mips.h (ISA_HAS_DSP, [...]): New macros.
[official-gcc.git] / gcc / config / mips / mips.c
blob1d72056b2491a7f20895bcff2fa28a076bfbd9bf
1 /* Subroutines used for MIPS code generation.
2 Copyright (C) 1989, 1990, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5 Contributed by A. Lichnewsky, lich@inria.inria.fr.
6 Changes by Michael Meissner, meissner@osf.org.
7 64-bit r4000 support by Ian Lance Taylor, ian@cygnus.com, and
8 Brendan Eich, brendan@microunity.com.
10 This file is part of GCC.
12 GCC is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
17 GCC is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include <signal.h>
31 #include "rtl.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "real.h"
35 #include "insn-config.h"
36 #include "conditions.h"
37 #include "insn-attr.h"
38 #include "recog.h"
39 #include "toplev.h"
40 #include "output.h"
41 #include "tree.h"
42 #include "function.h"
43 #include "expr.h"
44 #include "optabs.h"
45 #include "flags.h"
46 #include "reload.h"
47 #include "tm_p.h"
48 #include "ggc.h"
49 #include "gstab.h"
50 #include "hashtab.h"
51 #include "debug.h"
52 #include "target.h"
53 #include "target-def.h"
54 #include "integrate.h"
55 #include "langhooks.h"
56 #include "cfglayout.h"
57 #include "sched-int.h"
58 #include "tree-gimple.h"
59 #include "bitmap.h"
60 #include "diagnostic.h"
62 /* True if X is an unspec wrapper around a SYMBOL_REF or LABEL_REF. */
63 #define UNSPEC_ADDRESS_P(X) \
64 (GET_CODE (X) == UNSPEC \
65 && XINT (X, 1) >= UNSPEC_ADDRESS_FIRST \
66 && XINT (X, 1) < UNSPEC_ADDRESS_FIRST + NUM_SYMBOL_TYPES)
68 /* Extract the symbol or label from UNSPEC wrapper X. */
69 #define UNSPEC_ADDRESS(X) \
70 XVECEXP (X, 0, 0)
72 /* Extract the symbol type from UNSPEC wrapper X. */
73 #define UNSPEC_ADDRESS_TYPE(X) \
74 ((enum mips_symbol_type) (XINT (X, 1) - UNSPEC_ADDRESS_FIRST))
76 /* The maximum distance between the top of the stack frame and the
77 value $sp has when we save and restore registers.
79 The value for normal-mode code must be a SMALL_OPERAND and must
80 preserve the maximum stack alignment. We therefore use a value
81 of 0x7ff0 in this case.
83 MIPS16e SAVE and RESTORE instructions can adjust the stack pointer by
84 up to 0x7f8 bytes and can usually save or restore all the registers
85 that we need to save or restore. (Note that we can only use these
86 instructions for o32, for which the stack alignment is 8 bytes.)
88 We use a maximum gap of 0x100 or 0x400 for MIPS16 code when SAVE and
89 RESTORE are not available. We can then use unextended instructions
90 to save and restore registers, and to allocate and deallocate the top
91 part of the frame. */
92 #define MIPS_MAX_FIRST_STACK_STEP \
93 (!TARGET_MIPS16 ? 0x7ff0 \
94 : GENERATE_MIPS16E_SAVE_RESTORE ? 0x7f8 \
95 : TARGET_64BIT ? 0x100 : 0x400)
97 /* True if INSN is a mips.md pattern or asm statement. */
98 #define USEFUL_INSN_P(INSN) \
99 (INSN_P (INSN) \
100 && GET_CODE (PATTERN (INSN)) != USE \
101 && GET_CODE (PATTERN (INSN)) != CLOBBER \
102 && GET_CODE (PATTERN (INSN)) != ADDR_VEC \
103 && GET_CODE (PATTERN (INSN)) != ADDR_DIFF_VEC)
105 /* If INSN is a delayed branch sequence, return the first instruction
106 in the sequence, otherwise return INSN itself. */
107 #define SEQ_BEGIN(INSN) \
108 (INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE \
109 ? XVECEXP (PATTERN (INSN), 0, 0) \
110 : (INSN))
112 /* Likewise for the last instruction in a delayed branch sequence. */
113 #define SEQ_END(INSN) \
114 (INSN_P (INSN) && GET_CODE (PATTERN (INSN)) == SEQUENCE \
115 ? XVECEXP (PATTERN (INSN), 0, XVECLEN (PATTERN (INSN), 0) - 1) \
116 : (INSN))
118 /* Execute the following loop body with SUBINSN set to each instruction
119 between SEQ_BEGIN (INSN) and SEQ_END (INSN) inclusive. */
120 #define FOR_EACH_SUBINSN(SUBINSN, INSN) \
121 for ((SUBINSN) = SEQ_BEGIN (INSN); \
122 (SUBINSN) != NEXT_INSN (SEQ_END (INSN)); \
123 (SUBINSN) = NEXT_INSN (SUBINSN))
125 /* True if bit BIT is set in VALUE. */
126 #define BITSET_P(VALUE, BIT) (((VALUE) & (1 << (BIT))) != 0)
128 /* Classifies an address.
130 ADDRESS_REG
131 A natural register + offset address. The register satisfies
132 mips_valid_base_register_p and the offset is a const_arith_operand.
134 ADDRESS_LO_SUM
135 A LO_SUM rtx. The first operand is a valid base register and
136 the second operand is a symbolic address.
138 ADDRESS_CONST_INT
139 A signed 16-bit constant address.
141 ADDRESS_SYMBOLIC:
142 A constant symbolic address (equivalent to CONSTANT_SYMBOLIC). */
143 enum mips_address_type {
144 ADDRESS_REG,
145 ADDRESS_LO_SUM,
146 ADDRESS_CONST_INT,
147 ADDRESS_SYMBOLIC
150 /* Classifies the prototype of a builtin function. */
151 enum mips_function_type
153 MIPS_V2SF_FTYPE_V2SF,
154 MIPS_V2SF_FTYPE_V2SF_V2SF,
155 MIPS_V2SF_FTYPE_V2SF_V2SF_INT,
156 MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF,
157 MIPS_V2SF_FTYPE_SF_SF,
158 MIPS_INT_FTYPE_V2SF_V2SF,
159 MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF,
160 MIPS_INT_FTYPE_SF_SF,
161 MIPS_INT_FTYPE_DF_DF,
162 MIPS_SF_FTYPE_V2SF,
163 MIPS_SF_FTYPE_SF,
164 MIPS_SF_FTYPE_SF_SF,
165 MIPS_DF_FTYPE_DF,
166 MIPS_DF_FTYPE_DF_DF,
168 /* For MIPS DSP ASE */
169 MIPS_DI_FTYPE_DI_SI,
170 MIPS_DI_FTYPE_DI_SI_SI,
171 MIPS_DI_FTYPE_DI_V2HI_V2HI,
172 MIPS_DI_FTYPE_DI_V4QI_V4QI,
173 MIPS_SI_FTYPE_DI_SI,
174 MIPS_SI_FTYPE_PTR_SI,
175 MIPS_SI_FTYPE_SI,
176 MIPS_SI_FTYPE_SI_SI,
177 MIPS_SI_FTYPE_V2HI,
178 MIPS_SI_FTYPE_V2HI_V2HI,
179 MIPS_SI_FTYPE_V4QI,
180 MIPS_SI_FTYPE_V4QI_V4QI,
181 MIPS_SI_FTYPE_VOID,
182 MIPS_V2HI_FTYPE_SI,
183 MIPS_V2HI_FTYPE_SI_SI,
184 MIPS_V2HI_FTYPE_V2HI,
185 MIPS_V2HI_FTYPE_V2HI_SI,
186 MIPS_V2HI_FTYPE_V2HI_V2HI,
187 MIPS_V2HI_FTYPE_V4QI,
188 MIPS_V2HI_FTYPE_V4QI_V2HI,
189 MIPS_V4QI_FTYPE_SI,
190 MIPS_V4QI_FTYPE_V2HI_V2HI,
191 MIPS_V4QI_FTYPE_V4QI_SI,
192 MIPS_V4QI_FTYPE_V4QI_V4QI,
193 MIPS_VOID_FTYPE_SI_SI,
194 MIPS_VOID_FTYPE_V2HI_V2HI,
195 MIPS_VOID_FTYPE_V4QI_V4QI,
197 /* For MIPS DSP REV 2 ASE. */
198 MIPS_V4QI_FTYPE_V4QI,
199 MIPS_SI_FTYPE_SI_SI_SI,
200 MIPS_DI_FTYPE_DI_USI_USI,
201 MIPS_DI_FTYPE_SI_SI,
202 MIPS_DI_FTYPE_USI_USI,
203 MIPS_V2HI_FTYPE_SI_SI_SI,
205 /* The last type. */
206 MIPS_MAX_FTYPE_MAX
209 /* Specifies how a builtin function should be converted into rtl. */
210 enum mips_builtin_type
212 /* The builtin corresponds directly to an .md pattern. The return
213 value is mapped to operand 0 and the arguments are mapped to
214 operands 1 and above. */
215 MIPS_BUILTIN_DIRECT,
217 /* The builtin corresponds directly to an .md pattern. There is no return
218 value and the arguments are mapped to operands 0 and above. */
219 MIPS_BUILTIN_DIRECT_NO_TARGET,
221 /* The builtin corresponds to a comparison instruction followed by
222 a mips_cond_move_tf_ps pattern. The first two arguments are the
223 values to compare and the second two arguments are the vector
224 operands for the movt.ps or movf.ps instruction (in assembly order). */
225 MIPS_BUILTIN_MOVF,
226 MIPS_BUILTIN_MOVT,
228 /* The builtin corresponds to a V2SF comparison instruction. Operand 0
229 of this instruction is the result of the comparison, which has mode
230 CCV2 or CCV4. The function arguments are mapped to operands 1 and
231 above. The function's return value is an SImode boolean that is
232 true under the following conditions:
234 MIPS_BUILTIN_CMP_ANY: one of the registers is true
235 MIPS_BUILTIN_CMP_ALL: all of the registers are true
236 MIPS_BUILTIN_CMP_LOWER: the first register is true
237 MIPS_BUILTIN_CMP_UPPER: the second register is true. */
238 MIPS_BUILTIN_CMP_ANY,
239 MIPS_BUILTIN_CMP_ALL,
240 MIPS_BUILTIN_CMP_UPPER,
241 MIPS_BUILTIN_CMP_LOWER,
243 /* As above, but the instruction only sets a single $fcc register. */
244 MIPS_BUILTIN_CMP_SINGLE,
246 /* For generating bposge32 branch instructions in MIPS32 DSP ASE. */
247 MIPS_BUILTIN_BPOSGE32
250 /* Invokes MACRO (COND) for each c.cond.fmt condition. */
251 #define MIPS_FP_CONDITIONS(MACRO) \
252 MACRO (f), \
253 MACRO (un), \
254 MACRO (eq), \
255 MACRO (ueq), \
256 MACRO (olt), \
257 MACRO (ult), \
258 MACRO (ole), \
259 MACRO (ule), \
260 MACRO (sf), \
261 MACRO (ngle), \
262 MACRO (seq), \
263 MACRO (ngl), \
264 MACRO (lt), \
265 MACRO (nge), \
266 MACRO (le), \
267 MACRO (ngt)
269 /* Enumerates the codes above as MIPS_FP_COND_<X>. */
270 #define DECLARE_MIPS_COND(X) MIPS_FP_COND_ ## X
271 enum mips_fp_condition {
272 MIPS_FP_CONDITIONS (DECLARE_MIPS_COND)
275 /* Index X provides the string representation of MIPS_FP_COND_<X>. */
276 #define STRINGIFY(X) #X
277 static const char *const mips_fp_conditions[] = {
278 MIPS_FP_CONDITIONS (STRINGIFY)
281 /* A function to save or store a register. The first argument is the
282 register and the second is the stack slot. */
283 typedef void (*mips_save_restore_fn) (rtx, rtx);
285 struct mips16_constant;
286 struct mips_arg_info;
287 struct mips_address_info;
288 struct mips_integer_op;
289 struct mips_sim;
291 static bool mips_valid_base_register_p (rtx, enum machine_mode, int);
292 static bool mips_classify_address (struct mips_address_info *, rtx,
293 enum machine_mode, int);
294 static bool mips_cannot_force_const_mem (rtx);
295 static bool mips_use_blocks_for_constant_p (enum machine_mode, const_rtx);
296 static int mips_symbol_insns (enum mips_symbol_type, enum machine_mode);
297 static bool mips16_unextended_reference_p (enum machine_mode mode, rtx, rtx);
298 static rtx mips_force_temporary (rtx, rtx);
299 static rtx mips_unspec_offset_high (rtx, rtx, rtx, enum mips_symbol_type);
300 static rtx mips_add_offset (rtx, rtx, HOST_WIDE_INT);
301 static unsigned int mips_build_shift (struct mips_integer_op *, HOST_WIDE_INT);
302 static unsigned int mips_build_lower (struct mips_integer_op *,
303 unsigned HOST_WIDE_INT);
304 static unsigned int mips_build_integer (struct mips_integer_op *,
305 unsigned HOST_WIDE_INT);
306 static void mips_legitimize_const_move (enum machine_mode, rtx, rtx);
307 static int m16_check_op (rtx, int, int, int);
308 static bool mips_rtx_costs (rtx, int, int, int *);
309 static int mips_address_cost (rtx);
310 static void mips_emit_compare (enum rtx_code *, rtx *, rtx *, bool);
311 static void mips_load_call_address (rtx, rtx, int);
312 static bool mips_function_ok_for_sibcall (tree, tree);
313 static void mips_block_move_straight (rtx, rtx, HOST_WIDE_INT);
314 static void mips_adjust_block_mem (rtx, HOST_WIDE_INT, rtx *, rtx *);
315 static void mips_block_move_loop (rtx, rtx, HOST_WIDE_INT);
316 static void mips_arg_info (const CUMULATIVE_ARGS *, enum machine_mode,
317 tree, int, struct mips_arg_info *);
318 static bool mips_get_unaligned_mem (rtx *, unsigned int, int, rtx *, rtx *);
319 static void mips_set_architecture (const struct mips_cpu_info *);
320 static void mips_set_tune (const struct mips_cpu_info *);
321 static bool mips_handle_option (size_t, const char *, int);
322 static struct machine_function *mips_init_machine_status (void);
323 static void print_operand_reloc (FILE *, rtx, enum mips_symbol_context,
324 const char **);
325 static void mips_file_start (void);
326 static int mips_small_data_pattern_1 (rtx *, void *);
327 static int mips_rewrite_small_data_1 (rtx *, void *);
328 static bool mips_function_has_gp_insn (void);
329 static unsigned int mips_global_pointer (void);
330 static bool mips_save_reg_p (unsigned int);
331 static void mips_save_restore_reg (enum machine_mode, int, HOST_WIDE_INT,
332 mips_save_restore_fn);
333 static void mips_for_each_saved_reg (HOST_WIDE_INT, mips_save_restore_fn);
334 static void mips_output_cplocal (void);
335 static void mips_emit_loadgp (void);
336 static void mips_output_function_prologue (FILE *, HOST_WIDE_INT);
337 static void mips_set_frame_expr (rtx);
338 static rtx mips_frame_set (rtx, rtx);
339 static void mips_save_reg (rtx, rtx);
340 static void mips_output_function_epilogue (FILE *, HOST_WIDE_INT);
341 static void mips_restore_reg (rtx, rtx);
342 static void mips_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
343 HOST_WIDE_INT, tree);
344 static section *mips_select_rtx_section (enum machine_mode, rtx,
345 unsigned HOST_WIDE_INT);
346 static section *mips_function_rodata_section (tree);
347 static bool mips_in_small_data_p (const_tree);
348 static bool mips_use_anchors_for_symbol_p (const_rtx);
349 static int mips_fpr_return_fields (const_tree, tree *);
350 static bool mips_return_in_msb (const_tree);
351 static rtx mips_return_fpr_pair (enum machine_mode mode,
352 enum machine_mode mode1, HOST_WIDE_INT,
353 enum machine_mode mode2, HOST_WIDE_INT);
354 static rtx mips16_gp_pseudo_reg (void);
355 static void mips16_fp_args (FILE *, int, int);
356 static void build_mips16_function_stub (FILE *);
357 static rtx dump_constants_1 (enum machine_mode, rtx, rtx);
358 static void dump_constants (struct mips16_constant *, rtx);
359 static int mips16_insn_length (rtx);
360 static int mips16_rewrite_pool_refs (rtx *, void *);
361 static void mips16_lay_out_constants (void);
362 static void mips_sim_reset (struct mips_sim *);
363 static void mips_sim_init (struct mips_sim *, state_t);
364 static void mips_sim_next_cycle (struct mips_sim *);
365 static void mips_sim_wait_reg (struct mips_sim *, rtx, rtx);
366 static int mips_sim_wait_regs_2 (rtx *, void *);
367 static void mips_sim_wait_regs_1 (rtx *, void *);
368 static void mips_sim_wait_regs (struct mips_sim *, rtx);
369 static void mips_sim_wait_units (struct mips_sim *, rtx);
370 static void mips_sim_wait_insn (struct mips_sim *, rtx);
371 static void mips_sim_record_set (rtx, const_rtx, void *);
372 static void mips_sim_issue_insn (struct mips_sim *, rtx);
373 static void mips_sim_issue_nop (struct mips_sim *);
374 static void mips_sim_finish_insn (struct mips_sim *, rtx);
375 static void vr4130_avoid_branch_rt_conflict (rtx);
376 static void vr4130_align_insns (void);
377 static void mips_avoid_hazard (rtx, rtx, int *, rtx *, rtx);
378 static void mips_avoid_hazards (void);
379 static void mips_reorg (void);
380 static bool mips_strict_matching_cpu_name_p (const char *, const char *);
381 static bool mips_matching_cpu_name_p (const char *, const char *);
382 static const struct mips_cpu_info *mips_parse_cpu (const char *);
383 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
384 static bool mips_return_in_memory (const_tree, const_tree);
385 static bool mips_strict_argument_naming (CUMULATIVE_ARGS *);
386 static void mips_macc_chains_record (rtx);
387 static void mips_macc_chains_reorder (rtx *, int);
388 static void vr4130_true_reg_dependence_p_1 (rtx, const_rtx, void *);
389 static bool vr4130_true_reg_dependence_p (rtx);
390 static bool vr4130_swap_insns_p (rtx, rtx);
391 static void vr4130_reorder (rtx *, int);
392 static void mips_promote_ready (rtx *, int, int);
393 static void mips_sched_init (FILE *, int, int);
394 static int mips_sched_reorder (FILE *, int, rtx *, int *, int);
395 static int mips_variable_issue (FILE *, int, rtx, int);
396 static int mips_adjust_cost (rtx, rtx, rtx, int);
397 static int mips_issue_rate (void);
398 static int mips_multipass_dfa_lookahead (void);
399 static void mips_init_libfuncs (void);
400 static void mips_setup_incoming_varargs (CUMULATIVE_ARGS *, enum machine_mode,
401 tree, int *, int);
402 static tree mips_build_builtin_va_list (void);
403 static tree mips_gimplify_va_arg_expr (tree, tree, tree *, tree *);
404 static bool mips_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode mode,
405 const_tree, bool);
406 static bool mips_callee_copies (CUMULATIVE_ARGS *, enum machine_mode mode,
407 const_tree, bool);
408 static int mips_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode mode,
409 tree, bool);
410 static bool mips_valid_pointer_mode (enum machine_mode);
411 static bool mips_scalar_mode_supported_p (enum machine_mode);
412 static bool mips_vector_mode_supported_p (enum machine_mode);
413 static rtx mips_prepare_builtin_arg (enum insn_code, unsigned int, tree, unsigned int);
414 static rtx mips_prepare_builtin_target (enum insn_code, unsigned int, rtx);
415 static rtx mips_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
416 static void mips_init_builtins (void);
417 static rtx mips_expand_builtin_direct (enum insn_code, rtx, tree, bool);
418 static rtx mips_expand_builtin_movtf (enum mips_builtin_type,
419 enum insn_code, enum mips_fp_condition,
420 rtx, tree);
421 static rtx mips_expand_builtin_compare (enum mips_builtin_type,
422 enum insn_code, enum mips_fp_condition,
423 rtx, tree);
424 static rtx mips_expand_builtin_bposge (enum mips_builtin_type, rtx);
425 static void mips_encode_section_info (tree, rtx, int);
426 static void mips_extra_live_on_entry (bitmap);
427 static int mips_comp_type_attributes (const_tree, const_tree);
428 static void mips_set_mips16_mode (int);
429 static void mips_insert_attributes (tree, tree *);
430 static tree mips_merge_decl_attributes (tree, tree);
431 static void mips_set_current_function (tree);
432 static int mips_mode_rep_extended (enum machine_mode, enum machine_mode);
433 static bool mips_offset_within_alignment_p (rtx, HOST_WIDE_INT);
434 static void mips_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
436 /* Structure to be filled in by compute_frame_size with register
437 save masks, and offsets for the current function. */
439 struct mips_frame_info GTY(())
441 HOST_WIDE_INT total_size; /* # bytes that the entire frame takes up */
442 HOST_WIDE_INT var_size; /* # bytes that variables take up */
443 HOST_WIDE_INT args_size; /* # bytes that outgoing arguments take up */
444 HOST_WIDE_INT cprestore_size; /* # bytes that the .cprestore slot takes up */
445 HOST_WIDE_INT gp_reg_size; /* # bytes needed to store gp regs */
446 HOST_WIDE_INT fp_reg_size; /* # bytes needed to store fp regs */
447 unsigned int mask; /* mask of saved gp registers */
448 unsigned int fmask; /* mask of saved fp registers */
449 HOST_WIDE_INT gp_save_offset; /* offset from vfp to store gp registers */
450 HOST_WIDE_INT fp_save_offset; /* offset from vfp to store fp registers */
451 HOST_WIDE_INT gp_sp_offset; /* offset from new sp to store gp registers */
452 HOST_WIDE_INT fp_sp_offset; /* offset from new sp to store fp registers */
453 bool initialized; /* true if frame size already calculated */
454 int num_gp; /* number of gp registers saved */
455 int num_fp; /* number of fp registers saved */
458 struct machine_function GTY(()) {
459 /* Pseudo-reg holding the value of $28 in a mips16 function which
460 refers to GP relative global variables. */
461 rtx mips16_gp_pseudo_rtx;
463 /* The number of extra stack bytes taken up by register varargs.
464 This area is allocated by the callee at the very top of the frame. */
465 int varargs_size;
467 /* Current frame information, calculated by compute_frame_size. */
468 struct mips_frame_info frame;
470 /* The register to use as the global pointer within this function. */
471 unsigned int global_pointer;
473 /* True if mips_adjust_insn_length should ignore an instruction's
474 hazard attribute. */
475 bool ignore_hazard_length_p;
477 /* True if the whole function is suitable for .set noreorder and
478 .set nomacro. */
479 bool all_noreorder_p;
481 /* True if the function is known to have an instruction that needs $gp. */
482 bool has_gp_insn_p;
484 /* True if we have emitted an instruction to initialize
485 mips16_gp_pseudo_rtx. */
486 bool initialized_mips16_gp_pseudo_p;
489 /* Information about a single argument. */
490 struct mips_arg_info
492 /* True if the argument is passed in a floating-point register, or
493 would have been if we hadn't run out of registers. */
494 bool fpr_p;
496 /* The number of words passed in registers, rounded up. */
497 unsigned int reg_words;
499 /* For EABI, the offset of the first register from GP_ARG_FIRST or
500 FP_ARG_FIRST. For other ABIs, the offset of the first register from
501 the start of the ABI's argument structure (see the CUMULATIVE_ARGS
502 comment for details).
504 The value is MAX_ARGS_IN_REGISTERS if the argument is passed entirely
505 on the stack. */
506 unsigned int reg_offset;
508 /* The number of words that must be passed on the stack, rounded up. */
509 unsigned int stack_words;
511 /* The offset from the start of the stack overflow area of the argument's
512 first stack word. Only meaningful when STACK_WORDS is nonzero. */
513 unsigned int stack_offset;
517 /* Information about an address described by mips_address_type.
519 ADDRESS_CONST_INT
520 No fields are used.
522 ADDRESS_REG
523 REG is the base register and OFFSET is the constant offset.
525 ADDRESS_LO_SUM
526 REG is the register that contains the high part of the address,
527 OFFSET is the symbolic address being referenced and SYMBOL_TYPE
528 is the type of OFFSET's symbol.
530 ADDRESS_SYMBOLIC
531 SYMBOL_TYPE is the type of symbol being referenced. */
533 struct mips_address_info
535 enum mips_address_type type;
536 rtx reg;
537 rtx offset;
538 enum mips_symbol_type symbol_type;
542 /* One stage in a constant building sequence. These sequences have
543 the form:
545 A = VALUE[0]
546 A = A CODE[1] VALUE[1]
547 A = A CODE[2] VALUE[2]
550 where A is an accumulator, each CODE[i] is a binary rtl operation
551 and each VALUE[i] is a constant integer. */
552 struct mips_integer_op {
553 enum rtx_code code;
554 unsigned HOST_WIDE_INT value;
558 /* The largest number of operations needed to load an integer constant.
559 The worst accepted case for 64-bit constants is LUI,ORI,SLL,ORI,SLL,ORI.
560 When the lowest bit is clear, we can try, but reject a sequence with
561 an extra SLL at the end. */
562 #define MIPS_MAX_INTEGER_OPS 7
564 /* Information about a MIPS16e SAVE or RESTORE instruction. */
565 struct mips16e_save_restore_info {
566 /* The number of argument registers saved by a SAVE instruction.
567 0 for RESTORE instructions. */
568 unsigned int nargs;
570 /* Bit X is set if the instruction saves or restores GPR X. */
571 unsigned int mask;
573 /* The total number of bytes to allocate. */
574 HOST_WIDE_INT size;
577 /* Global variables for machine-dependent things. */
579 /* Threshold for data being put into the small data/bss area, instead
580 of the normal data area. */
581 int mips_section_threshold = -1;
583 /* Count the number of .file directives, so that .loc is up to date. */
584 int num_source_filenames = 0;
586 /* Count the number of sdb related labels are generated (to find block
587 start and end boundaries). */
588 int sdb_label_count = 0;
590 /* Next label # for each statement for Silicon Graphics IRIS systems. */
591 int sym_lineno = 0;
593 /* Name of the file containing the current function. */
594 const char *current_function_file = "";
596 /* Number of nested .set noreorder, noat, nomacro, and volatile requests. */
597 int set_noreorder;
598 int set_noat;
599 int set_nomacro;
600 int set_volatile;
602 /* The next branch instruction is a branch likely, not branch normal. */
603 int mips_branch_likely;
605 /* The operands passed to the last cmpMM expander. */
606 rtx cmp_operands[2];
608 /* The target cpu for code generation. */
609 enum processor_type mips_arch;
610 const struct mips_cpu_info *mips_arch_info;
612 /* The target cpu for optimization and scheduling. */
613 enum processor_type mips_tune;
614 const struct mips_cpu_info *mips_tune_info;
616 /* Which instruction set architecture to use. */
617 int mips_isa;
619 /* Which ABI to use. */
620 int mips_abi = MIPS_ABI_DEFAULT;
622 /* Cost information to use. */
623 const struct mips_rtx_cost_data *mips_cost;
625 /* Remember the ambient target flags, excluding mips16. */
626 static int mips_base_target_flags;
627 /* The mips16 command-line target flags only. */
628 static bool mips_base_mips16;
629 /* Similar copies of option settings. */
630 static int mips_base_schedule_insns; /* flag_schedule_insns */
631 static int mips_base_reorder_blocks_and_partition; /* flag_reorder... */
632 static int mips_base_move_loop_invariants; /* flag_move_loop_invariants */
633 static int mips_base_align_loops; /* align_loops */
634 static int mips_base_align_jumps; /* align_jumps */
635 static int mips_base_align_functions; /* align_functions */
636 static GTY(()) int mips16_flipper;
638 /* The -mtext-loads setting. */
639 enum mips_code_readable_setting mips_code_readable = CODE_READABLE_YES;
641 /* The -mllsc setting. */
642 enum mips_llsc_setting mips_llsc = LLSC_DEFAULT;
644 /* The architecture selected by -mipsN. */
645 static const struct mips_cpu_info *mips_isa_info;
647 /* If TRUE, we split addresses into their high and low parts in the RTL. */
648 int mips_split_addresses;
650 /* Mode used for saving/restoring general purpose registers. */
651 static enum machine_mode gpr_mode;
653 /* Array giving truth value on whether or not a given hard register
654 can support a given mode. */
655 char mips_hard_regno_mode_ok[(int)MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER];
657 /* List of all MIPS punctuation characters used by print_operand. */
658 char mips_print_operand_punct[256];
660 /* Map GCC register number to debugger register number. */
661 int mips_dbx_regno[FIRST_PSEUDO_REGISTER];
662 int mips_dwarf_regno[FIRST_PSEUDO_REGISTER];
664 /* A copy of the original flag_delayed_branch: see override_options. */
665 static int mips_flag_delayed_branch;
667 static GTY (()) int mips_output_filename_first_time = 1;
669 /* mips_split_p[X] is true if symbols of type X can be split by
670 mips_split_symbol(). */
671 bool mips_split_p[NUM_SYMBOL_TYPES];
673 /* mips_lo_relocs[X] is the relocation to use when a symbol of type X
674 appears in a LO_SUM. It can be null if such LO_SUMs aren't valid or
675 if they are matched by a special .md file pattern. */
676 static const char *mips_lo_relocs[NUM_SYMBOL_TYPES];
678 /* Likewise for HIGHs. */
679 static const char *mips_hi_relocs[NUM_SYMBOL_TYPES];
681 /* Map hard register number to register class */
682 const enum reg_class mips_regno_to_class[] =
684 LEA_REGS, LEA_REGS, M16_NA_REGS, V1_REG,
685 M16_REGS, M16_REGS, M16_REGS, M16_REGS,
686 LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
687 LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
688 M16_NA_REGS, M16_NA_REGS, LEA_REGS, LEA_REGS,
689 LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
690 T_REG, PIC_FN_ADDR_REG, LEA_REGS, LEA_REGS,
691 LEA_REGS, LEA_REGS, LEA_REGS, LEA_REGS,
692 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
693 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
694 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
695 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
696 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
697 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
698 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
699 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
700 MD0_REG, MD1_REG, NO_REGS, ST_REGS,
701 ST_REGS, ST_REGS, ST_REGS, ST_REGS,
702 ST_REGS, ST_REGS, ST_REGS, NO_REGS,
703 NO_REGS, ALL_REGS, ALL_REGS, NO_REGS,
704 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
705 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
706 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
707 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
708 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
709 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
710 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
711 COP0_REGS, COP0_REGS, COP0_REGS, COP0_REGS,
712 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
713 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
714 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
715 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
716 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
717 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
718 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
719 COP2_REGS, COP2_REGS, COP2_REGS, COP2_REGS,
720 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
721 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
722 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
723 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
724 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
725 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
726 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
727 COP3_REGS, COP3_REGS, COP3_REGS, COP3_REGS,
728 DSP_ACC_REGS, DSP_ACC_REGS, DSP_ACC_REGS, DSP_ACC_REGS,
729 DSP_ACC_REGS, DSP_ACC_REGS, ALL_REGS, ALL_REGS,
730 ALL_REGS, ALL_REGS, ALL_REGS, ALL_REGS
733 /* Table of machine dependent attributes. */
734 const struct attribute_spec mips_attribute_table[] =
736 { "long_call", 0, 0, false, true, true, NULL },
737 { "far", 0, 0, false, true, true, NULL },
738 { "near", 0, 0, false, true, true, NULL },
739 /* Switch MIPS16 ASE on and off per-function. We would really like
740 to make these type attributes, but GCC doesn't provide the hooks
741 we need to support the right conversion rules. As declaration
742 attributes, they affect code generation but don't carry other
743 semantics. */
744 { "mips16", 0, 0, true, false, false, NULL },
745 { "nomips16", 0, 0, true, false, false, NULL },
746 { NULL, 0, 0, false, false, false, NULL }
749 /* A table describing all the processors gcc knows about. Names are
750 matched in the order listed. The first mention of an ISA level is
751 taken as the canonical name for that ISA.
753 To ease comparison, please keep this table in the same order
754 as gas's mips_cpu_info_table[]. Please also make sure that
755 MIPS_ISA_LEVEL_SPEC and MIPS_ARCH_FLOAT_SPEC handle all -march
756 options correctly. */
757 const struct mips_cpu_info mips_cpu_info_table[] = {
758 /* Entries for generic ISAs */
759 { "mips1", PROCESSOR_R3000, 1 },
760 { "mips2", PROCESSOR_R6000, 2 },
761 { "mips3", PROCESSOR_R4000, 3 },
762 { "mips4", PROCESSOR_R8000, 4 },
763 { "mips32", PROCESSOR_4KC, 32 },
764 { "mips32r2", PROCESSOR_M4K, 33 },
765 { "mips64", PROCESSOR_5KC, 64 },
767 /* MIPS I */
768 { "r3000", PROCESSOR_R3000, 1 },
769 { "r2000", PROCESSOR_R3000, 1 }, /* = r3000 */
770 { "r3900", PROCESSOR_R3900, 1 },
772 /* MIPS II */
773 { "r6000", PROCESSOR_R6000, 2 },
775 /* MIPS III */
776 { "r4000", PROCESSOR_R4000, 3 },
777 { "vr4100", PROCESSOR_R4100, 3 },
778 { "vr4111", PROCESSOR_R4111, 3 },
779 { "vr4120", PROCESSOR_R4120, 3 },
780 { "vr4130", PROCESSOR_R4130, 3 },
781 { "vr4300", PROCESSOR_R4300, 3 },
782 { "r4400", PROCESSOR_R4000, 3 }, /* = r4000 */
783 { "r4600", PROCESSOR_R4600, 3 },
784 { "orion", PROCESSOR_R4600, 3 }, /* = r4600 */
785 { "r4650", PROCESSOR_R4650, 3 },
787 /* MIPS IV */
788 { "r8000", PROCESSOR_R8000, 4 },
789 { "vr5000", PROCESSOR_R5000, 4 },
790 { "vr5400", PROCESSOR_R5400, 4 },
791 { "vr5500", PROCESSOR_R5500, 4 },
792 { "rm7000", PROCESSOR_R7000, 4 },
793 { "rm9000", PROCESSOR_R9000, 4 },
795 /* MIPS32 */
796 { "4kc", PROCESSOR_4KC, 32 },
797 { "4km", PROCESSOR_4KC, 32 }, /* = 4kc */
798 { "4kp", PROCESSOR_4KP, 32 },
799 { "4ksc", PROCESSOR_4KC, 32 },
801 /* MIPS32 Release 2 */
802 { "m4k", PROCESSOR_M4K, 33 },
803 { "4kec", PROCESSOR_4KC, 33 },
804 { "4kem", PROCESSOR_4KC, 33 },
805 { "4kep", PROCESSOR_4KP, 33 },
806 { "4ksd", PROCESSOR_4KC, 33 },
808 { "24kc", PROCESSOR_24KC, 33 },
809 { "24kf2_1", PROCESSOR_24KF2_1, 33 },
810 { "24kf", PROCESSOR_24KF2_1, 33 },
811 { "24kf1_1", PROCESSOR_24KF1_1, 33 },
812 { "24kfx", PROCESSOR_24KF1_1, 33 },
813 { "24kx", PROCESSOR_24KF1_1, 33 },
815 { "24kec", PROCESSOR_24KC, 33 }, /* 24K with DSP */
816 { "24kef2_1", PROCESSOR_24KF2_1, 33 },
817 { "24kef", PROCESSOR_24KF2_1, 33 },
818 { "24kef1_1", PROCESSOR_24KF1_1, 33 },
819 { "24kefx", PROCESSOR_24KF1_1, 33 },
820 { "24kex", PROCESSOR_24KF1_1, 33 },
822 { "34kc", PROCESSOR_24KC, 33 }, /* 34K with MT/DSP */
823 { "34kf2_1", PROCESSOR_24KF2_1, 33 },
824 { "34kf", PROCESSOR_24KF2_1, 33 },
825 { "34kf1_1", PROCESSOR_24KF1_1, 33 },
826 { "34kfx", PROCESSOR_24KF1_1, 33 },
827 { "34kx", PROCESSOR_24KF1_1, 33 },
829 { "74kc", PROCESSOR_74KC, 33 }, /* 74K with DSPr2 */
830 { "74kf2_1", PROCESSOR_74KF2_1, 33 },
831 { "74kf", PROCESSOR_74KF2_1, 33 },
832 { "74kf1_1", PROCESSOR_74KF1_1, 33 },
833 { "74kfx", PROCESSOR_74KF1_1, 33 },
834 { "74kx", PROCESSOR_74KF1_1, 33 },
835 { "74kf3_2", PROCESSOR_74KF3_2, 33 },
837 /* MIPS64 */
838 { "5kc", PROCESSOR_5KC, 64 },
839 { "5kf", PROCESSOR_5KF, 64 },
840 { "20kc", PROCESSOR_20KC, 64 },
841 { "sb1", PROCESSOR_SB1, 64 },
842 { "sb1a", PROCESSOR_SB1A, 64 },
843 { "sr71000", PROCESSOR_SR71000, 64 },
845 /* End marker */
846 { 0, 0, 0 }
849 /* Default costs. If these are used for a processor we should look
850 up the actual costs. */
851 #define DEFAULT_COSTS COSTS_N_INSNS (6), /* fp_add */ \
852 COSTS_N_INSNS (7), /* fp_mult_sf */ \
853 COSTS_N_INSNS (8), /* fp_mult_df */ \
854 COSTS_N_INSNS (23), /* fp_div_sf */ \
855 COSTS_N_INSNS (36), /* fp_div_df */ \
856 COSTS_N_INSNS (10), /* int_mult_si */ \
857 COSTS_N_INSNS (10), /* int_mult_di */ \
858 COSTS_N_INSNS (69), /* int_div_si */ \
859 COSTS_N_INSNS (69), /* int_div_di */ \
860 2, /* branch_cost */ \
861 4 /* memory_latency */
863 /* Need to replace these with the costs of calling the appropriate
864 libgcc routine. */
865 #define SOFT_FP_COSTS COSTS_N_INSNS (256), /* fp_add */ \
866 COSTS_N_INSNS (256), /* fp_mult_sf */ \
867 COSTS_N_INSNS (256), /* fp_mult_df */ \
868 COSTS_N_INSNS (256), /* fp_div_sf */ \
869 COSTS_N_INSNS (256) /* fp_div_df */
871 static struct mips_rtx_cost_data const mips_rtx_cost_optimize_size =
873 COSTS_N_INSNS (1), /* fp_add */
874 COSTS_N_INSNS (1), /* fp_mult_sf */
875 COSTS_N_INSNS (1), /* fp_mult_df */
876 COSTS_N_INSNS (1), /* fp_div_sf */
877 COSTS_N_INSNS (1), /* fp_div_df */
878 COSTS_N_INSNS (1), /* int_mult_si */
879 COSTS_N_INSNS (1), /* int_mult_di */
880 COSTS_N_INSNS (1), /* int_div_si */
881 COSTS_N_INSNS (1), /* int_div_di */
882 2, /* branch_cost */
883 4 /* memory_latency */
886 static struct mips_rtx_cost_data const mips_rtx_cost_data[PROCESSOR_MAX] =
888 { /* R3000 */
889 COSTS_N_INSNS (2), /* fp_add */
890 COSTS_N_INSNS (4), /* fp_mult_sf */
891 COSTS_N_INSNS (5), /* fp_mult_df */
892 COSTS_N_INSNS (12), /* fp_div_sf */
893 COSTS_N_INSNS (19), /* fp_div_df */
894 COSTS_N_INSNS (12), /* int_mult_si */
895 COSTS_N_INSNS (12), /* int_mult_di */
896 COSTS_N_INSNS (35), /* int_div_si */
897 COSTS_N_INSNS (35), /* int_div_di */
898 1, /* branch_cost */
899 4 /* memory_latency */
902 { /* 4KC */
903 SOFT_FP_COSTS,
904 COSTS_N_INSNS (6), /* int_mult_si */
905 COSTS_N_INSNS (6), /* int_mult_di */
906 COSTS_N_INSNS (36), /* int_div_si */
907 COSTS_N_INSNS (36), /* int_div_di */
908 1, /* branch_cost */
909 4 /* memory_latency */
911 { /* 4KP */
912 SOFT_FP_COSTS,
913 COSTS_N_INSNS (36), /* int_mult_si */
914 COSTS_N_INSNS (36), /* int_mult_di */
915 COSTS_N_INSNS (37), /* int_div_si */
916 COSTS_N_INSNS (37), /* int_div_di */
917 1, /* branch_cost */
918 4 /* memory_latency */
920 { /* 5KC */
921 SOFT_FP_COSTS,
922 COSTS_N_INSNS (4), /* int_mult_si */
923 COSTS_N_INSNS (11), /* int_mult_di */
924 COSTS_N_INSNS (36), /* int_div_si */
925 COSTS_N_INSNS (68), /* int_div_di */
926 1, /* branch_cost */
927 4 /* memory_latency */
929 { /* 5KF */
930 COSTS_N_INSNS (4), /* fp_add */
931 COSTS_N_INSNS (4), /* fp_mult_sf */
932 COSTS_N_INSNS (5), /* fp_mult_df */
933 COSTS_N_INSNS (17), /* fp_div_sf */
934 COSTS_N_INSNS (32), /* fp_div_df */
935 COSTS_N_INSNS (4), /* int_mult_si */
936 COSTS_N_INSNS (11), /* int_mult_di */
937 COSTS_N_INSNS (36), /* int_div_si */
938 COSTS_N_INSNS (68), /* int_div_di */
939 1, /* branch_cost */
940 4 /* memory_latency */
942 { /* 20KC */
943 COSTS_N_INSNS (4), /* fp_add */
944 COSTS_N_INSNS (4), /* fp_mult_sf */
945 COSTS_N_INSNS (5), /* fp_mult_df */
946 COSTS_N_INSNS (17), /* fp_div_sf */
947 COSTS_N_INSNS (32), /* fp_div_df */
948 COSTS_N_INSNS (4), /* int_mult_si */
949 COSTS_N_INSNS (7), /* int_mult_di */
950 COSTS_N_INSNS (42), /* int_div_si */
951 COSTS_N_INSNS (72), /* int_div_di */
952 1, /* branch_cost */
953 4 /* memory_latency */
955 { /* 24KC */
956 SOFT_FP_COSTS,
957 COSTS_N_INSNS (5), /* int_mult_si */
958 COSTS_N_INSNS (5), /* int_mult_di */
959 COSTS_N_INSNS (41), /* int_div_si */
960 COSTS_N_INSNS (41), /* int_div_di */
961 1, /* branch_cost */
962 4 /* memory_latency */
964 { /* 24KF2_1 */
965 COSTS_N_INSNS (8), /* fp_add */
966 COSTS_N_INSNS (8), /* fp_mult_sf */
967 COSTS_N_INSNS (10), /* fp_mult_df */
968 COSTS_N_INSNS (34), /* fp_div_sf */
969 COSTS_N_INSNS (64), /* fp_div_df */
970 COSTS_N_INSNS (5), /* int_mult_si */
971 COSTS_N_INSNS (5), /* int_mult_di */
972 COSTS_N_INSNS (41), /* int_div_si */
973 COSTS_N_INSNS (41), /* int_div_di */
974 1, /* branch_cost */
975 4 /* memory_latency */
977 { /* 24KF1_1 */
978 COSTS_N_INSNS (4), /* fp_add */
979 COSTS_N_INSNS (4), /* fp_mult_sf */
980 COSTS_N_INSNS (5), /* fp_mult_df */
981 COSTS_N_INSNS (17), /* fp_div_sf */
982 COSTS_N_INSNS (32), /* fp_div_df */
983 COSTS_N_INSNS (5), /* int_mult_si */
984 COSTS_N_INSNS (5), /* int_mult_di */
985 COSTS_N_INSNS (41), /* int_div_si */
986 COSTS_N_INSNS (41), /* int_div_di */
987 1, /* branch_cost */
988 4 /* memory_latency */
990 { /* 74KC */
991 SOFT_FP_COSTS,
992 COSTS_N_INSNS (5), /* int_mult_si */
993 COSTS_N_INSNS (5), /* int_mult_di */
994 COSTS_N_INSNS (41), /* int_div_si */
995 COSTS_N_INSNS (41), /* int_div_di */
996 1, /* branch_cost */
997 4 /* memory_latency */
999 { /* 74KF2_1 */
1000 COSTS_N_INSNS (8), /* fp_add */
1001 COSTS_N_INSNS (8), /* fp_mult_sf */
1002 COSTS_N_INSNS (10), /* fp_mult_df */
1003 COSTS_N_INSNS (34), /* fp_div_sf */
1004 COSTS_N_INSNS (64), /* fp_div_df */
1005 COSTS_N_INSNS (5), /* int_mult_si */
1006 COSTS_N_INSNS (5), /* int_mult_di */
1007 COSTS_N_INSNS (41), /* int_div_si */
1008 COSTS_N_INSNS (41), /* int_div_di */
1009 1, /* branch_cost */
1010 4 /* memory_latency */
1012 { /* 74KF1_1 */
1013 COSTS_N_INSNS (4), /* fp_add */
1014 COSTS_N_INSNS (4), /* fp_mult_sf */
1015 COSTS_N_INSNS (5), /* fp_mult_df */
1016 COSTS_N_INSNS (17), /* fp_div_sf */
1017 COSTS_N_INSNS (32), /* fp_div_df */
1018 COSTS_N_INSNS (5), /* int_mult_si */
1019 COSTS_N_INSNS (5), /* int_mult_di */
1020 COSTS_N_INSNS (41), /* int_div_si */
1021 COSTS_N_INSNS (41), /* int_div_di */
1022 1, /* branch_cost */
1023 4 /* memory_latency */
1025 { /* 74KF3_2 */
1026 COSTS_N_INSNS (6), /* fp_add */
1027 COSTS_N_INSNS (6), /* fp_mult_sf */
1028 COSTS_N_INSNS (7), /* fp_mult_df */
1029 COSTS_N_INSNS (25), /* fp_div_sf */
1030 COSTS_N_INSNS (48), /* fp_div_df */
1031 COSTS_N_INSNS (5), /* int_mult_si */
1032 COSTS_N_INSNS (5), /* int_mult_di */
1033 COSTS_N_INSNS (41), /* int_div_si */
1034 COSTS_N_INSNS (41), /* int_div_di */
1035 1, /* branch_cost */
1036 4 /* memory_latency */
1038 { /* M4k */
1039 DEFAULT_COSTS
1041 { /* R3900 */
1042 COSTS_N_INSNS (2), /* fp_add */
1043 COSTS_N_INSNS (4), /* fp_mult_sf */
1044 COSTS_N_INSNS (5), /* fp_mult_df */
1045 COSTS_N_INSNS (12), /* fp_div_sf */
1046 COSTS_N_INSNS (19), /* fp_div_df */
1047 COSTS_N_INSNS (2), /* int_mult_si */
1048 COSTS_N_INSNS (2), /* int_mult_di */
1049 COSTS_N_INSNS (35), /* int_div_si */
1050 COSTS_N_INSNS (35), /* int_div_di */
1051 1, /* branch_cost */
1052 4 /* memory_latency */
1054 { /* R6000 */
1055 COSTS_N_INSNS (3), /* fp_add */
1056 COSTS_N_INSNS (5), /* fp_mult_sf */
1057 COSTS_N_INSNS (6), /* fp_mult_df */
1058 COSTS_N_INSNS (15), /* fp_div_sf */
1059 COSTS_N_INSNS (16), /* fp_div_df */
1060 COSTS_N_INSNS (17), /* int_mult_si */
1061 COSTS_N_INSNS (17), /* int_mult_di */
1062 COSTS_N_INSNS (38), /* int_div_si */
1063 COSTS_N_INSNS (38), /* int_div_di */
1064 2, /* branch_cost */
1065 6 /* memory_latency */
1067 { /* R4000 */
1068 COSTS_N_INSNS (6), /* fp_add */
1069 COSTS_N_INSNS (7), /* fp_mult_sf */
1070 COSTS_N_INSNS (8), /* fp_mult_df */
1071 COSTS_N_INSNS (23), /* fp_div_sf */
1072 COSTS_N_INSNS (36), /* fp_div_df */
1073 COSTS_N_INSNS (10), /* int_mult_si */
1074 COSTS_N_INSNS (10), /* int_mult_di */
1075 COSTS_N_INSNS (69), /* int_div_si */
1076 COSTS_N_INSNS (69), /* int_div_di */
1077 2, /* branch_cost */
1078 6 /* memory_latency */
1080 { /* R4100 */
1081 DEFAULT_COSTS
1083 { /* R4111 */
1084 DEFAULT_COSTS
1086 { /* R4120 */
1087 DEFAULT_COSTS
1089 { /* R4130 */
1090 /* The only costs that appear to be updated here are
1091 integer multiplication. */
1092 SOFT_FP_COSTS,
1093 COSTS_N_INSNS (4), /* int_mult_si */
1094 COSTS_N_INSNS (6), /* int_mult_di */
1095 COSTS_N_INSNS (69), /* int_div_si */
1096 COSTS_N_INSNS (69), /* int_div_di */
1097 1, /* branch_cost */
1098 4 /* memory_latency */
1100 { /* R4300 */
1101 DEFAULT_COSTS
1103 { /* R4600 */
1104 DEFAULT_COSTS
1106 { /* R4650 */
1107 DEFAULT_COSTS
1109 { /* R5000 */
1110 COSTS_N_INSNS (6), /* fp_add */
1111 COSTS_N_INSNS (4), /* fp_mult_sf */
1112 COSTS_N_INSNS (5), /* fp_mult_df */
1113 COSTS_N_INSNS (23), /* fp_div_sf */
1114 COSTS_N_INSNS (36), /* fp_div_df */
1115 COSTS_N_INSNS (5), /* int_mult_si */
1116 COSTS_N_INSNS (5), /* int_mult_di */
1117 COSTS_N_INSNS (36), /* int_div_si */
1118 COSTS_N_INSNS (36), /* int_div_di */
1119 1, /* branch_cost */
1120 4 /* memory_latency */
1122 { /* R5400 */
1123 COSTS_N_INSNS (6), /* fp_add */
1124 COSTS_N_INSNS (5), /* fp_mult_sf */
1125 COSTS_N_INSNS (6), /* fp_mult_df */
1126 COSTS_N_INSNS (30), /* fp_div_sf */
1127 COSTS_N_INSNS (59), /* fp_div_df */
1128 COSTS_N_INSNS (3), /* int_mult_si */
1129 COSTS_N_INSNS (4), /* int_mult_di */
1130 COSTS_N_INSNS (42), /* int_div_si */
1131 COSTS_N_INSNS (74), /* int_div_di */
1132 1, /* branch_cost */
1133 4 /* memory_latency */
1135 { /* R5500 */
1136 COSTS_N_INSNS (6), /* fp_add */
1137 COSTS_N_INSNS (5), /* fp_mult_sf */
1138 COSTS_N_INSNS (6), /* fp_mult_df */
1139 COSTS_N_INSNS (30), /* fp_div_sf */
1140 COSTS_N_INSNS (59), /* fp_div_df */
1141 COSTS_N_INSNS (5), /* int_mult_si */
1142 COSTS_N_INSNS (9), /* int_mult_di */
1143 COSTS_N_INSNS (42), /* int_div_si */
1144 COSTS_N_INSNS (74), /* int_div_di */
1145 1, /* branch_cost */
1146 4 /* memory_latency */
1148 { /* R7000 */
1149 /* The only costs that are changed here are
1150 integer multiplication. */
1151 COSTS_N_INSNS (6), /* fp_add */
1152 COSTS_N_INSNS (7), /* fp_mult_sf */
1153 COSTS_N_INSNS (8), /* fp_mult_df */
1154 COSTS_N_INSNS (23), /* fp_div_sf */
1155 COSTS_N_INSNS (36), /* fp_div_df */
1156 COSTS_N_INSNS (5), /* int_mult_si */
1157 COSTS_N_INSNS (9), /* int_mult_di */
1158 COSTS_N_INSNS (69), /* int_div_si */
1159 COSTS_N_INSNS (69), /* int_div_di */
1160 1, /* branch_cost */
1161 4 /* memory_latency */
1163 { /* R8000 */
1164 DEFAULT_COSTS
1166 { /* R9000 */
1167 /* The only costs that are changed here are
1168 integer multiplication. */
1169 COSTS_N_INSNS (6), /* fp_add */
1170 COSTS_N_INSNS (7), /* fp_mult_sf */
1171 COSTS_N_INSNS (8), /* fp_mult_df */
1172 COSTS_N_INSNS (23), /* fp_div_sf */
1173 COSTS_N_INSNS (36), /* fp_div_df */
1174 COSTS_N_INSNS (3), /* int_mult_si */
1175 COSTS_N_INSNS (8), /* int_mult_di */
1176 COSTS_N_INSNS (69), /* int_div_si */
1177 COSTS_N_INSNS (69), /* int_div_di */
1178 1, /* branch_cost */
1179 4 /* memory_latency */
1181 { /* SB1 */
1182 /* These costs are the same as the SB-1A below. */
1183 COSTS_N_INSNS (4), /* fp_add */
1184 COSTS_N_INSNS (4), /* fp_mult_sf */
1185 COSTS_N_INSNS (4), /* fp_mult_df */
1186 COSTS_N_INSNS (24), /* fp_div_sf */
1187 COSTS_N_INSNS (32), /* fp_div_df */
1188 COSTS_N_INSNS (3), /* int_mult_si */
1189 COSTS_N_INSNS (4), /* int_mult_di */
1190 COSTS_N_INSNS (36), /* int_div_si */
1191 COSTS_N_INSNS (68), /* int_div_di */
1192 1, /* branch_cost */
1193 4 /* memory_latency */
1195 { /* SB1-A */
1196 /* These costs are the same as the SB-1 above. */
1197 COSTS_N_INSNS (4), /* fp_add */
1198 COSTS_N_INSNS (4), /* fp_mult_sf */
1199 COSTS_N_INSNS (4), /* fp_mult_df */
1200 COSTS_N_INSNS (24), /* fp_div_sf */
1201 COSTS_N_INSNS (32), /* fp_div_df */
1202 COSTS_N_INSNS (3), /* int_mult_si */
1203 COSTS_N_INSNS (4), /* int_mult_di */
1204 COSTS_N_INSNS (36), /* int_div_si */
1205 COSTS_N_INSNS (68), /* int_div_di */
1206 1, /* branch_cost */
1207 4 /* memory_latency */
1209 { /* SR71000 */
1210 DEFAULT_COSTS
1214 /* If a MIPS16e SAVE or RESTORE instruction saves or restores register
1215 mips16e_s2_s8_regs[X], it must also save the registers in indexes
1216 X + 1 onwards. Likewise mips16e_a0_a3_regs. */
1217 static const unsigned char mips16e_s2_s8_regs[] = {
1218 30, 23, 22, 21, 20, 19, 18
1220 static const unsigned char mips16e_a0_a3_regs[] = {
1221 4, 5, 6, 7
1224 /* A list of the registers that can be saved by the MIPS16e SAVE instruction,
1225 ordered from the uppermost in memory to the lowest in memory. */
1226 static const unsigned char mips16e_save_restore_regs[] = {
1227 31, 30, 23, 22, 21, 20, 19, 18, 17, 16, 7, 6, 5, 4
1230 /* Initialize the GCC target structure. */
1231 #undef TARGET_ASM_ALIGNED_HI_OP
1232 #define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"
1233 #undef TARGET_ASM_ALIGNED_SI_OP
1234 #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
1235 #undef TARGET_ASM_ALIGNED_DI_OP
1236 #define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t"
1238 #undef TARGET_ASM_FUNCTION_PROLOGUE
1239 #define TARGET_ASM_FUNCTION_PROLOGUE mips_output_function_prologue
1240 #undef TARGET_ASM_FUNCTION_EPILOGUE
1241 #define TARGET_ASM_FUNCTION_EPILOGUE mips_output_function_epilogue
1242 #undef TARGET_ASM_SELECT_RTX_SECTION
1243 #define TARGET_ASM_SELECT_RTX_SECTION mips_select_rtx_section
1244 #undef TARGET_ASM_FUNCTION_RODATA_SECTION
1245 #define TARGET_ASM_FUNCTION_RODATA_SECTION mips_function_rodata_section
1247 #undef TARGET_SCHED_INIT
1248 #define TARGET_SCHED_INIT mips_sched_init
1249 #undef TARGET_SCHED_REORDER
1250 #define TARGET_SCHED_REORDER mips_sched_reorder
1251 #undef TARGET_SCHED_REORDER2
1252 #define TARGET_SCHED_REORDER2 mips_sched_reorder
1253 #undef TARGET_SCHED_VARIABLE_ISSUE
1254 #define TARGET_SCHED_VARIABLE_ISSUE mips_variable_issue
1255 #undef TARGET_SCHED_ADJUST_COST
1256 #define TARGET_SCHED_ADJUST_COST mips_adjust_cost
1257 #undef TARGET_SCHED_ISSUE_RATE
1258 #define TARGET_SCHED_ISSUE_RATE mips_issue_rate
1259 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
1260 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
1261 mips_multipass_dfa_lookahead
1263 #undef TARGET_DEFAULT_TARGET_FLAGS
1264 #define TARGET_DEFAULT_TARGET_FLAGS \
1265 (TARGET_DEFAULT \
1266 | TARGET_CPU_DEFAULT \
1267 | TARGET_ENDIAN_DEFAULT \
1268 | TARGET_FP_EXCEPTIONS_DEFAULT \
1269 | MASK_CHECK_ZERO_DIV \
1270 | MASK_FUSED_MADD)
1271 #undef TARGET_HANDLE_OPTION
1272 #define TARGET_HANDLE_OPTION mips_handle_option
1274 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
1275 #define TARGET_FUNCTION_OK_FOR_SIBCALL mips_function_ok_for_sibcall
1277 #undef TARGET_INSERT_ATTRIBUTES
1278 #define TARGET_INSERT_ATTRIBUTES mips_insert_attributes
1279 #undef TARGET_MERGE_DECL_ATTRIBUTES
1280 #define TARGET_MERGE_DECL_ATTRIBUTES mips_merge_decl_attributes
1281 #undef TARGET_SET_CURRENT_FUNCTION
1282 #define TARGET_SET_CURRENT_FUNCTION mips_set_current_function
1284 #undef TARGET_VALID_POINTER_MODE
1285 #define TARGET_VALID_POINTER_MODE mips_valid_pointer_mode
1286 #undef TARGET_RTX_COSTS
1287 #define TARGET_RTX_COSTS mips_rtx_costs
1288 #undef TARGET_ADDRESS_COST
1289 #define TARGET_ADDRESS_COST mips_address_cost
1291 #undef TARGET_IN_SMALL_DATA_P
1292 #define TARGET_IN_SMALL_DATA_P mips_in_small_data_p
1294 #undef TARGET_MACHINE_DEPENDENT_REORG
1295 #define TARGET_MACHINE_DEPENDENT_REORG mips_reorg
1297 #undef TARGET_ASM_FILE_START
1298 #define TARGET_ASM_FILE_START mips_file_start
1299 #undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
1300 #define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
1302 #undef TARGET_INIT_LIBFUNCS
1303 #define TARGET_INIT_LIBFUNCS mips_init_libfuncs
1305 #undef TARGET_BUILD_BUILTIN_VA_LIST
1306 #define TARGET_BUILD_BUILTIN_VA_LIST mips_build_builtin_va_list
1307 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
1308 #define TARGET_GIMPLIFY_VA_ARG_EXPR mips_gimplify_va_arg_expr
1310 #undef TARGET_PROMOTE_FUNCTION_ARGS
1311 #define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_const_tree_true
1312 #undef TARGET_PROMOTE_FUNCTION_RETURN
1313 #define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_const_tree_true
1314 #undef TARGET_PROMOTE_PROTOTYPES
1315 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
1317 #undef TARGET_RETURN_IN_MEMORY
1318 #define TARGET_RETURN_IN_MEMORY mips_return_in_memory
1319 #undef TARGET_RETURN_IN_MSB
1320 #define TARGET_RETURN_IN_MSB mips_return_in_msb
1322 #undef TARGET_ASM_OUTPUT_MI_THUNK
1323 #define TARGET_ASM_OUTPUT_MI_THUNK mips_output_mi_thunk
1324 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
1325 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
1327 #undef TARGET_SETUP_INCOMING_VARARGS
1328 #define TARGET_SETUP_INCOMING_VARARGS mips_setup_incoming_varargs
1329 #undef TARGET_STRICT_ARGUMENT_NAMING
1330 #define TARGET_STRICT_ARGUMENT_NAMING mips_strict_argument_naming
1331 #undef TARGET_MUST_PASS_IN_STACK
1332 #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
1333 #undef TARGET_PASS_BY_REFERENCE
1334 #define TARGET_PASS_BY_REFERENCE mips_pass_by_reference
1335 #undef TARGET_CALLEE_COPIES
1336 #define TARGET_CALLEE_COPIES mips_callee_copies
1337 #undef TARGET_ARG_PARTIAL_BYTES
1338 #define TARGET_ARG_PARTIAL_BYTES mips_arg_partial_bytes
1340 #undef TARGET_MODE_REP_EXTENDED
1341 #define TARGET_MODE_REP_EXTENDED mips_mode_rep_extended
1343 #undef TARGET_VECTOR_MODE_SUPPORTED_P
1344 #define TARGET_VECTOR_MODE_SUPPORTED_P mips_vector_mode_supported_p
1346 #undef TARGET_SCALAR_MODE_SUPPORTED_P
1347 #define TARGET_SCALAR_MODE_SUPPORTED_P mips_scalar_mode_supported_p
1349 #undef TARGET_INIT_BUILTINS
1350 #define TARGET_INIT_BUILTINS mips_init_builtins
1351 #undef TARGET_EXPAND_BUILTIN
1352 #define TARGET_EXPAND_BUILTIN mips_expand_builtin
1354 #undef TARGET_HAVE_TLS
1355 #define TARGET_HAVE_TLS HAVE_AS_TLS
1357 #undef TARGET_CANNOT_FORCE_CONST_MEM
1358 #define TARGET_CANNOT_FORCE_CONST_MEM mips_cannot_force_const_mem
1360 #undef TARGET_ENCODE_SECTION_INFO
1361 #define TARGET_ENCODE_SECTION_INFO mips_encode_section_info
1363 #undef TARGET_ATTRIBUTE_TABLE
1364 #define TARGET_ATTRIBUTE_TABLE mips_attribute_table
1365 /* All our function attributes are related to how out-of-line copies should
1366 be compiled or called. They don't in themselves prevent inlining. */
1367 #undef TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P
1368 #define TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P hook_bool_const_tree_true
1370 #undef TARGET_EXTRA_LIVE_ON_ENTRY
1371 #define TARGET_EXTRA_LIVE_ON_ENTRY mips_extra_live_on_entry
1373 #undef TARGET_MIN_ANCHOR_OFFSET
1374 #define TARGET_MIN_ANCHOR_OFFSET -32768
1375 #undef TARGET_MAX_ANCHOR_OFFSET
1376 #define TARGET_MAX_ANCHOR_OFFSET 32767
1377 #undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
1378 #define TARGET_USE_BLOCKS_FOR_CONSTANT_P mips_use_blocks_for_constant_p
1379 #undef TARGET_USE_ANCHORS_FOR_SYMBOL_P
1380 #define TARGET_USE_ANCHORS_FOR_SYMBOL_P mips_use_anchors_for_symbol_p
1382 #undef TARGET_COMP_TYPE_ATTRIBUTES
1383 #define TARGET_COMP_TYPE_ATTRIBUTES mips_comp_type_attributes
1385 #ifdef HAVE_AS_DTPRELWORD
1386 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
1387 #define TARGET_ASM_OUTPUT_DWARF_DTPREL mips_output_dwarf_dtprel
1388 #endif
1390 struct gcc_target targetm = TARGET_INITIALIZER;
1393 /* Predicates to test for presence of "near" and "far"/"long_call"
1394 attributes on the given TYPE. */
1396 static bool
1397 mips_near_type_p (const_tree type)
1399 return lookup_attribute ("near", TYPE_ATTRIBUTES (type)) != NULL;
1402 static bool
1403 mips_far_type_p (const_tree type)
1405 return (lookup_attribute ("long_call", TYPE_ATTRIBUTES (type)) != NULL
1406 || lookup_attribute ("far", TYPE_ATTRIBUTES (type)) != NULL);
1409 /* Similar predicates for "mips16"/"nomips16" attributes. */
1411 static bool
1412 mips_mips16_decl_p (const_tree decl)
1414 return lookup_attribute ("mips16", DECL_ATTRIBUTES (decl)) != NULL;
1417 static bool
1418 mips_nomips16_decl_p (const_tree decl)
1420 return lookup_attribute ("nomips16", DECL_ATTRIBUTES (decl)) != NULL;
1423 /* Return 0 if the attributes for two types are incompatible, 1 if they
1424 are compatible, and 2 if they are nearly compatible (which causes a
1425 warning to be generated). */
1427 static int
1428 mips_comp_type_attributes (const_tree type1, const_tree type2)
1430 /* Check for mismatch of non-default calling convention. */
1431 if (TREE_CODE (type1) != FUNCTION_TYPE)
1432 return 1;
1434 /* Disallow mixed near/far attributes. */
1435 if (mips_far_type_p (type1) && mips_near_type_p (type2))
1436 return 0;
1437 if (mips_near_type_p (type1) && mips_far_type_p (type2))
1438 return 0;
1440 return 1;
1443 /* If X is a PLUS of a CONST_INT, return the two terms in *BASE_PTR
1444 and *OFFSET_PTR. Return X in *BASE_PTR and 0 in *OFFSET_PTR otherwise. */
1446 static void
1447 mips_split_plus (rtx x, rtx *base_ptr, HOST_WIDE_INT *offset_ptr)
1449 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
1451 *base_ptr = XEXP (x, 0);
1452 *offset_ptr = INTVAL (XEXP (x, 1));
1454 else
1456 *base_ptr = x;
1457 *offset_ptr = 0;
1461 /* Return true if SYMBOL_REF X is associated with a global symbol
1462 (in the STB_GLOBAL sense). */
1464 static bool
1465 mips_global_symbol_p (const_rtx x)
1467 const_tree const decl = SYMBOL_REF_DECL (x);
1469 if (!decl)
1470 return !SYMBOL_REF_LOCAL_P (x);
1472 /* Weakref symbols are not TREE_PUBLIC, but their targets are global
1473 or weak symbols. Relocations in the object file will be against
1474 the target symbol, so it's that symbol's binding that matters here. */
1475 return DECL_P (decl) && (TREE_PUBLIC (decl) || DECL_WEAK (decl));
1478 /* Return true if SYMBOL_REF X binds locally. */
1480 static bool
1481 mips_symbol_binds_local_p (const_rtx x)
1483 return (SYMBOL_REF_DECL (x)
1484 ? targetm.binds_local_p (SYMBOL_REF_DECL (x))
1485 : SYMBOL_REF_LOCAL_P (x));
1488 /* Return true if rtx constants of mode MODE should be put into a small
1489 data section. */
1491 static bool
1492 mips_rtx_constant_in_small_data_p (enum machine_mode mode)
1494 return (!TARGET_EMBEDDED_DATA
1495 && TARGET_LOCAL_SDATA
1496 && GET_MODE_SIZE (mode) <= mips_section_threshold);
1499 /* Return the method that should be used to access SYMBOL_REF or
1500 LABEL_REF X in context CONTEXT. */
1502 static enum mips_symbol_type
1503 mips_classify_symbol (const_rtx x, enum mips_symbol_context context)
1505 if (TARGET_RTP_PIC)
1506 return SYMBOL_GOT_DISP;
1508 if (GET_CODE (x) == LABEL_REF)
1510 /* LABEL_REFs are used for jump tables as well as text labels.
