineno);
22335 dw2_asm_output_offset (DWARF_OFFSET_SIZE, label, NULL, NULL);
22336 break;
22337 default:
22338 fprintf (asm_out_file, "%s unrecognized macinfo code %lu\n",
22339 ASM_COMMENT_START, (unsigned long) ref->code);
22340 break;
22344 /* Attempt to make a sequence of define/undef macinfo ops shareable with
22345 other compilation unit .debug_macinfo sections. IDX is the first
22346 index of a define/undef, return the number of ops that should be
22347 emitted in a comdat .debug_macinfo section and emit
22348 a DW_MACRO_GNU_transparent_include entry referencing it.
22349 If the define/undef entry should be emitted normally, return 0. */
22351 static unsigned
22352 optimize_macinfo_range (unsigned int idx, vec<macinfo_entry, va_gc> *files,
22353 macinfo_hash_type **macinfo_htab)
22355 macinfo_entry *first, *second, *cur, *inc;
22356 char linebuf[sizeof (HOST_WIDE_INT) * 3 + 1];
22357 unsigned char checksum[16];
22358 struct md5_ctx ctx;
22359 char *grp_name, *tail;
22360 const char *base;
22361 unsigned int i, count, encoded_filename_len, linebuf_len;
22362 macinfo_entry **slot;
22364 first = &(*macinfo_table)[idx];
22365 second = &(*macinfo_table)[idx + 1];
22367 /* Optimize only if there are at least two consecutive define/undef ops,
22368 and either all of them are before first DW_MACINFO_start_file
22369 with lineno {0,1} (i.e. predefined macro block), or all of them are
22370 in some included header file. */
22371 if (second->code != DW_MACINFO_define && second->code != DW_MACINFO_undef)
22372 return 0;
22373 if (vec_safe_is_empty (files))
22375 if (first->lineno > 1 || second->lineno > 1)
22376 return 0;
22378 else if (first->lineno == 0)
22379 return 0;
22381 /* Find the last define/undef entry that can be grouped together
22382 with first and at the same time compute md5 checksum of their
22383 codes, linenumbers and strings. */
22384 md5_init_ctx (&ctx);
22385 for (i = idx; macinfo_table->iterate (i, &cur); i++)
22386 if (cur->code != DW_MACINFO_define && cur->code != DW_MACINFO_undef)
22387 break;
22388 else if (vec_safe_is_empty (files) && cur->lineno > 1)
22389 break;
22390 else
22392 unsigned char code = cur->code;
22393 md5_process_bytes (&code, 1, &ctx);
22394 checksum_uleb128 (cur->lineno, &ctx);
22395 md5_process_bytes (cur->info, strlen (cur->info) + 1, &ctx);
22397 md5_finish_ctx (&ctx, checksum);
22398 count = i - idx;
22400 /* From the containing include filename (if any) pick up just
22401 usable characters from its basename. */
22402 if (vec_safe_is_empty (files))
22403 base = "";
22404 else
22405 base = lbasename (files->last ().info);
22406 for (encoded_filename_len = 0, i = 0; base[i]; i++)
22407 if (ISIDNUM (base[i]) || base[i] == '.')
22408 encoded_filename_len++;
22409 /* Count . at the end. */
22410 if (encoded_filename_len)
22411 encoded_filename_len++;
22413 sprintf (linebuf, HOST_WIDE_INT_PRINT_UNSIGNED, first->lineno);
22414 linebuf_len = strlen (linebuf);
22416 /* The group name format is: wmN.[<encoded filename>.]<lineno>.<md5sum> */
22417 grp_name = XALLOCAVEC (char, 4 + encoded_filename_len + linebuf_len + 1
22418 + 16 * 2 + 1);
22419 memcpy (grp_name, DWARF_OFFSET_SIZE == 4 ? "wm4." : "wm8.", 4);
22420 tail = grp_name + 4;
22421 if (encoded_filename_len)
22423 for (i = 0; base[i]; i++)
22424 if (ISIDNUM (base[i]) || base[i] == '.')
22425 *tail++ = base[i];
22426 *tail++ = '.';
22428 memcpy (tail, linebuf, linebuf_len);
22429 tail += linebuf_len;
22430 *tail++ = '.';
22431 for (i = 0; i < 16; i++)
22432 sprintf (tail + i * 2, "%02x", checksum[i] & 0xff);
22434 /* Construct a macinfo_entry for DW_MACRO_GNU_transparent_include
22435 in the empty vector entry before the first define/undef. */
22436 inc = &(*macinfo_table)[idx - 1];
22437 inc->code = DW_MACRO_GNU_transparent_include;
22438 inc->lineno = 0;
22439 inc->info = ggc_strdup (grp_name);
22440 if (!*macinfo_htab)
22441 *macinfo_htab = new macinfo_hash_type (10);
22442 /* Avoid emitting duplicates. */
22443 slot = (*macinfo_htab)->find_slot (inc, INSERT);
22444 if (*slot != NULL)
22446 inc->code = 0;
22447 inc->info = NULL;
22448 /* If such an entry has been used before, just emit
22449 a DW_MACRO_GNU_transparent_include op. */
22450 inc = *slot;
22451 output_macinfo_op (inc);
22452 /* And clear all macinfo_entry in the range to avoid emitting them
22453 in the second pass. */
22454 for (i = idx; macinfo_table->iterate (i, &cur) && i < idx + count; i++)
22456 cur->code = 0;
22457 cur->info = NULL;
22460 else
22462 *slot = inc;
22463 inc->lineno = (*macinfo_htab)->elements ();
22464 output_macinfo_op (inc);
22466 return count;
22469 /* Save any strings needed by the macinfo table in the debug str
22470 table. All strings must be collected into the table by the time
22471 index_string is called. */
22473 static void
22474 save_macinfo_strings (void)
22476 unsigned len;
22477 unsigned i;
22478 macinfo_entry *ref;
22480 for (i = 0; macinfo_table && macinfo_table->iterate (i, &ref); i++)
22482 switch (ref->code)
22484 /* Match the logic in output_macinfo_op to decide on
22485 indirect strings. */
22486 case DW_MACINFO_define:
22487 case DW_MACINFO_undef:
22488 len = strlen (ref->info) + 1;
22489 if (!dwarf_strict
22490 && len > DWARF_OFFSET_SIZE
22491 && !DWARF2_INDIRECT_STRING_SUPPORT_MISSING_ON_TARGET
22492 && (debug_str_section->common.flags & SECTION_MERGE) != 0)
22493 set_indirect_string (find_AT_string (ref->info));
22494 break;
22495 case DW_MACRO_GNU_define_indirect:
22496 case DW_MACRO_GNU_undef_indirect:
22497 set_indirect_string (find_AT_string (ref->info));
22498 break;
22499 default:
22500 break;
22505 /* Output macinfo section(s). */
22507 static void
22508 output_macinfo (void)
22510 unsigned i;
22511 unsigned long length = vec_safe_length (macinfo_table);
22512 macinfo_entry *ref;
22513 vec<macinfo_entry, va_gc> *files = NULL;
22514 macinfo_hash_type *macinfo_htab = NULL;
22516 if (! length)
22517 return;
22519 /* output_macinfo* uses these interchangeably. */
22520 gcc_assert ((int) DW_MACINFO_define == (int) DW_MACRO_GNU_define
22521 && (int) DW_MACINFO_undef == (int) DW_MACRO_GNU_undef
22522 && (int) DW_MACINFO_start_file == (int) DW_MACRO_GNU_start_file
22523 && (int) DW_MACINFO_end_file == (int) DW_MACRO_GNU_end_file);
22525 /* For .debug_macro emit the section header. */
22526 if (!dwarf_strict)
22528 dw2_asm_output_data (2, 4, "DWARF macro version number");
22529 if (DWARF_OFFSET_SIZE == 8)
22530 dw2_asm_output_data (1, 3, "Flags: 64-bit, lineptr present");
22531 else
22532 dw2_asm_output_data (1, 2, "Flags: 32-bit, lineptr present");
22533 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
22534 (!dwarf_split_debug_info ? debug_line_section_label
22535 : debug_skeleton_line_section_label),
22536 debug_line_section, NULL);
22539 /* In the first loop, it emits the primary .debug_macinfo section
22540 and after each emitted op the macinfo_entry is cleared.
22541 If a longer range of define/undef ops can be optimized using
22542 DW_MACRO_GNU_transparent_include, the
22543 DW_MACRO_GNU_transparent_include op is emitted and kept in
22544 the vector before the first define/undef in the range and the
22545 whole range of define/undef ops is not emitted and kept. */
22546 for (i = 0; macinfo_table->iterate (i, &ref); i++)
22548 switch (ref->code)
22550 case DW_MACINFO_start_file:
22551 vec_safe_push (files, *ref);
22552 break;
22553 case DW_MACINFO_end_file:
22554 if (!vec_safe_is_empty (files))
22555 files->pop ();
22556 break;
22557 case DW_MACINFO_define:
22558 case DW_MACINFO_undef:
22559 if (!dwarf_strict
22560 && HAVE_COMDAT_GROUP
22561 && vec_safe_length (files) != 1
22562 && i > 0
22563 && i + 1 < length
22564 && (*macinfo_table)[i - 1].code == 0)
22566 unsigned count = optimize_macinfo_range (i, files, &macinfo_htab);
22567 if (count)
22569 i += count - 1;
22570 continue;
22573 break;
22574 case 0:
22575 /* A dummy entry may be inserted at the beginning to be able
22576 to optimize the whole block of predefined macros. */
22577 if (i == 0)
22578 continue;
22579 default:
22580 break;
22582 output_macinfo_op (ref);
22583 ref->info = NULL;
22584 ref->code = 0;
22587 if (!macinfo_htab)
22588 return;
22590 delete macinfo_htab;
22591 macinfo_htab = NULL;
22593 /* If any DW_MACRO_GNU_transparent_include were used, on those
22594 DW_MACRO_GNU_transparent_include entries terminate the
22595 current chain and switch to a new comdat .debug_macinfo
22596 section and emit the define/undef entries within it. */
22597 for (i = 0; macinfo_table->iterate (i, &ref); i++)
22598 switch (ref->code)
22600 case 0:
22601 continue;
22602 case DW_MACRO_GNU_transparent_include:
22604 char label[MAX_ARTIFICIAL_LABEL_BYTES];
22605 tree comdat_key = get_identifier (ref->info);
22606 /* Terminate the previous .debug_macinfo section. */
22607 dw2_asm_output_data (1, 0, "End compilation unit");
22608 targetm.asm_out.named_section (DEBUG_MACRO_SECTION,
22609 SECTION_DEBUG
22610 | SECTION_LINKONCE,
22611 comdat_key);
22612 ASM_GENERATE_INTERNAL_LABEL (label,
22613 DEBUG_MACRO_SECTION_LABEL,
22614 ref->lineno);
22615 ASM_OUTPUT_LABEL (asm_out_file, label);
22616 ref->code = 0;
22617 ref->info = NULL;
22618 dw2_asm_output_data (2, 4, "DWARF macro version number");
22619 if (DWARF_OFFSET_SIZE == 8)
22620 dw2_asm_output_data (1, 1, "Flags: 64-bit");
22621 else
22622 dw2_asm_output_data (1, 0, "Flags: 32-bit");
22624 break;
22625 case DW_MACINFO_define:
22626 case DW_MACINFO_undef:
22627 output_macinfo_op (ref);
22628 ref->code = 0;
22629 ref->info = NULL;
22630 break;
22631 default:
22632 gcc_unreachable ();
22636 /* Set up for Dwarf output at the start of compilation. */
22638 static void
22639 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
22641 /* This option is currently broken, see (PR53118 and PR46102). */
22642 if (flag_eliminate_dwarf2_dups
22643 && strstr (lang_hooks.name, "C++"))
22645 warning (0, "-feliminate-dwarf2-dups is broken for C++, ignoring");
22646 flag_eliminate_dwarf2_dups = 0;
22649 /* Allocate the file_table. */
22650 file_table = hash_table<dwarf_file_hasher>::create_ggc (50);
22652 /* Allocate the decl_die_table. */
22653 decl_die_table = hash_table<decl_die_hasher>::create_ggc (10);
22655 /* Allocate the decl_loc_table. */
22656 decl_loc_table = hash_table<decl_loc_hasher>::create_ggc (10);
22658 /* Allocate the cached_dw_loc_list_table. */
22659 cached_dw_loc_list_table = hash_table<dw_loc_list_hasher>::create_ggc (10);
22661 /* Allocate the initial hunk of the decl_scope_table. */
22662 vec_alloc (decl_scope_table, 256);
22664 /* Allocate the initial hunk of the abbrev_die_table. */
22665 abbrev_die_table = ggc_cleared_vec_alloc<dw_die_ref>
22666 (ABBREV_DIE_TABLE_INCREMENT);
22667 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
22668 /* Zero-th entry is allocated, but unused. */
22669 abbrev_die_table_in_use = 1;
22671 /* Allocate the pubtypes and pubnames vectors. */
22672 vec_alloc (pubname_table, 32);
22673 vec_alloc (pubtype_table, 32);
22675 vec_alloc (incomplete_types, 64);
22677 vec_alloc (used_rtx_array, 32);
22679 if (!dwarf_split_debug_info)
22681 debug_info_section = get_section (DEBUG_INFO_SECTION,
