1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 - reordering of memory allocation and freeing to be more space efficient
24 - do rough calc of how many regs are needed in each block, and a rough
25 calc of how many regs are available in each class and use that to
26 throttle back the code in cases where RTX_COST is minimal.
27 - a store to the same address as a load does not kill the load if the
28 source of the store is also the destination of the load. Handling this
29 allows more load motion, particularly out of loops.
33 /* References searched while implementing this.
35 Compilers Principles, Techniques and Tools
39 Global Optimization by Suppression of Partial Redundancies
41 communications of the acm, Vol. 22, Num. 2, Feb. 1979
43 A Portable Machine-Independent Global Optimizer - Design and Measurements
45 Stanford Ph.D. thesis, Dec. 1983
47 A Fast Algorithm for Code Movement Optimization
49 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
51 A Solution to a Problem with Morel and Renvoise's
52 Global Optimization by Suppression of Partial Redundancies
53 K-H Drechsler, M.P. Stadel
54 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
56 Practical Adaptation of the Global Optimization
57 Algorithm of Morel and Renvoise
59 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
61 Efficiently Computing Static Single Assignment Form and the Control
63 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
64 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
67 J. Knoop, O. Ruthing, B. Steffen
68 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
70 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
71 Time for Reducible Flow Control
73 ACM Letters on Programming Languages and Systems,
74 Vol. 2, Num. 1-4, Mar-Dec 1993
76 An Efficient Representation for Sparse Sets
77 Preston Briggs, Linda Torczon
78 ACM Letters on Programming Languages and Systems,
79 Vol. 2, Num. 1-4, Mar-Dec 1993
81 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
82 K-H Drechsler, M.P. Stadel
83 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
85 Partial Dead Code Elimination
86 J. Knoop, O. Ruthing, B. Steffen
87 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
89 Effective Partial Redundancy Elimination
90 P. Briggs, K.D. Cooper
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 The Program Structure Tree: Computing Control Regions in Linear Time
94 R. Johnson, D. Pearson, K. Pingali
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 Optimal Code Motion: Theory and Practice
98 J. Knoop, O. Ruthing, B. Steffen
99 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
101 The power of assignment motion
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
105 Global code motion / global value numbering
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Value Driven Redundancy Elimination
111 Rice University Ph.D. thesis, Apr. 1996
115 Massively Scalar Compiler Project, Rice University, Sep. 1996
117 High Performance Compilers for Parallel Computing
121 Advanced Compiler Design and Implementation
123 Morgan Kaufmann, 1997
125 Building an Optimizing Compiler
129 People wishing to speed up the code here should read:
130 Elimination Algorithms for Data Flow Analysis
131 B.G. Ryder, M.C. Paull
132 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
134 How to Analyze Large Programs Efficiently and Informatively
135 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
136 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
138 People wishing to do something different can find various possibilities
139 in the above papers and elsewhere.
144 #include "coretypes.h"
152 #include "hard-reg-set.h"
155 #include "insn-config.h"
157 #include "basic-block.h"
159 #include "function.h"
168 #include "tree-pass.h"
174 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
175 are a superset of those done by classic GCSE.
177 We perform the following steps:
179 1) Compute table of places where registers are set.
181 2) Perform copy/constant propagation.
183 3) Perform global cse using lazy code motion if not optimizing
184 for size, or code hoisting if we are.
186 4) Perform another pass of copy/constant propagation. Try to bypass
187 conditional jumps if the condition can be computed from a value of
190 Two passes of copy/constant propagation are done because the first one
191 enables more GCSE and the second one helps to clean up the copies that
192 GCSE creates. This is needed more for PRE than for Classic because Classic
193 GCSE will try to use an existing register containing the common
194 subexpression rather than create a new one. This is harder to do for PRE
195 because of the code motion (which Classic GCSE doesn't do).
197 Expressions we are interested in GCSE-ing are of the form
198 (set (pseudo-reg) (expression)).
199 Function want_to_gcse_p says what these are.
201 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
202 This allows PRE to hoist expressions that are expressed in multiple insns,
203 such as complex address calculations (e.g. for PIC code, or loads with a
204 high part and a low part).
206 PRE handles moving invariant expressions out of loops (by treating them as
207 partially redundant).
209 **********************
211 We used to support multiple passes but there are diminishing returns in
212 doing so. The first pass usually makes 90% of the changes that are doable.
213 A second pass can make a few more changes made possible by the first pass.
214 Experiments show any further passes don't make enough changes to justify
217 A study of spec92 using an unlimited number of passes:
218 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
219 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
220 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
222 It was found doing copy propagation between each pass enables further
225 This study was done before expressions in REG_EQUAL notes were added as
226 candidate expressions for optimization, and before the GIMPLE optimizers
227 were added. Probably, multiple passes is even less efficient now than
228 at the time when the study was conducted.
230 PRE is quite expensive in complicated functions because the DFA can take
231 a while to converge. Hence we only perform one pass.
233 **********************
235 The steps for PRE are:
237 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
239 2) Perform the data flow analysis for PRE.
241 3) Delete the redundant instructions
243 4) Insert the required copies [if any] that make the partially
244 redundant instructions fully redundant.
246 5) For other reaching expressions, insert an instruction to copy the value
247 to a newly created pseudo that will reach the redundant instruction.
249 The deletion is done first so that when we do insertions we
250 know which pseudo reg to use.
252 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
253 argue it is not. The number of iterations for the algorithm to converge
254 is typically 2-4 so I don't view it as that expensive (relatively speaking).
256 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
257 we create. To make an expression reach the place where it's redundant,
258 the result of the expression is copied to a new register, and the redundant
259 expression is deleted by replacing it with this new register. Classic GCSE
260 doesn't have this problem as much as it computes the reaching defs of
261 each register in each block and thus can try to use an existing
264 /* GCSE global vars. */
266 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
267 int flag_rerun_cse_after_global_opts
;
269 /* An obstack for our working variables. */
270 static struct obstack gcse_obstack
;
272 struct reg_use
{rtx reg_rtx
; };
274 /* Hash table of expressions. */
278 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
280 /* Index in the available expression bitmaps. */
282 /* Next entry with the same hash. */
283 struct expr
*next_same_hash
;
284 /* List of anticipatable occurrences in basic blocks in the function.
285 An "anticipatable occurrence" is one that is the first occurrence in the
286 basic block, the operands are not modified in the basic block prior
287 to the occurrence and the output is not used between the start of
288 the block and the occurrence. */
289 struct occr
*antic_occr
;
290 /* List of available occurrence in basic blocks in the function.
291 An "available occurrence" is one that is the last occurrence in the
292 basic block and the operands are not modified by following statements in
293 the basic block [including this insn]. */
294 struct occr
*avail_occr
;
295 /* Non-null if the computation is PRE redundant.
296 The value is the newly created pseudo-reg to record a copy of the
297 expression in all the places that reach the redundant copy. */
301 /* Occurrence of an expression.
302 There is one per basic block. If a pattern appears more than once the
303 last appearance is used [or first for anticipatable expressions]. */
307 /* Next occurrence of this expression. */
309 /* The insn that computes the expression. */
311 /* Nonzero if this [anticipatable] occurrence has been deleted. */
313 /* Nonzero if this [available] occurrence has been copied to
315 /* ??? This is mutually exclusive with deleted_p, so they could share
320 /* Expression and copy propagation hash tables.
321 Each hash table is an array of buckets.
322 ??? It is known that if it were an array of entries, structure elements
323 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
324 not clear whether in the final analysis a sufficient amount of memory would
325 be saved as the size of the available expression bitmaps would be larger
326 [one could build a mapping table without holes afterwards though].
327 Someday I'll perform the computation and figure it out. */
332 This is an array of `expr_hash_table_size' elements. */
335 /* Size of the hash table, in elements. */
338 /* Number of hash table elements. */
339 unsigned int n_elems
;
341 /* Whether the table is expression of copy propagation one. */
345 /* Expression hash table. */
346 static struct hash_table_d expr_hash_table
;
348 /* Copy propagation hash table. */
349 static struct hash_table_d set_hash_table
;
351 /* This is a list of expressions which are MEMs and will be used by load
353 Load motion tracks MEMs which aren't killed by
354 anything except itself. (i.e., loads and stores to a single location).
355 We can then allow movement of these MEM refs with a little special
356 allowance. (all stores copy the same value to the reaching reg used
357 for the loads). This means all values used to store into memory must have
358 no side effects so we can re-issue the setter value.
359 Store Motion uses this structure as an expression table to track stores
360 which look interesting, and might be moveable towards the exit block. */
364 struct expr
* expr
; /* Gcse expression reference for LM. */
365 rtx pattern
; /* Pattern of this mem. */
366 rtx pattern_regs
; /* List of registers mentioned by the mem. */
367 rtx loads
; /* INSN list of loads seen. */
368 rtx stores
; /* INSN list of stores seen. */
369 struct ls_expr
* next
; /* Next in the list. */
370 int invalid
; /* Invalid for some reason. */
371 int index
; /* If it maps to a bitmap index. */
372 unsigned int hash_index
; /* Index when in a hash table. */
373 rtx reaching_reg
; /* Register to use when re-writing. */
376 /* Array of implicit set patterns indexed by basic block index. */
377 static rtx
*implicit_sets
;
379 /* Head of the list of load/store memory refs. */
380 static struct ls_expr
* pre_ldst_mems
= NULL
;
382 /* Hashtable for the load/store memory refs. */
383 static htab_t pre_ldst_table
= NULL
;
385 /* Bitmap containing one bit for each register in the program.
386 Used when performing GCSE to track which registers have been set since
387 the start of the basic block. */
388 static regset reg_set_bitmap
;
390 /* Array, indexed by basic block number for a list of insns which modify
391 memory within that block. */
392 static rtx
* modify_mem_list
;
393 static bitmap modify_mem_list_set
;
395 /* This array parallels modify_mem_list, but is kept canonicalized. */
396 static rtx
* canon_modify_mem_list
;
398 /* Bitmap indexed by block numbers to record which blocks contain
400 static bitmap blocks_with_calls
;
402 /* Various variables for statistics gathering. */
404 /* Memory used in a pass.
405 This isn't intended to be absolutely precise. Its intent is only
406 to keep an eye on memory usage. */
407 static int bytes_used
;
409 /* GCSE substitutions made. */
410 static int gcse_subst_count
;
411 /* Number of copy instructions created. */
412 static int gcse_create_count
;
413 /* Number of local constants propagated. */
414 static int local_const_prop_count
;
415 /* Number of local copies propagated. */
416 static int local_copy_prop_count
;
417 /* Number of global constants propagated. */
418 static int global_const_prop_count
;
419 /* Number of global copies propagated. */
420 static int global_copy_prop_count
;
422 /* For available exprs */
423 static sbitmap
*ae_kill
;
425 static void compute_can_copy (void);
426 static void *gmalloc (size_t) ATTRIBUTE_MALLOC
;
427 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC
;
428 static void *gcse_alloc (unsigned long);
429 static void alloc_gcse_mem (void);
430 static void free_gcse_mem (void);
431 static void hash_scan_insn (rtx
, struct hash_table_d
*);
432 static void hash_scan_set (rtx
, rtx
, struct hash_table_d
*);
433 static void hash_scan_clobber (rtx
, rtx
, struct hash_table_d
*);
434 static void hash_scan_call (rtx
, rtx
, struct hash_table_d
*);
435 static int want_to_gcse_p (rtx
);
436 static bool gcse_constant_p (const_rtx
);
437 static int oprs_unchanged_p (const_rtx
, const_rtx
, int);
438 static int oprs_anticipatable_p (const_rtx
, const_rtx
);
439 static int oprs_available_p (const_rtx
, const_rtx
);
440 static void insert_expr_in_table (rtx
, enum machine_mode
, rtx
, int, int,
441 struct hash_table_d
*);
442 static void insert_set_in_table (rtx
, rtx
, struct hash_table_d
*);
443 static unsigned int hash_expr (const_rtx
, enum machine_mode
, int *, int);
444 static unsigned int hash_set (int, int);
445 static int expr_equiv_p (const_rtx
, const_rtx
);
446 static void record_last_reg_set_info (rtx
, int);
447 static void record_last_mem_set_info (rtx
);
448 static void record_last_set_info (rtx
, const_rtx
, void *);
449 static void compute_hash_table (struct hash_table_d
*);
450 static void alloc_hash_table (struct hash_table_d
*, int);
451 static void free_hash_table (struct hash_table_d
*);
452 static void compute_hash_table_work (struct hash_table_d
*);
453 static void dump_hash_table (FILE *, const char *, struct hash_table_d
*);
454 static struct expr
*lookup_set (unsigned int, struct hash_table_d
*);
455 static struct expr
*next_set (unsigned int, struct expr
*);
456 static void reset_opr_set_tables (void);
457 static int oprs_not_set_p (const_rtx
, const_rtx
);
458 static void mark_call (rtx
);
459 static void mark_set (rtx
, rtx
);
460 static void mark_clobber (rtx
, rtx
);
461 static void mark_oprs_set (rtx
);
462 static void alloc_cprop_mem (int, int);
463 static void free_cprop_mem (void);
464 static void compute_transp (const_rtx
, int, sbitmap
*, int);
465 static void compute_transpout (void);
466 static void compute_local_properties (sbitmap
*, sbitmap
*, sbitmap
*,
467 struct hash_table_d
*);
468 static void compute_cprop_data (void);
469 static void find_used_regs (rtx
*, void *);
470 static int try_replace_reg (rtx
, rtx
, rtx
);
471 static struct expr
*find_avail_set (int, rtx
);
472 static int cprop_jump (basic_block
, rtx
, rtx
, rtx
, rtx
);
473 static void mems_conflict_for_gcse_p (rtx
, const_rtx
, void *);
474 static int load_killed_in_block_p (const_basic_block
, int, const_rtx
, int);
475 static void canon_list_insert (rtx
, const_rtx
, void *);
476 static int cprop_insn (rtx
);
477 static void find_implicit_sets (void);
478 static int one_cprop_pass (void);
479 static bool constprop_register (rtx
, rtx
, rtx
);
480 static struct expr
*find_bypass_set (int, int);
481 static bool reg_killed_on_edge (const_rtx
, const_edge
);
482 static int bypass_block (basic_block
, rtx
, rtx
);
483 static int bypass_conditional_jumps (void);
484 static void alloc_pre_mem (int, int);
485 static void free_pre_mem (void);
486 static void compute_pre_data (void);
487 static int pre_expr_reaches_here_p (basic_block
, struct expr
*,
489 static void insert_insn_end_basic_block (struct expr
*, basic_block
, int);
490 static void pre_insert_copy_insn (struct expr
*, rtx
);
491 static void pre_insert_copies (void);
492 static int pre_delete (void);
493 static int pre_gcse (void);
494 static int one_pre_gcse_pass (void);
495 static void add_label_notes (rtx
, rtx
);
496 static void alloc_code_hoist_mem (int, int);
497 static void free_code_hoist_mem (void);
498 static void compute_code_hoist_vbeinout (void);
499 static void compute_code_hoist_data (void);
500 static int hoist_expr_reaches_here_p (basic_block
, int, basic_block
, char *);
501 static int hoist_code (void);
502 static int one_code_hoisting_pass (void);
503 static rtx
process_insert_insn (struct expr
*);
504 static int pre_edge_insert (struct edge_list
*, struct expr
**);
505 static int pre_expr_reaches_here_p_work (basic_block
, struct expr
*,
506 basic_block
, char *);
507 static struct ls_expr
* ldst_entry (rtx
);
508 static void free_ldst_entry (struct ls_expr
*);
509 static void free_ldst_mems (void);
510 static void print_ldst_list (FILE *);
511 static struct ls_expr
* find_rtx_in_ldst (rtx
);
512 static inline struct ls_expr
* first_ls_expr (void);
513 static inline struct ls_expr
* next_ls_expr (struct ls_expr
*);
514 static int simple_mem (const_rtx
);
515 static void invalidate_any_buried_refs (rtx
);
516 static void compute_ld_motion_mems (void);
517 static void trim_ld_motion_mems (void);
518 static void update_ld_motion_stores (struct expr
*);
519 static void free_insn_expr_list_list (rtx
*);
520 static void clear_modify_mem_tables (void);
521 static void free_modify_mem_tables (void);
522 static rtx
gcse_emit_move_after (rtx
, rtx
, rtx
);
523 static void local_cprop_find_used_regs (rtx
*, void *);
524 static bool do_local_cprop (rtx
, rtx
);
525 static int local_cprop_pass (void);
526 static bool is_too_expensive (const char *);
528 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
529 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
531 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
532 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
534 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
535 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
537 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
538 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
540 /* Misc. utilities. */
542 /* Nonzero for each mode that supports (set (reg) (reg)).
543 This is trivially true for integer and floating point values.
544 It may or may not be true for condition codes. */
545 static char can_copy
[(int) NUM_MACHINE_MODES
];
547 /* Compute which modes support reg/reg copy operations. */
550 compute_can_copy (void)
553 #ifndef AVOID_CCMODE_COPIES
556 memset (can_copy
, 0, NUM_MACHINE_MODES
);
559 for (i
= 0; i
< NUM_MACHINE_MODES
; i
++)
560 if (GET_MODE_CLASS (i
) == MODE_CC
)
562 #ifdef AVOID_CCMODE_COPIES
565 reg
= gen_rtx_REG ((enum machine_mode
) i
, LAST_VIRTUAL_REGISTER
+ 1);
566 insn
= emit_insn (gen_rtx_SET (VOIDmode
, reg
, reg
));
567 if (recog (PATTERN (insn
), insn
, NULL
) >= 0)
577 /* Returns whether the mode supports reg/reg copy operations. */
580 can_copy_p (enum machine_mode mode
)
582 static bool can_copy_init_p
= false;
584 if (! can_copy_init_p
)
587 can_copy_init_p
= true;
590 return can_copy
[mode
] != 0;
594 /* Cover function to xmalloc to record bytes allocated. */
597 gmalloc (size_t size
)
600 return xmalloc (size
);
603 /* Cover function to xcalloc to record bytes allocated. */
606 gcalloc (size_t nelem
, size_t elsize
)
608 bytes_used
+= nelem
* elsize
;
609 return xcalloc (nelem
, elsize
);
612 /* Cover function to obstack_alloc. */
615 gcse_alloc (unsigned long size
)
618 return obstack_alloc (&gcse_obstack
, size
);
621 /* Allocate memory for the reg/memory set tracking tables.