1511 Only return SYMBOL_PC_RELATIVE if we know the label is in
1512 the text section. */
1513 if (TARGET_MIPS16_SHORT_JUMP_TABLES)
1514 return SYMBOL_PC_RELATIVE;
1515 if (TARGET_ABICALLS && !TARGET_ABSOLUTE_ABICALLS)
1516 return SYMBOL_GOT_PAGE_OFST;
1517 return SYMBOL_ABSOLUTE;
1520 gcc_assert (GET_CODE (x) == SYMBOL_REF);
1522 if (SYMBOL_REF_TLS_MODEL (x))
1523 return SYMBOL_TLS;
1525 if (CONSTANT_POOL_ADDRESS_P (x))
1527 if (TARGET_MIPS16_TEXT_LOADS)
1528 return SYMBOL_PC_RELATIVE;
1530 if (TARGET_MIPS16_PCREL_LOADS && context == SYMBOL_CONTEXT_MEM)
1531 return SYMBOL_PC_RELATIVE;
1533 if (mips_rtx_constant_in_small_data_p (get_pool_mode (x)))
1534 return SYMBOL_GP_RELATIVE;
1537 /* Do not use small-data accesses for weak symbols; they may end up
1538 being zero. */
1539 if (TARGET_GPOPT
1540 && SYMBOL_REF_SMALL_P (x)
1541 && !SYMBOL_REF_WEAK (x))
1542 return SYMBOL_GP_RELATIVE;
1544 /* Don't use GOT accesses for locally-binding symbols when -mno-shared
1545 is in effect. */
1546 if (TARGET_ABICALLS
1547 && !(TARGET_ABSOLUTE_ABICALLS && mips_symbol_binds_local_p (x)))
1549 /* There are three cases to consider:
1551 - o32 PIC (either with or without explicit relocs)
1552 - n32/n64 PIC without explicit relocs
1553 - n32/n64 PIC with explicit relocs
1555 In the first case, both local and global accesses will use an
1556 R_MIPS_GOT16 relocation. We must correctly predict which of
1557 the two semantics (local or global) the assembler and linker
1558 will apply. The choice depends on the symbol's binding rather
1559 than its visibility.
1561 In the second case, the assembler will not use R_MIPS_GOT16
1562 relocations, but it chooses between local and global accesses
1563 in the same way as for o32 PIC.
1565 In the third case we have more freedom since both forms of
1566 access will work for any kind of symbol. However, there seems
1567 little point in doing things differently. */
1568 if (mips_global_symbol_p (x))
1569 return SYMBOL_GOT_DISP;
1571 return SYMBOL_GOT_PAGE_OFST;
1574 if (TARGET_MIPS16_PCREL_LOADS && context != SYMBOL_CONTEXT_CALL)
1575 return SYMBOL_FORCE_TO_MEM;
1576 return SYMBOL_ABSOLUTE;
1579 /* Classify symbolic expression X, given that it appears in context
1580 CONTEXT. */
1582 static enum mips_symbol_type
1583 mips_classify_symbolic_expression (rtx x, enum mips_symbol_context context)
1585 rtx offset;
1587 split_const (x, &x, &offset);
1588 if (UNSPEC_ADDRESS_P (x))
1589 return UNSPEC_ADDRESS_TYPE (x);
1591 return mips_classify_symbol (x, context);
1594 /* Return true if OFFSET is within the range [0, ALIGN), where ALIGN
1595 is the alignment (in bytes) of SYMBOL_REF X. */
1597 static bool
1598 mips_offset_within_alignment_p (rtx x, HOST_WIDE_INT offset)
1600 /* If for some reason we can't get the alignment for the
1601 symbol, initializing this to one means we will only accept
1602 a zero offset. */
1603 HOST_WIDE_INT align = 1;
1604 tree t;
1606 /* Get the alignment of the symbol we're referring to. */
1607 t = SYMBOL_REF_DECL (x);
1608 if (t)
1609 align = DECL_ALIGN_UNIT (t);
1611 return offset >= 0 && offset < align;
1614 /* Return true if X is a symbolic constant that can be used in context
1615 CONTEXT. If it is, store the type of the symbol in *SYMBOL_TYPE. */
1617 bool
1618 mips_symbolic_constant_p (rtx x, enum mips_symbol_context context,
1619 enum mips_symbol_type *symbol_type)
1621 rtx offset;
1623 split_const (x, &x, &offset);
1624 if (UNSPEC_ADDRESS_P (x))
1626 *symbol_type = UNSPEC_ADDRESS_TYPE (x);
1627 x = UNSPEC_ADDRESS (x);
1629 else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
1631 *symbol_type = mips_classify_symbol (x, context);
1632 if (*symbol_type == SYMBOL_TLS)
1633 return false;
1635 else
1636 return false;
1638 if (offset == const0_rtx)
1639 return true;
1641 /* Check whether a nonzero offset is valid for the underlying
1642 relocations. */
1643 switch (*symbol_type)
1645 case SYMBOL_ABSOLUTE:
1646 case SYMBOL_FORCE_TO_MEM:
1647 case SYMBOL_32_HIGH:
1648 case SYMBOL_64_HIGH:
1649 case SYMBOL_64_MID:
1650 case SYMBOL_64_LOW:
1651 /* If the target has 64-bit pointers and the object file only
1652 supports 32-bit symbols, the values of those symbols will be
1653 sign-extended. In this case we can't allow an arbitrary offset
1654 in case the 32-bit value X + OFFSET has a different sign from X. */
1655 if (Pmode == DImode && !ABI_HAS_64BIT_SYMBOLS)
1656 return offset_within_block_p (x, INTVAL (offset));
1658 /* In other cases the relocations can handle any offset. */
1659 return true;
1661 case SYMBOL_PC_RELATIVE:
1662 /* Allow constant pool references to be converted to LABEL+CONSTANT.
1663 In this case, we no longer have access to the underlying constant,
1664 but the original symbol-based access was known to be valid. */
1665 if (GET_CODE (x) == LABEL_REF)
1666 return true;
1668 /* Fall through. */
1670 case SYMBOL_GP_RELATIVE:
1671 /* Make sure that the offset refers to something within the
1672 same object block. This should guarantee that the final
1673 PC- or GP-relative offset is within the 16-bit limit. */
1674 return offset_within_block_p (x, INTVAL (offset));
1676 case SYMBOL_GOT_PAGE_OFST:
1677 case SYMBOL_GOTOFF_PAGE:
1678 /* If the symbol is global, the GOT entry will contain the symbol's
1679 address, and we will apply a 16-bit offset after loading it.
1680 If the symbol is local, the linker should provide enough local
1681 GOT entries for a 16-bit offset, but larger offsets may lead
1682 to GOT overflow. */
1683 return SMALL_INT (offset);
1685 case SYMBOL_TPREL:
1686 case SYMBOL_DTPREL:
1687 /* There is no carry between the HI and LO REL relocations, so the
1688 offset is only valid if we know it won't lead to such a carry. */
1689 return mips_offset_within_alignment_p (x, INTVAL (offset));
1691 case SYMBOL_GOT_DISP:
1692 case SYMBOL_GOTOFF_DISP:
1693 case SYMBOL_GOTOFF_CALL:
1694 case SYMBOL_GOTOFF_LOADGP:
1695 case SYMBOL_TLSGD:
1696 case SYMBOL_TLSLDM:
1697 case SYMBOL_GOTTPREL:
1698 case SYMBOL_TLS:
1699 case SYMBOL_HALF:
1700 return false;
1702 gcc_unreachable ();
1706 /* This function is used to implement REG_MODE_OK_FOR_BASE_P. */
1709 mips_regno_mode_ok_for_base_p (int regno, enum machine_mode mode, int strict)
1711 if (!HARD_REGISTER_NUM_P (regno))
1713 if (!strict)
1714 return true;
1715 regno = reg_renumber[regno];
1718 /* These fake registers will be eliminated to either the stack or
1719 hard frame pointer, both of which are usually valid base registers.
1720 Reload deals with the cases where the eliminated form isn't valid. */
1721 if (regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM)
1722 return true;
1724 /* In mips16 mode, the stack pointer can only address word and doubleword
1725 values, nothing smaller. There are two problems here:
1727 (a) Instantiating virtual registers can introduce new uses of the
1728 stack pointer. If these virtual registers are valid addresses,
1729 the stack pointer should be too.
1731 (b) Most uses of the stack pointer are not made explicit until
1732 FRAME_POINTER_REGNUM and ARG_POINTER_REGNUM have been eliminated.
1733 We don't know until that stage whether we'll be eliminating to the
1734 stack pointer (which needs the restriction) or the hard frame
1735 pointer (which doesn't).
1737 All in all, it seems more consistent to only enforce this restriction
1738 during and after reload. */
1739 if (TARGET_MIPS16 && regno == STACK_POINTER_REGNUM)
1740 return !strict || GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8;
1742 return TARGET_MIPS16 ? M16_REG_P (regno) : GP_REG_P (regno);
1746 /* Return true if X is a valid base register for the given mode.
1747 Allow only hard registers if STRICT. */
1749 static bool
1750 mips_valid_base_register_p (rtx x, enum machine_mode mode, int strict)
1752 if (!strict && GET_CODE (x) == SUBREG)
1753 x = SUBREG_REG (x);
1755 return (REG_P (x)
1756 && mips_regno_mode_ok_for_base_p (REGNO (x), mode, strict));
1760 /* Return true if X is a valid address for machine mode MODE. If it is,
1761 fill in INFO appropriately. STRICT is true if we should only accept
1762 hard base registers. */
1764 static bool
1765 mips_classify_address (struct mips_address_info *info, rtx x,
1766 enum machine_mode mode, int strict)
1768 switch (GET_CODE (x))
1770 case REG:
1771 case SUBREG:
1772 info->type = ADDRESS_REG;
1773 info->reg = x;
1774 info->offset = const0_rtx;
1775 return mips_valid_base_register_p (info->reg, mode, strict);
1777 case PLUS:
1778 info->type = ADDRESS_REG;
1779 info->reg = XEXP (x, 0);
1780 info->offset = XEXP (x, 1);
1781 return (mips_valid_base_register_p (info->reg, mode, strict)
1782 && const_arith_operand (info->offset, VOIDmode));
1784 case LO_SUM:
1785 info->type = ADDRESS_LO_SUM;
1786 info->reg = XEXP (x, 0);
1787 info->offset = XEXP (x, 1);
1788 /* We have to trust the creator of the LO_SUM to do something vaguely
1789 sane. Target-independent code that creates a LO_SUM should also
1790 create and verify the matching HIGH. Target-independent code that
1791 adds an offset to a LO_SUM must prove that the offset will not
1792 induce a carry. Failure to do either of these things would be
1793 a bug, and we are not required to check for it here. The MIPS
1794 backend itself should only create LO_SUMs for valid symbolic
1795 constants, with the high part being either a HIGH or a copy
1796 of _gp. */
1797 info->symbol_type
1798 = mips_classify_symbolic_expression (info->offset, SYMBOL_CONTEXT_MEM);
1799 return (mips_valid_base_register_p (info->reg, mode, strict)
1800 && mips_symbol_insns (info->symbol_type, mode) > 0
1801 && mips_lo_relocs[info->symbol_type] != 0);
1803 case CONST_INT:
1804 /* Small-integer addresses don't occur very often, but they
1805 are legitimate if $0 is a valid base register. */
1806 info->type = ADDRESS_CONST_INT;
1807 return !TARGET_MIPS16 && SMALL_INT (x);
1809 case CONST:
1810 case LABEL_REF:
1811 case SYMBOL_REF:
1812 info->type = ADDRESS_SYMBOLIC;
1813 return (mips_symbolic_constant_p (x, SYMBOL_CONTEXT_MEM,
1814 &info->symbol_type)
1815 && mips_symbol_insns (info->symbol_type, mode) > 0
1816 && !mips_split_p[info->symbol_type]);
1818 default:
1819 return false;
1823 /* Return true if X is a thread-local symbol. */
1825 static bool
1826 mips_tls_operand_p (rtx x)
1828 return GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0;
1831 /* Return true if X can not be forced into a constant pool. */
1833 static int
1834 mips_tls_symbol_ref_1 (rtx *x, void *data ATTRIBUTE_UNUSED)
1836 return mips_tls_operand_p (*x);
1839 /* Return true if X can not be forced into a constant pool. */
1841 static bool
1842 mips_cannot_force_const_mem (rtx x)
1844 rtx base, offset;
1846 if (!TARGET_MIPS16)
1848 /* As an optimization, reject constants that mips_legitimize_move
1849 can expand inline.
1851 Suppose we have a multi-instruction sequence that loads constant C
1852 into register R. If R does not get allocated a hard register, and
1853 R is used in an operand that allows both registers and memory
1854 references, reload will consider forcing C into memory and using
1855 one of the instruction's memory alternatives. Returning false
1856 here will force it to use an input reload instead. */
1857 if (GET_CODE (x) == CONST_INT)
1858 return true;
1860 split_const (x, &base, &offset);
1861 if (symbolic_operand (base, VOIDmode) && SMALL_INT (offset))
1862 return true;
1865 if (TARGET_HAVE_TLS && for_each_rtx (&x, &mips_tls_symbol_ref_1, 0))
1866 return true;
1868 return false;
1871 /* Implement TARGET_USE_BLOCKS_FOR_CONSTANT_P. We can't use blocks for
1872 constants when we're using a per-function constant pool. */
1874 static bool
1875 mips_use_blocks_for_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1876 const_rtx x ATTRIBUTE_UNUSED)
1878 return !TARGET_MIPS16_PCREL_LOADS;
1881 /* Like mips_symbol_insns, but treat extended MIPS16 instructions as a
1882 single instruction. We rely on the fact that, in the worst case,
1883 all instructions involved in a MIPS16 address calculation are usually
1884 extended ones. */
1886 static int
1887 mips_symbol_insns_1 (enum mips_symbol_type type, enum machine_mode mode)
1889 switch (type)
1891 case SYMBOL_ABSOLUTE:
1892 /* When using 64-bit symbols, we need 5 preparatory instructions,
1893 such as:
1895 lui $at,%highest(symbol)
1896 daddiu $at,$at,%higher(symbol)
1897 dsll $at,$at,16
1898 daddiu $at,$at,%hi(symbol)
1899 dsll $at,$at,16
1901 The final address is then $at + %lo(symbol). With 32-bit
1902 symbols we just need a preparatory lui for normal mode and
1903 a preparatory "li; sll" for MIPS16. */
1904 return ABI_HAS_64BIT_SYMBOLS ? 6 : TARGET_MIPS16 ? 3 : 2;
1906 case SYMBOL_GP_RELATIVE:
1907 /* Treat GP-relative accesses as taking a single instruction on
1908 MIPS16 too; the copy of $gp can often be shared. */
1909 return 1;
1911 case SYMBOL_PC_RELATIVE:
1912 /* PC-relative constants can be only be used with addiupc,
1913 lwpc and ldpc. */
1914 if (mode == MAX_MACHINE_MODE
1915 || GET_MODE_SIZE (mode) == 4
1916 || GET_MODE_SIZE (mode) == 8)
1917 return 1;
1919 /* The constant must be loaded using addiupc first. */
1920 return 0;
1922 case SYMBOL_FORCE_TO_MEM:
1923 /* LEAs will be converted into constant-pool references by
1924 mips_reorg. */
1925 if (mode == MAX_MACHINE_MODE)
1926 return 1;
1928 /* The constant must be loaded from the constant pool. */
1929 return 0;
1931 case SYMBOL_GOT_DISP:
1932 /* The constant will have to be loaded from the GOT before it
1933 is used in an address. */
1934 if (mode != MAX_MACHINE_MODE)
1935 return 0;
1937 /* Fall through. */
1939 case SYMBOL_GOT_PAGE_OFST:
1940 /* Unless -funit-at-a-time is in effect, we can't be sure whether
1941 the local/global classification is accurate. See override_options
1942 for details.
1944 The worst cases are:
1946 (1) For local symbols when generating o32 or o64 code. The assembler
1947 will use:
1949 lw $at,%got(symbol)
1952 ...and the final address will be $at + %lo(symbol).
1954 (2) For global symbols when -mxgot. The assembler will use:
1956 lui $at,%got_hi(symbol)
1957 (d)addu $at,$at,$gp
1959 ...and the final address will be $at + %got_lo(symbol). */
1960 return 3;
1962 case SYMBOL_GOTOFF_PAGE:
1963 case SYMBOL_GOTOFF_DISP:
1964 case SYMBOL_GOTOFF_CALL:
1965 case SYMBOL_GOTOFF_LOADGP:
1966 case SYMBOL_32_HIGH:
1967 case SYMBOL_64_HIGH:
1968 case SYMBOL_64_MID:
1969 case SYMBOL_64_LOW:
1970 case SYMBOL_TLSGD:
1971 case SYMBOL_TLSLDM:
1972 case SYMBOL_DTPREL:
1973 case SYMBOL_GOTTPREL:
1974 case SYMBOL_TPREL:
1975 case SYMBOL_HALF:
1976 /* A 16-bit constant formed by a single relocation, or a 32-bit
1977 constant formed from a high 16-bit relocation and a low 16-bit
1978 relocation. Use mips_split_p to determine which. */
1979 return !mips_split_p[type] ? 1 : TARGET_MIPS16 ? 3 : 2;
1981 case SYMBOL_TLS:
1982 /* We don't treat a bare TLS symbol as a constant. */
1983 return 0;
1985 gcc_unreachable ();
1988 /* If MODE is MAX_MACHINE_MODE, return the number of instructions needed
1989 to load symbols of type TYPE into a register. Return 0 if the given
1990 type of symbol cannot be used as an immediate operand.
1992 Otherwise, return the number of instructions needed to load or store
1993 values of mode MODE to or from addresses of type TYPE. Return 0 if
1994 the given type of symbol is not valid in addresses.
1996 In both cases, treat extended MIPS16 instructions as two instructions. */
1998 static int
1999 mips_symbol_insns (enum mips_symbol_type type, enum machine_mode mode)
2001 return mips_symbol_insns_1 (type, mode) * (TARGET_MIPS16 ? 2 : 1);
2004 /* Return true if X is a legitimate $sp-based address for mode MDOE. */
2006 bool
2007 mips_stack_address_p (rtx x, enum machine_mode mode)
2009 struct mips_address_info addr;
2011 return (mips_classify_address (&addr, x, mode, false)
2012 && addr.type == ADDRESS_REG
2013 && addr.reg == stack_pointer_rtx);
2016 /* Return true if a value at OFFSET bytes from BASE can be accessed
2017 using an unextended mips16 instruction. MODE is the mode of the
2018 value.
2020 Usually the offset in an unextended instruction is a 5-bit field.
2021 The offset is unsigned and shifted left once for HIs, twice
2022 for SIs, and so on. An exception is SImode accesses off the
2023 stack pointer, which have an 8-bit immediate field. */
2025 static bool
2026 mips16_unextended_reference_p (enum machine_mode mode, rtx base, rtx offset)
2028 if (TARGET_MIPS16
2029 && GET_CODE (offset) == CONST_INT
2030 && INTVAL (offset) >= 0
2031 && (INTVAL (offset) & (GET_MODE_SIZE (mode) - 1)) == 0)
2033 if (GET_MODE_SIZE (mode) == 4 && base == stack_pointer_rtx)
2034 return INTVAL (offset) < 256 * GET_MODE_SIZE (mode);
2035 return INTVAL (offset) < 32 * GET_MODE_SIZE (mode);
2037 return false;
2041 /* Return the number of instructions needed to load or store a value
2042 of mode MODE at X. Return 0 if X isn't valid for MODE. Assume that
2043 multiword moves may need to be split into word moves if MIGHT_SPLIT_P,
2044 otherwise assume that a single load or store is enough.
2046 For mips16 code, count extended instructions as two instructions. */
2049 mips_address_insns (rtx x, enum machine_mode mode, bool might_split_p)
2051 struct mips_address_info addr;
2052 int factor;
2054 /* BLKmode is used for single unaligned loads and stores and should
2055 not count as a multiword mode. (GET_MODE_SIZE (BLKmode) is pretty
2056 meaningless, so we have to single it out as a special case one way
2057 or the other.) */
2058 if (mode != BLKmode && might_split_p)
2059 factor = (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2060 else
2061 factor = 1;
2063 if (mips_classify_address (&addr, x, mode, false))
2064 switch (addr.type)
2066 case ADDRESS_REG:
2067 if (TARGET_MIPS16
2068 && !mips16_unextended_reference_p (mode, addr.reg, addr.offset))
2069 return factor * 2;
2070 return factor;
2072 case ADDRESS_LO_SUM:
2073 return (TARGET_MIPS16 ? factor * 2 : factor);
2075 case ADDRESS_CONST_INT:
2076 return factor;
2078 case ADDRESS_SYMBOLIC:
2079 return factor * mips_symbol_insns (addr.symbol_type, mode);
2081 return 0;
2085 /* Likewise for constant X. */
2088 mips_const_insns (rtx x)
2090 struct mips_integer_op codes[MIPS_MAX_INTEGER_OPS];
2091 enum mips_symbol_type symbol_type;
2092 rtx offset;
2094 switch (GET_CODE (x))
2096 case HIGH:
2097 if (!mips_symbolic_constant_p (XEXP (x, 0), SYMBOL_CONTEXT_LEA,
2098 &symbol_type)
2099 || !mips_split_p[symbol_type])
2100 return 0;
2102 /* This is simply an lui for normal mode. It is an extended
2103 "li" followed by an extended "sll" for MIPS16. */
2104 return TARGET_MIPS16 ? 4 : 1;
2106 case CONST_INT:
2107 if (TARGET_MIPS16)
2108 /* Unsigned 8-bit constants can be loaded using an unextended
2109 LI instruction. Unsigned 16-bit constants can be loaded
2110 using an extended LI. Negative constants must be loaded
2111 using LI and then negated. */
2112 return (INTVAL (x) >= 0 && INTVAL (x) < 256 ? 1
2113 : SMALL_OPERAND_UNSIGNED (INTVAL (x)) ? 2
2114 : INTVAL (x) > -256 && INTVAL (x) < 0 ? 2
2115 : SMALL_OPERAND_UNSIGNED (-INTVAL (x)) ? 3
2116 : 0);
2118 return mips_build_integer (codes, INTVAL (x));
2120 case CONST_DOUBLE:
2121 case CONST_VECTOR:
2122 return (!TARGET_MIPS16 && x == CONST0_RTX (GET_MODE (x)) ? 1 : 0);
2124 case CONST:
2125 if (CONST_GP_P (x))
2126 return 1;
2128 /* See if we can refer to X directly. */
2129 if (mips_symbolic_constant_p (x, SYMBOL_CONTEXT_LEA, &symbol_type))
2130 return mips_symbol_insns (symbol_type, MAX_MACHINE_MODE);
2132 /* Otherwise try splitting the constant into a base and offset.
2133 16-bit offsets can be added using an extra addiu. Larger offsets
2134 must be calculated separately and then added to the base. */
2135 split_const (x, &x, &offset);
2136 if (offset != 0)
2138 int n = mips_const_insns (x);
2139 if (n != 0)
2141 if (SMALL_INT (offset))
2142 return n + 1;
2143 else
2144 return n + 1 + mips_build_integer (codes, INTVAL (offset));
2147 return 0;
2149 case SYMBOL_REF:
2150 case LABEL_REF:
2151 return mips_symbol_insns (mips_classify_symbol (x, SYMBOL_CONTEXT_LEA),
2152 MAX_MACHINE_MODE);
2154 default:
2155 return 0;
2160 /* Return the number of instructions needed to implement INSN,
2161 given that it loads from or stores to MEM. Count extended
2162 mips16 instructions as two instructions. */
2165 mips_load_store_insns (rtx mem, rtx insn)
2167 enum machine_mode mode;
2168 bool might_split_p;
2169 rtx set;
2171 gcc_assert (MEM_P (mem));
2172 mode = GET_MODE (mem);
2174 /* Try to prove that INSN does not need to be split. */
2175 might_split_p = true;
2176 if (GET_MODE_BITSIZE (mode) == 64)
2178 set = single_set (insn);
2179 if (set && !mips_split_64bit_move_p (SET_DEST (set), SET_SRC (set)))
2180 might_split_p = false;
2183 return mips_address_insns (XEXP (mem, 0), mode, might_split_p);
2187 /* Return the number of instructions needed for an integer division. */
2190 mips_idiv_insns (void)
2192 int count;
2194 count = 1;
2195 if (TARGET_CHECK_ZERO_DIV)
2197 if (GENERATE_DIVIDE_TRAPS)
2198 count++;
2199 else
2200 count += 2;
2203 if (TARGET_FIX_R4000 || TARGET_FIX_R4400)
2204 count++;
2205 return count;
2208 /* This function is used to implement GO_IF_LEGITIMATE_ADDRESS. It
2209 returns a nonzero value if X is a legitimate address for a memory
2210 operand of the indicated MODE. STRICT is nonzero if this function
2211 is called during reload. */
2213 bool
2214 mips_legitimate_address_p (enum machine_mode mode, rtx x, int strict)
2216 struct mips_address_info addr;
2218 return mips_classify_address (&addr, x, mode, strict);
2221 /* Emit a move from SRC to DEST. Assume that the move expanders can
2222 handle all moves if !can_create_pseudo_p (). The distinction is
2223 important because, unlike emit_move_insn, the move expanders know
2224 how to force Pmode objects into the constant pool even when the
2225 constant pool address is not itself legitimate. */
2228 mips_emit_move (rtx dest, rtx src)
2230 return (can_create_pseudo_p ()
2231 ? emit_move_insn (dest, src)
2232 : emit_move_insn_1 (dest, src));
2235 /* Copy VALUE to a register and return that register. If new psuedos
2236 are allowed, copy it into a new register, otherwise use DEST. */
2238 static rtx
2239 mips_force_temporary (rtx dest, rtx value)
2241 if (can_create_pseudo_p ())
2242 return force_reg (Pmode, value);
2243 else
2245 mips_emit_move (copy_rtx (dest), value);
2246 return dest;
2251 /* If MODE is MAX_MACHINE_MODE, ADDR appears as a move operand, otherwise
2252 it appears in a MEM of that mode. Return true if ADDR is a legitimate
2253 constant in that context and can be split into a high part and a LO_SUM.
2254 If so, and if LO_SUM_OUT is nonnull, emit the high part and return
2255 the LO_SUM in *LO_SUM_OUT. Leave *LO_SUM_OUT unchanged otherwise.
2257 TEMP is as for mips_force_temporary and is used to load the high
2258 part into a register. */
2260 bool
2261 mips_split_symbol (rtx temp, rtx addr, enum machine_mode mode, rtx *lo_sum_out)
2263 enum mips_symbol_context context;
2264 enum mips_symbol_type symbol_type;
2265 rtx high;
2267 context = (mode == MAX_MACHINE_MODE
2268 ? SYMBOL_CONTEXT_LEA
2269 : SYMBOL_CONTEXT_MEM);
2270 if (!mips_symbolic_constant_p (addr, context, &symbol_type)
2271 || mips_symbol_insns (symbol_type, mode) == 0
2272 || !mips_split_p[symbol_type])
2273 return false;
2275 if (lo_sum_out)
2277 if (symbol_type == SYMBOL_GP_RELATIVE)
2279 if (!can_create_pseudo_p ())
2281 emit_insn (gen_load_const_gp (copy_rtx (temp)));
2282 high = temp;
2284 else
2285 high = mips16_gp_pseudo_reg ();
2287 else
2289 high = gen_rtx_HIGH (Pmode, copy_rtx (addr));
2290 high = mips_force_temporary (temp, high);
2292 *lo_sum_out = gen_rtx_LO_SUM (Pmode, high, addr);
2294 return true;
2298 /* Wrap symbol or label BASE in an unspec address of type SYMBOL_TYPE
2299 and add CONST_INT OFFSET to the result. */
2301 static rtx
2302 mips_unspec_address_offset (rtx base, rtx offset,
2303 enum mips_symbol_type symbol_type)
2305 base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base),
2306 UNSPEC_ADDRESS_FIRST + symbol_type);
2307 if (offset != const0_rtx)
2308 base = gen_rtx_PLUS (Pmode, base, offset);
2309 return gen_rtx_CONST (Pmode, base);
2312 /* Return an UNSPEC address with underlying address ADDRESS and symbol
2313 type SYMBOL_TYPE. */
2316 mips_unspec_address (rtx address, enum mips_symbol_type symbol_type)
2318 rtx base, offset;
2320 split_const (address, &base, &offset);
2321 return mips_unspec_address_offset (base, offset, symbol_type);
2325 /* If mips_unspec_address (ADDR, SYMBOL_TYPE) is a 32-bit value, add the
2326 high part to BASE and return the result. Just return BASE otherwise.
2327 TEMP is available as a temporary register if needed.
2329 The returned expression can be used as the first operand to a LO_SUM. */
2331 static rtx
2332 mips_unspec_offset_high (rtx temp, rtx base, rtx addr,
2333 enum mips_symbol_type symbol_type)
2335 if (mips_split_p[symbol_type])
2337 addr = gen_rtx_HIGH (Pmode, mips_unspec_address (addr, symbol_type));
2338 addr = mips_force_temporary (temp, addr);
2339 return mips_force_temporary (temp, gen_rtx_PLUS (Pmode, addr, base));
2341 return base;
2345 /* Return a legitimate address for REG + OFFSET. TEMP is as for
2346 mips_force_temporary; it is only needed when OFFSET is not a
2347 SMALL_OPERAND. */
2349 static rtx
2350 mips_add_offset (rtx temp, rtx reg, HOST_WIDE_INT offset)
2352 if (!SMALL_OPERAND (offset))
2354 rtx high;
2355 if (TARGET_MIPS16)
2357 /* Load the full offset into a register so that we can use
2358 an unextended instruction for the address itself. */
2359 high = GEN_INT (offset);
2360 offset = 0;
2362 else
2364 /* Leave OFFSET as a 16-bit offset and put the excess in HIGH. */
2365 high = GEN_INT (CONST_HIGH_PART (offset));
2366 offset = CONST_LOW_PART (offset);
2368 high = mips_force_temporary (temp, high);
2369 reg = mips_force_temporary (temp, gen_rtx_PLUS (Pmode, high, reg));
2371 return plus_constant (reg, offset);
2374 /* Emit a call to __tls_get_addr. SYM is the TLS symbol we are
2375 referencing, and TYPE is the symbol type to use (either global
2376 dynamic or local dynamic). V0 is an RTX for the return value
2377 location. The entire insn sequence is returned. */
2379 static GTY(()) rtx mips_tls_symbol;
2381 static rtx
2382 mips_call_tls_get_addr (rtx sym, enum mips_symbol_type type, rtx v0)
2384 rtx insn, loc, tga, a0;
2386 a0 = gen_rtx_REG (Pmode, GP_ARG_FIRST);
2388 if (!mips_tls_symbol)
2389 mips_tls_symbol = init_one_libfunc ("__tls_get_addr");
2391 loc = mips_unspec_address (sym, type);
2393 start_sequence ();
2395 emit_insn (gen_rtx_SET (Pmode, a0,
2396 gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, loc)));
2397 tga = gen_rtx_MEM (Pmode, mips_tls_symbol);
2398 insn = emit_call_insn (gen_call_value (v0, tga, const0_rtx, const0_rtx));
2399 CONST_OR_PURE_CALL_P (insn) = 1;
2400 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), v0);
2401 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), a0);
2402 insn = get_insns ();
2404 end_sequence ();
2406 return insn;
2409 /* Generate the code to access LOC, a thread local SYMBOL_REF. The
2410 return value will be a valid address and move_operand (either a REG
2411 or a LO_SUM). */
2413 static rtx
2414 mips_legitimize_tls_address (rtx loc)
2416 rtx dest, insn, v0, v1, tmp1, tmp2, eqv;
2417 enum tls_model model;
2419 if (TARGET_MIPS16)
2421 sorry ("MIPS16 TLS");
2422 return gen_reg_rtx (Pmode);
2425 v0 = gen_rtx_REG (Pmode, GP_RETURN);
2426 v1 = gen_rtx_REG (Pmode, GP_RETURN + 1);
2428 model = SYMBOL_REF_TLS_MODEL (loc);
2429 /* Only TARGET_ABICALLS code can have more than one module; other
2430 code must be be static and should not use a GOT. All TLS models
2431 reduce to local exec in this situation. */
2432 if (!TARGET_ABICALLS)
2433 model = TLS_MODEL_LOCAL_EXEC;
2435 switch (model)
2437 case TLS_MODEL_GLOBAL_DYNAMIC:
2438 insn = mips_call_tls_get_addr (loc, SYMBOL_TLSGD, v0);
2439 dest = gen_reg_rtx (Pmode);
2440 emit_libcall_block (insn, dest, v0, loc);
2441 break;
2443 case TLS_MODEL_LOCAL_DYNAMIC:
2444 insn = mips_call_tls_get_addr (loc, SYMBOL_TLSLDM, v0);
2445 tmp1 = gen_reg_rtx (Pmode);
2447 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2448 share the LDM result with other LD model accesses. */
2449 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
2450 UNSPEC_TLS_LDM);
2451 emit_libcall_block (insn, tmp1, v0, eqv);
2453 tmp2 = mips_unspec_offset_high (NULL, tmp1, loc, SYMBOL_DTPREL);
2454 dest = gen_rtx_LO_SUM (Pmode, tmp2,
2455 mips_unspec_address (loc, SYMBOL_DTPREL));
2456 break;
2458 case TLS_MODEL_INITIAL_EXEC:
2459 tmp1 = gen_reg_rtx (Pmode);
2460 tmp2 = mips_unspec_address (loc, SYMBOL_GOTTPREL);
2461 if (Pmode == DImode)
2463 emit_insn (gen_tls_get_tp_di (v1));
2464 emit_insn (gen_load_gotdi (tmp1, pic_offset_table_rtx, tmp2));
2466 else
2468 emit_insn (gen_tls_get_tp_si (v1));
2469 emit_insn (gen_load_gotsi (tmp1, pic_offset_table_rtx, tmp2));
2471 dest = gen_reg_rtx (Pmode);
2472 emit_insn (gen_add3_insn (dest, tmp1, v1));
2473 break;
2475 case TLS_MODEL_LOCAL_EXEC:
2476 if (Pmode == DImode)
2477 emit_insn (gen_tls_get_tp_di (v1));
2478 else
2479 emit_insn (gen_tls_get_tp_si (v1));
2481 tmp1 = mips_unspec_offset_high (NULL, v1, loc, SYMBOL_TPREL);
2482 dest = gen_rtx_LO_SUM (Pmode, tmp1,
2483 mips_unspec_address (loc, SYMBOL_TPREL));
2484 break;
2486 default:
2487 gcc_unreachable ();
2490 return dest;
2493 /* This function is used to implement LEGITIMIZE_ADDRESS. If *XLOC can
2494 be legitimized in a way that the generic machinery might not expect,
2495 put the new address in *XLOC and return true. MODE is the mode of
2496 the memory being accessed. */
2498 bool
2499 mips_legitimize_address (rtx *xloc, enum machine_mode mode)
2501 if (mips_tls_operand_p (*xloc))
2503 *xloc = mips_legitimize_tls_address (*xloc);
2504 return true;
2507 /* See if the address can split into a high part and a LO_SUM. */
2508 if (mips_split_symbol (NULL, *xloc, mode, xloc))
2509 return true;
2511 if (GET_CODE (*xloc) == PLUS && GET_CODE (XEXP (*xloc, 1)) == CONST_INT)
2513 /* Handle REG + CONSTANT using mips_add_offset. */
2514 rtx reg;
2516 reg = XEXP (*xloc, 0);
2517 if (!mips_valid_base_register_p (reg, mode, 0))
2518 reg = copy_to_mode_reg (Pmode, reg);
2519 *xloc = mips_add_offset (0, reg, INTVAL (XEXP (*xloc, 1)));
2520 return true;
2523 return false;
2527 /* Subroutine of mips_build_integer (with the same interface).
2528 Assume that the final action in the sequence should be a left shift. */
2530 static unsigned int
2531 mips_build_shift (struct mips_integer_op *codes, HOST_WIDE_INT value)
2533 unsigned int i, shift;
2535 /* Shift VALUE right until its lowest bit is set. Shift arithmetically
2536 since signed numbers are easier to load than unsigned ones. */
2537 shift = 0;
2538 while ((value & 1) == 0)
2539 value /= 2, shift++;
2541 i = mips_build_integer (codes, value);
2542 codes[i].code = ASHIFT;
2543 codes[i].value = shift;
2544 return i + 1;
2548 /* As for mips_build_shift, but assume that the final action will be
2549 an IOR or PLUS operation. */
2551 static unsigned int
2552 mips_build_lower (struct mips_integer_op *codes, unsigned HOST_WIDE_INT value)
2554 unsigned HOST_WIDE_INT high;
2555 unsigned int i;
2557 high = value & ~(unsigned HOST_WIDE_INT) 0xffff;
2558 if (!LUI_OPERAND (high) && (value & 0x18000) == 0x18000)
2560 /* The constant is too complex to load with a simple lui/ori pair
2561 so our goal is to clear as many trailing zeros as possible.
2562 In this case, we know bit 16 is set and that the low 16 bits
2563 form a negative number. If we subtract that number from VALUE,
2564 we will clear at least the lowest 17 bits, maybe more. */
2565 i = mips_build_integer (codes, CONST_HIGH_PART (value));
2566 codes[i].code = PLUS;
2567 codes[i].value = CONST_LOW_PART (value);
2569 else
2571 i = mips_build_integer (codes, high);
2572 codes[i].code = IOR;
2573 codes[i].value = value & 0xffff;
2575 return i + 1;
2579 /* Fill CODES with a sequence of rtl operations to load VALUE.
2580 Return the number of operations needed. */
2582 static unsigned int
2583 mips_build_integer (struct mips_integer_op *codes,
2584 unsigned HOST_WIDE_INT value)
2586 if (SMALL_OPERAND (value)
2587 || SMALL_OPERAND_UNSIGNED (value)
2588 || LUI_OPERAND (value))
2590 /* The value can be loaded with a single instruction. */
2591 codes[0].code = UNKNOWN;
2592 codes[0].value = value;
2593 return 1;
2595 else if ((value & 1) != 0 || LUI_OPERAND (CONST_HIGH_PART (value)))
2597 /* Either the constant is a simple LUI/ORI combination or its
2598 lowest bit is set. We don't want to shift in this case. */
2599 return mips_build_lower (codes, value);
2601 else if ((value & 0xffff) == 0)
2603 /* The constant will need at least three actions. The lowest
2604 16 bits are clear, so the final action will be a shift. */
2605 return mips_build_shift (codes, value);
2607 else
2609 /* The final action could be a shift, add or inclusive OR.
2610 Rather than use a complex condition to select the best
2611 approach, try both mips_build_shift and mips_build_lower
2612 and pick the one that gives the shortest sequence.
2613 Note that this case is only used once per constant. */
2614 struct mips_integer_op alt_codes[MIPS_MAX_INTEGER_OPS];
2615 unsigned int cost, alt_cost;
2617 cost = mips_build_shift (codes, value);
2618 alt_cost = mips_build_lower (alt_codes, value);
2619 if (alt_cost < cost)
2621 memcpy (codes, alt_codes, alt_cost * sizeof (codes[0]));
2622 cost = alt_cost;
2624 return cost;
2629 /* Load VALUE into DEST, using TEMP as a temporary register if need be. */
2631 void
2632 mips_move_integer (rtx dest, rtx temp, unsigned HOST_WIDE_INT value)
2634 struct mips_integer_op codes[MIPS_MAX_INTEGER_OPS];
2635 enum machine_mode mode;
2636 unsigned int i, cost;
2637 rtx x;
2639 mode = GET_MODE (dest);
2640 cost = mips_build_integer (codes, value);
2642 /* Apply each binary operation to X. Invariant: X is a legitimate
2643 source operand for a SET pattern. */
2644 x = GEN_INT (codes[0].value);
2645 for (i = 1; i < cost; i++)
2647 if (!can_create_pseudo_p ())
2649 emit_insn (gen_rtx_SET (VOIDmode, temp, x));
2650 x = temp;
2652 else
2653 x = force_reg (mode, x);
2654 x = gen_rtx_fmt_ee (codes[i].code, mode, x, GEN_INT (codes[i].value));
2657 emit_insn (gen_rtx_SET (VOIDmode, dest, x));
2661 /* Subroutine of mips_legitimize_move. Move constant SRC into register
2662 DEST given that SRC satisfies immediate_operand but doesn't satisfy
2663 move_operand. */
2665 static void
2666 mips_legitimize_const_move (enum machine_mode mode, rtx dest, rtx src)
2668 rtx base, offset;
2670 /* Split moves of big integers into smaller pieces. */
2671 if (splittable_const_int_operand (src, mode))
2673 mips_move_integer (dest, dest, INTVAL (src));
2674 return;
2677 /* Split moves of symbolic constants into high/low pairs. */
2678 if (mips_split_symbol (dest, src, MAX_MACHINE_MODE, &src))
2680 emit_insn (gen_rtx_SET (VOIDmode, dest, src));
2681 return;
2684 if (mips_tls_operand_p (src))
2686 mips_emit_move (dest, mips_legitimize_tls_address (src));
2687 return;
2690 /* If we have (const (plus symbol offset)), and that expression cannot
2691 be forced into memory, load the symbol first and add in the offset.