22682 SECTION_DEBUG, NULL);
22683 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
22684 SECTION_DEBUG, NULL);
22685 debug_loc_section = get_section (DEBUG_LOC_SECTION,
22686 SECTION_DEBUG, NULL);
22688 else
22690 debug_info_section = get_section (DEBUG_DWO_INFO_SECTION,
22691 SECTION_DEBUG | SECTION_EXCLUDE, NULL);
22692 debug_abbrev_section = get_section (DEBUG_DWO_ABBREV_SECTION,
22693 SECTION_DEBUG | SECTION_EXCLUDE,
22694 NULL);
22695 debug_addr_section = get_section (DEBUG_ADDR_SECTION,
22696 SECTION_DEBUG, NULL);
22697 debug_skeleton_info_section = get_section (DEBUG_INFO_SECTION,
22698 SECTION_DEBUG, NULL);
22699 debug_skeleton_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
22700 SECTION_DEBUG, NULL);
22701 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_abbrev_section_label,
22702 DEBUG_SKELETON_ABBREV_SECTION_LABEL, 0);
22704 /* Somewhat confusing detail: The skeleton_[abbrev|info] sections stay in
22705 the main .o, but the skeleton_line goes into the split off dwo. */
22706 debug_skeleton_line_section
22707 = get_section (DEBUG_DWO_LINE_SECTION,
22708 SECTION_DEBUG | SECTION_EXCLUDE, NULL);
22709 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_line_section_label,
22710 DEBUG_SKELETON_LINE_SECTION_LABEL, 0);
22711 debug_str_offsets_section = get_section (DEBUG_STR_OFFSETS_SECTION,
22712 SECTION_DEBUG | SECTION_EXCLUDE,
22713 NULL);
22714 ASM_GENERATE_INTERNAL_LABEL (debug_skeleton_info_section_label,
22715 DEBUG_SKELETON_INFO_SECTION_LABEL, 0);
22716 debug_loc_section = get_section (DEBUG_DWO_LOC_SECTION,
22717 SECTION_DEBUG | SECTION_EXCLUDE, NULL);
22718 debug_str_dwo_section = get_section (DEBUG_STR_DWO_SECTION,
22719 DEBUG_STR_DWO_SECTION_FLAGS, NULL);
22721 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
22722 SECTION_DEBUG, NULL);
22723 debug_macinfo_section = get_section (dwarf_strict
22724 ? DEBUG_MACINFO_SECTION
22725 : DEBUG_MACRO_SECTION,
22726 DEBUG_MACRO_SECTION_FLAGS, NULL);
22727 debug_line_section = get_section (DEBUG_LINE_SECTION,
22728 SECTION_DEBUG, NULL);
22729 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
22730 SECTION_DEBUG, NULL);
22731 debug_pubtypes_section = get_section (DEBUG_PUBTYPES_SECTION,
22732 SECTION_DEBUG, NULL);
22733 debug_str_section = get_section (DEBUG_STR_SECTION,
22734 DEBUG_STR_SECTION_FLAGS, NULL);
22735 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
22736 SECTION_DEBUG, NULL);
22737 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
22738 SECTION_DEBUG, NULL);
22740 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
22741 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
22742 DEBUG_ABBREV_SECTION_LABEL, 0);
22743 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
22744 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
22745 COLD_TEXT_SECTION_LABEL, 0);
22746 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
22748 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
22749 DEBUG_INFO_SECTION_LABEL, 0);
22750 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
22751 DEBUG_LINE_SECTION_LABEL, 0);
22752 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
22753 DEBUG_RANGES_SECTION_LABEL, 0);
22754 ASM_GENERATE_INTERNAL_LABEL (debug_addr_section_label,
22755 DEBUG_ADDR_SECTION_LABEL, 0);
22756 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
22757 dwarf_strict
22758 ? DEBUG_MACINFO_SECTION_LABEL
22759 : DEBUG_MACRO_SECTION_LABEL, 0);
22760 ASM_GENERATE_INTERNAL_LABEL (loc_section_label, DEBUG_LOC_SECTION_LABEL, 0);
22762 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
22763 vec_alloc (macinfo_table, 64);
22765 switch_to_section (text_section);
22766 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
22768 /* Make sure the line number table for .text always exists. */
22769 text_section_line_info = new_line_info_table ();
22770 text_section_line_info->end_label = text_end_label;
22773 /* Called before compile () starts outputtting functions, variables
22774 and toplevel asms into assembly. */
22776 static void
22777 dwarf2out_assembly_start (void)
22779 if (HAVE_GAS_CFI_SECTIONS_DIRECTIVE
22780 && dwarf2out_do_cfi_asm ()
22781 && (!(flag_unwind_tables || flag_exceptions)
22782 || targetm_common.except_unwind_info (&global_options) != UI_DWARF2))
22783 fprintf (asm_out_file, "\t.cfi_sections\t.debug_frame\n");
22786 /* A helper function for dwarf2out_finish called through
22787 htab_traverse. Assign a string its index. All strings must be
22788 collected into the table by the time index_string is called,
22789 because the indexing code relies on htab_traverse to traverse nodes
22790 in the same order for each run. */
22793 index_string (indirect_string_node **h, unsigned int *index)
22795 indirect_string_node *node = *h;
22797 find_string_form (node);
22798 if (node->form == DW_FORM_GNU_str_index && node->refcount > 0)
22800 gcc_assert (node->index == NO_INDEX_ASSIGNED);
22801 node->index = *index;
22802 *index += 1;
22804 return 1;
22807 /* A helper function for output_indirect_strings called through
22808 htab_traverse. Output the offset to a string and update the
22809 current offset. */
22812 output_index_string_offset (indirect_string_node **h, unsigned int *offset)
22814 indirect_string_node *node = *h;
22816 if (node->form == DW_FORM_GNU_str_index && node->refcount > 0)
22818 /* Assert that this node has been assigned an index. */
22819 gcc_assert (node->index != NO_INDEX_ASSIGNED
22820 && node->index != NOT_INDEXED);
22821 dw2_asm_output_data (DWARF_OFFSET_SIZE, *offset,
22822 "indexed string 0x%x: %s", node->index, node->str);
22823 *offset += strlen (node->str) + 1;
22825 return 1;
22828 /* A helper function for dwarf2out_finish called through
22829 htab_traverse. Output the indexed string. */
22832 output_index_string (indirect_string_node **h, unsigned int *cur_idx)
22834 struct indirect_string_node *node = *h;
22836 if (node->form == DW_FORM_GNU_str_index && node->refcount > 0)
22838 /* Assert that the strings are output in the same order as their
22839 indexes were assigned. */
22840 gcc_assert (*cur_idx == node->index);
22841 assemble_string (node->str, strlen (node->str) + 1);
22842 *cur_idx += 1;
22844 return 1;
22847 /* A helper function for dwarf2out_finish called through
22848 htab_traverse. Emit one queued .debug_str string. */
22851 output_indirect_string (indirect_string_node **h, void *)
22853 struct indirect_string_node *node = *h;
22855 node->form = find_string_form (node);
22856 if (node->form == DW_FORM_strp && node->refcount > 0)
22858 ASM_OUTPUT_LABEL (asm_out_file, node->label);
22859 assemble_string (node->str, strlen (node->str) + 1);
22862 return 1;
22865 /* Output the indexed string table. */
22867 static void
22868 output_indirect_strings (void)
22870 switch_to_section (debug_str_section);
22871 if (!dwarf_split_debug_info)
22872 debug_str_hash->traverse<void *, output_indirect_string> (NULL);
22873 else
22875 unsigned int offset = 0;
22876 unsigned int cur_idx = 0;
22878 skeleton_debug_str_hash->traverse<void *, output_indirect_string> (NULL);
22880 switch_to_section (debug_str_offsets_section);
22881 debug_str_hash->traverse_noresize
22882 <unsigned int *, output_index_string_offset> (&offset);
22883 switch_to_section (debug_str_dwo_section);
22884 debug_str_hash->traverse_noresize<unsigned int *, output_index_string>
22885 (&cur_idx);
22889 /* Callback for htab_traverse to assign an index to an entry in the
22890 table, and to write that entry to the .debug_addr section. */
22893 output_addr_table_entry (addr_table_entry **slot, unsigned int *cur_index)
22895 addr_table_entry *entry = *slot;
22897 if (entry->refcount == 0)
22899 gcc_assert (entry->index == NO_INDEX_ASSIGNED
22900 || entry->index == NOT_INDEXED);
22901 return 1;
22904 gcc_assert (entry->index == *cur_index);
22905 (*cur_index)++;
22907 switch (entry->kind)
22909 case ate_kind_rtx:
22910 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, entry->addr.rtl,
22911 "0x%x", entry->index);
22912 break;
22913 case ate_kind_rtx_dtprel:
22914 gcc_assert (targetm.asm_out.output_dwarf_dtprel);
22915 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
22916 DWARF2_ADDR_SIZE,
22917 entry->addr.rtl);
22918 fputc ('\n', asm_out_file);
22919 break;
22920 case ate_kind_label:
22921 dw2_asm_output_addr (DWARF2_ADDR_SIZE, entry->addr.label,
22922 "0x%x", entry->index);
22923 break;
22924 default:
22925 gcc_unreachable ();
22927 return 1;
22930 /* Produce the .debug_addr section. */
22932 static void
22933 output_addr_table (void)
22935 unsigned int index = 0;
22936 if (addr_index_table == NULL || addr_index_table->size () == 0)
22937 return;
22939 switch_to_section (debug_addr_section);
22940 addr_index_table
22941 ->traverse_noresize<unsigned int *, output_addr_table_entry> (&index);
22944 #if ENABLE_ASSERT_CHECKING
22945 /* Verify that all marks are clear. */
22947 static void
22948 verify_marks_clear (dw_die_ref die)
22950 dw_die_ref c;
22952 gcc_assert (! die->die_mark);
22953 FOR_EACH_CHILD (die, c, verify_marks_clear (c));
22955 #endif /* ENABLE_ASSERT_CHECKING */
22957 /* Clear the marks for a die and its children.
22958 Be cool if the mark isn't set. */
22960 static void
22961 prune_unmark_dies (dw_die_ref die)
22963 dw_die_ref c;
22965 if (die->die_mark)
22966 die->die_mark = 0;
22967 FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
22970 /* Given DIE that we're marking as used, find any other dies
22971 it references as attributes and mark them as used. */
22973 static void
22974 prune_unused_types_walk_attribs (dw_die_ref die)
22976 dw_attr_ref a;
22977 unsigned ix;
22979 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
22981 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
22983 /* A reference to another DIE.
22984 Make sure that it will get emitted.
22985 If it was broken out into a comdat group, don't follow it. */
22986 if (! AT_ref (a)->comdat_type_p
22987 || a->dw_attr == DW_AT_specification)
22988 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
22990 /* Set the string's refcount to 0 so that prune_unused_types_mark
22991 accounts properly for it. */
22992 if (AT_class (a) == dw_val_class_str)
22993 a->dw_attr_val.v.val_str->refcount = 0;
22997 /* Mark the generic parameters and arguments children DIEs of DIE. */
22999 static void
23000 prune_unused_types_mark_generic_parms_dies (dw_die_ref die)
23002 dw_die_ref c;
23004 if (die == NULL || die->die_child == NULL)
23005 return;
23006 c = die->die_child;
23009 if (is_template_parameter (c))
23010 prune_unused_types_mark (c, 1);
23011 c = c->die_sib;
23012 } while (c && c != die->die_child);
23015 /* Mark DIE as being used. If DOKIDS is true, then walk down
23016 to DIE's children. */
23018 static void
23019 prune_unused_types_mark (dw_die_ref die, int dokids)
23021 dw_die_ref c;
23023 if (die->die_mark == 0)
23025 /* We haven't done this node yet. Mark it as used. */
23026 die->die_mark = 1;
23027 /* If this is the DIE of a generic type instantiation,
23028 mark the children DIEs that describe its generic parms and
23029 args. */
23030 prune_unused_types_mark_generic_parms_dies (die);
23032 /* We also have to mark its parents as used.
