Mark ChangeLog
[official-gcc.git] / gcc / gcse.c
blob8e31ee11a589cfe5e39262ffd34db6f2064aa2b6
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* TODO
23 - reordering of memory allocation and freeing to be more space efficient
24 - do rough calc of how many regs are needed in each block, and a rough
25 calc of how many regs are available in each class and use that to
26 throttle back the code in cases where RTX_COST is minimal.
27 - a store to the same address as a load does not kill the load if the
28 source of the store is also the destination of the load. Handling this
29 allows more load motion, particularly out of loops.
33 /* References searched while implementing this.
35 Compilers Principles, Techniques and Tools
36 Aho, Sethi, Ullman
37 Addison-Wesley, 1988
39 Global Optimization by Suppression of Partial Redundancies
40 E. Morel, C. Renvoise
41 communications of the acm, Vol. 22, Num. 2, Feb. 1979
43 A Portable Machine-Independent Global Optimizer - Design and Measurements
44 Frederick Chow
45 Stanford Ph.D. thesis, Dec. 1983
47 A Fast Algorithm for Code Movement Optimization
48 D.M. Dhamdhere
49 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
51 A Solution to a Problem with Morel and Renvoise's
52 Global Optimization by Suppression of Partial Redundancies
53 K-H Drechsler, M.P. Stadel
54 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
56 Practical Adaptation of the Global Optimization
57 Algorithm of Morel and Renvoise
58 D.M. Dhamdhere
59 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
61 Efficiently Computing Static Single Assignment Form and the Control
62 Dependence Graph
63 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
64 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
66 Lazy Code Motion
67 J. Knoop, O. Ruthing, B. Steffen
68 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
70 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
71 Time for Reducible Flow Control
72 Thomas Ball
73 ACM Letters on Programming Languages and Systems,
74 Vol. 2, Num. 1-4, Mar-Dec 1993
76 An Efficient Representation for Sparse Sets
77 Preston Briggs, Linda Torczon
78 ACM Letters on Programming Languages and Systems,
79 Vol. 2, Num. 1-4, Mar-Dec 1993
81 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
82 K-H Drechsler, M.P. Stadel
83 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
85 Partial Dead Code Elimination
86 J. Knoop, O. Ruthing, B. Steffen
87 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
89 Effective Partial Redundancy Elimination
90 P. Briggs, K.D. Cooper
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 The Program Structure Tree: Computing Control Regions in Linear Time
94 R. Johnson, D. Pearson, K. Pingali
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 Optimal Code Motion: Theory and Practice
98 J. Knoop, O. Ruthing, B. Steffen
99 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
101 The power of assignment motion
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
105 Global code motion / global value numbering
106 C. Click
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Value Driven Redundancy Elimination
110 L.T. Simpson
111 Rice University Ph.D. thesis, Apr. 1996
113 Value Numbering
114 L.T. Simpson
115 Massively Scalar Compiler Project, Rice University, Sep. 1996
117 High Performance Compilers for Parallel Computing
118 Michael Wolfe
119 Addison-Wesley, 1996
121 Advanced Compiler Design and Implementation
122 Steven Muchnick
123 Morgan Kaufmann, 1997
125 Building an Optimizing Compiler
126 Robert Morgan
127 Digital Press, 1998
129 People wishing to speed up the code here should read:
130 Elimination Algorithms for Data Flow Analysis
131 B.G. Ryder, M.C. Paull
132 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
134 How to Analyze Large Programs Efficiently and Informatively
135 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
136 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
138 People wishing to do something different can find various possibilities
139 in the above papers and elsewhere.
142 #include "config.h"
143 #include "system.h"
144 #include "coretypes.h"
145 #include "tm.h"
146 #include "toplev.h"
148 #include "rtl.h"
149 #include "tree.h"
150 #include "tm_p.h"
151 #include "regs.h"
152 #include "hard-reg-set.h"
153 #include "flags.h"
154 #include "real.h"
155 #include "insn-config.h"
156 #include "recog.h"
157 #include "basic-block.h"
158 #include "output.h"
159 #include "function.h"
160 #include "expr.h"
161 #include "except.h"
162 #include "ggc.h"
163 #include "params.h"
164 #include "cselib.h"
165 #include "intl.h"
166 #include "obstack.h"
167 #include "timevar.h"
168 #include "tree-pass.h"
169 #include "hashtab.h"
170 #include "df.h"
171 #include "dbgcnt.h"
172 #include "target.h"
174 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
175 are a superset of those done by classic GCSE.
177 We perform the following steps:
179 1) Compute table of places where registers are set.
181 2) Perform copy/constant propagation.
183 3) Perform global cse using lazy code motion if not optimizing
184 for size, or code hoisting if we are.
186 4) Perform another pass of copy/constant propagation. Try to bypass
187 conditional jumps if the condition can be computed from a value of
188 an incoming edge.
190 Two passes of copy/constant propagation are done because the first one
191 enables more GCSE and the second one helps to clean up the copies that
192 GCSE creates. This is needed more for PRE than for Classic because Classic
193 GCSE will try to use an existing register containing the common
194 subexpression rather than create a new one. This is harder to do for PRE
195 because of the code motion (which Classic GCSE doesn't do).
197 Expressions we are interested in GCSE-ing are of the form
198 (set (pseudo-reg) (expression)).
199 Function want_to_gcse_p says what these are.
201 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
202 This allows PRE to hoist expressions that are expressed in multiple insns,
203 such as complex address calculations (e.g. for PIC code, or loads with a
204 high part and a low part).
206 PRE handles moving invariant expressions out of loops (by treating them as
207 partially redundant).
209 **********************
211 We used to support multiple passes but there are diminishing returns in
212 doing so. The first pass usually makes 90% of the changes that are doable.
213 A second pass can make a few more changes made possible by the first pass.
214 Experiments show any further passes don't make enough changes to justify
215 the expense.
217 A study of spec92 using an unlimited number of passes:
218 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
219 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
220 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
222 It was found doing copy propagation between each pass enables further
223 substitutions.
225 This study was done before expressions in REG_EQUAL notes were added as
226 candidate expressions for optimization, and before the GIMPLE optimizers
227 were added. Probably, multiple passes is even less efficient now than
228 at the time when the study was conducted.
230 PRE is quite expensive in complicated functions because the DFA can take
231 a while to converge. Hence we only perform one pass.
233 **********************
235 The steps for PRE are:
237 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
239 2) Perform the data flow analysis for PRE.
241 3) Delete the redundant instructions
243 4) Insert the required copies [if any] that make the partially
244 redundant instructions fully redundant.
246 5) For other reaching expressions, insert an instruction to copy the value
247 to a newly created pseudo that will reach the redundant instruction.
249 The deletion is done first so that when we do insertions we
250 know which pseudo reg to use.
252 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
253 argue it is not. The number of iterations for the algorithm to converge
254 is typically 2-4 so I don't view it as that expensive (relatively speaking).
256 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
257 we create. To make an expression reach the place where it's redundant,
258 the result of the expression is copied to a new register, and the redundant
259 expression is deleted by replacing it with this new register. Classic GCSE
260 doesn't have this problem as much as it computes the reaching defs of
261 each register in each block and thus can try to use an existing
262 register. */
264 /* GCSE global vars. */
266 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
267 int flag_rerun_cse_after_global_opts;
269 /* An obstack for our working variables. */
270 static struct obstack gcse_obstack;
272 struct reg_use {rtx reg_rtx; };
274 /* Hash table of expressions. */
276 struct expr
278 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
279 rtx expr;
280 /* Index in the available expression bitmaps. */
281 int bitmap_index;
282 /* Next entry with the same hash. */
283 struct expr *next_same_hash;
284 /* List of anticipatable occurrences in basic blocks in the function.
285 An "anticipatable occurrence" is one that is the first occurrence in the
286 basic block, the operands are not modified in the basic block prior
287 to the occurrence and the output is not used between the start of
288 the block and the occurrence. */
289 struct occr *antic_occr;
290 /* List of available occurrence in basic blocks in the function.
291 An "available occurrence" is one that is the last occurrence in the
292 basic block and the operands are not modified by following statements in
293 the basic block [including this insn]. */
294 struct occr *avail_occr;
295 /* Non-null if the computation is PRE redundant.
296 The value is the newly created pseudo-reg to record a copy of the
297 expression in all the places that reach the redundant copy. */
298 rtx reaching_reg;
301 /* Occurrence of an expression.
302 There is one per basic block. If a pattern appears more than once the
303 last appearance is used [or first for anticipatable expressions]. */
305 struct occr
307 /* Next occurrence of this expression. */
308 struct occr *next;
309 /* The insn that computes the expression. */
310 rtx insn;
311 /* Nonzero if this [anticipatable] occurrence has been deleted. */
312 char deleted_p;
313 /* Nonzero if this [available] occurrence has been copied to
314 reaching_reg. */
315 /* ??? This is mutually exclusive with deleted_p, so they could share
316 the same byte. */
317 char copied_p;
320 /* Expression and copy propagation hash tables.
321 Each hash table is an array of buckets.
322 ??? It is known that if it were an array of entries, structure elements
323 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
324 not clear whether in the final analysis a sufficient amount of memory would
325 be saved as the size of the available expression bitmaps would be larger
326 [one could build a mapping table without holes afterwards though].
327 Someday I'll perform the computation and figure it out. */
329 struct hash_table_d
331 /* The table itself.
332 This is an array of `expr_hash_table_size' elements. */
333 struct expr **table;
335 /* Size of the hash table, in elements. */
336 unsigned int size;
338 /* Number of hash table elements. */
339 unsigned int n_elems;
341 /* Whether the table is expression of copy propagation one. */
342 int set_p;
345 /* Expression hash table. */
346 static struct hash_table_d expr_hash_table;
348 /* Copy propagation hash table. */
349 static struct hash_table_d set_hash_table;
351 /* This is a list of expressions which are MEMs and will be used by load
352 or store motion.
353 Load motion tracks MEMs which aren't killed by
354 anything except itself. (i.e., loads and stores to a single location).
355 We can then allow movement of these MEM refs with a little special
356 allowance. (all stores copy the same value to the reaching reg used
357 for the loads). This means all values used to store into memory must have
358 no side effects so we can re-issue the setter value.
359 Store Motion uses this structure as an expression table to track stores
360 which look interesting, and might be moveable towards the exit block. */
362 struct ls_expr
364 struct expr * expr; /* Gcse expression reference for LM. */
365 rtx pattern; /* Pattern of this mem. */
366 rtx pattern_regs; /* List of registers mentioned by the mem. */
367 rtx loads; /* INSN list of loads seen. */
368 rtx stores; /* INSN list of stores seen. */
369 struct ls_expr * next; /* Next in the list. */
370 int invalid; /* Invalid for some reason. */
371 int index; /* If it maps to a bitmap index. */
372 unsigned int hash_index; /* Index when in a hash table. */
373 rtx reaching_reg; /* Register to use when re-writing. */
376 /* Array of implicit set patterns indexed by basic block index. */
377 static rtx *implicit_sets;
379 /* Head of the list of load/store memory refs. */
380 static struct ls_expr * pre_ldst_mems = NULL;
382 /* Hashtable for the load/store memory refs. */
383 static htab_t pre_ldst_table = NULL;
385 /* Bitmap containing one bit for each register in the program.
386 Used when performing GCSE to track which registers have been set since
387 the start of the basic block. */
388 static regset reg_set_bitmap;
390 /* Array, indexed by basic block number for a list of insns which modify
391 memory within that block. */
392 static rtx * modify_mem_list;
393 static bitmap modify_mem_list_set;
395 /* This array parallels modify_mem_list, but is kept canonicalized. */
396 static rtx * canon_modify_mem_list;
398 /* Bitmap indexed by block numbers to record which blocks contain
399 function calls. */
400 static bitmap blocks_with_calls;
402 /* Various variables for statistics gathering. */
404 /* Memory used in a pass.
405 This isn't intended to be absolutely precise. Its intent is only
406 to keep an eye on memory usage. */
407 static int bytes_used;
409 /* GCSE substitutions made. */
410 static int gcse_subst_count;
411 /* Number of copy instructions created. */
412 static int gcse_create_count;
413 /* Number of local constants propagated. */
414 static int local_const_prop_count;
415 /* Number of local copies propagated. */
416 static int local_copy_prop_count;
417 /* Number of global constants propagated. */
418 static int global_const_prop_count;
419 /* Number of global copies propagated. */
420 static int global_copy_prop_count;
422 /* For available exprs */
423 static sbitmap *ae_kill;
425 static void compute_can_copy (void);
426 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
427 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
428 static void *gcse_alloc (unsigned long);
429 static void alloc_gcse_mem (void);
430 static void free_gcse_mem (void);
431 static void hash_scan_insn (rtx, struct hash_table_d *);
432 static void hash_scan_set (rtx, rtx, struct hash_table_d *);
433 static void hash_scan_clobber (rtx, rtx, struct hash_table_d *);
434 static void hash_scan_call (rtx, rtx, struct hash_table_d *);
435 static int want_to_gcse_p (rtx);
436 static bool gcse_constant_p (const_rtx);
437 static int oprs_unchanged_p (const_rtx, const_rtx, int);
438 static int oprs_anticipatable_p (const_rtx, const_rtx);
439 static int oprs_available_p (const_rtx, const_rtx);
440 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
441 struct hash_table_d *);
442 static void insert_set_in_table (rtx, rtx, struct hash_table_d *);
443 static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
444 static unsigned int hash_set (int, int);
445 static int expr_equiv_p (const_rtx, const_rtx);
446 static void record_last_reg_set_info (rtx, int);
447 static void record_last_mem_set_info (rtx);
448 static void record_last_set_info (rtx, const_rtx, void *);
449 static void compute_hash_table (struct hash_table_d *);
450 static void alloc_hash_table (struct hash_table_d *, int);
451 static void free_hash_table (struct hash_table_d *);
452 static void compute_hash_table_work (struct hash_table_d *);
453 static void dump_hash_table (FILE *, const char *, struct hash_table_d *);
454 static struct expr *lookup_set (unsigned int, struct hash_table_d *);
455 static struct expr *next_set (unsigned int, struct expr *);
456 static void reset_opr_set_tables (void);
457 static int oprs_not_set_p (const_rtx, const_rtx);
458 static void mark_call (rtx);
459 static void mark_set (rtx, rtx);
460 static void mark_clobber (rtx, rtx);
461 static void mark_oprs_set (rtx);
462 static void alloc_cprop_mem (int, int);
463 static void free_cprop_mem (void);
464 static void compute_transp (const_rtx, int, sbitmap *, int);
465 static void compute_transpout (void);
466 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
467 struct hash_table_d *);
468 static void compute_cprop_data (void);
469 static void find_used_regs (rtx *, void *);
470 static int try_replace_reg (rtx, rtx, rtx);
471 static struct expr *find_avail_set (int, rtx);
472 static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
473 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
474 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
475 static void canon_list_insert (rtx, const_rtx, void *);
476 static int cprop_insn (rtx);
477 static void find_implicit_sets (void);
478 static int one_cprop_pass (void);
479 static bool constprop_register (rtx, rtx, rtx);
480 static struct expr *find_bypass_set (int, int);
481 static bool reg_killed_on_edge (const_rtx, const_edge);
482 static int bypass_block (basic_block, rtx, rtx);
483 static int bypass_conditional_jumps (void);
484 static void alloc_pre_mem (int, int);
485 static void free_pre_mem (void);
486 static void compute_pre_data (void);
487 static int pre_expr_reaches_here_p (basic_block, struct expr *,
488 basic_block);
489 static void insert_insn_end_basic_block (struct expr *, basic_block, int);
490 static void pre_insert_copy_insn (struct expr *, rtx);
491 static void pre_insert_copies (void);
492 static int pre_delete (void);
493 static int pre_gcse (void);
494 static int one_pre_gcse_pass (void);
495 static void add_label_notes (rtx, rtx);
496 static void alloc_code_hoist_mem (int, int);
497 static void free_code_hoist_mem (void);
498 static void compute_code_hoist_vbeinout (void);
499 static void compute_code_hoist_data (void);
500 static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
501 static int hoist_code (void);
502 static int one_code_hoisting_pass (void);
503 static rtx process_insert_insn (struct expr *);
504 static int pre_edge_insert (struct edge_list *, struct expr **);
505 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
506 basic_block, char *);
507 static struct ls_expr * ldst_entry (rtx);
508 static void free_ldst_entry (struct ls_expr *);
509 static void free_ldst_mems (void);
510 static void print_ldst_list (FILE *);
511 static struct ls_expr * find_rtx_in_ldst (rtx);
512 static inline struct ls_expr * first_ls_expr (void);
513 static inline struct ls_expr * next_ls_expr (struct ls_expr *);
514 static int simple_mem (const_rtx);
515 static void invalidate_any_buried_refs (rtx);
516 static void compute_ld_motion_mems (void);
517 static void trim_ld_motion_mems (void);
518 static void update_ld_motion_stores (struct expr *);
519 static void free_insn_expr_list_list (rtx *);
520 static void clear_modify_mem_tables (void);
521 static void free_modify_mem_tables (void);
522 static rtx gcse_emit_move_after (rtx, rtx, rtx);
523 static void local_cprop_find_used_regs (rtx *, void *);
524 static bool do_local_cprop (rtx, rtx);
525 static int local_cprop_pass (void);
526 static bool is_too_expensive (const char *);
528 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
529 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
531 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
532 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
534 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
535 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
537 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
538 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
540 /* Misc. utilities. */
542 /* Nonzero for each mode that supports (set (reg) (reg)).