2692 In non-MIPS16 mode, prefer to do this even if the constant _can_ be
2693 forced into memory, as it usually produces better code. */
2694 split_const (src, &base, &offset);
2695 if (offset != const0_rtx
2696 && (targetm.cannot_force_const_mem (src)
2697 || (!TARGET_MIPS16 && can_create_pseudo_p ())))
2699 base = mips_force_temporary (dest, base);
2700 mips_emit_move (dest, mips_add_offset (0, base, INTVAL (offset)));
2701 return;
2704 src = force_const_mem (mode, src);
2706 /* When using explicit relocs, constant pool references are sometimes
2707 not legitimate addresses. */
2708 mips_split_symbol (dest, XEXP (src, 0), mode, &XEXP (src, 0));
2709 mips_emit_move (dest, src);
2713 /* If (set DEST SRC) is not a valid instruction, emit an equivalent
2714 sequence that is valid. */
2716 bool
2717 mips_legitimize_move (enum machine_mode mode, rtx dest, rtx src)
2719 if (!register_operand (dest, mode) && !reg_or_0_operand (src, mode))
2721 mips_emit_move (dest, force_reg (mode, src));
2722 return true;
2725 /* Check for individual, fully-reloaded mflo and mfhi instructions. */
2726 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
2727 && REG_P (src) && MD_REG_P (REGNO (src))
2728 && REG_P (dest) && GP_REG_P (REGNO (dest)))
2730 int other_regno = REGNO (src) == HI_REGNUM ? LO_REGNUM : HI_REGNUM;
2731 if (GET_MODE_SIZE (mode) <= 4)
2732 emit_insn (gen_mfhilo_si (gen_rtx_REG (SImode, REGNO (dest)),
2733 gen_rtx_REG (SImode, REGNO (src)),
2734 gen_rtx_REG (SImode, other_regno)));
2735 else
2736 emit_insn (gen_mfhilo_di (gen_rtx_REG (DImode, REGNO (dest)),
2737 gen_rtx_REG (DImode, REGNO (src)),
2738 gen_rtx_REG (DImode, other_regno)));
2739 return true;
2742 /* We need to deal with constants that would be legitimate
2743 immediate_operands but not legitimate move_operands. */
2744 if (CONSTANT_P (src) && !move_operand (src, mode))
2746 mips_legitimize_const_move (mode, dest, src);
2747 set_unique_reg_note (get_last_insn (), REG_EQUAL, copy_rtx (src));
2748 return true;
2750 return false;
2753 /* We need a lot of little routines to check constant values on the
2754 mips16. These are used to figure out how long the instruction will
2755 be. It would be much better to do this using constraints, but
2756 there aren't nearly enough letters available. */
2758 static int
2759 m16_check_op (rtx op, int low, int high, int mask)
2761 return (GET_CODE (op) == CONST_INT
2762 && INTVAL (op) >= low
2763 && INTVAL (op) <= high
2764 && (INTVAL (op) & mask) == 0);
2768 m16_uimm3_b (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2770 return m16_check_op (op, 0x1, 0x8, 0);
2774 m16_simm4_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2776 return m16_check_op (op, - 0x8, 0x7, 0);
2780 m16_nsimm4_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2782 return m16_check_op (op, - 0x7, 0x8, 0);
2786 m16_simm5_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2788 return m16_check_op (op, - 0x10, 0xf, 0);
2792 m16_nsimm5_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2794 return m16_check_op (op, - 0xf, 0x10, 0);
2798 m16_uimm5_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2800 return m16_check_op (op, (- 0x10) << 2, 0xf << 2, 3);
2804 m16_nuimm5_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2806 return m16_check_op (op, (- 0xf) << 2, 0x10 << 2, 3);
2810 m16_simm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2812 return m16_check_op (op, - 0x80, 0x7f, 0);
2816 m16_nsimm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2818 return m16_check_op (op, - 0x7f, 0x80, 0);
2822 m16_uimm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2824 return m16_check_op (op, 0x0, 0xff, 0);
2828 m16_nuimm8_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2830 return m16_check_op (op, - 0xff, 0x0, 0);
2834 m16_uimm8_m1_1 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2836 return m16_check_op (op, - 0x1, 0xfe, 0);
2840 m16_uimm8_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2842 return m16_check_op (op, 0x0, 0xff << 2, 3);
2846 m16_nuimm8_4 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2848 return m16_check_op (op, (- 0xff) << 2, 0x0, 3);
2852 m16_simm8_8 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2854 return m16_check_op (op, (- 0x80) << 3, 0x7f << 3, 7);
2858 m16_nsimm8_8 (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
2860 return m16_check_op (op, (- 0x7f) << 3, 0x80 << 3, 7);
2863 /* Return true if ADDR matches the pattern for the lwxs load scaled indexed
2864 address instruction. */
2866 static bool
2867 mips_lwxs_address_p (rtx addr)
2869 if (ISA_HAS_LWXS
2870 && GET_CODE (addr) == PLUS
2871 && REG_P (XEXP (addr, 1)))
2873 rtx offset = XEXP (addr, 0);
2874 if (GET_CODE (offset) == MULT
2875 && REG_P (XEXP (offset, 0))
2876 && GET_CODE (XEXP (offset, 1)) == CONST_INT
2877 && INTVAL (XEXP (offset, 1)) == 4)
2878 return true;
2880 return false;
2883 /* The cost of loading values from the constant pool. It should be
2884 larger than the cost of any constant we want to synthesize inline. */
2886 #define CONSTANT_POOL_COST COSTS_N_INSNS (TARGET_MIPS16 ? 4 : 8)
2888 /* Return the cost of X when used as an operand to the MIPS16 instruction
2889 that implements CODE. Return -1 if there is no such instruction, or if
2890 X is not a valid immediate operand for it. */
2892 static int
2893 mips16_constant_cost (int code, HOST_WIDE_INT x)
2895 switch (code)
2897 case ASHIFT:
2898 case ASHIFTRT:
2899 case LSHIFTRT:
2900 /* Shifts by between 1 and 8 bits (inclusive) are unextended,
2901 other shifts are extended. The shift patterns truncate the shift
2902 count to the right size, so there are no out-of-range values. */
2903 if (IN_RANGE (x, 1, 8))
2904 return 0;
2905 return COSTS_N_INSNS (1);
2907 case PLUS:
2908 if (IN_RANGE (x, -128, 127))
2909 return 0;
2910 if (SMALL_OPERAND (x))
2911 return COSTS_N_INSNS (1);
2912 return -1;
2914 case LEU:
2915 /* Like LE, but reject the always-true case. */
2916 if (x == -1)
2917 return -1;
2918 case LE:
2919 /* We add 1 to the immediate and use SLT. */
2920 x += 1;
2921 case XOR:
2922 /* We can use CMPI for an xor with an unsigned 16-bit X. */
2923 case LT:
2924 case LTU:
2925 if (IN_RANGE (x, 0, 255))
2926 return 0;
2927 if (SMALL_OPERAND_UNSIGNED (x))
2928 return COSTS_N_INSNS (1);
2929 return -1;
2931 case EQ:
2932 case NE:
2933 /* Equality comparisons with 0 are cheap. */
2934 if (x == 0)
2935 return 0;
2936 return -1;
2938 default:
2939 return -1;
2943 /* Return true if there is a non-MIPS16 instruction that implements CODE
2944 and if that instruction accepts X as an immediate operand. */
2946 static int
2947 mips_immediate_operand_p (int code, HOST_WIDE_INT x)
2949 switch (code)
2951 case ASHIFT:
2952 case ASHIFTRT:
2953 case LSHIFTRT:
2954 /* All shift counts are truncated to a valid constant. */
2955 return true;
2957 case ROTATE:
2958 case ROTATERT:
2959 /* Likewise rotates, if the target supports rotates at all. */
2960 return ISA_HAS_ROR;
2962 case AND:
2963 case IOR:
2964 case XOR:
2965 /* These instructions take 16-bit unsigned immediates. */
2966 return SMALL_OPERAND_UNSIGNED (x);
2968 case PLUS:
2969 case LT:
2970 case LTU:
2971 /* These instructions take 16-bit signed immediates. */
2972 return SMALL_OPERAND (x);
2974 case EQ:
2975 case NE:
2976 case GT:
2977 case GTU:
2978 /* The "immediate" forms of these instructions are really
2979 implemented as comparisons with register 0. */
2980 return x == 0;
2982 case GE:
2983 case GEU:
2984 /* Likewise, meaning that the only valid immediate operand is 1. */
2985 return x == 1;
2987 case LE:
2988 /* We add 1 to the immediate and use SLT. */
2989 return SMALL_OPERAND (x + 1);
2991 case LEU:
2992 /* Likewise SLTU, but reject the always-true case. */
2993 return SMALL_OPERAND (x + 1) && x + 1 != 0;
2995 case SIGN_EXTRACT:
2996 case ZERO_EXTRACT:
2997 /* The bit position and size are immediate operands. */
2998 return ISA_HAS_EXT_INS;
3000 default:
3001 /* By default assume that $0 can be used for 0. */
3002 return x == 0;
3006 /* Return the cost of binary operation X, given that the instruction
3007 sequence for a word-sized or smaller operation has cost SINGLE_COST
3008 and that the sequence of a double-word operation has cost DOUBLE_COST. */
3010 static int
3011 mips_binary_cost (rtx x, int single_cost, int double_cost)
3013 int cost;
3015 if (GET_MODE_SIZE (GET_MODE (x)) == UNITS_PER_WORD * 2)
3016 cost = double_cost;
3017 else
3018 cost = single_cost;
3019 return (cost
3020 + rtx_cost (XEXP (x, 0), 0)
3021 + rtx_cost (XEXP (x, 1), GET_CODE (x)));
3024 /* Return the cost of floating-point multiplications of mode MODE. */
3026 static int
3027 mips_fp_mult_cost (enum machine_mode mode)
3029 return mode == DFmode ? mips_cost->fp_mult_df : mips_cost->fp_mult_sf;
3032 /* Return the cost of floating-point divisions of mode MODE. */
3034 static int
3035 mips_fp_div_cost (enum machine_mode mode)
3037 return mode == DFmode ? mips_cost->fp_div_df : mips_cost->fp_div_sf;
3040 /* Return the cost of sign-extending OP to mode MODE, not including the
3041 cost of OP itself. */
3043 static int
3044 mips_sign_extend_cost (enum machine_mode mode, rtx op)
3046 if (MEM_P (op))
3047 /* Extended loads are as cheap as unextended ones. */
3048 return 0;
3050 if (TARGET_64BIT && mode == DImode && GET_MODE (op) == SImode)
3051 /* A sign extension from SImode to DImode in 64-bit mode is free. */
3052 return 0;
3054 if (ISA_HAS_SEB_SEH || GENERATE_MIPS16E)
3055 /* We can use SEB or SEH. */
3056 return COSTS_N_INSNS (1);
3058 /* We need to use a shift left and a shift right. */
3059 return COSTS_N_INSNS (TARGET_MIPS16 ? 4 : 2);
3062 /* Return the cost of zero-extending OP to mode MODE, not including the
3063 cost of OP itself. */
3065 static int
3066 mips_zero_extend_cost (enum machine_mode mode, rtx op)
3068 if (MEM_P (op))
3069 /* Extended loads are as cheap as unextended ones. */
3070 return 0;
3072 if (TARGET_64BIT && mode == DImode && GET_MODE (op) == SImode)
3073 /* We need a shift left by 32 bits and a shift right by 32 bits. */
3074 return COSTS_N_INSNS (TARGET_MIPS16 ? 4 : 2);
3076 if (GENERATE_MIPS16E)
3077 /* We can use ZEB or ZEH. */
3078 return COSTS_N_INSNS (1);
3080 if (TARGET_MIPS16)
3081 /* We need to load 0xff or 0xffff into a register and use AND. */
3082 return COSTS_N_INSNS (GET_MODE (op) == QImode ? 2 : 3);
3084 /* We can use ANDI. */
3085 return COSTS_N_INSNS (1);
3088 /* Implement TARGET_RTX_COSTS. */
3090 static bool
3091 mips_rtx_costs (rtx x, int code, int outer_code, int *total)
3093 enum machine_mode mode = GET_MODE (x);
3094 bool float_mode_p = FLOAT_MODE_P (mode);
3095 int cost;
3096 rtx addr;
3098 /* The cost of a COMPARE is hard to define for MIPS. COMPAREs don't
3099 appear in the instruction stream, and the cost of a comparison is
3100 really the cost of the branch or scc condition. At the time of
3101 writing, gcc only uses an explicit outer COMPARE code when optabs
3102 is testing whether a constant is expensive enough to force into a
3103 register. We want optabs to pass such constants through the MIPS
3104 expanders instead, so make all constants very cheap here. */
3105 if (outer_code == COMPARE)
3107 gcc_assert (CONSTANT_P (x));
3108 *total = 0;
3109 return true;
3112 switch (code)
3114 case CONST_INT:
3115 /* Treat *clear_upper32-style ANDs as having zero cost in the
3116 second operand. The cost is entirely in the first operand.
3118 ??? This is needed because we would otherwise try to CSE
3119 the constant operand. Although that's the right thing for
3120 instructions that continue to be a register operation throughout
3121 compilation, it is disastrous for instructions that could
3122 later be converted into a memory operation. */
3123 if (TARGET_64BIT
3124 && outer_code == AND
3125 && UINTVAL (x) == 0xffffffff)
3127 *total = 0;
3128 return true;
3131 if (TARGET_MIPS16)
3133 cost = mips16_constant_cost (outer_code, INTVAL (x));
3134 if (cost >= 0)
3136 *total = cost;
3137 return true;
3140 else
3142 /* When not optimizing for size, we care more about the cost
3143 of hot code, and hot code is often in a loop. If a constant
3144 operand needs to be forced into a register, we will often be
3145 able to hoist the constant load out of the loop, so the load
3146 should not contribute to the cost. */
3147 if (!optimize_size
3148 || mips_immediate_operand_p (outer_code, INTVAL (x)))
3150 *total = 0;
3151 return true;
3154 /* Fall through. */
3156 case CONST:
3157 case SYMBOL_REF:
3158 case LABEL_REF:
3159 case CONST_DOUBLE:
3160 if (force_to_mem_operand (x, VOIDmode))
3162 *total = COSTS_N_INSNS (1);
3163 return true;
3165 cost = mips_const_insns (x);
3166 if (cost > 0)
3168 /* If the constant is likely to be stored in a GPR, SETs of
3169 single-insn constants are as cheap as register sets; we
3170 never want to CSE them.
3172 Don't reduce the cost of storing a floating-point zero in
3173 FPRs. If we have a zero in an FPR for other reasons, we
3174 can get better cfg-cleanup and delayed-branch results by
3175 using it consistently, rather than using $0 sometimes and
3176 an FPR at other times. Also, moves between floating-point
3177 registers are sometimes cheaper than (D)MTC1 $0. */
3178 if (cost == 1
3179 && outer_code == SET
3180 && !(float_mode_p && TARGET_HARD_FLOAT))
3181 cost = 0;
3182 /* When non-MIPS16 code loads a constant N>1 times, we rarely
3183 want to CSE the constant itself. It is usually better to
3184 have N copies of the last operation in the sequence and one
3185 shared copy of the other operations. (Note that this is
3186 not true for MIPS16 code, where the final operation in the
3187 sequence is often an extended instruction.)
3189 Also, if we have a CONST_INT, we don't know whether it is
3190 for a word or doubleword operation, so we cannot rely on
3191 the result of mips_build_integer. */
3192 else if (!TARGET_MIPS16
3193 && (outer_code == SET || mode == VOIDmode))
3194 cost = 1;
3195 *total = COSTS_N_INSNS (cost);
3196 return true;
3198 /* The value will need to be fetched from the constant pool. */
3199 *total = CONSTANT_POOL_COST;
3200 return true;
3202 case MEM:
3203 /* If the address is legitimate, return the number of
3204 instructions it needs. */
3205 addr = XEXP (x, 0);
3206 cost = mips_address_insns (addr, mode, true);
3207 if (cost > 0)
3209 *total = COSTS_N_INSNS (cost + 1);
3210 return true;
3212 /* Check for a scaled indexed address. */
3213 if (mips_lwxs_address_p (addr))
3215 *total = COSTS_N_INSNS (2);
3216 return true;
3218 /* Otherwise use the default handling. */
3219 return false;
3221 case FFS:
3222 *total = COSTS_N_INSNS (6);
3223 return false;
3225 case NOT:
3226 *total = COSTS_N_INSNS (GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 2 : 1);
3227 return false;
3229 case AND:
3230 /* Check for a *clear_upper32 pattern and treat it like a zero
3231 extension. See the pattern's comment for details. */
3232 if (TARGET_64BIT
3233 && mode == DImode
3234 && CONST_INT_P (XEXP (x, 1))
3235 && UINTVAL (XEXP (x, 1)) == 0xffffffff)
3237 *total = (mips_zero_extend_cost (mode, XEXP (x, 0))
3238 + rtx_cost (XEXP (x, 0), 0));
3239 return true;
3241 /* Fall through. */
3243 case IOR:
3244 case XOR:
3245 /* Double-word operations use two single-word operations. */
3246 *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (2));
3247 return true;
3249 case ASHIFT:
3250 case ASHIFTRT:
3251 case LSHIFTRT:
3252 case ROTATE:
3253 case ROTATERT:
3254 if (CONSTANT_P (XEXP (x, 1)))
3255 *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (4));
3256 else
3257 *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (12));
3258 return true;
3260 case ABS:
3261 if (float_mode_p)
3262 *total = mips_cost->fp_add;
3263 else
3264 *total = COSTS_N_INSNS (4);
3265 return false;
3267 case LO_SUM:
3268 /* Low-part immediates need an extended MIPS16 instruction. */
3269 *total = (COSTS_N_INSNS (TARGET_MIPS16 ? 2 : 1)
3270 + rtx_cost (XEXP (x, 0), 0));
3271 return true;
3273 case LT:
3274 case LTU:
3275 case LE:
3276 case LEU:
3277 case GT:
3278 case GTU:
3279 case GE:
3280 case GEU:
3281 case EQ:
3282 case NE:
3283 case UNORDERED:
3284 case LTGT:
3285 /* Branch comparisons have VOIDmode, so use the first operand's
3286 mode instead. */
3287 mode = GET_MODE (XEXP (x, 0));
3288 if (FLOAT_MODE_P (mode))
3290 *total = mips_cost->fp_add;
3291 return false;
3293 *total = mips_binary_cost (x, COSTS_N_INSNS (1), COSTS_N_INSNS (4));
3294 return true;
3296 case MINUS:
3297 if (float_mode_p
3298 && ISA_HAS_NMADD_NMSUB
3299 && TARGET_FUSED_MADD
3300 && !HONOR_NANS (mode)
3301 && !HONOR_SIGNED_ZEROS (mode))
3303 /* See if we can use NMADD or NMSUB. See mips.md for the
3304 associated patterns. */
3305 rtx op0 = XEXP (x, 0);
3306 rtx op1 = XEXP (x, 1);
3307 if (GET_CODE (op0) == MULT && GET_CODE (XEXP (op0, 0)) == NEG)
3309 *total = (mips_fp_mult_cost (mode)
3310 + rtx_cost (XEXP (XEXP (op0, 0), 0), 0)
3311 + rtx_cost (XEXP (op0, 1), 0)
3312 + rtx_cost (op1, 0));
3313 return true;
3315 if (GET_CODE (op1) == MULT)
3317 *total = (mips_fp_mult_cost (mode)
3318 + rtx_cost (op0, 0)
3319 + rtx_cost (XEXP (op1, 0), 0)
3320 + rtx_cost (XEXP (op1, 1), 0));
3321 return true;
3324 /* Fall through. */
3326 case PLUS:
3327 if (float_mode_p)
3329 if (ISA_HAS_FP4
3330 && TARGET_FUSED_MADD
3331 && GET_CODE (XEXP (x, 0)) == MULT)
3332 *total = 0;
3333 else
3334 *total = mips_cost->fp_add;
3335 return false;
3338 /* Double-word operations require three single-word operations and
3339 an SLTU. The MIPS16 version then needs to move the result of
3340 the SLTU from $24 to a MIPS16 register. */
3341 *total = mips_binary_cost (x, COSTS_N_INSNS (1),
3342 COSTS_N_INSNS (TARGET_MIPS16 ? 5 : 4));
3343 return true;
3345 case NEG:
3346 if (float_mode_p
3347 && ISA_HAS_NMADD_NMSUB
3348 && TARGET_FUSED_MADD
3349 && !HONOR_NANS (mode)
3350 && HONOR_SIGNED_ZEROS (mode))
3352 /* See if we can use NMADD or NMSUB. See mips.md for the
3353 associated patterns. */
3354 rtx op = XEXP (x, 0);
3355 if ((GET_CODE (op) == PLUS || GET_CODE (op) == MINUS)
3356 && GET_CODE (XEXP (op, 0)) == MULT)
3358 *total = (mips_fp_mult_cost (mode)
3359 + rtx_cost (XEXP (XEXP (op, 0), 0), 0)
3360 + rtx_cost (XEXP (XEXP (op, 0), 1), 0)
3361 + rtx_cost (XEXP (op, 1), 0));
3362 return true;
3366 if (float_mode_p)
3367 *total = mips_cost->fp_add;
3368 else
3369 *total = COSTS_N_INSNS (GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 4 : 1);
3370 return false;
3372 case MULT:
3373 if (float_mode_p)
3374 *total = mips_fp_mult_cost (mode);
3375 else if (mode == DImode && !TARGET_64BIT)
3376 /* Synthesized from 2 mulsi3s, 1 mulsidi3 and two additions,
3377 where the mulsidi3 always includes an MFHI and an MFLO. */
3378 *total = (optimize_size
3379 ? COSTS_N_INSNS (ISA_HAS_MUL3 ? 7 : 9)
3380 : mips_cost->int_mult_si * 3 + 6);
3381 else if (optimize_size)
3382 *total = (ISA_HAS_MUL3 ? 1 : 2);
3383 else if (mode == DImode)
3384 *total = mips_cost->int_mult_di;
3385 else
3386 *total = mips_cost->int_mult_si;
3387 return false;
3389 case DIV:
3390 /* Check for a reciprocal. */
3391 if (float_mode_p && XEXP (x, 0) == CONST1_RTX (mode))
3393 if (ISA_HAS_FP4
3394 && flag_unsafe_math_optimizations
3395 && (outer_code == SQRT || GET_CODE (XEXP (x, 1)) == SQRT))
3397 /* An rsqrt<mode>a or rsqrt<mode>b pattern. Count the
3398 division as being free. */
3399 *total = rtx_cost (XEXP (x, 1), 0);
3400 return true;
3402 if (!ISA_MIPS1)
3404 *total = mips_fp_div_cost (mode) + rtx_cost (XEXP (x, 1), 0);
3405 return true;
3408 /* Fall through. */
3410 case SQRT:
3411 case MOD:
3412 if (float_mode_p)
3414 *total = mips_fp_div_cost (mode);
3415 return false;
3417 /* Fall through. */
3419 case UDIV:
3420 case UMOD:
3421 if (optimize_size)
3423 /* It is our responsibility to make division by a power of 2
3424 as cheap as 2 register additions if we want the division
3425 expanders to be used for such operations; see the setting
3426 of sdiv_pow2_cheap in optabs.c. Using (D)DIV for MIPS16
3427 should always produce shorter code than using
3428 expand_sdiv2_pow2. */
3429 if (TARGET_MIPS16
3430 && CONST_INT_P (XEXP (x, 1))
3431 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
3433 *total = COSTS_N_INSNS (2) + rtx_cost (XEXP (x, 0), 0);
3434 return true;
3436 *total = COSTS_N_INSNS (mips_idiv_insns ());
3438 else if (mode == DImode)
3439 *total = mips_cost->int_div_di;
3440 else
3441 *total = mips_cost->int_div_si;
3442 return false;
3444 case SIGN_EXTEND:
3445 *total = mips_sign_extend_cost (mode, XEXP (x, 0));
3446 return false;
3448 case ZERO_EXTEND:
3449 *total = mips_zero_extend_cost (mode, XEXP (x, 0));
3450 return false;
3452 case FLOAT:
3453 case UNSIGNED_FLOAT:
3454 case FIX:
3455 case FLOAT_EXTEND:
3456 case FLOAT_TRUNCATE:
3457 *total = mips_cost->fp_add;
3458 return false;
3460 default:
3461 return false;
3465 /* Provide the costs of an addressing mode that contains ADDR.
3466 If ADDR is not a valid address, its cost is irrelevant. */
3468 static int
3469 mips_address_cost (rtx addr)
3471 return mips_address_insns (addr, SImode, false);
3474 /* Return one word of double-word value OP, taking into account the fixed
3475 endianness of certain registers. HIGH_P is true to select the high part,
3476 false to select the low part. */
3479 mips_subword (rtx op, int high_p)
3481 unsigned int byte;
3482 enum machine_mode mode;
3484 mode = GET_MODE (op);
3485 if (mode == VOIDmode)
3486 mode = DImode;
3488 if (TARGET_BIG_ENDIAN ? !high_p : high_p)
3489 byte = UNITS_PER_WORD;
3490 else
3491 byte = 0;
3493 if (FP_REG_RTX_P (op))
3494 return gen_rtx_REG (word_mode, high_p ? REGNO (op) + 1 : REGNO (op));
3496 if (MEM_P (op))
3497 return mips_rewrite_small_data (adjust_address (op, word_mode, byte));
3499 return simplify_gen_subreg (word_mode, op, mode, byte);
3503 /* Return true if a 64-bit move from SRC to DEST should be split into two. */
3505 bool
3506 mips_split_64bit_move_p (rtx dest, rtx src)
3508 if (TARGET_64BIT)
3509 return false;
3511 /* FP->FP moves can be done in a single instruction. */
3512 if (FP_REG_RTX_P (src) && FP_REG_RTX_P (dest))
3513 return false;
3515 /* Check for floating-point loads and stores. They can be done using
3516 ldc1 and sdc1 on MIPS II and above. */
3517 if (mips_isa > 1)
3519 if (FP_REG_RTX_P (dest) && MEM_P (src))
3520 return false;
3521 if (FP_REG_RTX_P (src) && MEM_P (dest))
3522 return false;
3524 return true;
3528 /* Split a 64-bit move from SRC to DEST assuming that
3529 mips_split_64bit_move_p holds.
3531 Moves into and out of FPRs cause some difficulty here. Such moves
3532 will always be DFmode, since paired FPRs are not allowed to store
3533 DImode values. The most natural representation would be two separate
3534 32-bit moves, such as:
3536 (set (reg:SI $f0) (mem:SI ...))
3537 (set (reg:SI $f1) (mem:SI ...))
3539 However, the second insn is invalid because odd-numbered FPRs are
3540 not allowed to store independent values. Use the patterns load_df_low,
3541 load_df_high and store_df_high instead. */
3543 void
3544 mips_split_64bit_move (rtx dest, rtx src)
3546 if (FP_REG_RTX_P (dest))
3548 /* Loading an FPR from memory or from GPRs. */
3549 if (ISA_HAS_MXHC1)
3551 dest = gen_lowpart (DFmode, dest);
3552 emit_insn (gen_load_df_low (dest, mips_subword (src, 0)));
3553 emit_insn (gen_mthc1 (dest, mips_subword (src, 1),
3554 copy_rtx (dest)));
3556 else
3558 emit_insn (gen_load_df_low (copy_rtx (dest),
3559 mips_subword (src, 0)));
3560 emit_insn (gen_load_df_high (dest, mips_subword (src, 1),
3561 copy_rtx (dest)));
3564 else if (FP_REG_RTX_P (src))
3566 /* Storing an FPR into memory or GPRs. */
3567 if (ISA_HAS_MXHC1)
3569 src = gen_lowpart (DFmode, src);
3570 mips_emit_move (mips_subword (dest, 0), mips_subword (src, 0));
3571 emit_insn (gen_mfhc1 (mips_subword (dest, 1), src));
3573 else
3575 mips_emit_move (mips_subword (dest, 0), mips_subword (src, 0));
3576 emit_insn (gen_store_df_high (mips_subword (dest, 1), src));
3579 else
3581 /* The operation can be split into two normal moves. Decide in
3582 which order to do them. */
3583 rtx low_dest;
3585 low_dest = mips_subword (dest, 0);
3586 if (REG_P (low_dest)
3587 && reg_overlap_mentioned_p (low_dest, src))
3589 mips_emit_move (mips_subword (dest, 1), mips_subword (src, 1));
3590 mips_emit_move (low_dest, mips_subword (src, 0));
3592 else
3594 mips_emit_move (low_dest, mips_subword (src, 0));
3595 mips_emit_move (mips_subword (dest, 1), mips_subword (src, 1));
3600 /* Return the appropriate instructions to move SRC into DEST. Assume
3601 that SRC is operand 1 and DEST is operand 0. */
3603 const char *
3604 mips_output_move (rtx dest, rtx src)
3606 enum rtx_code dest_code, src_code;
3607 enum mips_symbol_type symbol_type;
3608 bool dbl_p;
3610 dest_code = GET_CODE (dest);
3611 src_code = GET_CODE (src);
3612 dbl_p = (GET_MODE_SIZE (GET_MODE (dest)) == 8);
3614 if (dbl_p && mips_split_64bit_move_p (dest, src))
3615 return "#";
3617 if ((src_code == REG && GP_REG_P (REGNO (src)))
3618 || (!TARGET_MIPS16 && src == CONST0_RTX (GET_MODE (dest))))
3620 if (dest_code == REG)
3622 if (GP_REG_P (REGNO (dest)))
3623 return "move\t%0,%z1";
3625 if (MD_REG_P (REGNO (dest)))
3626 return "mt%0\t%z1";
3628 if (DSP_ACC_REG_P (REGNO (dest)))
3630 static char retval[] = "mt__\t%z1,%q0";
3631 retval[2] = reg_names[REGNO (dest)][4];
3632 retval[3] = reg_names[REGNO (dest)][5];
3633 return retval;
3636 if (FP_REG_P (REGNO (dest)))
3637 return (dbl_p ? "dmtc1\t%z1,%0" : "mtc1\t%z1,%0");
3639 if (ALL_COP_REG_P (REGNO (dest)))
3641 static char retval[] = "dmtc_\t%z1,%0";
3643 retval[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest));
3644 return (dbl_p ? retval : retval + 1);
3647 if (dest_code == MEM)
3648 return (dbl_p ? "sd\t%z1,%0" : "sw\t%z1,%0");
3650 if (dest_code == REG && GP_REG_P (REGNO (dest)))
3652 if (src_code == REG)
3654 if (DSP_ACC_REG_P (REGNO (src)))
3656 static char retval[] = "mf__\t%0,%q1";
3657 retval[2] = reg_names[REGNO (src)][4];
3658 retval[3] = reg_names[REGNO (src)][5];
3659 return retval;
3662 if (ST_REG_P (REGNO (src)) && ISA_HAS_8CC)
3663 return "lui\t%0,0x3f80\n\tmovf\t%0,%.,%1";
3665 if (FP_REG_P (REGNO (src)))
3666 return (dbl_p ? "dmfc1\t%0,%1" : "mfc1\t%0,%1");
3668 if (ALL_COP_REG_P (REGNO (src)))
3670 static char retval[] = "dmfc_\t%0,%1";
3672 retval[4] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src));
3673 return (dbl_p ? retval : retval + 1);
3677 if (src_code == MEM)
3678 return (dbl_p ? "ld\t%0,%1" : "lw\t%0,%1");
3680 if (src_code == CONST_INT)
3682 /* Don't use the X format, because that will give out of
3683 range numbers for 64-bit hosts and 32-bit targets. */
3684 if (!TARGET_MIPS16)
3685 return "li\t%0,%1\t\t\t# %X1";
3687 if (INTVAL (src) >= 0 && INTVAL (src) <= 0xffff)
3688 return "li\t%0,%1";
3690 if (INTVAL (src) < 0 && INTVAL (src) >= -0xffff)
3691 return "#";
3694 if (src_code == HIGH)
3695 return TARGET_MIPS16 ? "#" : "lui\t%0,%h1";
3697 if (CONST_GP_P (src))
3698 return "move\t%0,%1";
3700 if (mips_symbolic_constant_p (src, SYMBOL_CONTEXT_LEA, &symbol_type)
3701 && mips_lo_relocs[symbol_type] != 0)
3703 /* A signed 16-bit constant formed by applying a relocation
3704 operator to a symbolic address. */
3705 gcc_assert (!mips_split_p[symbol_type]);
3706 return "li\t%0,%R1";
3709 if (symbolic_operand (src, VOIDmode))
3711 gcc_assert (TARGET_MIPS16
3712 ? TARGET_MIPS16_TEXT_LOADS
3713 : !TARGET_EXPLICIT_RELOCS);
3714 return (dbl_p ? "dla\t%0,%1" : "la\t%0,%1");
3717 if (src_code == REG && FP_REG_P (REGNO (src)))
3719 if (dest_code == REG && FP_REG_P (REGNO (dest)))
3721 if (GET_MODE (dest) == V2SFmode)
3722 return "mov.ps\t%0,%1";
3723 else
3724 return (dbl_p ? "mov.d\t%0,%1" : "mov.s\t%0,%1");
3727 if (dest_code == MEM)
3728 return (dbl_p ? "sdc1\t%1,%0" : "swc1\t%1,%0");
3730 if (dest_code == REG && FP_REG_P (REGNO (dest)))
3732 if (src_code == MEM)
3733 return (dbl_p ? "ldc1\t%0,%1" : "lwc1\t%0,%1");
3735 if (dest_code == REG && ALL_COP_REG_P (REGNO (dest)) && src_code == MEM)
3737 static char retval[] = "l_c_\t%0,%1";
3739 retval[1] = (dbl_p ? 'd' : 'w');
3740 retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (dest));
3741 return retval;
3743 if (dest_code == MEM && src_code == REG && ALL_COP_REG_P (REGNO (src)))
3745 static char retval[] = "s_c_\t%1,%0";
3747 retval[1] = (dbl_p ? 'd' : 'w');
3748 retval[3] = COPNUM_AS_CHAR_FROM_REGNUM (REGNO (src));
3749 return retval;
3751 gcc_unreachable ();
3754 /* Restore $gp from its save slot. Valid only when using o32 or
3755 o64 abicalls. */
3757 void
3758 mips_restore_gp (void)
3760 rtx address, slot;
3762 gcc_assert (TARGET_ABICALLS && TARGET_OLDABI);
3764 address = mips_add_offset (pic_offset_table_rtx,
3765 frame_pointer_needed
3766 ? hard_frame_pointer_rtx
3767 : stack_pointer_rtx,
3768 current_function_outgoing_args_size);
3769 slot = gen_rtx_MEM (Pmode, address);
3771 mips_emit_move (pic_offset_table_rtx, slot);
3772 if (!TARGET_EXPLICIT_RELOCS)
3773 emit_insn (gen_blockage ());
3776 /* Emit an instruction of the form (set TARGET (CODE OP0 OP1)). */
3778 static void
3779 mips_emit_binary (enum rtx_code code, rtx target, rtx op0, rtx op1)
3781 emit_insn (gen_rtx_SET (VOIDmode, target,
3782 gen_rtx_fmt_ee (code, GET_MODE (target), op0, op1)));
3785 /* Return true if CMP1 is a suitable second operand for relational
3786 operator CODE. See also the *sCC patterns in mips.md. */
3788 static bool
3789 mips_relational_operand_ok_p (enum rtx_code code, rtx cmp1)
3791 switch (code)
3793 case GT:
3794 case GTU:
3795 return reg_or_0_operand (cmp1, VOIDmode);
3797 case GE:
3798 case GEU:
3799 return !TARGET_MIPS16 && cmp1 == const1_rtx;
3801 case LT:
3802 case LTU:
3803 return arith_operand (cmp1, VOIDmode);
3805 case LE:
3806 return sle_operand (cmp1, VOIDmode);
3808 case LEU:
3809 return sleu_operand (cmp1, VOIDmode);
3811 default:
3812 gcc_unreachable ();
3816 /* Canonicalize LE or LEU comparisons into LT comparisons when
3817 possible to avoid extra instructions or inverting the
3818 comparison. */
3820 static bool
3821 mips_canonicalize_comparison (enum rtx_code *code, rtx *cmp1,
3822 enum machine_mode mode)
3824 HOST_WIDE_INT original, plus_one;
3826 if (GET_CODE (*cmp1) != CONST_INT)
3827 return false;
3829 original = INTVAL (*cmp1);
3830 plus_one = trunc_int_for_mode ((unsigned HOST_WIDE_INT) original + 1, mode);
3832 switch (*code)
3834 case LE:
3835 if (original < plus_one)
3837 *code = LT;
3838 *cmp1 = force_reg (mode, GEN_INT (plus_one));
3839 return true;
3841 break;
3843 case LEU:
3844 if (plus_one != 0)
3846 *code = LTU;
3847 *cmp1 = force_reg (mode, GEN_INT (plus_one));
3848 return true;
3850 break;
3852 default:
3853 return false;
3856 return false;
3860 /* Compare CMP0 and CMP1 using relational operator CODE and store the
3861 result in TARGET. CMP0 and TARGET are register_operands that have
3862 the same integer mode. If INVERT_PTR is nonnull, it's OK to set
3863 TARGET to the inverse of the result and flip *INVERT_PTR instead. */
3865 static void
3866 mips_emit_int_relational (enum rtx_code code, bool *invert_ptr,
3867 rtx target, rtx cmp0, rtx cmp1)
3869 /* First see if there is a MIPS instruction that can do this operation
3870 with CMP1 in its current form. If not, try to canonicalize the
3871 comparison to LT. If that fails, try doing the same for the
3872 inverse operation. If that also fails, force CMP1 into a register
3873 and try again. */
3874 if (mips_relational_operand_ok_p (code, cmp1))
3875 mips_emit_binary (code, target, cmp0, cmp1);
3876 else if (mips_canonicalize_comparison (&code, &cmp1, GET_MODE (target)))
3877 mips_emit_binary (code, target, cmp0, cmp1);
3878 else
3880 enum rtx_code inv_code = reverse_condition (code);
3881 if (!mips_relational_operand_ok_p (inv_code, cmp1))
3883 cmp1 = force_reg (GET_MODE (cmp0), cmp1);
3884 mips_emit_int_relational (code, invert_ptr, target, cmp0, cmp1);
3886 else if (invert_ptr == 0)
3888 rtx inv_target = gen_reg_rtx (GET_MODE (target));
3889 mips_emit_binary (inv_code, inv_target, cmp0, cmp1);
3890 mips_emit_binary (XOR, target, inv_target, const1_rtx);
3892 else
3894 *invert_ptr = !*invert_ptr;
3895 mips_emit_binary (inv_code, target, cmp0, cmp1);
3900 /* Return a register that is zero iff CMP0 and CMP1 are equal.
3901 The register will have the same mode as CMP0. */
3903 static rtx
3904 mips_zero_if_equal (rtx cmp0, rtx cmp1)
3906 if (cmp1 == const0_rtx)
3907 return cmp0;
3909 if (uns_arith_operand (cmp1, VOIDmode))
3910 return expand_binop (GET_MODE (cmp0), xor_optab,
3911 cmp0, cmp1, 0, 0, OPTAB_DIRECT);
3913 return expand_binop (GET_MODE (cmp0), sub_optab,
3914 cmp0, cmp1, 0, 0, OPTAB_DIRECT);
3917 /* Convert *CODE into a code that can be used in a floating-point
3918 scc instruction (c.<cond>.<fmt>). Return true if the values of
3919 the condition code registers will be inverted, with 0 indicating
3920 that the condition holds. */
3922 static bool
3923 mips_reverse_fp_cond_p (enum rtx_code *code)
3925 switch (*code)
3927 case NE:
3928 case LTGT:
3929 case ORDERED:
3930 *code = reverse_condition_maybe_unordered (*code);
3931 return true;
3933 default:
3934 return false;
3938 /* Convert a comparison into something that can be used in a branch or
3939 conditional move. cmp_operands[0] and cmp_operands[1] are the values
3940 being compared and *CODE is the code used to compare them.
3942 Update *CODE, *OP0 and *OP1 so that they describe the final comparison.
3943 If NEED_EQ_NE_P, then only EQ/NE comparisons against zero are possible,
3944 otherwise any standard branch condition can be used. The standard branch
3945 conditions are:
3947 - EQ/NE between two registers.
3948 - any comparison between a register and zero. */
3950 static void
3951 mips_emit_compare (enum rtx_code *code, rtx *op0, rtx *op1, bool need_eq_ne_p)
3953 if (GET_MODE_CLASS (GET_MODE (cmp_operands[0])) == MODE_INT)
3955 if (!need_eq_ne_p && cmp_operands[1] == const0_rtx)
3957 *op0 = cmp_operands[0];
3958 *op1 = cmp_operands[1];
3960 else if (*code == EQ || *code == NE)
3962 if (need_eq_ne_p)
3964 *op0 = mips_zero_if_equal (cmp_operands[0], cmp_operands[1]);
3965 *op1 = const0_rtx;
3967 else
3969 *op0 = cmp_operands[0];
3970 *op1 = force_reg (GET_MODE (*op0), cmp_operands[1]);
3973 else
3975 /* The comparison needs a separate scc instruction. Store the
3976 result of the scc in *OP0 and compare it against zero. */
3977 bool invert = false;
3978 *op0 = gen_reg_rtx (GET_MODE (cmp_operands[0]));
3979 *op1 = const0_rtx;
3980 mips_emit_int_relational (*code, &invert, *op0,
3981 cmp_operands[0], cmp_operands[1]);
3982 *code = (invert ? EQ : NE);
3985 else if (ALL_FIXED_POINT_MODE_P (GET_MODE (cmp_operands[0])))
3987 *op0 = gen_rtx_REG (CCDSPmode, CCDSP_CC_REGNUM);
3988 mips_emit_binary (*code, *op0, cmp_operands[0], cmp_operands[1]);
3989 *code = NE;
3990 *op1 = const0_rtx;
3992 else
3994 enum rtx_code cmp_code;
3996 /* Floating-point tests use a separate c.cond.fmt comparison to
3997 set a condition code register. The branch or conditional move
3998 will then compare that register against zero.
4000 Set CMP_CODE to the code of the comparison instruction and
4001 *CODE to the code that the branch or move should use. */
4002 cmp_code = *code;
4003 *code = mips_reverse_fp_cond_p (&cmp_code) ? EQ : NE;
4004 *op0 = (ISA_HAS_8CC
4005 ? gen_reg_rtx (CCmode)
4006 : gen_rtx_REG (CCmode, FPSW_REGNUM));
4007 *op1 = const0_rtx;
4008 mips_emit_binary (cmp_code, *op0, cmp_operands[0], cmp_operands[1]);
4012 /* Try comparing cmp_operands[0] and cmp_operands[1] using rtl code CODE.
4013 Store the result in TARGET and return true if successful.
4015 On 64-bit targets, TARGET may be wider than cmp_operands[0]. */
4017 bool
4018 mips_emit_scc (enum rtx_code code, rtx target)
4020 if (GET_MODE_CLASS (GET_MODE (cmp_operands[0])) != MODE_INT)
4021 return false;
4023 target = gen_lowpart (GET_MODE (cmp_operands[0]), target);
4024 if (code == EQ || code == NE)
4026 rtx zie = mips_zero_if_equal (cmp_operands[0], cmp_operands[1]);
4027 mips_emit_binary (code, target, zie, const0_rtx);
4029 else
4030 mips_emit_int_relational (code, 0, target,
4031 cmp_operands[0], cmp_operands[1]);
4032 return true;
4035 /* Emit the common code for doing conditional branches.
4036 operand[0] is the label to jump to.
4037 The comparison operands are saved away by cmp{si,di,sf,df}. */
4039 void
4040 gen_conditional_branch (rtx *operands, enum rtx_code code)
4042 rtx op0, op1, condition;
4044 mips_emit_compare (&code, &op0, &op1, TARGET_MIPS16);
4045 condition = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4046 emit_jump_insn (gen_condjump (condition, operands[0]));
4049 /* Implement:
4051 (set temp (COND:CCV2 CMP_OP0 CMP_OP1))
4052 (set DEST (unspec [TRUE_SRC FALSE_SRC temp] UNSPEC_MOVE_TF_PS)) */
4054 void
4055 mips_expand_vcondv2sf (rtx dest, rtx true_src, rtx false_src,
4056 enum rtx_code cond, rtx cmp_op0, rtx cmp_op1)
4058 rtx cmp_result;
4059 bool reversed_p;
4061 reversed_p = mips_reverse_fp_cond_p (&cond);
4062 cmp_result = gen_reg_rtx (CCV2mode);
4063 emit_insn (gen_scc_ps (cmp_result,
4064 gen_rtx_fmt_ee (cond, VOIDmode, cmp_op0, cmp_op1)));
4065 if (reversed_p)
4066 emit_insn (gen_mips_cond_move_tf_ps (dest, false_src, true_src,
4067 cmp_result));
4068 else
4069 emit_insn (gen_mips_cond_move_tf_ps (dest, true_src, false_src,
4070 cmp_result));
4073 /* Emit the common code for conditional moves. OPERANDS is the array
4074 of operands passed to the conditional move define_expand. */
4076 void
4077 gen_conditional_move (rtx *operands)
4079 enum rtx_code code;
4080 rtx op0, op1;
4082 code = GET_CODE (operands[1]);
4083 mips_emit_compare (&code, &op0, &op1, true);
4084 emit_insn (gen_rtx_SET (VOIDmode, operands[0],
4085 gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]),
4086 gen_rtx_fmt_ee (code,
4087 GET_MODE (op0),
4088 op0, op1),
4089 operands[2], operands[3])));
4092 /* Emit a conditional trap. OPERANDS is the array of operands passed to
4093 the conditional_trap expander. */
4095 void
4096 mips_gen_conditional_trap (rtx *operands)
4098 rtx op0, op1;
4099 enum rtx_code cmp_code = GET_CODE (operands[0]);
4100 enum machine_mode mode = GET_MODE (cmp_operands[0]);
4102 /* MIPS conditional trap machine instructions don't have GT or LE
4103 flavors, so we must invert the comparison and convert to LT and
4104 GE, respectively. */
4105 switch (cmp_code)
4107 case GT: cmp_code = LT; break;
4108 case LE: cmp_code = GE; break;
4109 case GTU: cmp_code = LTU; break;
4110 case LEU: cmp_code = GEU; break;
4111 default: break;
4113 if (cmp_code == GET_CODE (operands[0]))
4115 op0 = cmp_operands[0];
4116 op1 = cmp_operands[1];
4118 else
4120 op0 = cmp_operands[1];
4121 op1 = cmp_operands[0];
4123 op0 = force_reg (mode, op0);
4124 if (!arith_operand (op1, mode))
4125 op1 = force_reg (mode, op1);
4127 emit_insn (gen_rtx_TRAP_IF (VOIDmode,
4128 gen_rtx_fmt_ee (cmp_code, mode, op0, op1),
4129 operands[1]));
4132 /* Return true if function DECL is a MIPS16 function. Return the ambient
4133 setting if DECL is null. */
4135 static bool
4136 mips_use_mips16_mode_p (tree decl)
4138 if (decl)
4140 /* Nested functions must use the same frame pointer as their
4141 parent and must therefore use the same ISA mode. */
4142 tree parent = decl_function_context (decl);
4143 if (parent)
4144 decl = parent;
4145 if (mips_mips16_decl_p (decl))
4146 return true;
4147 if (mips_nomips16_decl_p (decl))
4148 return false;
4150 return mips_base_mips16;
4153 /* Return true if calls to X can use R_MIPS_CALL* relocations. */
4155 static bool
4156 mips_ok_for_lazy_binding_p (rtx x)
4158 return (TARGET_USE_GOT
4159 && GET_CODE (x) == SYMBOL_REF
4160 && !mips_symbol_binds_local_p (x));
4163 /* Load function address ADDR into register DEST. SIBCALL_P is true
4164 if the address is needed for a sibling call. */
4166 static void
4167 mips_load_call_address (rtx dest, rtx addr, int sibcall_p)
4169 /* If we're generating PIC, and this call is to a global function,
4170 try to allow its address to be resolved lazily. This isn't
4171 possible if TARGET_CALL_SAVED_GP since the value of $gp on entry
4172 to the stub would be our caller's gp, not ours. */
4173 if (TARGET_EXPLICIT_RELOCS
4174 && !(sibcall_p && TARGET_CALL_SAVED_GP)
4175 && mips_ok_for_lazy_binding_p (addr))
4177 rtx high, lo_sum_symbol;
4179 high = mips_unspec_offset_high (dest, pic_offset_table_rtx,
4180 addr, SYMBOL_GOTOFF_CALL);
4181 lo_sum_symbol = mips_unspec_address (addr, SYMBOL_GOTOFF_CALL);
4182 if (Pmode == SImode)
4183 emit_insn (gen_load_callsi (dest, high, lo_sum_symbol));
4184 else
4185 emit_insn (gen_load_calldi (dest, high, lo_sum_symbol));
4187 else
4188 mips_emit_move (dest, addr);
4192 /* Expand a call or call_value instruction. RESULT is where the
4193 result will go (null for calls), ADDR is the address of the
4194 function, ARGS_SIZE is the size of the arguments and AUX is
4195 the value passed to us by mips_function_arg. SIBCALL_P is true
4196 if we are expanding a sibling call, false if we're expanding
4197 a normal call. */
4199 void
4200 mips_expand_call (rtx result, rtx addr, rtx args_size, rtx aux, int sibcall_p)
4202 rtx orig_addr, pattern, insn;
4204 orig_addr = addr;
4205 if (!call_insn_operand (addr, VOIDmode))
4207 addr = gen_reg_rtx (Pmode);
4208 mips_load_call_address (addr, orig_addr, sibcall_p);
4211 if (TARGET_MIPS16
4212 && TARGET_HARD_FLOAT_ABI
4213 && build_mips16_call_stub (result, addr, args_size,
4214 aux == 0 ? 0 : (int) GET_MODE (aux)))
4215 return;
4217 if (result == 0)
4218 pattern = (sibcall_p
4219 ? gen_sibcall_internal (addr, args_size)
4220 : gen_call_internal (addr, args_size));
4221 else if (GET_CODE (result) == PARALLEL && XVECLEN (result, 0) == 2)
4223 rtx reg1, reg2;
4225 reg1 = XEXP (XVECEXP (result, 0, 0), 0);
4226 reg2 = XEXP (XVECEXP (result, 0, 1), 0);
4227 pattern =
4228 (sibcall_p
4229 ? gen_sibcall_value_multiple_internal (reg1, addr, args_size, reg2)
4230 : gen_call_value_multiple_internal (reg1, addr, args_size, reg2));
4232 else
4233 pattern = (sibcall_p
4234 ? gen_sibcall_value_internal (result, addr, args_size)
4235 : gen_call_value_internal (result, addr, args_size));
4237 insn = emit_call_insn (pattern);
4239 /* Lazy-binding stubs require $gp to be valid on entry. */
4240 if (mips_ok_for_lazy_binding_p (orig_addr))
4241 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), pic_offset_table_rtx);
4245 /* Implement TARGET_FUNCTION_OK_FOR_SIBCALL. */
4247 static bool
4248 mips_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
4250 if (!TARGET_SIBCALLS)
4251 return false;
4253 /* We can't do a sibcall if the called function is a MIPS16 function
4254 because there is no direct "jx" instruction equivalent to "jalx" to
4255 switch the ISA mode. */
4256 if (mips_use_mips16_mode_p (decl))
4257 return false;
4259 /* ...and when -minterlink-mips16 is in effect, assume that external
4260 functions could be MIPS16 ones unless an attribute explicitly
4261 tells us otherwise. We only care about cases where the sibling
4262 and normal calls would both be direct. */
4263 if (TARGET_INTERLINK_MIPS16
4264 && decl
4265 && DECL_EXTERNAL (decl)
4266 && !mips_nomips16_decl_p (decl)
4267 && const_call_insn_operand (XEXP (DECL_RTL (decl), 0), VOIDmode))
4268 return false;
4270 /* Otherwise OK. */
4271 return true;
4274 /* Emit code to move general operand SRC into condition-code
4275 register DEST. SCRATCH is a scratch TFmode float register.
4276 The sequence is:
4278 FP1 = SRC
4279 FP2 = 0.0f
4280 DEST = FP2 < FP1
4282 where FP1 and FP2 are single-precision float registers
4283 taken from SCRATCH. */
4285 void
4286 mips_emit_fcc_reload (rtx dest, rtx src, rtx scratch)
4288 rtx fp1, fp2;
4290 /* Change the source to SFmode. */
4291 if (MEM_P (src))
4292 src = adjust_address (src, SFmode, 0);
4293 else if (REG_P (src) || GET_CODE (src) == SUBREG)
4294 src = gen_rtx_REG (SFmode, true_regnum (src));
4296 fp1 = gen_rtx_REG (SFmode, REGNO (scratch));
4297 fp2 = gen_rtx_REG (SFmode, REGNO (scratch) + MAX_FPRS_PER_FMT);
4299 mips_emit_move (copy_rtx (fp1), src);
4300 mips_emit_move (copy_rtx (fp2), CONST0_RTX (SFmode));
4301 emit_insn (gen_slt_sf (dest, fp2, fp1));
4304 /* Emit code to change the current function's return address to
4305 ADDRESS. SCRATCH is available as a scratch register, if needed.
4306 ADDRESS and SCRATCH are both word-mode GPRs. */
4308 void
4309 mips_set_return_address (rtx address, rtx scratch)
4311 rtx slot_address;
4313 compute_frame_size (get_frame_size ());
4314 gcc_assert ((cfun->machine->frame.mask >> 31) & 1);
4315 slot_address = mips_add_offset (scratch, stack_pointer_rtx,
4316 cfun->machine->frame.gp_sp_offset);
4318 mips_emit_move (gen_rtx_MEM (GET_MODE (address), slot_address), address);
4321 /* Emit straight-line code to move LENGTH bytes from SRC to DEST.
4322 Assume that the areas do not overlap. */
4324 static void
4325 mips_block_move_straight (rtx dest, rtx src, HOST_WIDE_INT length)
4327 HOST_WIDE_INT offset, delta;
4328 unsigned HOST_WIDE_INT bits;
4329 int i;
4330 enum machine_mode mode;
4331 rtx *regs;
4333 /* Work out how many bits to move at a time. If both operands have
4334 half-word alignment, it is usually better to move in half words.
4335 For instance, lh/lh/sh/sh is usually better than lwl/lwr/swl/swr
4336 and lw/lw/sw/sw is usually better than ldl/ldr/sdl/sdr.