23033 (But we don't want to mark our parent's kids due to this,
23034 unless it is a class.) */
23035 if (die->die_parent)
23036 prune_unused_types_mark (die->die_parent,
23037 class_scope_p (die->die_parent));
23039 /* Mark any referenced nodes. */
23040 prune_unused_types_walk_attribs (die);
23042 /* If this node is a specification,
23043 also mark the definition, if it exists. */
23044 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
23045 prune_unused_types_mark (die->die_definition, 1);
23048 if (dokids && die->die_mark != 2)
23050 /* We need to walk the children, but haven't done so yet.
23051 Remember that we've walked the kids. */
23052 die->die_mark = 2;
23054 /* If this is an array type, we need to make sure our
23055 kids get marked, even if they're types. If we're
23056 breaking out types into comdat sections, do this
23057 for all type definitions. */
23058 if (die->die_tag == DW_TAG_array_type
23059 || (use_debug_types
23060 && is_type_die (die) && ! is_declaration_die (die)))
23061 FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
23062 else
23063 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
23067 /* For local classes, look if any static member functions were emitted
23068 and if so, mark them. */
23070 static void
23071 prune_unused_types_walk_local_classes (dw_die_ref die)
23073 dw_die_ref c;
23075 if (die->die_mark == 2)
23076 return;
23078 switch (die->die_tag)
23080 case DW_TAG_structure_type:
23081 case DW_TAG_union_type:
23082 case DW_TAG_class_type:
23083 break;
23085 case DW_TAG_subprogram:
23086 if (!get_AT_flag (die, DW_AT_declaration)
23087 || die->die_definition != NULL)
23088 prune_unused_types_mark (die, 1);
23089 return;
23091 default:
23092 return;
23095 /* Mark children. */
23096 FOR_EACH_CHILD (die, c, prune_unused_types_walk_local_classes (c));
23099 /* Walk the tree DIE and mark types that we actually use. */
23101 static void
23102 prune_unused_types_walk (dw_die_ref die)
23104 dw_die_ref c;
23106 /* Don't do anything if this node is already marked and
23107 children have been marked as well. */
23108 if (die->die_mark == 2)
23109 return;
23111 switch (die->die_tag)
23113 case DW_TAG_structure_type:
23114 case DW_TAG_union_type:
23115 case DW_TAG_class_type:
23116 if (die->die_perennial_p)
23117 break;
23119 for (c = die->die_parent; c; c = c->die_parent)
23120 if (c->die_tag == DW_TAG_subprogram)
23121 break;
23123 /* Finding used static member functions inside of classes
23124 is needed just for local classes, because for other classes
23125 static member function DIEs with DW_AT_specification
23126 are emitted outside of the DW_TAG_*_type. If we ever change
23127 it, we'd need to call this even for non-local classes. */
23128 if (c)
23129 prune_unused_types_walk_local_classes (die);
23131 /* It's a type node --- don't mark it. */
23132 return;
23134 case DW_TAG_const_type:
23135 case DW_TAG_packed_type:
23136 case DW_TAG_pointer_type:
23137 case DW_TAG_reference_type:
23138 case DW_TAG_rvalue_reference_type:
23139 case DW_TAG_volatile_type:
23140 case DW_TAG_typedef:
23141 case DW_TAG_array_type:
23142 case DW_TAG_interface_type:
23143 case DW_TAG_friend:
23144 case DW_TAG_variant_part:
23145 case DW_TAG_enumeration_type:
23146 case DW_TAG_subroutine_type:
23147 case DW_TAG_string_type:
23148 case DW_TAG_set_type:
23149 case DW_TAG_subrange_type:
23150 case DW_TAG_ptr_to_member_type:
23151 case DW_TAG_file_type:
23152 if (die->die_perennial_p)
23153 break;
23155 /* It's a type node --- don't mark it. */
23156 return;
23158 default:
23159 /* Mark everything else. */
23160 break;
23163 if (die->die_mark == 0)
23165 die->die_mark = 1;
23167 /* Now, mark any dies referenced from here. */
23168 prune_unused_types_walk_attribs (die);
23171 die->die_mark = 2;
23173 /* Mark children. */
23174 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
23177 /* Increment the string counts on strings referred to from DIE's
23178 attributes. */
23180 static void
23181 prune_unused_types_update_strings (dw_die_ref die)
23183 dw_attr_ref a;
23184 unsigned ix;
23186 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
23187 if (AT_class (a) == dw_val_class_str)
23189 struct indirect_string_node *s = a->dw_attr_val.v.val_str;
23190 s->refcount++;
23191 /* Avoid unnecessarily putting strings that are used less than
23192 twice in the hash table. */
23193 if (s->refcount
23194 == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
23196 indirect_string_node **slot
23197 = debug_str_hash->find_slot_with_hash (s->str,
23198 htab_hash_string (s->str),
23199 INSERT);
23200 gcc_assert (*slot == NULL);
23201 *slot = s;
23206 /* Remove from the tree DIE any dies that aren't marked. */
23208 static void
23209 prune_unused_types_prune (dw_die_ref die)
23211 dw_die_ref c;
23213 gcc_assert (die->die_mark);
23214 prune_unused_types_update_strings (die);
23216 if (! die->die_child)
23217 return;
23219 c = die->die_child;
23220 do {
23221 dw_die_ref prev = c;
23222 for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
23223 if (c == die->die_child)
23225 /* No marked children between 'prev' and the end of the list. */
23226 if (prev == c)
23227 /* No marked children at all. */
23228 die->die_child = NULL;
23229 else
23231 prev->die_sib = c->die_sib;
23232 die->die_child = prev;
23234 return;
23237 if (c != prev->die_sib)
23238 prev->die_sib = c;
23239 prune_unused_types_prune (c);
23240 } while (c != die->die_child);
23243 /* Remove dies representing declarations that we never use. */
23245 static void
23246 prune_unused_types (void)
23248 unsigned int i;
23249 limbo_die_node *node;
23250 comdat_type_node *ctnode;
23251 pubname_ref pub;
23252 dw_die_ref base_type;
23254 #if ENABLE_ASSERT_CHECKING
23255 /* All the marks should already be clear. */
23256 verify_marks_clear (comp_unit_die ());
23257 for (node = limbo_die_list; node; node = node->next)
23258 verify_marks_clear (node->die);
23259 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
23260 verify_marks_clear (ctnode->root_die);
23261 #endif /* ENABLE_ASSERT_CHECKING */
23263 /* Mark types that are used in global variables. */
23264 premark_types_used_by_global_vars ();
23266 /* Set the mark on nodes that are actually used. */
23267 prune_unused_types_walk (comp_unit_die ());
23268 for (node = limbo_die_list; node; node = node->next)
23269 prune_unused_types_walk (node->die);
23270 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
23272 prune_unused_types_walk (ctnode->root_die);
23273 prune_unused_types_mark (ctnode->type_die, 1);
23276 /* Also set the mark on nodes referenced from the pubname_table. Enumerators
23277 are unusual in that they are pubnames that are the children of pubtypes.
23278 They should only be marked via their parent DW_TAG_enumeration_type die,
23279 not as roots in themselves. */
23280 FOR_EACH_VEC_ELT (*pubname_table, i, pub)
23281 if (pub->die->die_tag != DW_TAG_enumerator)
23282 prune_unused_types_mark (pub->die, 1);
23283 for (i = 0; base_types.iterate (i, &base_type); i++)
23284 prune_unused_types_mark (base_type, 1);
23286 if (debug_str_hash)
23287 debug_str_hash->empty ();
23288 if (skeleton_debug_str_hash)
23289 skeleton_debug_str_hash->empty ();
23290 prune_unused_types_prune (comp_unit_die ());
23291 for (node = limbo_die_list; node; node = node->next)
23292 prune_unused_types_prune (node->die);
23293 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
23294 prune_unused_types_prune (ctnode->root_die);
23296 /* Leave the marks clear. */
23297 prune_unmark_dies (comp_unit_die ());
23298 for (node = limbo_die_list; node; node = node->next)
23299 prune_unmark_dies (node->die);
23300 for (ctnode = comdat_type_list; ctnode; ctnode = ctnode->next)
23301 prune_unmark_dies (ctnode->root_die);
23304 /* Set the parameter to true if there are any relative pathnames in
23305 the file table. */
23307 file_table_relative_p (dwarf_file_data **slot, bool *p)
23309 struct dwarf_file_data *d = *slot;
23310 if (!IS_ABSOLUTE_PATH (d->filename))
23312 *p = true;
23313 return 0;
23315 return 1;
23318 /* Helpers to manipulate hash table of comdat type units. */
23320 struct comdat_type_hasher : typed_noop_remove <comdat_type_node>
23322 typedef comdat_type_node *value_type;
23323 typedef comdat_type_node *compare_type;
23324 static inline hashval_t hash (const comdat_type_node *);
23325 static inline bool equal (const comdat_type_node *, const comdat_type_node *);
23328 inline hashval_t
23329 comdat_type_hasher::hash (const comdat_type_node *type_node)
23331 hashval_t h;
23332 memcpy (&h, type_node->signature, sizeof (h));
23333 return h;
23336 inline bool
23337 comdat_type_hasher::equal (const comdat_type_node *type_node_1,
23338 const comdat_type_node *type_node_2)
23340 return (! memcmp (type_node_1->signature, type_node_2->signature,
23341 DWARF_TYPE_SIGNATURE_SIZE));
23344 /* Move a DW_AT_{,MIPS_}linkage_name attribute just added to dw_die_ref
23345 to the location it would have been added, should we know its
23346 DECL_ASSEMBLER_NAME when we added other attributes. This will
23347 probably improve compactness of debug info, removing equivalent
23348 abbrevs, and hide any differences caused by deferring the
23349 computation of the assembler name, triggered by e.g. PCH. */
23351 static inline void
23352 move_linkage_attr (dw_die_ref die)
23354 unsigned ix = vec_safe_length (die->die_attr);
23355 dw_attr_node linkage = (*die->die_attr)[ix - 1];
23357 gcc_assert (linkage.dw_attr == DW_AT_linkage_name
23358 || linkage.dw_attr == DW_AT_MIPS_linkage_name);
23360 while (--ix > 0)
23362 dw_attr_node *prev = &(*die->die_attr)[ix - 1];
23364 if (prev->dw_attr == DW_AT_decl_line || prev->dw_attr == DW_AT_name)