543 This is trivially true for integer and floating point values.
544 It may or may not be true for condition codes. */
545 static char can_copy[(int) NUM_MACHINE_MODES];
547 /* Compute which modes support reg/reg copy operations. */
549 static void
550 compute_can_copy (void)
552 int i;
553 #ifndef AVOID_CCMODE_COPIES
554 rtx reg, insn;
555 #endif
556 memset (can_copy, 0, NUM_MACHINE_MODES);
558 start_sequence ();
559 for (i = 0; i < NUM_MACHINE_MODES; i++)
560 if (GET_MODE_CLASS (i) == MODE_CC)
562 #ifdef AVOID_CCMODE_COPIES
563 can_copy[i] = 0;
564 #else
565 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
566 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
567 if (recog (PATTERN (insn), insn, NULL) >= 0)
568 can_copy[i] = 1;
569 #endif
571 else
572 can_copy[i] = 1;
574 end_sequence ();
577 /* Returns whether the mode supports reg/reg copy operations. */
579 bool
580 can_copy_p (enum machine_mode mode)
582 static bool can_copy_init_p = false;
584 if (! can_copy_init_p)
586 compute_can_copy ();
587 can_copy_init_p = true;
590 return can_copy[mode] != 0;
594 /* Cover function to xmalloc to record bytes allocated. */
596 static void *
597 gmalloc (size_t size)
599 bytes_used += size;
600 return xmalloc (size);
603 /* Cover function to xcalloc to record bytes allocated. */
605 static void *
606 gcalloc (size_t nelem, size_t elsize)
608 bytes_used += nelem * elsize;
609 return xcalloc (nelem, elsize);
612 /* Cover function to obstack_alloc. */
614 static void *
615 gcse_alloc (unsigned long size)
617 bytes_used += size;
618 return obstack_alloc (&gcse_obstack, size);
621 /* Allocate memory for the reg/memory set tracking tables.
622 This is called at the start of each pass. */
624 static void
625 alloc_gcse_mem (void)
627 /* Allocate vars to track sets of regs. */
628 reg_set_bitmap = BITMAP_ALLOC (NULL);
630 /* Allocate array to keep a list of insns which modify memory in each
631 basic block. */
632 modify_mem_list = GCNEWVEC (rtx, last_basic_block);
633 canon_modify_mem_list = GCNEWVEC (rtx, last_basic_block);
634 modify_mem_list_set = BITMAP_ALLOC (NULL);
635 blocks_with_calls = BITMAP_ALLOC (NULL);
638 /* Free memory allocated by alloc_gcse_mem. */
640 static void
641 free_gcse_mem (void)
643 free_modify_mem_tables ();
644 BITMAP_FREE (modify_mem_list_set);
645 BITMAP_FREE (blocks_with_calls);
648 /* Compute the local properties of each recorded expression.
650 Local properties are those that are defined by the block, irrespective of
651 other blocks.
653 An expression is transparent in a block if its operands are not modified
654 in the block.
656 An expression is computed (locally available) in a block if it is computed
657 at least once and expression would contain the same value if the
658 computation was moved to the end of the block.
660 An expression is locally anticipatable in a block if it is computed at
661 least once and expression would contain the same value if the computation
662 was moved to the beginning of the block.
664 We call this routine for cprop, pre and code hoisting. They all compute
665 basically the same information and thus can easily share this code.
667 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
668 properties. If NULL, then it is not necessary to compute or record that
669 particular property.
671 TABLE controls which hash table to look at. If it is set hash table,
672 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
673 ABSALTERED. */
675 static void
676 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
677 struct hash_table_d *table)
679 unsigned int i;
681 /* Initialize any bitmaps that were passed in. */
682 if (transp)
684 if (table->set_p)
685 sbitmap_vector_zero (transp, last_basic_block);
686 else
687 sbitmap_vector_ones (transp, last_basic_block);
690 if (comp)
691 sbitmap_vector_zero (comp, last_basic_block);
692 if (antloc)
693 sbitmap_vector_zero (antloc, last_basic_block);
695 for (i = 0; i < table->size; i++)
697 struct expr *expr;
699 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
701 int indx = expr->bitmap_index;
702 struct occr *occr;
704 /* The expression is transparent in this block if it is not killed.
705 We start by assuming all are transparent [none are killed], and
706 then reset the bits for those that are. */
707 if (transp)
708 compute_transp (expr->expr, indx, transp, table->set_p);
710 /* The occurrences recorded in antic_occr are exactly those that
711 we want to set to nonzero in ANTLOC. */
712 if (antloc)
713 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
715 SET_BIT (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
717 /* While we're scanning the table, this is a good place to
718 initialize this. */
719 occr->deleted_p = 0;
722 /* The occurrences recorded in avail_occr are exactly those that
723 we want to set to nonzero in COMP. */
724 if (comp)
725 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
727 SET_BIT (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
729 /* While we're scanning the table, this is a good place to
730 initialize this. */
731 occr->copied_p = 0;
734 /* While we're scanning the table, this is a good place to
735 initialize this. */
736 expr->reaching_reg = 0;
741 /* Hash table support. */
743 struct reg_avail_info
745 basic_block last_bb;
746 int first_set;
747 int last_set;
750 static struct reg_avail_info *reg_avail_info;
751 static basic_block current_bb;
754 /* See whether X, the source of a set, is something we want to consider for
755 GCSE. */
757 static int
758 want_to_gcse_p (rtx x)
760 #ifdef STACK_REGS
761 /* On register stack architectures, don't GCSE constants from the
762 constant pool, as the benefits are often swamped by the overhead
763 of shuffling the register stack between basic blocks. */
764 if (IS_STACK_MODE (GET_MODE (x)))
765 x = avoid_constant_pool_reference (x);
766 #endif
768 switch (GET_CODE (x))
770 case REG:
771 case SUBREG:
772 case CONST_INT:
773 case CONST_DOUBLE:
774 case CONST_FIXED:
775 case CONST_VECTOR:
776 case CALL:
777 return 0;
779 default:
780 return can_assign_to_reg_without_clobbers_p (x);
784 /* Used internally by can_assign_to_reg_without_clobbers_p. */
786 static GTY(()) rtx test_insn;
788 /* Return true if we can assign X to a pseudo register such that the
789 resulting insn does not result in clobbering a hard register as a
790 side-effect.
792 Additionally, if the target requires it, check that the resulting insn
793 can be copied. If it cannot, this means that X is special and probably
794 has hidden side-effects we don't want to mess with.
796 This function is typically used by code motion passes, to verify
797 that it is safe to insert an insn without worrying about clobbering
798 maybe live hard regs. */
800 bool
801 can_assign_to_reg_without_clobbers_p (rtx x)
803 int num_clobbers = 0;
804 int icode;
806 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
807 if (general_operand (x, GET_MODE (x)))
808 return 1;
809 else if (GET_MODE (x) == VOIDmode)
810 return 0;
812 /* Otherwise, check if we can make a valid insn from it. First initialize
813 our test insn if we haven't already. */
814 if (test_insn == 0)
816 test_insn
817 = make_insn_raw (gen_rtx_SET (VOIDmode,
818 gen_rtx_REG (word_mode,
819 FIRST_PSEUDO_REGISTER * 2),
820 const0_rtx));
821 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
824 /* Now make an insn like the one we would make when GCSE'ing and see if
825 valid. */
826 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
827 SET_SRC (PATTERN (test_insn)) = x;
829 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
830 if (icode < 0)
831 return false;
833 if (num_clobbers > 0 && added_clobbers_hard_reg_p (icode))
834 return false;
836 if (targetm.cannot_copy_insn_p && targetm.cannot_copy_insn_p (test_insn))
837 return false;
839 return true;
842 /* Return nonzero if the operands of expression X are unchanged from the
843 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
844 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
846 static int
847 oprs_unchanged_p (const_rtx x, const_rtx insn, int avail_p)
849 int i, j;
850 enum rtx_code code;
851 const char *fmt;
853 if (x == 0)
854 return 1;
856 code = GET_CODE (x);
857 switch (code)
859 case REG:
861 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
863 if (info->last_bb != current_bb)
864 return 1;
865 if (avail_p)
866 return info->last_set < DF_INSN_LUID (insn);
867 else
868 return info->first_set >= DF_INSN_LUID (insn);
871 case MEM:
872 if (load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
873 x, avail_p))
874 return 0;
875 else
876 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
878 case PRE_DEC:
879 case PRE_INC:
880 case POST_DEC:
881 case POST_INC:
882 case PRE_MODIFY:
883 case POST_MODIFY:
884 return 0;
886 case PC:
887 case CC0: /*FIXME*/
888 case CONST:
889 case CONST_INT:
890 case CONST_DOUBLE:
891 case CONST_FIXED:
892 case CONST_VECTOR:
893 case SYMBOL_REF:
894 case LABEL_REF:
895 case ADDR_VEC:
896 case ADDR_DIFF_VEC:
897 return 1;
899 default:
900 break;
903 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
905 if (fmt[i] == 'e')
907 /* If we are about to do the last recursive call needed at this
908 level, change it into iteration. This function is called enough
909 to be worth it. */
910 if (i == 0)
911 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
913 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
914 return 0;
916 else if (fmt[i] == 'E')
917 for (j = 0; j < XVECLEN (x, i); j++)
918 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
919 return 0;
922 return 1;
925 /* Used for communication between mems_conflict_for_gcse_p and
926 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
927 conflict between two memory references. */
928 static int gcse_mems_conflict_p;
930 /* Used for communication between mems_conflict_for_gcse_p and
931 load_killed_in_block_p. A memory reference for a load instruction,
932 mems_conflict_for_gcse_p will see if a memory store conflicts with
933 this memory load. */
934 static const_rtx gcse_mem_operand;
936 /* DEST is the output of an instruction. If it is a memory reference, and
937 possibly conflicts with the load found in gcse_mem_operand, then set
938 gcse_mems_conflict_p to a nonzero value. */
940 static void
941 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
942 void *data ATTRIBUTE_UNUSED)
944 while (GET_CODE (dest) == SUBREG
945 || GET_CODE (dest) == ZERO_EXTRACT
946 || GET_CODE (dest) == STRICT_LOW_PART)
947 dest = XEXP (dest, 0);
949 /* If DEST is not a MEM, then it will not conflict with the load. Note
950 that function calls are assumed to clobber memory, but are handled
951 elsewhere. */
952 if (! MEM_P (dest))
953 return;
955 /* If we are setting a MEM in our list of specially recognized MEMs,
956 don't mark as killed this time. */
958 if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
960 if (!find_rtx_in_ldst (dest))
961 gcse_mems_conflict_p = 1;
962 return;
965 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
966 rtx_addr_varies_p))
967 gcse_mems_conflict_p = 1;
970 /* Return nonzero if the expression in X (a memory reference) is killed
971 in block BB before or after the insn with the LUID in UID_LIMIT.
972 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
973 before UID_LIMIT.
975 To check the entire block, set UID_LIMIT to max_uid + 1 and
976 AVAIL_P to 0. */
978 static int
979 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x, int avail_p)
981 rtx list_entry = modify_mem_list[bb->index];
983 /* If this is a readonly then we aren't going to be changing it. */
984 if (MEM_READONLY_P (x))
985 return 0;
987 while (list_entry)
989 rtx setter;
990 /* Ignore entries in the list that do not apply. */
991 if ((avail_p
992 && DF_INSN_LUID (XEXP (list_entry, 0)) < uid_limit)
993 || (! avail_p
994 && DF_INSN_LUID (XEXP (list_entry, 0)) > uid_limit))
996 list_entry = XEXP (list_entry, 1);
997 continue;
1000 setter = XEXP (list_entry, 0);
1002 /* If SETTER is a call everything is clobbered. Note that calls
1003 to pure functions are never put on the list, so we need not
1004 worry about them. */
1005 if (CALL_P (setter))
1006 return 1;
1008 /* SETTER must be an INSN of some kind that sets memory. Call
1009 note_stores to examine each hunk of memory that is modified.
1011 The note_stores interface is pretty limited, so we have to
1012 communicate via global variables. Yuk. */
1013 gcse_mem_operand = x;
1014 gcse_mems_conflict_p = 0;
1015 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1016 if (gcse_mems_conflict_p)
1017 return 1;
1018 list_entry = XEXP (list_entry, 1);
1020 return 0;
1023 /* Return nonzero if the operands of expression X are unchanged from
1024 the start of INSN's basic block up to but not including INSN. */
1026 static int
1027 oprs_anticipatable_p (const_rtx x, const_rtx insn)
1029 return oprs_unchanged_p (x, insn, 0);
1032 /* Return nonzero if the operands of expression X are unchanged from
1033 INSN to the end of INSN's basic block. */
1035 static int
1036 oprs_available_p (const_rtx x, const_rtx insn)
1038 return oprs_unchanged_p (x, insn, 1);
1041 /* Hash expression X.
1043 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1044 indicating if a volatile operand is found or if the expression contains
1045 something we don't want to insert in the table. HASH_TABLE_SIZE is
1046 the current size of the hash table to be probed. */
1048 static unsigned int
1049 hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
1050 int hash_table_size)
1052 unsigned int hash;
1054 *do_not_record_p = 0;
1056 hash = hash_rtx (x, mode, do_not_record_p,
1057 NULL, /*have_reg_qty=*/false);
1058 return hash % hash_table_size;
1061 /* Hash a set of register REGNO.
1063 Sets are hashed on the register that is set. This simplifies the PRE copy
1064 propagation code.
1066 ??? May need to make things more elaborate. Later, as necessary. */
1068 static unsigned int
1069 hash_set (int regno, int hash_table_size)
1071 unsigned int hash;
1073 hash = regno;
1074 return hash % hash_table_size;
1077 /* Return nonzero if exp1 is equivalent to exp2. */
1079 static int
1080 expr_equiv_p (const_rtx x, const_rtx y)
1082 return exp_equiv_p (x, y, 0, true);
1085 /* Insert expression X in INSN in the hash TABLE.
1086 If it is already present, record it as the last occurrence in INSN's
1087 basic block.
1089 MODE is the mode of the value X is being stored into.
1090 It is only used if X is a CONST_INT.
1092 ANTIC_P is nonzero if X is an anticipatable expression.
1093 AVAIL_P is nonzero if X is an available expression. */
1095 static void
1096 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1097 int avail_p, struct hash_table_d *table)
1099 int found, do_not_record_p;
1100 unsigned int hash;
1101 struct expr *cur_expr, *last_expr = NULL;
1102 struct occr *antic_occr, *avail_occr;
1104 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1106 /* Do not insert expression in table if it contains volatile operands,
1107 or if hash_expr determines the expression is something we don't want
1108 to or can't handle. */
1109 if (do_not_record_p)
1110 return;
1112 cur_expr = table->table[hash];
1113 found = 0;
1115 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1117 /* If the expression isn't found, save a pointer to the end of
1118 the list. */
1119 last_expr = cur_expr;
1120 cur_expr = cur_expr->next_same_hash;
1123 if (! found)
1125 cur_expr = GOBNEW (struct expr);
1126 bytes_used += sizeof (struct expr);
1127 if (table->table[hash] == NULL)
1128 /* This is the first pattern that hashed to this index. */
1129 table->table[hash] = cur_expr;
1130 else
1131 /* Add EXPR to end of this hash chain. */
1132 last_expr->next_same_hash = cur_expr;
1134 /* Set the fields of the expr element. */
1135 cur_expr->expr = x;
1136 cur_expr->bitmap_index = table->n_elems++;
1137 cur_expr->next_same_hash = NULL;
1138 cur_expr->antic_occr = NULL;
1139 cur_expr->avail_occr = NULL;
1142 /* Now record the occurrence(s). */
1143 if (antic_p)
1145 antic_occr = cur_expr->antic_occr;
1147 if (antic_occr
1148 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1149 antic_occr = NULL;
1151 if (antic_occr)
1152 /* Found another instance of the expression in the same basic block.
1153 Prefer the currently recorded one. We want the first one in the
1154 block and the block is scanned from start to end. */
1155 ; /* nothing to do */
1156 else
1158 /* First occurrence of this expression in this basic block. */
1159 antic_occr = GOBNEW (struct occr);
1160 bytes_used += sizeof (struct occr);
1161 antic_occr->insn = insn;
1162 antic_occr->next = cur_expr->antic_occr;
1163 antic_occr->deleted_p = 0;
1164 cur_expr->antic_occr = antic_occr;
1168 if (avail_p)
1170 avail_occr = cur_expr->avail_occr;
1172 if (avail_occr
1173 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1175 /* Found another instance of the expression in the same basic block.
1176 Prefer this occurrence to the currently recorded one. We want
1177 the last one in the block and the block is scanned from start
1178 to end. */
1179 avail_occr->insn = insn;
1181 else
1183 /* First occurrence of this expression in this basic block. */
1184 avail_occr = GOBNEW (struct occr);
1185 bytes_used += sizeof (struct occr);
1186 avail_occr->insn = insn;
1187 avail_occr->next = cur_expr->avail_occr;
1188 avail_occr->deleted_p = 0;
1189 cur_expr->avail_occr = avail_occr;
1194 /* Insert pattern X in INSN in the hash table.
1195 X is a SET of a reg to either another reg or a constant.
1196 If it is already present, record it as the last occurrence in INSN's
1197 basic block. */
1199 static void
1200 insert_set_in_table (rtx x, rtx insn, struct hash_table_d *table)
1202 int found;
1203 unsigned int hash;
1204 struct expr *cur_expr, *last_expr = NULL;
1205 struct occr *cur_occr;
1207 gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x)));
1209 hash = hash_set (REGNO (SET_DEST (x)), table->size);
1211 cur_expr = table->table[hash];
1212 found = 0;
1214 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1216 /* If the expression isn't found, save a pointer to the end of
1217 the list. */
1218 last_expr = cur_expr;
1219 cur_expr = cur_expr->next_same_hash;
1222 if (! found)
1224 cur_expr = GOBNEW (struct expr);
1225 bytes_used += sizeof (struct expr);
1226 if (table->table[hash] == NULL)
1227 /* This is the first pattern that hashed to this index. */
1228 table->table[hash] = cur_expr;
1229 else
1230 /* Add EXPR to end of this hash chain. */
1231 last_expr->next_same_hash = cur_expr;
1233 /* Set the fields of the expr element.
1234 We must copy X because it can be modified when copy propagation is
1235 performed on its operands. */
1236 cur_expr->expr = copy_rtx (x);
1237 cur_expr->bitmap_index = table->n_elems++;
1238 cur_expr->next_same_hash = NULL;
1239 cur_expr->antic_occr = NULL;
1240 cur_expr->avail_occr = NULL;
1243 /* Now record the occurrence. */
1244 cur_occr = cur_expr->avail_occr;
1246 if (cur_occr
1247 && BLOCK_FOR_INSN (cur_occr->insn) == BLOCK_FOR_INSN (insn))
1249 /* Found another instance of the expression in the same basic block.