622 This is called at the start of each pass. */
625 alloc_gcse_mem (void)
627 /* Allocate vars to track sets of regs. */
628 reg_set_bitmap
= BITMAP_ALLOC (NULL
);
630 /* Allocate array to keep a list of insns which modify memory in each
632 modify_mem_list
= GCNEWVEC (rtx
, last_basic_block
);
633 canon_modify_mem_list
= GCNEWVEC (rtx
, last_basic_block
);
634 modify_mem_list_set
= BITMAP_ALLOC (NULL
);
635 blocks_with_calls
= BITMAP_ALLOC (NULL
);
638 /* Free memory allocated by alloc_gcse_mem. */
643 free_modify_mem_tables ();
644 BITMAP_FREE (modify_mem_list_set
);
645 BITMAP_FREE (blocks_with_calls
);
648 /* Compute the local properties of each recorded expression.
650 Local properties are those that are defined by the block, irrespective of
653 An expression is transparent in a block if its operands are not modified
656 An expression is computed (locally available) in a block if it is computed
657 at least once and expression would contain the same value if the
658 computation was moved to the end of the block.
660 An expression is locally anticipatable in a block if it is computed at
661 least once and expression would contain the same value if the computation
662 was moved to the beginning of the block.
664 We call this routine for cprop, pre and code hoisting. They all compute
665 basically the same information and thus can easily share this code.
667 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
668 properties. If NULL, then it is not necessary to compute or record that
671 TABLE controls which hash table to look at. If it is set hash table,
672 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
676 compute_local_properties (sbitmap
*transp
, sbitmap
*comp
, sbitmap
*antloc
,
677 struct hash_table_d
*table
)
681 /* Initialize any bitmaps that were passed in. */
685 sbitmap_vector_zero (transp
, last_basic_block
);
687 sbitmap_vector_ones (transp
, last_basic_block
);
691 sbitmap_vector_zero (comp
, last_basic_block
);
693 sbitmap_vector_zero (antloc
, last_basic_block
);
695 for (i
= 0; i
< table
->size
; i
++)
699 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
701 int indx
= expr
->bitmap_index
;
704 /* The expression is transparent in this block if it is not killed.
705 We start by assuming all are transparent [none are killed], and
706 then reset the bits for those that are. */
708 compute_transp (expr
->expr
, indx
, transp
, table
->set_p
);
710 /* The occurrences recorded in antic_occr are exactly those that
711 we want to set to nonzero in ANTLOC. */
713 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
715 SET_BIT (antloc
[BLOCK_FOR_INSN (occr
->insn
)->index
], indx
);
717 /* While we're scanning the table, this is a good place to
722 /* The occurrences recorded in avail_occr are exactly those that
723 we want to set to nonzero in COMP. */
725 for (occr
= expr
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
727 SET_BIT (comp
[BLOCK_FOR_INSN (occr
->insn
)->index
], indx
);
729 /* While we're scanning the table, this is a good place to
734 /* While we're scanning the table, this is a good place to
736 expr
->reaching_reg
= 0;
741 /* Hash table support. */
743 struct reg_avail_info
750 static struct reg_avail_info
*reg_avail_info
;
751 static basic_block current_bb
;
754 /* See whether X, the source of a set, is something we want to consider for
758 want_to_gcse_p (rtx x
)
761 /* On register stack architectures, don't GCSE constants from the
762 constant pool, as the benefits are often swamped by the overhead
763 of shuffling the register stack between basic blocks. */
764 if (IS_STACK_MODE (GET_MODE (x
)))
765 x
= avoid_constant_pool_reference (x
);
768 switch (GET_CODE (x
))
780 return can_assign_to_reg_without_clobbers_p (x
);
784 /* Used internally by can_assign_to_reg_without_clobbers_p. */
786 static GTY(()) rtx test_insn
;
788 /* Return true if we can assign X to a pseudo register such that the
789 resulting insn does not result in clobbering a hard register as a
792 Additionally, if the target requires it, check that the resulting insn
793 can be copied. If it cannot, this means that X is special and probably
794 has hidden side-effects we don't want to mess with.
796 This function is typically used by code motion passes, to verify
797 that it is safe to insert an insn without worrying about clobbering
798 maybe live hard regs. */
801 can_assign_to_reg_without_clobbers_p (rtx x
)
803 int num_clobbers
= 0;
806 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
807 if (general_operand (x
, GET_MODE (x
)))
809 else if (GET_MODE (x
) == VOIDmode
)
812 /* Otherwise, check if we can make a valid insn from it. First initialize
813 our test insn if we haven't already. */
817 = make_insn_raw (gen_rtx_SET (VOIDmode
,
818 gen_rtx_REG (word_mode
,
819 FIRST_PSEUDO_REGISTER
* 2),
821 NEXT_INSN (test_insn
) = PREV_INSN (test_insn
) = 0;
824 /* Now make an insn like the one we would make when GCSE'ing and see if
826 PUT_MODE (SET_DEST (PATTERN (test_insn
)), GET_MODE (x
));
827 SET_SRC (PATTERN (test_insn
)) = x
;
829 icode
= recog (PATTERN (test_insn
), test_insn
, &num_clobbers
);
833 if (num_clobbers
> 0 && added_clobbers_hard_reg_p (icode
))
836 if (targetm
.cannot_copy_insn_p
&& targetm
.cannot_copy_insn_p (test_insn
))
842 /* Return nonzero if the operands of expression X are unchanged from the
843 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
844 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
847 oprs_unchanged_p (const_rtx x
, const_rtx insn
, int avail_p
)
861 struct reg_avail_info
*info
= ®_avail_info
[REGNO (x
)];
863 if (info
->last_bb
!= current_bb
)
866 return info
->last_set
< DF_INSN_LUID (insn
);
868 return info
->first_set
>= DF_INSN_LUID (insn
);
872 if (load_killed_in_block_p (current_bb
, DF_INSN_LUID (insn
),
876 return oprs_unchanged_p (XEXP (x
, 0), insn
, avail_p
);
903 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
907 /* If we are about to do the last recursive call needed at this
908 level, change it into iteration. This function is called enough
911 return oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
);
913 else if (! oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
))
916 else if (fmt
[i
] == 'E')
917 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
918 if (! oprs_unchanged_p (XVECEXP (x
, i
, j
), insn
, avail_p
))
925 /* Used for communication between mems_conflict_for_gcse_p and
926 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
927 conflict between two memory references. */
928 static int gcse_mems_conflict_p
;
930 /* Used for communication between mems_conflict_for_gcse_p and
931 load_killed_in_block_p. A memory reference for a load instruction,
932 mems_conflict_for_gcse_p will see if a memory store conflicts with
934 static const_rtx gcse_mem_operand
;
936 /* DEST is the output of an instruction. If it is a memory reference, and
937 possibly conflicts with the load found in gcse_mem_operand, then set
938 gcse_mems_conflict_p to a nonzero value. */
941 mems_conflict_for_gcse_p (rtx dest
, const_rtx setter ATTRIBUTE_UNUSED
,
942 void *data ATTRIBUTE_UNUSED
)
944 while (GET_CODE (dest
) == SUBREG
945 || GET_CODE (dest
) == ZERO_EXTRACT
946 || GET_CODE (dest
) == STRICT_LOW_PART
)
947 dest
= XEXP (dest
, 0);
949 /* If DEST is not a MEM, then it will not conflict with the load. Note
950 that function calls are assumed to clobber memory, but are handled
955 /* If we are setting a MEM in our list of specially recognized MEMs,
956 don't mark as killed this time. */
958 if (expr_equiv_p (dest
, gcse_mem_operand
) && pre_ldst_mems
!= NULL
)
960 if (!find_rtx_in_ldst (dest
))
961 gcse_mems_conflict_p
= 1;
965 if (true_dependence (dest
, GET_MODE (dest
), gcse_mem_operand
,
967 gcse_mems_conflict_p
= 1;
970 /* Return nonzero if the expression in X (a memory reference) is killed
971 in block BB before or after the insn with the LUID in UID_LIMIT.
972 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
975 To check the entire block, set UID_LIMIT to max_uid + 1 and
979 load_killed_in_block_p (const_basic_block bb
, int uid_limit
, const_rtx x
, int avail_p
)
981 rtx list_entry
= modify_mem_list
[bb
->index
];
983 /* If this is a readonly then we aren't going to be changing it. */
984 if (MEM_READONLY_P (x
))
990 /* Ignore entries in the list that do not apply. */
992 && DF_INSN_LUID (XEXP (list_entry
, 0)) < uid_limit
)
994 && DF_INSN_LUID (XEXP (list_entry
, 0)) > uid_limit
))
996 list_entry
= XEXP (list_entry
, 1);
1000 setter
= XEXP (list_entry
, 0);
1002 /* If SETTER is a call everything is clobbered. Note that calls
1003 to pure functions are never put on the list, so we need not
1004 worry about them. */
1005 if (CALL_P (setter
))
1008 /* SETTER must be an INSN of some kind that sets memory. Call
1009 note_stores to examine each hunk of memory that is modified.
1011 The note_stores interface is pretty limited, so we have to
1012 communicate via global variables. Yuk. */
1013 gcse_mem_operand
= x
;
1014 gcse_mems_conflict_p
= 0;
1015 note_stores (PATTERN (setter
), mems_conflict_for_gcse_p
, NULL
);
1016 if (gcse_mems_conflict_p
)
1018 list_entry
= XEXP (list_entry
, 1);
1023 /* Return nonzero if the operands of expression X are unchanged from
1024 the start of INSN's basic block up to but not including INSN. */
1027 oprs_anticipatable_p (const_rtx x
, const_rtx insn
)
1029 return oprs_unchanged_p (x
, insn
, 0);
1032 /* Return nonzero if the operands of expression X are unchanged from
1033 INSN to the end of INSN's basic block. */
1036 oprs_available_p (const_rtx x
, const_rtx insn
)
1038 return oprs_unchanged_p (x
, insn
, 1);
1041 /* Hash expression X.
1043 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1044 indicating if a volatile operand is found or if the expression contains
1045 something we don't want to insert in the table. HASH_TABLE_SIZE is
1046 the current size of the hash table to be probed. */
1049 hash_expr (const_rtx x
, enum machine_mode mode
, int *do_not_record_p
,
1050 int hash_table_size
)
1054 *do_not_record_p
= 0;
1056 hash
= hash_rtx (x
, mode
, do_not_record_p
,
1057 NULL
, /*have_reg_qty=*/false);
1058 return hash
% hash_table_size
;
1061 /* Hash a set of register REGNO.
1063 Sets are hashed on the register that is set. This simplifies the PRE copy
1066 ??? May need to make things more elaborate. Later, as necessary. */
1069 hash_set (int regno
, int hash_table_size
)
1074 return hash
% hash_table_size
;
1077 /* Return nonzero if exp1 is equivalent to exp2. */
1080 expr_equiv_p (const_rtx x
, const_rtx y
)
1082 return exp_equiv_p (x
, y
, 0, true);
1085 /* Insert expression X in INSN in the hash TABLE.
1086 If it is already present, record it as the last occurrence in INSN's
1089 MODE is the mode of the value X is being stored into.
1090 It is only used if X is a CONST_INT.
1092 ANTIC_P is nonzero if X is an anticipatable expression.
1093 AVAIL_P is nonzero if X is an available expression. */
1096 insert_expr_in_table (rtx x
, enum machine_mode mode
, rtx insn
, int antic_p
,
1097 int avail_p
, struct hash_table_d
*table
)
1099 int found
, do_not_record_p
;
1101 struct expr
*cur_expr
, *last_expr
= NULL
;
1102 struct occr
*antic_occr
, *avail_occr
;
1104 hash
= hash_expr (x
, mode
, &do_not_record_p
, table
->size
);
1106 /* Do not insert expression in table if it contains volatile operands,
1107 or if hash_expr determines the expression is something we don't want
1108 to or can't handle. */
1109 if (do_not_record_p
)
1112 cur_expr
= table
->table
[hash
];
1115 while (cur_expr
&& 0 == (found
= expr_equiv_p (cur_expr
->expr
, x
)))
1117 /* If the expression isn't found, save a pointer to the end of
1119 last_expr
= cur_expr
;
1120 cur_expr
= cur_expr
->next_same_hash
;
1125 cur_expr
= GOBNEW (struct expr
);
1126 bytes_used
+= sizeof (struct expr
);
1127 if (table
->table
[hash
] == NULL
)
1128 /* This is the first pattern that hashed to this index. */
1129 table
->table
[hash
] = cur_expr
;
1131 /* Add EXPR to end of this hash chain. */
1132 last_expr
->next_same_hash
= cur_expr
;
1134 /* Set the fields of the expr element. */
1136 cur_expr
->bitmap_index
= table
->n_elems
++;
1137 cur_expr
->next_same_hash
= NULL
;
1138 cur_expr
->antic_occr
= NULL
;
1139 cur_expr
->avail_occr
= NULL
;
1142 /* Now record the occurrence(s). */
1145 antic_occr
= cur_expr
->antic_occr
;
1148 && BLOCK_FOR_INSN (antic_occr
->insn
) != BLOCK_FOR_INSN (insn
))
1152 /* Found another instance of the expression in the same basic block.
1153 Prefer the currently recorded one. We want the first one in the
1154 block and the block is scanned from start to end. */
1155 ; /* nothing to do */
1158 /* First occurrence of this expression in this basic block. */
1159 antic_occr
= GOBNEW (struct occr
);
1160 bytes_used
+= sizeof (struct occr
);
1161 antic_occr
->insn
= insn
;
1162 antic_occr
->next
= cur_expr
->antic_occr
;
1163 antic_occr
->deleted_p
= 0;
1164 cur_expr
->antic_occr
= antic_occr
;
1170 avail_occr
= cur_expr
->avail_occr
;
1173 && BLOCK_FOR_INSN (avail_occr
->insn
) == BLOCK_FOR_INSN (insn
))
1175 /* Found another instance of the expression in the same basic block.
1176 Prefer this occurrence to the currently recorded one. We want
1177 the last one in the block and the block is scanned from start
1179 avail_occr
->insn
= insn
;
1183 /* First occurrence of this expression in this basic block. */
1184 avail_occr
= GOBNEW (struct occr
);
1185 bytes_used
+= sizeof (struct occr
);
1186 avail_occr
->insn
= insn
;
1187 avail_occr
->next
= cur_expr
->avail_occr
;
1188 avail_occr
->deleted_p
= 0;
1189 cur_expr
->avail_occr
= avail_occr
;
1194 /* Insert pattern X in INSN in the hash table.
1195 X is a SET of a reg to either another reg or a constant.
1196 If it is already present, record it as the last occurrence in INSN's
1200 insert_set_in_table (rtx x
, rtx insn
, struct hash_table_d
*table
)
1204 struct expr
*cur_expr
, *last_expr
= NULL
;
1205 struct occr
*cur_occr
;
1207 gcc_assert (GET_CODE (x
) == SET
&& REG_P (SET_DEST (x
)));
1209 hash
= hash_set (REGNO (SET_DEST (x
)), table
->size
);
1211 cur_expr
= table
->table
[hash
];
1214 while (cur_expr
&& 0 == (found
= expr_equiv_p (cur_expr
->expr
, x
)))
1216 /* If the expression isn't found, save a pointer to the end of
1218 last_expr
= cur_expr
;
1219 cur_expr
= cur_expr
->next_same_hash
;
1224 cur_expr
= GOBNEW (struct expr
);
1225 bytes_used
+= sizeof (struct expr
);
1226 if (table
->table
[hash
] == NULL
)
1227 /* This is the first pattern that hashed to this index. */
1228 table
->table
[hash
] = cur_expr
;
1230 /* Add EXPR to end of this hash chain. */
1231 last_expr
->next_same_hash
= cur_expr
;
1233 /* Set the fields of the expr element.
1234 We must copy X because it can be modified when copy propagation is
1235 performed on its operands. */
1236 cur_expr
->expr
= copy_rtx (x
);
1237 cur_expr
->bitmap_index
= table
->n_elems
++;
1238 cur_expr
->next_same_hash
= NULL
;
1239 cur_expr
->antic_occr
= NULL
;
1240 cur_expr
->avail_occr
= NULL
;
1243 /* Now record the occurrence. */
1244 cur_occr
= cur_expr
->avail_occr
;
1247 && BLOCK_FOR_INSN (cur_occr
->insn
) == BLOCK_FOR_INSN (insn
))
1249 /* Found another instance of the expression in the same basic block.
1250 Prefer this occurrence to the currently recorded one. We want
1251 the last one in the block and the block is scanned from start
1253 cur_occr
->insn
= insn
;
1257 /* First occurrence of this expression in this basic block. */
1258 cur_occr
= GOBNEW (struct occr
);
1259 bytes_used
+= sizeof (struct occr
);
1260 cur_occr
->insn
= insn
;
1261 cur_occr
->next
= cur_expr
->avail_occr
;
1262 cur_occr
->deleted_p
= 0;
1263 cur_expr
->avail_occr
= cur_occr
;
1267 /* Determine whether the rtx X should be treated as a constant for
1268 the purposes of GCSE's constant propagation. */
1271 gcse_constant_p (const_rtx x
)
1273 /* Consider a COMPARE of two integers constant. */
1274 if (GET_CODE (x
) == COMPARE
1275 && CONST_INT_P (XEXP (x
, 0))
1276 && CONST_INT_P (XEXP (x
, 1)))
1279 /* Consider a COMPARE of the same registers is a constant
1280 if they are not floating point registers. */
1281 if (GET_CODE(x
) == COMPARE
1282 && REG_P (XEXP (x
, 0)) && REG_P (XEXP (x
, 1))
1283 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 1))
1284 && ! FLOAT_MODE_P (GET_MODE (XEXP (x
, 0)))
1285 && ! FLOAT_MODE_P (GET_MODE (XEXP (x
, 1))))
1288 /* Since X might be inserted more than once we have to take care that it
1290 return CONSTANT_P (x
) && (GET_CODE (x
) != CONST
|| shared_const_p (x
));
1293 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1297 hash_scan_set (rtx pat
, rtx insn
, struct hash_table_d
*table
)
1299 rtx src
= SET_SRC (pat
);
1300 rtx dest
= SET_DEST (pat
);
1303 if (GET_CODE (src
) == CALL
)
1304 hash_scan_call (src
, insn
, table
);
1306 else if (REG_P (dest
))
1308 unsigned int regno
= REGNO (dest
);
1311 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1313 This allows us to do a single GCSE pass and still eliminate
1314 redundant constants, addresses or other expressions that are
1315 constructed with multiple instructions.