23365 break;
23368 if (ix != vec_safe_length (die->die_attr) - 1)
23370 die->die_attr->pop ();
23371 die->die_attr->quick_insert (ix, linkage);
23375 /* Helper function for resolve_addr, mark DW_TAG_base_type nodes
23376 referenced from typed stack ops and count how often they are used. */
23378 static void
23379 mark_base_types (dw_loc_descr_ref loc)
23381 dw_die_ref base_type = NULL;
23383 for (; loc; loc = loc->dw_loc_next)
23385 switch (loc->dw_loc_opc)
23387 case DW_OP_GNU_regval_type:
23388 case DW_OP_GNU_deref_type:
23389 base_type = loc->dw_loc_oprnd2.v.val_die_ref.die;
23390 break;
23391 case DW_OP_GNU_convert:
23392 case DW_OP_GNU_reinterpret:
23393 if (loc->dw_loc_oprnd1.val_class == dw_val_class_unsigned_const)
23394 continue;
23395 /* FALLTHRU */
23396 case DW_OP_GNU_const_type:
23397 base_type = loc->dw_loc_oprnd1.v.val_die_ref.die;
23398 break;
23399 case DW_OP_GNU_entry_value:
23400 mark_base_types (loc->dw_loc_oprnd1.v.val_loc);
23401 continue;
23402 default:
23403 continue;
23405 gcc_assert (base_type->die_parent == comp_unit_die ());
23406 if (base_type->die_mark)
23407 base_type->die_mark++;
23408 else
23410 base_types.safe_push (base_type);
23411 base_type->die_mark = 1;
23416 /* Comparison function for sorting marked base types. */
23418 static int
23419 base_type_cmp (const void *x, const void *y)
23421 dw_die_ref dx = *(const dw_die_ref *) x;
23422 dw_die_ref dy = *(const dw_die_ref *) y;
23423 unsigned int byte_size1, byte_size2;
23424 unsigned int encoding1, encoding2;
23425 if (dx->die_mark > dy->die_mark)
23426 return -1;
23427 if (dx->die_mark < dy->die_mark)
23428 return 1;
23429 byte_size1 = get_AT_unsigned (dx, DW_AT_byte_size);
23430 byte_size2 = get_AT_unsigned (dy, DW_AT_byte_size);
23431 if (byte_size1 < byte_size2)
23432 return 1;
23433 if (byte_size1 > byte_size2)
23434 return -1;
23435 encoding1 = get_AT_unsigned (dx, DW_AT_encoding);
23436 encoding2 = get_AT_unsigned (dy, DW_AT_encoding);
23437 if (encoding1 < encoding2)
23438 return 1;
23439 if (encoding1 > encoding2)
23440 return -1;
23441 return 0;
23444 /* Move base types marked by mark_base_types as early as possible
23445 in the CU, sorted by decreasing usage count both to make the
23446 uleb128 references as small as possible and to make sure they
23447 will have die_offset already computed by calc_die_sizes when
23448 sizes of typed stack loc ops is computed. */
23450 static void
23451 move_marked_base_types (void)
23453 unsigned int i;
23454 dw_die_ref base_type, die, c;
23456 if (base_types.is_empty ())
23457 return;
23459 /* Sort by decreasing usage count, they will be added again in that
23460 order later on. */
23461 base_types.qsort (base_type_cmp);
23462 die = comp_unit_die ();
23463 c = die->die_child;
23466 dw_die_ref prev = c;
23467 c = c->die_sib;
23468 while (c->die_mark)
23470 remove_child_with_prev (c, prev);
23471 /* As base types got marked, there must be at least
23472 one node other than DW_TAG_base_type. */
23473 gcc_assert (c != c->die_sib);
23474 c = c->die_sib;
23477 while (c != die->die_child);
23478 gcc_assert (die->die_child);
23479 c = die->die_child;
23480 for (i = 0; base_types.iterate (i, &base_type); i++)
23482 base_type->die_mark = 0;
23483 base_type->die_sib = c->die_sib;
23484 c->die_sib = base_type;
23485 c = base_type;
23489 /* Helper function for resolve_addr, attempt to resolve
23490 one CONST_STRING, return true if successful. Similarly verify that
23491 SYMBOL_REFs refer to variables emitted in the current CU. */
23493 static bool
23494 resolve_one_addr (rtx *addr)
23496 rtx rtl = *addr;
23498 if (GET_CODE (rtl) == CONST_STRING)
23500 size_t len = strlen (XSTR (rtl, 0)) + 1;
23501 tree t = build_string (len, XSTR (rtl, 0));
23502 tree tlen = size_int (len - 1);
23503 TREE_TYPE (t)
23504 = build_array_type (char_type_node, build_index_type (tlen));
23505 rtl = lookup_constant_def (t);
23506 if (!rtl || !MEM_P (rtl))
23507 return false;
23508 rtl = XEXP (rtl, 0);
23509 if (GET_CODE (rtl) == SYMBOL_REF
23510 && SYMBOL_REF_DECL (rtl)
23511 && !TREE_ASM_WRITTEN (SYMBOL_REF_DECL (rtl)))
23512 return false;
23513 vec_safe_push (used_rtx_array, rtl);
23514 *addr = rtl;
23515 return true;
23518 if (GET_CODE (rtl) == SYMBOL_REF
23519 && SYMBOL_REF_DECL (rtl))
23521 if (TREE_CONSTANT_POOL_ADDRESS_P (rtl))
23523 if (!TREE_ASM_WRITTEN (DECL_INITIAL (SYMBOL_REF_DECL (rtl))))
23524 return false;
23526 else if (!TREE_ASM_WRITTEN (SYMBOL_REF_DECL (rtl)))
23527 return false;
23530 if (GET_CODE (rtl) == CONST)
23532 subrtx_ptr_iterator::array_type array;
23533 FOR_EACH_SUBRTX_PTR (iter, array, &XEXP (rtl, 0), ALL)
23534 if (!resolve_one_addr (*iter))
23535 return false;
23538 return true;
23541 /* For STRING_CST, return SYMBOL_REF of its constant pool entry,
23542 if possible, and create DW_TAG_dwarf_procedure that can be referenced
23543 from DW_OP_GNU_implicit_pointer if the string hasn't been seen yet. */
23545 static rtx
23546 string_cst_pool_decl (tree t)
23548 rtx rtl = output_constant_def (t, 1);
23549 unsigned char *array;
23550 dw_loc_descr_ref l;
23551 tree decl;
23552 size_t len;
23553 dw_die_ref ref;
23555 if (!rtl || !MEM_P (rtl))
23556 return NULL_RTX;
23557 rtl = XEXP (rtl, 0);
23558 if (GET_CODE (rtl) != SYMBOL_REF
23559 || SYMBOL_REF_DECL (rtl) == NULL_TREE)
23560 return NULL_RTX;
23562 decl = SYMBOL_REF_DECL (rtl);
23563 if (!lookup_decl_die (decl))
23565 len = TREE_STRING_LENGTH (t);
23566 vec_safe_push (used_rtx_array, rtl);
23567 ref = new_die (DW_TAG_dwarf_procedure, comp_unit_die (), decl);
23568 array = ggc_vec_alloc<unsigned char> (len);
23569 memcpy (array, TREE_STRING_POINTER (t), len);
23570 l = new_loc_descr (DW_OP_implicit_value, len, 0);
23571 l->dw_loc_oprnd2.val_class = dw_val_class_vec;
23572 l->dw_loc_oprnd2.v.val_vec.length = len;
23573 l->dw_loc_oprnd2.v.val_vec.elt_size = 1;
23574 l->dw_loc_oprnd2.v.val_vec.array = array;
23575 add_AT_loc (ref, DW_AT_location, l);
23576 equate_decl_number_to_die (decl, ref);
23578 return rtl;
23581 /* Helper function of resolve_addr_in_expr. LOC is
23582 a DW_OP_addr followed by DW_OP_stack_value, either at the start
23583 of exprloc or after DW_OP_{,bit_}piece, and val_addr can't be
23584 resolved. Replace it (both DW_OP_addr and DW_OP_stack_value)
23585 with DW_OP_GNU_implicit_pointer if possible
23586 and return true, if unsuccessful, return false. */
23588 static bool
23589 optimize_one_addr_into_implicit_ptr (dw_loc_descr_ref loc)
23591 rtx rtl = loc->dw_loc_oprnd1.v.val_addr;
23592 HOST_WIDE_INT offset = 0;
23593 dw_die_ref ref = NULL;
23594 tree decl;
23596 if (GET_CODE (rtl) == CONST
23597 && GET_CODE (XEXP (rtl, 0)) == PLUS
23598 && CONST_INT_P (XEXP (XEXP (rtl, 0), 1)))
23600 offset = INTVAL (XEXP (XEXP (rtl, 0), 1));
23601 rtl = XEXP (XEXP (rtl, 0), 0);
23603 if (GET_CODE (rtl) == CONST_STRING)
23605 size_t len = strlen (XSTR (rtl, 0)) + 1;
23606 tree t = build_string (len, XSTR (rtl, 0));
23607 tree tlen = size_int (len - 1);
23609 TREE_TYPE (t)
23610 = build_array_type (char_type_node, build_index_type (tlen));
23611 rtl = string_cst_pool_decl (t);
23612 if (!rtl)
23613 return false;
23615 if (GET_CODE (rtl) == SYMBOL_REF && SYMBOL_REF_DECL (rtl))
23617 decl = SYMBOL_REF_DECL (rtl);
23618 if (TREE_CODE (decl) == VAR_DECL && !DECL_EXTERNAL (decl))
23620 ref = lookup_decl_die (decl);
23621 if (ref && (get_AT (ref, DW_AT_location)
23622 || get_AT (ref, DW_AT_const_value)))
23624 loc->dw_loc_opc = DW_OP_GNU_implicit_pointer;
23625 loc->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
23626 loc->dw_loc_oprnd1.val_entry = NULL;
23627 loc->dw_loc_oprnd1.v.val_die_ref.die = ref;
23628 loc->dw_loc_oprnd1.v.val_die_ref.external = 0;
23629 loc->dw_loc_next = loc->dw_loc_next->dw_loc_next;
23630 loc->dw_loc_oprnd2.v.val_int = offset;
23631 return true;
23635 return false;
23638 /* Helper function for resolve_addr, handle one location
23639 expression, return false if at least one CONST_STRING or SYMBOL_REF in
23640 the location list couldn't be resolved. */
23642 static bool
23643 resolve_addr_in_expr (dw_loc_descr_ref loc)
23645 dw_loc_descr_ref keep = NULL;
23646 for (dw_loc_descr_ref prev = NULL; loc; prev = loc, loc = loc->dw_loc_next)
23647 switch (loc->dw_loc_opc)
23649 case DW_OP_addr:
23650 if (!resolve_one_addr (&loc->dw_loc_oprnd1.v.val_addr))
23652 if ((prev == NULL
23653 || prev->dw_loc_opc == DW_OP_piece
23654 || prev->dw_loc_opc == DW_OP_bit_piece)
23655 && loc->dw_loc_next
23656 && loc->dw_loc_next->dw_loc_opc == DW_OP_stack_value
23657 && !dwarf_strict
23658 && optimize_one_addr_into_implicit_ptr (loc))
23659 break;
23660 return false;
23662 break;
23663 case DW_OP_GNU_addr_index:
23664 case DW_OP_GNU_const_index:
23665 if (loc->dw_loc_opc == DW_OP_GNU_addr_index
23666 || (loc->dw_loc_opc == DW_OP_GNU_const_index && loc->dtprel))
23668 rtx rtl = loc->dw_loc_oprnd1.val_entry->addr.rtl;
23669 if (!resolve_one_addr (&rtl))
23670 return false;
23671 remove_addr_table_entry (loc->dw_loc_oprnd1.val_entry);
23672 loc->dw_loc_oprnd1.val_entry =
23673 add_addr_table_entry (rtl, ate_kind_rtx);
23675 break;
23676 case DW_OP_const4u:
23677 case DW_OP_const8u:
23678 if (loc->dtprel
23679 && !resolve_one_addr (&loc->dw_loc_oprnd1.v.val_addr))
23680 return false;
23681 break;
23682 case DW_OP_plus_uconst:
23683 if (size_of_loc_descr (loc)
23684 > size_of_int_loc_descriptor (loc->dw_loc_oprnd1.v.val_unsigned)
23686 && loc->dw_loc_oprnd1.v.val_unsigned > 0)
23688 dw_loc_descr_ref repl
23689 = int_loc_descriptor (loc->dw_loc_oprnd1.v.val_unsigned);
23690 add_loc_descr (&repl, new_loc_descr (DW_OP_plus, 0, 0));
23691 add_loc_descr (&repl, loc->dw_loc_next);