1250 Prefer this occurrence to the currently recorded one. We want
1251 the last one in the block and the block is scanned from start
1252 to end. */
1253 cur_occr->insn = insn;
1255 else
1257 /* First occurrence of this expression in this basic block. */
1258 cur_occr = GOBNEW (struct occr);
1259 bytes_used += sizeof (struct occr);
1260 cur_occr->insn = insn;
1261 cur_occr->next = cur_expr->avail_occr;
1262 cur_occr->deleted_p = 0;
1263 cur_expr->avail_occr = cur_occr;
1267 /* Determine whether the rtx X should be treated as a constant for
1268 the purposes of GCSE's constant propagation. */
1270 static bool
1271 gcse_constant_p (const_rtx x)
1273 /* Consider a COMPARE of two integers constant. */
1274 if (GET_CODE (x) == COMPARE
1275 && CONST_INT_P (XEXP (x, 0))
1276 && CONST_INT_P (XEXP (x, 1)))
1277 return true;
1279 /* Consider a COMPARE of the same registers is a constant
1280 if they are not floating point registers. */
1281 if (GET_CODE(x) == COMPARE
1282 && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
1283 && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
1284 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
1285 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
1286 return true;
1288 /* Since X might be inserted more than once we have to take care that it
1289 is sharable. */
1290 return CONSTANT_P (x) && (GET_CODE (x) != CONST || shared_const_p (x));
1293 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1294 expression one). */
1296 static void
1297 hash_scan_set (rtx pat, rtx insn, struct hash_table_d *table)
1299 rtx src = SET_SRC (pat);
1300 rtx dest = SET_DEST (pat);
1301 rtx note;
1303 if (GET_CODE (src) == CALL)
1304 hash_scan_call (src, insn, table);
1306 else if (REG_P (dest))
1308 unsigned int regno = REGNO (dest);
1309 rtx tmp;
1311 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1313 This allows us to do a single GCSE pass and still eliminate
1314 redundant constants, addresses or other expressions that are
1315 constructed with multiple instructions.
1317 However, keep the original SRC if INSN is a simple reg-reg move. In
1318 In this case, there will almost always be a REG_EQUAL note on the
1319 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1320 for INSN, we miss copy propagation opportunities and we perform the
1321 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1322 do more than one PRE GCSE pass.
1324 Note that this does not impede profitable constant propagations. We
1325 "look through" reg-reg sets in lookup_avail_set. */
1326 note = find_reg_equal_equiv_note (insn);
1327 if (note != 0
1328 && REG_NOTE_KIND (note) == REG_EQUAL
1329 && !REG_P (src)
1330 && (table->set_p
1331 ? gcse_constant_p (XEXP (note, 0))
1332 : want_to_gcse_p (XEXP (note, 0))))
1333 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
1335 /* Only record sets of pseudo-regs in the hash table. */
1336 if (! table->set_p
1337 && regno >= FIRST_PSEUDO_REGISTER
1338 /* Don't GCSE something if we can't do a reg/reg copy. */
1339 && can_copy_p (GET_MODE (dest))
1340 /* GCSE commonly inserts instruction after the insn. We can't
1341 do that easily for EH edges so disable GCSE on these for now. */
1342 /* ??? We can now easily create new EH landing pads at the
1343 gimple level, for splitting edges; there's no reason we
1344 can't do the same thing at the rtl level. */
1345 && !can_throw_internal (insn)
1346 /* Is SET_SRC something we want to gcse? */
1347 && want_to_gcse_p (src)
1348 /* Don't CSE a nop. */
1349 && ! set_noop_p (pat)
1350 /* Don't GCSE if it has attached REG_EQUIV note.
1351 At this point this only function parameters should have
1352 REG_EQUIV notes and if the argument slot is used somewhere
1353 explicitly, it means address of parameter has been taken,
1354 so we should not extend the lifetime of the pseudo. */
1355 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1357 /* An expression is not anticipatable if its operands are
1358 modified before this insn or if this is not the only SET in
1359 this insn. The latter condition does not have to mean that
1360 SRC itself is not anticipatable, but we just will not be
1361 able to handle code motion of insns with multiple sets. */
1362 int antic_p = oprs_anticipatable_p (src, insn)
1363 && !multiple_sets (insn);
1364 /* An expression is not available if its operands are
1365 subsequently modified, including this insn. It's also not
1366 available if this is a branch, because we can't insert
1367 a set after the branch. */
1368 int avail_p = (oprs_available_p (src, insn)
1369 && ! JUMP_P (insn));
1371 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
1374 /* Record sets for constant/copy propagation. */
1375 else if (table->set_p
1376 && regno >= FIRST_PSEUDO_REGISTER
1377 && ((REG_P (src)
1378 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1379 && can_copy_p (GET_MODE (dest))
1380 && REGNO (src) != regno)
1381 || gcse_constant_p (src))
1382 /* A copy is not available if its src or dest is subsequently
1383 modified. Here we want to search from INSN+1 on, but
1384 oprs_available_p searches from INSN on. */
1385 && (insn == BB_END (BLOCK_FOR_INSN (insn))
1386 || (tmp = next_nonnote_insn (insn)) == NULL_RTX
1387 || BLOCK_FOR_INSN (tmp) != BLOCK_FOR_INSN (insn)
1388 || oprs_available_p (pat, tmp)))
1389 insert_set_in_table (pat, insn, table);
1391 /* In case of store we want to consider the memory value as available in
1392 the REG stored in that memory. This makes it possible to remove
1393 redundant loads from due to stores to the same location. */
1394 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1396 unsigned int regno = REGNO (src);
1398 /* Do not do this for constant/copy propagation. */
1399 if (! table->set_p
1400 /* Only record sets of pseudo-regs in the hash table. */
1401 && regno >= FIRST_PSEUDO_REGISTER
1402 /* Don't GCSE something if we can't do a reg/reg copy. */
1403 && can_copy_p (GET_MODE (src))
1404 /* GCSE commonly inserts instruction after the insn. We can't
1405 do that easily for EH edges so disable GCSE on these for now. */
1406 && !can_throw_internal (insn)
1407 /* Is SET_DEST something we want to gcse? */
1408 && want_to_gcse_p (dest)
1409 /* Don't CSE a nop. */
1410 && ! set_noop_p (pat)
1411 /* Don't GCSE if it has attached REG_EQUIV note.
1412 At this point this only function parameters should have
1413 REG_EQUIV notes and if the argument slot is used somewhere
1414 explicitly, it means address of parameter has been taken,
1415 so we should not extend the lifetime of the pseudo. */
1416 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1417 || ! MEM_P (XEXP (note, 0))))
1419 /* Stores are never anticipatable. */
1420 int antic_p = 0;
1421 /* An expression is not available if its operands are
1422 subsequently modified, including this insn. It's also not
1423 available if this is a branch, because we can't insert
1424 a set after the branch. */
1425 int avail_p = oprs_available_p (dest, insn)
1426 && ! JUMP_P (insn);
1428 /* Record the memory expression (DEST) in the hash table. */
1429 insert_expr_in_table (dest, GET_MODE (dest), insn,
1430 antic_p, avail_p, table);
1435 static void
1436 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1437 struct hash_table_d *table ATTRIBUTE_UNUSED)
1439 /* Currently nothing to do. */
1442 static void
1443 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1444 struct hash_table_d *table ATTRIBUTE_UNUSED)
1446 /* Currently nothing to do. */
1449 /* Process INSN and add hash table entries as appropriate.
1451 Only available expressions that set a single pseudo-reg are recorded.
1453 Single sets in a PARALLEL could be handled, but it's an extra complication
1454 that isn't dealt with right now. The trick is handling the CLOBBERs that
1455 are also in the PARALLEL. Later.
1457 If SET_P is nonzero, this is for the assignment hash table,
1458 otherwise it is for the expression hash table. */
1460 static void
1461 hash_scan_insn (rtx insn, struct hash_table_d *table)
1463 rtx pat = PATTERN (insn);
1464 int i;
1466 /* Pick out the sets of INSN and for other forms of instructions record
1467 what's been modified. */
1469 if (GET_CODE (pat) == SET)
1470 hash_scan_set (pat, insn, table);
1471 else if (GET_CODE (pat) == PARALLEL)
1472 for (i = 0; i < XVECLEN (pat, 0); i++)
1474 rtx x = XVECEXP (pat, 0, i);
1476 if (GET_CODE (x) == SET)
1477 hash_scan_set (x, insn, table);
1478 else if (GET_CODE (x) == CLOBBER)
1479 hash_scan_clobber (x, insn, table);
1480 else if (GET_CODE (x) == CALL)
1481 hash_scan_call (x, insn, table);
1484 else if (GET_CODE (pat) == CLOBBER)
1485 hash_scan_clobber (pat, insn, table);
1486 else if (GET_CODE (pat) == CALL)
1487 hash_scan_call (pat, insn, table);
1490 static void
1491 dump_hash_table (FILE *file, const char *name, struct hash_table_d *table)
1493 int i;
1494 /* Flattened out table, so it's printed in proper order. */
1495 struct expr **flat_table;
1496 unsigned int *hash_val;
1497 struct expr *expr;
1499 flat_table = XCNEWVEC (struct expr *, table->n_elems);
1500 hash_val = XNEWVEC (unsigned int, table->n_elems);
1502 for (i = 0; i < (int) table->size; i++)
1503 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1505 flat_table[expr->bitmap_index] = expr;
1506 hash_val[expr->bitmap_index] = i;
1509 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1510 name, table->size, table->n_elems);
1512 for (i = 0; i < (int) table->n_elems; i++)
1513 if (flat_table[i] != 0)
1515 expr = flat_table[i];
1516 fprintf (file, "Index %d (hash value %d)\n ",
1517 expr->bitmap_index, hash_val[i]);
1518 print_rtl (file, expr->expr);
1519 fprintf (file, "\n");
1522 fprintf (file, "\n");
1524 free (flat_table);
1525 free (hash_val);
1528 /* Record register first/last/block set information for REGNO in INSN.
1530 first_set records the first place in the block where the register
1531 is set and is used to compute "anticipatability".
1533 last_set records the last place in the block where the register
1534 is set and is used to compute "availability".
1536 last_bb records the block for which first_set and last_set are
1537 valid, as a quick test to invalidate them. */
1539 static void
1540 record_last_reg_set_info (rtx insn, int regno)
1542 struct reg_avail_info *info = &reg_avail_info[regno];
1543 int luid = DF_INSN_LUID (insn);
1545 info->last_set = luid;
1546 if (info->last_bb != current_bb)
1548 info->last_bb = current_bb;
1549 info->first_set = luid;
1554 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1555 Note we store a pair of elements in the list, so they have to be
1556 taken off pairwise. */
1558 static void
1559 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx unused1 ATTRIBUTE_UNUSED,
1560 void * v_insn)
1562 rtx dest_addr, insn;
1563 int bb;
1565 while (GET_CODE (dest) == SUBREG
1566 || GET_CODE (dest) == ZERO_EXTRACT
1567 || GET_CODE (dest) == STRICT_LOW_PART)
1568 dest = XEXP (dest, 0);
1570 /* If DEST is not a MEM, then it will not conflict with a load. Note
1571 that function calls are assumed to clobber memory, but are handled
1572 elsewhere. */
1574 if (! MEM_P (dest))
1575 return;
1577 dest_addr = get_addr (XEXP (dest, 0));
1578 dest_addr = canon_rtx (dest_addr);
1579 insn = (rtx) v_insn;
1580 bb = BLOCK_FOR_INSN (insn)->index;
1582 canon_modify_mem_list[bb] =
1583 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
1584 canon_modify_mem_list[bb] =
1585 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
1588 /* Record memory modification information for INSN. We do not actually care
1589 about the memory location(s) that are set, or even how they are set (consider
1590 a CALL_INSN). We merely need to record which insns modify memory. */
1592 static void
1593 record_last_mem_set_info (rtx insn)
1595 int bb = BLOCK_FOR_INSN (insn)->index;
1597 /* load_killed_in_block_p will handle the case of calls clobbering
1598 everything. */
1599 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
1600 bitmap_set_bit (modify_mem_list_set, bb);
1602 if (CALL_P (insn))
1604 /* Note that traversals of this loop (other than for free-ing)
1605 will break after encountering a CALL_INSN. So, there's no
1606 need to insert a pair of items, as canon_list_insert does. */
1607 canon_modify_mem_list[bb] =
1608 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
1609 bitmap_set_bit (blocks_with_calls, bb);
1611 else
1612 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1615 /* Called from compute_hash_table via note_stores to handle one
1616 SET or CLOBBER in an insn. DATA is really the instruction in which
1617 the SET is taking place. */
1619 static void
1620 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1622 rtx last_set_insn = (rtx) data;
1624 if (GET_CODE (dest) == SUBREG)
1625 dest = SUBREG_REG (dest);
1627 if (REG_P (dest))
1628 record_last_reg_set_info (last_set_insn, REGNO (dest));
1629 else if (MEM_P (dest)
1630 /* Ignore pushes, they clobber nothing. */
1631 && ! push_operand (dest, GET_MODE (dest)))
1632 record_last_mem_set_info (last_set_insn);
1635 /* Top level function to create an expression or assignment hash table.
1637 Expression entries are placed in the hash table if
1638 - they are of the form (set (pseudo-reg) src),
1639 - src is something we want to perform GCSE on,
1640 - none of the operands are subsequently modified in the block
1642 Assignment entries are placed in the hash table if
1643 - they are of the form (set (pseudo-reg) src),
1644 - src is something we want to perform const/copy propagation on,
1645 - none of the operands or target are subsequently modified in the block
1647 Currently src must be a pseudo-reg or a const_int.
1649 TABLE is the table computed. */
1651 static void
1652 compute_hash_table_work (struct hash_table_d *table)
1654 int i;
1656 /* re-Cache any INSN_LIST nodes we have allocated. */
1657 clear_modify_mem_tables ();
1658 /* Some working arrays used to track first and last set in each block. */
1659 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1661 for (i = 0; i < max_reg_num (); ++i)
1662 reg_avail_info[i].last_bb = NULL;
1664 FOR_EACH_BB (current_bb)
1666 rtx insn;
1667 unsigned int regno;
1669 /* First pass over the instructions records information used to
1670 determine when registers and memory are first and last set. */
1671 FOR_BB_INSNS (current_bb, insn)
1673 if (! INSN_P (insn))
1674 continue;
1676 if (CALL_P (insn))
1678 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1679 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1680 record_last_reg_set_info (insn, regno);
1682 mark_call (insn);
1685 note_stores (PATTERN (insn), record_last_set_info, insn);
1688 /* Insert implicit sets in the hash table. */
1689 if (table->set_p
1690 && implicit_sets[current_bb->index] != NULL_RTX)
1691 hash_scan_set (implicit_sets[current_bb->index],
1692 BB_HEAD (current_bb), table);
1694 /* The next pass builds the hash table. */
1695 FOR_BB_INSNS (current_bb, insn)
1696 if (INSN_P (insn))
1697 hash_scan_insn (insn, table);
1700 free (reg_avail_info);
1701 reg_avail_info = NULL;
1704 /* Allocate space for the set/expr hash TABLE.
1705 It is used to determine the number of buckets to use.
1706 SET_P determines whether set or expression table will
1707 be created. */
1709 static void
1710 alloc_hash_table (struct hash_table_d *table, int set_p)
1712 int n;
1714 n = get_max_insn_count ();
1716 table->size = n / 4;
1717 if (table->size < 11)
1718 table->size = 11;
1720 /* Attempt to maintain efficient use of hash table.
1721 Making it an odd number is simplest for now.
1722 ??? Later take some measurements. */
1723 table->size |= 1;
1724 n = table->size * sizeof (struct expr *);
1725 table->table = GNEWVAR (struct expr *, n);
1726 table->set_p = set_p;
1729 /* Free things allocated by alloc_hash_table. */
1731 static void
1732 free_hash_table (struct hash_table_d *table)
1734 free (table->table);
1737 /* Compute the hash TABLE for doing copy/const propagation or
1738 expression hash table. */
1740 static void
1741 compute_hash_table (struct hash_table_d *table)
1743 /* Initialize count of number of entries in hash table. */
1744 table->n_elems = 0;
1745 memset (table->table, 0, table->size * sizeof (struct expr *));
1747 compute_hash_table_work (table);
1750 /* Expression tracking support. */
1752 /* Lookup REGNO in the set TABLE. The result is a pointer to the
1753 table entry, or NULL if not found. */
1755 static struct expr *
1756 lookup_set (unsigned int regno, struct hash_table_d *table)
1758 unsigned int hash = hash_set (regno, table->size);
1759 struct expr *expr;
1761 expr = table->table[hash];
1763 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
1764 expr = expr->next_same_hash;
1766 return expr;
1769 /* Return the next entry for REGNO in list EXPR. */
1771 static struct expr *
1772 next_set (unsigned int regno, struct expr *expr)
1775 expr = expr->next_same_hash;
1776 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
1778 return expr;
1781 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
1782 types may be mixed. */
1784 static void
1785 free_insn_expr_list_list (rtx *listp)
1787 rtx list, next;
1789 for (list = *listp; list ; list = next)
1791 next = XEXP (list, 1);
1792 if (GET_CODE (list) == EXPR_LIST)
1793 free_EXPR_LIST_node (list);
1794 else
1795 free_INSN_LIST_node (list);
1798 *listp = NULL;
1801 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1802 static void
1803 clear_modify_mem_tables (void)
1805 unsigned i;
1806 bitmap_iterator bi;
1808 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1810 free_INSN_LIST_list (modify_mem_list + i);
1811 free_insn_expr_list_list (canon_modify_mem_list + i);
1813 bitmap_clear (modify_mem_list_set);
1814 bitmap_clear (blocks_with_calls);
1817 /* Release memory used by modify_mem_list_set. */
1819 static void
1820 free_modify_mem_tables (void)
1822 clear_modify_mem_tables ();
1823 free (modify_mem_list);
1824 free (canon_modify_mem_list);
1825 modify_mem_list = 0;
1826 canon_modify_mem_list = 0;
1829 /* Reset tables used to keep track of what's still available [since the
1830 start of the block]. */
1832 static void
1833 reset_opr_set_tables (void)
1835 /* Maintain a bitmap of which regs have been set since beginning of
1836 the block. */
1837 CLEAR_REG_SET (reg_set_bitmap);
1839 /* Also keep a record of the last instruction to modify memory.