1317 However, keep the original SRC if INSN is a simple reg-reg move. In
1318 In this case, there will almost always be a REG_EQUAL note on the
1319 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1320 for INSN, we miss copy propagation opportunities and we perform the
1321 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1322 do more than one PRE GCSE pass.
1324 Note that this does not impede profitable constant propagations. We
1325 "look through" reg-reg sets in lookup_avail_set. */
1326 note
= find_reg_equal_equiv_note (insn
);
1328 && REG_NOTE_KIND (note
) == REG_EQUAL
1331 ? gcse_constant_p (XEXP (note
, 0))
1332 : want_to_gcse_p (XEXP (note
, 0))))
1333 src
= XEXP (note
, 0), pat
= gen_rtx_SET (VOIDmode
, dest
, src
);
1335 /* Only record sets of pseudo-regs in the hash table. */
1337 && regno
>= FIRST_PSEUDO_REGISTER
1338 /* Don't GCSE something if we can't do a reg/reg copy. */
1339 && can_copy_p (GET_MODE (dest
))
1340 /* GCSE commonly inserts instruction after the insn. We can't
1341 do that easily for EH edges so disable GCSE on these for now. */
1342 /* ??? We can now easily create new EH landing pads at the
1343 gimple level, for splitting edges; there's no reason we
1344 can't do the same thing at the rtl level. */
1345 && !can_throw_internal (insn
)
1346 /* Is SET_SRC something we want to gcse? */
1347 && want_to_gcse_p (src
)
1348 /* Don't CSE a nop. */
1349 && ! set_noop_p (pat
)
1350 /* Don't GCSE if it has attached REG_EQUIV note.
1351 At this point this only function parameters should have
1352 REG_EQUIV notes and if the argument slot is used somewhere
1353 explicitly, it means address of parameter has been taken,
1354 so we should not extend the lifetime of the pseudo. */
1355 && (note
== NULL_RTX
|| ! MEM_P (XEXP (note
, 0))))
1357 /* An expression is not anticipatable if its operands are
1358 modified before this insn or if this is not the only SET in
1359 this insn. The latter condition does not have to mean that
1360 SRC itself is not anticipatable, but we just will not be
1361 able to handle code motion of insns with multiple sets. */
1362 int antic_p
= oprs_anticipatable_p (src
, insn
)
1363 && !multiple_sets (insn
);
1364 /* An expression is not available if its operands are
1365 subsequently modified, including this insn. It's also not
1366 available if this is a branch, because we can't insert
1367 a set after the branch. */
1368 int avail_p
= (oprs_available_p (src
, insn
)
1369 && ! JUMP_P (insn
));
1371 insert_expr_in_table (src
, GET_MODE (dest
), insn
, antic_p
, avail_p
, table
);
1374 /* Record sets for constant/copy propagation. */
1375 else if (table
->set_p
1376 && regno
>= FIRST_PSEUDO_REGISTER
1378 && REGNO (src
) >= FIRST_PSEUDO_REGISTER
1379 && can_copy_p (GET_MODE (dest
))
1380 && REGNO (src
) != regno
)
1381 || gcse_constant_p (src
))
1382 /* A copy is not available if its src or dest is subsequently
1383 modified. Here we want to search from INSN+1 on, but
1384 oprs_available_p searches from INSN on. */
1385 && (insn
== BB_END (BLOCK_FOR_INSN (insn
))
1386 || (tmp
= next_nonnote_insn (insn
)) == NULL_RTX
1387 || BLOCK_FOR_INSN (tmp
) != BLOCK_FOR_INSN (insn
)
1388 || oprs_available_p (pat
, tmp
)))
1389 insert_set_in_table (pat
, insn
, table
);
1391 /* In case of store we want to consider the memory value as available in
1392 the REG stored in that memory. This makes it possible to remove
1393 redundant loads from due to stores to the same location. */
1394 else if (flag_gcse_las
&& REG_P (src
) && MEM_P (dest
))
1396 unsigned int regno
= REGNO (src
);
1398 /* Do not do this for constant/copy propagation. */
1400 /* Only record sets of pseudo-regs in the hash table. */
1401 && regno
>= FIRST_PSEUDO_REGISTER
1402 /* Don't GCSE something if we can't do a reg/reg copy. */
1403 && can_copy_p (GET_MODE (src
))
1404 /* GCSE commonly inserts instruction after the insn. We can't
1405 do that easily for EH edges so disable GCSE on these for now. */
1406 && !can_throw_internal (insn
)
1407 /* Is SET_DEST something we want to gcse? */
1408 && want_to_gcse_p (dest
)
1409 /* Don't CSE a nop. */
1410 && ! set_noop_p (pat
)
1411 /* Don't GCSE if it has attached REG_EQUIV note.
1412 At this point this only function parameters should have
1413 REG_EQUIV notes and if the argument slot is used somewhere
1414 explicitly, it means address of parameter has been taken,
1415 so we should not extend the lifetime of the pseudo. */
1416 && ((note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) == 0
1417 || ! MEM_P (XEXP (note
, 0))))
1419 /* Stores are never anticipatable. */
1421 /* An expression is not available if its operands are
1422 subsequently modified, including this insn. It's also not
1423 available if this is a branch, because we can't insert
1424 a set after the branch. */
1425 int avail_p
= oprs_available_p (dest
, insn
)
1428 /* Record the memory expression (DEST) in the hash table. */
1429 insert_expr_in_table (dest
, GET_MODE (dest
), insn
,
1430 antic_p
, avail_p
, table
);
1436 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED
, rtx insn ATTRIBUTE_UNUSED
,
1437 struct hash_table_d
*table ATTRIBUTE_UNUSED
)
1439 /* Currently nothing to do. */
1443 hash_scan_call (rtx x ATTRIBUTE_UNUSED
, rtx insn ATTRIBUTE_UNUSED
,
1444 struct hash_table_d
*table ATTRIBUTE_UNUSED
)
1446 /* Currently nothing to do. */
1449 /* Process INSN and add hash table entries as appropriate.
1451 Only available expressions that set a single pseudo-reg are recorded.
1453 Single sets in a PARALLEL could be handled, but it's an extra complication
1454 that isn't dealt with right now. The trick is handling the CLOBBERs that
1455 are also in the PARALLEL. Later.
1457 If SET_P is nonzero, this is for the assignment hash table,
1458 otherwise it is for the expression hash table. */
1461 hash_scan_insn (rtx insn
, struct hash_table_d
*table
)
1463 rtx pat
= PATTERN (insn
);
1466 /* Pick out the sets of INSN and for other forms of instructions record
1467 what's been modified. */
1469 if (GET_CODE (pat
) == SET
)
1470 hash_scan_set (pat
, insn
, table
);
1471 else if (GET_CODE (pat
) == PARALLEL
)
1472 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1474 rtx x
= XVECEXP (pat
, 0, i
);
1476 if (GET_CODE (x
) == SET
)
1477 hash_scan_set (x
, insn
, table
);
1478 else if (GET_CODE (x
) == CLOBBER
)
1479 hash_scan_clobber (x
, insn
, table
);
1480 else if (GET_CODE (x
) == CALL
)
1481 hash_scan_call (x
, insn
, table
);
1484 else if (GET_CODE (pat
) == CLOBBER
)
1485 hash_scan_clobber (pat
, insn
, table
);
1486 else if (GET_CODE (pat
) == CALL
)
1487 hash_scan_call (pat
, insn
, table
);
1491 dump_hash_table (FILE *file
, const char *name
, struct hash_table_d
*table
)
1494 /* Flattened out table, so it's printed in proper order. */
1495 struct expr
**flat_table
;
1496 unsigned int *hash_val
;
1499 flat_table
= XCNEWVEC (struct expr
*, table
->n_elems
);
1500 hash_val
= XNEWVEC (unsigned int, table
->n_elems
);
1502 for (i
= 0; i
< (int) table
->size
; i
++)
1503 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
1505 flat_table
[expr
->bitmap_index
] = expr
;
1506 hash_val
[expr
->bitmap_index
] = i
;
1509 fprintf (file
, "%s hash table (%d buckets, %d entries)\n",
1510 name
, table
->size
, table
->n_elems
);
1512 for (i
= 0; i
< (int) table
->n_elems
; i
++)
1513 if (flat_table
[i
] != 0)
1515 expr
= flat_table
[i
];
1516 fprintf (file
, "Index %d (hash value %d)\n ",
1517 expr
->bitmap_index
, hash_val
[i
]);
1518 print_rtl (file
, expr
->expr
);
1519 fprintf (file
, "\n");
1522 fprintf (file
, "\n");
1528 /* Record register first/last/block set information for REGNO in INSN.
1530 first_set records the first place in the block where the register
1531 is set and is used to compute "anticipatability".
1533 last_set records the last place in the block where the register
1534 is set and is used to compute "availability".
1536 last_bb records the block for which first_set and last_set are
1537 valid, as a quick test to invalidate them. */
1540 record_last_reg_set_info (rtx insn
, int regno
)
1542 struct reg_avail_info
*info
= ®_avail_info
[regno
];
1543 int luid
= DF_INSN_LUID (insn
);
1545 info
->last_set
= luid
;
1546 if (info
->last_bb
!= current_bb
)
1548 info
->last_bb
= current_bb
;
1549 info
->first_set
= luid
;
1554 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1555 Note we store a pair of elements in the list, so they have to be
1556 taken off pairwise. */
1559 canon_list_insert (rtx dest ATTRIBUTE_UNUSED
, const_rtx unused1 ATTRIBUTE_UNUSED
,
1562 rtx dest_addr
, insn
;
1565 while (GET_CODE (dest
) == SUBREG
1566 || GET_CODE (dest
) == ZERO_EXTRACT
1567 || GET_CODE (dest
) == STRICT_LOW_PART
)
1568 dest
= XEXP (dest
, 0);
1570 /* If DEST is not a MEM, then it will not conflict with a load. Note
1571 that function calls are assumed to clobber memory, but are handled
1577 dest_addr
= get_addr (XEXP (dest
, 0));
1578 dest_addr
= canon_rtx (dest_addr
);
1579 insn
= (rtx
) v_insn
;
1580 bb
= BLOCK_FOR_INSN (insn
)->index
;
1582 canon_modify_mem_list
[bb
] =
1583 alloc_EXPR_LIST (VOIDmode
, dest_addr
, canon_modify_mem_list
[bb
]);
1584 canon_modify_mem_list
[bb
] =
1585 alloc_EXPR_LIST (VOIDmode
, dest
, canon_modify_mem_list
[bb
]);
1588 /* Record memory modification information for INSN. We do not actually care
1589 about the memory location(s) that are set, or even how they are set (consider
1590 a CALL_INSN). We merely need to record which insns modify memory. */
1593 record_last_mem_set_info (rtx insn
)
1595 int bb
= BLOCK_FOR_INSN (insn
)->index
;
1597 /* load_killed_in_block_p will handle the case of calls clobbering
1599 modify_mem_list
[bb
] = alloc_INSN_LIST (insn
, modify_mem_list
[bb
]);
1600 bitmap_set_bit (modify_mem_list_set
, bb
);
1604 /* Note that traversals of this loop (other than for free-ing)
1605 will break after encountering a CALL_INSN. So, there's no
1606 need to insert a pair of items, as canon_list_insert does. */
1607 canon_modify_mem_list
[bb
] =
1608 alloc_INSN_LIST (insn
, canon_modify_mem_list
[bb
]);
1609 bitmap_set_bit (blocks_with_calls
, bb
);
1612 note_stores (PATTERN (insn
), canon_list_insert
, (void*) insn
);
1615 /* Called from compute_hash_table via note_stores to handle one
1616 SET or CLOBBER in an insn. DATA is really the instruction in which
1617 the SET is taking place. */
1620 record_last_set_info (rtx dest
, const_rtx setter ATTRIBUTE_UNUSED
, void *data
)
1622 rtx last_set_insn
= (rtx
) data
;
1624 if (GET_CODE (dest
) == SUBREG
)
1625 dest
= SUBREG_REG (dest
);
1628 record_last_reg_set_info (last_set_insn
, REGNO (dest
));
1629 else if (MEM_P (dest
)
1630 /* Ignore pushes, they clobber nothing. */
1631 && ! push_operand (dest
, GET_MODE (dest
)))
1632 record_last_mem_set_info (last_set_insn
);
1635 /* Top level function to create an expression or assignment hash table.
1637 Expression entries are placed in the hash table if
1638 - they are of the form (set (pseudo-reg) src),
1639 - src is something we want to perform GCSE on,
1640 - none of the operands are subsequently modified in the block
1642 Assignment entries are placed in the hash table if
1643 - they are of the form (set (pseudo-reg) src),
1644 - src is something we want to perform const/copy propagation on,
1645 - none of the operands or target are subsequently modified in the block
1647 Currently src must be a pseudo-reg or a const_int.
1649 TABLE is the table computed. */
1652 compute_hash_table_work (struct hash_table_d
*table
)
1656 /* re-Cache any INSN_LIST nodes we have allocated. */
1657 clear_modify_mem_tables ();
1658 /* Some working arrays used to track first and last set in each block. */
1659 reg_avail_info
= GNEWVEC (struct reg_avail_info
, max_reg_num ());
1661 for (i
= 0; i
< max_reg_num (); ++i
)
1662 reg_avail_info
[i
].last_bb
= NULL
;
1664 FOR_EACH_BB (current_bb
)
1669 /* First pass over the instructions records information used to
1670 determine when registers and memory are first and last set. */
1671 FOR_BB_INSNS (current_bb
, insn
)
1673 if (! INSN_P (insn
))
1678 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
1679 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
1680 record_last_reg_set_info (insn
, regno
);
1685 note_stores (PATTERN (insn
), record_last_set_info
, insn
);
1688 /* Insert implicit sets in the hash table. */
1690 && implicit_sets
[current_bb
->index
] != NULL_RTX
)
1691 hash_scan_set (implicit_sets
[current_bb
->index
],
1692 BB_HEAD (current_bb
), table
);
1694 /* The next pass builds the hash table. */
1695 FOR_BB_INSNS (current_bb
, insn
)
1697 hash_scan_insn (insn
, table
);
1700 free (reg_avail_info
);
1701 reg_avail_info
= NULL
;
1704 /* Allocate space for the set/expr hash TABLE.
1705 It is used to determine the number of buckets to use.
1706 SET_P determines whether set or expression table will
1710 alloc_hash_table (struct hash_table_d
*table
, int set_p
)
1714 n
= get_max_insn_count ();
1716 table
->size
= n
/ 4;
1717 if (table
->size
< 11)
1720 /* Attempt to maintain efficient use of hash table.
1721 Making it an odd number is simplest for now.
1722 ??? Later take some measurements. */
1724 n
= table
->size
* sizeof (struct expr
*);
1725 table
->table
= GNEWVAR (struct expr
*, n
);
1726 table
->set_p
= set_p
;
1729 /* Free things allocated by alloc_hash_table. */
1732 free_hash_table (struct hash_table_d
*table
)
1734 free (table
->table
);
1737 /* Compute the hash TABLE for doing copy/const propagation or
1738 expression hash table. */
1741 compute_hash_table (struct hash_table_d
*table
)
1743 /* Initialize count of number of entries in hash table. */
1745 memset (table
->table
, 0, table
->size
* sizeof (struct expr
*));
1747 compute_hash_table_work (table
);
1750 /* Expression tracking support. */
1752 /* Lookup REGNO in the set TABLE. The result is a pointer to the
1753 table entry, or NULL if not found. */
1755 static struct expr
*
1756 lookup_set (unsigned int regno
, struct hash_table_d
*table
)
1758 unsigned int hash
= hash_set (regno
, table
->size
);
1761 expr
= table
->table
[hash
];
1763 while (expr
&& REGNO (SET_DEST (expr
->expr
)) != regno
)
1764 expr
= expr
->next_same_hash
;
1769 /* Return the next entry for REGNO in list EXPR. */
1771 static struct expr
*
1772 next_set (unsigned int regno
, struct expr
*expr
)
1775 expr
= expr
->next_same_hash
;
1776 while (expr
&& REGNO (SET_DEST (expr
->expr
)) != regno
);
1781 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
1782 types may be mixed. */
1785 free_insn_expr_list_list (rtx
*listp
)
1789 for (list
= *listp
; list
; list
= next
)
1791 next
= XEXP (list
, 1);
1792 if (GET_CODE (list
) == EXPR_LIST
)
1793 free_EXPR_LIST_node (list
);
1795 free_INSN_LIST_node (list
);
1801 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1803 clear_modify_mem_tables (void)
1808 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set
, 0, i
, bi
)
1810 free_INSN_LIST_list (modify_mem_list
+ i
);
1811 free_insn_expr_list_list (canon_modify_mem_list
+ i
);
1813 bitmap_clear (modify_mem_list_set
);
1814 bitmap_clear (blocks_with_calls
);
1817 /* Release memory used by modify_mem_list_set. */
1820 free_modify_mem_tables (void)
1822 clear_modify_mem_tables ();
1823 free (modify_mem_list
);
1824 free (canon_modify_mem_list
);
1825 modify_mem_list
= 0;
1826 canon_modify_mem_list
= 0;
1829 /* Reset tables used to keep track of what's still available [since the
1830 start of the block]. */
1833 reset_opr_set_tables (void)
1835 /* Maintain a bitmap of which regs have been set since beginning of
1837 CLEAR_REG_SET (reg_set_bitmap
);
1839 /* Also keep a record of the last instruction to modify memory.