23692 *loc = *repl;
23694 break;
23695 case DW_OP_implicit_value:
23696 if (loc->dw_loc_oprnd2.val_class == dw_val_class_addr
23697 && !resolve_one_addr (&loc->dw_loc_oprnd2.v.val_addr))
23698 return false;
23699 break;
23700 case DW_OP_GNU_implicit_pointer:
23701 case DW_OP_GNU_parameter_ref:
23702 if (loc->dw_loc_oprnd1.val_class == dw_val_class_decl_ref)
23704 dw_die_ref ref
23705 = lookup_decl_die (loc->dw_loc_oprnd1.v.val_decl_ref);
23706 if (ref == NULL)
23707 return false;
23708 loc->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
23709 loc->dw_loc_oprnd1.v.val_die_ref.die = ref;
23710 loc->dw_loc_oprnd1.v.val_die_ref.external = 0;
23712 break;
23713 case DW_OP_GNU_const_type:
23714 case DW_OP_GNU_regval_type:
23715 case DW_OP_GNU_deref_type:
23716 case DW_OP_GNU_convert:
23717 case DW_OP_GNU_reinterpret:
23718 while (loc->dw_loc_next
23719 && loc->dw_loc_next->dw_loc_opc == DW_OP_GNU_convert)
23721 dw_die_ref base1, base2;
23722 unsigned enc1, enc2, size1, size2;
23723 if (loc->dw_loc_opc == DW_OP_GNU_regval_type
23724 || loc->dw_loc_opc == DW_OP_GNU_deref_type)
23725 base1 = loc->dw_loc_oprnd2.v.val_die_ref.die;
23726 else if (loc->dw_loc_oprnd1.val_class
23727 == dw_val_class_unsigned_const)
23728 break;
23729 else
23730 base1 = loc->dw_loc_oprnd1.v.val_die_ref.die;
23731 if (loc->dw_loc_next->dw_loc_oprnd1.val_class
23732 == dw_val_class_unsigned_const)
23733 break;
23734 base2 = loc->dw_loc_next->dw_loc_oprnd1.v.val_die_ref.die;
23735 gcc_assert (base1->die_tag == DW_TAG_base_type
23736 && base2->die_tag == DW_TAG_base_type);
23737 enc1 = get_AT_unsigned (base1, DW_AT_encoding);
23738 enc2 = get_AT_unsigned (base2, DW_AT_encoding);
23739 size1 = get_AT_unsigned (base1, DW_AT_byte_size);
23740 size2 = get_AT_unsigned (base2, DW_AT_byte_size);
23741 if (size1 == size2
23742 && (((enc1 == DW_ATE_unsigned || enc1 == DW_ATE_signed)
23743 && (enc2 == DW_ATE_unsigned || enc2 == DW_ATE_signed)
23744 && loc != keep)
23745 || enc1 == enc2))
23747 /* Optimize away next DW_OP_GNU_convert after
23748 adjusting LOC's base type die reference. */
23749 if (loc->dw_loc_opc == DW_OP_GNU_regval_type
23750 || loc->dw_loc_opc == DW_OP_GNU_deref_type)
23751 loc->dw_loc_oprnd2.v.val_die_ref.die = base2;
23752 else
23753 loc->dw_loc_oprnd1.v.val_die_ref.die = base2;
23754 loc->dw_loc_next = loc->dw_loc_next->dw_loc_next;
23755 continue;
23757 /* Don't change integer DW_OP_GNU_convert after e.g. floating
23758 point typed stack entry. */
23759 else if (enc1 != DW_ATE_unsigned && enc1 != DW_ATE_signed)
23760 keep = loc->dw_loc_next;
23761 break;
23763 break;
23764 default:
23765 break;
23767 return true;
23770 /* Helper function of resolve_addr. DIE had DW_AT_location of
23771 DW_OP_addr alone, which referred to DECL in DW_OP_addr's operand
23772 and DW_OP_addr couldn't be resolved. resolve_addr has already
23773 removed the DW_AT_location attribute. This function attempts to
23774 add a new DW_AT_location attribute with DW_OP_GNU_implicit_pointer
23775 to it or DW_AT_const_value attribute, if possible. */
23777 static void
23778 optimize_location_into_implicit_ptr (dw_die_ref die, tree decl)
23780 if (TREE_CODE (decl) != VAR_DECL
23781 || lookup_decl_die (decl) != die
23782 || DECL_EXTERNAL (decl)
23783 || !TREE_STATIC (decl)
23784 || DECL_INITIAL (decl) == NULL_TREE
23785 || DECL_P (DECL_INITIAL (decl))
23786 || get_AT (die, DW_AT_const_value))
23787 return;
23789 tree init = DECL_INITIAL (decl);
23790 HOST_WIDE_INT offset = 0;
23791 /* For variables that have been optimized away and thus
23792 don't have a memory location, see if we can emit
23793 DW_AT_const_value instead. */
23794 if (tree_add_const_value_attribute (die, init))
23795 return;
23796 if (dwarf_strict)
23797 return;
23798 /* If init is ADDR_EXPR or POINTER_PLUS_EXPR of ADDR_EXPR,
23799 and ADDR_EXPR refers to a decl that has DW_AT_location or
23800 DW_AT_const_value (but isn't addressable, otherwise
23801 resolving the original DW_OP_addr wouldn't fail), see if
23802 we can add DW_OP_GNU_implicit_pointer. */
23803 STRIP_NOPS (init);
23804 if (TREE_CODE (init) == POINTER_PLUS_EXPR
23805 && tree_fits_shwi_p (TREE_OPERAND (init, 1)))
23807 offset = tree_to_shwi (TREE_OPERAND (init, 1));
23808 init = TREE_OPERAND (init, 0);
23809 STRIP_NOPS (init);
23811 if (TREE_CODE (init) != ADDR_EXPR)
23812 return;
23813 if ((TREE_CODE (TREE_OPERAND (init, 0)) == STRING_CST
23814 && !TREE_ASM_WRITTEN (TREE_OPERAND (init, 0)))
23815 || (TREE_CODE (TREE_OPERAND (init, 0)) == VAR_DECL
23816 && !DECL_EXTERNAL (TREE_OPERAND (init, 0))
23817 && TREE_OPERAND (init, 0) != decl))
23819 dw_die_ref ref;
23820 dw_loc_descr_ref l;
23822 if (TREE_CODE (TREE_OPERAND (init, 0)) == STRING_CST)
23824 rtx rtl = string_cst_pool_decl (TREE_OPERAND (init, 0));
23825 if (!rtl)
23826 return;
23827 decl = SYMBOL_REF_DECL (rtl);
23829 else
23830 decl = TREE_OPERAND (init, 0);
23831 ref = lookup_decl_die (decl);
23832 if (ref == NULL
23833 || (!get_AT (ref, DW_AT_location)
23834 && !get_AT (ref, DW_AT_const_value)))
23835 return;
23836 l = new_loc_descr (DW_OP_GNU_implicit_pointer, 0, offset);
23837 l->dw_loc_oprnd1.val_class = dw_val_class_die_ref;
23838 l->dw_loc_oprnd1.v.val_die_ref.die = ref;
23839 l->dw_loc_oprnd1.v.val_die_ref.external = 0;
23840 add_AT_loc (die, DW_AT_location, l);
23844 /* Resolve DW_OP_addr and DW_AT_const_value CONST_STRING arguments to
23845 an address in .rodata section if the string literal is emitted there,
23846 or remove the containing location list or replace DW_AT_const_value
23847 with DW_AT_location and empty location expression, if it isn't found
23848 in .rodata. Similarly for SYMBOL_REFs, keep only those that refer
23849 to something that has been emitted in the current CU. */
23851 static void
23852 resolve_addr (dw_die_ref die)
23854 dw_die_ref c;
23855 dw_attr_ref a;
23856 dw_loc_list_ref *curr, *start, loc;
23857 unsigned ix;
23859 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
23860 switch (AT_class (a))
23862 case dw_val_class_loc_list:
23863 start = curr = AT_loc_list_ptr (a);
23864 loc = *curr;
23865 gcc_assert (loc);
23866 /* The same list can be referenced more than once. See if we have
23867 already recorded the result from a previous pass. */
23868 if (loc->replaced)
23869 *curr = loc->dw_loc_next;
23870 else if (!loc->resolved_addr)
23872 /* As things stand, we do not expect or allow one die to
23873 reference a suffix of another die's location list chain.
23874 References must be identical or completely separate.
23875 There is therefore no need to cache the result of this
23876 pass on any list other than the first; doing so
23877 would lead to unnecessary writes. */
23878 while (*curr)
23880 gcc_assert (!(*curr)->replaced && !(*curr)->resolved_addr);
23881 if (!resolve_addr_in_expr ((*curr)->expr))
23883 dw_loc_list_ref next = (*curr)->dw_loc_next;
23884 dw_loc_descr_ref l = (*curr)->expr;
23886 if (next && (*curr)->ll_symbol)
23888 gcc_assert (!next->ll_symbol);
23889 next->ll_symbol = (*curr)->ll_symbol;
23891 if (dwarf_split_debug_info)
23892 remove_loc_list_addr_table_entries (l);
23893 *curr = next;
23895 else
23897 mark_base_types ((*curr)->expr);
23898 curr = &(*curr)->dw_loc_next;
23901 if (loc == *start)
23902 loc->resolved_addr = 1;
23903 else
23905 loc->replaced = 1;
23906 loc->dw_loc_next = *start;
23909 if (!*start)
23911 remove_AT (die, a->dw_attr);
23912 ix--;
23914 break;
23915 case dw_val_class_loc:
23917 dw_loc_descr_ref l = AT_loc (a);
23918 /* For -gdwarf-2 don't attempt to optimize
23919 DW_AT_data_member_location containing
23920 DW_OP_plus_uconst - older consumers might
23921 rely on it being that op instead of a more complex,
23922 but shorter, location description. */
23923 if ((dwarf_version > 2
23924 || a->dw_attr != DW_AT_data_member_location
23925 || l == NULL
23926 || l->dw_loc_opc != DW_OP_plus_uconst
23927 || l->dw_loc_next != NULL)
23928 && !resolve_addr_in_expr (l))
23930 if (dwarf_split_debug_info)
23931 remove_loc_list_addr_table_entries (l);
23932 if (l != NULL
23933 && l->dw_loc_next == NULL
23934 && l->dw_loc_opc == DW_OP_addr
23935 && GET_CODE (l->dw_loc_oprnd1.v.val_addr) == SYMBOL_REF
23936 && SYMBOL_REF_DECL (l->dw_loc_oprnd1.v.val_addr)
23937 && a->dw_attr == DW_AT_location)
23939 tree decl = SYMBOL_REF_DECL (l->dw_loc_oprnd1.v.val_addr);
23940 remove_AT (die, a->dw_attr);
23941 ix--;
23942 optimize_location_into_implicit_ptr (die, decl);
23943 break;
23945 remove_AT (die, a->dw_attr);
23946 ix--;
23948 else
23949 mark_base_types (l);
23951 break;
23952 case dw_val_class_addr:
23953 if (a->dw_attr == DW_AT_const_value
23954 && !resolve_one_addr (&a->dw_attr_val.v.val_addr))
23956 if (AT_index (a) != NOT_INDEXED)
23957 remove_addr_table_entry (a->dw_attr_val.val_entry);
23958 remove_AT (die, a->dw_attr);
23959 ix--;
23961 if (die->die_tag == DW_TAG_GNU_call_site
23962 && a->dw_attr == DW_AT_abstract_origin)
23964 tree tdecl = SYMBOL_REF_DECL (a->dw_attr_val.v.val_addr);
23965 dw_die_ref tdie = lookup_decl_die (tdecl);
23966 if (tdie == NULL
23967 && DECL_EXTERNAL (tdecl)
23968 && DECL_ABSTRACT_ORIGIN (tdecl) == NULL_TREE)
23970 force_decl_die (tdecl);
23971 tdie = lookup_decl_die (tdecl);
23973 if (tdie)
23975 a->dw_attr_val.val_class = dw_val_class_die_ref;
23976 a->dw_attr_val.v.val_die_ref.die = tdie;
23977 a->dw_attr_val.v.val_die_ref.external = 0;
23979 else
23981 if (AT_index (a) != NOT_INDEXED)
23982 remove_addr_table_entry (a->dw_attr_val.val_entry);
23983 remove_AT (die, a->dw_attr);
23984 ix--;
23987 break;
23988 default:
23989 break;
23992 FOR_EACH_CHILD (die, c, resolve_addr (c));
23995 /* Helper routines for optimize_location_lists.