4337 Otherwise move word-sized chunks. */
4338 if (MEM_ALIGN (src) == BITS_PER_WORD / 2
4339 && MEM_ALIGN (dest) == BITS_PER_WORD / 2)
4340 bits = BITS_PER_WORD / 2;
4341 else
4342 bits = BITS_PER_WORD;
4344 mode = mode_for_size (bits, MODE_INT, 0);
4345 delta = bits / BITS_PER_UNIT;
4347 /* Allocate a buffer for the temporary registers. */
4348 regs = alloca (sizeof (rtx) * length / delta);
4350 /* Load as many BITS-sized chunks as possible. Use a normal load if
4351 the source has enough alignment, otherwise use left/right pairs. */
4352 for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
4354 regs[i] = gen_reg_rtx (mode);
4355 if (MEM_ALIGN (src) >= bits)
4356 mips_emit_move (regs[i], adjust_address (src, mode, offset));
4357 else
4359 rtx part = adjust_address (src, BLKmode, offset);
4360 if (!mips_expand_unaligned_load (regs[i], part, bits, 0))
4361 gcc_unreachable ();
4365 /* Copy the chunks to the destination. */
4366 for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
4367 if (MEM_ALIGN (dest) >= bits)
4368 mips_emit_move (adjust_address (dest, mode, offset), regs[i]);
4369 else
4371 rtx part = adjust_address (dest, BLKmode, offset);
4372 if (!mips_expand_unaligned_store (part, regs[i], bits, 0))
4373 gcc_unreachable ();
4376 /* Mop up any left-over bytes. */
4377 if (offset < length)
4379 src = adjust_address (src, BLKmode, offset);
4380 dest = adjust_address (dest, BLKmode, offset);
4381 move_by_pieces (dest, src, length - offset,
4382 MIN (MEM_ALIGN (src), MEM_ALIGN (dest)), 0);
4386 #define MAX_MOVE_REGS 4
4387 #define MAX_MOVE_BYTES (MAX_MOVE_REGS * UNITS_PER_WORD)
4390 /* Helper function for doing a loop-based block operation on memory
4391 reference MEM. Each iteration of the loop will operate on LENGTH
4392 bytes of MEM.
4394 Create a new base register for use within the loop and point it to
4395 the start of MEM. Create a new memory reference that uses this
4396 register. Store them in *LOOP_REG and *LOOP_MEM respectively. */
4398 static void
4399 mips_adjust_block_mem (rtx mem, HOST_WIDE_INT length,
4400 rtx *loop_reg, rtx *loop_mem)
4402 *loop_reg = copy_addr_to_reg (XEXP (mem, 0));
4404 /* Although the new mem does not refer to a known location,
4405 it does keep up to LENGTH bytes of alignment. */
4406 *loop_mem = change_address (mem, BLKmode, *loop_reg);
4407 set_mem_align (*loop_mem, MIN (MEM_ALIGN (mem), length * BITS_PER_UNIT));
4411 /* Move LENGTH bytes from SRC to DEST using a loop that moves MAX_MOVE_BYTES
4412 per iteration. LENGTH must be at least MAX_MOVE_BYTES. Assume that the
4413 memory regions do not overlap. */
4415 static void
4416 mips_block_move_loop (rtx dest, rtx src, HOST_WIDE_INT length)
4418 rtx label, src_reg, dest_reg, final_src;
4419 HOST_WIDE_INT leftover;
4421 leftover = length % MAX_MOVE_BYTES;
4422 length -= leftover;
4424 /* Create registers and memory references for use within the loop. */
4425 mips_adjust_block_mem (src, MAX_MOVE_BYTES, &src_reg, &src);
4426 mips_adjust_block_mem (dest, MAX_MOVE_BYTES, &dest_reg, &dest);
4428 /* Calculate the value that SRC_REG should have after the last iteration
4429 of the loop. */
4430 final_src = expand_simple_binop (Pmode, PLUS, src_reg, GEN_INT (length),
4431 0, 0, OPTAB_WIDEN);
4433 /* Emit the start of the loop. */
4434 label = gen_label_rtx ();
4435 emit_label (label);
4437 /* Emit the loop body. */
4438 mips_block_move_straight (dest, src, MAX_MOVE_BYTES);
4440 /* Move on to the next block. */
4441 mips_emit_move (src_reg, plus_constant (src_reg, MAX_MOVE_BYTES));
4442 mips_emit_move (dest_reg, plus_constant (dest_reg, MAX_MOVE_BYTES));
4444 /* Emit the loop condition. */
4445 if (Pmode == DImode)
4446 emit_insn (gen_cmpdi (src_reg, final_src));
4447 else
4448 emit_insn (gen_cmpsi (src_reg, final_src));
4449 emit_jump_insn (gen_bne (label));
4451 /* Mop up any left-over bytes. */
4452 if (leftover)
4453 mips_block_move_straight (dest, src, leftover);
4457 /* Expand a loop of synci insns for the address range [BEGIN, END). */
4459 void
4460 mips_expand_synci_loop (rtx begin, rtx end)
4462 rtx inc, label, cmp, cmp_result;
4464 /* Load INC with the cache line size (rdhwr INC,$1). */
4465 inc = gen_reg_rtx (SImode);
4466 emit_insn (gen_rdhwr (inc, const1_rtx));
4468 /* Loop back to here. */
4469 label = gen_label_rtx ();
4470 emit_label (label);
4472 emit_insn (gen_synci (begin));
4474 cmp = gen_reg_rtx (Pmode);
4475 mips_emit_binary (GTU, cmp, begin, end);
4477 mips_emit_binary (PLUS, begin, begin, inc);
4479 cmp_result = gen_rtx_EQ (VOIDmode, cmp, const0_rtx);
4480 emit_jump_insn (gen_condjump (cmp_result, label));
4483 /* Expand a movmemsi instruction. */
4485 bool
4486 mips_expand_block_move (rtx dest, rtx src, rtx length)
4488 if (GET_CODE (length) == CONST_INT)
4490 if (INTVAL (length) <= 2 * MAX_MOVE_BYTES)
4492 mips_block_move_straight (dest, src, INTVAL (length));
4493 return true;
4495 else if (optimize)
4497 mips_block_move_loop (dest, src, INTVAL (length));
4498 return true;
4501 return false;
4504 /* Argument support functions. */
4506 /* Initialize CUMULATIVE_ARGS for a function. */
4508 void
4509 init_cumulative_args (CUMULATIVE_ARGS *cum, tree fntype,
4510 rtx libname ATTRIBUTE_UNUSED)
4512 static CUMULATIVE_ARGS zero_cum;
4513 tree param, next_param;
4515 *cum = zero_cum;
4516 cum->prototype = (fntype && TYPE_ARG_TYPES (fntype));
4518 /* Determine if this function has variable arguments. This is
4519 indicated by the last argument being 'void_type_mode' if there
4520 are no variable arguments. The standard MIPS calling sequence
4521 passes all arguments in the general purpose registers in this case. */
4523 for (param = fntype ? TYPE_ARG_TYPES (fntype) : 0;
4524 param != 0; param = next_param)
4526 next_param = TREE_CHAIN (param);
4527 if (next_param == 0 && TREE_VALUE (param) != void_type_node)
4528 cum->gp_reg_found = 1;
4533 /* Fill INFO with information about a single argument. CUM is the
4534 cumulative state for earlier arguments. MODE is the mode of this
4535 argument and TYPE is its type (if known). NAMED is true if this
4536 is a named (fixed) argument rather than a variable one. */
4538 static void
4539 mips_arg_info (const CUMULATIVE_ARGS *cum, enum machine_mode mode,
4540 tree type, int named, struct mips_arg_info *info)
4542 bool doubleword_aligned_p;
4543 unsigned int num_bytes, num_words, max_regs;
4545 /* Work out the size of the argument. */
4546 num_bytes = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
4547 num_words = (num_bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
4549 /* Decide whether it should go in a floating-point register, assuming
4550 one is free. Later code checks for availability.
4552 The checks against UNITS_PER_FPVALUE handle the soft-float and
4553 single-float cases. */
4554 switch (mips_abi)
4556 case ABI_EABI:
4557 /* The EABI conventions have traditionally been defined in terms
4558 of TYPE_MODE, regardless of the actual type. */
4559 info->fpr_p = ((GET_MODE_CLASS (mode) == MODE_FLOAT
4560 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
4561 && GET_MODE_SIZE (mode) <= UNITS_PER_FPVALUE);
4562 break;
4564 case ABI_32:
4565 case ABI_O64:
4566 /* Only leading floating-point scalars are passed in
4567 floating-point registers. We also handle vector floats the same
4568 say, which is OK because they are not covered by the standard ABI. */
4569 info->fpr_p = (!cum->gp_reg_found
4570 && cum->arg_number < 2
4571 && (type == 0 || SCALAR_FLOAT_TYPE_P (type)
4572 || VECTOR_FLOAT_TYPE_P (type))
4573 && (GET_MODE_CLASS (mode) == MODE_FLOAT
4574 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
4575 && GET_MODE_SIZE (mode) <= UNITS_PER_FPVALUE);
4576 break;
4578 case ABI_N32:
4579 case ABI_64:
4580 /* Scalar and complex floating-point types are passed in
4581 floating-point registers. */
4582 info->fpr_p = (named
4583 && (type == 0 || FLOAT_TYPE_P (type))
4584 && (GET_MODE_CLASS (mode) == MODE_FLOAT
4585 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
4586 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
4587 && GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_FPVALUE);
4589 /* ??? According to the ABI documentation, the real and imaginary
4590 parts of complex floats should be passed in individual registers.
4591 The real and imaginary parts of stack arguments are supposed
4592 to be contiguous and there should be an extra word of padding
4593 at the end.
4595 This has two problems. First, it makes it impossible to use a
4596 single "void *" va_list type, since register and stack arguments
4597 are passed differently. (At the time of writing, MIPSpro cannot
4598 handle complex float varargs correctly.) Second, it's unclear
4599 what should happen when there is only one register free.
4601 For now, we assume that named complex floats should go into FPRs
4602 if there are two FPRs free, otherwise they should be passed in the
4603 same way as a struct containing two floats. */
4604 if (info->fpr_p
4605 && GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
4606 && GET_MODE_UNIT_SIZE (mode) < UNITS_PER_FPVALUE)
4608 if (cum->num_gprs >= MAX_ARGS_IN_REGISTERS - 1)
4609 info->fpr_p = false;
4610 else
4611 num_words = 2;
4613 break;
4615 default:
4616 gcc_unreachable ();
4619 /* See whether the argument has doubleword alignment. */
4620 doubleword_aligned_p = FUNCTION_ARG_BOUNDARY (mode, type) > BITS_PER_WORD;
4622 /* Set REG_OFFSET to the register count we're interested in.
4623 The EABI allocates the floating-point registers separately,
4624 but the other ABIs allocate them like integer registers. */
4625 info->reg_offset = (mips_abi == ABI_EABI && info->fpr_p
4626 ? cum->num_fprs
4627 : cum->num_gprs);
4629 /* Advance to an even register if the argument is doubleword-aligned. */
4630 if (doubleword_aligned_p)
4631 info->reg_offset += info->reg_offset & 1;
4633 /* Work out the offset of a stack argument. */
4634 info->stack_offset = cum->stack_words;
4635 if (doubleword_aligned_p)
4636 info->stack_offset += info->stack_offset & 1;
4638 max_regs = MAX_ARGS_IN_REGISTERS - info->reg_offset;
4640 /* Partition the argument between registers and stack. */
4641 info->reg_words = MIN (num_words, max_regs);
4642 info->stack_words = num_words - info->reg_words;
4646 /* INFO describes an argument that is passed in a single-register value.
4647 Return the register it uses, assuming that FPRs are available if
4648 HARD_FLOAT_P. */
4650 static unsigned int
4651 mips_arg_regno (const struct mips_arg_info *info, bool hard_float_p)
4653 if (!info->fpr_p || !hard_float_p)
4654 return GP_ARG_FIRST + info->reg_offset;
4655 else if (mips_abi == ABI_32 && TARGET_DOUBLE_FLOAT && info->reg_offset > 0)
4656 /* In o32, the second argument is always passed in $f14
4657 for TARGET_DOUBLE_FLOAT, regardless of whether the
4658 first argument was a word or doubleword. */
4659 return FP_ARG_FIRST + 2;
4660 else
4661 return FP_ARG_FIRST + info->reg_offset;
4664 /* Implement FUNCTION_ARG_ADVANCE. */
4666 void
4667 function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
4668 tree type, int named)
4670 struct mips_arg_info info;
4672 mips_arg_info (cum, mode, type, named, &info);
4674 if (!info.fpr_p)
4675 cum->gp_reg_found = true;
4677 /* See the comment above the cumulative args structure in mips.h
4678 for an explanation of what this code does. It assumes the O32
4679 ABI, which passes at most 2 arguments in float registers. */
4680 if (cum->arg_number < 2 && info.fpr_p)
4681 cum->fp_code += (mode == SFmode ? 1 : 2) << (cum->arg_number * 2);
4683 if (mips_abi != ABI_EABI || !info.fpr_p)
4684 cum->num_gprs = info.reg_offset + info.reg_words;
4685 else if (info.reg_words > 0)
4686 cum->num_fprs += MAX_FPRS_PER_FMT;
4688 if (info.stack_words > 0)
4689 cum->stack_words = info.stack_offset + info.stack_words;
4691 cum->arg_number++;
4694 /* Implement FUNCTION_ARG. */
4696 struct rtx_def *
4697 function_arg (const CUMULATIVE_ARGS *cum, enum machine_mode mode,
4698 tree type, int named)
4700 struct mips_arg_info info;
4702 /* We will be called with a mode of VOIDmode after the last argument
4703 has been seen. Whatever we return will be passed to the call
4704 insn. If we need a mips16 fp_code, return a REG with the code
4705 stored as the mode. */
4706 if (mode == VOIDmode)
4708 if (TARGET_MIPS16 && cum->fp_code != 0)
4709 return gen_rtx_REG ((enum machine_mode) cum->fp_code, 0);
4711 else
4712 return 0;
4715 mips_arg_info (cum, mode, type, named, &info);
4717 /* Return straight away if the whole argument is passed on the stack. */
4718 if (info.reg_offset == MAX_ARGS_IN_REGISTERS)
4719 return 0;
4721 if (type != 0
4722 && TREE_CODE (type) == RECORD_TYPE
4723 && TARGET_NEWABI
4724 && TYPE_SIZE_UNIT (type)
4725 && host_integerp (TYPE_SIZE_UNIT (type), 1)
4726 && named)
4728 /* The Irix 6 n32/n64 ABIs say that if any 64-bit chunk of the
4729 structure contains a double in its entirety, then that 64-bit
4730 chunk is passed in a floating point register. */
4731 tree field;
4733 /* First check to see if there is any such field. */
4734 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
4735 if (TREE_CODE (field) == FIELD_DECL
4736 && TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
4737 && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD
4738 && host_integerp (bit_position (field), 0)
4739 && int_bit_position (field) % BITS_PER_WORD == 0)
4740 break;
4742 if (field != 0)
4744 /* Now handle the special case by returning a PARALLEL
4745 indicating where each 64-bit chunk goes. INFO.REG_WORDS
4746 chunks are passed in registers. */
4747 unsigned int i;
4748 HOST_WIDE_INT bitpos;
4749 rtx ret;
4751 /* assign_parms checks the mode of ENTRY_PARM, so we must
4752 use the actual mode here. */
4753 ret = gen_rtx_PARALLEL (mode, rtvec_alloc (info.reg_words));
4755 bitpos = 0;
4756 field = TYPE_FIELDS (type);
4757 for (i = 0; i < info.reg_words; i++)
4759 rtx reg;
4761 for (; field; field = TREE_CHAIN (field))
4762 if (TREE_CODE (field) == FIELD_DECL
4763 && int_bit_position (field) >= bitpos)
4764 break;
4766 if (field
4767 && int_bit_position (field) == bitpos
4768 && TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
4769 && !TARGET_SOFT_FLOAT
4770 && TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD)
4771 reg = gen_rtx_REG (DFmode, FP_ARG_FIRST + info.reg_offset + i);
4772 else
4773 reg = gen_rtx_REG (DImode, GP_ARG_FIRST + info.reg_offset + i);
4775 XVECEXP (ret, 0, i)
4776 = gen_rtx_EXPR_LIST (VOIDmode, reg,
4777 GEN_INT (bitpos / BITS_PER_UNIT));
4779 bitpos += BITS_PER_WORD;
4781 return ret;
4785 /* Handle the n32/n64 conventions for passing complex floating-point
4786 arguments in FPR pairs. The real part goes in the lower register
4787 and the imaginary part goes in the upper register. */
4788 if (TARGET_NEWABI
4789 && info.fpr_p
4790 && GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
4792 rtx real, imag;
4793 enum machine_mode inner;
4794 int reg;
4796 inner = GET_MODE_INNER (mode);
4797 reg = FP_ARG_FIRST + info.reg_offset;
4798 if (info.reg_words * UNITS_PER_WORD == GET_MODE_SIZE (inner))
4800 /* Real part in registers, imaginary part on stack. */
4801 gcc_assert (info.stack_words == info.reg_words);
4802 return gen_rtx_REG (inner, reg);
4804 else
4806 gcc_assert (info.stack_words == 0);
4807 real = gen_rtx_EXPR_LIST (VOIDmode,
4808 gen_rtx_REG (inner, reg),
4809 const0_rtx);
4810 imag = gen_rtx_EXPR_LIST (VOIDmode,
4811 gen_rtx_REG (inner,
4812 reg + info.reg_words / 2),
4813 GEN_INT (GET_MODE_SIZE (inner)));
4814 return gen_rtx_PARALLEL (mode, gen_rtvec (2, real, imag));
4818 return gen_rtx_REG (mode, mips_arg_regno (&info, TARGET_HARD_FLOAT));
4822 /* Implement TARGET_ARG_PARTIAL_BYTES. */
4824 static int
4825 mips_arg_partial_bytes (CUMULATIVE_ARGS *cum,
4826 enum machine_mode mode, tree type, bool named)
4828 struct mips_arg_info info;
4830 mips_arg_info (cum, mode, type, named, &info);
4831 return info.stack_words > 0 ? info.reg_words * UNITS_PER_WORD : 0;
4835 /* Implement FUNCTION_ARG_BOUNDARY. Every parameter gets at least
4836 PARM_BOUNDARY bits of alignment, but will be given anything up
4837 to STACK_BOUNDARY bits if the type requires it. */
4840 function_arg_boundary (enum machine_mode mode, tree type)
4842 unsigned int alignment;
4844 alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode);
4845 if (alignment < PARM_BOUNDARY)
4846 alignment = PARM_BOUNDARY;
4847 if (alignment > STACK_BOUNDARY)
4848 alignment = STACK_BOUNDARY;
4849 return alignment;
4852 /* Return true if FUNCTION_ARG_PADDING (MODE, TYPE) should return
4853 upward rather than downward. In other words, return true if the
4854 first byte of the stack slot has useful data, false if the last
4855 byte does. */
4857 bool
4858 mips_pad_arg_upward (enum machine_mode mode, const_tree type)
4860 /* On little-endian targets, the first byte of every stack argument
4861 is passed in the first byte of the stack slot. */
4862 if (!BYTES_BIG_ENDIAN)
4863 return true;
4865 /* Otherwise, integral types are padded downward: the last byte of a
4866 stack argument is passed in the last byte of the stack slot. */
4867 if (type != 0
4868 ? (INTEGRAL_TYPE_P (type)
4869 || POINTER_TYPE_P (type)
4870 || FIXED_POINT_TYPE_P (type))
4871 : (GET_MODE_CLASS (mode) == MODE_INT
4872 || ALL_SCALAR_FIXED_POINT_MODE_P (mode)))
4873 return false;
4875 /* Big-endian o64 pads floating-point arguments downward. */
4876 if (mips_abi == ABI_O64)
4877 if (type != 0 ? FLOAT_TYPE_P (type) : GET_MODE_CLASS (mode) == MODE_FLOAT)
4878 return false;
4880 /* Other types are padded upward for o32, o64, n32 and n64. */
4881 if (mips_abi != ABI_EABI)
4882 return true;
4884 /* Arguments smaller than a stack slot are padded downward. */
4885 if (mode != BLKmode)
4886 return (GET_MODE_BITSIZE (mode) >= PARM_BOUNDARY);
4887 else
4888 return (int_size_in_bytes (type) >= (PARM_BOUNDARY / BITS_PER_UNIT));
4892 /* Likewise BLOCK_REG_PADDING (MODE, TYPE, ...). Return !BYTES_BIG_ENDIAN
4893 if the least significant byte of the register has useful data. Return
4894 the opposite if the most significant byte does. */
4896 bool
4897 mips_pad_reg_upward (enum machine_mode mode, tree type)
4899 /* No shifting is required for floating-point arguments. */
4900 if (type != 0 ? FLOAT_TYPE_P (type) : GET_MODE_CLASS (mode) == MODE_FLOAT)
4901 return !BYTES_BIG_ENDIAN;
4903 /* Otherwise, apply the same padding to register arguments as we do
4904 to stack arguments. */
4905 return mips_pad_arg_upward (mode, type);
4908 static void
4909 mips_setup_incoming_varargs (CUMULATIVE_ARGS *cum, enum machine_mode mode,
4910 tree type, int *pretend_size ATTRIBUTE_UNUSED,
4911 int no_rtl)
4913 CUMULATIVE_ARGS local_cum;
4914 int gp_saved, fp_saved;
4916 /* The caller has advanced CUM up to, but not beyond, the last named
4917 argument. Advance a local copy of CUM past the last "real" named
4918 argument, to find out how many registers are left over. */
4920 local_cum = *cum;
4921 FUNCTION_ARG_ADVANCE (local_cum, mode, type, 1);
4923 /* Found out how many registers we need to save. */
4924 gp_saved = MAX_ARGS_IN_REGISTERS - local_cum.num_gprs;
4925 fp_saved = (EABI_FLOAT_VARARGS_P
4926 ? MAX_ARGS_IN_REGISTERS - local_cum.num_fprs
4927 : 0);
4929 if (!no_rtl)
4931 if (gp_saved > 0)
4933 rtx ptr, mem;
4935 ptr = plus_constant (virtual_incoming_args_rtx,
4936 REG_PARM_STACK_SPACE (cfun->decl)
4937 - gp_saved * UNITS_PER_WORD);
4938 mem = gen_rtx_MEM (BLKmode, ptr);
4939 set_mem_alias_set (mem, get_varargs_alias_set ());
4941 move_block_from_reg (local_cum.num_gprs + GP_ARG_FIRST,
4942 mem, gp_saved);
4944 if (fp_saved > 0)
4946 /* We can't use move_block_from_reg, because it will use
4947 the wrong mode. */
4948 enum machine_mode mode;
4949 int off, i;
4951 /* Set OFF to the offset from virtual_incoming_args_rtx of
4952 the first float register. The FP save area lies below
4953 the integer one, and is aligned to UNITS_PER_FPVALUE bytes. */
4954 off = -gp_saved * UNITS_PER_WORD;
4955 off &= ~(UNITS_PER_FPVALUE - 1);
4956 off -= fp_saved * UNITS_PER_FPREG;
4958 mode = TARGET_SINGLE_FLOAT ? SFmode : DFmode;
4960 for (i = local_cum.num_fprs; i < MAX_ARGS_IN_REGISTERS;
4961 i += MAX_FPRS_PER_FMT)
4963 rtx ptr, mem;
4965 ptr = plus_constant (virtual_incoming_args_rtx, off);
4966 mem = gen_rtx_MEM (mode, ptr);
4967 set_mem_alias_set (mem, get_varargs_alias_set ());
4968 mips_emit_move (mem, gen_rtx_REG (mode, FP_ARG_FIRST + i));
4969 off += UNITS_PER_HWFPVALUE;
4973 if (REG_PARM_STACK_SPACE (cfun->decl) == 0)
4974 cfun->machine->varargs_size = (gp_saved * UNITS_PER_WORD
4975 + fp_saved * UNITS_PER_FPREG);
4978 /* Create the va_list data type.
4979 We keep 3 pointers, and two offsets.
4980 Two pointers are to the overflow area, which starts at the CFA.
4981 One of these is constant, for addressing into the GPR save area below it.
4982 The other is advanced up the stack through the overflow region.
4983 The third pointer is to the GPR save area. Since the FPR save area
4984 is just below it, we can address FPR slots off this pointer.
4985 We also keep two one-byte offsets, which are to be subtracted from the
4986 constant pointers to yield addresses in the GPR and FPR save areas.
4987 These are downcounted as float or non-float arguments are used,
4988 and when they get to zero, the argument must be obtained from the
4989 overflow region.
4990 If !EABI_FLOAT_VARARGS_P, then no FPR save area exists, and a single
4991 pointer is enough. It's started at the GPR save area, and is
4992 advanced, period.
4993 Note that the GPR save area is not constant size, due to optimization
4994 in the prologue. Hence, we can't use a design with two pointers
4995 and two offsets, although we could have designed this with two pointers
4996 and three offsets. */
4998 static tree
4999 mips_build_builtin_va_list (void)
5001 if (EABI_FLOAT_VARARGS_P)
5003 tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff, f_res, record;
5004 tree array, index;
5006 record = (*lang_hooks.types.make_type) (RECORD_TYPE);
5008 f_ovfl = build_decl (FIELD_DECL, get_identifier ("__overflow_argptr"),
5009 ptr_type_node);
5010 f_gtop = build_decl (FIELD_DECL, get_identifier ("__gpr_top"),
5011 ptr_type_node);
5012 f_ftop = build_decl (FIELD_DECL, get_identifier ("__fpr_top"),
5013 ptr_type_node);
5014 f_goff = build_decl (FIELD_DECL, get_identifier ("__gpr_offset"),
5015 unsigned_char_type_node);
5016 f_foff = build_decl (FIELD_DECL, get_identifier ("__fpr_offset"),
5017 unsigned_char_type_node);
5018 /* Explicitly pad to the size of a pointer, so that -Wpadded won't
5019 warn on every user file. */
5020 index = build_int_cst (NULL_TREE, GET_MODE_SIZE (ptr_mode) - 2 - 1);
5021 array = build_array_type (unsigned_char_type_node,
5022 build_index_type (index));
5023 f_res = build_decl (FIELD_DECL, get_identifier ("__reserved"), array);
5025 DECL_FIELD_CONTEXT (f_ovfl) = record;
5026 DECL_FIELD_CONTEXT (f_gtop) = record;
5027 DECL_FIELD_CONTEXT (f_ftop) = record;
5028 DECL_FIELD_CONTEXT (f_goff) = record;
5029 DECL_FIELD_CONTEXT (f_foff) = record;
5030 DECL_FIELD_CONTEXT (f_res) = record;
5032 TYPE_FIELDS (record) = f_ovfl;
5033 TREE_CHAIN (f_ovfl) = f_gtop;
5034 TREE_CHAIN (f_gtop) = f_ftop;
5035 TREE_CHAIN (f_ftop) = f_goff;
5036 TREE_CHAIN (f_goff) = f_foff;
5037 TREE_CHAIN (f_foff) = f_res;
5039 layout_type (record);
5040 return record;
5042 else if (TARGET_IRIX && TARGET_IRIX6)
5043 /* On IRIX 6, this type is 'char *'. */
5044 return build_pointer_type (char_type_node);
5045 else
5046 /* Otherwise, we use 'void *'. */
5047 return ptr_type_node;
5050 /* Implement va_start. */
5052 void
5053 mips_va_start (tree valist, rtx nextarg)
5055 if (EABI_FLOAT_VARARGS_P)
5057 const CUMULATIVE_ARGS *cum;
5058 tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff;
5059 tree ovfl, gtop, ftop, goff, foff;
5060 tree t;
5061 int gpr_save_area_size;
5062 int fpr_save_area_size;
5063 int fpr_offset;
5065 cum = &current_function_args_info;
5066 gpr_save_area_size
5067 = (MAX_ARGS_IN_REGISTERS - cum->num_gprs) * UNITS_PER_WORD;
5068 fpr_save_area_size
5069 = (MAX_ARGS_IN_REGISTERS - cum->num_fprs) * UNITS_PER_FPREG;
5071 f_ovfl = TYPE_FIELDS (va_list_type_node);
5072 f_gtop = TREE_CHAIN (f_ovfl);
5073 f_ftop = TREE_CHAIN (f_gtop);
5074 f_goff = TREE_CHAIN (f_ftop);
5075 f_foff = TREE_CHAIN (f_goff);
5077 ovfl = build3 (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl,
5078 NULL_TREE);
5079 gtop = build3 (COMPONENT_REF, TREE_TYPE (f_gtop), valist, f_gtop,
5080 NULL_TREE);
5081 ftop = build3 (COMPONENT_REF, TREE_TYPE (f_ftop), valist, f_ftop,
5082 NULL_TREE);
5083 goff = build3 (COMPONENT_REF, TREE_TYPE (f_goff), valist, f_goff,
5084 NULL_TREE);
5085 foff = build3 (COMPONENT_REF, TREE_TYPE (f_foff), valist, f_foff,
5086 NULL_TREE);
5088 /* Emit code to initialize OVFL, which points to the next varargs
5089 stack argument. CUM->STACK_WORDS gives the number of stack
5090 words used by named arguments. */
5091 t = make_tree (TREE_TYPE (ovfl), virtual_incoming_args_rtx);
5092 if (cum->stack_words > 0)
5093 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (ovfl), t,
5094 size_int (cum->stack_words * UNITS_PER_WORD));
5095 t = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (ovfl), ovfl, t);
5096 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
5098 /* Emit code to initialize GTOP, the top of the GPR save area. */
5099 t = make_tree (TREE_TYPE (gtop), virtual_incoming_args_rtx);
5100 t = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (gtop), gtop, t);
5101 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
5103 /* Emit code to initialize FTOP, the top of the FPR save area.
5104 This address is gpr_save_area_bytes below GTOP, rounded
5105 down to the next fp-aligned boundary. */
5106 t = make_tree (TREE_TYPE (ftop), virtual_incoming_args_rtx);
5107 fpr_offset = gpr_save_area_size + UNITS_PER_FPVALUE - 1;
5108 fpr_offset &= ~(UNITS_PER_FPVALUE - 1);
5109 if (fpr_offset)
5110 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (ftop), t,
5111 size_int (-fpr_offset));
5112 t = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (ftop), ftop, t);
5113 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
5115 /* Emit code to initialize GOFF, the offset from GTOP of the
5116 next GPR argument. */
5117 t = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (goff), goff,
5118 build_int_cst (NULL_TREE, gpr_save_area_size));
5119 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
5121 /* Likewise emit code to initialize FOFF, the offset from FTOP
5122 of the next FPR argument. */
5123 t = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (foff), foff,
5124 build_int_cst (NULL_TREE, fpr_save_area_size));
5125 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
5127 else
5129 nextarg = plus_constant (nextarg, -cfun->machine->varargs_size);
5130 std_expand_builtin_va_start (valist, nextarg);
5134 /* Implement va_arg. */
5136 static tree
5137 mips_gimplify_va_arg_expr (tree valist, tree type, tree *pre_p, tree *post_p)
5139 HOST_WIDE_INT size, rsize;
5140 tree addr;
5141 bool indirect;
5143 indirect = pass_by_reference (NULL, TYPE_MODE (type), type, 0);
5145 if (indirect)
5146 type = build_pointer_type (type);
5148 size = int_size_in_bytes (type);
5149 rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD;
5151 if (mips_abi != ABI_EABI || !EABI_FLOAT_VARARGS_P)
5152 addr = std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
5153 else
5155 /* Not a simple merged stack. */
5157 tree f_ovfl, f_gtop, f_ftop, f_goff, f_foff;
5158 tree ovfl, top, off, align;
5159 HOST_WIDE_INT osize;
5160 tree t, u;
5162 f_ovfl = TYPE_FIELDS (va_list_type_node);
5163 f_gtop = TREE_CHAIN (f_ovfl);
5164 f_ftop = TREE_CHAIN (f_gtop);
5165 f_goff = TREE_CHAIN (f_ftop);
5166 f_foff = TREE_CHAIN (f_goff);
5168 /* We maintain separate pointers and offsets for floating-point
5169 and integer arguments, but we need similar code in both cases.
5170 Let:
5172 TOP be the top of the register save area;
5173 OFF be the offset from TOP of the next register;
5174 ADDR_RTX be the address of the argument;
5175 RSIZE be the number of bytes used to store the argument
5176 when it's in the register save area;
5177 OSIZE be the number of bytes used to store it when it's
5178 in the stack overflow area; and
5179 PADDING be (BYTES_BIG_ENDIAN ? OSIZE - RSIZE : 0)
5181 The code we want is:
5183 1: off &= -rsize; // round down
5184 2: if (off != 0)
5185 3: {
5186 4: addr_rtx = top - off;
5187 5: off -= rsize;
5188 6: }
5189 7: else
5190 8: {
5191 9: ovfl += ((intptr_t) ovfl + osize - 1) & -osize;
5192 10: addr_rtx = ovfl + PADDING;
5193 11: ovfl += osize;
5194 14: }
5196 [1] and [9] can sometimes be optimized away. */
5198 ovfl = build3 (COMPONENT_REF, TREE_TYPE (f_ovfl), valist, f_ovfl,
5199 NULL_TREE);
5201 if (GET_MODE_CLASS (TYPE_MODE (type)) == MODE_FLOAT
5202 && GET_MODE_SIZE (TYPE_MODE (type)) <= UNITS_PER_FPVALUE)
5204 top = build3 (COMPONENT_REF, TREE_TYPE (f_ftop), valist, f_ftop,
5205 NULL_TREE);
5206 off = build3 (COMPONENT_REF, TREE_TYPE (f_foff), valist, f_foff,
5207 NULL_TREE);
5209 /* When floating-point registers are saved to the stack,
5210 each one will take up UNITS_PER_HWFPVALUE bytes, regardless
5211 of the float's precision. */
5212 rsize = UNITS_PER_HWFPVALUE;
5214 /* Overflow arguments are padded to UNITS_PER_WORD bytes
5215 (= PARM_BOUNDARY bits). This can be different from RSIZE
5216 in two cases:
5218 (1) On 32-bit targets when TYPE is a structure such as:
5220 struct s { float f; };
5222 Such structures are passed in paired FPRs, so RSIZE
5223 will be 8 bytes. However, the structure only takes
5224 up 4 bytes of memory, so OSIZE will only be 4.
5226 (2) In combinations such as -mgp64 -msingle-float
5227 -fshort-double. Doubles passed in registers
5228 will then take up 4 (UNITS_PER_HWFPVALUE) bytes,
5229 but those passed on the stack take up
5230 UNITS_PER_WORD bytes. */
5231 osize = MAX (GET_MODE_SIZE (TYPE_MODE (type)), UNITS_PER_WORD);
5233 else
5235 top = build3 (COMPONENT_REF, TREE_TYPE (f_gtop), valist, f_gtop,
5236 NULL_TREE);
5237 off = build3 (COMPONENT_REF, TREE_TYPE (f_goff), valist, f_goff,
5238 NULL_TREE);
5239 if (rsize > UNITS_PER_WORD)
5241 /* [1] Emit code for: off &= -rsize. */
5242 t = build2 (BIT_AND_EXPR, TREE_TYPE (off), off,
5243 build_int_cst (NULL_TREE, -rsize));
5244 t = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (off), off, t);
5245 gimplify_and_add (t, pre_p);
5247 osize = rsize;
5250 /* [2] Emit code to branch if off == 0. */
5251 t = build2 (NE_EXPR, boolean_type_node, off,
5252 build_int_cst (TREE_TYPE (off), 0));
5253 addr = build3 (COND_EXPR, ptr_type_node, t, NULL_TREE, NULL_TREE);
5255 /* [5] Emit code for: off -= rsize. We do this as a form of
5256 post-increment not available to C. Also widen for the
5257 coming pointer arithmetic. */
5258 t = fold_convert (TREE_TYPE (off), build_int_cst (NULL_TREE, rsize));
5259 t = build2 (POSTDECREMENT_EXPR, TREE_TYPE (off), off, t);
5260 t = fold_convert (sizetype, t);
5261 t = fold_build1 (NEGATE_EXPR, sizetype, t);
5263 /* [4] Emit code for: addr_rtx = top - off. On big endian machines,
5264 the argument has RSIZE - SIZE bytes of leading padding. */
5265 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (top), top, t);
5266 if (BYTES_BIG_ENDIAN && rsize > size)
5268 u = size_int (rsize - size);
5269 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (t), t, u);
5271 COND_EXPR_THEN (addr) = t;
5273 if (osize > UNITS_PER_WORD)
5275 /* [9] Emit: ovfl += ((intptr_t) ovfl + osize - 1) & -osize. */
5276 u = size_int (osize - 1);
5277 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (ovfl), ovfl, u);
5278 t = fold_convert (sizetype, t);
5279 u = size_int (-osize);
5280 t = build2 (BIT_AND_EXPR, sizetype, t, u);
5281 t = fold_convert (TREE_TYPE (ovfl), t);
5282 align = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (ovfl), ovfl, t);
5284 else
5285 align = NULL;
5287 /* [10, 11]. Emit code to store ovfl in addr_rtx, then
5288 post-increment ovfl by osize. On big-endian machines,
5289 the argument has OSIZE - SIZE bytes of leading padding. */
5290 u = fold_convert (TREE_TYPE (ovfl),
5291 build_int_cst (NULL_TREE, osize));
5292 t = build2 (POSTINCREMENT_EXPR, TREE_TYPE (ovfl), ovfl, u);
5293 if (BYTES_BIG_ENDIAN && osize > size)
5295 u = size_int (osize - size);
5296 t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (t), t, u);
5299 /* String [9] and [10,11] together. */
5300 if (align)
5301 t = build2 (COMPOUND_EXPR, TREE_TYPE (t), align, t);
5302 COND_EXPR_ELSE (addr) = t;
5304 addr = fold_convert (build_pointer_type (type), addr);
5305 addr = build_va_arg_indirect_ref (addr);
5308 if (indirect)
5309 addr = build_va_arg_indirect_ref (addr);
5311 return addr;
5314 /* Return true if it is possible to use left/right accesses for a
5315 bitfield of WIDTH bits starting BITPOS bits into *OP. When
5316 returning true, update *OP, *LEFT and *RIGHT as follows:
5318 *OP is a BLKmode reference to the whole field.
5320 *LEFT is a QImode reference to the first byte if big endian or
5321 the last byte if little endian. This address can be used in the
5322 left-side instructions (lwl, swl, ldl, sdl).
5324 *RIGHT is a QImode reference to the opposite end of the field and
5325 can be used in the patterning right-side instruction. */
5327 static bool
5328 mips_get_unaligned_mem (rtx *op, unsigned int width, int bitpos,
5329 rtx *left, rtx *right)
5331 rtx first, last;
5333 /* Check that the operand really is a MEM. Not all the extv and
5334 extzv predicates are checked. */
5335 if (!MEM_P (*op))
5336 return false;
5338 /* Check that the size is valid. */
5339 if (width != 32 && (!TARGET_64BIT || width != 64))
5340 return false;
5342 /* We can only access byte-aligned values. Since we are always passed
5343 a reference to the first byte of the field, it is not necessary to
5344 do anything with BITPOS after this check. */
5345 if (bitpos % BITS_PER_UNIT != 0)
5346 return false;
5348 /* Reject aligned bitfields: we want to use a normal load or store
5349 instead of a left/right pair. */
5350 if (MEM_ALIGN (*op) >= width)
5351 return false;
5353 /* Adjust *OP to refer to the whole field. This also has the effect
5354 of legitimizing *OP's address for BLKmode, possibly simplifying it. */
5355 *op = adjust_address (*op, BLKmode, 0);
5356 set_mem_size (*op, GEN_INT (width / BITS_PER_UNIT));
5358 /* Get references to both ends of the field. We deliberately don't
5359 use the original QImode *OP for FIRST since the new BLKmode one
5360 might have a simpler address. */
5361 first = adjust_address (*op, QImode, 0);
5362 last = adjust_address (*op, QImode, width / BITS_PER_UNIT - 1);
5364 /* Allocate to LEFT and RIGHT according to endianness. LEFT should
5365 be the upper word and RIGHT the lower word. */
5366 if (TARGET_BIG_ENDIAN)
5367 *left = first, *right = last;
5368 else
5369 *left = last, *right = first;
5371 return true;
5375 /* Try to emit the equivalent of (set DEST (zero_extract SRC WIDTH BITPOS)).
5376 Return true on success. We only handle cases where zero_extract is
5377 equivalent to sign_extract. */
5379 bool
5380 mips_expand_unaligned_load (rtx dest, rtx src, unsigned int width, int bitpos)
5382 rtx left, right, temp;
5384 /* If TARGET_64BIT, the destination of a 32-bit load will be a
5385 paradoxical word_mode subreg. This is the only case in which
5386 we allow the destination to be larger than the source. */
5387 if (GET_CODE (dest) == SUBREG
5388 && GET_MODE (dest) == DImode
5389 && SUBREG_BYTE (dest) == 0
5390 && GET_MODE (SUBREG_REG (dest)) == SImode)
5391 dest = SUBREG_REG (dest);
5393 /* After the above adjustment, the destination must be the same
5394 width as the source. */
5395 if (GET_MODE_BITSIZE (GET_MODE (dest)) != width)
5396 return false;
5398 if (!mips_get_unaligned_mem (&src, width, bitpos, &left, &right))
5399 return false;
5401 temp = gen_reg_rtx (GET_MODE (dest));
5402 if (GET_MODE (dest) == DImode)
5404 emit_insn (gen_mov_ldl (temp, src, left));
5405 emit_insn (gen_mov_ldr (dest, copy_rtx (src), right, temp));
5407 else
5409 emit_insn (gen_mov_lwl (temp, src, left));
5410 emit_insn (gen_mov_lwr (dest, copy_rtx (src), right, temp));
5412 return true;
5416 /* Try to expand (set (zero_extract DEST WIDTH BITPOS) SRC). Return
5417 true on success. */
5419 bool
5420 mips_expand_unaligned_store (rtx dest, rtx src, unsigned int width, int bitpos)
5422 rtx left, right;
5423 enum machine_mode mode;
5425 if (!mips_get_unaligned_mem (&dest, width, bitpos, &left, &right))
5426 return false;
5428 mode = mode_for_size (width, MODE_INT, 0);
5429 src = gen_lowpart (mode, src);
5431 if (mode == DImode)
5433 emit_insn (gen_mov_sdl (dest, src, left));
5434 emit_insn (gen_mov_sdr (copy_rtx (dest), copy_rtx (src), right));
5436 else
5438 emit_insn (gen_mov_swl (dest, src, left));
5439 emit_insn (gen_mov_swr (copy_rtx (dest), copy_rtx (src), right));
5441 return true;
5444 /* Return true if X is a MEM with the same size as MODE. */
5446 bool
5447 mips_mem_fits_mode_p (enum machine_mode mode, rtx x)
5449 rtx size;
5451 if (!MEM_P (x))
5452 return false;
5454 size = MEM_SIZE (x);
5455 return size && INTVAL (size) == GET_MODE_SIZE (mode);
5458 /* Return true if (zero_extract OP SIZE POSITION) can be used as the
5459 source of an "ext" instruction or the destination of an "ins"
5460 instruction. OP must be a register operand and the following
5461 conditions must hold:
5463 0 <= POSITION < GET_MODE_BITSIZE (GET_MODE (op))
5464 0 < SIZE <= GET_MODE_BITSIZE (GET_MODE (op))
5465 0 < POSITION + SIZE <= GET_MODE_BITSIZE (GET_MODE (op))
5467 Also reject lengths equal to a word as they are better handled
5468 by the move patterns. */
5470 bool
5471 mips_use_ins_ext_p (rtx op, rtx size, rtx position)
5473 HOST_WIDE_INT len, pos;
5475 if (!ISA_HAS_EXT_INS
5476 || !register_operand (op, VOIDmode)
5477 || GET_MODE_BITSIZE (GET_MODE (op)) > BITS_PER_WORD)
5478 return false;
5480 len = INTVAL (size);
5481 pos = INTVAL (position);
5483 if (len <= 0 || len >= GET_MODE_BITSIZE (GET_MODE (op))
5484 || pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (op)))
5485 return false;
5487 return true;
5490 /* Set up globals to generate code for the ISA or processor
5491 described by INFO. */
5493 static void
5494 mips_set_architecture (const struct mips_cpu_info *info)
5496 if (info != 0)
5498 mips_arch_info = info;
5499 mips_arch = info->cpu;
5500 mips_isa = info->isa;
5505 /* Likewise for tuning. */
5507 static void
5508 mips_set_tune (const struct mips_cpu_info *info)
5510 if (info != 0)
5512 mips_tune_info = info;
5513 mips_tune = info->cpu;
5517 /* Initialize mips_split_addresses from the associated command-line
5518 settings.
5520 mips_split_addresses is a half-way house between explicit
5521 relocations and the traditional assembler macros. It can
5522 split absolute 32-bit symbolic constants into a high/lo_sum
5523 pair but uses macros for other sorts of access.
5525 Like explicit relocation support for REL targets, it relies
5526 on GNU extensions in the assembler and the linker.
5528 Although this code should work for -O0, it has traditionally
5529 been treated as an optimization. */
5531 static void
5532 mips_init_split_addresses (void)
5534 if (!TARGET_MIPS16 && TARGET_SPLIT_ADDRESSES
5535 && optimize && !flag_pic
5536 && !ABI_HAS_64BIT_SYMBOLS)
5537 mips_split_addresses = 1;
5538 else
5539 mips_split_addresses = 0;
5542 /* (Re-)Initialize information about relocs. */
5544 static void
5545 mips_init_relocs (void)
5547 memset (mips_split_p, '\0', sizeof (mips_split_p));
5548 memset (mips_hi_relocs, '\0', sizeof (mips_hi_relocs));
5549 memset (mips_lo_relocs, '\0', sizeof (mips_lo_relocs));
5551 if (ABI_HAS_64BIT_SYMBOLS)
5553 if (TARGET_EXPLICIT_RELOCS)
5555 mips_split_p[SYMBOL_64_HIGH] = true;
5556 mips_hi_relocs[SYMBOL_64_HIGH] = "%highest(";
5557 mips_lo_relocs[SYMBOL_64_HIGH] = "%higher(";
5559 mips_split_p[SYMBOL_64_MID] = true;
5560 mips_hi_relocs[SYMBOL_64_MID] = "%higher(";
5561 mips_lo_relocs[SYMBOL_64_MID] = "%hi(";
5563 mips_split_p[SYMBOL_64_LOW] = true;
5564 mips_hi_relocs[SYMBOL_64_LOW] = "%hi(";
5565 mips_lo_relocs[SYMBOL_64_LOW] = "%lo(";
5567 mips_split_p[SYMBOL_ABSOLUTE] = true;
5568 mips_lo_relocs[SYMBOL_ABSOLUTE] = "%lo(";
5571 else
5573 if (TARGET_EXPLICIT_RELOCS || mips_split_addresses || TARGET_MIPS16)
5575 mips_split_p[SYMBOL_ABSOLUTE] = true;
5576 mips_hi_relocs[SYMBOL_ABSOLUTE] = "%hi(";
5577 mips_lo_relocs[SYMBOL_ABSOLUTE] = "%lo(";
5579 mips_lo_relocs[SYMBOL_32_HIGH] = "%hi(";
5583 if (TARGET_MIPS16)
5585 /* The high part is provided by a pseudo copy of $gp. */
5586 mips_split_p[SYMBOL_GP_RELATIVE] = true;
5587 mips_lo_relocs[SYMBOL_GP_RELATIVE] = "%gprel(";
5590 if (TARGET_EXPLICIT_RELOCS)
5592 /* Small data constants are kept whole until after reload,
5593 then lowered by mips_rewrite_small_data. */
5594 mips_lo_relocs[SYMBOL_GP_RELATIVE] = "%gp_rel(";
5596 mips_split_p[SYMBOL_GOT_PAGE_OFST] = true;
5597 if (TARGET_NEWABI)
5599 mips_lo_relocs[SYMBOL_GOTOFF_PAGE] = "%got_page(";
5600 mips_lo_relocs[SYMBOL_GOT_PAGE_OFST] = "%got_ofst(";
5602 else
5604 mips_lo_relocs[SYMBOL_GOTOFF_PAGE] = "%got(";
5605 mips_lo_relocs[SYMBOL_GOT_PAGE_OFST] = "%lo(";
5608 if (TARGET_XGOT)
5610 /* The HIGH and LO_SUM are matched by special .md patterns. */
5611 mips_split_p[SYMBOL_GOT_DISP] = true;
5613 mips_split_p[SYMBOL_GOTOFF_DISP] = true;
5614 mips_hi_relocs[SYMBOL_GOTOFF_DISP] = "%got_hi(";
5615 mips_lo_relocs[SYMBOL_GOTOFF_DISP] = "%got_lo(";
5617 mips_split_p[SYMBOL_GOTOFF_CALL] = true;
5618 mips_hi_relocs[SYMBOL_GOTOFF_CALL] = "%call_hi(";
5619 mips_lo_relocs[SYMBOL_GOTOFF_CALL] = "%call_lo(";
5621 else
5623 if (TARGET_NEWABI)
5624 mips_lo_relocs[SYMBOL_GOTOFF_DISP] = "%got_disp(";
5625 else
5626 mips_lo_relocs[SYMBOL_GOTOFF_DISP] = "%got(";
5627 mips_lo_relocs[SYMBOL_GOTOFF_CALL] = "%call16(";
5631 if (TARGET_NEWABI)
5633 mips_split_p[SYMBOL_GOTOFF_LOADGP] = true;
5634 mips_hi_relocs[SYMBOL_GOTOFF_LOADGP] = "%hi(%neg(%gp_rel(";
5635 mips_lo_relocs[SYMBOL_GOTOFF_LOADGP] = "%lo(%neg(%gp_rel(";
5638 /* Thread-local relocation operators. */
5639 mips_lo_relocs[SYMBOL_TLSGD] = "%tlsgd(";
5640 mips_lo_relocs[SYMBOL_TLSLDM] = "%tlsldm(";
5641 mips_split_p[SYMBOL_DTPREL] = 1;
5642 mips_hi_relocs[SYMBOL_DTPREL] = "%dtprel_hi(";
5643 mips_lo_relocs[SYMBOL_DTPREL] = "%dtprel_lo(";
5644 mips_lo_relocs[SYMBOL_GOTTPREL] = "%gottprel(";
5645 mips_split_p[SYMBOL_TPREL] = 1;
5646 mips_hi_relocs[SYMBOL_TPREL] = "%tprel_hi(";
5647 mips_lo_relocs[SYMBOL_TPREL] = "%tprel_lo(";
5649 mips_lo_relocs[SYMBOL_HALF] = "%half(";
5652 static GTY(()) int was_mips16_p = -1;
5654 /* Set up the target-dependent global state so that it matches the
5655 current function's ISA mode. */
5657 static void
5658 mips_set_mips16_mode (int mips16_p)
5660 if (mips16_p == was_mips16_p)
5661 return;
5663 /* Restore base settings of various flags. */
5664 target_flags = mips_base_target_flags;
5665 align_loops = mips_base_align_loops;
5666 align_jumps = mips_base_align_jumps;
5667 align_functions = mips_base_align_functions;
5668 flag_schedule_insns = mips_base_schedule_insns;
5669 flag_reorder_blocks_and_partition = mips_base_reorder_blocks_and_partition;
5670 flag_move_loop_invariants = mips_base_move_loop_invariants;
5671 flag_delayed_branch = mips_flag_delayed_branch;
5673 if (mips16_p)
5675 /* Select mips16 instruction set. */
5676 target_flags |= MASK_MIPS16;
5678 /* Don't run the scheduler before reload, since it tends to
5679 increase register pressure. */
5680 flag_schedule_insns = 0;
5682 /* Don't do hot/cold partitioning. The constant layout code expects
5683 the whole function to be in a single section. */
5684 flag_reorder_blocks_and_partition = 0;
5686 /* Don't move loop invariants, because it tends to increase
5687 register pressure. It also introduces an extra move in cases
5688 where the constant is the first operand in a two-operand binary
5689 instruction, or when it forms a register argument to a functon
5690 call. */
5691 flag_move_loop_invariants = 0;
5693 /* Silently disable -mexplicit-relocs since it doesn't apply
5694 to mips16 code. Even so, it would overly pedantic to warn
5695 about "-mips16 -mexplicit-relocs", especially given that
5696 we use a %gprel() operator. */
5697 target_flags &= ~MASK_EXPLICIT_RELOCS;
5699 /* Experiments suggest we get the best overall results from using
5700 the range of an unextended lw or sw. Code that makes heavy use
5701 of byte or short accesses can do better with ranges of 0...31
5702 and 0...63 respectively, but most code is sensitive to the range
5703 of lw and sw instead. */
5704 targetm.min_anchor_offset = 0;
5705 targetm.max_anchor_offset = 127;
5707 if (flag_pic || TARGET_ABICALLS)
5708 sorry ("MIPS16 PIC");
5710 else
5712 /* Reset to select base non-mips16 ISA. */
5713 target_flags &= ~MASK_MIPS16;
5715 /* When using explicit relocs, we call dbr_schedule from within
5716 mips_reorg. */
5717 if (TARGET_EXPLICIT_RELOCS)
5718 flag_delayed_branch = 0;
5720 /* Provide default values for align_* for 64-bit targets. */
5721 if (TARGET_64BIT)
5723 if (align_loops == 0)
5724 align_loops = 8;
5725 if (align_jumps == 0)
5726 align_jumps = 8;
5727 if (align_functions == 0)
5728 align_functions = 8;
5731 targetm.min_anchor_offset = TARGET_MIN_ANCHOR_OFFSET;
5732 targetm.max_anchor_offset = TARGET_MAX_ANCHOR_OFFSET;
5735 /* (Re)initialize mips target internals for new ISA. */
5736 mips_init_split_addresses ();
5737 mips_init_relocs ();
5739 if (was_mips16_p >= 0)
5740 /* Reinitialize target-dependent state. */
5741 target_reinit ();
5743 was_mips16_p = TARGET_MIPS16;
5746 /* Use a hash table to keep track of implicit mips16/nomips16 attributes
5747 for -mflip_mips16. It maps decl names onto a boolean mode setting. */
5749 struct mflip_mips16_entry GTY (()) {
5750 const char *name;
5751 bool mips16_p;
5753 static GTY ((param_is (struct mflip_mips16_entry))) htab_t mflip_mips16_htab;
5755 /* Hash table callbacks for mflip_mips16_htab. */
5757 static hashval_t
5758 mflip_mips16_htab_hash (const void *entry)
5760 return htab_hash_string (((const struct mflip_mips16_entry *) entry)->name);
5763 static int
5764 mflip_mips16_htab_eq (const void *entry, const void *name)
5766 return strcmp (((const struct mflip_mips16_entry *) entry)->name,
5767 (const char *) name) == 0;
5770 /* DECL is a function that needs a default "mips16" or "nomips16" attribute
5771 for -mflip-mips16. Return true if it should use "mips16" and false if
5772 it should use "nomips16". */
5774 static bool
5775 mflip_mips16_use_mips16_p (tree decl)
5777 struct mflip_mips16_entry *entry;
5778 const char *name;
5779 hashval_t hash;
5780 void **slot;
5782 /* Use the opposite of the command-line setting for anonymous decls. */
5783 if (!DECL_NAME (decl))
5784 return !mips_base_mips16;
5786 if (!mflip_mips16_htab)
5787 mflip_mips16_htab = htab_create_ggc (37, mflip_mips16_htab_hash,
5788 mflip_mips16_htab_eq, NULL);
5790 name = IDENTIFIER_POINTER (DECL_NAME (decl));
5791 hash = htab_hash_string (name);
5792 slot = htab_find_slot_with_hash (mflip_mips16_htab, name, hash, INSERT);
5793 entry = (struct mflip_mips16_entry *) *slot;
5794 if (!entry)
5796 mips16_flipper = !mips16_flipper;
5797 entry = GGC_NEW (struct mflip_mips16_entry);
5798 entry->name = name;
5799 entry->mips16_p = mips16_flipper ? !mips_base_mips16 : mips_base_mips16;
5800 *slot = entry;
5802 return entry->mips16_p;
5805 /* Implement TARGET_INSERT_ATTRIBUTES. */
5807 static void
5808 mips_insert_attributes (tree decl, tree *attributes)
5810 const char *name;
5811 bool mips16_p, nomips16_p;
5813 /* Check for "mips16" and "nomips16" attributes. */
5814 mips16_p = lookup_attribute ("mips16", *attributes) != NULL;
5815 nomips16_p = lookup_attribute ("nomips16", *attributes) != NULL;
5816 if (TREE_CODE (decl) != FUNCTION_DECL)
5818 if (mips16_p)
5819 error ("%qs attribute only applies to functions", "mips16");
5820 if (nomips16_p)
5821 error ("%qs attribute only applies to functions", "nomips16");
5823 else
5825 mips16_p |= mips_mips16_decl_p (decl);
5826 nomips16_p |= mips_nomips16_decl_p (decl);
5827 if (mips16_p || nomips16_p)
5829 /* DECL cannot be simultaneously mips16 and nomips16. */
5830 if (mips16_p && nomips16_p)
5831 error ("%qs cannot have both %<mips16%> and "
5832 "%<nomips16%> attributes",
5833 IDENTIFIER_POINTER (DECL_NAME (decl)));
5835 else if (TARGET_FLIP_MIPS16 && !DECL_ARTIFICIAL (decl))
5837 /* Implement -mflip-mips16. If DECL has neither a "nomips16" nor a
5838 "mips16" attribute, arbitrarily pick one. We must pick the same
5839 setting for duplicate declarations of a function. */
5840 name = mflip_mips16_use_mips16_p (decl) ? "mips16" : "nomips16";
5841 *attributes = tree_cons (get_identifier (name), NULL, *attributes);
5846 /* Implement TARGET_MERGE_DECL_ATTRIBUTES. */
5848 static tree
5849 mips_merge_decl_attributes (tree olddecl, tree newdecl)
5851 /* The decls' "mips16" and "nomips16" attributes must match exactly. */
5852 if (mips_mips16_decl_p (olddecl) != mips_mips16_decl_p (newdecl))
5853 error ("%qs redeclared with conflicting %qs attributes",
5854 IDENTIFIER_POINTER (DECL_NAME (newdecl)), "mips16");
5855 if (mips_nomips16_decl_p (olddecl) != mips_nomips16_decl_p (newdecl))
5856 error ("%qs redeclared with conflicting %qs attributes",
5857 IDENTIFIER_POINTER (DECL_NAME (newdecl)), "nomips16");
5859 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5860 DECL_ATTRIBUTES (newdecl));
5863 /* Implement TARGET_SET_CURRENT_FUNCTION. Decide whether the current
5864 function should use the MIPS16 ISA and switch modes accordingly. */
5866 static void
5867 mips_set_current_function (tree fndecl)
5869 mips_set_mips16_mode (mips_use_mips16_mode_p (fndecl));
5872 /* Implement TARGET_HANDLE_OPTION. */
5874 static bool
5875 mips_handle_option (size_t code, const char *arg, int value)
5877 switch (code)
5879 case OPT_mabi_:
5880 if (strcmp (arg, "32") == 0)
5881 mips_abi = ABI_32;
5882 else if (strcmp (arg, "o64") == 0)
5883 mips_abi = ABI_O64;
5884 else if (strcmp (arg, "n32") == 0)
5885 mips_abi = ABI_N32;
5886 else if (strcmp (arg, "64") == 0)
5887 mips_abi = ABI_64;
5888 else if (strcmp (arg, "eabi") == 0)
5889 mips_abi = ABI_EABI;
5890 else
5891 return false;
5892 return true;
5894 case OPT_march_:
5895 case OPT_mtune_:
5896 return mips_parse_cpu (arg) != 0;
5898 case OPT_mips:
5899 mips_isa_info = mips_parse_cpu (ACONCAT (("mips", arg, NULL)));
5900 return mips_isa_info != 0;
5902 case OPT_mno_flush_func:
5903 mips_cache_flush_func = NULL;
5904 return true;
5906 case OPT_mcode_readable_:
5907 if (strcmp (arg, "yes") == 0)
5908 mips_code_readable = CODE_READABLE_YES;
5909 else if (strcmp (arg, "pcrel") == 0)
5910 mips_code_readable = CODE_READABLE_PCREL;
5911 else if (strcmp (arg, "no") == 0)
5912 mips_code_readable = CODE_READABLE_NO;
5913 else
5914 return false;
5915 return true;
5917 case OPT_mllsc:
5918 mips_llsc = value ? LLSC_YES : LLSC_NO;
5919 return true;
5921 default:
5922 return true;
5926 /* Set up the threshold for data to go into the small data area, instead
5927 of the normal data area, and detect any conflicts in the switches. */
5929 void
5930 override_options (void)
5932 int i, start, regno;
5933 enum machine_mode mode;
5935 #ifdef SUBTARGET_OVERRIDE_OPTIONS
5936 SUBTARGET_OVERRIDE_OPTIONS;
5937 #endif
5939 mips_section_threshold = g_switch_set ? g_switch_value : MIPS_DEFAULT_GVALUE;
5941 /* The following code determines the architecture and register size.