1840 For now this is very trivial, we only record whether any memory
1841 location has been modified. */
1842 clear_modify_mem_tables ();
1845 /* Return nonzero if the operands of X are not set before INSN in
1846 INSN's basic block. */
1849 oprs_not_set_p (const_rtx x
, const_rtx insn
)
1858 code
= GET_CODE (x
);
1875 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn
),
1876 DF_INSN_LUID (insn
), x
, 0))
1879 return oprs_not_set_p (XEXP (x
, 0), insn
);
1882 return ! REGNO_REG_SET_P (reg_set_bitmap
, REGNO (x
));
1888 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
1892 /* If we are about to do the last recursive call
1893 needed at this level, change it into iteration.
1894 This function is called enough to be worth it. */
1896 return oprs_not_set_p (XEXP (x
, i
), insn
);
1898 if (! oprs_not_set_p (XEXP (x
, i
), insn
))
1901 else if (fmt
[i
] == 'E')
1902 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1903 if (! oprs_not_set_p (XVECEXP (x
, i
, j
), insn
))
1910 /* Mark things set by a CALL. */
1913 mark_call (rtx insn
)
1915 if (! RTL_CONST_OR_PURE_CALL_P (insn
))
1916 record_last_mem_set_info (insn
);
1919 /* Mark things set by a SET. */
1922 mark_set (rtx pat
, rtx insn
)
1924 rtx dest
= SET_DEST (pat
);
1926 while (GET_CODE (dest
) == SUBREG
1927 || GET_CODE (dest
) == ZERO_EXTRACT
1928 || GET_CODE (dest
) == STRICT_LOW_PART
)
1929 dest
= XEXP (dest
, 0);
1932 SET_REGNO_REG_SET (reg_set_bitmap
, REGNO (dest
));
1933 else if (MEM_P (dest
))
1934 record_last_mem_set_info (insn
);
1936 if (GET_CODE (SET_SRC (pat
)) == CALL
)
1940 /* Record things set by a CLOBBER. */
1943 mark_clobber (rtx pat
, rtx insn
)
1945 rtx clob
= XEXP (pat
, 0);
1947 while (GET_CODE (clob
) == SUBREG
|| GET_CODE (clob
) == STRICT_LOW_PART
)
1948 clob
= XEXP (clob
, 0);
1951 SET_REGNO_REG_SET (reg_set_bitmap
, REGNO (clob
));
1953 record_last_mem_set_info (insn
);
1956 /* Record things set by INSN.
1957 This data is used by oprs_not_set_p. */
1960 mark_oprs_set (rtx insn
)
1962 rtx pat
= PATTERN (insn
);
1965 if (GET_CODE (pat
) == SET
)
1966 mark_set (pat
, insn
);
1967 else if (GET_CODE (pat
) == PARALLEL
)
1968 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1970 rtx x
= XVECEXP (pat
, 0, i
);
1972 if (GET_CODE (x
) == SET
)
1974 else if (GET_CODE (x
) == CLOBBER
)
1975 mark_clobber (x
, insn
);
1976 else if (GET_CODE (x
) == CALL
)
1980 else if (GET_CODE (pat
) == CLOBBER
)
1981 mark_clobber (pat
, insn
);
1982 else if (GET_CODE (pat
) == CALL
)
1987 /* Compute copy/constant propagation working variables. */
1989 /* Local properties of assignments. */
1990 static sbitmap
*cprop_pavloc
;
1991 static sbitmap
*cprop_absaltered
;
1993 /* Global properties of assignments (computed from the local properties). */
1994 static sbitmap
*cprop_avin
;
1995 static sbitmap
*cprop_avout
;
1997 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
1998 basic blocks. N_SETS is the number of sets. */
2001 alloc_cprop_mem (int n_blocks
, int n_sets
)
2003 cprop_pavloc
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2004 cprop_absaltered
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2006 cprop_avin
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2007 cprop_avout
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2010 /* Free vars used by copy/const propagation. */
2013 free_cprop_mem (void)
2015 sbitmap_vector_free (cprop_pavloc
);
2016 sbitmap_vector_free (cprop_absaltered
);
2017 sbitmap_vector_free (cprop_avin
);
2018 sbitmap_vector_free (cprop_avout
);
2021 /* For each block, compute whether X is transparent. X is either an
2022 expression or an assignment [though we don't care which, for this context
2023 an assignment is treated as an expression]. For each block where an
2024 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2028 compute_transp (const_rtx x
, int indx
, sbitmap
*bmap
, int set_p
)
2034 /* repeat is used to turn tail-recursion into iteration since GCC
2035 can't do it when there's no return value. */
2041 code
= GET_CODE (x
);
2048 for (def
= DF_REG_DEF_CHAIN (REGNO (x
));
2050 def
= DF_REF_NEXT_REG (def
))
2051 SET_BIT (bmap
[DF_REF_BB (def
)->index
], indx
);
2056 for (def
= DF_REG_DEF_CHAIN (REGNO (x
));
2058 def
= DF_REF_NEXT_REG (def
))
2059 RESET_BIT (bmap
[DF_REF_BB (def
)->index
], indx
);
2065 if (! MEM_READONLY_P (x
))
2070 /* First handle all the blocks with calls. We don't need to
2071 do any list walking for them. */
2072 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls
, 0, bb_index
, bi
)
2075 SET_BIT (bmap
[bb_index
], indx
);
2077 RESET_BIT (bmap
[bb_index
], indx
);
2080 /* Now iterate over the blocks which have memory modifications
2081 but which do not have any calls. */
2082 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set
,
2086 rtx list_entry
= canon_modify_mem_list
[bb_index
];
2090 rtx dest
, dest_addr
;
2092 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2093 Examine each hunk of memory that is modified. */
2095 dest
= XEXP (list_entry
, 0);
2096 list_entry
= XEXP (list_entry
, 1);
2097 dest_addr
= XEXP (list_entry
, 0);
2099 if (canon_true_dependence (dest
, GET_MODE (dest
), dest_addr
,
2100 x
, NULL_RTX
, rtx_addr_varies_p
))
2103 SET_BIT (bmap
[bb_index
], indx
);
2105 RESET_BIT (bmap
[bb_index
], indx
);
2108 list_entry
= XEXP (list_entry
, 1);
2133 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2137 /* If we are about to do the last recursive call
2138 needed at this level, change it into iteration.
2139 This function is called enough to be worth it. */
2146 compute_transp (XEXP (x
, i
), indx
, bmap
, set_p
);
2148 else if (fmt
[i
] == 'E')
2149 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2150 compute_transp (XVECEXP (x
, i
, j
), indx
, bmap
, set_p
);
2154 /* Top level routine to do the dataflow analysis needed by copy/const
2158 compute_cprop_data (void)
2160 compute_local_properties (cprop_absaltered
, cprop_pavloc
, NULL
, &set_hash_table
);
2161 compute_available (cprop_pavloc
, cprop_absaltered
,
2162 cprop_avout
, cprop_avin
);
2165 /* Copy/constant propagation. */
2167 /* Maximum number of register uses in an insn that we handle. */
2170 /* Table of uses found in an insn.
2171 Allocated statically to avoid alloc/free complexity and overhead. */
2172 static struct reg_use reg_use_table
[MAX_USES
];
2174 /* Index into `reg_use_table' while building it. */
2175 static int reg_use_count
;
2177 /* Set up a list of register numbers used in INSN. The found uses are stored
2178 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2179 and contains the number of uses in the table upon exit.
2181 ??? If a register appears multiple times we will record it multiple times.
2182 This doesn't hurt anything but it will slow things down. */
2185 find_used_regs (rtx
*xptr
, void *data ATTRIBUTE_UNUSED
)
2192 /* repeat is used to turn tail-recursion into iteration since GCC
2193 can't do it when there's no return value. */
2198 code
= GET_CODE (x
);
2201 if (reg_use_count
== MAX_USES
)
2204 reg_use_table
[reg_use_count
].reg_rtx
= x
;
2208 /* Recursively scan the operands of this expression. */
2210 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2214 /* If we are about to do the last recursive call
2215 needed at this level, change it into iteration.
2216 This function is called enough to be worth it. */
2223 find_used_regs (&XEXP (x
, i
), data
);
2225 else if (fmt
[i
] == 'E')
2226 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2227 find_used_regs (&XVECEXP (x
, i
, j
), data
);
2231 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2232 Returns nonzero is successful. */
2235 try_replace_reg (rtx from
, rtx to
, rtx insn
)
2237 rtx note
= find_reg_equal_equiv_note (insn
);
2240 rtx set
= single_set (insn
);
2242 /* Usually we substitute easy stuff, so we won't copy everything.
2243 We however need to take care to not duplicate non-trivial CONST
2247 validate_replace_src_group (from
, to
, insn
);
2248 if (num_changes_pending () && apply_change_group ())
2251 /* Try to simplify SET_SRC if we have substituted a constant. */
2252 if (success
&& set
&& CONSTANT_P (to
))
2254 src
= simplify_rtx (SET_SRC (set
));
2257 validate_change (insn
, &SET_SRC (set
), src
, 0);
2260 /* If there is already a REG_EQUAL note, update the expression in it
2261 with our replacement. */
2262 if (note
!= 0 && REG_NOTE_KIND (note
) == REG_EQUAL
)
2263 set_unique_reg_note (insn
, REG_EQUAL
,
2264 simplify_replace_rtx (XEXP (note
, 0), from
, to
));
2265 if (!success
&& set
&& reg_mentioned_p (from
, SET_SRC (set
)))
2267 /* If above failed and this is a single set, try to simplify the source of
2268 the set given our substitution. We could perhaps try this for multiple
2269 SETs, but it probably won't buy us anything. */
2270 src
= simplify_replace_rtx (SET_SRC (set
), from
, to
);
2272 if (!rtx_equal_p (src
, SET_SRC (set
))
2273 && validate_change (insn
, &SET_SRC (set
), src
, 0))
2276 /* If we've failed to do replacement, have a single SET, don't already
2277 have a note, and have no special SET, add a REG_EQUAL note to not
2278 lose information. */
2279 if (!success
&& note
== 0 && set
!= 0
2280 && GET_CODE (SET_DEST (set
)) != ZERO_EXTRACT
2281 && GET_CODE (SET_DEST (set
)) != STRICT_LOW_PART
)
2282 note
= set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (src
));
2285 /* REG_EQUAL may get simplified into register.
2286 We don't allow that. Remove that note. This code ought
2287 not to happen, because previous code ought to synthesize
2288 reg-reg move, but be on the safe side. */
2289 if (note
&& REG_NOTE_KIND (note
) == REG_EQUAL
&& REG_P (XEXP (note
, 0)))
2290 remove_note (insn
, note
);
2295 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2296 NULL no such set is found. */
2298 static struct expr
*
2299 find_avail_set (int regno
, rtx insn
)
2301 /* SET1 contains the last set found that can be returned to the caller for
2302 use in a substitution. */
2303 struct expr
*set1
= 0;
2305 /* Loops are not possible here. To get a loop we would need two sets
2306 available at the start of the block containing INSN. i.e. we would
2307 need two sets like this available at the start of the block:
2309 (set (reg X) (reg Y))
2310 (set (reg Y) (reg X))
2312 This can not happen since the set of (reg Y) would have killed the
2313 set of (reg X) making it unavailable at the start of this block. */
2317 struct expr
*set
= lookup_set (regno
, &set_hash_table
);
2319 /* Find a set that is available at the start of the block
2320 which contains INSN. */
2323 if (TEST_BIT (cprop_avin
[BLOCK_FOR_INSN (insn
)->index
],
2326 set
= next_set (regno
, set
);
2329 /* If no available set was found we've reached the end of the
2330 (possibly empty) copy chain. */
2334 gcc_assert (GET_CODE (set
->expr
) == SET
);
2336 src
= SET_SRC (set
->expr
);
2338 /* We know the set is available.
2339 Now check that SRC is ANTLOC (i.e. none of the source operands
2340 have changed since the start of the block).
2342 If the source operand changed, we may still use it for the next
2343 iteration of this loop, but we may not use it for substitutions. */
2345 if (gcse_constant_p (src
) || oprs_not_set_p (src
, insn
))
2348 /* If the source of the set is anything except a register, then
2349 we have reached the end of the copy chain. */
2353 /* Follow the copy chain, i.e. start another iteration of the loop
2354 and see if we have an available copy into SRC. */
2355 regno
= REGNO (src
);
2358 /* SET1 holds the last set that was available and anticipatable at
2363 /* Subroutine of cprop_insn that tries to propagate constants into
2364 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2365 it is the instruction that immediately precedes JUMP, and must be a
2366 single SET of a register. FROM is what we will try to replace,
2367 SRC is the constant we will try to substitute for it. Returns nonzero
2368 if a change was made. */
2371 cprop_jump (basic_block bb
, rtx setcc
, rtx jump
, rtx from
, rtx src
)
2373 rtx new_rtx
, set_src
, note_src
;
2374 rtx set
= pc_set (jump
);
2375 rtx note
= find_reg_equal_equiv_note (jump
);
2379 note_src
= XEXP (note
, 0);
2380 if (GET_CODE (note_src
) == EXPR_LIST
)
2381 note_src
= NULL_RTX
;
2383 else note_src
= NULL_RTX
;
2385 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2386 set_src
= note_src
? note_src
: SET_SRC (set
);
2388 /* First substitute the SETCC condition into the JUMP instruction,
2389 then substitute that given values into this expanded JUMP. */
2390 if (setcc
!= NULL_RTX
2391 && !modified_between_p (from
, setcc
, jump
)
2392 && !modified_between_p (src
, setcc
, jump
))
2395 rtx setcc_set
= single_set (setcc
);
2396 rtx setcc_note
= find_reg_equal_equiv_note (setcc
);
2397 setcc_src
= (setcc_note
&& GET_CODE (XEXP (setcc_note
, 0)) != EXPR_LIST
)
2398 ? XEXP (setcc_note
, 0) : SET_SRC (setcc_set
);
2399 set_src
= simplify_replace_rtx (set_src
, SET_DEST (setcc_set
),
2405 new_rtx
= simplify_replace_rtx (set_src
, from
, src
);
2407 /* If no simplification can be made, then try the next register. */
2408 if (rtx_equal_p (new_rtx
, SET_SRC (set
)))
2411 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2412 if (new_rtx
== pc_rtx
)
2416 /* Ensure the value computed inside the jump insn to be equivalent
2417 to one computed by setcc. */
2418 if (setcc
&& modified_in_p (new_rtx
, setcc
))
2420 if (! validate_unshare_change (jump
, &SET_SRC (set
), new_rtx
, 0))
2422 /* When (some) constants are not valid in a comparison, and there
2423 are two registers to be replaced by constants before the entire
2424 comparison can be folded into a constant, we need to keep
2425 intermediate information in REG_EQUAL notes. For targets with
2426 separate compare insns, such notes are added by try_replace_reg.
2427 When we have a combined compare-and-branch instruction, however,
2428 we need to attach a note to the branch itself to make this
2429 optimization work. */
2431 if (!rtx_equal_p (new_rtx
, note_src
))
2432 set_unique_reg_note (jump
, REG_EQUAL
, copy_rtx (new_rtx
));
2436 /* Remove REG_EQUAL note after simplification. */
2438 remove_note (jump
, note
);
2442 /* Delete the cc0 setter. */
2443 if (setcc
!= NULL
&& CC0_P (SET_DEST (single_set (setcc
))))
2444 delete_insn (setcc
);
2447 global_const_prop_count
++;
2448 if (dump_file
!= NULL
)
2451 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2452 REGNO (from
), INSN_UID (jump
));
2453 print_rtl (dump_file
, src
);
2454 fprintf (dump_file
, "\n");
2456 purge_dead_edges (bb
);
2458 /* If a conditional jump has been changed into unconditional jump, remove
2459 the jump and make the edge fallthru - this is always called in
2461 if (new_rtx
!= pc_rtx
&& simplejump_p (jump
))
2466 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); ei_next (&ei
))
2467 if (e
->dest
!= EXIT_BLOCK_PTR
2468 && BB_HEAD (e
->dest
) == JUMP_LABEL (jump
))
2470 e
->flags
|= EDGE_FALLTHRU
;
2480 constprop_register (rtx insn
, rtx from
, rtx to
)
2484 /* Check for reg or cc0 setting instructions followed by
2485 conditional branch instructions first. */
2486 if ((sset
= single_set (insn
)) != NULL
2488 && any_condjump_p (NEXT_INSN (insn
)) && onlyjump_p (NEXT_INSN (insn
)))
2490 rtx dest
= SET_DEST (sset
);
2491 if ((REG_P (dest
) || CC0_P (dest
))
2492 && cprop_jump (BLOCK_FOR_INSN (insn
), insn
, NEXT_INSN (insn
), from
, to
))
2496 /* Handle normal insns next. */
2497 if (NONJUMP_INSN_P (insn
)
2498 && try_replace_reg (from
, to
, insn
))
2501 /* Try to propagate a CONST_INT into a conditional jump.
2502 We're pretty specific about what we will handle in this
2503 code, we can extend this as necessary over time.
2505 Right now the insn in question must look like
2506 (set (pc) (if_then_else ...)) */
2507 else if (any_condjump_p (insn
) && onlyjump_p (insn
))
2508 return cprop_jump (BLOCK_FOR_INSN (insn
), NULL
, insn
, from
, to
);
2512 /* Perform constant and copy propagation on INSN.