23996 This pass tries to share identical local lists in .debug_loc
23997 section. */
23999 /* Iteratively hash operands of LOC opcode into HSTATE. */
24001 static void
24002 hash_loc_operands (dw_loc_descr_ref loc, inchash::hash &hstate)
24004 dw_val_ref val1 = &loc->dw_loc_oprnd1;
24005 dw_val_ref val2 = &loc->dw_loc_oprnd2;
24007 switch (loc->dw_loc_opc)
24009 case DW_OP_const4u:
24010 case DW_OP_const8u:
24011 if (loc->dtprel)
24012 goto hash_addr;
24013 /* FALLTHRU */
24014 case DW_OP_const1u:
24015 case DW_OP_const1s:
24016 case DW_OP_const2u:
24017 case DW_OP_const2s:
24018 case DW_OP_const4s:
24019 case DW_OP_const8s:
24020 case DW_OP_constu:
24021 case DW_OP_consts:
24022 case DW_OP_pick:
24023 case DW_OP_plus_uconst:
24024 case DW_OP_breg0:
24025 case DW_OP_breg1:
24026 case DW_OP_breg2:
24027 case DW_OP_breg3:
24028 case DW_OP_breg4:
24029 case DW_OP_breg5:
24030 case DW_OP_breg6:
24031 case DW_OP_breg7:
24032 case DW_OP_breg8:
24033 case DW_OP_breg9:
24034 case DW_OP_breg10:
24035 case DW_OP_breg11:
24036 case DW_OP_breg12:
24037 case DW_OP_breg13:
24038 case DW_OP_breg14:
24039 case DW_OP_breg15:
24040 case DW_OP_breg16:
24041 case DW_OP_breg17:
24042 case DW_OP_breg18:
24043 case DW_OP_breg19:
24044 case DW_OP_breg20:
24045 case DW_OP_breg21:
24046 case DW_OP_breg22:
24047 case DW_OP_breg23:
24048 case DW_OP_breg24:
24049 case DW_OP_breg25:
24050 case DW_OP_breg26:
24051 case DW_OP_breg27:
24052 case DW_OP_breg28:
24053 case DW_OP_breg29:
24054 case DW_OP_breg30:
24055 case DW_OP_breg31:
24056 case DW_OP_regx:
24057 case DW_OP_fbreg:
24058 case DW_OP_piece:
24059 case DW_OP_deref_size:
24060 case DW_OP_xderef_size:
24061 hstate.add_object (val1->v.val_int);
24062 break;
24063 case DW_OP_skip:
24064 case DW_OP_bra:
24066 int offset;
24068 gcc_assert (val1->val_class == dw_val_class_loc);
24069 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
24070 hstate.add_object (offset);
24072 break;
24073 case DW_OP_implicit_value:
24074 hstate.add_object (val1->v.val_unsigned);
24075 switch (val2->val_class)
24077 case dw_val_class_const:
24078 hstate.add_object (val2->v.val_int);
24079 break;
24080 case dw_val_class_vec:
24082 unsigned int elt_size = val2->v.val_vec.elt_size;
24083 unsigned int len = val2->v.val_vec.length;
24085 hstate.add_int (elt_size);
24086 hstate.add_int (len);
24087 hstate.add (val2->v.val_vec.array, len * elt_size);
24089 break;
24090 case dw_val_class_const_double:
24091 hstate.add_object (val2->v.val_double.low);
24092 hstate.add_object (val2->v.val_double.high);
24093 break;
24094 case dw_val_class_wide_int:
24095 hstate.add (val2->v.val_wide->get_val (),
24096 get_full_len (*val2->v.val_wide)
24097 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
24098 break;
24099 case dw_val_class_addr:
24100 inchash::add_rtx (val2->v.val_addr, hstate);
24101 break;
24102 default:
24103 gcc_unreachable ();
24105 break;
24106 case DW_OP_bregx:
24107 case DW_OP_bit_piece:
24108 hstate.add_object (val1->v.val_int);
24109 hstate.add_object (val2->v.val_int);
24110 break;
24111 case DW_OP_addr:
24112 hash_addr:
24113 if (loc->dtprel)
24115 unsigned char dtprel = 0xd1;
24116 hstate.add_object (dtprel);
24118 inchash::add_rtx (val1->v.val_addr, hstate);
24119 break;
24120 case DW_OP_GNU_addr_index:
24121 case DW_OP_GNU_const_index:
24123 if (loc->dtprel)
24125 unsigned char dtprel = 0xd1;
24126 hstate.add_object (dtprel);
24128 inchash::add_rtx (val1->val_entry->addr.rtl, hstate);
24130 break;
24131 case DW_OP_GNU_implicit_pointer:
24132 hstate.add_int (val2->v.val_int);
24133 break;
24134 case DW_OP_GNU_entry_value:
24135 hstate.add_object (val1->v.val_loc);
24136 break;
24137 case DW_OP_GNU_regval_type:
24138 case DW_OP_GNU_deref_type:
24140 unsigned int byte_size
24141 = get_AT_unsigned (val2->v.val_die_ref.die, DW_AT_byte_size);
24142 unsigned int encoding
24143 = get_AT_unsigned (val2->v.val_die_ref.die, DW_AT_encoding);
24144 hstate.add_object (val1->v.val_int);
24145 hstate.add_object (byte_size);
24146 hstate.add_object (encoding);
24148 break;
24149 case DW_OP_GNU_convert:
24150 case DW_OP_GNU_reinterpret:
24151 if (val1->val_class == dw_val_class_unsigned_const)
24153 hstate.add_object (val1->v.val_unsigned);
24154 break;
24156 /* FALLTHRU */
24157 case DW_OP_GNU_const_type:
24159 unsigned int byte_size
24160 = get_AT_unsigned (val1->v.val_die_ref.die, DW_AT_byte_size);
24161 unsigned int encoding
24162 = get_AT_unsigned (val1->v.val_die_ref.die, DW_AT_encoding);
24163 hstate.add_object (byte_size);
24164 hstate.add_object (encoding);
24165 if (loc->dw_loc_opc != DW_OP_GNU_const_type)
24166 break;
24167 hstate.add_object (val2->val_class);
24168 switch (val2->val_class)
24170 case dw_val_class_const:
24171 hstate.add_object (val2->v.val_int);
24172 break;
24173 case dw_val_class_vec:
24175 unsigned int elt_size = val2->v.val_vec.elt_size;
24176 unsigned int len = val2->v.val_vec.length;
24178 hstate.add_object (elt_size);
24179 hstate.add_object (len);
24180 hstate.add (val2->v.val_vec.array, len * elt_size);
24182 break;
24183 case dw_val_class_const_double:
24184 hstate.add_object (val2->v.val_double.low);
24185 hstate.add_object (val2->v.val_double.high);
24186 break;
24187 case dw_val_class_wide_int:
24188 hstate.add (val2->v.val_wide->get_val (),
24189 get_full_len (*val2->v.val_wide)
24190 * HOST_BITS_PER_WIDE_INT / HOST_BITS_PER_CHAR);
24191 break;
24192 default:
24193 gcc_unreachable ();
24196 break;
24198 default:
24199 /* Other codes have no operands. */
24200 break;
24204 /* Iteratively hash the whole DWARF location expression LOC into HSTATE. */
24206 static inline void
24207 hash_locs (dw_loc_descr_ref loc, inchash::hash &hstate)
24209 dw_loc_descr_ref l;
24210 bool sizes_computed = false;
24211 /* Compute sizes, so that DW_OP_skip/DW_OP_bra can be checksummed. */
24212 size_of_locs (loc);
24214 for (l = loc; l != NULL; l = l->dw_loc_next)
24216 enum dwarf_location_atom opc = l->dw_loc_opc;
24217 hstate.add_object (opc);
24218 if ((opc == DW_OP_skip || opc == DW_OP_bra) && !sizes_computed)
24220 size_of_locs (loc);
24221 sizes_computed = true;
24223 hash_loc_operands (l, hstate);
24227 /* Compute hash of the whole location list LIST_HEAD. */
24229 static inline void
24230 hash_loc_list (dw_loc_list_ref list_head)
24232 dw_loc_list_ref curr = list_head;
24233 inchash::hash hstate;
24235 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
24237 hstate.add (curr->begin, strlen (curr->begin) + 1);
24238 hstate.add (curr->end, strlen (curr->end) + 1);
24239 if (curr->section)
24240 hstate.add (curr->section, strlen (curr->section) + 1);
24241 hash_locs (curr->expr, hstate);
24243 list_head->hash = hstate.end ();
24246 /* Return true if X and Y opcodes have the same operands. */
24248 static inline bool
24249 compare_loc_operands (dw_loc_descr_ref x, dw_loc_descr_ref y)
24251 dw_val_ref valx1 = &x->dw_loc_oprnd1;
24252 dw_val_ref valx2 = &x->dw_loc_oprnd2;
24253 dw_val_ref valy1 = &y->dw_loc_oprnd1;
24254 dw_val_ref valy2 = &y->dw_loc_oprnd2;
24256 switch (x->dw_loc_opc)
24258 case DW_OP_const4u:
24259 case DW_OP_const8u:
24260 if (x->dtprel)
24261 goto hash_addr;
24262 /* FALLTHRU */
24263 case DW_OP_const1u:
24264 case DW_OP_const1s:
24265 case DW_OP_const2u:
24266 case DW_OP_const2s:
24267 case DW_OP_const4s:
24268 case DW_OP_const8s:
24269 case DW_OP_constu:
24270 case DW_OP_consts:
24271 case DW_OP_pick:
24272 case DW_OP_plus_uconst:
24273 case DW_OP_breg0:
24274 case DW_OP_breg1:
24275 case DW_OP_breg2:
24276 case DW_OP_breg3:
24277 case DW_OP_breg4:
24278 case DW_OP_breg5:
24279 case DW_OP_breg6:
24280 case DW_OP_breg7:
24281 case DW_OP_breg8:
24282 case DW_OP_breg9:
24283 case DW_OP_breg10:
24284 case DW_OP_breg11:
24285 case DW_OP_breg12:
24286 case DW_OP_breg13:
24287 case DW_OP_breg14:
24288 case DW_OP_breg15:
24289 case DW_OP_breg16:
24290 case DW_OP_breg17:
24291 case DW_OP_breg18:
24292 case DW_OP_breg19:
24293 case DW_OP_breg20:
24294 case DW_OP_breg21:
24295 case DW_OP_breg22:
24296 case DW_OP_breg23:
24297 case DW_OP_breg24:
24298 case DW_OP_breg25:
24299 case DW_OP_breg26:
24300 case DW_OP_breg27:
24301 case DW_OP_breg28:
24302 case DW_OP_breg29:
24303 case DW_OP_breg30:
24304 case DW_OP_breg31:
24305 case DW_OP_regx:
24306 case DW_OP_fbreg:
24307 case DW_OP_piece:
24308 case DW_OP_deref_size:
24309 case DW_OP_xderef_size:
24310 return valx1->v.val_int == valy1->v.val_int;
24311 case DW_OP_skip:
24312 case DW_OP_bra:
24313 /* If splitting debug info, the use of DW_OP_GNU_addr_index
24314 can cause irrelevant differences in dw_loc_addr. */
24315 gcc_assert (valx1->val_class == dw_val_class_loc
24316 && valy1->val_class == dw_val_class_loc
24317 && (dwarf_split_debug_info
24318 || x->dw_loc_addr == y->dw_loc_addr));
24319 return valx1->v.val_loc->dw_loc_addr == valy1->v.val_loc->dw_loc_addr;
24320 case DW_OP_implicit_value:
24321 if (valx1->v.val_unsigned != valy1->v.val_unsigned
24322 || valx2->val_class != valy2->val_class)
24323 return false;
24324 switch (valx2->val_class)
24326 case dw_val_class_const:
24327 return valx2->v.val_int == valy2->v.val_int;
24328 case dw_val_class_vec:
24329 return valx2->v.val_vec.elt_size == valy2->v.val_vec.elt_size
24330 && valx2->v.val_vec.length == valy2->v.val_vec.length
24331 && memcmp (valx2->v.val_vec.array, valy2->v.val_vec.array,
24332 valx2->v.val_vec.elt_size
24333 * valx2->v.val_vec.length) == 0;
24334 case dw_val_class_const_double:
24335 return valx2->v.val_double.low == valy2->v.val_double.low
24336 && valx2->v.val_double.high == valy2->v.val_double.high;
24337 case dw_val_class_wide_int:
24338 return *valx2->v.val_wide == *valy2->v.val_wide;
24339 case dw_val_class_addr:
24340 return rtx_equal_p (valx2->v.val_addr, valy2->v.val_addr);
24341 default:
24342 gcc_unreachable ();
24344 case DW_OP_bregx:
24345 case DW_OP_bit_piece:
24346 return valx1->v.val_int == valy1->v.val_int
24347 && valx2->v.val_int == valy2->v.val_int;
24348 case DW_OP_addr:
24349 hash_addr:
24350 return rtx_equal_p (valx1->v.val_addr, valy1->v.val_addr);
24351 case DW_OP_GNU_addr_index:
24352 case DW_OP_GNU_const_index:
24354 rtx ax1 = valx1->val_entry->addr.rtl;
24355 rtx ay1 = valy1->val_entry->addr.rtl;
24356 return rtx_equal_p (ax1, ay1);
24358 case DW_OP_GNU_implicit_pointer:
24359 return valx1->val_class == dw_val_class_die_ref
24360 && valx1->val_class == valy1->val_class
24361 && valx1->v.val_die_ref.die == valy1->v.val_die_ref.die
24362 && valx2->v.val_int == valy2->v.val_int;
24363 case DW_OP_GNU_entry_value:
24364 return compare_loc_operands (valx1->v.val_loc, valy1->v.val_loc);
24365 case DW_OP_GNU_const_type:
24366 if (valx1->v.val_die_ref.die != valy1->v.val_die_ref.die
24367 || valx2->val_class != valy2->val_class)
24368 return false;
24369 switch (valx2->val_class)
24371 case dw_val_class_const:
24372 return valx2->v.val_int == valy2->v.val_int;
24373 case dw_val_class_vec:
24374 return valx2->v.val_vec.elt_size == valy2->v.val_vec.elt_size
24375 && valx2->v.val_vec.length == valy2->v.val_vec.length
24376 && memcmp (valx2->v.val_vec.array, valy2->v.val_vec.array,
24377 valx2->v.val_vec.elt_size
24378 * valx2->v.val_vec.length) == 0;
24379 case dw_val_class_const_double:
24380 return valx2->v.val_double.low == valy2->v.val_double.low
24381 && valx2->v.val_double.high == valy2->v.val_double.high;
24382 case dw_val_class_wide_int:
24383 return *valx2->v.val_wide == *valy2->v.val_wide;
24384 default:
24385 gcc_unreachable ();
24387 case DW_OP_GNU_regval_type:
24388 case DW_OP_GNU_deref_type:
24389 return valx1->v.val_int == valy1->v.val_int
24390 && valx2->v.val_die_ref.die == valy2->v.val_die_ref.die;
24391 case DW_OP_GNU_convert:
24392 case DW_OP_GNU_reinterpret:
24393 if (valx1->val_class != valy1->val_class)
24394 return false;
24395 if (valx1->val_class == dw_val_class_unsigned_const)
24396 return valx1->v.val_unsigned == valy1->v.val_unsigned;
24397 return valx1->v.val_die_ref.die == valy1->v.val_die_ref.die;
24398 case DW_OP_GNU_parameter_ref:
24399 return valx1->val_class == dw_val_class_die_ref
24400 && valx1->val_class == valy1->val_class
24401 && valx1->v.val_die_ref.die == valy1->v.val_die_ref.die;
24402 default:
24403 /* Other codes have no operands. */
24404 return true;
24408 /* Return true if DWARF location expressions X and Y are the same. */
24410 static inline bool
24411 compare_locs (dw_loc_descr_ref x, dw_loc_descr_ref y)
24413 for (; x != NULL && y != NULL; x = x->dw_loc_next, y = y->dw_loc_next)
24414 if (x->dw_loc_opc != y->dw_loc_opc
24415 || x->dtprel != y->dtprel
24416 || !compare_loc_operands (x, y))
24417 break;
24418 return x == NULL && y == NULL;
24421 /* Hashtable helpers. */
24423 struct loc_list_hasher : typed_noop_remove <dw_loc_list_struct>
24425 typedef dw_loc_list_struct *value_type;
24426 typedef dw_loc_list_struct *compare_type;
24427 static inline hashval_t hash (const dw_loc_list_struct *);
24428 static inline bool equal (const dw_loc_list_struct *,
24429 const dw_loc_list_struct *);
24432 /* Return precomputed hash of location list X. */
24434 inline hashval_t
24435 loc_list_hasher::hash (const dw_loc_list_struct *x)
24437 return x->hash;
24440 /* Return true if location lists A and B are the same. */
24442 inline bool
24443 loc_list_hasher::equal (const dw_loc_list_struct *a,
24444 const dw_loc_list_struct *b)
24446 if (a == b)
24447 return 1;
24448 if (a->hash != b->hash)
24449 return 0;
24450 for (; a != NULL && b != NULL; a = a->dw_loc_next, b = b->dw_loc_next)
24451 if (strcmp (a->begin, b->begin) != 0
24452 || strcmp (a->end, b->end) != 0
24453 || (a->section == NULL) != (b->section == NULL)
24454 || (a->section && strcmp (a->section, b->section) != 0)
24455 || !compare_locs (a->expr, b->expr))
24456 break;
24457 return a == NULL && b == NULL;
24460 typedef hash_table<loc_list_hasher> loc_list_hash_type;
24463 /* Recursively optimize location lists referenced from DIE
24464 children and share them whenever possible. */
24466 static void
24467 optimize_location_lists_1 (dw_die_ref die, loc_list_hash_type *htab)
24469 dw_die_ref c;
24470 dw_attr_ref a;
24471 unsigned ix;
24472 dw_loc_list_struct **slot;
24474 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
24475 if (AT_class (a) == dw_val_class_loc_list)
24477 dw_loc_list_ref list = AT_loc_list (a);
24478 /* TODO: perform some optimizations here, before hashing
24479 it and storing into the hash table. */
24480 hash_loc_list (list);
24481 slot = htab->find_slot_with_hash (list, list->hash, INSERT);
24482 if (*slot == NULL)
24483 *slot = list;
24484 else
24485 a->dw_attr_val.v.val_loc_list = *slot;
24488 FOR_EACH_CHILD (die, c, optimize_location_lists_1 (c, htab));
24492 /* Recursively assign each location list a unique index into the debug_addr
24493 section. */
24495 static void
24496 index_location_lists (dw_die_ref die)
24498 dw_die_ref c;
24499 dw_attr_ref a;
24500 unsigned ix;
24502 FOR_EACH_VEC_SAFE_ELT (die->die_attr, ix, a)
24503 if (AT_class (a) == dw_val_class_loc_list)
24505 dw_loc_list_ref list = AT_loc_list (a);
24506 dw_loc_list_ref curr;
24507 for (curr = list; curr != NULL; curr = curr->dw_loc_next)
24509 /* Don't index an entry that has already been indexed
24510 or won't be output. */
24511 if (curr->begin_entry != NULL
24512 || (strcmp (curr->begin, curr->end) == 0 && !curr->force))
24513 continue;
24515 curr->begin_entry
24516 = add_addr_table_entry (xstrdup (curr->begin),
24517 ate_kind_label);
24521 FOR_EACH_CHILD (die, c, index_location_lists (c));
24524 /* Optimize location lists referenced from DIE
24525 children and share them whenever possible. */
24527 static void
24528 optimize_location_lists (dw_die_ref die)
24530 loc_list_hash_type htab (500);
24531 optimize_location_lists_1 (die, &htab);
24534 /* Output stuff that dwarf requires at the end of every file,
24535 and generate the DWARF-2 debugging info. */
24537 static void
24538 dwarf2out_finish (const char *filename)
24540 limbo_die_node *node, *next_node;
24541 comdat_type_node *ctnode;
24542 unsigned int i;
24543 dw_die_ref main_comp_unit_die;
24545 /* PCH might result in DW_AT_producer string being restored from the
24546 header compilation, so always fill it with empty string initially
24547 and overwrite only here. */
24548 dw_attr_ref producer = get_AT (comp_unit_die (), DW_AT_producer);
24549 producer_string = gen_producer_string ();
24550 producer->dw_attr_val.v.val_str->refcount--;
24551 producer->dw_attr_val.v.val_str = find_AT_string (producer_string);
24553 gen_scheduled_generic_parms_dies ();
24554 gen_remaining_tmpl_value_param_die_attribute ();
24556 /* Add the name for the main input file now. We delayed this from
24557 dwarf2out_init to avoid complications with PCH.
24558 For LTO produced units use a fixed artificial name to avoid
24559 leaking tempfile names into the dwarf. */
24560 if (!in_lto_p)
24561 add_name_attribute (comp_unit_die (), remap_debug_filename (filename));
24562 else
24563 add_name_attribute (comp_unit_die (), "<artificial>");
24564 if (!IS_ABSOLUTE_PATH (filename) || targetm.force_at_comp_dir)
24565 add_comp_dir_attribute (comp_unit_die ());
24566 else if (get_AT (comp_unit_die (), DW_AT_comp_dir) == NULL)
24568 bool p = false;
24569 file_table->traverse<bool *, file_table_relative_p> (&p);
24570 if (p)
24571 add_comp_dir_attribute (comp_unit_die ());
24574 if (deferred_locations_list)
24575 for (i = 0; i < deferred_locations_list->length (); i++)
24577 add_location_or_const_value_attribute (
24578 (*deferred_locations_list)[i].die,
24579 (*deferred_locations_list)[i].variable,
24580 false,
24581 DW_AT_location);
24584 /* Traverse the limbo die list, and add parent/child links. The only
24585 dies without parents that should be here are concrete instances of
24586 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
24587 For concrete instances, we can get the parent die from the abstract
24588 instance. */
24589 for (node = limbo_die_list; node; node = next_node)
24591 dw_die_ref die = node->die;
24592 next_node = node->next;
24594 if (die->die_parent == NULL)
24596 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
24598 if (origin && origin->die_parent)
24599 add_child_die (origin->die_parent, die);
24600 else if (is_cu_die (die))
24602 else if (seen_error ())
24603 /* It's OK to be confused by errors in the input. */
24604 add_child_die (comp_unit_die (), die);
24605 else
24607 /* In certain situations, the lexical block containing a
24608 nested function can be optimized away, which results
24609 in the nested function die being orphaned. Likewise
24610 with the return type of that nested function. Force
24611 this to be a child of the containing function.
24613 It may happen that even the containing function got fully
24614 inlined and optimized out. In that case we are lost and
24615 assign the empty child. This should not be big issue as
24616 the function is likely unreachable too. */
24617 gcc_assert (node->created_for);
24619 if (DECL_P (node->created_for))
24620 origin = get_context_die (DECL_CONTEXT (node->created_for));
24621 else if (TYPE_P (node->created_for))
24622 origin = scope_die_for (node->created_for, comp_unit_die ());
24623 else
24624 origin = comp_unit_die ();
24626 add_child_die (origin, die);
24631 limbo_die_list = NULL;
24633 #if ENABLE_ASSERT_CHECKING
24635 dw_die_ref die = comp_unit_die (), c;
24636 FOR_EACH_CHILD (die, c, gcc_assert (! c->die_mark));
24638 #endif
24639 resolve_addr (comp_unit_die ());
24640 move_marked_base_types ();
24642 for (node = deferred_asm_name; node; node = node->next)
24644 tree decl = node->created_for;
24645 /* When generating LTO bytecode we can not generate new assembler
24646 names at this point and all important decls got theirs via
24647 free-lang-data. */
24648 if (((!flag_generate_lto && !flag_generate_offload)
24649 || DECL_ASSEMBLER_NAME_SET_P (decl))
24650 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl))
24652 add_linkage_attr (node->die, decl);
24653 move_linkage_attr (node->die);
24657 deferred_asm_name = NULL;
24659 /* Walk through the list of incomplete types again, trying once more to
24660 emit full debugging info for them. */
24661 retry_incomplete_types ();
24663 if (flag_eliminate_unused_debug_types)
24664 prune_unused_types ();
24666 /* Generate separate COMDAT sections for type DIEs. */
24667 if (use_debug_types)
24669 break_out_comdat_types (comp_unit_die ());
24671 /* Each new type_unit DIE was added to the limbo die list when created.
24672 Since these have all been added to comdat_type_list, clear the
24673 limbo die list. */
24674 limbo_die_list = NULL;
24676 /* For each new comdat type unit, copy declarations for incomplete
24677 types to make the new unit self-contained (i.e., no direct
24678 references to the main compile unit). */
24679 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
24680 copy_decls_for_unworthy_types (ctnode->root_die);
24681 copy_decls_for_unworthy_types (comp_unit_die ());
24683 /* In the process of copying declarations from one unit to another,
24684 we may have left some declarations behind that are no longer
24685 referenced. Prune them. */
24686 prune_unused_types ();
24689 /* Generate separate CUs for each of the include files we've seen.