5942 Similar code was added to GAS 2.14 (see tc-mips.c:md_after_parse_args()).
5943 The GAS and GCC code should be kept in sync as much as possible. */
5945 if (mips_arch_string != 0)
5946 mips_set_architecture (mips_parse_cpu (mips_arch_string));
5948 if (mips_isa_info != 0)
5950 if (mips_arch_info == 0)
5951 mips_set_architecture (mips_isa_info);
5952 else if (mips_arch_info->isa != mips_isa_info->isa)
5953 error ("-%s conflicts with the other architecture options, "
5954 "which specify a %s processor",
5955 mips_isa_info->name,
5956 mips_cpu_info_from_isa (mips_arch_info->isa)->name);
5959 if (mips_arch_info == 0)
5961 #ifdef MIPS_CPU_STRING_DEFAULT
5962 mips_set_architecture (mips_parse_cpu (MIPS_CPU_STRING_DEFAULT));
5963 #else
5964 mips_set_architecture (mips_cpu_info_from_isa (MIPS_ISA_DEFAULT));
5965 #endif
5968 if (ABI_NEEDS_64BIT_REGS && !ISA_HAS_64BIT_REGS)
5969 error ("-march=%s is not compatible with the selected ABI",
5970 mips_arch_info->name);
5972 /* Optimize for mips_arch, unless -mtune selects a different processor. */
5973 if (mips_tune_string != 0)
5974 mips_set_tune (mips_parse_cpu (mips_tune_string));
5976 if (mips_tune_info == 0)
5977 mips_set_tune (mips_arch_info);
5979 /* Set cost structure for the processor. */
5980 if (optimize_size)
5981 mips_cost = &mips_rtx_cost_optimize_size;
5982 else
5983 mips_cost = &mips_rtx_cost_data[mips_tune];
5985 /* If the user hasn't specified a branch cost, use the processor's
5986 default. */
5987 if (mips_branch_cost == 0)
5988 mips_branch_cost = mips_cost->branch_cost;
5990 if ((target_flags_explicit & MASK_64BIT) != 0)
5992 /* The user specified the size of the integer registers. Make sure
5993 it agrees with the ABI and ISA. */
5994 if (TARGET_64BIT && !ISA_HAS_64BIT_REGS)
5995 error ("-mgp64 used with a 32-bit processor");
5996 else if (!TARGET_64BIT && ABI_NEEDS_64BIT_REGS)
5997 error ("-mgp32 used with a 64-bit ABI");
5998 else if (TARGET_64BIT && ABI_NEEDS_32BIT_REGS)
5999 error ("-mgp64 used with a 32-bit ABI");
6001 else
6003 /* Infer the integer register size from the ABI and processor.
6004 Restrict ourselves to 32-bit registers if that's all the
6005 processor has, or if the ABI cannot handle 64-bit registers. */
6006 if (ABI_NEEDS_32BIT_REGS || !ISA_HAS_64BIT_REGS)
6007 target_flags &= ~MASK_64BIT;
6008 else
6009 target_flags |= MASK_64BIT;
6012 if ((target_flags_explicit & MASK_FLOAT64) != 0)
6014 /* Really, -mfp32 and -mfp64 are ornamental options. There's
6015 only one right answer here. */
6016 if (TARGET_64BIT && TARGET_DOUBLE_FLOAT && !TARGET_FLOAT64)
6017 error ("unsupported combination: %s", "-mgp64 -mfp32 -mdouble-float");
6018 else if (!TARGET_64BIT && TARGET_FLOAT64
6019 && !(ISA_HAS_MXHC1 && mips_abi == ABI_32))
6020 error ("-mgp32 and -mfp64 can only be combined if the target"
6021 " supports the mfhc1 and mthc1 instructions");
6022 else if (TARGET_SINGLE_FLOAT && TARGET_FLOAT64)
6023 error ("unsupported combination: %s", "-mfp64 -msingle-float");
6025 else
6027 /* -msingle-float selects 32-bit float registers. Otherwise the
6028 float registers should be the same size as the integer ones. */
6029 if (TARGET_64BIT && TARGET_DOUBLE_FLOAT)
6030 target_flags |= MASK_FLOAT64;
6031 else
6032 target_flags &= ~MASK_FLOAT64;
6035 /* End of code shared with GAS. */
6037 if ((target_flags_explicit & MASK_LONG64) == 0)
6039 if ((mips_abi == ABI_EABI && TARGET_64BIT) || mips_abi == ABI_64)
6040 target_flags |= MASK_LONG64;
6041 else
6042 target_flags &= ~MASK_LONG64;
6045 if (!TARGET_OLDABI)
6046 flag_pcc_struct_return = 0;
6048 if ((target_flags_explicit & MASK_BRANCHLIKELY) == 0)
6050 /* If neither -mbranch-likely nor -mno-branch-likely was given
6051 on the command line, set MASK_BRANCHLIKELY based on the target
6052 architecture.
6054 By default, we enable use of Branch Likely instructions on
6055 all architectures which support them with the following
6056 exceptions: when creating MIPS32 or MIPS64 code, and when
6057 tuning for architectures where their use tends to hurt
6058 performance.
6060 The MIPS32 and MIPS64 architecture specifications say "Software
6061 is strongly encouraged to avoid use of Branch Likely
6062 instructions, as they will be removed from a future revision
6063 of the [MIPS32 and MIPS64] architecture." Therefore, we do not
6064 issue those instructions unless instructed to do so by
6065 -mbranch-likely. */
6066 if (ISA_HAS_BRANCHLIKELY
6067 && !(ISA_MIPS32 || ISA_MIPS32R2 || ISA_MIPS64)
6068 && !(TUNE_MIPS5500 || TUNE_SB1))
6069 target_flags |= MASK_BRANCHLIKELY;
6070 else
6071 target_flags &= ~MASK_BRANCHLIKELY;
6073 if (TARGET_BRANCHLIKELY && !ISA_HAS_BRANCHLIKELY)
6074 warning (0, "generation of Branch Likely instructions enabled, but not supported by architecture");
6076 /* The effect of -mabicalls isn't defined for the EABI. */
6077 if (mips_abi == ABI_EABI && TARGET_ABICALLS)
6079 error ("unsupported combination: %s", "-mabicalls -mabi=eabi");
6080 target_flags &= ~MASK_ABICALLS;
6083 /* MIPS16 cannot generate PIC yet. */
6084 if (TARGET_MIPS16 && (flag_pic || TARGET_ABICALLS))
6086 sorry ("MIPS16 PIC");
6087 target_flags &= ~MASK_ABICALLS;
6088 flag_pic = flag_pie = flag_shlib = 0;
6091 if (TARGET_ABICALLS)
6092 /* We need to set flag_pic for executables as well as DSOs
6093 because we may reference symbols that are not defined in
6094 the final executable. (MIPS does not use things like
6095 copy relocs, for example.)
6097 Also, there is a body of code that uses __PIC__ to distinguish
6098 between -mabicalls and -mno-abicalls code. */
6099 flag_pic = 1;
6101 /* -mvr4130-align is a "speed over size" optimization: it usually produces
6102 faster code, but at the expense of more nops. Enable it at -O3 and
6103 above. */
6104 if (optimize > 2 && (target_flags_explicit & MASK_VR4130_ALIGN) == 0)
6105 target_flags |= MASK_VR4130_ALIGN;
6107 /* Prefer a call to memcpy over inline code when optimizing for size,
6108 though see MOVE_RATIO in mips.h. */
6109 if (optimize_size && (target_flags_explicit & MASK_MEMCPY) == 0)
6110 target_flags |= MASK_MEMCPY;
6112 /* If we have a nonzero small-data limit, check that the -mgpopt
6113 setting is consistent with the other target flags. */
6114 if (mips_section_threshold > 0)
6116 if (!TARGET_GPOPT)
6118 if (!TARGET_MIPS16 && !TARGET_EXPLICIT_RELOCS)
6119 error ("%<-mno-gpopt%> needs %<-mexplicit-relocs%>");
6121 TARGET_LOCAL_SDATA = false;
6122 TARGET_EXTERN_SDATA = false;
6124 else
6126 if (TARGET_VXWORKS_RTP)
6127 warning (0, "cannot use small-data accesses for %qs", "-mrtp");
6129 if (TARGET_ABICALLS)
6130 warning (0, "cannot use small-data accesses for %qs",
6131 "-mabicalls");
6135 #ifdef MIPS_TFMODE_FORMAT
6136 REAL_MODE_FORMAT (TFmode) = &MIPS_TFMODE_FORMAT;
6137 #endif
6139 /* Make sure that the user didn't turn off paired single support when
6140 MIPS-3D support is requested. */
6141 if (TARGET_MIPS3D && (target_flags_explicit & MASK_PAIRED_SINGLE_FLOAT)
6142 && !TARGET_PAIRED_SINGLE_FLOAT)
6143 error ("-mips3d requires -mpaired-single");
6145 /* If TARGET_MIPS3D, enable MASK_PAIRED_SINGLE_FLOAT. */
6146 if (TARGET_MIPS3D)
6147 target_flags |= MASK_PAIRED_SINGLE_FLOAT;
6149 /* Make sure that when TARGET_PAIRED_SINGLE_FLOAT is true, TARGET_FLOAT64
6150 and TARGET_HARD_FLOAT_ABI are both true. */
6151 if (TARGET_PAIRED_SINGLE_FLOAT && !(TARGET_FLOAT64 && TARGET_HARD_FLOAT_ABI))
6152 error ("-mips3d/-mpaired-single must be used with -mfp64 -mhard-float");
6154 /* Make sure that the ISA supports TARGET_PAIRED_SINGLE_FLOAT when it is
6155 enabled. */
6156 if (TARGET_PAIRED_SINGLE_FLOAT && !ISA_MIPS64)
6157 error ("-mips3d/-mpaired-single must be used with -mips64");
6159 /* If TARGET_DSPR2, enable MASK_DSP. */
6160 if (TARGET_DSPR2)
6161 target_flags |= MASK_DSP;
6163 mips_print_operand_punct['?'] = 1;
6164 mips_print_operand_punct['#'] = 1;
6165 mips_print_operand_punct['/'] = 1;
6166 mips_print_operand_punct['&'] = 1;
6167 mips_print_operand_punct['!'] = 1;
6168 mips_print_operand_punct['*'] = 1;
6169 mips_print_operand_punct['@'] = 1;
6170 mips_print_operand_punct['.'] = 1;
6171 mips_print_operand_punct['('] = 1;
6172 mips_print_operand_punct[')'] = 1;
6173 mips_print_operand_punct['['] = 1;
6174 mips_print_operand_punct[']'] = 1;
6175 mips_print_operand_punct['<'] = 1;
6176 mips_print_operand_punct['>'] = 1;
6177 mips_print_operand_punct['{'] = 1;
6178 mips_print_operand_punct['}'] = 1;
6179 mips_print_operand_punct['^'] = 1;
6180 mips_print_operand_punct['$'] = 1;
6181 mips_print_operand_punct['+'] = 1;
6182 mips_print_operand_punct['~'] = 1;
6183 mips_print_operand_punct['|'] = 1;
6184 mips_print_operand_punct['-'] = 1;
6186 /* Set up array to map GCC register number to debug register number.
6187 Ignore the special purpose register numbers. */
6189 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6191 mips_dbx_regno[i] = INVALID_REGNUM;
6192 if (GP_REG_P (i) || FP_REG_P (i) || ALL_COP_REG_P (i))
6193 mips_dwarf_regno[i] = i;
6194 else
6195 mips_dwarf_regno[i] = INVALID_REGNUM;
6198 start = GP_DBX_FIRST - GP_REG_FIRST;
6199 for (i = GP_REG_FIRST; i <= GP_REG_LAST; i++)
6200 mips_dbx_regno[i] = i + start;
6202 start = FP_DBX_FIRST - FP_REG_FIRST;
6203 for (i = FP_REG_FIRST; i <= FP_REG_LAST; i++)
6204 mips_dbx_regno[i] = i + start;
6206 /* HI and LO debug registers use big-endian ordering. */
6207 mips_dbx_regno[HI_REGNUM] = MD_DBX_FIRST + 0;
6208 mips_dbx_regno[LO_REGNUM] = MD_DBX_FIRST + 1;
6209 mips_dwarf_regno[HI_REGNUM] = MD_REG_FIRST + 0;
6210 mips_dwarf_regno[LO_REGNUM] = MD_REG_FIRST + 1;
6211 for (i = DSP_ACC_REG_FIRST; i <= DSP_ACC_REG_LAST; i += 2)
6213 mips_dwarf_regno[i + TARGET_LITTLE_ENDIAN] = i;
6214 mips_dwarf_regno[i + TARGET_BIG_ENDIAN] = i + 1;
6217 /* Set up array giving whether a given register can hold a given mode. */
6219 for (mode = VOIDmode;
6220 mode != MAX_MACHINE_MODE;
6221 mode = (enum machine_mode) ((int)mode + 1))
6223 register int size = GET_MODE_SIZE (mode);
6224 register enum mode_class class = GET_MODE_CLASS (mode);
6226 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
6228 register int temp;
6230 if (mode == CCV2mode)
6231 temp = (ISA_HAS_8CC
6232 && ST_REG_P (regno)
6233 && (regno - ST_REG_FIRST) % 2 == 0);
6235 else if (mode == CCV4mode)
6236 temp = (ISA_HAS_8CC
6237 && ST_REG_P (regno)
6238 && (regno - ST_REG_FIRST) % 4 == 0);
6240 else if (mode == CCmode)
6242 if (! ISA_HAS_8CC)
6243 temp = (regno == FPSW_REGNUM);
6244 else
6245 temp = (ST_REG_P (regno) || GP_REG_P (regno)
6246 || FP_REG_P (regno));
6249 else if (GP_REG_P (regno))
6250 temp = ((regno & 1) == 0 || size <= UNITS_PER_WORD);
6252 else if (FP_REG_P (regno))
6253 temp = ((((regno % MAX_FPRS_PER_FMT) == 0)
6254 || (MIN_FPRS_PER_FMT == 1
6255 && size <= UNITS_PER_FPREG))
6256 && (((class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT
6257 || class == MODE_VECTOR_FLOAT)
6258 && size <= UNITS_PER_FPVALUE)
6259 /* Allow integer modes that fit into a single
6260 register. We need to put integers into FPRs
6261 when using instructions like cvt and trunc.
6262 We can't allow sizes smaller than a word,
6263 the FPU has no appropriate load/store
6264 instructions for those. */
6265 || (class == MODE_INT
6266 && size >= MIN_UNITS_PER_WORD
6267 && size <= UNITS_PER_FPREG)
6268 /* Allow TFmode for CCmode reloads. */
6269 || (ISA_HAS_8CC && mode == TFmode)));
6271 else if (ACC_REG_P (regno))
6272 temp = ((INTEGRAL_MODE_P (mode) || ALL_FIXED_POINT_MODE_P (mode))
6273 && size <= UNITS_PER_WORD * 2
6274 && (size <= UNITS_PER_WORD
6275 || regno == MD_REG_FIRST
6276 || (DSP_ACC_REG_P (regno)
6277 && ((regno - DSP_ACC_REG_FIRST) & 1) == 0)));
6279 else if (ALL_COP_REG_P (regno))
6280 temp = (class == MODE_INT && size <= UNITS_PER_WORD);
6281 else
6282 temp = 0;
6284 mips_hard_regno_mode_ok[(int)mode][regno] = temp;
6288 /* Save GPR registers in word_mode sized hunks. word_mode hasn't been
6289 initialized yet, so we can't use that here. */
6290 gpr_mode = TARGET_64BIT ? DImode : SImode;
6292 /* Function to allocate machine-dependent function status. */
6293 init_machine_status = &mips_init_machine_status;
6295 /* Default to working around R4000 errata only if the processor
6296 was selected explicitly. */
6297 if ((target_flags_explicit & MASK_FIX_R4000) == 0
6298 && mips_matching_cpu_name_p (mips_arch_info->name, "r4000"))
6299 target_flags |= MASK_FIX_R4000;
6301 /* Default to working around R4400 errata only if the processor
6302 was selected explicitly. */
6303 if ((target_flags_explicit & MASK_FIX_R4400) == 0
6304 && mips_matching_cpu_name_p (mips_arch_info->name, "r4400"))
6305 target_flags |= MASK_FIX_R4400;
6307 /* Save base state of options. */
6308 mips_base_mips16 = TARGET_MIPS16;
6309 mips_base_target_flags = target_flags;
6310 mips_base_schedule_insns = flag_schedule_insns;
6311 mips_base_reorder_blocks_and_partition = flag_reorder_blocks_and_partition;
6312 mips_base_move_loop_invariants = flag_move_loop_invariants;
6313 mips_base_align_loops = align_loops;
6314 mips_base_align_jumps = align_jumps;
6315 mips_base_align_functions = align_functions;
6316 mips_flag_delayed_branch = flag_delayed_branch;
6318 /* Now select the mips16 or 32-bit instruction set, as requested. */
6319 mips_set_mips16_mode (mips_base_mips16);
6322 /* Swap the register information for registers I and I + 1, which
6323 currently have the wrong endianness. Note that the registers'
6324 fixedness and call-clobberedness might have been set on the
6325 command line. */
6327 static void
6328 mips_swap_registers (unsigned int i)
6330 int tmpi;
6331 const char *tmps;
6333 #define SWAP_INT(X, Y) (tmpi = (X), (X) = (Y), (Y) = tmpi)
6334 #define SWAP_STRING(X, Y) (tmps = (X), (X) = (Y), (Y) = tmps)
6336 SWAP_INT (fixed_regs[i], fixed_regs[i + 1]);
6337 SWAP_INT (call_used_regs[i], call_used_regs[i + 1]);
6338 SWAP_INT (call_really_used_regs[i], call_really_used_regs[i + 1]);
6339 SWAP_STRING (reg_names[i], reg_names[i + 1]);
6341 #undef SWAP_STRING
6342 #undef SWAP_INT
6345 /* Implement CONDITIONAL_REGISTER_USAGE. */
6347 void
6348 mips_conditional_register_usage (void)
6350 if (!ISA_HAS_DSP)
6352 int regno;
6354 for (regno = DSP_ACC_REG_FIRST; regno <= DSP_ACC_REG_LAST; regno++)
6355 fixed_regs[regno] = call_used_regs[regno] = 1;
6357 if (!TARGET_HARD_FLOAT)
6359 int regno;
6361 for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
6362 fixed_regs[regno] = call_used_regs[regno] = 1;
6363 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++)
6364 fixed_regs[regno] = call_used_regs[regno] = 1;
6366 else if (! ISA_HAS_8CC)
6368 int regno;
6370 /* We only have a single condition code register. We
6371 implement this by hiding all the condition code registers,
6372 and generating RTL that refers directly to ST_REG_FIRST. */
6373 for (regno = ST_REG_FIRST; regno <= ST_REG_LAST; regno++)
6374 fixed_regs[regno] = call_used_regs[regno] = 1;
6376 /* In mips16 mode, we permit the $t temporary registers to be used
6377 for reload. We prohibit the unused $s registers, since they
6378 are caller saved, and saving them via a mips16 register would
6379 probably waste more time than just reloading the value. */
6380 if (TARGET_MIPS16)
6382 fixed_regs[18] = call_used_regs[18] = 1;
6383 fixed_regs[19] = call_used_regs[19] = 1;
6384 fixed_regs[20] = call_used_regs[20] = 1;
6385 fixed_regs[21] = call_used_regs[21] = 1;
6386 fixed_regs[22] = call_used_regs[22] = 1;
6387 fixed_regs[23] = call_used_regs[23] = 1;
6388 fixed_regs[26] = call_used_regs[26] = 1;
6389 fixed_regs[27] = call_used_regs[27] = 1;
6390 fixed_regs[30] = call_used_regs[30] = 1;
6392 /* fp20-23 are now caller saved. */
6393 if (mips_abi == ABI_64)
6395 int regno;
6396 for (regno = FP_REG_FIRST + 20; regno < FP_REG_FIRST + 24; regno++)
6397 call_really_used_regs[regno] = call_used_regs[regno] = 1;
6399 /* Odd registers from fp21 to fp31 are now caller saved. */
6400 if (mips_abi == ABI_N32)
6402 int regno;
6403 for (regno = FP_REG_FIRST + 21; regno <= FP_REG_FIRST + 31; regno+=2)
6404 call_really_used_regs[regno] = call_used_regs[regno] = 1;
6406 /* Make sure that double-register accumulator values are correctly
6407 ordered for the current endianness. */
6408 if (TARGET_LITTLE_ENDIAN)
6410 int regno;
6411 mips_swap_registers (MD_REG_FIRST);
6412 for (regno = DSP_ACC_REG_FIRST; regno <= DSP_ACC_REG_LAST; regno += 2)
6413 mips_swap_registers (regno);
6417 /* Allocate a chunk of memory for per-function machine-dependent data. */
6418 static struct machine_function *
6419 mips_init_machine_status (void)
6421 return ((struct machine_function *)
6422 ggc_alloc_cleared (sizeof (struct machine_function)));
6425 /* On the mips16, we want to allocate $24 (T_REG) before other
6426 registers for instructions for which it is possible. This helps
6427 avoid shuffling registers around in order to set up for an xor,
6428 encouraging the compiler to use a cmp instead. */
6430 void
6431 mips_order_regs_for_local_alloc (void)
6433 register int i;
6435 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6436 reg_alloc_order[i] = i;
6438 if (TARGET_MIPS16)
6440 /* It really doesn't matter where we put register 0, since it is
6441 a fixed register anyhow. */
6442 reg_alloc_order[0] = 24;
6443 reg_alloc_order[24] = 0;
6448 /* The MIPS debug format wants all automatic variables and arguments
6449 to be in terms of the virtual frame pointer (stack pointer before
6450 any adjustment in the function), while the MIPS 3.0 linker wants
6451 the frame pointer to be the stack pointer after the initial
6452 adjustment. So, we do the adjustment here. The arg pointer (which
6453 is eliminated) points to the virtual frame pointer, while the frame
6454 pointer (which may be eliminated) points to the stack pointer after
6455 the initial adjustments. */
6457 HOST_WIDE_INT
6458 mips_debugger_offset (rtx addr, HOST_WIDE_INT offset)
6460 rtx offset2 = const0_rtx;
6461 rtx reg = eliminate_constant_term (addr, &offset2);
6463 if (offset == 0)
6464 offset = INTVAL (offset2);
6466 if (reg == stack_pointer_rtx || reg == frame_pointer_rtx
6467 || reg == hard_frame_pointer_rtx)
6469 HOST_WIDE_INT frame_size = (!cfun->machine->frame.initialized)
6470 ? compute_frame_size (get_frame_size ())
6471 : cfun->machine->frame.total_size;
6473 /* MIPS16 frame is smaller */
6474 if (frame_pointer_needed && TARGET_MIPS16)
6475 frame_size -= cfun->machine->frame.args_size;
6477 offset = offset - frame_size;
6480 /* sdbout_parms does not want this to crash for unrecognized cases. */
6481 #if 0
6482 else if (reg != arg_pointer_rtx)
6483 fatal_insn ("mips_debugger_offset called with non stack/frame/arg pointer",
6484 addr);
6485 #endif
6487 return offset;
6490 /* If OP is an UNSPEC address, return the address to which it refers,
6491 otherwise return OP itself. */
6493 static rtx
6494 mips_strip_unspec_address (rtx op)
6496 rtx base, offset;
6498 split_const (op, &base, &offset);
6499 if (UNSPEC_ADDRESS_P (base))
6500 op = plus_constant (UNSPEC_ADDRESS (base), INTVAL (offset));
6501 return op;
6504 /* Implement the PRINT_OPERAND macro. The MIPS-specific operand codes are:
6506 'X' OP is CONST_INT, prints 32 bits in hexadecimal format = "0x%08x",
6507 'x' OP is CONST_INT, prints 16 bits in hexadecimal format = "0x%04x",
6508 'h' OP is HIGH, prints %hi(X),
6509 'd' output integer constant in decimal,
6510 'z' if the operand is 0, use $0 instead of normal operand.
6511 'D' print second part of double-word register or memory operand.
6512 'L' print low-order register of double-word register operand.
6513 'M' print high-order register of double-word register operand.
6514 'C' print part of opcode for a branch condition.
6515 'F' print part of opcode for a floating-point branch condition.
6516 'N' print part of opcode for a branch condition, inverted.
6517 'W' print part of opcode for a floating-point branch condition, inverted.
6518 'T' print 'f' for (eq:CC ...), 't' for (ne:CC ...),
6519 'z' for (eq:?I ...), 'n' for (ne:?I ...).
6520 't' like 'T', but with the EQ/NE cases reversed
6521 'Y' for a CONST_INT X, print mips_fp_conditions[X]
6522 'Z' print the operand and a comma for ISA_HAS_8CC, otherwise print nothing
6523 'R' print the reloc associated with LO_SUM
6524 'q' print DSP accumulator registers
6526 The punctuation characters are:
6528 '(' Turn on .set noreorder
6529 ')' Turn on .set reorder
6530 '[' Turn on .set noat
6531 ']' Turn on .set at
6532 '<' Turn on .set nomacro
6533 '>' Turn on .set macro
6534 '{' Turn on .set volatile (not GAS)
6535 '}' Turn on .set novolatile (not GAS)
6536 '&' Turn on .set noreorder if filling delay slots
6537 '*' Turn on both .set noreorder and .set nomacro if filling delay slots
6538 '!' Turn on .set nomacro if filling delay slots
6539 '#' Print nop if in a .set noreorder section.
6540 '/' Like '#', but does nothing within a delayed branch sequence
6541 '?' Print 'l' if we are to use a branch likely instead of normal branch.
6542 '@' Print the name of the assembler temporary register (at or $1).
6543 '.' Print the name of the register with a hard-wired zero (zero or $0).
6544 '^' Print the name of the pic call-through register (t9 or $25).
6545 '$' Print the name of the stack pointer register (sp or $29).
6546 '+' Print the name of the gp register (usually gp or $28).
6547 '~' Output a branch alignment to LABEL_ALIGN(NULL).
6548 '|' Print .set push; .set mips2 if mips_llsc == LLSC_YES
6549 && !ISA_HAS_LL_SC.
6550 '-' Print .set pop under the same conditions for '|'. */
6552 void
6553 print_operand (FILE *file, rtx op, int letter)
6555 register enum rtx_code code;
6557 if (PRINT_OPERAND_PUNCT_VALID_P (letter))
6559 switch (letter)
6561 case '?':
6562 if (mips_branch_likely)
6563 putc ('l', file);
6564 break;
6566 case '@':
6567 fputs (reg_names [GP_REG_FIRST + 1], file);
6568 break;
6570 case '^':
6571 fputs (reg_names [PIC_FUNCTION_ADDR_REGNUM], file);
6572 break;
6574 case '.':
6575 fputs (reg_names [GP_REG_FIRST + 0], file);
6576 break;
6578 case '$':
6579 fputs (reg_names[STACK_POINTER_REGNUM], file);
6580 break;
6582 case '+':
6583 fputs (reg_names[PIC_OFFSET_TABLE_REGNUM], file);
6584 break;
6586 case '&':
6587 if (final_sequence != 0 && set_noreorder++ == 0)
6588 fputs (".set\tnoreorder\n\t", file);
6589 break;
6591 case '*':
6592 if (final_sequence != 0)
6594 if (set_noreorder++ == 0)
6595 fputs (".set\tnoreorder\n\t", file);
6597 if (set_nomacro++ == 0)
6598 fputs (".set\tnomacro\n\t", file);
6600 break;
6602 case '!':
6603 if (final_sequence != 0 && set_nomacro++ == 0)
6604 fputs ("\n\t.set\tnomacro", file);
6605 break;
6607 case '#':
6608 if (set_noreorder != 0)
6609 fputs ("\n\tnop", file);
6610 break;
6612 case '/':
6613 /* Print an extra newline so that the delayed insn is separated
6614 from the following ones. This looks neater and is consistent
6615 with non-nop delayed sequences. */
6616 if (set_noreorder != 0 && final_sequence == 0)
6617 fputs ("\n\tnop\n", file);
6618 break;
6620 case '(':
6621 if (set_noreorder++ == 0)
6622 fputs (".set\tnoreorder\n\t", file);
6623 break;
6625 case ')':
6626 if (set_noreorder == 0)
6627 error ("internal error: %%) found without a %%( in assembler pattern");
6629 else if (--set_noreorder == 0)
6630 fputs ("\n\t.set\treorder", file);
6632 break;
6634 case '[':
6635 if (set_noat++ == 0)
6636 fputs (".set\tnoat\n\t", file);
6637 break;
6639 case ']':
6640 if (set_noat == 0)
6641 error ("internal error: %%] found without a %%[ in assembler pattern");
6642 else if (--set_noat == 0)
6643 fputs ("\n\t.set\tat", file);
6645 break;
6647 case '<':
6648 if (set_nomacro++ == 0)
6649 fputs (".set\tnomacro\n\t", file);
6650 break;
6652 case '>':
6653 if (set_nomacro == 0)
6654 error ("internal error: %%> found without a %%< in assembler pattern");
6655 else if (--set_nomacro == 0)
6656 fputs ("\n\t.set\tmacro", file);
6658 break;
6660 case '{':
6661 if (set_volatile++ == 0)
6662 fputs ("#.set\tvolatile\n\t", file);
6663 break;
6665 case '}':
6666 if (set_volatile == 0)
6667 error ("internal error: %%} found without a %%{ in assembler pattern");
6668 else if (--set_volatile == 0)
6669 fputs ("\n\t#.set\tnovolatile", file);
6671 break;
6673 case '~':
6675 if (align_labels_log > 0)
6676 ASM_OUTPUT_ALIGN (file, align_labels_log);
6678 break;
6680 case '|':
6681 if (!ISA_HAS_LL_SC)
6682 fputs (".set\tpush\n\t.set\tmips2\n\t", file);
6683 break;
6685 case '-':
6686 if (!ISA_HAS_LL_SC)
6687 fputs ("\n\t.set\tpop", file);
6688 break;
6690 default:
6691 error ("PRINT_OPERAND: unknown punctuation '%c'", letter);
6692 break;
6695 return;
6698 if (! op)
6700 error ("PRINT_OPERAND null pointer");
6701 return;
6704 code = GET_CODE (op);
6706 if (letter == 'C')
6707 switch (code)
6709 case EQ: fputs ("eq", file); break;
6710 case NE: fputs ("ne", file); break;
6711 case GT: fputs ("gt", file); break;
6712 case GE: fputs ("ge", file); break;
6713 case LT: fputs ("lt", file); break;
6714 case LE: fputs ("le", file); break;
6715 case GTU: fputs ("gtu", file); break;
6716 case GEU: fputs ("geu", file); break;
6717 case LTU: fputs ("ltu", file); break;
6718 case LEU: fputs ("leu", file); break;
6719 default:
6720 fatal_insn ("PRINT_OPERAND, invalid insn for %%C", op);
6723 else if (letter == 'N')
6724 switch (code)
6726 case EQ: fputs ("ne", file); break;
6727 case NE: fputs ("eq", file); break;
6728 case GT: fputs ("le", file); break;
6729 case GE: fputs ("lt", file); break;
6730 case LT: fputs ("ge", file); break;
6731 case LE: fputs ("gt", file); break;
6732 case GTU: fputs ("leu", file); break;
6733 case GEU: fputs ("ltu", file); break;
6734 case LTU: fputs ("geu", file); break;
6735 case LEU: fputs ("gtu", file); break;
6736 default:
6737 fatal_insn ("PRINT_OPERAND, invalid insn for %%N", op);
6740 else if (letter == 'F')
6741 switch (code)
6743 case EQ: fputs ("c1f", file); break;
6744 case NE: fputs ("c1t", file); break;
6745 default:
6746 fatal_insn ("PRINT_OPERAND, invalid insn for %%F", op);
6749 else if (letter == 'W')
6750 switch (code)
6752 case EQ: fputs ("c1t", file); break;
6753 case NE: fputs ("c1f", file); break;
6754 default:
6755 fatal_insn ("PRINT_OPERAND, invalid insn for %%W", op);
6758 else if (letter == 'h')
6760 if (GET_CODE (op) == HIGH)
6761 op = XEXP (op, 0);
6763 print_operand_reloc (file, op, SYMBOL_CONTEXT_LEA, mips_hi_relocs);
6766 else if (letter == 'R')
6767 print_operand_reloc (file, op, SYMBOL_CONTEXT_LEA, mips_lo_relocs);
6769 else if (letter == 'Y')
6771 if (GET_CODE (op) == CONST_INT
6772 && ((unsigned HOST_WIDE_INT) INTVAL (op)
6773 < ARRAY_SIZE (mips_fp_conditions)))
6774 fputs (mips_fp_conditions[INTVAL (op)], file);
6775 else
6776 output_operand_lossage ("invalid %%Y value");
6779 else if (letter == 'Z')
6781 if (ISA_HAS_8CC)
6783 print_operand (file, op, 0);
6784 fputc (',', file);
6788 else if (letter == 'q')
6790 int regnum;
6792 if (code != REG)
6793 fatal_insn ("PRINT_OPERAND, invalid insn for %%q", op);
6795 regnum = REGNO (op);
6796 if (MD_REG_P (regnum))
6797 fprintf (file, "$ac0");
6798 else if (DSP_ACC_REG_P (regnum))
6799 fprintf (file, "$ac%c", reg_names[regnum][3]);
6800 else
6801 fatal_insn ("PRINT_OPERAND, invalid insn for %%q", op);
6804 else if (code == REG || code == SUBREG)
6806 register int regnum;
6808 if (code == REG)
6809 regnum = REGNO (op);
6810 else
6811 regnum = true_regnum (op);
6813 if ((letter == 'M' && ! WORDS_BIG_ENDIAN)
6814 || (letter == 'L' && WORDS_BIG_ENDIAN)
6815 || letter == 'D')
6816 regnum++;
6818 fprintf (file, "%s", reg_names[regnum]);
6821 else if (code == MEM)
6823 if (letter == 'D')
6824 output_address (plus_constant (XEXP (op, 0), 4));
6825 else
6826 output_address (XEXP (op, 0));
6829 else if (letter == 'x' && GET_CODE (op) == CONST_INT)
6830 fprintf (file, HOST_WIDE_INT_PRINT_HEX, 0xffff & INTVAL(op));
6832 else if (letter == 'X' && GET_CODE(op) == CONST_INT)
6833 fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (op));
6835 else if (letter == 'd' && GET_CODE(op) == CONST_INT)
6836 fprintf (file, HOST_WIDE_INT_PRINT_DEC, (INTVAL(op)));
6838 else if (letter == 'z' && op == CONST0_RTX (GET_MODE (op)))
6839 fputs (reg_names[GP_REG_FIRST], file);
6841 else if (letter == 'd' || letter == 'x' || letter == 'X')
6842 output_operand_lossage ("invalid use of %%d, %%x, or %%X");
6844 else if (letter == 'T' || letter == 't')
6846 int truth = (code == NE) == (letter == 'T');
6847 fputc ("zfnt"[truth * 2 + (GET_MODE (op) == CCmode)], file);
6850 else if (CONST_GP_P (op))
6851 fputs (reg_names[GLOBAL_POINTER_REGNUM], file);
6853 else
6854 output_addr_const (file, mips_strip_unspec_address (op));
6858 /* Print symbolic operand OP, which is part of a HIGH or LO_SUM
6859 in context CONTEXT. RELOCS is the array of relocations to use. */
6861 static void
6862 print_operand_reloc (FILE *file, rtx op, enum mips_symbol_context context,
6863 const char **relocs)
6865 enum mips_symbol_type symbol_type;
6866 const char *p;
6868 symbol_type = mips_classify_symbolic_expression (op, context);
6869 if (relocs[symbol_type] == 0)
6870 fatal_insn ("PRINT_OPERAND, invalid operand for relocation", op);
6872 fputs (relocs[symbol_type], file);
6873 output_addr_const (file, mips_strip_unspec_address (op));
6874 for (p = relocs[symbol_type]; *p != 0; p++)
6875 if (*p == '(')
6876 fputc (')', file);
6879 /* Output address operand X to FILE. */
6881 void
6882 print_operand_address (FILE *file, rtx x)
6884 struct mips_address_info addr;
6886 if (mips_classify_address (&addr, x, word_mode, true))
6887 switch (addr.type)
6889 case ADDRESS_REG:
6890 print_operand (file, addr.offset, 0);
6891 fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
6892 return;
6894 case ADDRESS_LO_SUM:
6895 print_operand_reloc (file, addr.offset, SYMBOL_CONTEXT_MEM,
6896 mips_lo_relocs);
6897 fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
6898 return;
6900 case ADDRESS_CONST_INT:
6901 output_addr_const (file, x);
6902 fprintf (file, "(%s)", reg_names[0]);
6903 return;
6905 case ADDRESS_SYMBOLIC:
6906 output_addr_const (file, mips_strip_unspec_address (x));
6907 return;
6909 gcc_unreachable ();
6912 /* When using assembler macros, keep track of all of small-data externs
6913 so that mips_file_end can emit the appropriate declarations for them.
6915 In most cases it would be safe (though pointless) to emit .externs
6916 for other symbols too. One exception is when an object is within
6917 the -G limit but declared by the user to be in a section other
6918 than .sbss or .sdata. */
6920 void
6921 mips_output_external (FILE *file, tree decl, const char *name)
6923 default_elf_asm_output_external (file, decl, name);
6925 /* We output the name if and only if TREE_SYMBOL_REFERENCED is
6926 set in order to avoid putting out names that are never really
6927 used. */
6928 if (TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl)))
6930 if (!TARGET_EXPLICIT_RELOCS && mips_in_small_data_p (decl))
6932 fputs ("\t.extern\t", file);
6933 assemble_name (file, name);
6934 fprintf (file, ", " HOST_WIDE_INT_PRINT_DEC "\n",
6935 int_size_in_bytes (TREE_TYPE (decl)));
6937 else if (TARGET_IRIX
6938 && mips_abi == ABI_32
6939 && TREE_CODE (decl) == FUNCTION_DECL)
6941 /* In IRIX 5 or IRIX 6 for the O32 ABI, we must output a
6942 `.global name .text' directive for every used but
6943 undefined function. If we don't, the linker may perform
6944 an optimization (skipping over the insns that set $gp)
6945 when it is unsafe. */
6946 fputs ("\t.globl ", file);
6947 assemble_name (file, name);
6948 fputs (" .text\n", file);
6953 /* Emit a new filename to a stream. If we are smuggling stabs, try to
6954 put out a MIPS ECOFF file and a stab. */
6956 void
6957 mips_output_filename (FILE *stream, const char *name)
6960 /* If we are emitting DWARF-2, let dwarf2out handle the ".file"
6961 directives. */
6962 if (write_symbols == DWARF2_DEBUG)
6963 return;
6964 else if (mips_output_filename_first_time)
6966 mips_output_filename_first_time = 0;
6967 num_source_filenames += 1;
6968 current_function_file = name;
6969 fprintf (stream, "\t.file\t%d ", num_source_filenames);
6970 output_quoted_string (stream, name);
6971 putc ('\n', stream);
6974 /* If we are emitting stabs, let dbxout.c handle this (except for
6975 the mips_output_filename_first_time case). */
6976 else if (write_symbols == DBX_DEBUG)
6977 return;
6979 else if (name != current_function_file
6980 && strcmp (name, current_function_file) != 0)
6982 num_source_filenames += 1;
6983 current_function_file = name;
6984 fprintf (stream, "\t.file\t%d ", num_source_filenames);
6985 output_quoted_string (stream, name);
6986 putc ('\n', stream);
6990 /* Output an ASCII string, in a space-saving way. PREFIX is the string
6991 that should be written before the opening quote, such as "\t.ascii\t"
6992 for real string data or "\t# " for a comment. */
6994 void
6995 mips_output_ascii (FILE *stream, const char *string_param, size_t len,
6996 const char *prefix)
6998 size_t i;
6999 int cur_pos = 17;
7000 register const unsigned char *string =
7001 (const unsigned char *)string_param;
7003 fprintf (stream, "%s\"", prefix);
7004 for (i = 0; i < len; i++)
7006 register int c = string[i];
7008 if (ISPRINT (c))
7010 if (c == '\\' || c == '\"')
7012 putc ('\\', stream);
7013 cur_pos++;
7015 putc (c, stream);
7016 cur_pos++;
7018 else
7020 fprintf (stream, "\\%03o", c);
7021 cur_pos += 4;
7024 if (cur_pos > 72 && i+1 < len)
7026 cur_pos = 17;
7027 fprintf (stream, "\"\n%s\"", prefix);
7030 fprintf (stream, "\"\n");
7033 /* Implement TARGET_ASM_FILE_START. */
7035 static void
7036 mips_file_start (void)
7038 default_file_start ();
7040 if (!TARGET_IRIX)
7042 /* Generate a special section to describe the ABI switches used to
7043 produce the resultant binary. This used to be done by the assembler
7044 setting bits in the ELF header's flags field, but we have run out of
7045 bits. GDB needs this information in order to be able to correctly
7046 debug these binaries. See the function mips_gdbarch_init() in
7047 gdb/mips-tdep.c. This is unnecessary for the IRIX 5/6 ABIs and
7048 causes unnecessary IRIX 6 ld warnings. */
7049 const char * abi_string = NULL;
7051 switch (mips_abi)
7053 case ABI_32: abi_string = "abi32"; break;
7054 case ABI_N32: abi_string = "abiN32"; break;
7055 case ABI_64: abi_string = "abi64"; break;
7056 case ABI_O64: abi_string = "abiO64"; break;
7057 case ABI_EABI: abi_string = TARGET_64BIT ? "eabi64" : "eabi32"; break;
7058 default:
7059 gcc_unreachable ();
7061 /* Note - we use fprintf directly rather than calling switch_to_section
7062 because in this way we can avoid creating an allocated section. We
7063 do not want this section to take up any space in the running
7064 executable. */
7065 fprintf (asm_out_file, "\t.section .mdebug.%s\n\t.previous\n",
7066 abi_string);
7068 /* There is no ELF header flag to distinguish long32 forms of the
7069 EABI from long64 forms. Emit a special section to help tools
7070 such as GDB. Do the same for o64, which is sometimes used with
7071 -mlong64. */
7072 if (mips_abi == ABI_EABI || mips_abi == ABI_O64)
7073 fprintf (asm_out_file, "\t.section .gcc_compiled_long%d\n"
7074 "\t.previous\n", TARGET_LONG64 ? 64 : 32);
7076 #ifdef HAVE_AS_GNU_ATTRIBUTE
7077 fprintf (asm_out_file, "\t.gnu_attribute 4, %d\n",
7078 TARGET_HARD_FLOAT_ABI ? (TARGET_DOUBLE_FLOAT ? 1 : 2) : 3);
7079 #endif
7082 /* Generate the pseudo ops that System V.4 wants. */
7083 if (TARGET_ABICALLS)
7084 fprintf (asm_out_file, "\t.abicalls\n");
7086 if (flag_verbose_asm)
7087 fprintf (asm_out_file, "\n%s -G value = %d, Arch = %s, ISA = %d\n",
7088 ASM_COMMENT_START,
7089 mips_section_threshold, mips_arch_info->name, mips_isa);
7092 #ifdef BSS_SECTION_ASM_OP
7093 /* Implement ASM_OUTPUT_ALIGNED_BSS. This differs from the default only
7094 in the use of sbss. */
7096 void
7097 mips_output_aligned_bss (FILE *stream, tree decl, const char *name,
7098 unsigned HOST_WIDE_INT size, int align)
7100 extern tree last_assemble_variable_decl;
7102 if (mips_in_small_data_p (decl))
7103 switch_to_section (get_named_section (NULL, ".sbss", 0));
7104 else
7105 switch_to_section (bss_section);
7106 ASM_OUTPUT_ALIGN (stream, floor_log2 (align / BITS_PER_UNIT));
7107 last_assemble_variable_decl = decl;
7108 ASM_DECLARE_OBJECT_NAME (stream, name, decl);
7109 ASM_OUTPUT_SKIP (stream, size != 0 ? size : 1);
7111 #endif
7113 /* Implement ASM_OUTPUT_ALIGNED_DECL_COMMON. This is usually the same as the
7114 elfos.h version, but we also need to handle -muninit-const-in-rodata. */
7116 void
7117 mips_output_aligned_decl_common (FILE *stream, tree decl, const char *name,
7118 unsigned HOST_WIDE_INT size,
7119 unsigned int align)
7121 /* If the target wants uninitialized const declarations in
7122 .rdata then don't put them in .comm. */
7123 if (TARGET_EMBEDDED_DATA && TARGET_UNINIT_CONST_IN_RODATA
7124 && TREE_CODE (decl) == VAR_DECL && TREE_READONLY (decl)
7125 && (DECL_INITIAL (decl) == 0 || DECL_INITIAL (decl) == error_mark_node))
7127 if (TREE_PUBLIC (decl) && DECL_NAME (decl))
7128 targetm.asm_out.globalize_label (stream, name);
7130 switch_to_section (readonly_data_section);
7131 ASM_OUTPUT_ALIGN (stream, floor_log2 (align / BITS_PER_UNIT));
7132 mips_declare_object (stream, name, "",
7133 ":\n\t.space\t" HOST_WIDE_INT_PRINT_UNSIGNED "\n",
7134 size);
7136 else
7137 mips_declare_common_object (stream, name, "\n\t.comm\t",
7138 size, align, true);
7141 /* Declare a common object of SIZE bytes using asm directive INIT_STRING.
7142 NAME is the name of the object and ALIGN is the required alignment
7143 in bytes. TAKES_ALIGNMENT_P is true if the directive takes a third
7144 alignment argument. */
7146 void
7147 mips_declare_common_object (FILE *stream, const char *name,
7148 const char *init_string,
7149 unsigned HOST_WIDE_INT size,
7150 unsigned int align, bool takes_alignment_p)
7152 if (!takes_alignment_p)
7154 size += (align / BITS_PER_UNIT) - 1;
7155 size -= size % (align / BITS_PER_UNIT);
7156 mips_declare_object (stream, name, init_string,
7157 "," HOST_WIDE_INT_PRINT_UNSIGNED "\n", size);
7159 else
7160 mips_declare_object (stream, name, init_string,
7161 "," HOST_WIDE_INT_PRINT_UNSIGNED ",%u\n",
7162 size, align / BITS_PER_UNIT);
7165 /* Emit either a label, .comm, or .lcomm directive. When using assembler
7166 macros, mark the symbol as written so that mips_file_end won't emit an
7167 .extern for it. STREAM is the output file, NAME is the name of the
7168 symbol, INIT_STRING is the string that should be written before the
7169 symbol and FINAL_STRING is the string that should be written after it.
7170 FINAL_STRING is a printf() format that consumes the remaining arguments. */
7172 void
7173 mips_declare_object (FILE *stream, const char *name, const char *init_string,
7174 const char *final_string, ...)