2513 The result is nonzero if a change was made. */
2516 cprop_insn (rtx insn
)
2518 struct reg_use
*reg_used
;
2526 note_uses (&PATTERN (insn
), find_used_regs
, NULL
);
2528 note
= find_reg_equal_equiv_note (insn
);
2530 /* We may win even when propagating constants into notes. */
2532 find_used_regs (&XEXP (note
, 0), NULL
);
2534 for (reg_used
= ®_use_table
[0]; reg_use_count
> 0;
2535 reg_used
++, reg_use_count
--)
2537 unsigned int regno
= REGNO (reg_used
->reg_rtx
);
2541 /* If the register has already been set in this block, there's
2542 nothing we can do. */
2543 if (! oprs_not_set_p (reg_used
->reg_rtx
, insn
))
2546 /* Find an assignment that sets reg_used and is available
2547 at the start of the block. */
2548 set
= find_avail_set (regno
, insn
);
2553 /* ??? We might be able to handle PARALLELs. Later. */
2554 gcc_assert (GET_CODE (pat
) == SET
);
2556 src
= SET_SRC (pat
);
2558 /* Constant propagation. */
2559 if (gcse_constant_p (src
))
2561 if (constprop_register (insn
, reg_used
->reg_rtx
, src
))
2564 global_const_prop_count
++;
2565 if (dump_file
!= NULL
)
2567 fprintf (dump_file
, "GLOBAL CONST-PROP: Replacing reg %d in ", regno
);
2568 fprintf (dump_file
, "insn %d with constant ", INSN_UID (insn
));
2569 print_rtl (dump_file
, src
);
2570 fprintf (dump_file
, "\n");
2572 if (INSN_DELETED_P (insn
))
2576 else if (REG_P (src
)
2577 && REGNO (src
) >= FIRST_PSEUDO_REGISTER
2578 && REGNO (src
) != regno
)
2580 if (try_replace_reg (reg_used
->reg_rtx
, src
, insn
))
2583 global_copy_prop_count
++;
2584 if (dump_file
!= NULL
)
2586 fprintf (dump_file
, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
2587 regno
, INSN_UID (insn
));
2588 fprintf (dump_file
, " with reg %d\n", REGNO (src
));
2591 /* The original insn setting reg_used may or may not now be
2592 deletable. We leave the deletion to flow. */
2593 /* FIXME: If it turns out that the insn isn't deletable,
2594 then we may have unnecessarily extended register lifetimes
2595 and made things worse. */
2600 if (changed
&& DEBUG_INSN_P (insn
))
2606 /* Like find_used_regs, but avoid recording uses that appear in
2607 input-output contexts such as zero_extract or pre_dec. This
2608 restricts the cases we consider to those for which local cprop
2609 can legitimately make replacements. */
2612 local_cprop_find_used_regs (rtx
*xptr
, void *data
)
2619 switch (GET_CODE (x
))
2623 case STRICT_LOW_PART
:
2632 /* Can only legitimately appear this early in the context of
2633 stack pushes for function arguments, but handle all of the
2634 codes nonetheless. */
2638 /* Setting a subreg of a register larger than word_mode leaves
2639 the non-written words unchanged. */
2640 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) > BITS_PER_WORD
)
2648 find_used_regs (xptr
, data
);
2651 /* Try to perform local const/copy propagation on X in INSN. */
2654 do_local_cprop (rtx x
, rtx insn
)
2656 rtx newreg
= NULL
, newcnst
= NULL
;
2658 /* Rule out USE instructions and ASM statements as we don't want to
2659 change the hard registers mentioned. */
2661 && (REGNO (x
) >= FIRST_PSEUDO_REGISTER
2662 || (GET_CODE (PATTERN (insn
)) != USE
2663 && asm_noperands (PATTERN (insn
)) < 0)))
2665 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0);
2666 struct elt_loc_list
*l
;
2670 for (l
= val
->locs
; l
; l
= l
->next
)
2672 rtx this_rtx
= l
->loc
;
2675 if (gcse_constant_p (this_rtx
))
2677 if (REG_P (this_rtx
) && REGNO (this_rtx
) >= FIRST_PSEUDO_REGISTER
2678 /* Don't copy propagate if it has attached REG_EQUIV note.
2679 At this point this only function parameters should have
2680 REG_EQUIV notes and if the argument slot is used somewhere
2681 explicitly, it means address of parameter has been taken,
2682 so we should not extend the lifetime of the pseudo. */
2683 && (!(note
= find_reg_note (l
->setting_insn
, REG_EQUIV
, NULL_RTX
))
2684 || ! MEM_P (XEXP (note
, 0))))
2687 if (newcnst
&& constprop_register (insn
, x
, newcnst
))
2689 if (dump_file
!= NULL
)
2691 fprintf (dump_file
, "LOCAL CONST-PROP: Replacing reg %d in ",
2693 fprintf (dump_file
, "insn %d with constant ",
2695 print_rtl (dump_file
, newcnst
);
2696 fprintf (dump_file
, "\n");
2698 local_const_prop_count
++;
2701 else if (newreg
&& newreg
!= x
&& try_replace_reg (x
, newreg
, insn
))
2703 if (dump_file
!= NULL
)
2706 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
2707 REGNO (x
), INSN_UID (insn
));
2708 fprintf (dump_file
, " with reg %d\n", REGNO (newreg
));
2710 local_copy_prop_count
++;
2717 /* Do local const/copy propagation (i.e. within each basic block). */
2720 local_cprop_pass (void)
2724 struct reg_use
*reg_used
;
2725 bool changed
= false;
2730 FOR_BB_INSNS (bb
, insn
)
2734 rtx note
= find_reg_equal_equiv_note (insn
);
2738 note_uses (&PATTERN (insn
), local_cprop_find_used_regs
,
2741 local_cprop_find_used_regs (&XEXP (note
, 0), NULL
);
2743 for (reg_used
= ®_use_table
[0]; reg_use_count
> 0;
2744 reg_used
++, reg_use_count
--)
2746 if (do_local_cprop (reg_used
->reg_rtx
, insn
))
2752 if (INSN_DELETED_P (insn
))
2755 while (reg_use_count
);
2757 cselib_process_insn (insn
);
2760 /* Forget everything at the end of a basic block. */
2761 cselib_clear_table ();
2769 /* Similar to get_condition, only the resulting condition must be
2770 valid at JUMP, instead of at EARLIEST.
2772 This differs from noce_get_condition in ifcvt.c in that we prefer not to
2773 settle for the condition variable in the jump instruction being integral.
2774 We prefer to be able to record the value of a user variable, rather than
2775 the value of a temporary used in a condition. This could be solved by
2776 recording the value of *every* register scanned by canonicalize_condition,
2777 but this would require some code reorganization. */
2780 fis_get_condition (rtx jump
)
2782 return get_condition (jump
, NULL
, false, true);
2785 /* Check the comparison COND to see if we can safely form an implicit set from
2786 it. COND is either an EQ or NE comparison. */
2789 implicit_set_cond_p (const_rtx cond
)
2791 const enum machine_mode mode
= GET_MODE (XEXP (cond
, 0));
2792 const_rtx cst
= XEXP (cond
, 1);
2794 /* We can't perform this optimization if either operand might be or might
2795 contain a signed zero. */
2796 if (HONOR_SIGNED_ZEROS (mode
))
2798 /* It is sufficient to check if CST is or contains a zero. We must
2799 handle float, complex, and vector. If any subpart is a zero, then
2800 the optimization can't be performed. */
2801 /* ??? The complex and vector checks are not implemented yet. We just
2802 always return zero for them. */
2803 if (GET_CODE (cst
) == CONST_DOUBLE
)
2806 REAL_VALUE_FROM_CONST_DOUBLE (d
, cst
);
2807 if (REAL_VALUES_EQUAL (d
, dconst0
))
2814 return gcse_constant_p (cst
);
2817 /* Find the implicit sets of a function. An "implicit set" is a constraint
2818 on the value of a variable, implied by a conditional jump. For example,
2819 following "if (x == 2)", the then branch may be optimized as though the
2820 conditional performed an "explicit set", in this example, "x = 2". This
2821 function records the set patterns that are implicit at the start of each
2824 FIXME: This would be more effective if critical edges are pre-split. As
2825 it is now, we can't record implicit sets for blocks that have
2826 critical successor edges. This results in missed optimizations
2827 and in more (unnecessary) work in cfgcleanup.c:thread_jump(). */
2830 find_implicit_sets (void)
2832 basic_block bb
, dest
;
2838 /* Check for more than one successor. */
2839 if (EDGE_COUNT (bb
->succs
) > 1)
2841 cond
= fis_get_condition (BB_END (bb
));
2844 && (GET_CODE (cond
) == EQ
|| GET_CODE (cond
) == NE
)
2845 && REG_P (XEXP (cond
, 0))
2846 && REGNO (XEXP (cond
, 0)) >= FIRST_PSEUDO_REGISTER
2847 && implicit_set_cond_p (cond
))
2849 dest
= GET_CODE (cond
) == EQ
? BRANCH_EDGE (bb
)->dest
2850 : FALLTHRU_EDGE (bb
)->dest
;
2853 /* Record nothing for a critical edge. */
2854 && single_pred_p (dest
)
2855 && dest
!= EXIT_BLOCK_PTR
)
2857 new_rtx
= gen_rtx_SET (VOIDmode
, XEXP (cond
, 0),
2859 implicit_sets
[dest
->index
] = new_rtx
;
2862 fprintf(dump_file
, "Implicit set of reg %d in ",
2863 REGNO (XEXP (cond
, 0)));
2864 fprintf(dump_file
, "basic block %d\n", dest
->index
);
2872 fprintf (dump_file
, "Found %d implicit sets\n", count
);
2875 /* Bypass conditional jumps. */
2877 /* The value of last_basic_block at the beginning of the jump_bypass
2878 pass. The use of redirect_edge_and_branch_force may introduce new
2879 basic blocks, but the data flow analysis is only valid for basic
2880 block indices less than bypass_last_basic_block. */
2882 static int bypass_last_basic_block
;
2884 /* Find a set of REGNO to a constant that is available at the end of basic
2885 block BB. Returns NULL if no such set is found. Based heavily upon
2888 static struct expr
*
2889 find_bypass_set (int regno
, int bb
)
2891 struct expr
*result
= 0;
2896 struct expr
*set
= lookup_set (regno
, &set_hash_table
);
2900 if (TEST_BIT (cprop_avout
[bb
], set
->bitmap_index
))
2902 set
= next_set (regno
, set
);
2908 gcc_assert (GET_CODE (set
->expr
) == SET
);
2910 src
= SET_SRC (set
->expr
);
2911 if (gcse_constant_p (src
))
2917 regno
= REGNO (src
);
2923 /* Subroutine of bypass_block that checks whether a pseudo is killed by
2924 any of the instructions inserted on an edge. Jump bypassing places
2925 condition code setters on CFG edges using insert_insn_on_edge. This
2926 function is required to check that our data flow analysis is still
2927 valid prior to commit_edge_insertions. */
2930 reg_killed_on_edge (const_rtx reg
, const_edge e
)
2934 for (insn
= e
->insns
.r
; insn
; insn
= NEXT_INSN (insn
))
2935 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
2941 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
2942 basic block BB which has more than one predecessor. If not NULL, SETCC
2943 is the first instruction of BB, which is immediately followed by JUMP_INSN
2944 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
2945 Returns nonzero if a change was made.
2947 During the jump bypassing pass, we may place copies of SETCC instructions
2948 on CFG edges. The following routine must be careful to pay attention to
2949 these inserted insns when performing its transformations. */
2952 bypass_block (basic_block bb
, rtx setcc
, rtx jump
)
2957 int may_be_loop_header
;
2961 insn
= (setcc
!= NULL
) ? setcc
: jump
;
2963 /* Determine set of register uses in INSN. */
2965 note_uses (&PATTERN (insn
), find_used_regs
, NULL
);
2966 note
= find_reg_equal_equiv_note (insn
);
2968 find_used_regs (&XEXP (note
, 0), NULL
);
2970 may_be_loop_header
= false;
2971 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2972 if (e
->flags
& EDGE_DFS_BACK
)
2974 may_be_loop_header
= true;
2979 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
2983 if (e
->flags
& EDGE_COMPLEX
)
2989 /* We can't redirect edges from new basic blocks. */
2990 if (e
->src
->index
>= bypass_last_basic_block
)
2996 /* The irreducible loops created by redirecting of edges entering the
2997 loop from outside would decrease effectiveness of some of the following
2998 optimizations, so prevent this. */
2999 if (may_be_loop_header
3000 && !(e
->flags
& EDGE_DFS_BACK
))
3006 for (i
= 0; i
< reg_use_count
; i
++)
3008 struct reg_use
*reg_used
= ®_use_table
[i
];
3009 unsigned int regno
= REGNO (reg_used
->reg_rtx
);
3010 basic_block dest
, old_dest
;
3014 set
= find_bypass_set (regno
, e
->src
->index
);
3019 /* Check the data flow is valid after edge insertions. */
3020 if (e
->insns
.r
&& reg_killed_on_edge (reg_used
->reg_rtx
, e
))
3023 src
= SET_SRC (pc_set (jump
));
3026 src
= simplify_replace_rtx (src
,
3027 SET_DEST (PATTERN (setcc
)),
3028 SET_SRC (PATTERN (setcc
)));
3030 new_rtx
= simplify_replace_rtx (src
, reg_used
->reg_rtx
,
3031 SET_SRC (set
->expr
));
3033 /* Jump bypassing may have already placed instructions on
3034 edges of the CFG. We can't bypass an outgoing edge that
3035 has instructions associated with it, as these insns won't
3036 get executed if the incoming edge is redirected. */
3038 if (new_rtx
== pc_rtx
)
3040 edest
= FALLTHRU_EDGE (bb
);
3041 dest
= edest
->insns
.r
? NULL
: edest
->dest
;
3043 else if (GET_CODE (new_rtx
) == LABEL_REF
)
3045 dest
= BLOCK_FOR_INSN (XEXP (new_rtx
, 0));
3046 /* Don't bypass edges containing instructions. */
3047 edest
= find_edge (bb
, dest
);
3048 if (edest
&& edest
->insns
.r
)
3054 /* Avoid unification of the edge with other edges from original
3055 branch. We would end up emitting the instruction on "both"
3058 if (dest
&& setcc
&& !CC0_P (SET_DEST (PATTERN (setcc
)))
3059 && find_edge (e
->src
, dest
))
3065 && dest
!= EXIT_BLOCK_PTR
)
3067 redirect_edge_and_branch_force (e
, dest
);
3069 /* Copy the register setter to the redirected edge.
3070 Don't copy CC0 setters, as CC0 is dead after jump. */
3073 rtx pat
= PATTERN (setcc
);
3074 if (!CC0_P (SET_DEST (pat
)))
3075 insert_insn_on_edge (copy_insn (pat
), e
);
3078 if (dump_file
!= NULL
)
3080 fprintf (dump_file
, "JUMP-BYPASS: Proved reg %d "
3081 "in jump_insn %d equals constant ",
3082 regno
, INSN_UID (jump
));
3083 print_rtl (dump_file
, SET_SRC (set
->expr
));
3084 fprintf (dump_file
, "\nBypass edge from %d->%d to %d\n",
3085 e
->src
->index
, old_dest
->index
, dest
->index
);
3098 /* Find basic blocks with more than one predecessor that only contain a
3099 single conditional jump. If the result of the comparison is known at
3100 compile-time from any incoming edge, redirect that edge to the
3101 appropriate target. Returns nonzero if a change was made.
3103 This function is now mis-named, because we also handle indirect jumps. */
3106 bypass_conditional_jumps (void)
3114 /* Note we start at block 1. */
3115 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
3118 bypass_last_basic_block
= last_basic_block
;
3119 mark_dfs_back_edges ();
3122 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
->next_bb
,
3123 EXIT_BLOCK_PTR
, next_bb
)
3125 /* Check for more than one predecessor. */
3126 if (!single_pred_p (bb
))
3129 FOR_BB_INSNS (bb
, insn
)
3130 if (DEBUG_INSN_P (insn
))
3132 else if (NONJUMP_INSN_P (insn
))
3136 if (GET_CODE (PATTERN (insn
)) != SET
)
3139 dest
= SET_DEST (PATTERN (insn
));
3140 if (REG_P (dest
) || CC0_P (dest
))
3145 else if (JUMP_P (insn
))
3147 if ((any_condjump_p (insn
) || computed_jump_p (insn
))
3148 && onlyjump_p (insn
))
3149 changed
|= bypass_block (bb
, setcc
, insn
);
3152 else if (INSN_P (insn
))
3157 /* If we bypassed any register setting insns, we inserted a
3158 copy on the redirected edge. These need to be committed. */
3160 commit_edge_insertions ();
3165 /* Compute PRE+LCM working variables. */
3167 /* Local properties of expressions. */
3168 /* Nonzero for expressions that are transparent in the block. */
3169 static sbitmap
*transp
;
3171 /* Nonzero for expressions that are transparent at the end of the block.