1840 For now this is very trivial, we only record whether any memory
1841 location has been modified. */
1842 clear_modify_mem_tables ();
1845 /* Return nonzero if the operands of X are not set before INSN in
1846 INSN's basic block. */
1848 static int
1849 oprs_not_set_p (const_rtx x, const_rtx insn)
1851 int i, j;
1852 enum rtx_code code;
1853 const char *fmt;
1855 if (x == 0)
1856 return 1;
1858 code = GET_CODE (x);
1859 switch (code)
1861 case PC:
1862 case CC0:
1863 case CONST:
1864 case CONST_INT:
1865 case CONST_DOUBLE:
1866 case CONST_FIXED:
1867 case CONST_VECTOR:
1868 case SYMBOL_REF:
1869 case LABEL_REF:
1870 case ADDR_VEC:
1871 case ADDR_DIFF_VEC:
1872 return 1;
1874 case MEM:
1875 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
1876 DF_INSN_LUID (insn), x, 0))
1877 return 0;
1878 else
1879 return oprs_not_set_p (XEXP (x, 0), insn);
1881 case REG:
1882 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
1884 default:
1885 break;
1888 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1890 if (fmt[i] == 'e')
1892 /* If we are about to do the last recursive call
1893 needed at this level, change it into iteration.
1894 This function is called enough to be worth it. */
1895 if (i == 0)
1896 return oprs_not_set_p (XEXP (x, i), insn);
1898 if (! oprs_not_set_p (XEXP (x, i), insn))
1899 return 0;
1901 else if (fmt[i] == 'E')
1902 for (j = 0; j < XVECLEN (x, i); j++)
1903 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
1904 return 0;
1907 return 1;
1910 /* Mark things set by a CALL. */
1912 static void
1913 mark_call (rtx insn)
1915 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1916 record_last_mem_set_info (insn);
1919 /* Mark things set by a SET. */
1921 static void
1922 mark_set (rtx pat, rtx insn)
1924 rtx dest = SET_DEST (pat);
1926 while (GET_CODE (dest) == SUBREG
1927 || GET_CODE (dest) == ZERO_EXTRACT
1928 || GET_CODE (dest) == STRICT_LOW_PART)
1929 dest = XEXP (dest, 0);
1931 if (REG_P (dest))
1932 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
1933 else if (MEM_P (dest))
1934 record_last_mem_set_info (insn);
1936 if (GET_CODE (SET_SRC (pat)) == CALL)
1937 mark_call (insn);
1940 /* Record things set by a CLOBBER. */
1942 static void
1943 mark_clobber (rtx pat, rtx insn)
1945 rtx clob = XEXP (pat, 0);
1947 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
1948 clob = XEXP (clob, 0);
1950 if (REG_P (clob))
1951 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
1952 else
1953 record_last_mem_set_info (insn);
1956 /* Record things set by INSN.
1957 This data is used by oprs_not_set_p. */
1959 static void
1960 mark_oprs_set (rtx insn)
1962 rtx pat = PATTERN (insn);
1963 int i;
1965 if (GET_CODE (pat) == SET)
1966 mark_set (pat, insn);
1967 else if (GET_CODE (pat) == PARALLEL)
1968 for (i = 0; i < XVECLEN (pat, 0); i++)
1970 rtx x = XVECEXP (pat, 0, i);
1972 if (GET_CODE (x) == SET)
1973 mark_set (x, insn);
1974 else if (GET_CODE (x) == CLOBBER)
1975 mark_clobber (x, insn);
1976 else if (GET_CODE (x) == CALL)
1977 mark_call (insn);
1980 else if (GET_CODE (pat) == CLOBBER)
1981 mark_clobber (pat, insn);
1982 else if (GET_CODE (pat) == CALL)
1983 mark_call (insn);
1987 /* Compute copy/constant propagation working variables. */
1989 /* Local properties of assignments. */
1990 static sbitmap *cprop_pavloc;
1991 static sbitmap *cprop_absaltered;
1993 /* Global properties of assignments (computed from the local properties). */
1994 static sbitmap *cprop_avin;
1995 static sbitmap *cprop_avout;
1997 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
1998 basic blocks. N_SETS is the number of sets. */
2000 static void
2001 alloc_cprop_mem (int n_blocks, int n_sets)
2003 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
2004 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
2006 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
2007 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
2010 /* Free vars used by copy/const propagation. */
2012 static void
2013 free_cprop_mem (void)
2015 sbitmap_vector_free (cprop_pavloc);
2016 sbitmap_vector_free (cprop_absaltered);
2017 sbitmap_vector_free (cprop_avin);
2018 sbitmap_vector_free (cprop_avout);
2021 /* For each block, compute whether X is transparent. X is either an
2022 expression or an assignment [though we don't care which, for this context
2023 an assignment is treated as an expression]. For each block where an
2024 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2025 bit in BMAP. */
2027 static void
2028 compute_transp (const_rtx x, int indx, sbitmap *bmap, int set_p)
2030 int i, j;
2031 enum rtx_code code;
2032 const char *fmt;
2034 /* repeat is used to turn tail-recursion into iteration since GCC
2035 can't do it when there's no return value. */
2036 repeat:
2038 if (x == 0)
2039 return;
2041 code = GET_CODE (x);
2042 switch (code)
2044 case REG:
2045 if (set_p)
2047 df_ref def;
2048 for (def = DF_REG_DEF_CHAIN (REGNO (x));
2049 def;
2050 def = DF_REF_NEXT_REG (def))
2051 SET_BIT (bmap[DF_REF_BB (def)->index], indx);
2053 else
2055 df_ref def;
2056 for (def = DF_REG_DEF_CHAIN (REGNO (x));
2057 def;
2058 def = DF_REF_NEXT_REG (def))
2059 RESET_BIT (bmap[DF_REF_BB (def)->index], indx);
2062 return;
2064 case MEM:
2065 if (! MEM_READONLY_P (x))
2067 bitmap_iterator bi;
2068 unsigned bb_index;
2070 /* First handle all the blocks with calls. We don't need to
2071 do any list walking for them. */
2072 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
2074 if (set_p)
2075 SET_BIT (bmap[bb_index], indx);
2076 else
2077 RESET_BIT (bmap[bb_index], indx);
2080 /* Now iterate over the blocks which have memory modifications
2081 but which do not have any calls. */
2082 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
2083 blocks_with_calls,
2084 0, bb_index, bi)
2086 rtx list_entry = canon_modify_mem_list[bb_index];
2088 while (list_entry)
2090 rtx dest, dest_addr;
2092 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2093 Examine each hunk of memory that is modified. */
2095 dest = XEXP (list_entry, 0);
2096 list_entry = XEXP (list_entry, 1);
2097 dest_addr = XEXP (list_entry, 0);
2099 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
2100 x, NULL_RTX, rtx_addr_varies_p))
2102 if (set_p)
2103 SET_BIT (bmap[bb_index], indx);
2104 else
2105 RESET_BIT (bmap[bb_index], indx);
2106 break;
2108 list_entry = XEXP (list_entry, 1);
2113 x = XEXP (x, 0);
2114 goto repeat;
2116 case PC:
2117 case CC0: /*FIXME*/
2118 case CONST:
2119 case CONST_INT:
2120 case CONST_DOUBLE:
2121 case CONST_FIXED:
2122 case CONST_VECTOR:
2123 case SYMBOL_REF:
2124 case LABEL_REF:
2125 case ADDR_VEC:
2126 case ADDR_DIFF_VEC:
2127 return;
2129 default:
2130 break;
2133 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2135 if (fmt[i] == 'e')
2137 /* If we are about to do the last recursive call
2138 needed at this level, change it into iteration.
2139 This function is called enough to be worth it. */
2140 if (i == 0)
2142 x = XEXP (x, i);
2143 goto repeat;
2146 compute_transp (XEXP (x, i), indx, bmap, set_p);
2148 else if (fmt[i] == 'E')
2149 for (j = 0; j < XVECLEN (x, i); j++)
2150 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
2154 /* Top level routine to do the dataflow analysis needed by copy/const
2155 propagation. */
2157 static void
2158 compute_cprop_data (void)
2160 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
2161 compute_available (cprop_pavloc, cprop_absaltered,
2162 cprop_avout, cprop_avin);
2165 /* Copy/constant propagation. */
2167 /* Maximum number of register uses in an insn that we handle. */
2168 #define MAX_USES 8
2170 /* Table of uses found in an insn.
2171 Allocated statically to avoid alloc/free complexity and overhead. */
2172 static struct reg_use reg_use_table[MAX_USES];
2174 /* Index into `reg_use_table' while building it. */
2175 static int reg_use_count;
2177 /* Set up a list of register numbers used in INSN. The found uses are stored
2178 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2179 and contains the number of uses in the table upon exit.
2181 ??? If a register appears multiple times we will record it multiple times.
2182 This doesn't hurt anything but it will slow things down. */
2184 static void
2185 find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
2187 int i, j;
2188 enum rtx_code code;
2189 const char *fmt;
2190 rtx x = *xptr;
2192 /* repeat is used to turn tail-recursion into iteration since GCC
2193 can't do it when there's no return value. */
2194 repeat:
2195 if (x == 0)
2196 return;
2198 code = GET_CODE (x);
2199 if (REG_P (x))
2201 if (reg_use_count == MAX_USES)
2202 return;
2204 reg_use_table[reg_use_count].reg_rtx = x;
2205 reg_use_count++;
2208 /* Recursively scan the operands of this expression. */
2210 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2212 if (fmt[i] == 'e')
2214 /* If we are about to do the last recursive call
2215 needed at this level, change it into iteration.
2216 This function is called enough to be worth it. */
2217 if (i == 0)
2219 x = XEXP (x, 0);
2220 goto repeat;
2223 find_used_regs (&XEXP (x, i), data);
2225 else if (fmt[i] == 'E')
2226 for (j = 0; j < XVECLEN (x, i); j++)
2227 find_used_regs (&XVECEXP (x, i, j), data);
2231 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2232 Returns nonzero is successful. */
2234 static int
2235 try_replace_reg (rtx from, rtx to, rtx insn)
2237 rtx note = find_reg_equal_equiv_note (insn);
2238 rtx src = 0;
2239 int success = 0;
2240 rtx set = single_set (insn);
2242 /* Usually we substitute easy stuff, so we won't copy everything.
2243 We however need to take care to not duplicate non-trivial CONST
2244 expressions. */
2245 to = copy_rtx (to);
2247 validate_replace_src_group (from, to, insn);
2248 if (num_changes_pending () && apply_change_group ())
2249 success = 1;
2251 /* Try to simplify SET_SRC if we have substituted a constant. */
2252 if (success && set && CONSTANT_P (to))
2254 src = simplify_rtx (SET_SRC (set));
2256 if (src)
2257 validate_change (insn, &SET_SRC (set), src, 0);
2260 /* If there is already a REG_EQUAL note, update the expression in it
2261 with our replacement. */
2262 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
2263 set_unique_reg_note (insn, REG_EQUAL,
2264 simplify_replace_rtx (XEXP (note, 0), from, to));
2265 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
2267 /* If above failed and this is a single set, try to simplify the source of
2268 the set given our substitution. We could perhaps try this for multiple
2269 SETs, but it probably won't buy us anything. */
2270 src = simplify_replace_rtx (SET_SRC (set), from, to);
2272 if (!rtx_equal_p (src, SET_SRC (set))
2273 && validate_change (insn, &SET_SRC (set), src, 0))
2274 success = 1;
2276 /* If we've failed to do replacement, have a single SET, don't already
2277 have a note, and have no special SET, add a REG_EQUAL note to not
2278 lose information. */
2279 if (!success && note == 0 && set != 0
2280 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2281 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2282 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2285 /* REG_EQUAL may get simplified into register.
2286 We don't allow that. Remove that note. This code ought
2287 not to happen, because previous code ought to synthesize
2288 reg-reg move, but be on the safe side. */
2289 if (note && REG_NOTE_KIND (note) == REG_EQUAL && REG_P (XEXP (note, 0)))
2290 remove_note (insn, note);
2292 return success;
2295 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2296 NULL no such set is found. */
2298 static struct expr *
2299 find_avail_set (int regno, rtx insn)
2301 /* SET1 contains the last set found that can be returned to the caller for
2302 use in a substitution. */
2303 struct expr *set1 = 0;
2305 /* Loops are not possible here. To get a loop we would need two sets
2306 available at the start of the block containing INSN. i.e. we would
2307 need two sets like this available at the start of the block:
2309 (set (reg X) (reg Y))
2310 (set (reg Y) (reg X))
2312 This can not happen since the set of (reg Y) would have killed the
2313 set of (reg X) making it unavailable at the start of this block. */
2314 while (1)
2316 rtx src;
2317 struct expr *set = lookup_set (regno, &set_hash_table);
2319 /* Find a set that is available at the start of the block
2320 which contains INSN. */
2321 while (set)
2323 if (TEST_BIT (cprop_avin[BLOCK_FOR_INSN (insn)->index],
2324 set->bitmap_index))
2325 break;
2326 set = next_set (regno, set);
2329 /* If no available set was found we've reached the end of the
2330 (possibly empty) copy chain. */
2331 if (set == 0)
2332 break;
2334 gcc_assert (GET_CODE (set->expr) == SET);
2336 src = SET_SRC (set->expr);
2338 /* We know the set is available.
2339 Now check that SRC is ANTLOC (i.e. none of the source operands
2340 have changed since the start of the block).
2342 If the source operand changed, we may still use it for the next
2343 iteration of this loop, but we may not use it for substitutions. */
2345 if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
2346 set1 = set;
2348 /* If the source of the set is anything except a register, then
2349 we have reached the end of the copy chain. */
2350 if (! REG_P (src))
2351 break;
2353 /* Follow the copy chain, i.e. start another iteration of the loop
2354 and see if we have an available copy into SRC. */
2355 regno = REGNO (src);
2358 /* SET1 holds the last set that was available and anticipatable at
2359 INSN. */
2360 return set1;
2363 /* Subroutine of cprop_insn that tries to propagate constants into
2364 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2365 it is the instruction that immediately precedes JUMP, and must be a
2366 single SET of a register. FROM is what we will try to replace,
2367 SRC is the constant we will try to substitute for it. Returns nonzero
2368 if a change was made. */
2370 static int
2371 cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
2373 rtx new_rtx, set_src, note_src;
2374 rtx set = pc_set (jump);
2375 rtx note = find_reg_equal_equiv_note (jump);
2377 if (note)
2379 note_src = XEXP (note, 0);
2380 if (GET_CODE (note_src) == EXPR_LIST)
2381 note_src = NULL_RTX;
2383 else note_src = NULL_RTX;
2385 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2386 set_src = note_src ? note_src : SET_SRC (set);
2388 /* First substitute the SETCC condition into the JUMP instruction,
2389 then substitute that given values into this expanded JUMP. */
2390 if (setcc != NULL_RTX
2391 && !modified_between_p (from, setcc, jump)
2392 && !modified_between_p (src, setcc, jump))
2394 rtx setcc_src;
2395 rtx setcc_set = single_set (setcc);
2396 rtx setcc_note = find_reg_equal_equiv_note (setcc);
2397 setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
2398 ? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
2399 set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
2400 setcc_src);
2402 else
2403 setcc = NULL_RTX;
2405 new_rtx = simplify_replace_rtx (set_src, from, src);
2407 /* If no simplification can be made, then try the next register. */
2408 if (rtx_equal_p (new_rtx, SET_SRC (set)))
2409 return 0;
2411 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2412 if (new_rtx == pc_rtx)
2413 delete_insn (jump);
2414 else
2416 /* Ensure the value computed inside the jump insn to be equivalent
2417 to one computed by setcc. */
2418 if (setcc && modified_in_p (new_rtx, setcc))
2419 return 0;
2420 if (! validate_unshare_change (jump, &SET_SRC (set), new_rtx, 0))
2422 /* When (some) constants are not valid in a comparison, and there
2423 are two registers to be replaced by constants before the entire
2424 comparison can be folded into a constant, we need to keep
2425 intermediate information in REG_EQUAL notes. For targets with
2426 separate compare insns, such notes are added by try_replace_reg.
2427 When we have a combined compare-and-branch instruction, however,
2428 we need to attach a note to the branch itself to make this
2429 optimization work. */
2431 if (!rtx_equal_p (new_rtx, note_src))
2432 set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new_rtx));
2433 return 0;
2436 /* Remove REG_EQUAL note after simplification. */
2437 if (note_src)
2438 remove_note (jump, note);
2441 #ifdef HAVE_cc0
2442 /* Delete the cc0 setter. */
2443 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
2444 delete_insn (setcc);
2445 #endif
2447 global_const_prop_count++;
2448 if (dump_file != NULL)
2450 fprintf (dump_file,
2451 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2452 REGNO (from), INSN_UID (jump));
2453 print_rtl (dump_file, src);
2454 fprintf (dump_file, "\n");
2456 purge_dead_edges (bb);
2458 /* If a conditional jump has been changed into unconditional jump, remove
2459 the jump and make the edge fallthru - this is always called in
2460 cfglayout mode. */
2461 if (new_rtx != pc_rtx && simplejump_p (jump))
2463 edge e;
2464 edge_iterator ei;
2466 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ei_next (&ei))
2467 if (e->dest != EXIT_BLOCK_PTR
2468 && BB_HEAD (e->dest) == JUMP_LABEL (jump))
2470 e->flags |= EDGE_FALLTHRU;
2471 break;
2473 delete_insn (jump);
2476 return 1;
2479 static bool
2480 constprop_register (rtx insn, rtx from, rtx to)
2482 rtx sset;
2484 /* Check for reg or cc0 setting instructions followed by
2485 conditional branch instructions first. */
2486 if ((sset = single_set (insn)) != NULL
2487 && NEXT_INSN (insn)
2488 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
2490 rtx dest = SET_DEST (sset);
2491 if ((REG_P (dest) || CC0_P (dest))
2492 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
2493 return 1;
2496 /* Handle normal insns next. */
2497 if (NONJUMP_INSN_P (insn)
2498 && try_replace_reg (from, to, insn))
2499 return 1;
2501 /* Try to propagate a CONST_INT into a conditional jump.
2502 We're pretty specific about what we will handle in this
2503 code, we can extend this as necessary over time.
2505 Right now the insn in question must look like
2506 (set (pc) (if_then_else ...)) */
2507 else if (any_condjump_p (insn) && onlyjump_p (insn))
2508 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
2509 return 0;
2512 /* Perform constant and copy propagation on INSN.