7176 va_list ap;
7178 fputs (init_string, stream);
7179 assemble_name (stream, name);
7180 va_start (ap, final_string);
7181 vfprintf (stream, final_string, ap);
7182 va_end (ap);
7184 if (!TARGET_EXPLICIT_RELOCS)
7186 tree name_tree = get_identifier (name);
7187 TREE_ASM_WRITTEN (name_tree) = 1;
7191 #ifdef ASM_OUTPUT_SIZE_DIRECTIVE
7192 extern int size_directive_output;
7194 /* Implement ASM_DECLARE_OBJECT_NAME. This is like most of the standard ELF
7195 definitions except that it uses mips_declare_object() to emit the label. */
7197 void
7198 mips_declare_object_name (FILE *stream, const char *name,
7199 tree decl ATTRIBUTE_UNUSED)
7201 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
7202 ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "object");
7203 #endif
7205 size_directive_output = 0;
7206 if (!flag_inhibit_size_directive && DECL_SIZE (decl))
7208 HOST_WIDE_INT size;
7210 size_directive_output = 1;
7211 size = int_size_in_bytes (TREE_TYPE (decl));
7212 ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
7215 mips_declare_object (stream, name, "", ":\n");
7218 /* Implement ASM_FINISH_DECLARE_OBJECT. This is generic ELF stuff. */
7220 void
7221 mips_finish_declare_object (FILE *stream, tree decl, int top_level, int at_end)
7223 const char *name;
7225 name = XSTR (XEXP (DECL_RTL (decl), 0), 0);
7226 if (!flag_inhibit_size_directive
7227 && DECL_SIZE (decl) != 0
7228 && !at_end && top_level
7229 && DECL_INITIAL (decl) == error_mark_node
7230 && !size_directive_output)
7232 HOST_WIDE_INT size;
7234 size_directive_output = 1;
7235 size = int_size_in_bytes (TREE_TYPE (decl));
7236 ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
7239 #endif
7241 /* Return true if X in context CONTEXT is a small data address that can
7242 be rewritten as a LO_SUM. */
7244 static bool
7245 mips_rewrite_small_data_p (rtx x, enum mips_symbol_context context)
7247 enum mips_symbol_type symbol_type;
7249 return (TARGET_EXPLICIT_RELOCS
7250 && mips_symbolic_constant_p (x, context, &symbol_type)
7251 && symbol_type == SYMBOL_GP_RELATIVE);
7255 /* A for_each_rtx callback for mips_small_data_pattern_p. DATA is the
7256 containing MEM, or null if none. */
7258 static int
7259 mips_small_data_pattern_1 (rtx *loc, void *data)
7261 enum mips_symbol_context context;
7263 if (GET_CODE (*loc) == LO_SUM)
7264 return -1;
7266 if (MEM_P (*loc))
7268 if (for_each_rtx (&XEXP (*loc, 0), mips_small_data_pattern_1, *loc))
7269 return 1;
7270 return -1;
7273 context = data ? SYMBOL_CONTEXT_MEM : SYMBOL_CONTEXT_LEA;
7274 return mips_rewrite_small_data_p (*loc, context);
7277 /* Return true if OP refers to small data symbols directly, not through
7278 a LO_SUM. */
7280 bool
7281 mips_small_data_pattern_p (rtx op)
7283 return for_each_rtx (&op, mips_small_data_pattern_1, 0);
7286 /* A for_each_rtx callback, used by mips_rewrite_small_data.
7287 DATA is the containing MEM, or null if none. */
7289 static int
7290 mips_rewrite_small_data_1 (rtx *loc, void *data)
7292 enum mips_symbol_context context;
7294 if (MEM_P (*loc))
7296 for_each_rtx (&XEXP (*loc, 0), mips_rewrite_small_data_1, *loc);
7297 return -1;
7300 context = data ? SYMBOL_CONTEXT_MEM : SYMBOL_CONTEXT_LEA;
7301 if (mips_rewrite_small_data_p (*loc, context))
7302 *loc = gen_rtx_LO_SUM (Pmode, pic_offset_table_rtx, *loc);
7304 if (GET_CODE (*loc) == LO_SUM)
7305 return -1;
7307 return 0;
7310 /* If possible, rewrite OP so that it refers to small data using
7311 explicit relocations. */
7314 mips_rewrite_small_data (rtx op)
7316 op = copy_insn (op);
7317 for_each_rtx (&op, mips_rewrite_small_data_1, 0);
7318 return op;
7321 /* Return true if the current function has an insn that implicitly
7322 refers to $gp. */
7324 static bool
7325 mips_function_has_gp_insn (void)
7327 /* Don't bother rechecking if we found one last time. */
7328 if (!cfun->machine->has_gp_insn_p)
7330 rtx insn;
7332 push_topmost_sequence ();
7333 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
7334 if (INSN_P (insn)
7335 && GET_CODE (PATTERN (insn)) != USE
7336 && GET_CODE (PATTERN (insn)) != CLOBBER
7337 && (get_attr_got (insn) != GOT_UNSET
7338 || small_data_pattern (PATTERN (insn), VOIDmode)))
7339 break;
7340 pop_topmost_sequence ();
7342 cfun->machine->has_gp_insn_p = (insn != 0);
7344 return cfun->machine->has_gp_insn_p;
7348 /* Return the register that should be used as the global pointer
7349 within this function. Return 0 if the function doesn't need
7350 a global pointer. */
7352 static unsigned int
7353 mips_global_pointer (void)
7355 unsigned int regno;
7357 /* $gp is always available unless we're using a GOT. */
7358 if (!TARGET_USE_GOT)
7359 return GLOBAL_POINTER_REGNUM;
7361 /* We must always provide $gp when it is used implicitly. */
7362 if (!TARGET_EXPLICIT_RELOCS)
7363 return GLOBAL_POINTER_REGNUM;
7365 /* FUNCTION_PROFILER includes a jal macro, so we need to give it
7366 a valid gp. */
7367 if (current_function_profile)
7368 return GLOBAL_POINTER_REGNUM;
7370 /* If the function has a nonlocal goto, $gp must hold the correct
7371 global pointer for the target function. */
7372 if (current_function_has_nonlocal_goto)
7373 return GLOBAL_POINTER_REGNUM;
7375 /* If the gp is never referenced, there's no need to initialize it.
7376 Note that reload can sometimes introduce constant pool references
7377 into a function that otherwise didn't need them. For example,
7378 suppose we have an instruction like:
7380 (set (reg:DF R1) (float:DF (reg:SI R2)))
7382 If R2 turns out to be constant such as 1, the instruction may have a
7383 REG_EQUAL note saying that R1 == 1.0. Reload then has the option of
7384 using this constant if R2 doesn't get allocated to a register.
7386 In cases like these, reload will have added the constant to the pool
7387 but no instruction will yet refer to it. */
7388 if (!df_regs_ever_live_p (GLOBAL_POINTER_REGNUM)
7389 && !current_function_uses_const_pool
7390 && !mips_function_has_gp_insn ())
7391 return 0;
7393 /* We need a global pointer, but perhaps we can use a call-clobbered
7394 register instead of $gp. */
7395 if (TARGET_CALL_SAVED_GP && current_function_is_leaf)
7396 for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
7397 if (!df_regs_ever_live_p (regno)
7398 && call_really_used_regs[regno]
7399 && !fixed_regs[regno]
7400 && regno != PIC_FUNCTION_ADDR_REGNUM)
7401 return regno;
7403 return GLOBAL_POINTER_REGNUM;
7407 /* Return true if the function return value MODE will get returned in a
7408 floating-point register. */
7410 static bool
7411 mips_return_mode_in_fpr_p (enum machine_mode mode)
7413 return ((GET_MODE_CLASS (mode) == MODE_FLOAT
7414 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
7415 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
7416 && GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_HWFPVALUE);
7419 /* Return a two-character string representing a function floating-point
7420 return mode, used to name MIPS16 function stubs. */
7422 static const char *
7423 mips16_call_stub_mode_suffix (enum machine_mode mode)
7425 if (mode == SFmode)
7426 return "sf";
7427 else if (mode == DFmode)
7428 return "df";
7429 else if (mode == SCmode)
7430 return "sc";
7431 else if (mode == DCmode)
7432 return "dc";
7433 else if (mode == V2SFmode)
7434 return "df";
7435 else
7436 gcc_unreachable ();
7439 /* Return true if the current function returns its value in a floating-point
7440 register in MIPS16 mode. */
7442 static bool
7443 mips16_cfun_returns_in_fpr_p (void)
7445 tree return_type = DECL_RESULT (current_function_decl);
7446 return (TARGET_MIPS16
7447 && TARGET_HARD_FLOAT_ABI
7448 && !aggregate_value_p (return_type, current_function_decl)
7449 && mips_return_mode_in_fpr_p (DECL_MODE (return_type)));
7453 /* Return true if the current function must save REGNO. */
7455 static bool
7456 mips_save_reg_p (unsigned int regno)
7458 /* We only need to save $gp if TARGET_CALL_SAVED_GP and only then
7459 if we have not chosen a call-clobbered substitute. */
7460 if (regno == GLOBAL_POINTER_REGNUM)
7461 return TARGET_CALL_SAVED_GP && cfun->machine->global_pointer == regno;
7463 /* Check call-saved registers. */
7464 if ((current_function_saves_all_registers || df_regs_ever_live_p (regno))
7465 && !call_really_used_regs[regno])
7466 return true;
7468 /* Save both registers in an FPR pair if either one is used. This is
7469 needed for the case when MIN_FPRS_PER_FMT == 1, which allows the odd
7470 register to be used without the even register. */
7471 if (FP_REG_P (regno)
7472 && MAX_FPRS_PER_FMT == 2
7473 && df_regs_ever_live_p (regno + 1)
7474 && !call_really_used_regs[regno + 1])
7475 return true;
7477 /* We need to save the old frame pointer before setting up a new one. */
7478 if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed)
7479 return true;
7481 /* Check for registers that must be saved for FUNCTION_PROFILER. */
7482 if (current_function_profile && MIPS_SAVE_REG_FOR_PROFILING_P (regno))
7483 return true;
7485 /* We need to save the incoming return address if it is ever clobbered
7486 within the function, if __builtin_eh_return is being used to set a
7487 different return address, or if a stub is being used to return a
7488 value in FPRs. */
7489 if (regno == GP_REG_FIRST + 31
7490 && (df_regs_ever_live_p (regno)
7491 || current_function_calls_eh_return
7492 || mips16_cfun_returns_in_fpr_p ()))
7493 return true;
7495 return false;
7498 /* Return the index of the lowest X in the range [0, SIZE) for which
7499 bit REGS[X] is set in MASK. Return SIZE if there is no such X. */
7501 static unsigned int
7502 mips16e_find_first_register (unsigned int mask, const unsigned char *regs,
7503 unsigned int size)
7505 unsigned int i;
7507 for (i = 0; i < size; i++)
7508 if (BITSET_P (mask, regs[i]))
7509 break;
7511 return i;
7514 /* *MASK_PTR is a mask of general purpose registers and *GP_REG_SIZE_PTR
7515 is the number of bytes that they occupy. If *MASK_PTR contains REGS[X]
7516 for some X in [0, SIZE), adjust *MASK_PTR and *GP_REG_SIZE_PTR so that
7517 the same is true for all indexes (X, SIZE). */
7519 static void
7520 mips16e_mask_registers (unsigned int *mask_ptr, const unsigned char *regs,
7521 unsigned int size, HOST_WIDE_INT *gp_reg_size_ptr)
7523 unsigned int i;
7525 i = mips16e_find_first_register (*mask_ptr, regs, size);
7526 for (i++; i < size; i++)
7527 if (!BITSET_P (*mask_ptr, regs[i]))
7529 *gp_reg_size_ptr += GET_MODE_SIZE (gpr_mode);
7530 *mask_ptr |= 1 << regs[i];
7534 /* Return the bytes needed to compute the frame pointer from the current
7535 stack pointer. SIZE is the size (in bytes) of the local variables.
7537 MIPS stack frames look like:
7539 Before call After call
7540 high +-----------------------+ +-----------------------+
7541 mem. | | | |
7542 | caller's temps. | | caller's temps. |
7543 | | | |
7544 +-----------------------+ +-----------------------+
7545 | | | |
7546 | arguments on stack. | | arguments on stack. |
7547 | | | |
7548 +-----------------------+ +-----------------------+
7549 | 4 words to save | | 4 words to save |
7550 | arguments passed | | arguments passed |
7551 | in registers, even | | in registers, even |
7552 | if not passed. | | if not passed. |
7553 SP->+-----------------------+ VFP->+-----------------------+
7554 (VFP = SP+fp_sp_offset) | |\
7555 | fp register save | | fp_reg_size
7556 | |/
7557 SP+gp_sp_offset->+-----------------------+
7558 /| |\
7559 | | gp register save | | gp_reg_size
7560 gp_reg_rounded | | |/
7561 | +-----------------------+
7562 \| alignment padding |
7563 +-----------------------+
7564 | |\
7565 | local variables | | var_size
7566 | |/
7567 +-----------------------+
7569 | alloca allocations |
7571 +-----------------------+
7572 /| |
7573 cprestore_size | | GP save for V.4 abi |
7574 \| |
7575 +-----------------------+
7576 | |\
7577 | arguments on stack | |
7578 | | |
7579 +-----------------------+ |
7580 | 4 words to save | | args_size
7581 | arguments passed | |
7582 | in registers, even | |
7583 | if not passed. | |
7584 low | (TARGET_OLDABI only) |/
7585 memory SP->+-----------------------+
7589 HOST_WIDE_INT
7590 compute_frame_size (HOST_WIDE_INT size)
7592 unsigned int regno;
7593 HOST_WIDE_INT total_size; /* # bytes that the entire frame takes up */
7594 HOST_WIDE_INT var_size; /* # bytes that variables take up */
7595 HOST_WIDE_INT args_size; /* # bytes that outgoing arguments take up */
7596 HOST_WIDE_INT cprestore_size; /* # bytes that the cprestore slot takes up */
7597 HOST_WIDE_INT gp_reg_rounded; /* # bytes needed to store gp after rounding */
7598 HOST_WIDE_INT gp_reg_size; /* # bytes needed to store gp regs */
7599 HOST_WIDE_INT fp_reg_size; /* # bytes needed to store fp regs */
7600 unsigned int mask; /* mask of saved gp registers */
7601 unsigned int fmask; /* mask of saved fp registers */
7603 cfun->machine->global_pointer = mips_global_pointer ();
7605 gp_reg_size = 0;
7606 fp_reg_size = 0;
7607 mask = 0;
7608 fmask = 0;
7609 var_size = MIPS_STACK_ALIGN (size);
7610 args_size = current_function_outgoing_args_size;
7611 cprestore_size = MIPS_STACK_ALIGN (STARTING_FRAME_OFFSET) - args_size;
7613 /* The space set aside by STARTING_FRAME_OFFSET isn't needed in leaf
7614 functions. If the function has local variables, we're committed
7615 to allocating it anyway. Otherwise reclaim it here. */
7616 if (var_size == 0 && current_function_is_leaf)
7617 cprestore_size = args_size = 0;
7619 /* The MIPS 3.0 linker does not like functions that dynamically
7620 allocate the stack and have 0 for STACK_DYNAMIC_OFFSET, since it
7621 looks like we are trying to create a second frame pointer to the
7622 function, so allocate some stack space to make it happy. */
7624 if (args_size == 0 && current_function_calls_alloca)
7625 args_size = 4 * UNITS_PER_WORD;
7627 total_size = var_size + args_size + cprestore_size;
7629 /* Calculate space needed for gp registers. */
7630 for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
7631 if (mips_save_reg_p (regno))
7633 gp_reg_size += GET_MODE_SIZE (gpr_mode);
7634 mask |= 1 << (regno - GP_REG_FIRST);
7637 /* We need to restore these for the handler. */
7638 if (current_function_calls_eh_return)
7640 unsigned int i;
7641 for (i = 0; ; ++i)
7643 regno = EH_RETURN_DATA_REGNO (i);
7644 if (regno == INVALID_REGNUM)
7645 break;
7646 gp_reg_size += GET_MODE_SIZE (gpr_mode);
7647 mask |= 1 << (regno - GP_REG_FIRST);
7651 /* The MIPS16e SAVE and RESTORE instructions have two ranges of registers:
7652 $a3-$a0 and $s2-$s8. If we save one register in the range, we must
7653 save all later registers too. */
7654 if (GENERATE_MIPS16E_SAVE_RESTORE)
7656 mips16e_mask_registers (&mask, mips16e_s2_s8_regs,
7657 ARRAY_SIZE (mips16e_s2_s8_regs), &gp_reg_size);
7658 mips16e_mask_registers (&mask, mips16e_a0_a3_regs,
7659 ARRAY_SIZE (mips16e_a0_a3_regs), &gp_reg_size);
7662 /* This loop must iterate over the same space as its companion in
7663 mips_for_each_saved_reg. */
7664 if (TARGET_HARD_FLOAT)
7665 for (regno = (FP_REG_LAST - MAX_FPRS_PER_FMT + 1);
7666 regno >= FP_REG_FIRST;
7667 regno -= MAX_FPRS_PER_FMT)
7668 if (mips_save_reg_p (regno))
7670 fp_reg_size += MAX_FPRS_PER_FMT * UNITS_PER_FPREG;
7671 fmask |= ((1 << MAX_FPRS_PER_FMT) - 1) << (regno - FP_REG_FIRST);
7674 gp_reg_rounded = MIPS_STACK_ALIGN (gp_reg_size);
7675 total_size += gp_reg_rounded + MIPS_STACK_ALIGN (fp_reg_size);
7677 /* Add in the space required for saving incoming register arguments. */
7678 total_size += current_function_pretend_args_size;
7679 total_size += MIPS_STACK_ALIGN (cfun->machine->varargs_size);
7681 /* Save other computed information. */
7682 cfun->machine->frame.total_size = total_size;
7683 cfun->machine->frame.var_size = var_size;
7684 cfun->machine->frame.args_size = args_size;
7685 cfun->machine->frame.cprestore_size = cprestore_size;
7686 cfun->machine->frame.gp_reg_size = gp_reg_size;
7687 cfun->machine->frame.fp_reg_size = fp_reg_size;
7688 cfun->machine->frame.mask = mask;
7689 cfun->machine->frame.fmask = fmask;
7690 cfun->machine->frame.initialized = reload_completed;
7691 cfun->machine->frame.num_gp = gp_reg_size / UNITS_PER_WORD;
7692 cfun->machine->frame.num_fp = (fp_reg_size
7693 / (MAX_FPRS_PER_FMT * UNITS_PER_FPREG));
7695 if (mask)
7697 HOST_WIDE_INT offset;
7699 if (GENERATE_MIPS16E_SAVE_RESTORE)
7700 /* MIPS16e SAVE and RESTORE instructions require the GP save area
7701 to be aligned at the high end with any padding at the low end.
7702 It is only safe to use this calculation for o32, where we never
7703 have pretend arguments, and where any varargs will be saved in
7704 the caller-allocated area rather than at the top of the frame. */
7705 offset = (total_size - GET_MODE_SIZE (gpr_mode));
7706 else
7707 offset = (args_size + cprestore_size + var_size
7708 + gp_reg_size - GET_MODE_SIZE (gpr_mode));
7709 cfun->machine->frame.gp_sp_offset = offset;
7710 cfun->machine->frame.gp_save_offset = offset - total_size;
7712 else
7714 cfun->machine->frame.gp_sp_offset = 0;
7715 cfun->machine->frame.gp_save_offset = 0;
7718 if (fmask)
7720 HOST_WIDE_INT offset;
7722 offset = (args_size + cprestore_size + var_size
7723 + gp_reg_rounded + fp_reg_size
7724 - MAX_FPRS_PER_FMT * UNITS_PER_FPREG);
7725 cfun->machine->frame.fp_sp_offset = offset;
7726 cfun->machine->frame.fp_save_offset = offset - total_size;
7728 else
7730 cfun->machine->frame.fp_sp_offset = 0;
7731 cfun->machine->frame.fp_save_offset = 0;
7734 /* Ok, we're done. */
7735 return total_size;
7738 /* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame
7739 pointer or argument pointer. TO is either the stack pointer or
7740 hard frame pointer. */
7742 HOST_WIDE_INT
7743 mips_initial_elimination_offset (int from, int to)
7745 HOST_WIDE_INT offset;
7747 compute_frame_size (get_frame_size ());
7749 /* Set OFFSET to the offset from the stack pointer. */
7750 switch (from)
7752 case FRAME_POINTER_REGNUM:
7753 offset = 0;
7754 break;
7756 case ARG_POINTER_REGNUM:
7757 offset = (cfun->machine->frame.total_size
7758 - current_function_pretend_args_size);
7759 break;
7761 default:
7762 gcc_unreachable ();
7765 if (TARGET_MIPS16 && to == HARD_FRAME_POINTER_REGNUM)
7766 offset -= cfun->machine->frame.args_size;
7768 return offset;
7771 /* Implement RETURN_ADDR_RTX. Note, we do not support moving
7772 back to a previous frame. */
7774 mips_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
7776 if (count != 0)
7777 return const0_rtx;
7779 return get_hard_reg_initial_val (Pmode, GP_REG_FIRST + 31);
7782 /* Use FN to save or restore register REGNO. MODE is the register's
7783 mode and OFFSET is the offset of its save slot from the current
7784 stack pointer. */
7786 static void
7787 mips_save_restore_reg (enum machine_mode mode, int regno,
7788 HOST_WIDE_INT offset, mips_save_restore_fn fn)
7790 rtx mem;
7792 mem = gen_frame_mem (mode, plus_constant (stack_pointer_rtx, offset));
7794 fn (gen_rtx_REG (mode, regno), mem);
7798 /* Call FN for each register that is saved by the current function.
7799 SP_OFFSET is the offset of the current stack pointer from the start
7800 of the frame. */
7802 static void
7803 mips_for_each_saved_reg (HOST_WIDE_INT sp_offset, mips_save_restore_fn fn)
7805 enum machine_mode fpr_mode;
7806 HOST_WIDE_INT offset;
7807 int regno;
7809 /* Save registers starting from high to low. The debuggers prefer at least
7810 the return register be stored at func+4, and also it allows us not to
7811 need a nop in the epilogue if at least one register is reloaded in
7812 addition to return address. */
7813 offset = cfun->machine->frame.gp_sp_offset - sp_offset;
7814 for (regno = GP_REG_LAST; regno >= GP_REG_FIRST; regno--)
7815 if (BITSET_P (cfun->machine->frame.mask, regno - GP_REG_FIRST))
7817 mips_save_restore_reg (gpr_mode, regno, offset, fn);
7818 offset -= GET_MODE_SIZE (gpr_mode);
7821 /* This loop must iterate over the same space as its companion in
7822 compute_frame_size. */
7823 offset = cfun->machine->frame.fp_sp_offset - sp_offset;
7824 fpr_mode = (TARGET_SINGLE_FLOAT ? SFmode : DFmode);
7825 for (regno = (FP_REG_LAST - MAX_FPRS_PER_FMT + 1);
7826 regno >= FP_REG_FIRST;
7827 regno -= MAX_FPRS_PER_FMT)
7828 if (BITSET_P (cfun->machine->frame.fmask, regno - FP_REG_FIRST))
7830 mips_save_restore_reg (fpr_mode, regno, offset, fn);
7831 offset -= GET_MODE_SIZE (fpr_mode);
7835 /* If we're generating n32 or n64 abicalls, and the current function
7836 does not use $28 as its global pointer, emit a cplocal directive.
7837 Use pic_offset_table_rtx as the argument to the directive. */
7839 static void
7840 mips_output_cplocal (void)
7842 if (!TARGET_EXPLICIT_RELOCS
7843 && cfun->machine->global_pointer > 0
7844 && cfun->machine->global_pointer != GLOBAL_POINTER_REGNUM)
7845 output_asm_insn (".cplocal %+", 0);
7848 /* Return the style of GP load sequence that is being used for the
7849 current function. */
7851 enum mips_loadgp_style
7852 mips_current_loadgp_style (void)
7854 if (!TARGET_USE_GOT || cfun->machine->global_pointer == 0)
7855 return LOADGP_NONE;
7857 if (TARGET_RTP_PIC)
7858 return LOADGP_RTP;
7860 if (TARGET_ABSOLUTE_ABICALLS)
7861 return LOADGP_ABSOLUTE;
7863 return TARGET_NEWABI ? LOADGP_NEWABI : LOADGP_OLDABI;
7866 /* The __gnu_local_gp symbol. */
7868 static GTY(()) rtx mips_gnu_local_gp;
7870 /* If we're generating n32 or n64 abicalls, emit instructions
7871 to set up the global pointer. */
7873 static void
7874 mips_emit_loadgp (void)
7876 rtx addr, offset, incoming_address, base, index;
7878 switch (mips_current_loadgp_style ())
7880 case LOADGP_ABSOLUTE:
7881 if (mips_gnu_local_gp == NULL)
7883 mips_gnu_local_gp = gen_rtx_SYMBOL_REF (Pmode, "__gnu_local_gp");
7884 SYMBOL_REF_FLAGS (mips_gnu_local_gp) |= SYMBOL_FLAG_LOCAL;
7886 emit_insn (gen_loadgp_absolute (mips_gnu_local_gp));
7887 break;
7889 case LOADGP_NEWABI:
7890 addr = XEXP (DECL_RTL (current_function_decl), 0);
7891 offset = mips_unspec_address (addr, SYMBOL_GOTOFF_LOADGP);
7892 incoming_address = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
7893 emit_insn (gen_loadgp_newabi (offset, incoming_address));
7894 if (!TARGET_EXPLICIT_RELOCS)
7895 emit_insn (gen_loadgp_blockage ());
7896 break;
7898 case LOADGP_RTP:
7899 base = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (VXWORKS_GOTT_BASE));
7900 index = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (VXWORKS_GOTT_INDEX));
7901 emit_insn (gen_loadgp_rtp (base, index));
7902 if (!TARGET_EXPLICIT_RELOCS)
7903 emit_insn (gen_loadgp_blockage ());
7904 break;
7906 default:
7907 break;
7911 /* Set up the stack and frame (if desired) for the function. */
7913 static void
7914 mips_output_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
7916 const char *fnname;
7917 HOST_WIDE_INT tsize = cfun->machine->frame.total_size;
7919 #ifdef SDB_DEBUGGING_INFO
7920 if (debug_info_level != DINFO_LEVEL_TERSE && write_symbols == SDB_DEBUG)
7921 SDB_OUTPUT_SOURCE_LINE (file, DECL_SOURCE_LINE (current_function_decl));
7922 #endif
7924 /* In mips16 mode, we may need to generate a 32 bit to handle
7925 floating point arguments. The linker will arrange for any 32-bit
7926 functions to call this stub, which will then jump to the 16-bit
7927 function proper. */
7928 if (TARGET_MIPS16
7929 && TARGET_HARD_FLOAT_ABI
7930 && current_function_args_info.fp_code != 0)
7931 build_mips16_function_stub (file);
7933 /* Select the mips16 mode for this function. */
7934 if (TARGET_MIPS16)
7935 fprintf (file, "\t.set\tmips16\n");
7936 else
7937 fprintf (file, "\t.set\tnomips16\n");
7939 if (!FUNCTION_NAME_ALREADY_DECLARED)
7941 /* Get the function name the same way that toplev.c does before calling
7942 assemble_start_function. This is needed so that the name used here
7943 exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */
7944 fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
7946 if (!flag_inhibit_size_directive)
7948 fputs ("\t.ent\t", file);
7949 assemble_name (file, fnname);
7950 fputs ("\n", file);
7953 assemble_name (file, fnname);
7954 fputs (":\n", file);
7957 /* Stop mips_file_end from treating this function as external. */
7958 if (TARGET_IRIX && mips_abi == ABI_32)
7959 TREE_ASM_WRITTEN (DECL_NAME (cfun->decl)) = 1;
7961 if (!flag_inhibit_size_directive)
7963 /* .frame FRAMEREG, FRAMESIZE, RETREG */
7964 fprintf (file,
7965 "\t.frame\t%s," HOST_WIDE_INT_PRINT_DEC ",%s\t\t"
7966 "# vars= " HOST_WIDE_INT_PRINT_DEC ", regs= %d/%d"
7967 ", args= " HOST_WIDE_INT_PRINT_DEC
7968 ", gp= " HOST_WIDE_INT_PRINT_DEC "\n",
7969 (reg_names[(frame_pointer_needed)
7970 ? HARD_FRAME_POINTER_REGNUM : STACK_POINTER_REGNUM]),
7971 ((frame_pointer_needed && TARGET_MIPS16)
7972 ? tsize - cfun->machine->frame.args_size
7973 : tsize),
7974 reg_names[GP_REG_FIRST + 31],
7975 cfun->machine->frame.var_size,
7976 cfun->machine->frame.num_gp,
7977 cfun->machine->frame.num_fp,
7978 cfun->machine->frame.args_size,
7979 cfun->machine->frame.cprestore_size);
7981 /* .mask MASK, GPOFFSET; .fmask FPOFFSET */
7982 fprintf (file, "\t.mask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n",
7983 cfun->machine->frame.mask,
7984 cfun->machine->frame.gp_save_offset);
7985 fprintf (file, "\t.fmask\t0x%08x," HOST_WIDE_INT_PRINT_DEC "\n",
7986 cfun->machine->frame.fmask,
7987 cfun->machine->frame.fp_save_offset);
7989 /* Require:
7990 OLD_SP == *FRAMEREG + FRAMESIZE => can find old_sp from nominated FP reg.
7991 HIGHEST_GP_SAVED == *FRAMEREG + FRAMESIZE + GPOFFSET => can find saved regs. */
7994 if (mips_current_loadgp_style () == LOADGP_OLDABI)
7996 /* Handle the initialization of $gp for SVR4 PIC. */
7997 if (!cfun->machine->all_noreorder_p)
7998 output_asm_insn ("%(.cpload\t%^%)", 0);
7999 else
8000 output_asm_insn ("%(.cpload\t%^\n\t%<", 0);
8002 else if (cfun->machine->all_noreorder_p)
8003 output_asm_insn ("%(%<", 0);
8005 /* Tell the assembler which register we're using as the global
8006 pointer. This is needed for thunks, since they can use either
8007 explicit relocs or assembler macros. */
8008 mips_output_cplocal ();
8011 /* Make the last instruction frame related and note that it performs
8012 the operation described by FRAME_PATTERN. */
8014 static void
8015 mips_set_frame_expr (rtx frame_pattern)
8017 rtx insn;
8019 insn = get_last_insn ();
8020 RTX_FRAME_RELATED_P (insn) = 1;
8021 REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
8022 frame_pattern,
8023 REG_NOTES (insn));
8027 /* Return a frame-related rtx that stores REG at MEM.
8028 REG must be a single register. */
8030 static rtx
8031 mips_frame_set (rtx mem, rtx reg)
8033 rtx set;
8035 /* If we're saving the return address register and the dwarf return
8036 address column differs from the hard register number, adjust the
8037 note reg to refer to the former. */
8038 if (REGNO (reg) == GP_REG_FIRST + 31
8039 && DWARF_FRAME_RETURN_COLUMN != GP_REG_FIRST + 31)
8040 reg = gen_rtx_REG (GET_MODE (reg), DWARF_FRAME_RETURN_COLUMN);
8042 set = gen_rtx_SET (VOIDmode, mem, reg);
8043 RTX_FRAME_RELATED_P (set) = 1;
8045 return set;
8049 /* Save register REG to MEM. Make the instruction frame-related. */
8051 static void
8052 mips_save_reg (rtx reg, rtx mem)
8054 if (GET_MODE (reg) == DFmode && !TARGET_FLOAT64)
8056 rtx x1, x2;
8058 if (mips_split_64bit_move_p (mem, reg))
8059 mips_split_64bit_move (mem, reg);
8060 else
8061 mips_emit_move (mem, reg);
8063 x1 = mips_frame_set (mips_subword (mem, 0), mips_subword (reg, 0));
8064 x2 = mips_frame_set (mips_subword (mem, 1), mips_subword (reg, 1));
8065 mips_set_frame_expr (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, x1, x2)));
8067 else
8069 if (TARGET_MIPS16
8070 && REGNO (reg) != GP_REG_FIRST + 31
8071 && !M16_REG_P (REGNO (reg)))
8073 /* Save a non-mips16 register by moving it through a temporary.
8074 We don't need to do this for $31 since there's a special
8075 instruction for it. */
8076 mips_emit_move (MIPS_PROLOGUE_TEMP (GET_MODE (reg)), reg);
8077 mips_emit_move (mem, MIPS_PROLOGUE_TEMP (GET_MODE (reg)));
8079 else
8080 mips_emit_move (mem, reg);
8082 mips_set_frame_expr (mips_frame_set (mem, reg));
8086 /* Return a move between register REGNO and memory location SP + OFFSET.
8087 Make the move a load if RESTORE_P, otherwise make it a frame-related
8088 store. */
8090 static rtx
8091 mips16e_save_restore_reg (bool restore_p, HOST_WIDE_INT offset,
8092 unsigned int regno)
8094 rtx reg, mem;
8096 mem = gen_frame_mem (SImode, plus_constant (stack_pointer_rtx, offset));
8097 reg = gen_rtx_REG (SImode, regno);
8098 return (restore_p
8099 ? gen_rtx_SET (VOIDmode, reg, mem)
8100 : mips_frame_set (mem, reg));
8103 /* Return RTL for a MIPS16e SAVE or RESTORE instruction; RESTORE_P says which.
8104 The instruction must:
8106 - Allocate or deallocate SIZE bytes in total; SIZE is known
8107 to be nonzero.
8109 - Save or restore as many registers in *MASK_PTR as possible.
8110 The instruction saves the first registers at the top of the
8111 allocated area, with the other registers below it.
8113 - Save NARGS argument registers above the allocated area.
8115 (NARGS is always zero if RESTORE_P.)
8117 The SAVE and RESTORE instructions cannot save and restore all general
8118 registers, so there may be some registers left over for the caller to
8119 handle. Destructively modify *MASK_PTR so that it contains the registers
8120 that still need to be saved or restored. The caller can save these
8121 registers in the memory immediately below *OFFSET_PTR, which is a
8122 byte offset from the bottom of the allocated stack area. */
8124 static rtx
8125 mips16e_build_save_restore (bool restore_p, unsigned int *mask_ptr,
8126 HOST_WIDE_INT *offset_ptr, unsigned int nargs,
8127 HOST_WIDE_INT size)
8129 rtx pattern, set;
8130 HOST_WIDE_INT offset, top_offset;
8131 unsigned int i, regno;
8132 int n;
8134 gcc_assert (cfun->machine->frame.fp_reg_size == 0);
8136 /* Calculate the number of elements in the PARALLEL. We need one element
8137 for the stack adjustment, one for each argument register save, and one
8138 for each additional register move. */
8139 n = 1 + nargs;
8140 for (i = 0; i < ARRAY_SIZE (mips16e_save_restore_regs); i++)
8141 if (BITSET_P (*mask_ptr, mips16e_save_restore_regs[i]))
8142 n++;
8144 /* Create the final PARALLEL. */
8145 pattern = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (n));
8146 n = 0;
8148 /* Add the stack pointer adjustment. */
8149 set = gen_rtx_SET (VOIDmode, stack_pointer_rtx,
8150 plus_constant (stack_pointer_rtx,
8151 restore_p ? size : -size));
8152 RTX_FRAME_RELATED_P (set) = 1;
8153 XVECEXP (pattern, 0, n++) = set;
8155 /* Stack offsets in the PARALLEL are relative to the old stack pointer. */
8156 top_offset = restore_p ? size : 0;
8158 /* Save the arguments. */
8159 for (i = 0; i < nargs; i++)
8161 offset = top_offset + i * GET_MODE_SIZE (gpr_mode);
8162 set = mips16e_save_restore_reg (restore_p, offset, GP_ARG_FIRST + i);
8163 XVECEXP (pattern, 0, n++) = set;
8166 /* Then fill in the other register moves. */
8167 offset = top_offset;
8168 for (i = 0; i < ARRAY_SIZE (mips16e_save_restore_regs); i++)
8170 regno = mips16e_save_restore_regs[i];
8171 if (BITSET_P (*mask_ptr, regno))
8173 offset -= UNITS_PER_WORD;
8174 set = mips16e_save_restore_reg (restore_p, offset, regno);
8175 XVECEXP (pattern, 0, n++) = set;
8176 *mask_ptr &= ~(1 << regno);
8180 /* Tell the caller what offset it should use for the remaining registers. */
8181 *offset_ptr = size + (offset - top_offset) + size;
8183 gcc_assert (n == XVECLEN (pattern, 0));
8185 return pattern;
8188 /* PATTERN is a PARALLEL whose first element adds ADJUST to the stack
8189 pointer. Return true if PATTERN matches the kind of instruction
8190 generated by mips16e_build_save_restore. If INFO is nonnull,
8191 initialize it when returning true. */
8193 bool
8194 mips16e_save_restore_pattern_p (rtx pattern, HOST_WIDE_INT adjust,
8195 struct mips16e_save_restore_info *info)
8197 unsigned int i, nargs, mask;
8198 HOST_WIDE_INT top_offset, save_offset, offset, extra;
8199 rtx set, reg, mem, base;
8200 int n;
8202 if (!GENERATE_MIPS16E_SAVE_RESTORE)
8203 return false;
8205 /* Stack offsets in the PARALLEL are relative to the old stack pointer. */
8206 top_offset = adjust > 0 ? adjust : 0;
8208 /* Interpret all other members of the PARALLEL. */
8209 save_offset = top_offset - GET_MODE_SIZE (gpr_mode);
8210 mask = 0;
8211 nargs = 0;
8212 i = 0;
8213 for (n = 1; n < XVECLEN (pattern, 0); n++)
8215 /* Check that we have a SET. */
8216 set = XVECEXP (pattern, 0, n);
8217 if (GET_CODE (set) != SET)
8218 return false;
8220 /* Check that the SET is a load (if restoring) or a store
8221 (if saving). */
8222 mem = adjust > 0 ? SET_SRC (set) : SET_DEST (set);
8223 if (!MEM_P (mem))
8224 return false;
8226 /* Check that the address is the sum of the stack pointer and a
8227 possibly-zero constant offset. */
8228 mips_split_plus (XEXP (mem, 0), &base, &offset);
8229 if (base != stack_pointer_rtx)
8230 return false;
8232 /* Check that SET's other operand is a register. */
8233 reg = adjust > 0 ? SET_DEST (set) : SET_SRC (set);
8234 if (!REG_P (reg))
8235 return false;
8237 /* Check for argument saves. */
8238 if (offset == top_offset + nargs * GET_MODE_SIZE (gpr_mode)
8239 && REGNO (reg) == GP_ARG_FIRST + nargs)
8240 nargs++;
8241 else if (offset == save_offset)
8243 while (mips16e_save_restore_regs[i++] != REGNO (reg))
8244 if (i == ARRAY_SIZE (mips16e_save_restore_regs))
8245 return false;
8247 mask |= 1 << REGNO (reg);
8248 save_offset -= GET_MODE_SIZE (gpr_mode);
8250 else
8251 return false;
8254 /* Check that the restrictions on register ranges are met. */
8255 extra = 0;
8256 mips16e_mask_registers (&mask, mips16e_s2_s8_regs,
8257 ARRAY_SIZE (mips16e_s2_s8_regs), &extra);
8258 mips16e_mask_registers (&mask, mips16e_a0_a3_regs,
8259 ARRAY_SIZE (mips16e_a0_a3_regs), &extra);
8260 if (extra != 0)
8261 return false;
8263 /* Make sure that the topmost argument register is not saved twice.
8264 The checks above ensure that the same is then true for the other
8265 argument registers. */
8266 if (nargs > 0 && BITSET_P (mask, GP_ARG_FIRST + nargs - 1))
8267 return false;
8269 /* Pass back information, if requested. */
8270 if (info)
8272 info->nargs = nargs;
8273 info->mask = mask;
8274 info->size = (adjust > 0 ? adjust : -adjust);
8277 return true;
8280 /* Add a MIPS16e SAVE or RESTORE register-range argument to string S
8281 for the register range [MIN_REG, MAX_REG]. Return a pointer to
8282 the null terminator. */
8284 static char *
8285 mips16e_add_register_range (char *s, unsigned int min_reg,
8286 unsigned int max_reg)
8288 if (min_reg != max_reg)
8289 s += sprintf (s, ",%s-%s", reg_names[min_reg], reg_names[max_reg]);
8290 else
8291 s += sprintf (s, ",%s", reg_names[min_reg]);
8292 return s;
8295 /* Return the assembly instruction for a MIPS16e SAVE or RESTORE instruction.
8296 PATTERN and ADJUST are as for mips16e_save_restore_pattern_p. */
8298 const char *
8299 mips16e_output_save_restore (rtx pattern, HOST_WIDE_INT adjust)
8301 static char buffer[300];
8303 struct mips16e_save_restore_info info;
8304 unsigned int i, end;
8305 char *s;
8307 /* Parse the pattern. */
8308 if (!mips16e_save_restore_pattern_p (pattern, adjust, &info))
8309 gcc_unreachable ();
8311 /* Add the mnemonic. */
8312 s = strcpy (buffer, adjust > 0 ? "restore\t" : "save\t");
8313 s += strlen (s);
8315 /* Save the arguments. */
8316 if (info.nargs > 1)
8317 s += sprintf (s, "%s-%s,", reg_names[GP_ARG_FIRST],
8318 reg_names[GP_ARG_FIRST + info.nargs - 1]);
8319 else if (info.nargs == 1)
8320 s += sprintf (s, "%s,", reg_names[GP_ARG_FIRST]);
8322 /* Emit the amount of stack space to allocate or deallocate. */
8323 s += sprintf (s, "%d", (int) info.size);
8325 /* Save or restore $16. */
8326 if (BITSET_P (info.mask, 16))
8327 s += sprintf (s, ",%s", reg_names[GP_REG_FIRST + 16]);
8329 /* Save or restore $17. */
8330 if (BITSET_P (info.mask, 17))
8331 s += sprintf (s, ",%s", reg_names[GP_REG_FIRST + 17]);
8333 /* Save or restore registers in the range $s2...$s8, which
8334 mips16e_s2_s8_regs lists in decreasing order. Note that this
8335 is a software register range; the hardware registers are not
8336 numbered consecutively. */
8337 end = ARRAY_SIZE (mips16e_s2_s8_regs);
8338 i = mips16e_find_first_register (info.mask, mips16e_s2_s8_regs, end);
8339 if (i < end)
8340 s = mips16e_add_register_range (s, mips16e_s2_s8_regs[end - 1],
8341 mips16e_s2_s8_regs[i]);
8343 /* Save or restore registers in the range $a0...$a3. */
8344 end = ARRAY_SIZE (mips16e_a0_a3_regs);
8345 i = mips16e_find_first_register (info.mask, mips16e_a0_a3_regs, end);
8346 if (i < end)
8347 s = mips16e_add_register_range (s, mips16e_a0_a3_regs[i],
8348 mips16e_a0_a3_regs[end - 1]);
8350 /* Save or restore $31. */
8351 if (BITSET_P (info.mask, 31))
8352 s += sprintf (s, ",%s", reg_names[GP_REG_FIRST + 31]);
8354 return buffer;
8357 /* Return a simplified form of X using the register values in REG_VALUES.
8358 REG_VALUES[R] is the last value assigned to hard register R, or null
8359 if R has not been modified.
8361 This function is rather limited, but is good enough for our purposes. */
8363 static rtx
8364 mips16e_collect_propagate_value (rtx x, rtx *reg_values)
8366 rtx x0, x1;
8368 x = avoid_constant_pool_reference (x);
8370 if (UNARY_P (x))
8372 x0 = mips16e_collect_propagate_value (XEXP (x, 0), reg_values);
8373 return simplify_gen_unary (GET_CODE (x), GET_MODE (x),
8374 x0, GET_MODE (XEXP (x, 0)));
8377 if (ARITHMETIC_P (x))
8379 x0 = mips16e_collect_propagate_value (XEXP (x, 0), reg_values);
8380 x1 = mips16e_collect_propagate_value (XEXP (x, 1), reg_values);
8381 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), x0, x1);
8384 if (REG_P (x)
8385 && reg_values[REGNO (x)]
8386 && !rtx_unstable_p (reg_values[REGNO (x)]))
8387 return reg_values[REGNO (x)];
8389 return x;
8392 /* Return true if (set DEST SRC) stores an argument register into its
8393 caller-allocated save slot, storing the number of that argument
8394 register in *REGNO_PTR if so. REG_VALUES is as for
8395 mips16e_collect_propagate_value. */
8397 static bool
8398 mips16e_collect_argument_save_p (rtx dest, rtx src, rtx *reg_values,
8399 unsigned int *regno_ptr)
8401 unsigned int argno, regno;
8402 HOST_WIDE_INT offset, required_offset;
8403 rtx addr, base;
8405 /* Check that this is a word-mode store. */
8406 if (!MEM_P (dest) || !REG_P (src) || GET_MODE (dest) != word_mode)
8407 return false;
8409 /* Check that the register being saved is an unmodified argument
8410 register. */
8411 regno = REGNO (src);
8412 if (regno < GP_ARG_FIRST || regno > GP_ARG_LAST || reg_values[regno])
8413 return false;
8414 argno = regno - GP_ARG_FIRST;
8416 /* Check whether the address is an appropriate stack pointer or
8417 frame pointer access. The frame pointer is offset from the
8418 stack pointer by the size of the outgoing arguments. */
8419 addr = mips16e_collect_propagate_value (XEXP (dest, 0), reg_values);
8420 mips_split_plus (addr, &base, &offset);
8421 required_offset = cfun->machine->frame.total_size + argno * UNITS_PER_WORD;
8422 if (base == hard_frame_pointer_rtx)
8423 required_offset -= cfun->machine->frame.args_size;
8424 else if (base != stack_pointer_rtx)
8425 return false;
8426 if (offset != required_offset)
8427 return false;
8429 *regno_ptr = regno;
8430 return true;
8433 /* A subroutine of mips_expand_prologue, called only when generating
8434 MIPS16e SAVE instructions. Search the start of the function for any
8435 instructions that save argument registers into their caller-allocated
8436 save slots. Delete such instructions and return a value N such that
8437 saving [GP_ARG_FIRST, GP_ARG_FIRST + N) would make all the deleted
8438 instructions redundant. */
8440 static unsigned int
8441 mips16e_collect_argument_saves (void)
8443 rtx reg_values[FIRST_PSEUDO_REGISTER];
8444 rtx insn, next, set, dest, src;
8445 unsigned int nargs, regno;
8447 push_topmost_sequence ();
8448 nargs = 0;
8449 memset (reg_values, 0, sizeof (reg_values));
8450 for (insn = get_insns (); insn; insn = next)
8452 next = NEXT_INSN (insn);
8453 if (NOTE_P (insn))
8454 continue;
8456 if (!INSN_P (insn))
8457 break;
8459 set = PATTERN (insn);
8460 if (GET_CODE (set) != SET)
8461 break;
8463 dest = SET_DEST (set);
8464 src = SET_SRC (set);
8465 if (mips16e_collect_argument_save_p (dest, src, reg_values, &regno))
8467 if (!BITSET_P (cfun->machine->frame.mask, regno))
8469 delete_insn (insn);
8470 nargs = MAX (nargs, (regno - GP_ARG_FIRST) + 1);
8473 else if (REG_P (dest) && GET_MODE (dest) == word_mode)
8474 reg_values[REGNO (dest)]
8475 = mips16e_collect_propagate_value (src, reg_values);
8476 else
8477 break;
8479 pop_topmost_sequence ();
8481 return nargs;
8484 /* Expand the prologue into a bunch of separate insns. */
8486 void
8487 mips_expand_prologue (void)
8489 HOST_WIDE_INT size;
8490 unsigned int nargs;
8491 rtx insn;
8493 if (cfun->machine->global_pointer > 0)
8494 SET_REGNO (pic_offset_table_rtx, cfun->machine->global_pointer);
8496 size = compute_frame_size (get_frame_size ());
8498 /* Save the registers. Allocate up to MIPS_MAX_FIRST_STACK_STEP
8499 bytes beforehand; this is enough to cover the register save area
8500 without going out of range. */
8501 if ((cfun->machine->frame.mask | cfun->machine->frame.fmask) != 0)
8503 HOST_WIDE_INT step1;
8505 step1 = MIN (size, MIPS_MAX_FIRST_STACK_STEP);
8507 if (GENERATE_MIPS16E_SAVE_RESTORE)
8509 HOST_WIDE_INT offset;
8510 unsigned int mask, regno;
8512 /* Try to merge argument stores into the save instruction. */
8513 nargs = mips16e_collect_argument_saves ();
8515 /* Build the save instruction. */
8516 mask = cfun->machine->frame.mask;
8517 insn = mips16e_build_save_restore (false, &mask, &offset,
8518 nargs, step1);
8519 RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
8520 size -= step1;
8522 /* Check if we need to save other registers. */
8523 for (regno = GP_REG_FIRST; regno < GP_REG_LAST; regno++)
8524 if (BITSET_P (mask, regno - GP_REG_FIRST))
8526 offset -= GET_MODE_SIZE (gpr_mode);
8527 mips_save_restore_reg (gpr_mode, regno, offset, mips_save_reg);
8530 else
8532 insn = gen_add3_insn (stack_pointer_rtx,
8533 stack_pointer_rtx,
8534 GEN_INT (-step1));
8535 RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
8536 size -= step1;
8537 mips_for_each_saved_reg (size, mips_save_reg);
8541 /* Allocate the rest of the frame. */
8542 if (size > 0)
8544 if (SMALL_OPERAND (-size))
8545 RTX_FRAME_RELATED_P (emit_insn (gen_add3_insn (stack_pointer_rtx,
8546 stack_pointer_rtx,
8547 GEN_INT (-size)))) = 1;
8548 else
8550 mips_emit_move (MIPS_PROLOGUE_TEMP (Pmode), GEN_INT (size));
8551 if (TARGET_MIPS16)
8553 /* There are no instructions to add or subtract registers
8554 from the stack pointer, so use the frame pointer as a
8555 temporary. We should always be using a frame pointer
8556 in this case anyway. */
8557 gcc_assert (frame_pointer_needed);
8558 mips_emit_move (hard_frame_pointer_rtx, stack_pointer_rtx);
8559 emit_insn (gen_sub3_insn (hard_frame_pointer_rtx,
8560 hard_frame_pointer_rtx,
8561 MIPS_PROLOGUE_TEMP (Pmode)));
8562 mips_emit_move (stack_pointer_rtx, hard_frame_pointer_rtx);
8564 else
8565 emit_insn (gen_sub3_insn (stack_pointer_rtx,
8566 stack_pointer_rtx,
8567 MIPS_PROLOGUE_TEMP (Pmode)));
8569 /* Describe the combined effect of the previous instructions. */
8570 mips_set_frame_expr
8571 (gen_rtx_SET (VOIDmode, stack_pointer_rtx,
8572 plus_constant (stack_pointer_rtx, -size)));
8576 /* Set up the frame pointer, if we're using one. In mips16 code,
8577 we point the frame pointer ahead of the outgoing argument area.
8578 This should allow more variables & incoming arguments to be
8579 accessed with unextended instructions. */
8580 if (frame_pointer_needed)
8582 if (TARGET_MIPS16 && cfun->machine->frame.args_size != 0)
8584 rtx offset = GEN_INT (cfun->machine->frame.args_size);
8585 if (SMALL_OPERAND (cfun->machine->frame.args_size))
8586 RTX_FRAME_RELATED_P
8587 (emit_insn (gen_add3_insn (hard_frame_pointer_rtx,
8588 stack_pointer_rtx,
8589 offset))) = 1;
8590 else
8592 mips_emit_move (MIPS_PROLOGUE_TEMP (Pmode), offset);
8593 mips_emit_move (hard_frame_pointer_rtx, stack_pointer_rtx);
8594 emit_insn (gen_add3_insn (hard_frame_pointer_rtx,
8595 hard_frame_pointer_rtx,
8596 MIPS_PROLOGUE_TEMP (Pmode)));
8597 mips_set_frame_expr
8598 (gen_rtx_SET (VOIDmode, hard_frame_pointer_rtx,
8599 plus_constant (stack_pointer_rtx,
8600 cfun->machine->frame.args_size)));
8603 else
8604 RTX_FRAME_RELATED_P (mips_emit_move (hard_frame_pointer_rtx,
8605 stack_pointer_rtx)) = 1;
8608 mips_emit_loadgp ();
8610 /* If generating o32/o64 abicalls, save $gp on the stack. */
8611 if (TARGET_ABICALLS && TARGET_OLDABI && !current_function_is_leaf)
8612 emit_insn (gen_cprestore (GEN_INT (current_function_outgoing_args_size)));
8614 /* If we are profiling, make sure no instructions are scheduled before
8615 the call to mcount. */
8617 if (current_function_profile)
8618 emit_insn (gen_blockage ());
8621 /* Do any necessary cleanup after a function to restore stack, frame,
8622 and regs. */
8624 #define RA_MASK BITMASK_HIGH /* 1 << 31 */
8626 static void
8627 mips_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
8628 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
8630 /* Reinstate the normal $gp. */
8631 SET_REGNO (pic_offset_table_rtx, GLOBAL_POINTER_REGNUM);
8632 mips_output_cplocal ();
8634 if (cfun->machine->all_noreorder_p)
8636 /* Avoid using %>%) since it adds excess whitespace. */
8637 output_asm_insn (".set\tmacro", 0);
8638 output_asm_insn (".set\treorder", 0);
8639 set_noreorder = set_nomacro = 0;
8642 if (!FUNCTION_NAME_ALREADY_DECLARED && !flag_inhibit_size_directive)
8644 const char *fnname;
8646 /* Get the function name the same way that toplev.c does before calling
8647 assemble_start_function. This is needed so that the name used here
8648 exactly matches the name used in ASM_DECLARE_FUNCTION_NAME. */
8649 fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
8650 fputs ("\t.end\t", file);
8651 assemble_name (file, fnname);
8652 fputs ("\n", file);
8656 /* Emit instructions to restore register REG from slot MEM. */
8658 static void
8659 mips_restore_reg (rtx reg, rtx mem)
8661 /* There's no mips16 instruction to load $31 directly. Load into
8662 $7 instead and adjust the return insn appropriately. */
8663 if (TARGET_MIPS16 && REGNO (reg) == GP_REG_FIRST + 31)
8664 reg = gen_rtx_REG (GET_MODE (reg), 7);
8666 if (TARGET_MIPS16 && !M16_REG_P (REGNO (reg)))
8668 /* Can't restore directly; move through a temporary. */
8669 mips_emit_move (MIPS_EPILOGUE_TEMP (GET_MODE (reg)), mem);
8670 mips_emit_move (reg, MIPS_EPILOGUE_TEMP (GET_MODE (reg)));
8672 else
8673 mips_emit_move (reg, mem);
8677 /* Expand the epilogue into a bunch of separate insns. SIBCALL_P is true
8678 if this epilogue precedes a sibling call, false if it is for a normal
8679 "epilogue" pattern. */
8681 void
8682 mips_expand_epilogue (int sibcall_p)
8684 HOST_WIDE_INT step1, step2;
8685 rtx base, target;
8687 if (!sibcall_p && mips_can_use_return_insn ())
8689 emit_jump_insn (gen_return ());
8690 return;
8693 /* In mips16 mode, if the return value should go into a floating-point
8694 register, we need to call a helper routine to copy it over. */
8695 if (mips16_cfun_returns_in_fpr_p ())
8697 char *name;
8698 rtx func;
8699 rtx insn;
8700 rtx retval;
8701 rtx call;
8702 tree id;
8703 tree return_type;
8704 enum machine_mode return_mode;
8706 return_type = DECL_RESULT (current_function_decl);
8707 return_mode = DECL_MODE (return_type);
8709 name = ACONCAT (("__mips16_ret_",
8710 mips16_call_stub_mode_suffix (return_mode),
8711 NULL));
8712 id = get_identifier (name);
8713 func = gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (id));
8714 retval = gen_rtx_REG (return_mode, GP_RETURN);
8715 call = gen_call_value_internal (retval, func, const0_rtx);
8716 insn = emit_call_insn (call);
8717 use_reg (&CALL_INSN_FUNCTION_USAGE (insn), retval);
8720 /* Split the frame into two. STEP1 is the amount of stack we should
8721 deallocate before restoring the registers. STEP2 is the amount we
8722 should deallocate afterwards.