3172 This is only zero for expressions killed by abnormal critical edge
3173 created by a calls. */
3174 static sbitmap
*transpout
;
3176 /* Nonzero for expressions that are computed (available) in the block. */
3177 static sbitmap
*comp
;
3179 /* Nonzero for expressions that are locally anticipatable in the block. */
3180 static sbitmap
*antloc
;
3182 /* Nonzero for expressions where this block is an optimal computation
3184 static sbitmap
*pre_optimal
;
3186 /* Nonzero for expressions which are redundant in a particular block. */
3187 static sbitmap
*pre_redundant
;
3189 /* Nonzero for expressions which should be inserted on a specific edge. */
3190 static sbitmap
*pre_insert_map
;
3192 /* Nonzero for expressions which should be deleted in a specific block. */
3193 static sbitmap
*pre_delete_map
;
3195 /* Contains the edge_list returned by pre_edge_lcm. */
3196 static struct edge_list
*edge_list
;
3198 /* Allocate vars used for PRE analysis. */
3201 alloc_pre_mem (int n_blocks
, int n_exprs
)
3203 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3204 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3205 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3208 pre_redundant
= NULL
;
3209 pre_insert_map
= NULL
;
3210 pre_delete_map
= NULL
;
3211 ae_kill
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3213 /* pre_insert and pre_delete are allocated later. */
3216 /* Free vars used for PRE analysis. */
3221 sbitmap_vector_free (transp
);
3222 sbitmap_vector_free (comp
);
3224 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3227 sbitmap_vector_free (pre_optimal
);
3229 sbitmap_vector_free (pre_redundant
);
3231 sbitmap_vector_free (pre_insert_map
);
3233 sbitmap_vector_free (pre_delete_map
);
3235 transp
= comp
= NULL
;
3236 pre_optimal
= pre_redundant
= pre_insert_map
= pre_delete_map
= NULL
;
3239 /* Top level routine to do the dataflow analysis needed by PRE. */
3242 compute_pre_data (void)
3244 sbitmap trapping_expr
;
3248 compute_local_properties (transp
, comp
, antloc
, &expr_hash_table
);
3249 sbitmap_vector_zero (ae_kill
, last_basic_block
);
3251 /* Collect expressions which might trap. */
3252 trapping_expr
= sbitmap_alloc (expr_hash_table
.n_elems
);
3253 sbitmap_zero (trapping_expr
);
3254 for (ui
= 0; ui
< expr_hash_table
.size
; ui
++)
3257 for (e
= expr_hash_table
.table
[ui
]; e
!= NULL
; e
= e
->next_same_hash
)
3258 if (may_trap_p (e
->expr
))
3259 SET_BIT (trapping_expr
, e
->bitmap_index
);
3262 /* Compute ae_kill for each basic block using:
3272 /* If the current block is the destination of an abnormal edge, we
3273 kill all trapping expressions because we won't be able to properly
3274 place the instruction on the edge. So make them neither
3275 anticipatable nor transparent. This is fairly conservative. */
3276 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3277 if (e
->flags
& EDGE_ABNORMAL
)
3279 sbitmap_difference (antloc
[bb
->index
], antloc
[bb
->index
], trapping_expr
);
3280 sbitmap_difference (transp
[bb
->index
], transp
[bb
->index
], trapping_expr
);
3284 sbitmap_a_or_b (ae_kill
[bb
->index
], transp
[bb
->index
], comp
[bb
->index
]);
3285 sbitmap_not (ae_kill
[bb
->index
], ae_kill
[bb
->index
]);
3288 edge_list
= pre_edge_lcm (expr_hash_table
.n_elems
, transp
, comp
, antloc
,
3289 ae_kill
, &pre_insert_map
, &pre_delete_map
);
3290 sbitmap_vector_free (antloc
);
3292 sbitmap_vector_free (ae_kill
);
3294 sbitmap_free (trapping_expr
);
3299 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3302 VISITED is a pointer to a working buffer for tracking which BB's have
3303 been visited. It is NULL for the top-level call.
3305 We treat reaching expressions that go through blocks containing the same
3306 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3307 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3308 2 as not reaching. The intent is to improve the probability of finding
3309 only one reaching expression and to reduce register lifetimes by picking
3310 the closest such expression. */
3313 pre_expr_reaches_here_p_work (basic_block occr_bb
, struct expr
*expr
, basic_block bb
, char *visited
)
3318 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
3320 basic_block pred_bb
= pred
->src
;
3322 if (pred
->src
== ENTRY_BLOCK_PTR
3323 /* Has predecessor has already been visited? */
3324 || visited
[pred_bb
->index
])
3325 ;/* Nothing to do. */
3327 /* Does this predecessor generate this expression? */
3328 else if (TEST_BIT (comp
[pred_bb
->index
], expr
->bitmap_index
))
3330 /* Is this the occurrence we're looking for?
3331 Note that there's only one generating occurrence per block
3332 so we just need to check the block number. */
3333 if (occr_bb
== pred_bb
)
3336 visited
[pred_bb
->index
] = 1;
3338 /* Ignore this predecessor if it kills the expression. */
3339 else if (! TEST_BIT (transp
[pred_bb
->index
], expr
->bitmap_index
))
3340 visited
[pred_bb
->index
] = 1;
3342 /* Neither gen nor kill. */
3345 visited
[pred_bb
->index
] = 1;
3346 if (pre_expr_reaches_here_p_work (occr_bb
, expr
, pred_bb
, visited
))
3351 /* All paths have been checked. */
3355 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3356 memory allocated for that function is returned. */
3359 pre_expr_reaches_here_p (basic_block occr_bb
, struct expr
*expr
, basic_block bb
)
3362 char *visited
= XCNEWVEC (char, last_basic_block
);
3364 rval
= pre_expr_reaches_here_p_work (occr_bb
, expr
, bb
, visited
);
3371 /* Given an expr, generate RTL which we can insert at the end of a BB,
3372 or on an edge. Set the block number of any insns generated to
3376 process_insert_insn (struct expr
*expr
)
3378 rtx reg
= expr
->reaching_reg
;
3379 rtx exp
= copy_rtx (expr
->expr
);
3384 /* If the expression is something that's an operand, like a constant,
3385 just copy it to a register. */
3386 if (general_operand (exp
, GET_MODE (reg
)))
3387 emit_move_insn (reg
, exp
);
3389 /* Otherwise, make a new insn to compute this expression and make sure the
3390 insn will be recognized (this also adds any needed CLOBBERs). Copy the
3391 expression to make sure we don't have any sharing issues. */
3394 rtx insn
= emit_insn (gen_rtx_SET (VOIDmode
, reg
, exp
));
3396 if (insn_invalid_p (insn
))
3407 /* Add EXPR to the end of basic block BB.
3409 This is used by both the PRE and code hoisting.
3411 For PRE, we want to verify that the expr is either transparent
3412 or locally anticipatable in the target block. This check makes
3413 no sense for code hoisting. */
3416 insert_insn_end_basic_block (struct expr
*expr
, basic_block bb
, int pre
)
3418 rtx insn
= BB_END (bb
);
3420 rtx reg
= expr
->reaching_reg
;
3421 int regno
= REGNO (reg
);
3424 pat
= process_insert_insn (expr
);
3425 gcc_assert (pat
&& INSN_P (pat
));
3428 while (NEXT_INSN (pat_end
) != NULL_RTX
)
3429 pat_end
= NEXT_INSN (pat_end
);
3431 /* If the last insn is a jump, insert EXPR in front [taking care to
3432 handle cc0, etc. properly]. Similarly we need to care trapping
3433 instructions in presence of non-call exceptions. */
3436 || (NONJUMP_INSN_P (insn
)
3437 && (!single_succ_p (bb
)
3438 || single_succ_edge (bb
)->flags
& EDGE_ABNORMAL
)))
3443 /* It should always be the case that we can put these instructions
3444 anywhere in the basic block with performing PRE optimizations.
3446 gcc_assert (!NONJUMP_INSN_P (insn
) || !pre
3447 || TEST_BIT (antloc
[bb
->index
], expr
->bitmap_index
)
3448 || TEST_BIT (transp
[bb
->index
], expr
->bitmap_index
));
3450 /* If this is a jump table, then we can't insert stuff here. Since
3451 we know the previous real insn must be the tablejump, we insert
3452 the new instruction just before the tablejump. */
3453 if (GET_CODE (PATTERN (insn
)) == ADDR_VEC
3454 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
3455 insn
= prev_real_insn (insn
);
3458 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
3459 if cc0 isn't set. */
3460 note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3462 insn
= XEXP (note
, 0);
3465 rtx maybe_cc0_setter
= prev_nonnote_insn (insn
);
3466 if (maybe_cc0_setter
3467 && INSN_P (maybe_cc0_setter
)
3468 && sets_cc0_p (PATTERN (maybe_cc0_setter
)))
3469 insn
= maybe_cc0_setter
;
3472 /* FIXME: What if something in cc0/jump uses value set in new insn? */
3473 new_insn
= emit_insn_before_noloc (pat
, insn
, bb
);
3476 /* Likewise if the last insn is a call, as will happen in the presence
3477 of exception handling. */
3478 else if (CALL_P (insn
)
3479 && (!single_succ_p (bb
)
3480 || single_succ_edge (bb
)->flags
& EDGE_ABNORMAL
))
3482 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
3483 we search backward and place the instructions before the first
3484 parameter is loaded. Do this for everyone for consistency and a
3485 presumption that we'll get better code elsewhere as well.
3487 It should always be the case that we can put these instructions
3488 anywhere in the basic block with performing PRE optimizations.
3492 || TEST_BIT (antloc
[bb
->index
], expr
->bitmap_index
)
3493 || TEST_BIT (transp
[bb
->index
], expr
->bitmap_index
));
3495 /* Since different machines initialize their parameter registers
3496 in different orders, assume nothing. Collect the set of all
3497 parameter registers. */
3498 insn
= find_first_parameter_load (insn
, BB_HEAD (bb
));
3500 /* If we found all the parameter loads, then we want to insert
3501 before the first parameter load.
3503 If we did not find all the parameter loads, then we might have
3504 stopped on the head of the block, which could be a CODE_LABEL.
3505 If we inserted before the CODE_LABEL, then we would be putting
3506 the insn in the wrong basic block. In that case, put the insn
3507 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
3508 while (LABEL_P (insn
)
3509 || NOTE_INSN_BASIC_BLOCK_P (insn
))
3510 insn
= NEXT_INSN (insn
);
3512 new_insn
= emit_insn_before_noloc (pat
, insn
, bb
);
3515 new_insn
= emit_insn_after_noloc (pat
, insn
, bb
);
3520 add_label_notes (PATTERN (pat
), new_insn
);
3523 pat
= NEXT_INSN (pat
);
3526 gcse_create_count
++;
3530 fprintf (dump_file
, "PRE/HOIST: end of bb %d, insn %d, ",
3531 bb
->index
, INSN_UID (new_insn
));
3532 fprintf (dump_file
, "copying expression %d to reg %d\n",
3533 expr
->bitmap_index
, regno
);
3537 /* Insert partially redundant expressions on edges in the CFG to make
3538 the expressions fully redundant. */
3541 pre_edge_insert (struct edge_list
*edge_list
, struct expr
**index_map
)
3543 int e
, i
, j
, num_edges
, set_size
, did_insert
= 0;
3546 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
3547 if it reaches any of the deleted expressions. */
3549 set_size
= pre_insert_map
[0]->size
;
3550 num_edges
= NUM_EDGES (edge_list
);
3551 inserted
= sbitmap_vector_alloc (num_edges
, expr_hash_table
.n_elems
);
3552 sbitmap_vector_zero (inserted
, num_edges
);
3554 for (e
= 0; e
< num_edges
; e
++)
3557 basic_block bb
= INDEX_EDGE_PRED_BB (edge_list
, e
);
3559 for (i
= indx
= 0; i
< set_size
; i
++, indx
+= SBITMAP_ELT_BITS
)
3561 SBITMAP_ELT_TYPE insert
= pre_insert_map
[e
]->elms
[i
];
3563 for (j
= indx
; insert
&& j
< (int) expr_hash_table
.n_elems
; j
++, insert
>>= 1)
3564 if ((insert
& 1) != 0 && index_map
[j
]->reaching_reg
!= NULL_RTX
)
3566 struct expr
*expr
= index_map
[j
];
3569 /* Now look at each deleted occurrence of this expression. */
3570 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
3572 if (! occr
->deleted_p
)
3575 /* Insert this expression on this edge if it would
3576 reach the deleted occurrence in BB. */
3577 if (!TEST_BIT (inserted
[e
], j
))
3580 edge eg
= INDEX_EDGE (edge_list
, e
);
3582 /* We can't insert anything on an abnormal and
3583 critical edge, so we insert the insn at the end of
3584 the previous block. There are several alternatives
3585 detailed in Morgans book P277 (sec 10.5) for
3586 handling this situation. This one is easiest for
3589 if (eg
->flags
& EDGE_ABNORMAL
)
3590 insert_insn_end_basic_block (index_map
[j
], bb
, 0);
3593 insn
= process_insert_insn (index_map
[j
]);
3594 insert_insn_on_edge (insn
, eg
);
3599 fprintf (dump_file
, "PRE: edge (%d,%d), ",
3601 INDEX_EDGE_SUCC_BB (edge_list
, e
)->index
);
3602 fprintf (dump_file
, "copy expression %d\n",
3603 expr
->bitmap_index
);
3606 update_ld_motion_stores (expr
);
3607 SET_BIT (inserted
[e
], j
);
3609 gcse_create_count
++;
3616 sbitmap_vector_free (inserted
);
3620 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
3621 Given "old_reg <- expr" (INSN), instead of adding after it
3622 reaching_reg <- old_reg
3623 it's better to do the following:
3624 reaching_reg <- expr
3625 old_reg <- reaching_reg
3626 because this way copy propagation can discover additional PRE
3627 opportunities. But if this fails, we try the old way.
3628 When "expr" is a store, i.e.
3629 given "MEM <- old_reg", instead of adding after it
3630 reaching_reg <- old_reg
3631 it's better to add it before as follows:
3632 reaching_reg <- old_reg
3633 MEM <- reaching_reg. */
3636 pre_insert_copy_insn (struct expr
*expr
, rtx insn
)
3638 rtx reg
= expr
->reaching_reg
;
3639 int regno
= REGNO (reg
);
3640 int indx
= expr
->bitmap_index
;
3641 rtx pat
= PATTERN (insn
);
3642 rtx set
, first_set
, new_insn
;
3646 /* This block matches the logic in hash_scan_insn. */
3647 switch (GET_CODE (pat
))
3654 /* Search through the parallel looking for the set whose
3655 source was the expression that we're interested in. */
3656 first_set
= NULL_RTX
;
3658 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3660 rtx x
= XVECEXP (pat
, 0, i
);
3661 if (GET_CODE (x
) == SET
)
3663 /* If the source was a REG_EQUAL or REG_EQUIV note, we
3664 may not find an equivalent expression, but in this
3665 case the PARALLEL will have a single set. */
3666 if (first_set
== NULL_RTX
)
3668 if (expr_equiv_p (SET_SRC (x
), expr
->expr
))
3676 gcc_assert (first_set
);
3677 if (set
== NULL_RTX
)
3685 if (REG_P (SET_DEST (set
)))
3687 old_reg
= SET_DEST (set
);
3688 /* Check if we can modify the set destination in the original insn. */
3689 if (validate_change (insn
, &SET_DEST (set
), reg
, 0))
3691 new_insn
= gen_move_insn (old_reg
, reg
);
3692 new_insn
= emit_insn_after (new_insn
, insn
);
3696 new_insn
= gen_move_insn (reg
, old_reg
);
3697 new_insn
= emit_insn_after (new_insn
, insn
);
3700 else /* This is possible only in case of a store to memory. */
3702 old_reg
= SET_SRC (set
);
3703 new_insn
= gen_move_insn (reg
, old_reg
);
3705 /* Check if we can modify the set source in the original insn. */
3706 if (validate_change (insn
, &SET_SRC (set
), reg
, 0))
3707 new_insn
= emit_insn_before (new_insn
, insn
);
3709 new_insn
= emit_insn_after (new_insn
, insn
);
3712 gcse_create_count
++;
3716 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
3717 BLOCK_FOR_INSN (insn
)->index
, INSN_UID (new_insn
), indx
,
3718 INSN_UID (insn
), regno
);
3721 /* Copy available expressions that reach the redundant expression
3722 to `reaching_reg'. */
3725 pre_insert_copies (void)
3727 unsigned int i
, added_copy
;
3732 /* For each available expression in the table, copy the result to
3733 `reaching_reg' if the expression reaches a deleted one.
3735 ??? The current algorithm is rather brute force.
3736 Need to do some profiling. */
3738 for (i
= 0; i
< expr_hash_table
.size
; i
++)
3739 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
3741 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
3742 we don't want to insert a copy here because the expression may not
3743 really be redundant. So only insert an insn if the expression was
3744 deleted. This test also avoids further processing if the
3745 expression wasn't deleted anywhere. */
3746 if (expr
->reaching_reg
== NULL
)
3749 /* Set when we add a copy for that expression. */
3752 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
3754 if (! occr
->deleted_p
)
3757 for (avail
= expr
->avail_occr
; avail
!= NULL
; avail
= avail
->next
)
3759 rtx insn
= avail
->insn
;
3761 /* No need to handle this one if handled already. */
3762 if (avail
->copied_p
)
3765 /* Don't handle this one if it's a redundant one. */
3766 if (INSN_DELETED_P (insn
))
3769 /* Or if the expression doesn't reach the deleted one. */
3770 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail
->insn
),
3772 BLOCK_FOR_INSN (occr
->insn
)))
3777 /* Copy the result of avail to reaching_reg. */
3778 pre_insert_copy_insn (expr
, insn
);
3779 avail
->copied_p
= 1;
3784 update_ld_motion_stores (expr
);
3788 /* Emit move from SRC to DEST noting the equivalence with expression computed
3791 gcse_emit_move_after (rtx src
, rtx dest
, rtx insn
)
3794 rtx set
= single_set (insn
), set2
;
3798 /* This should never fail since we're creating a reg->reg copy
3799 we've verified to be valid. */
3801 new_rtx
= emit_insn_after (gen_move_insn (dest
, src
), insn
);
3803 /* Note the equivalence for local CSE pass. */
3804 set2
= single_set (new_rtx
);
3805 if (!set2
|| !rtx_equal_p (SET_DEST (set2
), dest
))
3807 if ((note
= find_reg_equal_equiv_note (insn
)))
3808 eqv
= XEXP (note
, 0);
3810 eqv
= SET_SRC (set
);
3812 set_unique_reg_note (new_rtx
, REG_EQUAL
, copy_insn_1 (eqv
));
3817 /* Delete redundant computations.