2513 The result is nonzero if a change was made. */
2515 static int
2516 cprop_insn (rtx insn)
2518 struct reg_use *reg_used;
2519 int changed = 0;
2520 rtx note;
2522 if (!INSN_P (insn))
2523 return 0;
2525 reg_use_count = 0;
2526 note_uses (&PATTERN (insn), find_used_regs, NULL);
2528 note = find_reg_equal_equiv_note (insn);
2530 /* We may win even when propagating constants into notes. */
2531 if (note)
2532 find_used_regs (&XEXP (note, 0), NULL);
2534 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2535 reg_used++, reg_use_count--)
2537 unsigned int regno = REGNO (reg_used->reg_rtx);
2538 rtx pat, src;
2539 struct expr *set;
2541 /* If the register has already been set in this block, there's
2542 nothing we can do. */
2543 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
2544 continue;
2546 /* Find an assignment that sets reg_used and is available
2547 at the start of the block. */
2548 set = find_avail_set (regno, insn);
2549 if (! set)
2550 continue;
2552 pat = set->expr;
2553 /* ??? We might be able to handle PARALLELs. Later. */
2554 gcc_assert (GET_CODE (pat) == SET);
2556 src = SET_SRC (pat);
2558 /* Constant propagation. */
2559 if (gcse_constant_p (src))
2561 if (constprop_register (insn, reg_used->reg_rtx, src))
2563 changed = 1;
2564 global_const_prop_count++;
2565 if (dump_file != NULL)
2567 fprintf (dump_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
2568 fprintf (dump_file, "insn %d with constant ", INSN_UID (insn));
2569 print_rtl (dump_file, src);
2570 fprintf (dump_file, "\n");
2572 if (INSN_DELETED_P (insn))
2573 return 1;
2576 else if (REG_P (src)
2577 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2578 && REGNO (src) != regno)
2580 if (try_replace_reg (reg_used->reg_rtx, src, insn))
2582 changed = 1;
2583 global_copy_prop_count++;
2584 if (dump_file != NULL)
2586 fprintf (dump_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
2587 regno, INSN_UID (insn));
2588 fprintf (dump_file, " with reg %d\n", REGNO (src));
2591 /* The original insn setting reg_used may or may not now be
2592 deletable. We leave the deletion to flow. */
2593 /* FIXME: If it turns out that the insn isn't deletable,
2594 then we may have unnecessarily extended register lifetimes
2595 and made things worse. */
2600 if (changed && DEBUG_INSN_P (insn))
2601 return 0;
2603 return changed;
2606 /* Like find_used_regs, but avoid recording uses that appear in
2607 input-output contexts such as zero_extract or pre_dec. This
2608 restricts the cases we consider to those for which local cprop
2609 can legitimately make replacements. */
2611 static void
2612 local_cprop_find_used_regs (rtx *xptr, void *data)
2614 rtx x = *xptr;
2616 if (x == 0)
2617 return;
2619 switch (GET_CODE (x))
2621 case ZERO_EXTRACT:
2622 case SIGN_EXTRACT:
2623 case STRICT_LOW_PART:
2624 return;
2626 case PRE_DEC:
2627 case PRE_INC:
2628 case POST_DEC:
2629 case POST_INC:
2630 case PRE_MODIFY:
2631 case POST_MODIFY:
2632 /* Can only legitimately appear this early in the context of
2633 stack pushes for function arguments, but handle all of the
2634 codes nonetheless. */
2635 return;
2637 case SUBREG:
2638 /* Setting a subreg of a register larger than word_mode leaves
2639 the non-written words unchanged. */
2640 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
2641 return;
2642 break;
2644 default:
2645 break;
2648 find_used_regs (xptr, data);
2651 /* Try to perform local const/copy propagation on X in INSN. */
2653 static bool
2654 do_local_cprop (rtx x, rtx insn)
2656 rtx newreg = NULL, newcnst = NULL;
2658 /* Rule out USE instructions and ASM statements as we don't want to
2659 change the hard registers mentioned. */
2660 if (REG_P (x)
2661 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
2662 || (GET_CODE (PATTERN (insn)) != USE
2663 && asm_noperands (PATTERN (insn)) < 0)))
2665 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
2666 struct elt_loc_list *l;
2668 if (!val)
2669 return false;
2670 for (l = val->locs; l; l = l->next)
2672 rtx this_rtx = l->loc;
2673 rtx note;
2675 if (gcse_constant_p (this_rtx))
2676 newcnst = this_rtx;
2677 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
2678 /* Don't copy propagate if it has attached REG_EQUIV note.
2679 At this point this only function parameters should have
2680 REG_EQUIV notes and if the argument slot is used somewhere
2681 explicitly, it means address of parameter has been taken,
2682 so we should not extend the lifetime of the pseudo. */
2683 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
2684 || ! MEM_P (XEXP (note, 0))))
2685 newreg = this_rtx;
2687 if (newcnst && constprop_register (insn, x, newcnst))
2689 if (dump_file != NULL)
2691 fprintf (dump_file, "LOCAL CONST-PROP: Replacing reg %d in ",
2692 REGNO (x));
2693 fprintf (dump_file, "insn %d with constant ",
2694 INSN_UID (insn));
2695 print_rtl (dump_file, newcnst);
2696 fprintf (dump_file, "\n");
2698 local_const_prop_count++;
2699 return true;
2701 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
2703 if (dump_file != NULL)
2705 fprintf (dump_file,
2706 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
2707 REGNO (x), INSN_UID (insn));
2708 fprintf (dump_file, " with reg %d\n", REGNO (newreg));
2710 local_copy_prop_count++;
2711 return true;
2714 return false;
2717 /* Do local const/copy propagation (i.e. within each basic block). */
2719 static int
2720 local_cprop_pass (void)
2722 basic_block bb;
2723 rtx insn;
2724 struct reg_use *reg_used;
2725 bool changed = false;
2727 cselib_init (0);
2728 FOR_EACH_BB (bb)
2730 FOR_BB_INSNS (bb, insn)
2732 if (INSN_P (insn))
2734 rtx note = find_reg_equal_equiv_note (insn);
2737 reg_use_count = 0;
2738 note_uses (&PATTERN (insn), local_cprop_find_used_regs,
2739 NULL);
2740 if (note)
2741 local_cprop_find_used_regs (&XEXP (note, 0), NULL);
2743 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2744 reg_used++, reg_use_count--)
2746 if (do_local_cprop (reg_used->reg_rtx, insn))
2748 changed = true;
2749 break;
2752 if (INSN_DELETED_P (insn))
2753 break;
2755 while (reg_use_count);
2757 cselib_process_insn (insn);
2760 /* Forget everything at the end of a basic block. */
2761 cselib_clear_table ();
2764 cselib_finish ();
2766 return changed;
2769 /* Similar to get_condition, only the resulting condition must be
2770 valid at JUMP, instead of at EARLIEST.
2772 This differs from noce_get_condition in ifcvt.c in that we prefer not to
2773 settle for the condition variable in the jump instruction being integral.
2774 We prefer to be able to record the value of a user variable, rather than
2775 the value of a temporary used in a condition. This could be solved by
2776 recording the value of *every* register scanned by canonicalize_condition,
2777 but this would require some code reorganization. */
2780 fis_get_condition (rtx jump)
2782 return get_condition (jump, NULL, false, true);
2785 /* Check the comparison COND to see if we can safely form an implicit set from
2786 it. COND is either an EQ or NE comparison. */
2788 static bool
2789 implicit_set_cond_p (const_rtx cond)
2791 const enum machine_mode mode = GET_MODE (XEXP (cond, 0));
2792 const_rtx cst = XEXP (cond, 1);
2794 /* We can't perform this optimization if either operand might be or might
2795 contain a signed zero. */
2796 if (HONOR_SIGNED_ZEROS (mode))
2798 /* It is sufficient to check if CST is or contains a zero. We must
2799 handle float, complex, and vector. If any subpart is a zero, then
2800 the optimization can't be performed. */
2801 /* ??? The complex and vector checks are not implemented yet. We just
2802 always return zero for them. */
2803 if (GET_CODE (cst) == CONST_DOUBLE)
2805 REAL_VALUE_TYPE d;
2806 REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
2807 if (REAL_VALUES_EQUAL (d, dconst0))
2808 return 0;
2810 else
2811 return 0;
2814 return gcse_constant_p (cst);
2817 /* Find the implicit sets of a function. An "implicit set" is a constraint
2818 on the value of a variable, implied by a conditional jump. For example,
2819 following "if (x == 2)", the then branch may be optimized as though the
2820 conditional performed an "explicit set", in this example, "x = 2". This
2821 function records the set patterns that are implicit at the start of each
2822 basic block.
2824 FIXME: This would be more effective if critical edges are pre-split. As
2825 it is now, we can't record implicit sets for blocks that have
2826 critical successor edges. This results in missed optimizations
2827 and in more (unnecessary) work in cfgcleanup.c:thread_jump(). */
2829 static void
2830 find_implicit_sets (void)
2832 basic_block bb, dest;
2833 unsigned int count;
2834 rtx cond, new_rtx;
2836 count = 0;
2837 FOR_EACH_BB (bb)
2838 /* Check for more than one successor. */
2839 if (EDGE_COUNT (bb->succs) > 1)
2841 cond = fis_get_condition (BB_END (bb));
2843 if (cond
2844 && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
2845 && REG_P (XEXP (cond, 0))
2846 && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
2847 && implicit_set_cond_p (cond))
2849 dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
2850 : FALLTHRU_EDGE (bb)->dest;
2852 if (dest
2853 /* Record nothing for a critical edge. */
2854 && single_pred_p (dest)
2855 && dest != EXIT_BLOCK_PTR)
2857 new_rtx = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
2858 XEXP (cond, 1));
2859 implicit_sets[dest->index] = new_rtx;
2860 if (dump_file)
2862 fprintf(dump_file, "Implicit set of reg %d in ",
2863 REGNO (XEXP (cond, 0)));
2864 fprintf(dump_file, "basic block %d\n", dest->index);
2866 count++;
2871 if (dump_file)
2872 fprintf (dump_file, "Found %d implicit sets\n", count);
2875 /* Bypass conditional jumps. */
2877 /* The value of last_basic_block at the beginning of the jump_bypass
2878 pass. The use of redirect_edge_and_branch_force may introduce new
2879 basic blocks, but the data flow analysis is only valid for basic
2880 block indices less than bypass_last_basic_block. */
2882 static int bypass_last_basic_block;
2884 /* Find a set of REGNO to a constant that is available at the end of basic
2885 block BB. Returns NULL if no such set is found. Based heavily upon
2886 find_avail_set. */
2888 static struct expr *
2889 find_bypass_set (int regno, int bb)
2891 struct expr *result = 0;
2893 for (;;)
2895 rtx src;
2896 struct expr *set = lookup_set (regno, &set_hash_table);
2898 while (set)
2900 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
2901 break;
2902 set = next_set (regno, set);
2905 if (set == 0)
2906 break;
2908 gcc_assert (GET_CODE (set->expr) == SET);
2910 src = SET_SRC (set->expr);
2911 if (gcse_constant_p (src))
2912 result = set;
2914 if (! REG_P (src))
2915 break;
2917 regno = REGNO (src);
2919 return result;
2923 /* Subroutine of bypass_block that checks whether a pseudo is killed by
2924 any of the instructions inserted on an edge. Jump bypassing places
2925 condition code setters on CFG edges using insert_insn_on_edge. This
2926 function is required to check that our data flow analysis is still
2927 valid prior to commit_edge_insertions. */
2929 static bool
2930 reg_killed_on_edge (const_rtx reg, const_edge e)
2932 rtx insn;
2934 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
2935 if (INSN_P (insn) && reg_set_p (reg, insn))
2936 return true;
2938 return false;
2941 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
2942 basic block BB which has more than one predecessor. If not NULL, SETCC
2943 is the first instruction of BB, which is immediately followed by JUMP_INSN
2944 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
2945 Returns nonzero if a change was made.
2947 During the jump bypassing pass, we may place copies of SETCC instructions
2948 on CFG edges. The following routine must be careful to pay attention to
2949 these inserted insns when performing its transformations. */
2951 static int
2952 bypass_block (basic_block bb, rtx setcc, rtx jump)
2954 rtx insn, note;
2955 edge e, edest;
2956 int i, change;
2957 int may_be_loop_header;
2958 unsigned removed_p;
2959 edge_iterator ei;
2961 insn = (setcc != NULL) ? setcc : jump;
2963 /* Determine set of register uses in INSN. */
2964 reg_use_count = 0;
2965 note_uses (&PATTERN (insn), find_used_regs, NULL);
2966 note = find_reg_equal_equiv_note (insn);
2967 if (note)
2968 find_used_regs (&XEXP (note, 0), NULL);
2970 may_be_loop_header = false;
2971 FOR_EACH_EDGE (e, ei, bb->preds)
2972 if (e->flags & EDGE_DFS_BACK)
2974 may_be_loop_header = true;
2975 break;
2978 change = 0;
2979 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
2981 removed_p = 0;
2983 if (e->flags & EDGE_COMPLEX)
2985 ei_next (&ei);
2986 continue;
2989 /* We can't redirect edges from new basic blocks. */
2990 if (e->src->index >= bypass_last_basic_block)
2992 ei_next (&ei);
2993 continue;
2996 /* The irreducible loops created by redirecting of edges entering the
2997 loop from outside would decrease effectiveness of some of the following
2998 optimizations, so prevent this. */
2999 if (may_be_loop_header
3000 && !(e->flags & EDGE_DFS_BACK))
3002 ei_next (&ei);
3003 continue;
3006 for (i = 0; i < reg_use_count; i++)
3008 struct reg_use *reg_used = &reg_use_table[i];
3009 unsigned int regno = REGNO (reg_used->reg_rtx);
3010 basic_block dest, old_dest;
3011 struct expr *set;
3012 rtx src, new_rtx;
3014 set = find_bypass_set (regno, e->src->index);
3016 if (! set)
3017 continue;
3019 /* Check the data flow is valid after edge insertions. */
3020 if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
3021 continue;
3023 src = SET_SRC (pc_set (jump));
3025 if (setcc != NULL)
3026 src = simplify_replace_rtx (src,
3027 SET_DEST (PATTERN (setcc)),
3028 SET_SRC (PATTERN (setcc)));
3030 new_rtx = simplify_replace_rtx (src, reg_used->reg_rtx,
3031 SET_SRC (set->expr));
3033 /* Jump bypassing may have already placed instructions on
3034 edges of the CFG. We can't bypass an outgoing edge that
3035 has instructions associated with it, as these insns won't
3036 get executed if the incoming edge is redirected. */
3038 if (new_rtx == pc_rtx)
3040 edest = FALLTHRU_EDGE (bb);
3041 dest = edest->insns.r ? NULL : edest->dest;
3043 else if (GET_CODE (new_rtx) == LABEL_REF)
3045 dest = BLOCK_FOR_INSN (XEXP (new_rtx, 0));
3046 /* Don't bypass edges containing instructions. */
3047 edest = find_edge (bb, dest);
3048 if (edest && edest->insns.r)
3049 dest = NULL;
3051 else
3052 dest = NULL;
3054 /* Avoid unification of the edge with other edges from original
3055 branch. We would end up emitting the instruction on "both"
3056 edges. */
3058 if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc)))
3059 && find_edge (e->src, dest))
3060 dest = NULL;
3062 old_dest = e->dest;
3063 if (dest != NULL
3064 && dest != old_dest
3065 && dest != EXIT_BLOCK_PTR)
3067 redirect_edge_and_branch_force (e, dest);
3069 /* Copy the register setter to the redirected edge.
3070 Don't copy CC0 setters, as CC0 is dead after jump. */
3071 if (setcc)
3073 rtx pat = PATTERN (setcc);
3074 if (!CC0_P (SET_DEST (pat)))
3075 insert_insn_on_edge (copy_insn (pat), e);
3078 if (dump_file != NULL)
3080 fprintf (dump_file, "JUMP-BYPASS: Proved reg %d "
3081 "in jump_insn %d equals constant ",
3082 regno, INSN_UID (jump));
3083 print_rtl (dump_file, SET_SRC (set->expr));
3084 fprintf (dump_file, "\nBypass edge from %d->%d to %d\n",
3085 e->src->index, old_dest->index, dest->index);
3087 change = 1;
3088 removed_p = 1;
3089 break;
3092 if (!removed_p)
3093 ei_next (&ei);
3095 return change;
3098 /* Find basic blocks with more than one predecessor that only contain a
3099 single conditional jump. If the result of the comparison is known at
3100 compile-time from any incoming edge, redirect that edge to the
3101 appropriate target. Returns nonzero if a change was made.
3103 This function is now mis-named, because we also handle indirect jumps. */
3105 static int
3106 bypass_conditional_jumps (void)
3108 basic_block bb;
3109 int changed;
3110 rtx setcc;
3111 rtx insn;
3112 rtx dest;
3114 /* Note we start at block 1. */
3115 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3116 return 0;
3118 bypass_last_basic_block = last_basic_block;
3119 mark_dfs_back_edges ();
3121 changed = 0;
3122 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
3123 EXIT_BLOCK_PTR, next_bb)
3125 /* Check for more than one predecessor. */
3126 if (!single_pred_p (bb))
3128 setcc = NULL_RTX;
3129 FOR_BB_INSNS (bb, insn)
3130 if (DEBUG_INSN_P (insn))
3131 continue;
3132 else if (NONJUMP_INSN_P (insn))
3134 if (setcc)
3135 break;
3136 if (GET_CODE (PATTERN (insn)) != SET)
3137 break;
3139 dest = SET_DEST (PATTERN (insn));
3140 if (REG_P (dest) || CC0_P (dest))
3141 setcc = insn;
3142 else
3143 break;
3145 else if (JUMP_P (insn))
3147 if ((any_condjump_p (insn) || computed_jump_p (insn))
3148 && onlyjump_p (insn))
3149 changed |= bypass_block (bb, setcc, insn);
3150 break;
3152 else if (INSN_P (insn))
3153 break;
3157 /* If we bypassed any register setting insns, we inserted a
3158 copy on the redirected edge. These need to be committed. */
3159 if (changed)
3160 commit_edge_insertions ();
3162 return changed;
3165 /* Compute PRE+LCM working variables. */
3167 /* Local properties of expressions. */
3168 /* Nonzero for expressions that are transparent in the block. */
3169 static sbitmap *transp;
3171 /* Nonzero for expressions that are transparent at the end of the block.