24690 They will go into limbo_die_list. */
24691 if (flag_eliminate_dwarf2_dups)
24692 break_out_includes (comp_unit_die ());
24694 /* Traverse the DIE's and add add sibling attributes to those DIE's
24695 that have children. */
24696 add_sibling_attributes (comp_unit_die ());
24697 for (node = limbo_die_list; node; node = node->next)
24698 add_sibling_attributes (node->die);
24699 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
24700 add_sibling_attributes (ctnode->root_die);
24702 /* When splitting DWARF info, we put some attributes in the
24703 skeleton compile_unit DIE that remains in the .o, while
24704 most attributes go in the DWO compile_unit_die. */
24705 if (dwarf_split_debug_info)
24706 main_comp_unit_die = gen_compile_unit_die (NULL);
24707 else
24708 main_comp_unit_die = comp_unit_die ();
24710 /* Output a terminator label for the .text section. */
24711 switch_to_section (text_section);
24712 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
24713 if (cold_text_section)
24715 switch_to_section (cold_text_section);
24716 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
24719 /* We can only use the low/high_pc attributes if all of the code was
24720 in .text. */
24721 if (!have_multiple_function_sections
24722 || (dwarf_version < 3 && dwarf_strict))
24724 /* Don't add if the CU has no associated code. */
24725 if (text_section_used)
24726 add_AT_low_high_pc (main_comp_unit_die, text_section_label,
24727 text_end_label, true);
24729 else
24731 unsigned fde_idx;
24732 dw_fde_ref fde;
24733 bool range_list_added = false;
24735 if (text_section_used)
24736 add_ranges_by_labels (main_comp_unit_die, text_section_label,
24737 text_end_label, &range_list_added, true);
24738 if (cold_text_section_used)
24739 add_ranges_by_labels (main_comp_unit_die, cold_text_section_label,
24740 cold_end_label, &range_list_added, true);
24742 FOR_EACH_VEC_ELT (*fde_vec, fde_idx, fde)
24744 if (DECL_IGNORED_P (fde->decl))
24745 continue;
24746 if (!fde->in_std_section)
24747 add_ranges_by_labels (main_comp_unit_die, fde->dw_fde_begin,
24748 fde->dw_fde_end, &range_list_added,
24749 true);
24750 if (fde->dw_fde_second_begin && !fde->second_in_std_section)
24751 add_ranges_by_labels (main_comp_unit_die, fde->dw_fde_second_begin,
24752 fde->dw_fde_second_end, &range_list_added,
24753 true);
24756 if (range_list_added)
24758 /* We need to give .debug_loc and .debug_ranges an appropriate
24759 "base address". Use zero so that these addresses become
24760 absolute. Historically, we've emitted the unexpected
24761 DW_AT_entry_pc instead of DW_AT_low_pc for this purpose.
24762 Emit both to give time for other tools to adapt. */
24763 add_AT_addr (main_comp_unit_die, DW_AT_low_pc, const0_rtx, true);
24764 if (! dwarf_strict && dwarf_version < 4)
24765 add_AT_addr (main_comp_unit_die, DW_AT_entry_pc, const0_rtx, true);
24767 add_ranges (NULL);
24771 if (debug_info_level >= DINFO_LEVEL_TERSE)
24772 add_AT_lineptr (main_comp_unit_die, DW_AT_stmt_list,
24773 debug_line_section_label);
24775 if (have_macinfo)
24776 add_AT_macptr (comp_unit_die (),
24777 dwarf_strict ? DW_AT_macro_info : DW_AT_GNU_macros,
24778 macinfo_section_label);
24780 if (dwarf_split_debug_info)
24782 /* optimize_location_lists calculates the size of the lists,
24783 so index them first, and assign indices to the entries.
24784 Although optimize_location_lists will remove entries from
24785 the table, it only does so for duplicates, and therefore
24786 only reduces ref_counts to 1. */
24787 index_location_lists (comp_unit_die ());
24789 if (addr_index_table != NULL)
24791 unsigned int index = 0;
24792 addr_index_table
24793 ->traverse_noresize<unsigned int *, index_addr_table_entry>
24794 (&index);
24798 if (have_location_lists)
24799 optimize_location_lists (comp_unit_die ());
24801 save_macinfo_strings ();
24803 if (dwarf_split_debug_info)
24805 unsigned int index = 0;
24807 /* Add attributes common to skeleton compile_units and
24808 type_units. Because these attributes include strings, it
24809 must be done before freezing the string table. Top-level
24810 skeleton die attrs are added when the skeleton type unit is
24811 created, so ensure it is created by this point. */
24812 add_top_level_skeleton_die_attrs (main_comp_unit_die);
24813 debug_str_hash->traverse_noresize<unsigned int *, index_string> (&index);
24816 /* Output all of the compilation units. We put the main one last so that
24817 the offsets are available to output_pubnames. */
24818 for (node = limbo_die_list; node; node = node->next)
24819 output_comp_unit (node->die, 0);
24821 hash_table<comdat_type_hasher> comdat_type_table (100);
24822 for (ctnode = comdat_type_list; ctnode != NULL; ctnode = ctnode->next)
24824 comdat_type_node **slot = comdat_type_table.find_slot (ctnode, INSERT);
24826 /* Don't output duplicate types. */
24827 if (*slot != HTAB_EMPTY_ENTRY)
24828 continue;
24830 /* Add a pointer to the line table for the main compilation unit
24831 so that the debugger can make sense of DW_AT_decl_file
24832 attributes. */
24833 if (debug_info_level >= DINFO_LEVEL_TERSE)
24834 add_AT_lineptr (ctnode->root_die, DW_AT_stmt_list,
24835 (!dwarf_split_debug_info
24836 ? debug_line_section_label
24837 : debug_skeleton_line_section_label));
24839 output_comdat_type_unit (ctnode);
24840 *slot = ctnode;
24843 /* The AT_pubnames attribute needs to go in all skeleton dies, including
24844 both the main_cu and all skeleton TUs. Making this call unconditional
24845 would end up either adding a second copy of the AT_pubnames attribute, or
24846 requiring a special case in add_top_level_skeleton_die_attrs. */
24847 if (!dwarf_split_debug_info)
24848 add_AT_pubnames (comp_unit_die ());
24850 if (dwarf_split_debug_info)
24852 int mark;
24853 unsigned char checksum[16];
24854 struct md5_ctx ctx;
24856 /* Compute a checksum of the comp_unit to use as the dwo_id. */
24857 md5_init_ctx (&ctx);
24858 mark = 0;
24859 die_checksum (comp_unit_die (), &ctx, &mark);
24860 unmark_all_dies (comp_unit_die ());
24861 md5_finish_ctx (&ctx, checksum);
24863 /* Use the first 8 bytes of the checksum as the dwo_id,
24864 and add it to both comp-unit DIEs. */
24865 add_AT_data8 (main_comp_unit_die, DW_AT_GNU_dwo_id, checksum);
24866 add_AT_data8 (comp_unit_die (), DW_AT_GNU_dwo_id, checksum);
24868 /* Add the base offset of the ranges table to the skeleton
24869 comp-unit DIE. */
24870 if (ranges_table_in_use)
24871 add_AT_lineptr (main_comp_unit_die, DW_AT_GNU_ranges_base,
24872 ranges_section_label);
24874 switch_to_section (debug_addr_section);
24875 ASM_OUTPUT_LABEL (asm_out_file, debug_addr_section_label);
24876 output_addr_table ();
24879 /* Output the main compilation unit if non-empty or if .debug_macinfo
24880 or .debug_macro will be emitted. */
24881 output_comp_unit (comp_unit_die (), have_macinfo);
24883 if (dwarf_split_debug_info && info_section_emitted)
24884 output_skeleton_debug_sections (main_comp_unit_die);
24886 /* Output the abbreviation table. */
24887 if (abbrev_die_table_in_use != 1)
24889 switch_to_section (debug_abbrev_section);
24890 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
24891 output_abbrev_section ();
24894 /* Output location list section if necessary. */
24895 if (have_location_lists)
24897 /* Output the location lists info. */
24898 switch_to_section (debug_loc_section);
24899 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
24900 output_location_lists (comp_unit_die ());
24903 output_pubtables ();
24905 /* Output the address range information if a CU (.debug_info section)
24906 was emitted. We output an empty table even if we had no functions
24907 to put in it. This because the consumer has no way to tell the
24908 difference between an empty table that we omitted and failure to
24909 generate a table that would have contained data. */
24910 if (info_section_emitted)
24912 unsigned long aranges_length = size_of_aranges ();
24914 switch_to_section (debug_aranges_section);
24915 output_aranges (aranges_length);
24918 /* Output ranges section if necessary. */
24919 if (ranges_table_in_use)
24921 switch_to_section (debug_ranges_section);
24922 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
24923 output_ranges ();
24926 /* Have to end the macro section. */
24927 if (have_macinfo)
24929 switch_to_section (debug_macinfo_section);
24930 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
24931 output_macinfo ();
24932 dw2_asm_output_data (1, 0, "End compilation unit");
24935 /* Output the source line correspondence table. We must do this
24936 even if there is no line information. Otherwise, on an empty
24937 translation unit, we will generate a present, but empty,
24938 .debug_info section. IRIX 6.5 `nm' will then complain when
24939 examining the file. This is done late so that any filenames
24940 used by the debug_info section are marked as 'used'. */
24941 switch_to_section (debug_line_section);
24942 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
24943 if (! DWARF2_ASM_LINE_DEBUG_INFO)
24944 output_line_info (false);
24946 if (dwarf_split_debug_info && info_section_emitted)
24948 switch_to_section (debug_skeleton_line_section);
24949 ASM_OUTPUT_LABEL (asm_out_file, debug_skeleton_line_section_label);
24950 output_line_info (true);
24953 /* If we emitted any indirect strings, output the string table too. */
24954 if (debug_str_hash || skeleton_debug_str_hash)
24955 output_indirect_strings ();
24958 /* Reset all state within dwarf2out.c so that we can rerun the compiler
24959 within the same process. For use by toplev::finalize. */
24961 void
24962 dwarf2out_c_finalize (void)
24964 last_var_location_insn = NULL;
24965 cached_next_real_insn = NULL;
24966 used_rtx_array = NULL;
24967 incomplete_types = NULL;
24968 decl_scope_table = NULL;
24969 debug_info_section = NULL;
24970 debug_skeleton_info_section = NULL;
24971 debug_abbrev_section = NULL;
24972 debug_skeleton_abbrev_section = NULL;
24973 debug_aranges_section = NULL;
24974 debug_addr_section = NULL;
24975 debug_macinfo_section = NULL;
24976 debug_line_section = NULL;
24977 debug_skeleton_line_section = NULL;
24978 debug_loc_section = NULL;
24979 debug_pubnames_section = NULL;
24980 debug_pubtypes_section = NULL;
24981 debug_str_section = NULL;
24982 debug_str_dwo_section = NULL;
24983 debug_str_offsets_section = NULL;
24984 debug_ranges_section = NULL;
24985 debug_frame_section = NULL;
24986 fde_vec = NULL;
24987 debug_str_hash = NULL;
24988 skeleton_debug_str_hash = NULL;
24989 dw2_string_counter = 0;
24990 have_multiple_function_sections = false;
24991 text_section_used = false;
24992 cold_text_section_used = false;
24993 cold_text_section = NULL;
24994 current_unit_personality = NULL;
24996 deferred_locations_list = NULL;
24998 next_die_offset = 0;
24999 single_comp_unit_die = NULL;
25000 comdat_type_list = NULL;
25001 limbo_die_list = NULL;
25002 deferred_asm_name = NULL;
25003 file_table = NULL;
25004 decl_die_table = NULL;
25005 common_block_die_table = NULL;
25006 decl_loc_table = NULL;
25007 call_arg_locations = NULL;
25008 call_arg_loc_last = NULL;
25009 call_site_count = -1;
25010 tail_call_site_count = -1;
25011 //block_map = NULL;
25012 cached_dw_loc_list_table = NULL;
25013 abbrev_die_table = NULL;
25014 abbrev_die_table_allocated = 0;
25015 abbrev_die_table_in_use = 0;
25016 line_info_label_num = 0;
25017 cur_line_info_table = NULL;
25018 text_section_line_info = NULL;
25019 cold_text_section_line_info = NULL;
25020 separate_line_info = NULL;
25021 info_section_emitted = false;
25022 pubname_table = NULL;
25023 pubtype_table = NULL;
25024 macinfo_table = NULL;
25025 ranges_table = NULL;
25026 ranges_table_allocated = 0;
25027 ranges_table_in_use = 0;
25028 ranges_by_label = 0;
25029 ranges_by_label_allocated = 0;
25030 ranges_by_label_in_use = 0;
25031 have_location_lists = false;
25032 loclabel_num = 0;
25033 poc_label_num = 0;
25034 last_emitted_file = NULL;
25035 label_num = 0;
25036 file_table_last_lookup = NULL;
25037 tmpl_value_parm_die_table = NULL;
25038 generic_type_instances = NULL;
25039 frame_pointer_fb_offset = 0;
25040 frame_pointer_fb_offset_valid = false;
25041 base_types.release ();
25042 XDELETEVEC (producer_string);
25043 producer_string = NULL;
25046 #include "gt-dwarf2out.h"