3818 Deletion is done by changing the insn to copy the `reaching_reg' of
3819 the expression into the result of the SET. It is left to later passes
3820 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
3822 Returns nonzero if a change is made. */
3833 for (i
= 0; i
< expr_hash_table
.size
; i
++)
3834 for (expr
= expr_hash_table
.table
[i
];
3836 expr
= expr
->next_same_hash
)
3838 int indx
= expr
->bitmap_index
;
3840 /* We only need to search antic_occr since we require
3843 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
3845 rtx insn
= occr
->insn
;
3847 basic_block bb
= BLOCK_FOR_INSN (insn
);
3849 /* We only delete insns that have a single_set. */
3850 if (TEST_BIT (pre_delete_map
[bb
->index
], indx
)
3851 && (set
= single_set (insn
)) != 0
3852 && dbg_cnt (pre_insn
))
3854 /* Create a pseudo-reg to store the result of reaching
3855 expressions into. Get the mode for the new pseudo from
3856 the mode of the original destination pseudo. */
3857 if (expr
->reaching_reg
== NULL
)
3858 expr
->reaching_reg
= gen_reg_rtx_and_attrs (SET_DEST (set
));
3860 gcse_emit_move_after (expr
->reaching_reg
, SET_DEST (set
), insn
);
3862 occr
->deleted_p
= 1;
3869 "PRE: redundant insn %d (expression %d) in ",
3870 INSN_UID (insn
), indx
);
3871 fprintf (dump_file
, "bb %d, reaching reg is %d\n",
3872 bb
->index
, REGNO (expr
->reaching_reg
));
3881 /* Perform GCSE optimizations using PRE.
3882 This is called by one_pre_gcse_pass after all the dataflow analysis
3885 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
3886 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
3887 Compiler Design and Implementation.
3889 ??? A new pseudo reg is created to hold the reaching expression. The nice
3890 thing about the classical approach is that it would try to use an existing
3891 reg. If the register can't be adequately optimized [i.e. we introduce
3892 reload problems], one could add a pass here to propagate the new register
3895 ??? We don't handle single sets in PARALLELs because we're [currently] not
3896 able to copy the rest of the parallel when we insert copies to create full
3897 redundancies from partial redundancies. However, there's no reason why we
3898 can't handle PARALLELs in the cases where there are no partial
3905 int did_insert
, changed
;
3906 struct expr
**index_map
;
3909 /* Compute a mapping from expression number (`bitmap_index') to
3910 hash table entry. */
3912 index_map
= XCNEWVEC (struct expr
*, expr_hash_table
.n_elems
);
3913 for (i
= 0; i
< expr_hash_table
.size
; i
++)
3914 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
3915 index_map
[expr
->bitmap_index
] = expr
;
3917 /* Delete the redundant insns first so that
3918 - we know what register to use for the new insns and for the other
3919 ones with reaching expressions
3920 - we know which insns are redundant when we go to create copies */
3922 changed
= pre_delete ();
3923 did_insert
= pre_edge_insert (edge_list
, index_map
);
3925 /* In other places with reaching expressions, copy the expression to the
3926 specially allocated pseudo-reg that reaches the redundant expr. */
3927 pre_insert_copies ();
3930 commit_edge_insertions ();
3938 /* Top level routine to perform one PRE GCSE pass.
3940 Return nonzero if a change was made. */
3943 one_pre_gcse_pass (void)
3947 gcse_subst_count
= 0;
3948 gcse_create_count
= 0;
3950 /* Return if there's nothing to do, or it is too expensive. */
3951 if (n_basic_blocks
<= NUM_FIXED_BLOCKS
+ 1
3952 || is_too_expensive (_("PRE disabled")))
3955 /* We need alias. */
3956 init_alias_analysis ();
3959 gcc_obstack_init (&gcse_obstack
);
3962 alloc_hash_table (&expr_hash_table
, 0);
3963 add_noreturn_fake_exit_edges ();
3965 compute_ld_motion_mems ();
3967 compute_hash_table (&expr_hash_table
);
3968 trim_ld_motion_mems ();
3970 dump_hash_table (dump_file
, "Expression", &expr_hash_table
);
3972 if (expr_hash_table
.n_elems
> 0)
3974 alloc_pre_mem (last_basic_block
, expr_hash_table
.n_elems
);
3975 compute_pre_data ();
3976 changed
|= pre_gcse ();
3977 free_edge_list (edge_list
);
3982 remove_fake_exit_edges ();
3983 free_hash_table (&expr_hash_table
);
3986 obstack_free (&gcse_obstack
, NULL
);
3988 /* We are finished with alias. */
3989 end_alias_analysis ();
3993 fprintf (dump_file
, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
3994 current_function_name (), n_basic_blocks
, bytes_used
);
3995 fprintf (dump_file
, "%d substs, %d insns created\n",
3996 gcse_subst_count
, gcse_create_count
);
4002 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
4003 to INSN. If such notes are added to an insn which references a
4004 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
4005 that note, because the following loop optimization pass requires
4008 /* ??? If there was a jump optimization pass after gcse and before loop,
4009 then we would not need to do this here, because jump would add the
4010 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
4013 add_label_notes (rtx x
, rtx insn
)
4015 enum rtx_code code
= GET_CODE (x
);
4019 if (code
== LABEL_REF
&& !LABEL_REF_NONLOCAL_P (x
))
4021 /* This code used to ignore labels that referred to dispatch tables to
4022 avoid flow generating (slightly) worse code.
4024 We no longer ignore such label references (see LABEL_REF handling in
4025 mark_jump_label for additional information). */
4027 /* There's no reason for current users to emit jump-insns with
4028 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
4030 gcc_assert (!JUMP_P (insn
));
4031 add_reg_note (insn
, REG_LABEL_OPERAND
, XEXP (x
, 0));
4033 if (LABEL_P (XEXP (x
, 0)))
4034 LABEL_NUSES (XEXP (x
, 0))++;
4039 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
4042 add_label_notes (XEXP (x
, i
), insn
);
4043 else if (fmt
[i
] == 'E')
4044 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4045 add_label_notes (XVECEXP (x
, i
, j
), insn
);
4049 /* Compute transparent outgoing information for each block.
4051 An expression is transparent to an edge unless it is killed by
4052 the edge itself. This can only happen with abnormal control flow,
4053 when the edge is traversed through a call. This happens with
4054 non-local labels and exceptions.
4056 This would not be necessary if we split the edge. While this is
4057 normally impossible for abnormal critical edges, with some effort
4058 it should be possible with exception handling, since we still have
4059 control over which handler should be invoked. But due to increased
4060 EH table sizes, this may not be worthwhile. */
4063 compute_transpout (void)
4069 sbitmap_vector_ones (transpout
, last_basic_block
);
4073 /* Note that flow inserted a nop at the end of basic blocks that
4074 end in call instructions for reasons other than abnormal
4076 if (! CALL_P (BB_END (bb
)))
4079 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4080 for (expr
= expr_hash_table
.table
[i
]; expr
; expr
= expr
->next_same_hash
)
4081 if (MEM_P (expr
->expr
))
4083 if (GET_CODE (XEXP (expr
->expr
, 0)) == SYMBOL_REF
4084 && CONSTANT_POOL_ADDRESS_P (XEXP (expr
->expr
, 0)))
4087 /* ??? Optimally, we would use interprocedural alias
4088 analysis to determine if this mem is actually killed
4090 RESET_BIT (transpout
[bb
->index
], expr
->bitmap_index
);
4095 /* Code Hoisting variables and subroutines. */
4097 /* Very busy expressions. */
4098 static sbitmap
*hoist_vbein
;
4099 static sbitmap
*hoist_vbeout
;
4101 /* Hoistable expressions. */
4102 static sbitmap
*hoist_exprs
;
4104 /* ??? We could compute post dominators and run this algorithm in
4105 reverse to perform tail merging, doing so would probably be
4106 more effective than the tail merging code in jump.c.
4108 It's unclear if tail merging could be run in parallel with
4109 code hoisting. It would be nice. */
4111 /* Allocate vars used for code hoisting analysis. */
4114 alloc_code_hoist_mem (int n_blocks
, int n_exprs
)
4116 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4117 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4118 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4120 hoist_vbein
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4121 hoist_vbeout
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4122 hoist_exprs
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4123 transpout
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4126 /* Free vars used for code hoisting analysis. */
4129 free_code_hoist_mem (void)
4131 sbitmap_vector_free (antloc
);
4132 sbitmap_vector_free (transp
);
4133 sbitmap_vector_free (comp
);
4135 sbitmap_vector_free (hoist_vbein
);
4136 sbitmap_vector_free (hoist_vbeout
);
4137 sbitmap_vector_free (hoist_exprs
);
4138 sbitmap_vector_free (transpout
);
4140 free_dominance_info (CDI_DOMINATORS
);
4143 /* Compute the very busy expressions at entry/exit from each block.
4145 An expression is very busy if all paths from a given point
4146 compute the expression. */
4149 compute_code_hoist_vbeinout (void)
4151 int changed
, passes
;
4154 sbitmap_vector_zero (hoist_vbeout
, last_basic_block
);
4155 sbitmap_vector_zero (hoist_vbein
, last_basic_block
);
4164 /* We scan the blocks in the reverse order to speed up
4166 FOR_EACH_BB_REVERSE (bb
)
4168 if (bb
->next_bb
!= EXIT_BLOCK_PTR
)
4169 sbitmap_intersection_of_succs (hoist_vbeout
[bb
->index
],
4170 hoist_vbein
, bb
->index
);
4172 changed
|= sbitmap_a_or_b_and_c_cg (hoist_vbein
[bb
->index
],
4174 hoist_vbeout
[bb
->index
],
4182 fprintf (dump_file
, "hoisting vbeinout computation: %d passes\n", passes
);
4185 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4188 compute_code_hoist_data (void)
4190 compute_local_properties (transp
, comp
, antloc
, &expr_hash_table
);
4191 compute_transpout ();
4192 compute_code_hoist_vbeinout ();
4193 calculate_dominance_info (CDI_DOMINATORS
);
4195 fprintf (dump_file
, "\n");
4198 /* Determine if the expression identified by EXPR_INDEX would
4199 reach BB unimpared if it was placed at the end of EXPR_BB.
4201 It's unclear exactly what Muchnick meant by "unimpared". It seems
4202 to me that the expression must either be computed or transparent in
4203 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4204 would allow the expression to be hoisted out of loops, even if
4205 the expression wasn't a loop invariant.
4207 Contrast this to reachability for PRE where an expression is
4208 considered reachable if *any* path reaches instead of *all*
4212 hoist_expr_reaches_here_p (basic_block expr_bb
, int expr_index
, basic_block bb
, char *visited
)
4216 int visited_allocated_locally
= 0;
4219 if (visited
== NULL
)
4221 visited_allocated_locally
= 1;
4222 visited
= XCNEWVEC (char, last_basic_block
);
4225 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
4227 basic_block pred_bb
= pred
->src
;
4229 if (pred
->src
== ENTRY_BLOCK_PTR
)
4231 else if (pred_bb
== expr_bb
)
4233 else if (visited
[pred_bb
->index
])
4236 /* Does this predecessor generate this expression? */
4237 else if (TEST_BIT (comp
[pred_bb
->index
], expr_index
))
4239 else if (! TEST_BIT (transp
[pred_bb
->index
], expr_index
))
4245 visited
[pred_bb
->index
] = 1;
4246 if (! hoist_expr_reaches_here_p (expr_bb
, expr_index
,
4251 if (visited_allocated_locally
)
4254 return (pred
== NULL
);
4257 /* Actually perform code hoisting. */
4262 basic_block bb
, dominated
;
4263 VEC (basic_block
, heap
) *domby
;
4265 struct expr
**index_map
;
4269 sbitmap_vector_zero (hoist_exprs
, last_basic_block
);
4271 /* Compute a mapping from expression number (`bitmap_index') to
4272 hash table entry. */
4274 index_map
= XCNEWVEC (struct expr
*, expr_hash_table
.n_elems
);
4275 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4276 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
4277 index_map
[expr
->bitmap_index
] = expr
;
4279 /* Walk over each basic block looking for potentially hoistable
4280 expressions, nothing gets hoisted from the entry block. */
4284 int insn_inserted_p
;
4286 domby
= get_dominated_by (CDI_DOMINATORS
, bb
);
4287 /* Examine each expression that is very busy at the exit of this
4288 block. These are the potentially hoistable expressions. */
4289 for (i
= 0; i
< hoist_vbeout
[bb
->index
]->n_bits
; i
++)
4293 if (TEST_BIT (hoist_vbeout
[bb
->index
], i
)
4294 && TEST_BIT (transpout
[bb
->index
], i
))
4296 /* We've found a potentially hoistable expression, now
4297 we look at every block BB dominates to see if it
4298 computes the expression. */
4299 for (j
= 0; VEC_iterate (basic_block
, domby
, j
, dominated
); j
++)
4301 /* Ignore self dominance. */
4302 if (bb
== dominated
)
4304 /* We've found a dominated block, now see if it computes
4305 the busy expression and whether or not moving that
4306 expression to the "beginning" of that block is safe. */
4307 if (!TEST_BIT (antloc
[dominated
->index
], i
))
4310 /* Note if the expression would reach the dominated block
4311 unimpared if it was placed at the end of BB.
4313 Keep track of how many times this expression is hoistable
4314 from a dominated block into BB. */
4315 if (hoist_expr_reaches_here_p (bb
, i
, dominated
, NULL
))
4319 /* If we found more than one hoistable occurrence of this
4320 expression, then note it in the bitmap of expressions to
4321 hoist. It makes no sense to hoist things which are computed
4322 in only one BB, and doing so tends to pessimize register
4323 allocation. One could increase this value to try harder
4324 to avoid any possible code expansion due to register
4325 allocation issues; however experiments have shown that
4326 the vast majority of hoistable expressions are only movable
4327 from two successors, so raising this threshold is likely
4328 to nullify any benefit we get from code hoisting. */
4331 SET_BIT (hoist_exprs
[bb
->index
], i
);
4336 /* If we found nothing to hoist, then quit now. */
4339 VEC_free (basic_block
, heap
, domby
);
4343 /* Loop over all the hoistable expressions. */
4344 for (i
= 0; i
< hoist_exprs
[bb
->index
]->n_bits
; i
++)
4346 /* We want to insert the expression into BB only once, so
4347 note when we've inserted it. */
4348 insn_inserted_p
= 0;
4350 /* These tests should be the same as the tests above. */
4351 if (TEST_BIT (hoist_exprs
[bb
->index
], i
))
4353 /* We've found a potentially hoistable expression, now
4354 we look at every block BB dominates to see if it
4355 computes the expression. */
4356 for (j
= 0; VEC_iterate (basic_block
, domby
, j
, dominated
); j
++)
4358 /* Ignore self dominance. */
4359 if (bb
== dominated
)
4362 /* We've found a dominated block, now see if it computes
4363 the busy expression and whether or not moving that
4364 expression to the "beginning" of that block is safe. */
4365 if (!TEST_BIT (antloc
[dominated
->index
], i
))
4368 /* The expression is computed in the dominated block and
4369 it would be safe to compute it at the start of the
4370 dominated block. Now we have to determine if the
4371 expression would reach the dominated block if it was
4372 placed at the end of BB. */
4373 if (hoist_expr_reaches_here_p (bb
, i
, dominated
, NULL
))
4375 struct expr
*expr
= index_map
[i
];
4376 struct occr
*occr
= expr
->antic_occr
;
4380 /* Find the right occurrence of this expression. */
4381 while (BLOCK_FOR_INSN (occr
->insn
) != dominated
&& occr
)
4386 set
= single_set (insn
);
4389 /* Create a pseudo-reg to store the result of reaching
4390 expressions into. Get the mode for the new pseudo
4391 from the mode of the original destination pseudo. */
4392 if (expr
->reaching_reg
== NULL
)
4394 = gen_reg_rtx_and_attrs (SET_DEST (set
));
4396 gcse_emit_move_after (expr
->reaching_reg
, SET_DEST (set
), insn
);
4398 occr
->deleted_p
= 1;
4402 if (!insn_inserted_p
)
4404 insert_insn_end_basic_block (index_map
[i
], bb
, 0);
4405 insn_inserted_p
= 1;
4411 VEC_free (basic_block
, heap
, domby
);
4419 /* Top level routine to perform one code hoisting (aka unification) pass
4421 Return nonzero if a change was made. */
4424 one_code_hoisting_pass (void)
4428 gcse_subst_count
= 0;
4429 gcse_create_count
= 0;
4431 /* Return if there's nothing to do, or it is too expensive. */
4432 if (n_basic_blocks
<= NUM_FIXED_BLOCKS
+ 1
4433 || is_too_expensive (_("GCSE disabled")))
4436 /* We need alias. */
4437 init_alias_analysis ();
4440 gcc_obstack_init (&gcse_obstack
);
4443 alloc_hash_table (&expr_hash_table
, 0);
4444 compute_hash_table (&expr_hash_table
);
4446 dump_hash_table (dump_file
, "Code Hosting Expressions", &expr_hash_table
);
4448 if (expr_hash_table
.n_elems
> 0)
4450 alloc_code_hoist_mem (last_basic_block
, expr_hash_table
.n_elems
);
4451 compute_code_hoist_data ();
4452 changed
= hoist_code ();
4453 free_code_hoist_mem ();
4456 free_hash_table (&expr_hash_table
);
4458 obstack_free (&gcse_obstack
, NULL
);
4460 /* We are finished with alias. */
4461 end_alias_analysis ();
4465 fprintf (dump_file
, "HOIST of %s, %d basic blocks, %d bytes needed, ",
4466 current_function_name (), n_basic_blocks
, bytes_used
);
4467 fprintf (dump_file
, "%d substs, %d insns created\n",
4468 gcse_subst_count
, gcse_create_count
);
4474 /* Here we provide the things required to do store motion towards
4475 the exit. In order for this to be effective, gcse also needed to
4476 be taught how to move a load when it is kill only by a store to itself.
4481 void foo(float scale)
4483 for (i=0; i<10; i++)
4487 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
4488 the load out since its live around the loop, and stored at the bottom
4491 The 'Load Motion' referred to and implemented in this file is
4492 an enhancement to gcse which when using edge based lcm, recognizes
4493 this situation and allows gcse to move the load out of the loop.