3172 This is only zero for expressions killed by abnormal critical edge
3173 created by a calls. */
3174 static sbitmap *transpout;
3176 /* Nonzero for expressions that are computed (available) in the block. */
3177 static sbitmap *comp;
3179 /* Nonzero for expressions that are locally anticipatable in the block. */
3180 static sbitmap *antloc;
3182 /* Nonzero for expressions where this block is an optimal computation
3183 point. */
3184 static sbitmap *pre_optimal;
3186 /* Nonzero for expressions which are redundant in a particular block. */
3187 static sbitmap *pre_redundant;
3189 /* Nonzero for expressions which should be inserted on a specific edge. */
3190 static sbitmap *pre_insert_map;
3192 /* Nonzero for expressions which should be deleted in a specific block. */
3193 static sbitmap *pre_delete_map;
3195 /* Contains the edge_list returned by pre_edge_lcm. */
3196 static struct edge_list *edge_list;
3198 /* Allocate vars used for PRE analysis. */
3200 static void
3201 alloc_pre_mem (int n_blocks, int n_exprs)
3203 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
3204 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
3205 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
3207 pre_optimal = NULL;
3208 pre_redundant = NULL;
3209 pre_insert_map = NULL;
3210 pre_delete_map = NULL;
3211 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
3213 /* pre_insert and pre_delete are allocated later. */
3216 /* Free vars used for PRE analysis. */
3218 static void
3219 free_pre_mem (void)
3221 sbitmap_vector_free (transp);
3222 sbitmap_vector_free (comp);
3224 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3226 if (pre_optimal)
3227 sbitmap_vector_free (pre_optimal);
3228 if (pre_redundant)
3229 sbitmap_vector_free (pre_redundant);
3230 if (pre_insert_map)
3231 sbitmap_vector_free (pre_insert_map);
3232 if (pre_delete_map)
3233 sbitmap_vector_free (pre_delete_map);
3235 transp = comp = NULL;
3236 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
3239 /* Top level routine to do the dataflow analysis needed by PRE. */
3241 static void
3242 compute_pre_data (void)
3244 sbitmap trapping_expr;
3245 basic_block bb;
3246 unsigned int ui;
3248 compute_local_properties (transp, comp, antloc, &expr_hash_table);
3249 sbitmap_vector_zero (ae_kill, last_basic_block);
3251 /* Collect expressions which might trap. */
3252 trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
3253 sbitmap_zero (trapping_expr);
3254 for (ui = 0; ui < expr_hash_table.size; ui++)
3256 struct expr *e;
3257 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
3258 if (may_trap_p (e->expr))
3259 SET_BIT (trapping_expr, e->bitmap_index);
3262 /* Compute ae_kill for each basic block using:
3264 ~(TRANSP | COMP)
3267 FOR_EACH_BB (bb)
3269 edge e;
3270 edge_iterator ei;
3272 /* If the current block is the destination of an abnormal edge, we
3273 kill all trapping expressions because we won't be able to properly
3274 place the instruction on the edge. So make them neither
3275 anticipatable nor transparent. This is fairly conservative. */
3276 FOR_EACH_EDGE (e, ei, bb->preds)
3277 if (e->flags & EDGE_ABNORMAL)
3279 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
3280 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
3281 break;
3284 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
3285 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
3288 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
3289 ae_kill, &pre_insert_map, &pre_delete_map);
3290 sbitmap_vector_free (antloc);
3291 antloc = NULL;
3292 sbitmap_vector_free (ae_kill);
3293 ae_kill = NULL;
3294 sbitmap_free (trapping_expr);
3297 /* PRE utilities */
3299 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3300 block BB.
3302 VISITED is a pointer to a working buffer for tracking which BB's have
3303 been visited. It is NULL for the top-level call.
3305 We treat reaching expressions that go through blocks containing the same
3306 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3307 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3308 2 as not reaching. The intent is to improve the probability of finding
3309 only one reaching expression and to reduce register lifetimes by picking
3310 the closest such expression. */
3312 static int
3313 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
3315 edge pred;
3316 edge_iterator ei;
3318 FOR_EACH_EDGE (pred, ei, bb->preds)
3320 basic_block pred_bb = pred->src;
3322 if (pred->src == ENTRY_BLOCK_PTR
3323 /* Has predecessor has already been visited? */
3324 || visited[pred_bb->index])
3325 ;/* Nothing to do. */
3327 /* Does this predecessor generate this expression? */
3328 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
3330 /* Is this the occurrence we're looking for?
3331 Note that there's only one generating occurrence per block
3332 so we just need to check the block number. */
3333 if (occr_bb == pred_bb)
3334 return 1;
3336 visited[pred_bb->index] = 1;
3338 /* Ignore this predecessor if it kills the expression. */
3339 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
3340 visited[pred_bb->index] = 1;
3342 /* Neither gen nor kill. */
3343 else
3345 visited[pred_bb->index] = 1;
3346 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
3347 return 1;
3351 /* All paths have been checked. */
3352 return 0;
3355 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3356 memory allocated for that function is returned. */
3358 static int
3359 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
3361 int rval;
3362 char *visited = XCNEWVEC (char, last_basic_block);
3364 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
3366 free (visited);
3367 return rval;
3371 /* Given an expr, generate RTL which we can insert at the end of a BB,
3372 or on an edge. Set the block number of any insns generated to
3373 the value of BB. */
3375 static rtx
3376 process_insert_insn (struct expr *expr)
3378 rtx reg = expr->reaching_reg;
3379 rtx exp = copy_rtx (expr->expr);
3380 rtx pat;
3382 start_sequence ();
3384 /* If the expression is something that's an operand, like a constant,
3385 just copy it to a register. */
3386 if (general_operand (exp, GET_MODE (reg)))
3387 emit_move_insn (reg, exp);
3389 /* Otherwise, make a new insn to compute this expression and make sure the
3390 insn will be recognized (this also adds any needed CLOBBERs). Copy the
3391 expression to make sure we don't have any sharing issues. */
3392 else
3394 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
3396 if (insn_invalid_p (insn))
3397 gcc_unreachable ();
3401 pat = get_insns ();
3402 end_sequence ();
3404 return pat;
3407 /* Add EXPR to the end of basic block BB.
3409 This is used by both the PRE and code hoisting.
3411 For PRE, we want to verify that the expr is either transparent
3412 or locally anticipatable in the target block. This check makes
3413 no sense for code hoisting. */
3415 static void
3416 insert_insn_end_basic_block (struct expr *expr, basic_block bb, int pre)
3418 rtx insn = BB_END (bb);
3419 rtx new_insn;
3420 rtx reg = expr->reaching_reg;
3421 int regno = REGNO (reg);
3422 rtx pat, pat_end;
3424 pat = process_insert_insn (expr);
3425 gcc_assert (pat && INSN_P (pat));
3427 pat_end = pat;
3428 while (NEXT_INSN (pat_end) != NULL_RTX)
3429 pat_end = NEXT_INSN (pat_end);
3431 /* If the last insn is a jump, insert EXPR in front [taking care to
3432 handle cc0, etc. properly]. Similarly we need to care trapping
3433 instructions in presence of non-call exceptions. */
3435 if (JUMP_P (insn)
3436 || (NONJUMP_INSN_P (insn)
3437 && (!single_succ_p (bb)
3438 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
3440 #ifdef HAVE_cc0
3441 rtx note;
3442 #endif
3443 /* It should always be the case that we can put these instructions
3444 anywhere in the basic block with performing PRE optimizations.
3445 Check this. */
3446 gcc_assert (!NONJUMP_INSN_P (insn) || !pre
3447 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
3448 || TEST_BIT (transp[bb->index], expr->bitmap_index));
3450 /* If this is a jump table, then we can't insert stuff here. Since
3451 we know the previous real insn must be the tablejump, we insert
3452 the new instruction just before the tablejump. */
3453 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
3454 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
3455 insn = prev_real_insn (insn);
3457 #ifdef HAVE_cc0
3458 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
3459 if cc0 isn't set. */
3460 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3461 if (note)
3462 insn = XEXP (note, 0);
3463 else
3465 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
3466 if (maybe_cc0_setter
3467 && INSN_P (maybe_cc0_setter)
3468 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
3469 insn = maybe_cc0_setter;
3471 #endif
3472 /* FIXME: What if something in cc0/jump uses value set in new insn? */
3473 new_insn = emit_insn_before_noloc (pat, insn, bb);
3476 /* Likewise if the last insn is a call, as will happen in the presence
3477 of exception handling. */
3478 else if (CALL_P (insn)
3479 && (!single_succ_p (bb)
3480 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
3482 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
3483 we search backward and place the instructions before the first
3484 parameter is loaded. Do this for everyone for consistency and a
3485 presumption that we'll get better code elsewhere as well.
3487 It should always be the case that we can put these instructions
3488 anywhere in the basic block with performing PRE optimizations.
3489 Check this. */
3491 gcc_assert (!pre
3492 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
3493 || TEST_BIT (transp[bb->index], expr->bitmap_index));
3495 /* Since different machines initialize their parameter registers
3496 in different orders, assume nothing. Collect the set of all
3497 parameter registers. */
3498 insn = find_first_parameter_load (insn, BB_HEAD (bb));
3500 /* If we found all the parameter loads, then we want to insert
3501 before the first parameter load.
3503 If we did not find all the parameter loads, then we might have
3504 stopped on the head of the block, which could be a CODE_LABEL.
3505 If we inserted before the CODE_LABEL, then we would be putting
3506 the insn in the wrong basic block. In that case, put the insn
3507 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
3508 while (LABEL_P (insn)
3509 || NOTE_INSN_BASIC_BLOCK_P (insn))
3510 insn = NEXT_INSN (insn);
3512 new_insn = emit_insn_before_noloc (pat, insn, bb);
3514 else
3515 new_insn = emit_insn_after_noloc (pat, insn, bb);
3517 while (1)
3519 if (INSN_P (pat))
3520 add_label_notes (PATTERN (pat), new_insn);
3521 if (pat == pat_end)
3522 break;
3523 pat = NEXT_INSN (pat);
3526 gcse_create_count++;
3528 if (dump_file)
3530 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
3531 bb->index, INSN_UID (new_insn));
3532 fprintf (dump_file, "copying expression %d to reg %d\n",
3533 expr->bitmap_index, regno);
3537 /* Insert partially redundant expressions on edges in the CFG to make
3538 the expressions fully redundant. */
3540 static int
3541 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
3543 int e, i, j, num_edges, set_size, did_insert = 0;
3544 sbitmap *inserted;
3546 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
3547 if it reaches any of the deleted expressions. */
3549 set_size = pre_insert_map[0]->size;
3550 num_edges = NUM_EDGES (edge_list);
3551 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
3552 sbitmap_vector_zero (inserted, num_edges);
3554 for (e = 0; e < num_edges; e++)
3556 int indx;
3557 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
3559 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
3561 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
3563 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
3564 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
3566 struct expr *expr = index_map[j];
3567 struct occr *occr;
3569 /* Now look at each deleted occurrence of this expression. */
3570 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
3572 if (! occr->deleted_p)
3573 continue;
3575 /* Insert this expression on this edge if it would
3576 reach the deleted occurrence in BB. */
3577 if (!TEST_BIT (inserted[e], j))
3579 rtx insn;
3580 edge eg = INDEX_EDGE (edge_list, e);
3582 /* We can't insert anything on an abnormal and
3583 critical edge, so we insert the insn at the end of
3584 the previous block. There are several alternatives
3585 detailed in Morgans book P277 (sec 10.5) for
3586 handling this situation. This one is easiest for
3587 now. */
3589 if (eg->flags & EDGE_ABNORMAL)
3590 insert_insn_end_basic_block (index_map[j], bb, 0);
3591 else
3593 insn = process_insert_insn (index_map[j]);
3594 insert_insn_on_edge (insn, eg);
3597 if (dump_file)
3599 fprintf (dump_file, "PRE: edge (%d,%d), ",
3600 bb->index,
3601 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
3602 fprintf (dump_file, "copy expression %d\n",
3603 expr->bitmap_index);
3606 update_ld_motion_stores (expr);
3607 SET_BIT (inserted[e], j);
3608 did_insert = 1;
3609 gcse_create_count++;
3616 sbitmap_vector_free (inserted);
3617 return did_insert;
3620 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
3621 Given "old_reg <- expr" (INSN), instead of adding after it
3622 reaching_reg <- old_reg
3623 it's better to do the following:
3624 reaching_reg <- expr
3625 old_reg <- reaching_reg
3626 because this way copy propagation can discover additional PRE
3627 opportunities. But if this fails, we try the old way.
3628 When "expr" is a store, i.e.
3629 given "MEM <- old_reg", instead of adding after it
3630 reaching_reg <- old_reg
3631 it's better to add it before as follows:
3632 reaching_reg <- old_reg
3633 MEM <- reaching_reg. */
3635 static void
3636 pre_insert_copy_insn (struct expr *expr, rtx insn)
3638 rtx reg = expr->reaching_reg;
3639 int regno = REGNO (reg);
3640 int indx = expr->bitmap_index;
3641 rtx pat = PATTERN (insn);
3642 rtx set, first_set, new_insn;
3643 rtx old_reg;
3644 int i;
3646 /* This block matches the logic in hash_scan_insn. */
3647 switch (GET_CODE (pat))
3649 case SET:
3650 set = pat;
3651 break;
3653 case PARALLEL:
3654 /* Search through the parallel looking for the set whose
3655 source was the expression that we're interested in. */
3656 first_set = NULL_RTX;
3657 set = NULL_RTX;
3658 for (i = 0; i < XVECLEN (pat, 0); i++)
3660 rtx x = XVECEXP (pat, 0, i);
3661 if (GET_CODE (x) == SET)
3663 /* If the source was a REG_EQUAL or REG_EQUIV note, we
3664 may not find an equivalent expression, but in this
3665 case the PARALLEL will have a single set. */
3666 if (first_set == NULL_RTX)
3667 first_set = x;
3668 if (expr_equiv_p (SET_SRC (x), expr->expr))
3670 set = x;
3671 break;
3676 gcc_assert (first_set);
3677 if (set == NULL_RTX)
3678 set = first_set;
3679 break;
3681 default:
3682 gcc_unreachable ();
3685 if (REG_P (SET_DEST (set)))
3687 old_reg = SET_DEST (set);
3688 /* Check if we can modify the set destination in the original insn. */
3689 if (validate_change (insn, &SET_DEST (set), reg, 0))
3691 new_insn = gen_move_insn (old_reg, reg);
3692 new_insn = emit_insn_after (new_insn, insn);
3694 else
3696 new_insn = gen_move_insn (reg, old_reg);
3697 new_insn = emit_insn_after (new_insn, insn);
3700 else /* This is possible only in case of a store to memory. */
3702 old_reg = SET_SRC (set);
3703 new_insn = gen_move_insn (reg, old_reg);
3705 /* Check if we can modify the set source in the original insn. */
3706 if (validate_change (insn, &SET_SRC (set), reg, 0))
3707 new_insn = emit_insn_before (new_insn, insn);
3708 else
3709 new_insn = emit_insn_after (new_insn, insn);
3712 gcse_create_count++;
3714 if (dump_file)
3715 fprintf (dump_file,
3716 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
3717 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
3718 INSN_UID (insn), regno);
3721 /* Copy available expressions that reach the redundant expression
3722 to `reaching_reg'. */
3724 static void
3725 pre_insert_copies (void)
3727 unsigned int i, added_copy;
3728 struct expr *expr;
3729 struct occr *occr;
3730 struct occr *avail;
3732 /* For each available expression in the table, copy the result to
3733 `reaching_reg' if the expression reaches a deleted one.
3735 ??? The current algorithm is rather brute force.
3736 Need to do some profiling. */
3738 for (i = 0; i < expr_hash_table.size; i++)
3739 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
3741 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
3742 we don't want to insert a copy here because the expression may not
3743 really be redundant. So only insert an insn if the expression was
3744 deleted. This test also avoids further processing if the
3745 expression wasn't deleted anywhere. */
3746 if (expr->reaching_reg == NULL)
3747 continue;
3749 /* Set when we add a copy for that expression. */
3750 added_copy = 0;
3752 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
3754 if (! occr->deleted_p)
3755 continue;
3757 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
3759 rtx insn = avail->insn;
3761 /* No need to handle this one if handled already. */
3762 if (avail->copied_p)
3763 continue;
3765 /* Don't handle this one if it's a redundant one. */
3766 if (INSN_DELETED_P (insn))
3767 continue;
3769 /* Or if the expression doesn't reach the deleted one. */
3770 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
3771 expr,
3772 BLOCK_FOR_INSN (occr->insn)))
3773 continue;
3775 added_copy = 1;
3777 /* Copy the result of avail to reaching_reg. */
3778 pre_insert_copy_insn (expr, insn);
3779 avail->copied_p = 1;
3783 if (added_copy)
3784 update_ld_motion_stores (expr);
3788 /* Emit move from SRC to DEST noting the equivalence with expression computed
3789 in INSN. */
3790 static rtx
3791 gcse_emit_move_after (rtx src, rtx dest, rtx insn)
3793 rtx new_rtx;
3794 rtx set = single_set (insn), set2;
3795 rtx note;
3796 rtx eqv;
3798 /* This should never fail since we're creating a reg->reg copy
3799 we've verified to be valid. */
3801 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
3803 /* Note the equivalence for local CSE pass. */
3804 set2 = single_set (new_rtx);
3805 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
3806 return new_rtx;
3807 if ((note = find_reg_equal_equiv_note (insn)))
3808 eqv = XEXP (note, 0);
3809 else
3810 eqv = SET_SRC (set);
3812 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
3814 return new_rtx;
3817 /* Delete redundant computations.
3818 Deletion is done by changing the insn to copy the `reaching_reg' of
3819 the expression into the result of the SET. It is left to later passes
3820 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
3822 Returns nonzero if a change is made. */
3824 static int
3825 pre_delete (void)
3827 unsigned int i;
3828 int changed;
3829 struct expr *expr;
3830 struct occr *occr;
3832 changed = 0;
3833 for (i = 0; i < expr_hash_table.size; i++)
3834 for (expr = expr_hash_table.table[i];
3835 expr != NULL;
3836 expr = expr->next_same_hash)
3838 int indx = expr->bitmap_index;
3840 /* We only need to search antic_occr since we require
3841 ANTLOC != 0. */
3843 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
3845 rtx insn = occr->insn;
3846 rtx set;
3847 basic_block bb = BLOCK_FOR_INSN (insn);
3849 /* We only delete insns that have a single_set. */
3850 if (TEST_BIT (pre_delete_map[bb->index], indx)
3851 && (set = single_set (insn)) != 0
3852 && dbg_cnt (pre_insn))
3854 /* Create a pseudo-reg to store the result of reaching
3855 expressions into. Get the mode for the new pseudo from
3856 the mode of the original destination pseudo. */
3857 if (expr->reaching_reg == NULL)
3858 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
3860 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
3861 delete_insn (insn);
3862 occr->deleted_p = 1;
3863 changed = 1;
3864 gcse_subst_count++;
3866 if (dump_file)
3868 fprintf (dump_file,
3869 "PRE: redundant insn %d (expression %d) in ",
3870 INSN_UID (insn), indx);
3871 fprintf (dump_file, "bb %d, reaching reg is %d\n",
3872 bb->index, REGNO (expr->reaching_reg));
3878 return changed;
3881 /* Perform GCSE optimizations using PRE.