8724 Start off by assuming that no registers need to be restored. */
8725 step1 = cfun->machine->frame.total_size;
8726 step2 = 0;
8728 /* Work out which register holds the frame address. Account for the
8729 frame pointer offset used by mips16 code. */
8730 if (!frame_pointer_needed)
8731 base = stack_pointer_rtx;
8732 else
8734 base = hard_frame_pointer_rtx;
8735 if (TARGET_MIPS16)
8736 step1 -= cfun->machine->frame.args_size;
8739 /* If we need to restore registers, deallocate as much stack as
8740 possible in the second step without going out of range. */
8741 if ((cfun->machine->frame.mask | cfun->machine->frame.fmask) != 0)
8743 step2 = MIN (step1, MIPS_MAX_FIRST_STACK_STEP);
8744 step1 -= step2;
8747 /* Set TARGET to BASE + STEP1. */
8748 target = base;
8749 if (step1 > 0)
8751 rtx adjust;
8753 /* Get an rtx for STEP1 that we can add to BASE. */
8754 adjust = GEN_INT (step1);
8755 if (!SMALL_OPERAND (step1))
8757 mips_emit_move (MIPS_EPILOGUE_TEMP (Pmode), adjust);
8758 adjust = MIPS_EPILOGUE_TEMP (Pmode);
8761 /* Normal mode code can copy the result straight into $sp. */
8762 if (!TARGET_MIPS16)
8763 target = stack_pointer_rtx;
8765 emit_insn (gen_add3_insn (target, base, adjust));
8768 /* Copy TARGET into the stack pointer. */
8769 if (target != stack_pointer_rtx)
8770 mips_emit_move (stack_pointer_rtx, target);
8772 /* If we're using addressing macros, $gp is implicitly used by all
8773 SYMBOL_REFs. We must emit a blockage insn before restoring $gp
8774 from the stack. */
8775 if (TARGET_CALL_SAVED_GP && !TARGET_EXPLICIT_RELOCS)
8776 emit_insn (gen_blockage ());
8778 if (GENERATE_MIPS16E_SAVE_RESTORE && cfun->machine->frame.mask != 0)
8780 unsigned int regno, mask;
8781 HOST_WIDE_INT offset;
8782 rtx restore;
8784 /* Generate the restore instruction. */
8785 mask = cfun->machine->frame.mask;
8786 restore = mips16e_build_save_restore (true, &mask, &offset, 0, step2);
8788 /* Restore any other registers manually. */
8789 for (regno = GP_REG_FIRST; regno < GP_REG_LAST; regno++)
8790 if (BITSET_P (mask, regno - GP_REG_FIRST))
8792 offset -= GET_MODE_SIZE (gpr_mode);
8793 mips_save_restore_reg (gpr_mode, regno, offset, mips_restore_reg);
8796 /* Restore the remaining registers and deallocate the final bit
8797 of the frame. */
8798 emit_insn (restore);
8800 else
8802 /* Restore the registers. */
8803 mips_for_each_saved_reg (cfun->machine->frame.total_size - step2,
8804 mips_restore_reg);
8806 /* Deallocate the final bit of the frame. */
8807 if (step2 > 0)
8808 emit_insn (gen_add3_insn (stack_pointer_rtx,
8809 stack_pointer_rtx,
8810 GEN_INT (step2)));
8813 /* Add in the __builtin_eh_return stack adjustment. We need to
8814 use a temporary in mips16 code. */
8815 if (current_function_calls_eh_return)
8817 if (TARGET_MIPS16)
8819 mips_emit_move (MIPS_EPILOGUE_TEMP (Pmode), stack_pointer_rtx);
8820 emit_insn (gen_add3_insn (MIPS_EPILOGUE_TEMP (Pmode),
8821 MIPS_EPILOGUE_TEMP (Pmode),
8822 EH_RETURN_STACKADJ_RTX));
8823 mips_emit_move (stack_pointer_rtx, MIPS_EPILOGUE_TEMP (Pmode));
8825 else
8826 emit_insn (gen_add3_insn (stack_pointer_rtx,
8827 stack_pointer_rtx,
8828 EH_RETURN_STACKADJ_RTX));
8831 if (!sibcall_p)
8833 /* When generating MIPS16 code, the normal mips_for_each_saved_reg
8834 path will restore the return address into $7 rather than $31. */
8835 if (TARGET_MIPS16
8836 && !GENERATE_MIPS16E_SAVE_RESTORE
8837 && (cfun->machine->frame.mask & RA_MASK) != 0)
8838 emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode,
8839 GP_REG_FIRST + 7)));
8840 else
8841 emit_jump_insn (gen_return_internal (gen_rtx_REG (Pmode,
8842 GP_REG_FIRST + 31)));
8846 /* Return nonzero if this function is known to have a null epilogue.
8847 This allows the optimizer to omit jumps to jumps if no stack
8848 was created. */
8851 mips_can_use_return_insn (void)
8853 if (! reload_completed)
8854 return 0;
8856 if (df_regs_ever_live_p (31) || current_function_profile)
8857 return 0;
8859 /* In mips16 mode, a function that returns a floating point value
8860 needs to arrange to copy the return value into the floating point
8861 registers. */
8862 if (mips16_cfun_returns_in_fpr_p ())
8863 return 0;
8865 if (cfun->machine->frame.initialized)
8866 return cfun->machine->frame.total_size == 0;
8868 return compute_frame_size (get_frame_size ()) == 0;
8871 /* Implement TARGET_ASM_OUTPUT_MI_THUNK. Generate rtl rather than asm text
8872 in order to avoid duplicating too much logic from elsewhere. */
8874 static void
8875 mips_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
8876 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
8877 tree function)
8879 rtx this, temp1, temp2, insn, fnaddr;
8880 bool use_sibcall_p;
8882 /* Pretend to be a post-reload pass while generating rtl. */
8883 reload_completed = 1;
8885 /* Mark the end of the (empty) prologue. */
8886 emit_note (NOTE_INSN_PROLOGUE_END);
8888 /* Determine if we can use a sibcall to call FUNCTION directly. */
8889 fnaddr = XEXP (DECL_RTL (function), 0);
8890 use_sibcall_p = (mips_function_ok_for_sibcall (function, NULL)
8891 && const_call_insn_operand (fnaddr, Pmode));
8893 /* Determine if we need to load FNADDR from the GOT. */
8894 if (!use_sibcall_p)
8895 switch (mips_classify_symbol (fnaddr, SYMBOL_CONTEXT_LEA))
8897 case SYMBOL_GOT_PAGE_OFST:
8898 case SYMBOL_GOT_DISP:
8899 /* Pick a global pointer. Use a call-clobbered register if
8900 TARGET_CALL_SAVED_GP. */
8901 cfun->machine->global_pointer =
8902 TARGET_CALL_SAVED_GP ? 15 : GLOBAL_POINTER_REGNUM;
8903 SET_REGNO (pic_offset_table_rtx, cfun->machine->global_pointer);
8905 /* Set up the global pointer for n32 or n64 abicalls. */
8906 mips_emit_loadgp ();
8907 break;
8909 default:
8910 break;
8913 /* We need two temporary registers in some cases. */
8914 temp1 = gen_rtx_REG (Pmode, 2);
8915 temp2 = gen_rtx_REG (Pmode, 3);
8917 /* Find out which register contains the "this" pointer. */
8918 if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
8919 this = gen_rtx_REG (Pmode, GP_ARG_FIRST + 1);
8920 else
8921 this = gen_rtx_REG (Pmode, GP_ARG_FIRST);
8923 /* Add DELTA to THIS. */
8924 if (delta != 0)
8926 rtx offset = GEN_INT (delta);
8927 if (!SMALL_OPERAND (delta))
8929 mips_emit_move (temp1, offset);
8930 offset = temp1;
8932 emit_insn (gen_add3_insn (this, this, offset));
8935 /* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
8936 if (vcall_offset != 0)
8938 rtx addr;
8940 /* Set TEMP1 to *THIS. */
8941 mips_emit_move (temp1, gen_rtx_MEM (Pmode, this));
8943 /* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET. */
8944 addr = mips_add_offset (temp2, temp1, vcall_offset);
8946 /* Load the offset and add it to THIS. */
8947 mips_emit_move (temp1, gen_rtx_MEM (Pmode, addr));
8948 emit_insn (gen_add3_insn (this, this, temp1));
8951 /* Jump to the target function. Use a sibcall if direct jumps are
8952 allowed, otherwise load the address into a register first. */
8953 if (use_sibcall_p)
8955 insn = emit_call_insn (gen_sibcall_internal (fnaddr, const0_rtx));
8956 SIBLING_CALL_P (insn) = 1;
8958 else
8960 /* This is messy. gas treats "la $25,foo" as part of a call
8961 sequence and may allow a global "foo" to be lazily bound.
8962 The general move patterns therefore reject this combination.
8964 In this context, lazy binding would actually be OK
8965 for TARGET_CALL_CLOBBERED_GP, but it's still wrong for
8966 TARGET_CALL_SAVED_GP; see mips_load_call_address.
8967 We must therefore load the address via a temporary
8968 register if mips_dangerous_for_la25_p.
8970 If we jump to the temporary register rather than $25, the assembler
8971 can use the move insn to fill the jump's delay slot. */
8972 if (TARGET_USE_PIC_FN_ADDR_REG
8973 && !mips_dangerous_for_la25_p (fnaddr))
8974 temp1 = gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM);
8975 mips_load_call_address (temp1, fnaddr, true);
8977 if (TARGET_USE_PIC_FN_ADDR_REG
8978 && REGNO (temp1) != PIC_FUNCTION_ADDR_REGNUM)
8979 mips_emit_move (gen_rtx_REG (Pmode, PIC_FUNCTION_ADDR_REGNUM), temp1);
8980 emit_jump_insn (gen_indirect_jump (temp1));
8983 /* Run just enough of rest_of_compilation. This sequence was
8984 "borrowed" from alpha.c. */
8985 insn = get_insns ();
8986 insn_locators_alloc ();
8987 split_all_insns_noflow ();
8988 mips16_lay_out_constants ();
8989 shorten_branches (insn);
8990 final_start_function (insn, file, 1);
8991 final (insn, file, 1);
8992 final_end_function ();
8994 /* Clean up the vars set above. Note that final_end_function resets
8995 the global pointer for us. */
8996 reload_completed = 0;
8999 /* Implement TARGET_SELECT_RTX_SECTION. */
9001 static section *
9002 mips_select_rtx_section (enum machine_mode mode, rtx x,
9003 unsigned HOST_WIDE_INT align)
9005 /* ??? Consider using mergeable small data sections. */
9006 if (mips_rtx_constant_in_small_data_p (mode))
9007 return get_named_section (NULL, ".sdata", 0);
9009 return default_elf_select_rtx_section (mode, x, align);
9012 /* Implement TARGET_ASM_FUNCTION_RODATA_SECTION.
9014 The complication here is that, with the combination TARGET_ABICALLS
9015 && !TARGET_GPWORD, jump tables will use absolute addresses, and should
9016 therefore not be included in the read-only part of a DSO. Handle such
9017 cases by selecting a normal data section instead of a read-only one.
9018 The logic apes that in default_function_rodata_section. */
9020 static section *
9021 mips_function_rodata_section (tree decl)
9023 if (!TARGET_ABICALLS || TARGET_GPWORD)
9024 return default_function_rodata_section (decl);
9026 if (decl && DECL_SECTION_NAME (decl))
9028 const char *name = TREE_STRING_POINTER (DECL_SECTION_NAME (decl));
9029 if (DECL_ONE_ONLY (decl) && strncmp (name, ".gnu.linkonce.t.", 16) == 0)
9031 char *rname = ASTRDUP (name);
9032 rname[14] = 'd';
9033 return get_section (rname, SECTION_LINKONCE | SECTION_WRITE, decl);
9035 else if (flag_function_sections && flag_data_sections
9036 && strncmp (name, ".text.", 6) == 0)
9038 char *rname = ASTRDUP (name);
9039 memcpy (rname + 1, "data", 4);
9040 return get_section (rname, SECTION_WRITE, decl);
9043 return data_section;
9046 /* Implement TARGET_IN_SMALL_DATA_P. This function controls whether
9047 locally-defined objects go in a small data section. It also controls
9048 the setting of the SYMBOL_REF_SMALL_P flag, which in turn helps
9049 mips_classify_symbol decide when to use %gp_rel(...)($gp) accesses. */
9051 static bool
9052 mips_in_small_data_p (const_tree decl)
9054 HOST_WIDE_INT size;
9056 if (TREE_CODE (decl) == STRING_CST || TREE_CODE (decl) == FUNCTION_DECL)
9057 return false;
9059 /* We don't yet generate small-data references for -mabicalls or
9060 VxWorks RTP code. See the related -G handling in override_options. */
9061 if (TARGET_ABICALLS || TARGET_VXWORKS_RTP)
9062 return false;
9064 if (TREE_CODE (decl) == VAR_DECL && DECL_SECTION_NAME (decl) != 0)
9066 const char *name;
9068 /* Reject anything that isn't in a known small-data section. */
9069 name = TREE_STRING_POINTER (DECL_SECTION_NAME (decl));
9070 if (strcmp (name, ".sdata") != 0 && strcmp (name, ".sbss") != 0)
9071 return false;
9073 /* If a symbol is defined externally, the assembler will use the
9074 usual -G rules when deciding how to implement macros. */
9075 if (mips_lo_relocs[SYMBOL_GP_RELATIVE] || !DECL_EXTERNAL (decl))
9076 return true;
9078 else if (TARGET_EMBEDDED_DATA)
9080 /* Don't put constants into the small data section: we want them
9081 to be in ROM rather than RAM. */
9082 if (TREE_CODE (decl) != VAR_DECL)
9083 return false;
9085 if (TREE_READONLY (decl)
9086 && !TREE_SIDE_EFFECTS (decl)
9087 && (!DECL_INITIAL (decl) || TREE_CONSTANT (DECL_INITIAL (decl))))
9088 return false;
9091 /* Enforce -mlocal-sdata. */
9092 if (!TARGET_LOCAL_SDATA && !TREE_PUBLIC (decl))
9093 return false;
9095 /* Enforce -mextern-sdata. */
9096 if (!TARGET_EXTERN_SDATA && DECL_P (decl))
9098 if (DECL_EXTERNAL (decl))
9099 return false;
9100 if (DECL_COMMON (decl) && DECL_INITIAL (decl) == NULL)
9101 return false;
9104 size = int_size_in_bytes (TREE_TYPE (decl));
9105 return (size > 0 && size <= mips_section_threshold);
9108 /* Implement TARGET_USE_ANCHORS_FOR_SYMBOL_P. We don't want to use
9109 anchors for small data: the GP register acts as an anchor in that
9110 case. We also don't want to use them for PC-relative accesses,
9111 where the PC acts as an anchor. */
9113 static bool
9114 mips_use_anchors_for_symbol_p (const_rtx symbol)
9116 switch (mips_classify_symbol (symbol, SYMBOL_CONTEXT_MEM))
9118 case SYMBOL_PC_RELATIVE:
9119 case SYMBOL_GP_RELATIVE:
9120 return false;
9122 default:
9123 return default_use_anchors_for_symbol_p (symbol);
9127 /* See whether VALTYPE is a record whose fields should be returned in
9128 floating-point registers. If so, return the number of fields and
9129 list them in FIELDS (which should have two elements). Return 0
9130 otherwise.
9132 For n32 & n64, a structure with one or two fields is returned in
9133 floating-point registers as long as every field has a floating-point
9134 type. */
9136 static int
9137 mips_fpr_return_fields (const_tree valtype, tree *fields)
9139 tree field;
9140 int i;
9142 if (!TARGET_NEWABI)
9143 return 0;
9145 if (TREE_CODE (valtype) != RECORD_TYPE)
9146 return 0;
9148 i = 0;
9149 for (field = TYPE_FIELDS (valtype); field != 0; field = TREE_CHAIN (field))
9151 if (TREE_CODE (field) != FIELD_DECL)
9152 continue;
9154 if (TREE_CODE (TREE_TYPE (field)) != REAL_TYPE)
9155 return 0;
9157 if (i == 2)
9158 return 0;
9160 fields[i++] = field;
9162 return i;
9166 /* Implement TARGET_RETURN_IN_MSB. For n32 & n64, we should return
9167 a value in the most significant part of $2/$3 if:
9169 - the target is big-endian;
9171 - the value has a structure or union type (we generalize this to
9172 cover aggregates from other languages too); and
9174 - the structure is not returned in floating-point registers. */
9176 static bool
9177 mips_return_in_msb (const_tree valtype)
9179 tree fields[2];
9181 return (TARGET_NEWABI
9182 && TARGET_BIG_ENDIAN
9183 && AGGREGATE_TYPE_P (valtype)
9184 && mips_fpr_return_fields (valtype, fields) == 0);
9188 /* Return a composite value in a pair of floating-point registers.
9189 MODE1 and OFFSET1 are the mode and byte offset for the first value,
9190 likewise MODE2 and OFFSET2 for the second. MODE is the mode of the
9191 complete value.
9193 For n32 & n64, $f0 always holds the first value and $f2 the second.
9194 Otherwise the values are packed together as closely as possible. */
9196 static rtx
9197 mips_return_fpr_pair (enum machine_mode mode,
9198 enum machine_mode mode1, HOST_WIDE_INT offset1,
9199 enum machine_mode mode2, HOST_WIDE_INT offset2)
9201 int inc;
9203 inc = (TARGET_NEWABI ? 2 : MAX_FPRS_PER_FMT);
9204 return gen_rtx_PARALLEL
9205 (mode,
9206 gen_rtvec (2,
9207 gen_rtx_EXPR_LIST (VOIDmode,
9208 gen_rtx_REG (mode1, FP_RETURN),
9209 GEN_INT (offset1)),
9210 gen_rtx_EXPR_LIST (VOIDmode,
9211 gen_rtx_REG (mode2, FP_RETURN + inc),
9212 GEN_INT (offset2))));
9217 /* Implement FUNCTION_VALUE and LIBCALL_VALUE. For normal calls,
9218 VALTYPE is the return type and MODE is VOIDmode. For libcalls,
9219 VALTYPE is null and MODE is the mode of the return value. */
9222 mips_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED,
9223 enum machine_mode mode)
9225 if (valtype)
9227 tree fields[2];
9228 int unsignedp;
9230 mode = TYPE_MODE (valtype);
9231 unsignedp = TYPE_UNSIGNED (valtype);
9233 /* Since we define TARGET_PROMOTE_FUNCTION_RETURN that returns
9234 true, we must promote the mode just as PROMOTE_MODE does. */
9235 mode = promote_mode (valtype, mode, &unsignedp, 1);
9237 /* Handle structures whose fields are returned in $f0/$f2. */
9238 switch (mips_fpr_return_fields (valtype, fields))
9240 case 1:
9241 return gen_rtx_REG (mode, FP_RETURN);
9243 case 2:
9244 return mips_return_fpr_pair (mode,
9245 TYPE_MODE (TREE_TYPE (fields[0])),
9246 int_byte_position (fields[0]),
9247 TYPE_MODE (TREE_TYPE (fields[1])),
9248 int_byte_position (fields[1]));
9251 /* If a value is passed in the most significant part of a register, see
9252 whether we have to round the mode up to a whole number of words. */
9253 if (mips_return_in_msb (valtype))
9255 HOST_WIDE_INT size = int_size_in_bytes (valtype);
9256 if (size % UNITS_PER_WORD != 0)
9258 size += UNITS_PER_WORD - size % UNITS_PER_WORD;
9259 mode = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
9263 /* For EABI, the class of return register depends entirely on MODE.
9264 For example, "struct { some_type x; }" and "union { some_type x; }"
9265 are returned in the same way as a bare "some_type" would be.
9266 Other ABIs only use FPRs for scalar, complex or vector types. */
9267 if (mips_abi != ABI_EABI && !FLOAT_TYPE_P (valtype))
9268 return gen_rtx_REG (mode, GP_RETURN);
9271 if (!TARGET_MIPS16)
9273 /* Handle long doubles for n32 & n64. */
9274 if (mode == TFmode)
9275 return mips_return_fpr_pair (mode,
9276 DImode, 0,
9277 DImode, GET_MODE_SIZE (mode) / 2);
9279 if (mips_return_mode_in_fpr_p (mode))
9281 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
9282 return mips_return_fpr_pair (mode,
9283 GET_MODE_INNER (mode), 0,
9284 GET_MODE_INNER (mode),
9285 GET_MODE_SIZE (mode) / 2);
9286 else
9287 return gen_rtx_REG (mode, FP_RETURN);
9291 return gen_rtx_REG (mode, GP_RETURN);
9294 /* Return nonzero when an argument must be passed by reference. */
9296 static bool
9297 mips_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
9298 enum machine_mode mode, const_tree type,
9299 bool named ATTRIBUTE_UNUSED)
9301 if (mips_abi == ABI_EABI)
9303 int size;
9305 /* ??? How should SCmode be handled? */
9306 if (mode == DImode || mode == DFmode
9307 || mode == DQmode || mode == UDQmode
9308 || mode == DAmode || mode == UDAmode)
9309 return 0;
9311 size = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
9312 return size == -1 || size > UNITS_PER_WORD;
9314 else
9316 /* If we have a variable-sized parameter, we have no choice. */
9317 return targetm.calls.must_pass_in_stack (mode, type);
9321 static bool
9322 mips_callee_copies (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
9323 enum machine_mode mode ATTRIBUTE_UNUSED,
9324 const_tree type ATTRIBUTE_UNUSED, bool named)
9326 return mips_abi == ABI_EABI && named;
9329 /* Return true if registers of class CLASS cannot change from mode FROM
9330 to mode TO. */
9332 bool
9333 mips_cannot_change_mode_class (enum machine_mode from,
9334 enum machine_mode to, enum reg_class class)
9336 if (MIN (GET_MODE_SIZE (from), GET_MODE_SIZE (to)) <= UNITS_PER_WORD
9337 && MAX (GET_MODE_SIZE (from), GET_MODE_SIZE (to)) > UNITS_PER_WORD)
9339 if (TARGET_BIG_ENDIAN)
9341 /* When a multi-word value is stored in paired floating-point
9342 registers, the first register always holds the low word.
9343 We therefore can't allow FPRs to change between single-word
9344 and multi-word modes. */
9345 if (MAX_FPRS_PER_FMT > 1 && reg_classes_intersect_p (FP_REGS, class))
9346 return true;
9350 /* gcc assumes that each word of a multiword register can be accessed
9351 individually using SUBREGs. This is not true for floating-point
9352 registers if they are bigger than a word. */
9353 if (UNITS_PER_FPREG > UNITS_PER_WORD
9354 && GET_MODE_SIZE (from) > UNITS_PER_WORD
9355 && GET_MODE_SIZE (to) < UNITS_PER_FPREG
9356 && reg_classes_intersect_p (FP_REGS, class))
9357 return true;
9359 /* Loading a 32-bit value into a 64-bit floating-point register
9360 will not sign-extend the value, despite what LOAD_EXTEND_OP says.
9361 We can't allow 64-bit float registers to change from SImode to
9362 to a wider mode. */
9363 if (TARGET_64BIT
9364 && TARGET_FLOAT64
9365 && from == SImode
9366 && GET_MODE_SIZE (to) >= UNITS_PER_WORD
9367 && reg_classes_intersect_p (FP_REGS, class))
9368 return true;
9370 return false;
9373 /* Return true if X should not be moved directly into register $25.
9374 We need this because many versions of GAS will treat "la $25,foo" as
9375 part of a call sequence and so allow a global "foo" to be lazily bound. */
9377 bool
9378 mips_dangerous_for_la25_p (rtx x)
9380 return (!TARGET_EXPLICIT_RELOCS
9381 && TARGET_USE_GOT
9382 && GET_CODE (x) == SYMBOL_REF
9383 && mips_global_symbol_p (x));
9386 /* Implement PREFERRED_RELOAD_CLASS. */
9388 enum reg_class
9389 mips_preferred_reload_class (rtx x, enum reg_class class)
9391 if (mips_dangerous_for_la25_p (x) && reg_class_subset_p (LEA_REGS, class))
9392 return LEA_REGS;
9394 if (TARGET_HARD_FLOAT
9395 && FLOAT_MODE_P (GET_MODE (x))
9396 && reg_class_subset_p (FP_REGS, class))
9397 return FP_REGS;
9399 if (reg_class_subset_p (GR_REGS, class))
9400 class = GR_REGS;
9402 if (TARGET_MIPS16 && reg_class_subset_p (M16_REGS, class))
9403 class = M16_REGS;
9405 return class;
9408 /* This function returns the register class required for a secondary
9409 register when copying between one of the registers in CLASS, and X,
9410 using MODE. If IN_P is nonzero, the copy is going from X to the
9411 register, otherwise the register is the source. A return value of
9412 NO_REGS means that no secondary register is required. */
9414 enum reg_class
9415 mips_secondary_reload_class (enum reg_class class,
9416 enum machine_mode mode, rtx x, int in_p)
9418 enum reg_class gr_regs = TARGET_MIPS16 ? M16_REGS : GR_REGS;
9419 int regno = -1;
9420 int gp_reg_p;
9422 if (REG_P (x)|| GET_CODE (x) == SUBREG)
9423 regno = true_regnum (x);
9425 gp_reg_p = TARGET_MIPS16 ? M16_REG_P (regno) : GP_REG_P (regno);
9427 if (mips_dangerous_for_la25_p (x))
9429 gr_regs = LEA_REGS;
9430 if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], 25))
9431 return gr_regs;
9434 /* Copying from HI or LO to anywhere other than a general register
9435 requires a general register.
9436 This rule applies to both the original HI/LO pair and the new
9437 DSP accumulators. */
9438 if (reg_class_subset_p (class, ACC_REGS))
9440 if (TARGET_MIPS16 && in_p)
9442 /* We can't really copy to HI or LO at all in mips16 mode. */
9443 return M16_REGS;
9445 return gp_reg_p ? NO_REGS : gr_regs;
9447 if (ACC_REG_P (regno))
9449 if (TARGET_MIPS16 && ! in_p)
9451 /* We can't really copy to HI or LO at all in mips16 mode. */
9452 return M16_REGS;
9454 return class == gr_regs ? NO_REGS : gr_regs;
9457 /* We can only copy a value to a condition code register from a
9458 floating point register, and even then we require a scratch
9459 floating point register. We can only copy a value out of a
9460 condition code register into a general register. */
9461 if (class == ST_REGS)
9463 if (in_p)
9464 return FP_REGS;
9465 return gp_reg_p ? NO_REGS : gr_regs;
9467 if (ST_REG_P (regno))
9469 if (! in_p)
9470 return FP_REGS;
9471 return class == gr_regs ? NO_REGS : gr_regs;
9474 if (class == FP_REGS)
9476 if (MEM_P (x))
9478 /* In this case we can use lwc1, swc1, ldc1 or sdc1. */
9479 return NO_REGS;
9481 else if (CONSTANT_P (x) && GET_MODE_CLASS (mode) == MODE_FLOAT)
9483 /* We can use the l.s and l.d macros to load floating-point
9484 constants. ??? For l.s, we could probably get better
9485 code by returning GR_REGS here. */
9486 return NO_REGS;
9488 else if (gp_reg_p || x == CONST0_RTX (mode))
9490 /* In this case we can use mtc1, mfc1, dmtc1 or dmfc1. */
9491 return NO_REGS;
9493 else if (FP_REG_P (regno))
9495 /* In this case we can use mov.s or mov.d. */
9496 return NO_REGS;
9498 else
9500 /* Otherwise, we need to reload through an integer register. */
9501 return gr_regs;
9505 /* In mips16 mode, going between memory and anything but M16_REGS
9506 requires an M16_REG. */
9507 if (TARGET_MIPS16)
9509 if (class != M16_REGS && class != M16_NA_REGS)
9511 if (gp_reg_p)
9512 return NO_REGS;
9513 return M16_REGS;
9515 if (! gp_reg_p)
9517 if (class == M16_REGS || class == M16_NA_REGS)
9518 return NO_REGS;
9519 return M16_REGS;
9523 return NO_REGS;
9526 /* Implement CLASS_MAX_NREGS.
9528 - UNITS_PER_FPREG controls the number of registers needed by FP_REGS.
9530 - ST_REGS are always hold CCmode values, and CCmode values are
9531 considered to be 4 bytes wide.
9533 All other register classes are covered by UNITS_PER_WORD. Note that
9534 this is true even for unions of integer and float registers when the
9535 latter are smaller than the former. The only supported combination
9536 in which case this occurs is -mgp64 -msingle-float, which has 64-bit
9537 words but 32-bit float registers. A word-based calculation is correct
9538 in that case since -msingle-float disallows multi-FPR values. */
9541 mips_class_max_nregs (enum reg_class class ATTRIBUTE_UNUSED,
9542 enum machine_mode mode)
9544 if (class == ST_REGS)
9545 return (GET_MODE_SIZE (mode) + 3) / 4;
9546 else if (class == FP_REGS)
9547 return (GET_MODE_SIZE (mode) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG;
9548 else
9549 return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
9552 static bool
9553 mips_valid_pointer_mode (enum machine_mode mode)
9555 return (mode == SImode || (TARGET_64BIT && mode == DImode));
9558 /* Target hook for vector_mode_supported_p. */
9560 static bool
9561 mips_vector_mode_supported_p (enum machine_mode mode)
9563 switch (mode)
9565 case V2SFmode:
9566 return TARGET_PAIRED_SINGLE_FLOAT;
9568 case V2HImode:
9569 case V4QImode:
9570 case V2HQmode:
9571 case V2UHQmode:
9572 case V2HAmode:
9573 case V2UHAmode:
9574 case V4QQmode:
9575 case V4UQQmode:
9576 return TARGET_DSP;
9578 default:
9579 return false;
9583 /* Implement TARGET_SCALAR_MODE_SUPPORTED_P. */
9585 static bool
9586 mips_scalar_mode_supported_p (enum machine_mode mode)
9588 if (ALL_FIXED_POINT_MODE_P (mode)
9589 && GET_MODE_PRECISION (mode) <= 2 * BITS_PER_WORD)
9590 return true;
9592 return default_scalar_mode_supported_p (mode);
9595 /* If we can access small data directly (using gp-relative relocation
9596 operators) return the small data pointer, otherwise return null.
9598 For each mips16 function which refers to GP relative symbols, we
9599 use a pseudo register, initialized at the start of the function, to
9600 hold the $gp value. */
9602 static rtx
9603 mips16_gp_pseudo_reg (void)
9605 if (cfun->machine->mips16_gp_pseudo_rtx == NULL_RTX)
9606 cfun->machine->mips16_gp_pseudo_rtx = gen_reg_rtx (Pmode);
9608 /* Don't initialize the pseudo register if we are being called from
9609 the tree optimizers' cost-calculation routines. */
9610 if (!cfun->machine->initialized_mips16_gp_pseudo_p
9611 && (current_ir_type () != IR_GIMPLE || currently_expanding_to_rtl))
9613 rtx insn, scan;
9615 /* We want to initialize this to a value which gcc will believe
9616 is constant. */
9617 insn = gen_load_const_gp (cfun->machine->mips16_gp_pseudo_rtx);
9619 push_topmost_sequence ();
9620 /* We need to emit the initialization after the FUNCTION_BEG
9621 note, so that it will be integrated. */
9622 for (scan = get_insns (); scan != NULL_RTX; scan = NEXT_INSN (scan))
9623 if (NOTE_P (scan)
9624 && NOTE_KIND (scan) == NOTE_INSN_FUNCTION_BEG)
9625 break;
9626 if (scan == NULL_RTX)
9627 scan = get_insns ();
9628 insn = emit_insn_after (insn, scan);
9629 pop_topmost_sequence ();
9631 cfun->machine->initialized_mips16_gp_pseudo_p = true;
9634 return cfun->machine->mips16_gp_pseudo_rtx;
9637 /* Write out code to move floating point arguments in or out of
9638 general registers. Output the instructions to FILE. FP_CODE is
9639 the code describing which arguments are present (see the comment at
9640 the definition of CUMULATIVE_ARGS in mips.h). FROM_FP_P is nonzero if
9641 we are copying from the floating point registers. */
9643 static void
9644 mips16_fp_args (FILE *file, int fp_code, int from_fp_p)
9646 const char *s;
9647 int gparg, fparg;
9648 unsigned int f;
9649 CUMULATIVE_ARGS cum;
9651 /* This code only works for the original 32-bit ABI and the O64 ABI. */
9652 gcc_assert (TARGET_OLDABI);
9654 if (from_fp_p)
9655 s = "mfc1";
9656 else
9657 s = "mtc1";
9659 init_cumulative_args (&cum, NULL, NULL);
9661 for (f = (unsigned int) fp_code; f != 0; f >>= 2)
9663 enum machine_mode mode;
9664 struct mips_arg_info info;
9666 if ((f & 3) == 1)
9667 mode = SFmode;
9668 else if ((f & 3) == 2)
9669 mode = DFmode;
9670 else
9671 gcc_unreachable ();
9673 mips_arg_info (&cum, mode, NULL, true, &info);
9674 gparg = mips_arg_regno (&info, false);
9675 fparg = mips_arg_regno (&info, true);
9677 if (mode == SFmode)
9678 fprintf (file, "\t%s\t%s,%s\n", s,
9679 reg_names[gparg], reg_names[fparg]);
9680 else if (TARGET_64BIT)
9681 fprintf (file, "\td%s\t%s,%s\n", s,
9682 reg_names[gparg], reg_names[fparg]);
9683 else if (ISA_HAS_MXHC1)
9684 /* -mips32r2 -mfp64 */
9685 fprintf (file, "\t%s\t%s,%s\n\t%s\t%s,%s\n",
9687 reg_names[gparg + (WORDS_BIG_ENDIAN ? 1 : 0)],
9688 reg_names[fparg],
9689 from_fp_p ? "mfhc1" : "mthc1",
9690 reg_names[gparg + (WORDS_BIG_ENDIAN ? 0 : 1)],
9691 reg_names[fparg]);
9692 else if (TARGET_BIG_ENDIAN)
9693 fprintf (file, "\t%s\t%s,%s\n\t%s\t%s,%s\n", s,
9694 reg_names[gparg], reg_names[fparg + 1], s,
9695 reg_names[gparg + 1], reg_names[fparg]);
9696 else
9697 fprintf (file, "\t%s\t%s,%s\n\t%s\t%s,%s\n", s,
9698 reg_names[gparg], reg_names[fparg], s,
9699 reg_names[gparg + 1], reg_names[fparg + 1]);
9701 function_arg_advance (&cum, mode, NULL, true);
9705 /* Build a mips16 function stub. This is used for functions which
9706 take arguments in the floating point registers. It is 32-bit code
9707 that moves the floating point args into the general registers, and
9708 then jumps to the 16-bit code. */
9710 static void
9711 build_mips16_function_stub (FILE *file)
9713 const char *fnname;
9714 char *secname, *stubname;
9715 tree stubid, stubdecl;
9716 int need_comma;
9717 unsigned int f;
9719 fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0);
9720 fnname = targetm.strip_name_encoding (fnname);
9721 secname = (char *) alloca (strlen (fnname) + 20);
9722 sprintf (secname, ".mips16.fn.%s", fnname);
9723 stubname = (char *) alloca (strlen (fnname) + 20);
9724 sprintf (stubname, "__fn_stub_%s", fnname);
9725 stubid = get_identifier (stubname);
9726 stubdecl = build_decl (FUNCTION_DECL, stubid,
9727 build_function_type (void_type_node, NULL_TREE));
9728 DECL_SECTION_NAME (stubdecl) = build_string (strlen (secname), secname);
9729 DECL_RESULT (stubdecl) = build_decl (RESULT_DECL, NULL_TREE, void_type_node);
9731 fprintf (file, "\t# Stub function for %s (", current_function_name ());
9732 need_comma = 0;
9733 for (f = (unsigned int) current_function_args_info.fp_code; f != 0; f >>= 2)
9735 fprintf (file, "%s%s",
9736 need_comma ? ", " : "",
9737 (f & 3) == 1 ? "float" : "double");
9738 need_comma = 1;
9740 fprintf (file, ")\n");
9742 fprintf (file, "\t.set\tnomips16\n");
9743 switch_to_section (function_section (stubdecl));
9744 ASM_OUTPUT_ALIGN (file, floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT));
9746 /* ??? If FUNCTION_NAME_ALREADY_DECLARED is defined, then we are
9747 within a .ent, and we cannot emit another .ent. */
9748 if (!FUNCTION_NAME_ALREADY_DECLARED)
9750 fputs ("\t.ent\t", file);
9751 assemble_name (file, stubname);
9752 fputs ("\n", file);
9755 assemble_name (file, stubname);
9756 fputs (":\n", file);
9758 /* We don't want the assembler to insert any nops here. */
9759 fprintf (file, "\t.set\tnoreorder\n");
9761 mips16_fp_args (file, current_function_args_info.fp_code, 1);
9763 fprintf (asm_out_file, "\t.set\tnoat\n");
9764 fprintf (asm_out_file, "\tla\t%s,", reg_names[GP_REG_FIRST + 1]);
9765 assemble_name (file, fnname);
9766 fprintf (file, "\n");
9767 fprintf (asm_out_file, "\tjr\t%s\n", reg_names[GP_REG_FIRST + 1]);
9768 fprintf (asm_out_file, "\t.set\tat\n");
9770 /* Unfortunately, we can't fill the jump delay slot. We can't fill
9771 with one of the mfc1 instructions, because the result is not
9772 available for one instruction, so if the very first instruction
9773 in the function refers to the register, it will see the wrong
9774 value. */
9775 fprintf (file, "\tnop\n");
9777 fprintf (file, "\t.set\treorder\n");
9779 if (!FUNCTION_NAME_ALREADY_DECLARED)
9781 fputs ("\t.end\t", file);
9782 assemble_name (file, stubname);
9783 fputs ("\n", file);
9786 switch_to_section (function_section (current_function_decl));
9789 /* We keep a list of functions for which we have already built stubs
9790 in build_mips16_call_stub. */
9792 struct mips16_stub
9794 struct mips16_stub *next;
9795 char *name;
9796 int fpret;
9799 static struct mips16_stub *mips16_stubs;
9801 /* Emit code to return a double value from a mips16 stub. GPREG is the
9802 first GP reg to use, FPREG is the first FP reg to use. */
9804 static void
9805 mips16_fpret_double (int gpreg, int fpreg)
9807 if (TARGET_64BIT)
9808 fprintf (asm_out_file, "\tdmfc1\t%s,%s\n",
9809 reg_names[gpreg], reg_names[fpreg]);
9810 else if (TARGET_FLOAT64)
9812 fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
9813 reg_names[gpreg + WORDS_BIG_ENDIAN],
9814 reg_names[fpreg]);
9815 fprintf (asm_out_file, "\tmfhc1\t%s,%s\n",
9816 reg_names[gpreg + !WORDS_BIG_ENDIAN],
9817 reg_names[fpreg]);
9819 else
9821 if (TARGET_BIG_ENDIAN)
9823 fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
9824 reg_names[gpreg + 0],
9825 reg_names[fpreg + 1]);
9826 fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
9827 reg_names[gpreg + 1],
9828 reg_names[fpreg + 0]);
9830 else
9832 fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
9833 reg_names[gpreg + 0],
9834 reg_names[fpreg + 0]);
9835 fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
9836 reg_names[gpreg + 1],
9837 reg_names[fpreg + 1]);
9842 /* Build a call stub for a mips16 call. A stub is needed if we are
9843 passing any floating point values which should go into the floating
9844 point registers. If we are, and the call turns out to be to a
9845 32-bit function, the stub will be used to move the values into the
9846 floating point registers before calling the 32-bit function. The
9847 linker will magically adjust the function call to either the 16-bit
9848 function or the 32-bit stub, depending upon where the function call
9849 is actually defined.
9851 Similarly, we need a stub if the return value might come back in a
9852 floating point register.
9854 RETVAL is the location of the return value, or null if this is
9855 a call rather than a call_value. FN is the address of the
9856 function and ARG_SIZE is the size of the arguments. FP_CODE
9857 is the code built by function_arg. This function returns a nonzero
9858 value if it builds the call instruction itself. */
9861 build_mips16_call_stub (rtx retval, rtx fn, rtx arg_size, int fp_code)
9863 int fpret = 0;
9864 const char *fnname;
9865 char *secname, *stubname;
9866 struct mips16_stub *l;
9867 tree stubid, stubdecl;
9868 int need_comma;
9869 unsigned int f;
9870 rtx insn;
9872 /* We don't need to do anything if we aren't in mips16 mode, or if
9873 we were invoked with the -msoft-float option. */
9874 if (!TARGET_MIPS16 || TARGET_SOFT_FLOAT_ABI)
9875 return 0;
9877 /* Figure out whether the value might come back in a floating point
9878 register. */
9879 if (retval)
9880 fpret = mips_return_mode_in_fpr_p (GET_MODE (retval));
9882 /* We don't need to do anything if there were no floating point
9883 arguments and the value will not be returned in a floating point
9884 register. */
9885 if (fp_code == 0 && ! fpret)
9886 return 0;
9888 /* We don't need to do anything if this is a call to a special
9889 mips16 support function. */
9890 if (GET_CODE (fn) == SYMBOL_REF
9891 && strncmp (XSTR (fn, 0), "__mips16_", 9) == 0)
9892 return 0;
9894 /* This code will only work for o32 and o64 abis. The other ABI's
9895 require more sophisticated support. */
9896 gcc_assert (TARGET_OLDABI);
9898 /* If we're calling via a function pointer, then we must always call
9899 via a stub. There are magic stubs provided in libgcc.a for each
9900 of the required cases. Each of them expects the function address
9901 to arrive in register $2. */
9903 if (GET_CODE (fn) != SYMBOL_REF)
9905 char buf[30];
9906 tree id;
9907 rtx stub_fn, insn;
9909 /* ??? If this code is modified to support other ABI's, we need
9910 to handle PARALLEL return values here. */
9912 if (fpret)
9913 sprintf (buf, "__mips16_call_stub_%s_%d",
9914 mips16_call_stub_mode_suffix (GET_MODE (retval)),
9915 fp_code);
9916 else
9917 sprintf (buf, "__mips16_call_stub_%d",
9918 fp_code);
9920 id = get_identifier (buf);
9921 stub_fn = gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (id));
9923 mips_emit_move (gen_rtx_REG (Pmode, 2), fn);
9925 if (retval == NULL_RTX)
9926 insn = gen_call_internal (stub_fn, arg_size);
9927 else
9928 insn = gen_call_value_internal (retval, stub_fn, arg_size);
9929 insn = emit_call_insn (insn);
9931 /* Put the register usage information on the CALL. */
9932 CALL_INSN_FUNCTION_USAGE (insn) =
9933 gen_rtx_EXPR_LIST (VOIDmode,
9934 gen_rtx_USE (VOIDmode, gen_rtx_REG (Pmode, 2)),
9935 CALL_INSN_FUNCTION_USAGE (insn));
9937 /* If we are handling a floating point return value, we need to
9938 save $18 in the function prologue. Putting a note on the
9939 call will mean that df_regs_ever_live_p ($18) will be true if the
9940 call is not eliminated, and we can check that in the prologue
9941 code. */
9942 if (fpret)
9943 CALL_INSN_FUNCTION_USAGE (insn) =
9944 gen_rtx_EXPR_LIST (VOIDmode,
9945 gen_rtx_USE (VOIDmode,
9946 gen_rtx_REG (word_mode, 18)),
9947 CALL_INSN_FUNCTION_USAGE (insn));
9949 /* Return 1 to tell the caller that we've generated the call
9950 insn. */
9951 return 1;
9954 /* We know the function we are going to call. If we have already
9955 built a stub, we don't need to do anything further. */
9957 fnname = targetm.strip_name_encoding (XSTR (fn, 0));
9958 for (l = mips16_stubs; l != NULL; l = l->next)
9959 if (strcmp (l->name, fnname) == 0)
9960 break;
9962 if (l == NULL)
9964 /* Build a special purpose stub. When the linker sees a
9965 function call in mips16 code, it will check where the target
9966 is defined. If the target is a 32-bit call, the linker will
9967 search for the section defined here. It can tell which
9968 symbol this section is associated with by looking at the
9969 relocation information (the name is unreliable, since this
9970 might be a static function). If such a section is found, the
9971 linker will redirect the call to the start of the magic
9972 section.
9974 If the function does not return a floating point value, the
9975 special stub section is named
9976 .mips16.call.FNNAME
9978 If the function does return a floating point value, the stub
9979 section is named
9980 .mips16.call.fp.FNNAME
9983 secname = (char *) alloca (strlen (fnname) + 40);
9984 sprintf (secname, ".mips16.call.%s%s",
9985 fpret ? "fp." : "",
9986 fnname);
9987 stubname = (char *) alloca (strlen (fnname) + 20);
9988 sprintf (stubname, "__call_stub_%s%s",
9989 fpret ? "fp_" : "",
9990 fnname);
9991 stubid = get_identifier (stubname);
9992 stubdecl = build_decl (FUNCTION_DECL, stubid,
9993 build_function_type (void_type_node, NULL_TREE));
9994 DECL_SECTION_NAME (stubdecl) = build_string (strlen (secname), secname);
9995 DECL_RESULT (stubdecl) = build_decl (RESULT_DECL, NULL_TREE, void_type_node);
9997 fprintf (asm_out_file, "\t# Stub function to call %s%s (",
9998 (fpret
9999 ? (GET_MODE (retval) == SFmode ? "float " : "double ")
10000 : ""),
10001 fnname);
10002 need_comma = 0;
10003 for (f = (unsigned int) fp_code; f != 0; f >>= 2)
10005 fprintf (asm_out_file, "%s%s",
10006 need_comma ? ", " : "",
10007 (f & 3) == 1 ? "float" : "double");
10008 need_comma = 1;
10010 fprintf (asm_out_file, ")\n");
10012 fprintf (asm_out_file, "\t.set\tnomips16\n");
10013 assemble_start_function (stubdecl, stubname);
10015 if (!FUNCTION_NAME_ALREADY_DECLARED)
10017 fputs ("\t.ent\t", asm_out_file);
10018 assemble_name (asm_out_file, stubname);
10019 fputs ("\n", asm_out_file);
10021 assemble_name (asm_out_file, stubname);
10022 fputs (":\n", asm_out_file);
10025 /* We build the stub code by hand. That's the only way we can
10026 do it, since we can't generate 32-bit code during a 16-bit
10027 compilation. */
10029 /* We don't want the assembler to insert any nops here. */
10030 fprintf (asm_out_file, "\t.set\tnoreorder\n");
10032 mips16_fp_args (asm_out_file, fp_code, 0);
10034 if (! fpret)
10036 fprintf (asm_out_file, "\t.set\tnoat\n");
10037 fprintf (asm_out_file, "\tla\t%s,%s\n", reg_names[GP_REG_FIRST + 1],
10038 fnname);
10039 fprintf (asm_out_file, "\tjr\t%s\n", reg_names[GP_REG_FIRST + 1]);
10040 fprintf (asm_out_file, "\t.set\tat\n");
10041 /* Unfortunately, we can't fill the jump delay slot. We
10042 can't fill with one of the mtc1 instructions, because the
10043 result is not available for one instruction, so if the
10044 very first instruction in the function refers to the
10045 register, it will see the wrong value. */
10046 fprintf (asm_out_file, "\tnop\n");
10048 else
10050 fprintf (asm_out_file, "\tmove\t%s,%s\n",
10051 reg_names[GP_REG_FIRST + 18], reg_names[GP_REG_FIRST + 31]);
10052 fprintf (asm_out_file, "\tjal\t%s\n", fnname);
10053 /* As above, we can't fill the delay slot. */
10054 fprintf (asm_out_file, "\tnop\n");
10055 switch (GET_MODE (retval))
10057 case SCmode:
10058 fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
10059 reg_names[GP_REG_FIRST + 3],
10060 reg_names[FP_REG_FIRST + MAX_FPRS_PER_FMT]);
10061 /* Fall though. */
10062 case SFmode:
10063 fprintf (asm_out_file, "\tmfc1\t%s,%s\n",
10064 reg_names[GP_REG_FIRST + 2],
10065 reg_names[FP_REG_FIRST + 0]);
10066 break;
10068 case DCmode:
10069 mips16_fpret_double (GP_REG_FIRST + 2 + (8 / UNITS_PER_WORD),
10070 FP_REG_FIRST + MAX_FPRS_PER_FMT);
10071 /* Fall though. */
10072 case DFmode:
10073 case V2SFmode:
10074 mips16_fpret_double (GP_REG_FIRST + 2, FP_REG_FIRST + 0);
10075 break;
10077 default:
10078 gcc_unreachable ();
10080 fprintf (asm_out_file, "\tj\t%s\n", reg_names[GP_REG_FIRST + 18]);
10081 /* As above, we can't fill the delay slot. */
10082 fprintf (asm_out_file, "\tnop\n");
10085 fprintf (asm_out_file, "\t.set\treorder\n");
10087 #ifdef ASM_DECLARE_FUNCTION_SIZE
10088 ASM_DECLARE_FUNCTION_SIZE (asm_out_file, stubname, stubdecl);
10089 #endif
10091 if (!FUNCTION_NAME_ALREADY_DECLARED)
10093 fputs ("\t.end\t", asm_out_file);
10094 assemble_name (asm_out_file, stubname);
10095 fputs ("\n", asm_out_file);
10098 /* Record this stub. */
10099 l = (struct mips16_stub *) xmalloc (sizeof *l);
10100 l->name = xstrdup (fnname);
10101 l->fpret = fpret;
10102 l->next = mips16_stubs;
10103 mips16_stubs = l;
10106 /* If we expect a floating point return value, but we've built a
10107 stub which does not expect one, then we're in trouble. We can't
10108 use the existing stub, because it won't handle the floating point
10109 value. We can't build a new stub, because the linker won't know
10110 which stub to use for the various calls in this object file.
10111 Fortunately, this case is illegal, since it means that a function
10112 was declared in two different ways in a single compilation. */
10113 if (fpret && ! l->fpret)
10114 error ("cannot handle inconsistent calls to %qs", fnname);
10116 if (retval == NULL_RTX)
10117 insn = gen_call_internal_direct (fn, arg_size);
10118 else
10119 insn = gen_call_value_internal_direct (retval, fn, arg_size);
10120 insn = emit_call_insn (insn);
10122 /* If we are calling a stub which handles a floating point return
10123 value, we need to arrange to save $18 in the prologue. We do
10124 this by marking the function call as using the register. The
10125 prologue will later see that it is used, and emit code to save
10126 it. */
10127 if (l->fpret)
10128 CALL_INSN_FUNCTION_USAGE (insn) =
10129 gen_rtx_EXPR_LIST (VOIDmode,
10130 gen_rtx_USE (VOIDmode, gen_rtx_REG (word_mode, 18)),
10131 CALL_INSN_FUNCTION_USAGE (insn));
10133 /* Return 1 to tell the caller that we've generated the call
10134 insn. */
10135 return 1;
10138 /* An entry in the mips16 constant pool. VALUE is the pool constant,
10139 MODE is its mode, and LABEL is the CODE_LABEL associated with it. */
10141 struct mips16_constant {
10142 struct mips16_constant *next;
10143 rtx value;
10144 rtx label;
10145 enum machine_mode mode;
10148 /* Information about an incomplete mips16 constant pool. FIRST is the
10149 first constant, HIGHEST_ADDRESS is the highest address that the first
10150 byte of the pool can have, and INSN_ADDRESS is the current instruction
10151 address. */
10153 struct mips16_constant_pool {
10154 struct mips16_constant *first;
10155 int highest_address;
10156 int insn_address;
10159 /* Add constant VALUE to POOL and return its label. MODE is the
10160 value's mode (used for CONST_INTs, etc.). */
10162 static rtx
10163 add_constant (struct mips16_constant_pool *pool,
10164 rtx value, enum machine_mode mode)
10166 struct mips16_constant **p, *c;
10167 bool first_of_size_p;
10169 /* See whether the constant is already in the pool. If so, return the
10170 existing label, otherwise leave P pointing to the place where the
10171 constant should be added.
10173 Keep the pool sorted in increasing order of mode size so that we can
10174 reduce the number of alignments needed. */
10175 first_of_size_p = true;
10176 for (p = &pool->first; *p != 0; p = &(*p)->next)
10178 if (mode == (*p)->mode && rtx_equal_p (value, (*p)->value))
10179 return (*p)->label;
10180 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE ((*p)->mode))
10181 break;
10182 if (GET_MODE_SIZE (mode) == GET_MODE_SIZE ((*p)->mode))
10183 first_of_size_p = false;
10186 /* In the worst case, the constant needed by the earliest instruction
10187 will end up at the end of the pool. The entire pool must then be
10188 accessible from that instruction.
10190 When adding the first constant, set the pool's highest address to
10191 the address of the first out-of-range byte. Adjust this address
10192 downwards each time a new constant is added. */
10193 if (pool->first == 0)
10194 /* For pc-relative lw, addiu and daddiu instructions, the base PC value
10195 is the address of the instruction with the lowest two bits clear.