4495 Once gcse has hoisted the load, store motion can then push this
4496 load towards the exit, and we end up with no loads or stores of 'i'
4500 pre_ldst_expr_hash (const void *p
)
4502 int do_not_record_p
= 0;
4503 const struct ls_expr
*const x
= (const struct ls_expr
*) p
;
4504 return hash_rtx (x
->pattern
, GET_MODE (x
->pattern
), &do_not_record_p
, NULL
, false);
4508 pre_ldst_expr_eq (const void *p1
, const void *p2
)
4510 const struct ls_expr
*const ptr1
= (const struct ls_expr
*) p1
,
4511 *const ptr2
= (const struct ls_expr
*) p2
;
4512 return expr_equiv_p (ptr1
->pattern
, ptr2
->pattern
);
4515 /* This will search the ldst list for a matching expression. If it
4516 doesn't find one, we create one and initialize it. */
4518 static struct ls_expr
*
4521 int do_not_record_p
= 0;
4522 struct ls_expr
* ptr
;
4527 hash
= hash_rtx (x
, GET_MODE (x
), &do_not_record_p
,
4528 NULL
, /*have_reg_qty=*/false);
4531 slot
= htab_find_slot_with_hash (pre_ldst_table
, &e
, hash
, INSERT
);
4533 return (struct ls_expr
*)*slot
;
4535 ptr
= XNEW (struct ls_expr
);
4537 ptr
->next
= pre_ldst_mems
;
4540 ptr
->pattern_regs
= NULL_RTX
;
4541 ptr
->loads
= NULL_RTX
;
4542 ptr
->stores
= NULL_RTX
;
4543 ptr
->reaching_reg
= NULL_RTX
;
4546 ptr
->hash_index
= hash
;
4547 pre_ldst_mems
= ptr
;
4553 /* Free up an individual ldst entry. */
4556 free_ldst_entry (struct ls_expr
* ptr
)
4558 free_INSN_LIST_list (& ptr
->loads
);
4559 free_INSN_LIST_list (& ptr
->stores
);
4564 /* Free up all memory associated with the ldst list. */
4567 free_ldst_mems (void)
4570 htab_delete (pre_ldst_table
);
4571 pre_ldst_table
= NULL
;
4573 while (pre_ldst_mems
)
4575 struct ls_expr
* tmp
= pre_ldst_mems
;
4577 pre_ldst_mems
= pre_ldst_mems
->next
;
4579 free_ldst_entry (tmp
);
4582 pre_ldst_mems
= NULL
;
4585 /* Dump debugging info about the ldst list. */
4588 print_ldst_list (FILE * file
)
4590 struct ls_expr
* ptr
;
4592 fprintf (file
, "LDST list: \n");
4594 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
4596 fprintf (file
, " Pattern (%3d): ", ptr
->index
);
4598 print_rtl (file
, ptr
->pattern
);
4600 fprintf (file
, "\n Loads : ");
4603 print_rtl (file
, ptr
->loads
);
4605 fprintf (file
, "(nil)");
4607 fprintf (file
, "\n Stores : ");
4610 print_rtl (file
, ptr
->stores
);
4612 fprintf (file
, "(nil)");
4614 fprintf (file
, "\n\n");
4617 fprintf (file
, "\n");
4620 /* Returns 1 if X is in the list of ldst only expressions. */
4622 static struct ls_expr
*
4623 find_rtx_in_ldst (rtx x
)
4627 if (!pre_ldst_table
)
4630 slot
= htab_find_slot (pre_ldst_table
, &e
, NO_INSERT
);
4631 if (!slot
|| ((struct ls_expr
*)*slot
)->invalid
)
4633 return (struct ls_expr
*) *slot
;
4636 /* Return first item in the list. */
4638 static inline struct ls_expr
*
4639 first_ls_expr (void)
4641 return pre_ldst_mems
;
4644 /* Return the next item in the list after the specified one. */
4646 static inline struct ls_expr
*
4647 next_ls_expr (struct ls_expr
* ptr
)
4652 /* Load Motion for loads which only kill themselves. */
4654 /* Return true if x is a simple MEM operation, with no registers or
4655 side effects. These are the types of loads we consider for the
4656 ld_motion list, otherwise we let the usual aliasing take care of it. */
4659 simple_mem (const_rtx x
)
4664 if (MEM_VOLATILE_P (x
))
4667 if (GET_MODE (x
) == BLKmode
)
4670 /* If we are handling exceptions, we must be careful with memory references
4671 that may trap. If we are not, the behavior is undefined, so we may just
4673 if (flag_non_call_exceptions
&& may_trap_p (x
))
4676 if (side_effects_p (x
))
4679 /* Do not consider function arguments passed on stack. */
4680 if (reg_mentioned_p (stack_pointer_rtx
, x
))
4683 if (flag_float_store
&& FLOAT_MODE_P (GET_MODE (x
)))
4689 /* Make sure there isn't a buried reference in this pattern anywhere.
4690 If there is, invalidate the entry for it since we're not capable
4691 of fixing it up just yet.. We have to be sure we know about ALL
4692 loads since the aliasing code will allow all entries in the
4693 ld_motion list to not-alias itself. If we miss a load, we will get
4694 the wrong value since gcse might common it and we won't know to
4698 invalidate_any_buried_refs (rtx x
)
4702 struct ls_expr
* ptr
;
4704 /* Invalidate it in the list. */
4705 if (MEM_P (x
) && simple_mem (x
))
4707 ptr
= ldst_entry (x
);
4711 /* Recursively process the insn. */
4712 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
4714 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
4717 invalidate_any_buried_refs (XEXP (x
, i
));
4718 else if (fmt
[i
] == 'E')
4719 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4720 invalidate_any_buried_refs (XVECEXP (x
, i
, j
));
4724 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
4725 being defined as MEM loads and stores to symbols, with no side effects
4726 and no registers in the expression. For a MEM destination, we also
4727 check that the insn is still valid if we replace the destination with a
4728 REG, as is done in update_ld_motion_stores. If there are any uses/defs
4729 which don't match this criteria, they are invalidated and trimmed out
4733 compute_ld_motion_mems (void)
4735 struct ls_expr
* ptr
;
4739 pre_ldst_mems
= NULL
;
4740 pre_ldst_table
= htab_create (13, pre_ldst_expr_hash
,
4741 pre_ldst_expr_eq
, NULL
);
4745 FOR_BB_INSNS (bb
, insn
)
4747 if (NONDEBUG_INSN_P (insn
))
4749 if (GET_CODE (PATTERN (insn
)) == SET
)
4751 rtx src
= SET_SRC (PATTERN (insn
));
4752 rtx dest
= SET_DEST (PATTERN (insn
));
4754 /* Check for a simple LOAD... */
4755 if (MEM_P (src
) && simple_mem (src
))
4757 ptr
= ldst_entry (src
);
4759 ptr
->loads
= alloc_INSN_LIST (insn
, ptr
->loads
);
4765 /* Make sure there isn't a buried load somewhere. */
4766 invalidate_any_buried_refs (src
);
4769 /* Check for stores. Don't worry about aliased ones, they
4770 will block any movement we might do later. We only care
4771 about this exact pattern since those are the only
4772 circumstance that we will ignore the aliasing info. */
4773 if (MEM_P (dest
) && simple_mem (dest
))
4775 ptr
= ldst_entry (dest
);
4778 && GET_CODE (src
) != ASM_OPERANDS
4779 /* Check for REG manually since want_to_gcse_p
4780 returns 0 for all REGs. */
4781 && can_assign_to_reg_without_clobbers_p (src
))
4782 ptr
->stores
= alloc_INSN_LIST (insn
, ptr
->stores
);
4788 invalidate_any_buried_refs (PATTERN (insn
));
4794 /* Remove any references that have been either invalidated or are not in the
4795 expression list for pre gcse. */
4798 trim_ld_motion_mems (void)
4800 struct ls_expr
* * last
= & pre_ldst_mems
;
4801 struct ls_expr
* ptr
= pre_ldst_mems
;
4807 /* Delete if entry has been made invalid. */
4810 /* Delete if we cannot find this mem in the expression list. */
4811 unsigned int hash
= ptr
->hash_index
% expr_hash_table
.size
;
4813 for (expr
= expr_hash_table
.table
[hash
];
4815 expr
= expr
->next_same_hash
)
4816 if (expr_equiv_p (expr
->expr
, ptr
->pattern
))
4820 expr
= (struct expr
*) 0;
4824 /* Set the expression field if we are keeping it. */
4832 htab_remove_elt_with_hash (pre_ldst_table
, ptr
, ptr
->hash_index
);
4833 free_ldst_entry (ptr
);
4838 /* Show the world what we've found. */
4839 if (dump_file
&& pre_ldst_mems
!= NULL
)
4840 print_ldst_list (dump_file
);
4843 /* This routine will take an expression which we are replacing with
4844 a reaching register, and update any stores that are needed if
4845 that expression is in the ld_motion list. Stores are updated by
4846 copying their SRC to the reaching register, and then storing
4847 the reaching register into the store location. These keeps the
4848 correct value in the reaching register for the loads. */
4851 update_ld_motion_stores (struct expr
* expr
)
4853 struct ls_expr
* mem_ptr
;
4855 if ((mem_ptr
= find_rtx_in_ldst (expr
->expr
)))
4857 /* We can try to find just the REACHED stores, but is shouldn't
4858 matter to set the reaching reg everywhere... some might be
4859 dead and should be eliminated later. */
4861 /* We replace (set mem expr) with (set reg expr) (set mem reg)
4862 where reg is the reaching reg used in the load. We checked in
4863 compute_ld_motion_mems that we can replace (set mem expr) with
4864 (set reg expr) in that insn. */
4865 rtx list
= mem_ptr
->stores
;
4867 for ( ; list
!= NULL_RTX
; list
= XEXP (list
, 1))
4869 rtx insn
= XEXP (list
, 0);
4870 rtx pat
= PATTERN (insn
);
4871 rtx src
= SET_SRC (pat
);
4872 rtx reg
= expr
->reaching_reg
;
4875 /* If we've already copied it, continue. */
4876 if (expr
->reaching_reg
== src
)
4881 fprintf (dump_file
, "PRE: store updated with reaching reg ");
4882 print_rtl (dump_file
, expr
->reaching_reg
);
4883 fprintf (dump_file
, ":\n ");
4884 print_inline_rtx (dump_file
, insn
, 8);
4885 fprintf (dump_file
, "\n");
4888 copy
= gen_move_insn (reg
, copy_rtx (SET_SRC (pat
)));
4889 emit_insn_before (copy
, insn
);
4890 SET_SRC (pat
) = reg
;
4891 df_insn_rescan (insn
);
4893 /* un-recognize this pattern since it's probably different now. */
4894 INSN_CODE (insn
) = -1;
4895 gcse_create_count
++;
4900 /* Return true if the graph is too expensive to optimize. PASS is the
4901 optimization about to be performed. */
4904 is_too_expensive (const char *pass
)
4906 /* Trying to perform global optimizations on flow graphs which have
4907 a high connectivity will take a long time and is unlikely to be
4908 particularly useful.
4910 In normal circumstances a cfg should have about twice as many
4911 edges as blocks. But we do not want to punish small functions
4912 which have a couple switch statements. Rather than simply
4913 threshold the number of blocks, uses something with a more
4914 graceful degradation. */
4915 if (n_edges
> 20000 + n_basic_blocks
* 4)
4917 warning (OPT_Wdisabled_optimization
,
4918 "%s: %d basic blocks and %d edges/basic block",
4919 pass
, n_basic_blocks
, n_edges
/ n_basic_blocks
);
4924 /* If allocating memory for the cprop bitmap would take up too much
4925 storage it's better just to disable the optimization. */
4927 * SBITMAP_SET_SIZE (max_reg_num ())
4928 * sizeof (SBITMAP_ELT_TYPE
)) > MAX_GCSE_MEMORY
)
4930 warning (OPT_Wdisabled_optimization
,
4931 "%s: %d basic blocks and %d registers",
4932 pass
, n_basic_blocks
, max_reg_num ());
4941 /* Main function for the CPROP pass. */
4944 one_cprop_pass (void)
4948 /* Return if there's nothing to do, or it is too expensive. */
4949 if (n_basic_blocks
<= NUM_FIXED_BLOCKS
+ 1
4950 || is_too_expensive (_ ("const/copy propagation disabled")))
4953 global_const_prop_count
= local_const_prop_count
= 0;
4954 global_copy_prop_count
= local_copy_prop_count
= 0;
4957 gcc_obstack_init (&gcse_obstack
);
4960 /* Do a local const/copy propagation pass first. The global pass
4961 only handles global opportunities.
4962 If the local pass changes something, remove any unreachable blocks
4963 because the CPROP global dataflow analysis may get into infinite
4964 loops for CFGs with unreachable blocks.
4966 FIXME: This local pass should not be necessary after CSE (but for
4967 some reason it still is). It is also (proven) not necessary
4968 to run the local pass right after FWPWOP.
4970 FIXME: The global analysis would not get into infinite loops if it
4971 would use the DF solver (via df_simple_dataflow) instead of
4972 the solver implemented in this file. */
4973 if (local_cprop_pass ())
4975 delete_unreachable_blocks ();
4979 /* Determine implicit sets. */
4980 implicit_sets
= XCNEWVEC (rtx
, last_basic_block
);
4981 find_implicit_sets ();
4983 alloc_hash_table (&set_hash_table
, 1);
4984 compute_hash_table (&set_hash_table
);
4986 /* Free implicit_sets before peak usage. */
4987 free (implicit_sets
);
4988 implicit_sets
= NULL
;
4991 dump_hash_table (dump_file
, "SET", &set_hash_table
);
4992 if (set_hash_table
.n_elems
> 0)
4997 alloc_cprop_mem (last_basic_block
, set_hash_table
.n_elems
);
4998 compute_cprop_data ();
5000 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
->next_bb
, EXIT_BLOCK_PTR
, next_bb
)
5002 /* Reset tables used to keep track of what's still valid [since
5003 the start of the block]. */
5004 reset_opr_set_tables ();
5006 FOR_BB_INSNS (bb
, insn
)
5009 changed
|= cprop_insn (insn
);
5011 /* Keep track of everything modified by this insn. */
5012 /* ??? Need to be careful w.r.t. mods done to INSN.
5013 Don't call mark_oprs_set if we turned the
5014 insn into a NOTE. */
5015 if (! NOTE_P (insn
))
5016 mark_oprs_set (insn
);
5020 changed
|= bypass_conditional_jumps ();
5024 free_hash_table (&set_hash_table
);
5026 obstack_free (&gcse_obstack
, NULL
);
5030 fprintf (dump_file
, "CPROP of %s, %d basic blocks, %d bytes needed, ",
5031 current_function_name (), n_basic_blocks
, bytes_used
);
5032 fprintf (dump_file
, "%d local const props, %d local copy props, ",
5033 local_const_prop_count
, local_copy_prop_count
);
5034 fprintf (dump_file
, "%d global const props, %d global copy props\n\n",
5035 global_const_prop_count
, global_copy_prop_count
);
5042 /* All the passes implemented in this file. Each pass has its
5043 own gate and execute function, and at the end of the file a
5044 pass definition for passes.c.
5046 We do not construct an accurate cfg in functions which call
5047 setjmp, so none of these passes runs if the function calls
5049 FIXME: Should just handle setjmp via REG_SETJMP notes. */
5052 gate_rtl_cprop (void)
5054 return optimize
> 0 && flag_gcse
5055 && !cfun
->calls_setjmp
5060 execute_rtl_cprop (void)
5062 delete_unreachable_blocks ();
5063 df_set_flags (DF_LR_RUN_DCE
);
5065 flag_rerun_cse_after_global_opts
|= one_cprop_pass ();
5072 return optimize
> 0 && flag_gcse
5073 && !cfun
->calls_setjmp
5074 && optimize_function_for_speed_p (cfun
)
5079 execute_rtl_pre (void)
5081 delete_unreachable_blocks ();
5083 flag_rerun_cse_after_global_opts
|= one_pre_gcse_pass ();
5088 gate_rtl_hoist (void)
5090 return optimize
> 0 && flag_gcse
5091 && !cfun
->calls_setjmp
5092 /* It does not make sense to run code hoisting unless we are optimizing
5093 for code size -- it rarely makes programs faster, and can make then
5094 bigger if we did PRE (when optimizing for space, we don't run PRE). */
5095 && optimize_function_for_size_p (cfun
)
5100 execute_rtl_hoist (void)
5102 delete_unreachable_blocks ();
5104 flag_rerun_cse_after_global_opts
|= one_code_hoisting_pass ();
5108 struct rtl_opt_pass pass_rtl_cprop
=
5113 gate_rtl_cprop
, /* gate */
5114 execute_rtl_cprop
, /* execute */
5117 0, /* static_pass_number */
5118 TV_CPROP
, /* tv_id */
5119 PROP_cfglayout
, /* properties_required */
5120 0, /* properties_provided */
5121 0, /* properties_destroyed */
5122 0, /* todo_flags_start */
5123 TODO_df_finish
| TODO_verify_rtl_sharing
|
5125 TODO_verify_flow
| TODO_ggc_collect
/* todo_flags_finish */
5129 struct rtl_opt_pass pass_rtl_pre
=
5133 "rtl pre", /* name */
5134 gate_rtl_pre
, /* gate */
5135 execute_rtl_pre
, /* execute */
5138 0, /* static_pass_number */
5140 PROP_cfglayout
, /* properties_required */
5141 0, /* properties_provided */
5142 0, /* properties_destroyed */
5143 0, /* todo_flags_start */
5144 TODO_df_finish
| TODO_verify_rtl_sharing
|
5146 TODO_verify_flow
| TODO_ggc_collect
/* todo_flags_finish */
5150 struct rtl_opt_pass pass_rtl_hoist
=
5155 gate_rtl_hoist
, /* gate */
5156 execute_rtl_hoist
, /* execute */
5159 0, /* static_pass_number */
5160 TV_HOIST
, /* tv_id */
5161 PROP_cfglayout
, /* properties_required */
5162 0, /* properties_provided */
5163 0, /* properties_destroyed */
5164 0, /* todo_flags_start */
5165 TODO_df_finish
| TODO_verify_rtl_sharing
|
5167 TODO_verify_flow
| TODO_ggc_collect
/* todo_flags_finish */
5171 #include "gt-gcse.h"