3882 This is called by one_pre_gcse_pass after all the dataflow analysis
3883 has been done.
3885 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
3886 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
3887 Compiler Design and Implementation.
3889 ??? A new pseudo reg is created to hold the reaching expression. The nice
3890 thing about the classical approach is that it would try to use an existing
3891 reg. If the register can't be adequately optimized [i.e. we introduce
3892 reload problems], one could add a pass here to propagate the new register
3893 through the block.
3895 ??? We don't handle single sets in PARALLELs because we're [currently] not
3896 able to copy the rest of the parallel when we insert copies to create full
3897 redundancies from partial redundancies. However, there's no reason why we
3898 can't handle PARALLELs in the cases where there are no partial
3899 redundancies. */
3901 static int
3902 pre_gcse (void)
3904 unsigned int i;
3905 int did_insert, changed;
3906 struct expr **index_map;
3907 struct expr *expr;
3909 /* Compute a mapping from expression number (`bitmap_index') to
3910 hash table entry. */
3912 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
3913 for (i = 0; i < expr_hash_table.size; i++)
3914 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
3915 index_map[expr->bitmap_index] = expr;
3917 /* Delete the redundant insns first so that
3918 - we know what register to use for the new insns and for the other
3919 ones with reaching expressions
3920 - we know which insns are redundant when we go to create copies */
3922 changed = pre_delete ();
3923 did_insert = pre_edge_insert (edge_list, index_map);
3925 /* In other places with reaching expressions, copy the expression to the
3926 specially allocated pseudo-reg that reaches the redundant expr. */
3927 pre_insert_copies ();
3928 if (did_insert)
3930 commit_edge_insertions ();
3931 changed = 1;
3934 free (index_map);
3935 return changed;
3938 /* Top level routine to perform one PRE GCSE pass.
3940 Return nonzero if a change was made. */
3942 static int
3943 one_pre_gcse_pass (void)
3945 int changed = 0;
3947 gcse_subst_count = 0;
3948 gcse_create_count = 0;
3950 /* Return if there's nothing to do, or it is too expensive. */
3951 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
3952 || is_too_expensive (_("PRE disabled")))
3953 return 0;
3955 /* We need alias. */
3956 init_alias_analysis ();
3958 bytes_used = 0;
3959 gcc_obstack_init (&gcse_obstack);
3960 alloc_gcse_mem ();
3962 alloc_hash_table (&expr_hash_table, 0);
3963 add_noreturn_fake_exit_edges ();
3964 if (flag_gcse_lm)
3965 compute_ld_motion_mems ();
3967 compute_hash_table (&expr_hash_table);
3968 trim_ld_motion_mems ();
3969 if (dump_file)
3970 dump_hash_table (dump_file, "Expression", &expr_hash_table);
3972 if (expr_hash_table.n_elems > 0)
3974 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
3975 compute_pre_data ();
3976 changed |= pre_gcse ();
3977 free_edge_list (edge_list);
3978 free_pre_mem ();
3981 free_ldst_mems ();
3982 remove_fake_exit_edges ();
3983 free_hash_table (&expr_hash_table);
3985 free_gcse_mem ();
3986 obstack_free (&gcse_obstack, NULL);
3988 /* We are finished with alias. */
3989 end_alias_analysis ();
3991 if (dump_file)
3993 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
3994 current_function_name (), n_basic_blocks, bytes_used);
3995 fprintf (dump_file, "%d substs, %d insns created\n",
3996 gcse_subst_count, gcse_create_count);
3999 return changed;
4002 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
4003 to INSN. If such notes are added to an insn which references a
4004 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
4005 that note, because the following loop optimization pass requires
4006 them. */
4008 /* ??? If there was a jump optimization pass after gcse and before loop,
4009 then we would not need to do this here, because jump would add the
4010 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
4012 static void
4013 add_label_notes (rtx x, rtx insn)
4015 enum rtx_code code = GET_CODE (x);
4016 int i, j;
4017 const char *fmt;
4019 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4021 /* This code used to ignore labels that referred to dispatch tables to
4022 avoid flow generating (slightly) worse code.
4024 We no longer ignore such label references (see LABEL_REF handling in
4025 mark_jump_label for additional information). */
4027 /* There's no reason for current users to emit jump-insns with
4028 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
4029 notes. */
4030 gcc_assert (!JUMP_P (insn));
4031 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (x, 0));
4033 if (LABEL_P (XEXP (x, 0)))
4034 LABEL_NUSES (XEXP (x, 0))++;
4036 return;
4039 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
4041 if (fmt[i] == 'e')
4042 add_label_notes (XEXP (x, i), insn);
4043 else if (fmt[i] == 'E')
4044 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4045 add_label_notes (XVECEXP (x, i, j), insn);
4049 /* Compute transparent outgoing information for each block.
4051 An expression is transparent to an edge unless it is killed by
4052 the edge itself. This can only happen with abnormal control flow,
4053 when the edge is traversed through a call. This happens with
4054 non-local labels and exceptions.
4056 This would not be necessary if we split the edge. While this is
4057 normally impossible for abnormal critical edges, with some effort
4058 it should be possible with exception handling, since we still have
4059 control over which handler should be invoked. But due to increased
4060 EH table sizes, this may not be worthwhile. */
4062 static void
4063 compute_transpout (void)
4065 basic_block bb;
4066 unsigned int i;
4067 struct expr *expr;
4069 sbitmap_vector_ones (transpout, last_basic_block);
4071 FOR_EACH_BB (bb)
4073 /* Note that flow inserted a nop at the end of basic blocks that
4074 end in call instructions for reasons other than abnormal
4075 control flow. */
4076 if (! CALL_P (BB_END (bb)))
4077 continue;
4079 for (i = 0; i < expr_hash_table.size; i++)
4080 for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
4081 if (MEM_P (expr->expr))
4083 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
4084 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
4085 continue;
4087 /* ??? Optimally, we would use interprocedural alias
4088 analysis to determine if this mem is actually killed
4089 by this call. */
4090 RESET_BIT (transpout[bb->index], expr->bitmap_index);
4095 /* Code Hoisting variables and subroutines. */
4097 /* Very busy expressions. */
4098 static sbitmap *hoist_vbein;
4099 static sbitmap *hoist_vbeout;
4101 /* Hoistable expressions. */
4102 static sbitmap *hoist_exprs;
4104 /* ??? We could compute post dominators and run this algorithm in
4105 reverse to perform tail merging, doing so would probably be
4106 more effective than the tail merging code in jump.c.
4108 It's unclear if tail merging could be run in parallel with
4109 code hoisting. It would be nice. */
4111 /* Allocate vars used for code hoisting analysis. */
4113 static void
4114 alloc_code_hoist_mem (int n_blocks, int n_exprs)
4116 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4117 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4118 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4120 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
4121 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
4122 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
4123 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
4126 /* Free vars used for code hoisting analysis. */
4128 static void
4129 free_code_hoist_mem (void)
4131 sbitmap_vector_free (antloc);
4132 sbitmap_vector_free (transp);
4133 sbitmap_vector_free (comp);
4135 sbitmap_vector_free (hoist_vbein);
4136 sbitmap_vector_free (hoist_vbeout);
4137 sbitmap_vector_free (hoist_exprs);
4138 sbitmap_vector_free (transpout);
4140 free_dominance_info (CDI_DOMINATORS);
4143 /* Compute the very busy expressions at entry/exit from each block.
4145 An expression is very busy if all paths from a given point
4146 compute the expression. */
4148 static void
4149 compute_code_hoist_vbeinout (void)
4151 int changed, passes;
4152 basic_block bb;
4154 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
4155 sbitmap_vector_zero (hoist_vbein, last_basic_block);
4157 passes = 0;
4158 changed = 1;
4160 while (changed)
4162 changed = 0;
4164 /* We scan the blocks in the reverse order to speed up
4165 the convergence. */
4166 FOR_EACH_BB_REVERSE (bb)
4168 if (bb->next_bb != EXIT_BLOCK_PTR)
4169 sbitmap_intersection_of_succs (hoist_vbeout[bb->index],
4170 hoist_vbein, bb->index);
4172 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index],
4173 antloc[bb->index],
4174 hoist_vbeout[bb->index],
4175 transp[bb->index]);
4178 passes++;
4181 if (dump_file)
4182 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
4185 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4187 static void
4188 compute_code_hoist_data (void)
4190 compute_local_properties (transp, comp, antloc, &expr_hash_table);
4191 compute_transpout ();
4192 compute_code_hoist_vbeinout ();
4193 calculate_dominance_info (CDI_DOMINATORS);
4194 if (dump_file)
4195 fprintf (dump_file, "\n");
4198 /* Determine if the expression identified by EXPR_INDEX would
4199 reach BB unimpared if it was placed at the end of EXPR_BB.
4201 It's unclear exactly what Muchnick meant by "unimpared". It seems
4202 to me that the expression must either be computed or transparent in
4203 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4204 would allow the expression to be hoisted out of loops, even if
4205 the expression wasn't a loop invariant.
4207 Contrast this to reachability for PRE where an expression is
4208 considered reachable if *any* path reaches instead of *all*
4209 paths. */
4211 static int
4212 hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited)
4214 edge pred;
4215 edge_iterator ei;
4216 int visited_allocated_locally = 0;
4219 if (visited == NULL)
4221 visited_allocated_locally = 1;
4222 visited = XCNEWVEC (char, last_basic_block);
4225 FOR_EACH_EDGE (pred, ei, bb->preds)
4227 basic_block pred_bb = pred->src;
4229 if (pred->src == ENTRY_BLOCK_PTR)
4230 break;
4231 else if (pred_bb == expr_bb)
4232 continue;
4233 else if (visited[pred_bb->index])
4234 continue;
4236 /* Does this predecessor generate this expression? */
4237 else if (TEST_BIT (comp[pred_bb->index], expr_index))
4238 break;
4239 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
4240 break;
4242 /* Not killed. */
4243 else
4245 visited[pred_bb->index] = 1;
4246 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
4247 pred_bb, visited))
4248 break;
4251 if (visited_allocated_locally)
4252 free (visited);
4254 return (pred == NULL);
4257 /* Actually perform code hoisting. */
4259 static int
4260 hoist_code (void)
4262 basic_block bb, dominated;
4263 VEC (basic_block, heap) *domby;
4264 unsigned int i,j;
4265 struct expr **index_map;
4266 struct expr *expr;
4267 int changed = 0;
4269 sbitmap_vector_zero (hoist_exprs, last_basic_block);
4271 /* Compute a mapping from expression number (`bitmap_index') to
4272 hash table entry. */
4274 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
4275 for (i = 0; i < expr_hash_table.size; i++)
4276 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4277 index_map[expr->bitmap_index] = expr;
4279 /* Walk over each basic block looking for potentially hoistable
4280 expressions, nothing gets hoisted from the entry block. */
4281 FOR_EACH_BB (bb)
4283 int found = 0;
4284 int insn_inserted_p;
4286 domby = get_dominated_by (CDI_DOMINATORS, bb);
4287 /* Examine each expression that is very busy at the exit of this
4288 block. These are the potentially hoistable expressions. */
4289 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
4291 int hoistable = 0;
4293 if (TEST_BIT (hoist_vbeout[bb->index], i)
4294 && TEST_BIT (transpout[bb->index], i))
4296 /* We've found a potentially hoistable expression, now
4297 we look at every block BB dominates to see if it
4298 computes the expression. */
4299 for (j = 0; VEC_iterate (basic_block, domby, j, dominated); j++)
4301 /* Ignore self dominance. */
4302 if (bb == dominated)
4303 continue;
4304 /* We've found a dominated block, now see if it computes
4305 the busy expression and whether or not moving that
4306 expression to the "beginning" of that block is safe. */
4307 if (!TEST_BIT (antloc[dominated->index], i))
4308 continue;
4310 /* Note if the expression would reach the dominated block
4311 unimpared if it was placed at the end of BB.
4313 Keep track of how many times this expression is hoistable
4314 from a dominated block into BB. */
4315 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4316 hoistable++;
4319 /* If we found more than one hoistable occurrence of this
4320 expression, then note it in the bitmap of expressions to
4321 hoist. It makes no sense to hoist things which are computed
4322 in only one BB, and doing so tends to pessimize register
4323 allocation. One could increase this value to try harder
4324 to avoid any possible code expansion due to register
4325 allocation issues; however experiments have shown that
4326 the vast majority of hoistable expressions are only movable
4327 from two successors, so raising this threshold is likely
4328 to nullify any benefit we get from code hoisting. */
4329 if (hoistable > 1)
4331 SET_BIT (hoist_exprs[bb->index], i);
4332 found = 1;
4336 /* If we found nothing to hoist, then quit now. */
4337 if (! found)
4339 VEC_free (basic_block, heap, domby);
4340 continue;
4343 /* Loop over all the hoistable expressions. */
4344 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
4346 /* We want to insert the expression into BB only once, so
4347 note when we've inserted it. */
4348 insn_inserted_p = 0;
4350 /* These tests should be the same as the tests above. */
4351 if (TEST_BIT (hoist_exprs[bb->index], i))
4353 /* We've found a potentially hoistable expression, now
4354 we look at every block BB dominates to see if it
4355 computes the expression. */
4356 for (j = 0; VEC_iterate (basic_block, domby, j, dominated); j++)
4358 /* Ignore self dominance. */
4359 if (bb == dominated)
4360 continue;
4362 /* We've found a dominated block, now see if it computes
4363 the busy expression and whether or not moving that
4364 expression to the "beginning" of that block is safe. */
4365 if (!TEST_BIT (antloc[dominated->index], i))
4366 continue;
4368 /* The expression is computed in the dominated block and
4369 it would be safe to compute it at the start of the
4370 dominated block. Now we have to determine if the
4371 expression would reach the dominated block if it was
4372 placed at the end of BB. */
4373 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4375 struct expr *expr = index_map[i];
4376 struct occr *occr = expr->antic_occr;
4377 rtx insn;
4378 rtx set;
4380 /* Find the right occurrence of this expression. */
4381 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
4382 occr = occr->next;
4384 gcc_assert (occr);
4385 insn = occr->insn;
4386 set = single_set (insn);
4387 gcc_assert (set);
4389 /* Create a pseudo-reg to store the result of reaching
4390 expressions into. Get the mode for the new pseudo
4391 from the mode of the original destination pseudo. */
4392 if (expr->reaching_reg == NULL)
4393 expr->reaching_reg
4394 = gen_reg_rtx_and_attrs (SET_DEST (set));
4396 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4397 delete_insn (insn);
4398 occr->deleted_p = 1;
4399 changed = 1;
4400 gcse_subst_count++;
4402 if (!insn_inserted_p)
4404 insert_insn_end_basic_block (index_map[i], bb, 0);
4405 insn_inserted_p = 1;
4411 VEC_free (basic_block, heap, domby);
4414 free (index_map);
4416 return changed;
4419 /* Top level routine to perform one code hoisting (aka unification) pass
4421 Return nonzero if a change was made. */
4423 static int
4424 one_code_hoisting_pass (void)
4426 int changed = 0;
4428 gcse_subst_count = 0;
4429 gcse_create_count = 0;
4431 /* Return if there's nothing to do, or it is too expensive. */
4432 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
4433 || is_too_expensive (_("GCSE disabled")))
4434 return 0;
4436 /* We need alias. */
4437 init_alias_analysis ();
4439 bytes_used = 0;
4440 gcc_obstack_init (&gcse_obstack);
4441 alloc_gcse_mem ();
4443 alloc_hash_table (&expr_hash_table, 0);
4444 compute_hash_table (&expr_hash_table);
4445 if (dump_file)
4446 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
4448 if (expr_hash_table.n_elems > 0)
4450 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
4451 compute_code_hoist_data ();
4452 changed = hoist_code ();
4453 free_code_hoist_mem ();
4456 free_hash_table (&expr_hash_table);
4457 free_gcse_mem ();
4458 obstack_free (&gcse_obstack, NULL);
4460 /* We are finished with alias. */
4461 end_alias_analysis ();
4463 if (dump_file)
4465 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
4466 current_function_name (), n_basic_blocks, bytes_used);
4467 fprintf (dump_file, "%d substs, %d insns created\n",
4468 gcse_subst_count, gcse_create_count);
4471 return changed;
4474 /* Here we provide the things required to do store motion towards
4475 the exit. In order for this to be effective, gcse also needed to
4476 be taught how to move a load when it is kill only by a store to itself.
4478 int i;
4479 float a[10];
4481 void foo(float scale)
4483 for (i=0; i<10; i++)
4484 a[i] *= scale;
4487 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
4488 the load out since its live around the loop, and stored at the bottom
4489 of the loop.
4491 The 'Load Motion' referred to and implemented in this file is
4492 an enhancement to gcse which when using edge based lcm, recognizes
4493 this situation and allows gcse to move the load out of the loop.
4495 Once gcse has hoisted the load, store motion can then push this
4496 load towards the exit, and we end up with no loads or stores of 'i'
4497 in the loop. */
4499 static hashval_t
4500 pre_ldst_expr_hash (const void *p)
4502 int do_not_record_p = 0;
4503 const struct ls_expr *const x = (const struct ls_expr *) p;
4504 return hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
4507 static int
4508 pre_ldst_expr_eq (const void *p1, const void *p2)
4510 const struct ls_expr *const ptr1 = (const struct ls_expr *) p1,
4511 *const ptr2 = (const struct ls_expr *) p2;
4512 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
4515 /* This will search the ldst list for a matching expression. If it
4516 doesn't find one, we create one and initialize it. */
4518 static struct ls_expr *
4519 ldst_entry (rtx x)
4521 int do_not_record_p = 0;
4522 struct ls_expr * ptr;
4523 unsigned int hash;
4524 void **slot;
4525 struct ls_expr e;
4527 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
4528 NULL, /*have_reg_qty=*/false);
4530 e.pattern = x;
4531 slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
4532 if (*slot)
4533 return (struct ls_expr *)*slot;
4535 ptr = XNEW (struct ls_expr);
4537 ptr->next = pre_ldst_mems;
4538 ptr->expr = NULL;
4539 ptr->pattern = x;
4540 ptr->pattern_regs = NULL_RTX;
4541 ptr->loads = NULL_RTX;
4542 ptr->stores = NULL_RTX;
4543 ptr->reaching_reg = NULL_RTX;
4544 ptr->invalid = 0;
4545 ptr->index = 0;
4546 ptr->hash_index = hash;
4547 pre_ldst_mems = ptr;
4548 *slot = ptr;
4550 return ptr;
4553 /* Free up an individual ldst entry. */
4555 static void
4556 free_ldst_entry (struct ls_expr * ptr)
4558 free_INSN_LIST_list (& ptr->loads);
4559 free_INSN_LIST_list (& ptr->stores);
4561 free (ptr);
4564 /* Free up all memory associated with the ldst list. */
4566 static void
4567 free_ldst_mems (void)
4569 if (pre_ldst_table)
4570 htab_delete (pre_ldst_table);
4571 pre_ldst_table = NULL;
4573 while (pre_ldst_mems)
4575 struct ls_expr * tmp = pre_ldst_mems;
4577 pre_ldst_mems = pre_ldst_mems->next;
4579 free_ldst_entry (tmp);
4582 pre_ldst_mems = NULL;
4585 /* Dump debugging info about the ldst list. */
4587 static void
4588 print_ldst_list (FILE * file)
4590 struct ls_expr * ptr;
4592 fprintf (file, "LDST list: \n");
4594 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
4596 fprintf (file, " Pattern (%3d): ", ptr->index);
4598 print_rtl (file, ptr->pattern);
4600 fprintf (file, "\n Loads : ");
4602 if (ptr->loads)
4603 print_rtl (file, ptr->loads);
4604 else
4605 fprintf (file, "(nil)");
4607 fprintf (file, "\n Stores : ");
4609 if (ptr->stores)
4610 print_rtl (file, ptr->stores);
4611 else
4612 fprintf (file, "(nil)");
4614 fprintf (file, "\n\n");
4617 fprintf (file, "\n");
4620 /* Returns 1 if X is in the list of ldst only expressions. */
4622 static struct ls_expr *
4623 find_rtx_in_ldst (rtx x)
4625 struct ls_expr e;
4626 void **slot;
4627 if (!pre_ldst_table)
4628 return NULL;
4629 e.pattern = x;
4630 slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
4631 if (!slot || ((struct ls_expr *)*slot)->invalid)
4632 return NULL;
4633 return (struct ls_expr *) *slot;
4636 /* Return first item in the list. */
4638 static inline struct ls_expr *
4639 first_ls_expr (void)
4641 return pre_ldst_mems;
4644 /* Return the next item in the list after the specified one. */
4646 static inline struct ls_expr *
4647 next_ls_expr (struct ls_expr * ptr)
4649 return ptr->next;
4652 /* Load Motion for loads which only kill themselves. */
4654 /* Return true if x is a simple MEM operation, with no registers or
4655 side effects. These are the types of loads we consider for the
4656 ld_motion list, otherwise we let the usual aliasing take care of it. */
4658 static int
4659 simple_mem (const_rtx x)
4661 if (! MEM_P (x))
4662 return 0;
4664 if (MEM_VOLATILE_P (x))
4665 return 0;
4667 if (GET_MODE (x) == BLKmode)
4668 return 0;
4670 /* If we are handling exceptions, we must be careful with memory references
4671 that may trap. If we are not, the behavior is undefined, so we may just
4672 continue. */
4673 if (flag_non_call_exceptions && may_trap_p (x))
4674 return 0;
4676 if (side_effects_p (x))
4677 return 0;
4679 /* Do not consider function arguments passed on stack. */
4680 if (reg_mentioned_p (stack_pointer_rtx, x))
4681 return 0;
4683 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
4684 return 0;
4686 return 1;
4689 /* Make sure there isn't a buried reference in this pattern anywhere.
4690 If there is, invalidate the entry for it since we're not capable
4691 of fixing it up just yet.. We have to be sure we know about ALL
4692 loads since the aliasing code will allow all entries in the
4693 ld_motion list to not-alias itself. If we miss a load, we will get
4694 the wrong value since gcse might common it and we won't know to
4695 fix it up. */
4697 static void
4698 invalidate_any_buried_refs (rtx x)
4700 const char * fmt;
4701 int i, j;
4702 struct ls_expr * ptr;
4704 /* Invalidate it in the list. */
4705 if (MEM_P (x) && simple_mem (x))
4707 ptr = ldst_entry (x);
4708 ptr->invalid = 1;
4711 /* Recursively process the insn. */
4712 fmt = GET_RTX_FORMAT (GET_CODE (x));
4714 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
4716 if (fmt[i] == 'e')
4717 invalidate_any_buried_refs (XEXP (x, i));
4718 else if (fmt[i] == 'E')
4719 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4720 invalidate_any_buried_refs (XVECEXP (x, i, j));
4724 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
4725 being defined as MEM loads and stores to symbols, with no side effects
4726 and no registers in the expression. For a MEM destination, we also
4727 check that the insn is still valid if we replace the destination with a
4728 REG, as is done in update_ld_motion_stores. If there are any uses/defs
4729 which don't match this criteria, they are invalidated and trimmed out
4730 later. */
4732 static void
4733 compute_ld_motion_mems (void)
4735 struct ls_expr * ptr;
4736 basic_block bb;
4737 rtx insn;
4739 pre_ldst_mems = NULL;
4740 pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
4741 pre_ldst_expr_eq, NULL);
4743 FOR_EACH_BB (bb)
4745 FOR_BB_INSNS (bb, insn)
4747 if (NONDEBUG_INSN_P (insn))
4749 if (GET_CODE (PATTERN (insn)) == SET)
4751 rtx src = SET_SRC (PATTERN (insn));
4752 rtx dest = SET_DEST (PATTERN (insn));
4754 /* Check for a simple LOAD... */
4755 if (MEM_P (src) && simple_mem (src))
4757 ptr = ldst_entry (src);
4758 if (REG_P (dest))
4759 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
4760 else
4761 ptr->invalid = 1;
4763 else
4765 /* Make sure there isn't a buried load somewhere. */
4766 invalidate_any_buried_refs (src);
4769 /* Check for stores. Don't worry about aliased ones, they
4770 will block any movement we might do later. We only care
4771 about this exact pattern since those are the only
4772 circumstance that we will ignore the aliasing info. */
4773 if (MEM_P (dest) && simple_mem (dest))
4775 ptr = ldst_entry (dest);
4777 if (! MEM_P (src)
4778 && GET_CODE (src) != ASM_OPERANDS
4779 /* Check for REG manually since want_to_gcse_p
4780 returns 0 for all REGs. */
4781 && can_assign_to_reg_without_clobbers_p (src))
4782 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
4783 else
4784 ptr->invalid = 1;
4787 else
4788 invalidate_any_buried_refs (PATTERN (insn));
4794 /* Remove any references that have been either invalidated or are not in the
4795 expression list for pre gcse. */
4797 static void
4798 trim_ld_motion_mems (void)
4800 struct ls_expr * * last = & pre_ldst_mems;
4801 struct ls_expr * ptr = pre_ldst_mems;
4803 while (ptr != NULL)
4805 struct expr * expr;
4807 /* Delete if entry has been made invalid. */
4808 if (! ptr->invalid)
4810 /* Delete if we cannot find this mem in the expression list. */
4811 unsigned int hash = ptr->hash_index % expr_hash_table.size;
4813 for (expr = expr_hash_table.table[hash];
4814 expr != NULL;
4815 expr = expr->next_same_hash)
4816 if (expr_equiv_p (expr->expr, ptr->pattern))
4817 break;
4819 else
4820 expr = (struct expr *) 0;
4822 if (expr)
4824 /* Set the expression field if we are keeping it. */
4825 ptr->expr = expr;
4826 last = & ptr->next;
4827 ptr = ptr->next;
4829 else
4831 *last = ptr->next;
4832 htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
4833 free_ldst_entry (ptr);
4834 ptr = * last;
4838 /* Show the world what we've found. */
4839 if (dump_file && pre_ldst_mems != NULL)
4840 print_ldst_list (dump_file);
4843 /* This routine will take an expression which we are replacing with
4844 a reaching register, and update any stores that are needed if
4845 that expression is in the ld_motion list. Stores are updated by
4846 copying their SRC to the reaching register, and then storing
4847 the reaching register into the store location. These keeps the
4848 correct value in the reaching register for the loads. */
4850 static void
4851 update_ld_motion_stores (struct expr * expr)
4853 struct ls_expr * mem_ptr;
4855 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
4857 /* We can try to find just the REACHED stores, but is shouldn't
4858 matter to set the reaching reg everywhere... some might be
4859 dead and should be eliminated later. */
4861 /* We replace (set mem expr) with (set reg expr) (set mem reg)
4862 where reg is the reaching reg used in the load. We checked in
4863 compute_ld_motion_mems that we can replace (set mem expr) with
4864 (set reg expr) in that insn. */
4865 rtx list = mem_ptr->stores;
4867 for ( ; list != NULL_RTX; list = XEXP (list, 1))
4869 rtx insn = XEXP (list, 0);
4870 rtx pat = PATTERN (insn);
4871 rtx src = SET_SRC (pat);
4872 rtx reg = expr->reaching_reg;
4873 rtx copy;
4875 /* If we've already copied it, continue. */
4876 if (expr->reaching_reg == src)
4877 continue;
4879 if (dump_file)
4881 fprintf (dump_file, "PRE: store updated with reaching reg ");
4882 print_rtl (dump_file, expr->reaching_reg);
4883 fprintf (dump_file, ":\n ");
4884 print_inline_rtx (dump_file, insn, 8);
4885 fprintf (dump_file, "\n");
4888 copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
4889 emit_insn_before (copy, insn);
4890 SET_SRC (pat) = reg;
4891 df_insn_rescan (insn);
4893 /* un-recognize this pattern since it's probably different now. */
4894 INSN_CODE (insn) = -1;
4895 gcse_create_count++;
4900 /* Return true if the graph is too expensive to optimize. PASS is the
4901 optimization about to be performed. */
4903 static bool
4904 is_too_expensive (const char *pass)
4906 /* Trying to perform global optimizations on flow graphs which have
4907 a high connectivity will take a long time and is unlikely to be
4908 particularly useful.
4910 In normal circumstances a cfg should have about twice as many
4911 edges as blocks. But we do not want to punish small functions
4912 which have a couple switch statements. Rather than simply
4913 threshold the number of blocks, uses something with a more
4914 graceful degradation. */
4915 if (n_edges > 20000 + n_basic_blocks * 4)
4917 warning (OPT_Wdisabled_optimization,
4918 "%s: %d basic blocks and %d edges/basic block",
4919 pass, n_basic_blocks, n_edges / n_basic_blocks);
4921 return true;
4924 /* If allocating memory for the cprop bitmap would take up too much
4925 storage it's better just to disable the optimization. */
4926 if ((n_basic_blocks
4927 * SBITMAP_SET_SIZE (max_reg_num ())
4928 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4930 warning (OPT_Wdisabled_optimization,
4931 "%s: %d basic blocks and %d registers",
4932 pass, n_basic_blocks, max_reg_num ());
4934 return true;
4937 return false;
4941 /* Main function for the CPROP pass. */
4943 static int
4944 one_cprop_pass (void)
4946 int changed = 0;
4948 /* Return if there's nothing to do, or it is too expensive. */
4949 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
4950 || is_too_expensive (_ ("const/copy propagation disabled")))
4951 return 0;
4953 global_const_prop_count = local_const_prop_count = 0;
4954 global_copy_prop_count = local_copy_prop_count = 0;
4956 bytes_used = 0;
4957 gcc_obstack_init (&gcse_obstack);
4958 alloc_gcse_mem ();
4960 /* Do a local const/copy propagation pass first. The global pass
4961 only handles global opportunities.
4962 If the local pass changes something, remove any unreachable blocks
4963 because the CPROP global dataflow analysis may get into infinite
4964 loops for CFGs with unreachable blocks.
4966 FIXME: This local pass should not be necessary after CSE (but for
4967 some reason it still is). It is also (proven) not necessary
4968 to run the local pass right after FWPWOP.
4970 FIXME: The global analysis would not get into infinite loops if it
4971 would use the DF solver (via df_simple_dataflow) instead of
4972 the solver implemented in this file. */
4973 if (local_cprop_pass ())
4975 delete_unreachable_blocks ();
4976 df_analyze ();
4979 /* Determine implicit sets. */
4980 implicit_sets = XCNEWVEC (rtx, last_basic_block);
4981 find_implicit_sets ();
4983 alloc_hash_table (&set_hash_table, 1);
4984 compute_hash_table (&set_hash_table);
4986 /* Free implicit_sets before peak usage. */
4987 free (implicit_sets);
4988 implicit_sets = NULL;
4990 if (dump_file)
4991 dump_hash_table (dump_file, "SET", &set_hash_table);
4992 if (set_hash_table.n_elems > 0)
4994 basic_block bb;
4995 rtx insn;
4997 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
4998 compute_cprop_data ();
5000 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
5002 /* Reset tables used to keep track of what's still valid [since
5003 the start of the block]. */
5004 reset_opr_set_tables ();
5006 FOR_BB_INSNS (bb, insn)
5007 if (INSN_P (insn))
5009 changed |= cprop_insn (insn);
5011 /* Keep track of everything modified by this insn. */
5012 /* ??? Need to be careful w.r.t. mods done to INSN.
5013 Don't call mark_oprs_set if we turned the
5014 insn into a NOTE. */
5015 if (! NOTE_P (insn))
5016 mark_oprs_set (insn);
5020 changed |= bypass_conditional_jumps ();
5021 free_cprop_mem ();
5024 free_hash_table (&set_hash_table);
5025 free_gcse_mem ();
5026 obstack_free (&gcse_obstack, NULL);
5028 if (dump_file)
5030 fprintf (dump_file, "CPROP of %s, %d basic blocks, %d bytes needed, ",
5031 current_function_name (), n_basic_blocks, bytes_used);
5032 fprintf (dump_file, "%d local const props, %d local copy props, ",
5033 local_const_prop_count, local_copy_prop_count);
5034 fprintf (dump_file, "%d global const props, %d global copy props\n\n",
5035 global_const_prop_count, global_copy_prop_count);
5038 return changed;
5042 /* All the passes implemented in this file. Each pass has its
5043 own gate and execute function, and at the end of the file a
5044 pass definition for passes.c.
5046 We do not construct an accurate cfg in functions which call
5047 setjmp, so none of these passes runs if the function calls
5048 setjmp.
5049 FIXME: Should just handle setjmp via REG_SETJMP notes. */
5051 static bool
5052 gate_rtl_cprop (void)
5054 return optimize > 0 && flag_gcse
5055 && !cfun->calls_setjmp
5056 && dbg_cnt (cprop);
5059 static unsigned int
5060 execute_rtl_cprop (void)
5062 delete_unreachable_blocks ();
5063 df_set_flags (DF_LR_RUN_DCE);
5064 df_analyze ();
5065 flag_rerun_cse_after_global_opts |= one_cprop_pass ();
5066 return 0;
5069 static bool
5070 gate_rtl_pre (void)
5072 return optimize > 0 && flag_gcse
5073 && !cfun->calls_setjmp
5074 && optimize_function_for_speed_p (cfun)
5075 && dbg_cnt (pre);
5078 static unsigned int
5079 execute_rtl_pre (void)
5081 delete_unreachable_blocks ();
5082 df_analyze ();
5083 flag_rerun_cse_after_global_opts |= one_pre_gcse_pass ();
5084 return 0;
5087 static bool
5088 gate_rtl_hoist (void)
5090 return optimize > 0 && flag_gcse
5091 && !cfun->calls_setjmp
5092 /* It does not make sense to run code hoisting unless we are optimizing
5093 for code size -- it rarely makes programs faster, and can make then
5094 bigger if we did PRE (when optimizing for space, we don't run PRE). */
5095 && optimize_function_for_size_p (cfun)
5096 && dbg_cnt (hoist);
5099 static unsigned int
5100 execute_rtl_hoist (void)
5102 delete_unreachable_blocks ();
5103 df_analyze ();
5104 flag_rerun_cse_after_global_opts |= one_code_hoisting_pass ();
5105 return 0;
5108 struct rtl_opt_pass pass_rtl_cprop =
5111 RTL_PASS,
5112 "cprop", /* name */
5113 gate_rtl_cprop, /* gate */
5114 execute_rtl_cprop, /* execute */
5115 NULL, /* sub */
5116 NULL, /* next */
5117 0, /* static_pass_number */
5118 TV_CPROP, /* tv_id */
5119 PROP_cfglayout, /* properties_required */
5120 0, /* properties_provided */
5121 0, /* properties_destroyed */
5122 0, /* todo_flags_start */
5123 TODO_df_finish | TODO_verify_rtl_sharing |
5124 TODO_dump_func |
5125 TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
5129 struct rtl_opt_pass pass_rtl_pre =
5132 RTL_PASS,
5133 "rtl pre", /* name */
5134 gate_rtl_pre, /* gate */
5135 execute_rtl_pre, /* execute */
5136 NULL, /* sub */
5137 NULL, /* next */
5138 0, /* static_pass_number */
5139 TV_PRE, /* tv_id */
5140 PROP_cfglayout, /* properties_required */
5141 0, /* properties_provided */
5142 0, /* properties_destroyed */
5143 0, /* todo_flags_start */
5144 TODO_df_finish | TODO_verify_rtl_sharing |
5145 TODO_dump_func |
5146 TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
5150 struct rtl_opt_pass pass_rtl_hoist =
5153 RTL_PASS,
5154 "hoist", /* name */
5155 gate_rtl_hoist, /* gate */
5156 execute_rtl_hoist, /* execute */
5157 NULL, /* sub */
5158 NULL, /* next */
5159 0, /* static_pass_number */
5160 TV_HOIST, /* tv_id */
5161 PROP_cfglayout, /* properties_required */
5162 0, /* properties_provided */
5163 0, /* properties_destroyed */
5164 0, /* todo_flags_start */
5165 TODO_df_finish | TODO_verify_rtl_sharing |
5166 TODO_dump_func |
5167 TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
5171 #include "gt-gcse.h"