10196 The base PC value for ld has the lowest three bits clear. Assume
10197 the worst case here. */
10198 pool->highest_address = pool->insn_address - (UNITS_PER_WORD - 2) + 0x8000;
10199 pool->highest_address -= GET_MODE_SIZE (mode);
10200 if (first_of_size_p)
10201 /* Take into account the worst possible padding due to alignment. */
10202 pool->highest_address -= GET_MODE_SIZE (mode) - 1;
10204 /* Create a new entry. */
10205 c = (struct mips16_constant *) xmalloc (sizeof *c);
10206 c->value = value;
10207 c->mode = mode;
10208 c->label = gen_label_rtx ();
10209 c->next = *p;
10210 *p = c;
10212 return c->label;
10215 /* Output constant VALUE after instruction INSN and return the last
10216 instruction emitted. MODE is the mode of the constant. */
10218 static rtx
10219 dump_constants_1 (enum machine_mode mode, rtx value, rtx insn)
10221 switch (GET_MODE_CLASS (mode))
10223 case MODE_INT:
10225 rtx size = GEN_INT (GET_MODE_SIZE (mode));
10226 return emit_insn_after (gen_consttable_int (value, size), insn);
10229 case MODE_FLOAT:
10230 return emit_insn_after (gen_consttable_float (value), insn);
10232 case MODE_VECTOR_FLOAT:
10233 case MODE_VECTOR_INT:
10235 int i;
10236 for (i = 0; i < CONST_VECTOR_NUNITS (value); i++)
10237 insn = dump_constants_1 (GET_MODE_INNER (mode),
10238 CONST_VECTOR_ELT (value, i), insn);
10239 return insn;
10242 default:
10243 gcc_unreachable ();
10248 /* Dump out the constants in CONSTANTS after INSN. */
10250 static void
10251 dump_constants (struct mips16_constant *constants, rtx insn)
10253 struct mips16_constant *c, *next;
10254 int align;
10256 align = 0;
10257 for (c = constants; c != NULL; c = next)
10259 /* If necessary, increase the alignment of PC. */
10260 if (align < GET_MODE_SIZE (c->mode))
10262 int align_log = floor_log2 (GET_MODE_SIZE (c->mode));
10263 insn = emit_insn_after (gen_align (GEN_INT (align_log)), insn);
10265 align = GET_MODE_SIZE (c->mode);
10267 insn = emit_label_after (c->label, insn);
10268 insn = dump_constants_1 (c->mode, c->value, insn);
10270 next = c->next;
10271 free (c);
10274 emit_barrier_after (insn);
10277 /* Return the length of instruction INSN. */
10279 static int
10280 mips16_insn_length (rtx insn)
10282 if (JUMP_P (insn))
10284 rtx body = PATTERN (insn);
10285 if (GET_CODE (body) == ADDR_VEC)
10286 return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, 0);
10287 if (GET_CODE (body) == ADDR_DIFF_VEC)
10288 return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, 1);
10290 return get_attr_length (insn);
10293 /* If *X is a symbolic constant that refers to the constant pool, add
10294 the constant to POOL and rewrite *X to use the constant's label. */
10296 static void
10297 mips16_rewrite_pool_constant (struct mips16_constant_pool *pool, rtx *x)
10299 rtx base, offset, label;
10301 split_const (*x, &base, &offset);
10302 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
10304 label = add_constant (pool, get_pool_constant (base),
10305 get_pool_mode (base));
10306 base = gen_rtx_LABEL_REF (Pmode, label);
10307 *x = mips_unspec_address_offset (base, offset, SYMBOL_PC_RELATIVE);
10311 /* This structure is used to communicate with mips16_rewrite_pool_refs.
10312 INSN is the instruction we're rewriting and POOL points to the current
10313 constant pool. */
10314 struct mips16_rewrite_pool_refs_info {
10315 rtx insn;
10316 struct mips16_constant_pool *pool;
10319 /* Rewrite *X so that constant pool references refer to the constant's
10320 label instead. DATA points to a mips16_rewrite_pool_refs_info
10321 structure. */
10323 static int
10324 mips16_rewrite_pool_refs (rtx *x, void *data)
10326 struct mips16_rewrite_pool_refs_info *info = data;
10328 if (force_to_mem_operand (*x, Pmode))
10330 rtx mem = force_const_mem (GET_MODE (*x), *x);
10331 validate_change (info->insn, x, mem, false);
10334 if (MEM_P (*x))
10336 mips16_rewrite_pool_constant (info->pool, &XEXP (*x, 0));
10337 return -1;
10340 if (TARGET_MIPS16_TEXT_LOADS)
10341 mips16_rewrite_pool_constant (info->pool, x);
10343 return GET_CODE (*x) == CONST ? -1 : 0;
10346 /* Build MIPS16 constant pools. */
10348 static void
10349 mips16_lay_out_constants (void)
10351 struct mips16_constant_pool pool;
10352 struct mips16_rewrite_pool_refs_info info;
10353 rtx insn, barrier;
10355 if (!TARGET_MIPS16_PCREL_LOADS)
10356 return;
10358 barrier = 0;
10359 memset (&pool, 0, sizeof (pool));
10360 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
10362 /* Rewrite constant pool references in INSN. */
10363 if (INSN_P (insn))
10365 info.insn = insn;
10366 info.pool = &pool;
10367 for_each_rtx (&PATTERN (insn), mips16_rewrite_pool_refs, &info);
10370 pool.insn_address += mips16_insn_length (insn);
10372 if (pool.first != NULL)
10374 /* If there are no natural barriers between the first user of
10375 the pool and the highest acceptable address, we'll need to
10376 create a new instruction to jump around the constant pool.
10377 In the worst case, this instruction will be 4 bytes long.
10379 If it's too late to do this transformation after INSN,
10380 do it immediately before INSN. */
10381 if (barrier == 0 && pool.insn_address + 4 > pool.highest_address)
10383 rtx label, jump;
10385 label = gen_label_rtx ();
10387 jump = emit_jump_insn_before (gen_jump (label), insn);
10388 JUMP_LABEL (jump) = label;
10389 LABEL_NUSES (label) = 1;
10390 barrier = emit_barrier_after (jump);
10392 emit_label_after (label, barrier);
10393 pool.insn_address += 4;
10396 /* See whether the constant pool is now out of range of the first
10397 user. If so, output the constants after the previous barrier.
10398 Note that any instructions between BARRIER and INSN (inclusive)
10399 will use negative offsets to refer to the pool. */
10400 if (pool.insn_address > pool.highest_address)
10402 dump_constants (pool.first, barrier);
10403 pool.first = NULL;
10404 barrier = 0;
10406 else if (BARRIER_P (insn))
10407 barrier = insn;
10410 dump_constants (pool.first, get_last_insn ());
10413 /* A temporary variable used by for_each_rtx callbacks, etc. */
10414 static rtx mips_sim_insn;
10416 /* A structure representing the state of the processor pipeline.
10417 Used by the mips_sim_* family of functions. */
10418 struct mips_sim {
10419 /* The maximum number of instructions that can be issued in a cycle.
10420 (Caches mips_issue_rate.) */
10421 unsigned int issue_rate;
10423 /* The current simulation time. */
10424 unsigned int time;
10426 /* How many more instructions can be issued in the current cycle. */
10427 unsigned int insns_left;
10429 /* LAST_SET[X].INSN is the last instruction to set register X.
10430 LAST_SET[X].TIME is the time at which that instruction was issued.
10431 INSN is null if no instruction has yet set register X. */
10432 struct {
10433 rtx insn;
10434 unsigned int time;
10435 } last_set[FIRST_PSEUDO_REGISTER];
10437 /* The pipeline's current DFA state. */
10438 state_t dfa_state;
10441 /* Reset STATE to the initial simulation state. */
10443 static void
10444 mips_sim_reset (struct mips_sim *state)
10446 state->time = 0;
10447 state->insns_left = state->issue_rate;
10448 memset (&state->last_set, 0, sizeof (state->last_set));
10449 state_reset (state->dfa_state);
10452 /* Initialize STATE before its first use. DFA_STATE points to an
10453 allocated but uninitialized DFA state. */
10455 static void
10456 mips_sim_init (struct mips_sim *state, state_t dfa_state)
10458 state->issue_rate = mips_issue_rate ();
10459 state->dfa_state = dfa_state;
10460 mips_sim_reset (state);
10463 /* Advance STATE by one clock cycle. */
10465 static void
10466 mips_sim_next_cycle (struct mips_sim *state)
10468 state->time++;
10469 state->insns_left = state->issue_rate;
10470 state_transition (state->dfa_state, 0);
10473 /* Advance simulation state STATE until instruction INSN can read
10474 register REG. */
10476 static void
10477 mips_sim_wait_reg (struct mips_sim *state, rtx insn, rtx reg)
10479 unsigned int i;
10481 for (i = 0; i < HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)); i++)
10482 if (state->last_set[REGNO (reg) + i].insn != 0)
10484 unsigned int t;
10486 t = state->last_set[REGNO (reg) + i].time;
10487 t += insn_latency (state->last_set[REGNO (reg) + i].insn, insn);
10488 while (state->time < t)
10489 mips_sim_next_cycle (state);
10493 /* A for_each_rtx callback. If *X is a register, advance simulation state
10494 DATA until mips_sim_insn can read the register's value. */
10496 static int
10497 mips_sim_wait_regs_2 (rtx *x, void *data)
10499 if (REG_P (*x))
10500 mips_sim_wait_reg (data, mips_sim_insn, *x);
10501 return 0;
10504 /* Call mips_sim_wait_regs_2 (R, DATA) for each register R mentioned in *X. */
10506 static void
10507 mips_sim_wait_regs_1 (rtx *x, void *data)
10509 for_each_rtx (x, mips_sim_wait_regs_2, data);
10512 /* Advance simulation state STATE until all of INSN's register
10513 dependencies are satisfied. */
10515 static void
10516 mips_sim_wait_regs (struct mips_sim *state, rtx insn)
10518 mips_sim_insn = insn;
10519 note_uses (&PATTERN (insn), mips_sim_wait_regs_1, state);
10522 /* Advance simulation state STATE until the units required by
10523 instruction INSN are available. */
10525 static void
10526 mips_sim_wait_units (struct mips_sim *state, rtx insn)
10528 state_t tmp_state;
10530 tmp_state = alloca (state_size ());
10531 while (state->insns_left == 0
10532 || (memcpy (tmp_state, state->dfa_state, state_size ()),
10533 state_transition (tmp_state, insn) >= 0))
10534 mips_sim_next_cycle (state);
10537 /* Advance simulation state STATE until INSN is ready to issue. */
10539 static void
10540 mips_sim_wait_insn (struct mips_sim *state, rtx insn)
10542 mips_sim_wait_regs (state, insn);
10543 mips_sim_wait_units (state, insn);
10546 /* mips_sim_insn has just set X. Update the LAST_SET array
10547 in simulation state DATA. */
10549 static void
10550 mips_sim_record_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
10552 struct mips_sim *state;
10553 unsigned int i;
10555 state = data;
10556 if (REG_P (x))
10557 for (i = 0; i < HARD_REGNO_NREGS (REGNO (x), GET_MODE (x)); i++)
10559 state->last_set[REGNO (x) + i].insn = mips_sim_insn;
10560 state->last_set[REGNO (x) + i].time = state->time;
10564 /* Issue instruction INSN in scheduler state STATE. Assume that INSN
10565 can issue immediately (i.e., that mips_sim_wait_insn has already
10566 been called). */
10568 static void
10569 mips_sim_issue_insn (struct mips_sim *state, rtx insn)
10571 state_transition (state->dfa_state, insn);
10572 state->insns_left--;
10574 mips_sim_insn = insn;
10575 note_stores (PATTERN (insn), mips_sim_record_set, state);
10578 /* Simulate issuing a NOP in state STATE. */
10580 static void
10581 mips_sim_issue_nop (struct mips_sim *state)
10583 if (state->insns_left == 0)
10584 mips_sim_next_cycle (state);
10585 state->insns_left--;
10588 /* Update simulation state STATE so that it's ready to accept the instruction
10589 after INSN. INSN should be part of the main rtl chain, not a member of a
10590 SEQUENCE. */
10592 static void
10593 mips_sim_finish_insn (struct mips_sim *state, rtx insn)
10595 /* If INSN is a jump with an implicit delay slot, simulate a nop. */
10596 if (JUMP_P (insn))
10597 mips_sim_issue_nop (state);
10599 switch (GET_CODE (SEQ_BEGIN (insn)))
10601 case CODE_LABEL:
10602 case CALL_INSN:
10603 /* We can't predict the processor state after a call or label. */
10604 mips_sim_reset (state);
10605 break;
10607 case JUMP_INSN:
10608 /* The delay slots of branch likely instructions are only executed
10609 when the branch is taken. Therefore, if the caller has simulated
10610 the delay slot instruction, STATE does not really reflect the state
10611 of the pipeline for the instruction after the delay slot. Also,
10612 branch likely instructions tend to incur a penalty when not taken,
10613 so there will probably be an extra delay between the branch and
10614 the instruction after the delay slot. */
10615 if (INSN_ANNULLED_BRANCH_P (SEQ_BEGIN (insn)))
10616 mips_sim_reset (state);
10617 break;
10619 default:
10620 break;
10624 /* The VR4130 pipeline issues aligned pairs of instructions together,
10625 but it stalls the second instruction if it depends on the first.
10626 In order to cut down the amount of logic required, this dependence
10627 check is not based on a full instruction decode. Instead, any non-SPECIAL
10628 instruction is assumed to modify the register specified by bits 20-16
10629 (which is usually the "rt" field).
10631 In beq, beql, bne and bnel instructions, the rt field is actually an
10632 input, so we can end up with a false dependence between the branch
10633 and its delay slot. If this situation occurs in instruction INSN,
10634 try to avoid it by swapping rs and rt. */
10636 static void
10637 vr4130_avoid_branch_rt_conflict (rtx insn)
10639 rtx first, second;
10641 first = SEQ_BEGIN (insn);
10642 second = SEQ_END (insn);
10643 if (JUMP_P (first)
10644 && NONJUMP_INSN_P (second)
10645 && GET_CODE (PATTERN (first)) == SET
10646 && GET_CODE (SET_DEST (PATTERN (first))) == PC
10647 && GET_CODE (SET_SRC (PATTERN (first))) == IF_THEN_ELSE)
10649 /* Check for the right kind of condition. */
10650 rtx cond = XEXP (SET_SRC (PATTERN (first)), 0);
10651 if ((GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
10652 && REG_P (XEXP (cond, 0))
10653 && REG_P (XEXP (cond, 1))
10654 && reg_referenced_p (XEXP (cond, 1), PATTERN (second))
10655 && !reg_referenced_p (XEXP (cond, 0), PATTERN (second)))
10657 /* SECOND mentions the rt register but not the rs register. */
10658 rtx tmp = XEXP (cond, 0);
10659 XEXP (cond, 0) = XEXP (cond, 1);
10660 XEXP (cond, 1) = tmp;
10665 /* Implement -mvr4130-align. Go through each basic block and simulate the
10666 processor pipeline. If we find that a pair of instructions could execute
10667 in parallel, and the first of those instruction is not 8-byte aligned,
10668 insert a nop to make it aligned. */
10670 static void
10671 vr4130_align_insns (void)
10673 struct mips_sim state;
10674 rtx insn, subinsn, last, last2, next;
10675 bool aligned_p;
10677 dfa_start ();
10679 /* LAST is the last instruction before INSN to have a nonzero length.
10680 LAST2 is the last such instruction before LAST. */
10681 last = 0;
10682 last2 = 0;
10684 /* ALIGNED_P is true if INSN is known to be at an aligned address. */
10685 aligned_p = true;
10687 mips_sim_init (&state, alloca (state_size ()));
10688 for (insn = get_insns (); insn != 0; insn = next)
10690 unsigned int length;
10692 next = NEXT_INSN (insn);
10694 /* See the comment above vr4130_avoid_branch_rt_conflict for details.
10695 This isn't really related to the alignment pass, but we do it on
10696 the fly to avoid a separate instruction walk. */
10697 vr4130_avoid_branch_rt_conflict (insn);
10699 if (USEFUL_INSN_P (insn))
10700 FOR_EACH_SUBINSN (subinsn, insn)
10702 mips_sim_wait_insn (&state, subinsn);
10704 /* If we want this instruction to issue in parallel with the
10705 previous one, make sure that the previous instruction is
10706 aligned. There are several reasons why this isn't worthwhile
10707 when the second instruction is a call:
10709 - Calls are less likely to be performance critical,
10710 - There's a good chance that the delay slot can execute
10711 in parallel with the call.
10712 - The return address would then be unaligned.
10714 In general, if we're going to insert a nop between instructions
10715 X and Y, it's better to insert it immediately after X. That
10716 way, if the nop makes Y aligned, it will also align any labels
10717 between X and Y. */
10718 if (state.insns_left != state.issue_rate
10719 && !CALL_P (subinsn))
10721 if (subinsn == SEQ_BEGIN (insn) && aligned_p)
10723 /* SUBINSN is the first instruction in INSN and INSN is
10724 aligned. We want to align the previous instruction
10725 instead, so insert a nop between LAST2 and LAST.
10727 Note that LAST could be either a single instruction
10728 or a branch with a delay slot. In the latter case,
10729 LAST, like INSN, is already aligned, but the delay
10730 slot must have some extra delay that stops it from
10731 issuing at the same time as the branch. We therefore
10732 insert a nop before the branch in order to align its
10733 delay slot. */
10734 emit_insn_after (gen_nop (), last2);
10735 aligned_p = false;
10737 else if (subinsn != SEQ_BEGIN (insn) && !aligned_p)
10739 /* SUBINSN is the delay slot of INSN, but INSN is
10740 currently unaligned. Insert a nop between
10741 LAST and INSN to align it. */
10742 emit_insn_after (gen_nop (), last);
10743 aligned_p = true;
10746 mips_sim_issue_insn (&state, subinsn);
10748 mips_sim_finish_insn (&state, insn);
10750 /* Update LAST, LAST2 and ALIGNED_P for the next instruction. */
10751 length = get_attr_length (insn);
10752 if (length > 0)
10754 /* If the instruction is an asm statement or multi-instruction
10755 mips.md patern, the length is only an estimate. Insert an
10756 8 byte alignment after it so that the following instructions
10757 can be handled correctly. */
10758 if (NONJUMP_INSN_P (SEQ_BEGIN (insn))
10759 && (recog_memoized (insn) < 0 || length >= 8))
10761 next = emit_insn_after (gen_align (GEN_INT (3)), insn);
10762 next = NEXT_INSN (next);
10763 mips_sim_next_cycle (&state);
10764 aligned_p = true;
10766 else if (length & 4)
10767 aligned_p = !aligned_p;
10768 last2 = last;
10769 last = insn;
10772 /* See whether INSN is an aligned label. */
10773 if (LABEL_P (insn) && label_to_alignment (insn) >= 3)
10774 aligned_p = true;
10776 dfa_finish ();
10779 /* Subroutine of mips_reorg. If there is a hazard between INSN
10780 and a previous instruction, avoid it by inserting nops after
10781 instruction AFTER.
10783 *DELAYED_REG and *HILO_DELAY describe the hazards that apply at
10784 this point. If *DELAYED_REG is non-null, INSN must wait a cycle
10785 before using the value of that register. *HILO_DELAY counts the
10786 number of instructions since the last hilo hazard (that is,
10787 the number of instructions since the last mflo or mfhi).
10789 After inserting nops for INSN, update *DELAYED_REG and *HILO_DELAY
10790 for the next instruction.
10792 LO_REG is an rtx for the LO register, used in dependence checking. */
10794 static void
10795 mips_avoid_hazard (rtx after, rtx insn, int *hilo_delay,
10796 rtx *delayed_reg, rtx lo_reg)
10798 rtx pattern, set;
10799 int nops, ninsns;
10801 if (!INSN_P (insn))
10802 return;
10804 pattern = PATTERN (insn);
10806 /* Do not put the whole function in .set noreorder if it contains
10807 an asm statement. We don't know whether there will be hazards
10808 between the asm statement and the gcc-generated code. */
10809 if (GET_CODE (pattern) == ASM_INPUT || asm_noperands (pattern) >= 0)
10810 cfun->machine->all_noreorder_p = false;
10812 /* Ignore zero-length instructions (barriers and the like). */
10813 ninsns = get_attr_length (insn) / 4;
10814 if (ninsns == 0)
10815 return;
10817 /* Work out how many nops are needed. Note that we only care about
10818 registers that are explicitly mentioned in the instruction's pattern.
10819 It doesn't matter that calls use the argument registers or that they
10820 clobber hi and lo. */
10821 if (*hilo_delay < 2 && reg_set_p (lo_reg, pattern))
10822 nops = 2 - *hilo_delay;
10823 else if (*delayed_reg != 0 && reg_referenced_p (*delayed_reg, pattern))
10824 nops = 1;
10825 else
10826 nops = 0;
10828 /* Insert the nops between this instruction and the previous one.
10829 Each new nop takes us further from the last hilo hazard. */
10830 *hilo_delay += nops;
10831 while (nops-- > 0)
10832 emit_insn_after (gen_hazard_nop (), after);
10834 /* Set up the state for the next instruction. */
10835 *hilo_delay += ninsns;
10836 *delayed_reg = 0;
10837 if (INSN_CODE (insn) >= 0)
10838 switch (get_attr_hazard (insn))
10840 case HAZARD_NONE:
10841 break;
10843 case HAZARD_HILO:
10844 *hilo_delay = 0;
10845 break;
10847 case HAZARD_DELAY:
10848 set = single_set (insn);
10849 gcc_assert (set != 0);
10850 *delayed_reg = SET_DEST (set);
10851 break;
10856 /* Go through the instruction stream and insert nops where necessary.
10857 See if the whole function can then be put into .set noreorder &
10858 .set nomacro. */
10860 static void
10861 mips_avoid_hazards (void)
10863 rtx insn, last_insn, lo_reg, delayed_reg;
10864 int hilo_delay, i;
10866 /* Force all instructions to be split into their final form. */
10867 split_all_insns_noflow ();
10869 /* Recalculate instruction lengths without taking nops into account. */
10870 cfun->machine->ignore_hazard_length_p = true;
10871 shorten_branches (get_insns ());
10873 cfun->machine->all_noreorder_p = true;
10875 /* Profiled functions can't be all noreorder because the profiler
10876 support uses assembler macros. */
10877 if (current_function_profile)
10878 cfun->machine->all_noreorder_p = false;
10880 /* Code compiled with -mfix-vr4120 can't be all noreorder because
10881 we rely on the assembler to work around some errata. */
10882 if (TARGET_FIX_VR4120)
10883 cfun->machine->all_noreorder_p = false;
10885 /* The same is true for -mfix-vr4130 if we might generate mflo or
10886 mfhi instructions. Note that we avoid using mflo and mfhi if
10887 the VR4130 macc and dmacc instructions are available instead;
10888 see the *mfhilo_{si,di}_macc patterns. */
10889 if (TARGET_FIX_VR4130 && !ISA_HAS_MACCHI)
10890 cfun->machine->all_noreorder_p = false;
10892 last_insn = 0;
10893 hilo_delay = 2;
10894 delayed_reg = 0;
10895 lo_reg = gen_rtx_REG (SImode, LO_REGNUM);
10897 for (insn = get_insns (); insn != 0; insn = NEXT_INSN (insn))
10898 if (INSN_P (insn))
10900 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
10901 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
10902 mips_avoid_hazard (last_insn, XVECEXP (PATTERN (insn), 0, i),
10903 &hilo_delay, &delayed_reg, lo_reg);
10904 else
10905 mips_avoid_hazard (last_insn, insn, &hilo_delay,
10906 &delayed_reg, lo_reg);
10908 last_insn = insn;
10913 /* Implement TARGET_MACHINE_DEPENDENT_REORG. */
10915 static void
10916 mips_reorg (void)
10918 mips16_lay_out_constants ();
10919 if (TARGET_EXPLICIT_RELOCS)
10921 if (mips_flag_delayed_branch)
10922 dbr_schedule (get_insns ());
10923 mips_avoid_hazards ();
10924 if (TUNE_MIPS4130 && TARGET_VR4130_ALIGN)
10925 vr4130_align_insns ();
10929 /* This function does three things:
10931 - Register the special divsi3 and modsi3 functions if -mfix-vr4120.
10932 - Register the mips16 hardware floating point stubs.
10933 - Register the gofast functions if selected using --enable-gofast. */
10935 #include "config/gofast.h"
10937 static void
10938 mips_init_libfuncs (void)
10940 if (TARGET_FIX_VR4120)
10942 set_optab_libfunc (sdiv_optab, SImode, "__vr4120_divsi3");
10943 set_optab_libfunc (smod_optab, SImode, "__vr4120_modsi3");
10946 if (TARGET_MIPS16 && TARGET_HARD_FLOAT_ABI)
10948 set_optab_libfunc (add_optab, SFmode, "__mips16_addsf3");
10949 set_optab_libfunc (sub_optab, SFmode, "__mips16_subsf3");
10950 set_optab_libfunc (smul_optab, SFmode, "__mips16_mulsf3");
10951 set_optab_libfunc (sdiv_optab, SFmode, "__mips16_divsf3");
10953 set_optab_libfunc (eq_optab, SFmode, "__mips16_eqsf2");
10954 set_optab_libfunc (ne_optab, SFmode, "__mips16_nesf2");
10955 set_optab_libfunc (gt_optab, SFmode, "__mips16_gtsf2");
10956 set_optab_libfunc (ge_optab, SFmode, "__mips16_gesf2");
10957 set_optab_libfunc (lt_optab, SFmode, "__mips16_ltsf2");
10958 set_optab_libfunc (le_optab, SFmode, "__mips16_lesf2");
10959 set_optab_libfunc (unord_optab, SFmode, "__mips16_unordsf2");
10961 set_conv_libfunc (sfix_optab, SImode, SFmode, "__mips16_fix_truncsfsi");
10962 set_conv_libfunc (sfloat_optab, SFmode, SImode, "__mips16_floatsisf");
10963 set_conv_libfunc (ufloat_optab, SFmode, SImode, "__mips16_floatunsisf");
10965 if (TARGET_DOUBLE_FLOAT)
10967 set_optab_libfunc (add_optab, DFmode, "__mips16_adddf3");
10968 set_optab_libfunc (sub_optab, DFmode, "__mips16_subdf3");
10969 set_optab_libfunc (smul_optab, DFmode, "__mips16_muldf3");
10970 set_optab_libfunc (sdiv_optab, DFmode, "__mips16_divdf3");
10972 set_optab_libfunc (eq_optab, DFmode, "__mips16_eqdf2");
10973 set_optab_libfunc (ne_optab, DFmode, "__mips16_nedf2");
10974 set_optab_libfunc (gt_optab, DFmode, "__mips16_gtdf2");
10975 set_optab_libfunc (ge_optab, DFmode, "__mips16_gedf2");
10976 set_optab_libfunc (lt_optab, DFmode, "__mips16_ltdf2");
10977 set_optab_libfunc (le_optab, DFmode, "__mips16_ledf2");
10978 set_optab_libfunc (unord_optab, DFmode, "__mips16_unorddf2");
10980 set_conv_libfunc (sext_optab, DFmode, SFmode, "__mips16_extendsfdf2");
10981 set_conv_libfunc (trunc_optab, SFmode, DFmode, "__mips16_truncdfsf2");
10983 set_conv_libfunc (sfix_optab, SImode, DFmode, "__mips16_fix_truncdfsi");
10984 set_conv_libfunc (sfloat_optab, DFmode, SImode, "__mips16_floatsidf");
10985 set_conv_libfunc (ufloat_optab, DFmode, SImode, "__mips16_floatunsidf");
10988 else
10989 gofast_maybe_init_libfuncs ();
10992 /* Return a number assessing the cost of moving a register in class
10993 FROM to class TO. The classes are expressed using the enumeration
10994 values such as `GENERAL_REGS'. A value of 2 is the default; other
10995 values are interpreted relative to that.
10997 It is not required that the cost always equal 2 when FROM is the
10998 same as TO; on some machines it is expensive to move between
10999 registers if they are not general registers.
11001 If reload sees an insn consisting of a single `set' between two
11002 hard registers, and if `REGISTER_MOVE_COST' applied to their
11003 classes returns a value of 2, reload does not check to ensure that
11004 the constraints of the insn are met. Setting a cost of other than
11005 2 will allow reload to verify that the constraints are met. You
11006 should do this if the `movM' pattern's constraints do not allow
11007 such copying.
11009 ??? We make the cost of moving from HI/LO into general
11010 registers the same as for one of moving general registers to
11011 HI/LO for TARGET_MIPS16 in order to prevent allocating a
11012 pseudo to HI/LO. This might hurt optimizations though, it
11013 isn't clear if it is wise. And it might not work in all cases. We
11014 could solve the DImode LO reg problem by using a multiply, just
11015 like reload_{in,out}si. We could solve the SImode/HImode HI reg
11016 problem by using divide instructions. divu puts the remainder in
11017 the HI reg, so doing a divide by -1 will move the value in the HI
11018 reg for all values except -1. We could handle that case by using a
11019 signed divide, e.g. -1 / 2 (or maybe 1 / -2?). We'd have to emit
11020 a compare/branch to test the input value to see which instruction
11021 we need to use. This gets pretty messy, but it is feasible. */
11024 mips_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
11025 enum reg_class to, enum reg_class from)
11027 if (from == M16_REGS && reg_class_subset_p (to, GENERAL_REGS))
11028 return 2;
11029 else if (from == M16_NA_REGS && reg_class_subset_p (to, GENERAL_REGS))
11030 return 2;
11031 else if (reg_class_subset_p (from, GENERAL_REGS))
11033 if (to == M16_REGS)
11034 return 2;
11035 else if (to == M16_NA_REGS)
11036 return 2;
11037 else if (reg_class_subset_p (to, GENERAL_REGS))
11039 if (TARGET_MIPS16)
11040 return 4;
11041 else
11042 return 2;
11044 else if (to == FP_REGS)
11045 return 4;
11046 else if (reg_class_subset_p (to, ACC_REGS))
11048 if (TARGET_MIPS16)
11049 return 12;
11050 else
11051 return 6;
11053 else if (reg_class_subset_p (to, ALL_COP_REGS))
11055 return 5;
11058 else if (from == FP_REGS)
11060 if (reg_class_subset_p (to, GENERAL_REGS))
11061 return 4;
11062 else if (to == FP_REGS)
11063 return 2;
11064 else if (to == ST_REGS)
11065 return 8;
11067 else if (reg_class_subset_p (from, ACC_REGS))
11069 if (reg_class_subset_p (to, GENERAL_REGS))
11071 if (TARGET_MIPS16)
11072 return 12;
11073 else
11074 return 6;
11077 else if (from == ST_REGS && reg_class_subset_p (to, GENERAL_REGS))
11078 return 4;
11079 else if (reg_class_subset_p (from, ALL_COP_REGS))
11081 return 5;
11084 /* Fall through.
11085 ??? What cases are these? Shouldn't we return 2 here? */
11087 return 12;
11090 /* Return the length of INSN. LENGTH is the initial length computed by
11091 attributes in the machine-description file. */
11094 mips_adjust_insn_length (rtx insn, int length)
11096 /* A unconditional jump has an unfilled delay slot if it is not part
11097 of a sequence. A conditional jump normally has a delay slot, but
11098 does not on MIPS16. */
11099 if (CALL_P (insn) || (TARGET_MIPS16 ? simplejump_p (insn) : JUMP_P (insn)))
11100 length += 4;
11102 /* See how many nops might be needed to avoid hardware hazards. */
11103 if (!cfun->machine->ignore_hazard_length_p && INSN_CODE (insn) >= 0)
11104 switch (get_attr_hazard (insn))
11106 case HAZARD_NONE:
11107 break;
11109 case HAZARD_DELAY:
11110 length += 4;
11111 break;
11113 case HAZARD_HILO:
11114 length += 8;
11115 break;
11118 /* All MIPS16 instructions are a measly two bytes. */
11119 if (TARGET_MIPS16)
11120 length /= 2;
11122 return length;
11126 /* Return an asm sequence to start a noat block and load the address
11127 of a label into $1. */
11129 const char *
11130 mips_output_load_label (void)
11132 if (TARGET_EXPLICIT_RELOCS)
11133 switch (mips_abi)
11135 case ABI_N32:
11136 return "%[lw\t%@,%%got_page(%0)(%+)\n\taddiu\t%@,%@,%%got_ofst(%0)";
11138 case ABI_64:
11139 return "%[ld\t%@,%%got_page(%0)(%+)\n\tdaddiu\t%@,%@,%%got_ofst(%0)";
11141 default:
11142 if (ISA_HAS_LOAD_DELAY)
11143 return "%[lw\t%@,%%got(%0)(%+)%#\n\taddiu\t%@,%@,%%lo(%0)";
11144 return "%[lw\t%@,%%got(%0)(%+)\n\taddiu\t%@,%@,%%lo(%0)";
11146 else
11148 if (Pmode == DImode)
11149 return "%[dla\t%@,%0";
11150 else
11151 return "%[la\t%@,%0";
11155 /* Return the assembly code for INSN, which has the operands given by
11156 OPERANDS, and which branches to OPERANDS[1] if some condition is true.
11157 BRANCH_IF_TRUE is the asm template that should be used if OPERANDS[1]
11158 is in range of a direct branch. BRANCH_IF_FALSE is an inverted
11159 version of BRANCH_IF_TRUE. */
11161 const char *
11162 mips_output_conditional_branch (rtx insn, rtx *operands,
11163 const char *branch_if_true,
11164 const char *branch_if_false)
11166 unsigned int length;
11167 rtx taken, not_taken;
11169 length = get_attr_length (insn);
11170 if (length <= 8)
11172 /* Just a simple conditional branch. */
11173 mips_branch_likely = (final_sequence && INSN_ANNULLED_BRANCH_P (insn));
11174 return branch_if_true;
11177 /* Generate a reversed branch around a direct jump. This fallback does
11178 not use branch-likely instructions. */
11179 mips_branch_likely = false;
11180 not_taken = gen_label_rtx ();
11181 taken = operands[1];
11183 /* Generate the reversed branch to NOT_TAKEN. */
11184 operands[1] = not_taken;
11185 output_asm_insn (branch_if_false, operands);
11187 /* If INSN has a delay slot, we must provide delay slots for both the
11188 branch to NOT_TAKEN and the conditional jump. We must also ensure
11189 that INSN's delay slot is executed in the appropriate cases. */
11190 if (final_sequence)
11192 /* This first delay slot will always be executed, so use INSN's
11193 delay slot if is not annulled. */
11194 if (!INSN_ANNULLED_BRANCH_P (insn))
11196 final_scan_insn (XVECEXP (final_sequence, 0, 1),
11197 asm_out_file, optimize, 1, NULL);
11198 INSN_DELETED_P (XVECEXP (final_sequence, 0, 1)) = 1;
11200 else
11201 output_asm_insn ("nop", 0);
11202 fprintf (asm_out_file, "\n");
11205 /* Output the unconditional branch to TAKEN. */
11206 if (length <= 16)
11207 output_asm_insn ("j\t%0%/", &taken);
11208 else
11210 output_asm_insn (mips_output_load_label (), &taken);
11211 output_asm_insn ("jr\t%@%]%/", 0);
11214 /* Now deal with its delay slot; see above. */
11215 if (final_sequence)
11217 /* This delay slot will only be executed if the branch is taken.
11218 Use INSN's delay slot if is annulled. */
11219 if (INSN_ANNULLED_BRANCH_P (insn))
11221 final_scan_insn (XVECEXP (final_sequence, 0, 1),
11222 asm_out_file, optimize, 1, NULL);
11223 INSN_DELETED_P (XVECEXP (final_sequence, 0, 1)) = 1;
11225 else
11226 output_asm_insn ("nop", 0);
11227 fprintf (asm_out_file, "\n");
11230 /* Output NOT_TAKEN. */
11231 (*targetm.asm_out.internal_label) (asm_out_file, "L",
11232 CODE_LABEL_NUMBER (not_taken));
11233 return "";
11236 /* Return the assembly code for INSN, which branches to OPERANDS[1]
11237 if some ordered condition is true. The condition is given by
11238 OPERANDS[0] if !INVERTED_P, otherwise it is the inverse of
11239 OPERANDS[0]. OPERANDS[2] is the comparison's first operand;
11240 its second is always zero. */
11242 const char *
11243 mips_output_order_conditional_branch (rtx insn, rtx *operands, bool inverted_p)
11245 const char *branch[2];
11247 /* Make BRANCH[1] branch to OPERANDS[1] when the condition is true.
11248 Make BRANCH[0] branch on the inverse condition. */
11249 switch (GET_CODE (operands[0]))
11251 /* These cases are equivalent to comparisons against zero. */
11252 case LEU:
11253 inverted_p = !inverted_p;
11254 /* Fall through. */
11255 case GTU:
11256 branch[!inverted_p] = MIPS_BRANCH ("bne", "%2,%.,%1");
11257 branch[inverted_p] = MIPS_BRANCH ("beq", "%2,%.,%1");
11258 break;
11260 /* These cases are always true or always false. */
11261 case LTU:
11262 inverted_p = !inverted_p;
11263 /* Fall through. */
11264 case GEU:
11265 branch[!inverted_p] = MIPS_BRANCH ("beq", "%.,%.,%1");
11266 branch[inverted_p] = MIPS_BRANCH ("bne", "%.,%.,%1");
11267 break;
11269 default:
11270 branch[!inverted_p] = MIPS_BRANCH ("b%C0z", "%2,%1");
11271 branch[inverted_p] = MIPS_BRANCH ("b%N0z", "%2,%1");
11272 break;
11274 return mips_output_conditional_branch (insn, operands, branch[1], branch[0]);
11277 /* Used to output div or ddiv instruction DIVISION, which has the operands
11278 given by OPERANDS. Add in a divide-by-zero check if needed.
11280 When working around R4000 and R4400 errata, we need to make sure that
11281 the division is not immediately followed by a shift[1][2]. We also
11282 need to stop the division from being put into a branch delay slot[3].
11283 The easiest way to avoid both problems is to add a nop after the
11284 division. When a divide-by-zero check is needed, this nop can be
11285 used to fill the branch delay slot.
11287 [1] If a double-word or a variable shift executes immediately
11288 after starting an integer division, the shift may give an
11289 incorrect result. See quotations of errata #16 and #28 from
11290 "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
11291 in mips.md for details.
11293 [2] A similar bug to [1] exists for all revisions of the
11294 R4000 and the R4400 when run in an MC configuration.
11295 From "MIPS R4000MC Errata, Processor Revision 2.2 and 3.0":
11297 "19. In this following sequence:
11299 ddiv (or ddivu or div or divu)
11300 dsll32 (or dsrl32, dsra32)
11302 if an MPT stall occurs, while the divide is slipping the cpu
11303 pipeline, then the following double shift would end up with an
11304 incorrect result.
11306 Workaround: The compiler needs to avoid generating any
11307 sequence with divide followed by extended double shift."
11309 This erratum is also present in "MIPS R4400MC Errata, Processor
11310 Revision 1.0" and "MIPS R4400MC Errata, Processor Revision 2.0
11311 & 3.0" as errata #10 and #4, respectively.
11313 [3] From "MIPS R4000PC/SC Errata, Processor Revision 2.2 and 3.0"
11314 (also valid for MIPS R4000MC processors):
11316 "52. R4000SC: This bug does not apply for the R4000PC.
11318 There are two flavors of this bug:
11320 1) If the instruction just after divide takes an RF exception
11321 (tlb-refill, tlb-invalid) and gets an instruction cache
11322 miss (both primary and secondary) and the line which is
11323 currently in secondary cache at this index had the first
11324 data word, where the bits 5..2 are set, then R4000 would
11325 get a wrong result for the div.
11329 div r8, r9
11330 ------------------- # end-of page. -tlb-refill
11334 div r8, r9
11335 ------------------- # end-of page. -tlb-invalid
11338 2) If the divide is in the taken branch delay slot, where the
11339 target takes RF exception and gets an I-cache miss for the
11340 exception vector or where I-cache miss occurs for the
11341 target address, under the above mentioned scenarios, the
11342 div would get wrong results.
11345 j r2 # to next page mapped or unmapped
11346 div r8,r9 # this bug would be there as long
11347 # as there is an ICache miss and
11348 nop # the "data pattern" is present
11351 beq r0, r0, NextPage # to Next page
11352 div r8,r9
11355 This bug is present for div, divu, ddiv, and ddivu
11356 instructions.
11358 Workaround: For item 1), OS could make sure that the next page
11359 after the divide instruction is also mapped. For item 2), the
11360 compiler could make sure that the divide instruction is not in
11361 the branch delay slot."
11363 These processors have PRId values of 0x00004220 and 0x00004300 for
11364 the R4000 and 0x00004400, 0x00004500 and 0x00004600 for the R4400. */
11366 const char *
11367 mips_output_division (const char *division, rtx *operands)
11369 const char *s;
11371 s = division;
11372 if (TARGET_FIX_R4000 || TARGET_FIX_R4400)
11374 output_asm_insn (s, operands);
11375 s = "nop";
11377 if (TARGET_CHECK_ZERO_DIV)
11379 if (TARGET_MIPS16)
11381 output_asm_insn (s, operands);
11382 s = "bnez\t%2,1f\n\tbreak\t7\n1:";
11384 else if (GENERATE_DIVIDE_TRAPS)
11386 output_asm_insn (s, operands);
11387 s = "teq\t%2,%.,7";
11389 else
11391 output_asm_insn ("%(bne\t%2,%.,1f", operands);
11392 output_asm_insn (s, operands);
11393 s = "break\t7%)\n1:";
11396 return s;
11399 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
11400 with a final "000" replaced by "k". Ignore case.
11402 Note: this function is shared between GCC and GAS. */
11404 static bool
11405 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
11407 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
11408 given++, canonical++;
11410 return ((*given == 0 && *canonical == 0)
11411 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
11415 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
11416 CPU name. We've traditionally allowed a lot of variation here.
11418 Note: this function is shared between GCC and GAS. */
11420 static bool
11421 mips_matching_cpu_name_p (const char *canonical, const char *given)
11423 /* First see if the name matches exactly, or with a final "000"
11424 turned into "k". */
11425 if (mips_strict_matching_cpu_name_p (canonical, given))
11426 return true;
11428 /* If not, try comparing based on numerical designation alone.
11429 See if GIVEN is an unadorned number, or 'r' followed by a number. */
11430 if (TOLOWER (*given) == 'r')
11431 given++;
11432 if (!ISDIGIT (*given))
11433 return false;
11435 /* Skip over some well-known prefixes in the canonical name,
11436 hoping to find a number there too. */
11437 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
11438 canonical += 2;
11439 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
11440 canonical += 2;
11441 else if (TOLOWER (canonical[0]) == 'r')
11442 canonical += 1;
11444 return mips_strict_matching_cpu_name_p (canonical, given);
11448 /* Return the mips_cpu_info entry for the processor or ISA given
11449 by CPU_STRING. Return null if the string isn't recognized.
11451 A similar function exists in GAS. */
11453 static const struct mips_cpu_info *
11454 mips_parse_cpu (const char *cpu_string)
11456 const struct mips_cpu_info *p;
11457 const char *s;
11459 /* In the past, we allowed upper-case CPU names, but it doesn't
11460 work well with the multilib machinery. */
11461 for (s = cpu_string; *s != 0; s++)
11462 if (ISUPPER (*s))
11464 warning (0, "the cpu name must be lower case");
11465 break;
11468 /* 'from-abi' selects the most compatible architecture for the given
11469 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
11470 EABIs, we have to decide whether we're using the 32-bit or 64-bit
11471 version. Look first at the -mgp options, if given, otherwise base
11472 the choice on MASK_64BIT in TARGET_DEFAULT. */
11473 if (strcasecmp (cpu_string, "from-abi") == 0)
11474 return mips_cpu_info_from_isa (ABI_NEEDS_32BIT_REGS ? 1
11475 : ABI_NEEDS_64BIT_REGS ? 3
11476 : (TARGET_64BIT ? 3 : 1));
11478 /* 'default' has traditionally been a no-op. Probably not very useful. */
11479 if (strcasecmp (cpu_string, "default") == 0)
11480 return 0;
11482 for (p = mips_cpu_info_table; p->name != 0; p++)
11483 if (mips_matching_cpu_name_p (p->name, cpu_string))
11484 return p;
11486 return 0;
11490 /* Return the processor associated with the given ISA level, or null
11491 if the ISA isn't valid. */
11493 static const struct mips_cpu_info *
11494 mips_cpu_info_from_isa (int isa)
11496 const struct mips_cpu_info *p;
11498 for (p = mips_cpu_info_table; p->name != 0; p++)
11499 if (p->isa == isa)
11500 return p;
11502 return 0;
11505 /* Implement HARD_REGNO_NREGS. The size of FP registers is controlled
11506 by UNITS_PER_FPREG. The size of FP status registers is always 4, because
11507 they only hold condition code modes, and CCmode is always considered to
11508 be 4 bytes wide. All other registers are word sized. */
11510 unsigned int
11511 mips_hard_regno_nregs (int regno, enum machine_mode mode)
11513 if (ST_REG_P (regno))
11514 return ((GET_MODE_SIZE (mode) + 3) / 4);
11515 else if (! FP_REG_P (regno))
11516 return ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD);
11517 else
11518 return ((GET_MODE_SIZE (mode) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG);
11521 /* Implement TARGET_RETURN_IN_MEMORY. Under the old (i.e., 32 and O64 ABIs)
11522 all BLKmode objects are returned in memory. Under the new (N32 and
11523 64-bit MIPS ABIs) small structures are returned in a register.
11524 Objects with varying size must still be returned in memory, of
11525 course. */
11527 static bool
11528 mips_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED)
11530 if (TARGET_OLDABI)
11531 return (TYPE_MODE (type) == BLKmode);
11532 else
11533 return ((int_size_in_bytes (type) > (2 * UNITS_PER_WORD))
11534 || (int_size_in_bytes (type) == -1));
11537 static bool
11538 mips_strict_argument_naming (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED)
11540 return !TARGET_OLDABI;
11543 /* Return true if INSN is a multiply-add or multiply-subtract
11544 instruction and PREV assigns to the accumulator operand. */
11546 bool
11547 mips_linked_madd_p (rtx prev, rtx insn)
11549 rtx x;
11551 x = single_set (insn);
11552 if (x == 0)
11553 return false;
11555 x = SET_SRC (x);
11557 if (GET_CODE (x) == PLUS
11558 && GET_CODE (XEXP (x, 0)) == MULT
11559 && reg_set_p (XEXP (x, 1), prev))
11560 return true;
11562 if (GET_CODE (x) == MINUS
11563 && GET_CODE (XEXP (x, 1)) == MULT
11564 && reg_set_p (XEXP (x, 0), prev))
11565 return true;
11567 return false;
11570 /* Used by TUNE_MACC_CHAINS to record the last scheduled instruction
11571 that may clobber hi or lo. */
11573 static rtx mips_macc_chains_last_hilo;
11575 /* A TUNE_MACC_CHAINS helper function. Record that instruction INSN has
11576 been scheduled, updating mips_macc_chains_last_hilo appropriately. */
11578 static void
11579 mips_macc_chains_record (rtx insn)
11581 if (get_attr_may_clobber_hilo (insn))
11582 mips_macc_chains_last_hilo = insn;
11585 /* A TUNE_MACC_CHAINS helper function. Search ready queue READY, which
11586 has NREADY elements, looking for a multiply-add or multiply-subtract
11587 instruction that is cumulative with mips_macc_chains_last_hilo.
11588 If there is one, promote it ahead of anything else that might
11589 clobber hi or lo. */
11591 static void
11592 mips_macc_chains_reorder (rtx *ready, int nready)
11594 int i, j;
11596 if (mips_macc_chains_last_hilo != 0)
11597 for (i = nready - 1; i >= 0; i--)
11598 if (mips_linked_madd_p (mips_macc_chains_last_hilo, ready[i]))
11600 for (j = nready - 1; j > i; j--)
11601 if (recog_memoized (ready[j]) >= 0
11602 && get_attr_may_clobber_hilo (ready[j]))
11604 mips_promote_ready (ready, i, j);
11605 break;
11607 break;
11611 /* The last instruction to be scheduled. */
11613 static rtx vr4130_last_insn;
11615 /* A note_stores callback used by vr4130_true_reg_dependence_p. DATA
11616 points to an rtx that is initially an instruction. Nullify the rtx
11617 if the instruction uses the value of register X. */
11619 static void
11620 vr4130_true_reg_dependence_p_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
11622 rtx *insn_ptr = data;
11623 if (REG_P (x)
11624 && *insn_ptr != 0
11625 && reg_referenced_p (x, PATTERN (*insn_ptr)))
11626 *insn_ptr = 0;
11629 /* Return true if there is true register dependence between vr4130_last_insn
11630 and INSN. */
11632 static bool
11633 vr4130_true_reg_dependence_p (rtx insn)
11635 note_stores (PATTERN (vr4130_last_insn),
11636 vr4130_true_reg_dependence_p_1, &insn);
11637 return insn == 0;
11640 /* A TUNE_MIPS4130 helper function. Given that INSN1 is at the head of
11641 the ready queue and that INSN2 is the instruction after it, return
11642 true if it is worth promoting INSN2 ahead of INSN1. Look for cases
11643 in which INSN1 and INSN2 can probably issue in parallel, but for
11644 which (INSN2, INSN1) should be less sensitive to instruction
11645 alignment than (INSN1, INSN2). See 4130.md for more details. */
11647 static bool
11648 vr4130_swap_insns_p (rtx insn1, rtx insn2)
11650 sd_iterator_def sd_it;
11651 dep_t dep;
11653 /* Check for the following case:
11655 1) there is some other instruction X with an anti dependence on INSN1;
11656 2) X has a higher priority than INSN2; and
11657 3) X is an arithmetic instruction (and thus has no unit restrictions).
11659 If INSN1 is the last instruction blocking X, it would better to
11660 choose (INSN1, X) over (INSN2, INSN1). */
11661 FOR_EACH_DEP (insn1, SD_LIST_FORW, sd_it, dep)
11662 if (DEP_TYPE (dep) == REG_DEP_ANTI
11663 && INSN_PRIORITY (DEP_CON (dep)) > INSN_PRIORITY (insn2)
11664 && recog_memoized (DEP_CON (dep)) >= 0
11665 && get_attr_vr4130_class (DEP_CON (dep)) == VR4130_CLASS_ALU)
11666 return false;
11668 if (vr4130_last_insn != 0
11669 && recog_memoized (insn1) >= 0
11670 && recog_memoized (insn2) >= 0)
11672 /* See whether INSN1 and INSN2 use different execution units,
11673 or if they are both ALU-type instructions. If so, they can
11674 probably execute in parallel. */
11675 enum attr_vr4130_class class1 = get_attr_vr4130_class (insn1);
11676 enum attr_vr4130_class class2 = get_attr_vr4130_class (insn2);
11677 if (class1 != class2 || class1 == VR4130_CLASS_ALU)
11679 /* If only one of the instructions has a dependence on
11680 vr4130_last_insn, prefer to schedule the other one first. */
11681 bool dep1 = vr4130_true_reg_dependence_p (insn1);
11682 bool dep2 = vr4130_true_reg_dependence_p (insn2);
11683 if (dep1 != dep2)
11684 return dep1;
11686 /* Prefer to schedule INSN2 ahead of INSN1 if vr4130_last_insn
11687 is not an ALU-type instruction and if INSN1 uses the same
11688 execution unit. (Note that if this condition holds, we already
11689 know that INSN2 uses a different execution unit.) */
11690 if (class1 != VR4130_CLASS_ALU
11691 && recog_memoized (vr4130_last_insn) >= 0
11692 && class1 == get_attr_vr4130_class (vr4130_last_insn))
11693 return true;
11696 return false;
11699 /* A TUNE_MIPS4130 helper function. (READY, NREADY) describes a ready
11700 queue with at least two instructions. Swap the first two if
11701 vr4130_swap_insns_p says that it could be worthwhile. */
11703 static void
11704 vr4130_reorder (rtx *ready, int nready)
11706 if (vr4130_swap_insns_p (ready[nready - 1], ready[nready - 2]))
11707 mips_promote_ready (ready, nready - 2, nready - 1);
11710 /* Remove the instruction at index LOWER from ready queue READY and
11711 reinsert it in front of the instruction at index HIGHER. LOWER must
11712 be <= HIGHER. */
11714 static void
11715 mips_promote_ready (rtx *ready, int lower, int higher)
11717 rtx new_head;
11718 int i;
11720 new_head = ready[lower];
11721 for (i = lower; i < higher; i++)
11722 ready[i] = ready[i + 1];
11723 ready[i] = new_head;
11726 /* If the priority of the instruction at POS2 in the ready queue READY
11727 is within LIMIT units of that of the instruction at POS1, swap the
11728 instructions if POS2 is not already less than POS1. */
11730 static void
11731 mips_maybe_swap_ready (rtx *ready, int pos1, int pos2, int limit)
11733 if (pos1 < pos2
11734 && INSN_PRIORITY (ready[pos1]) + limit >= INSN_PRIORITY (ready[pos2]))
11736 rtx temp;
11737 temp = ready[pos1];
11738 ready[pos1] = ready[pos2];
11739 ready[pos2] = temp;
11743 /* Record whether last 74k AGEN instruction was a load or store. */
11745 static enum attr_type mips_last_74k_agen_insn = TYPE_UNKNOWN;
11747 /* Initialize mips_last_74k_agen_insn from INSN. A null argument
11748 resets to TYPE_UNKNOWN state. */
11750 static void
11751 mips_74k_agen_init (rtx insn)
11753 if (!insn || !NONJUMP_INSN_P (insn))
11754 mips_last_74k_agen_insn = TYPE_UNKNOWN;
11755 else if (USEFUL_INSN_P (insn))
11757 enum attr_type type = get_attr_type (insn);
11758 if (type == TYPE_LOAD || type == TYPE_STORE)
11759 mips_last_74k_agen_insn = type;
11763 /* A TUNE_74K helper function. The 74K AGEN pipeline likes multiple
11764 loads to be grouped together, and multiple stores to be grouped
11765 together. Swap things around in the ready queue to make this happen. */
11767 static void
11768 mips_74k_agen_reorder (rtx *ready, int nready)
11770 int i;
11771 int store_pos, load_pos;
11773 store_pos = -1;
11774 load_pos = -1;
11776 for (i = nready - 1; i >= 0; i--)
11778 rtx insn = ready[i];
11779 if (USEFUL_INSN_P (insn))
11780 switch (get_attr_type (insn))
11782 case TYPE_STORE:
11783 if (store_pos == -1)
11784 store_pos = i;
11785 break;
11787 case TYPE_LOAD:
11788 if (load_pos == -1)
11789 load_pos = i;
11790 break;
11792 default:
11793 break;
11797 if (load_pos == -1 || store_pos == -1)
11798 return;
11800 switch (mips_last_74k_agen_insn)
11802 case TYPE_UNKNOWN:
11803 /* Prefer to schedule loads since they have a higher latency. */
11804 case TYPE_LOAD:
11805 /* Swap loads to the front of the queue. */
11806 mips_maybe_swap_ready (ready, load_pos, store_pos, 4);
11807 break;
11808 case TYPE_STORE:
11809 /* Swap stores to the front of the queue. */
11810 mips_maybe_swap_ready (ready, store_pos, load_pos, 4);
11811 break;
11812 default:
11813 break;
11817 /* Implement TARGET_SCHED_INIT. */
11819 static void
11820 mips_sched_init (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
11821 int max_ready ATTRIBUTE_UNUSED)
11823 mips_macc_chains_last_hilo = 0;
11824 vr4130_last_insn = 0;
11825 mips_74k_agen_init (NULL_RTX);
11828 /* Implement TARGET_SCHED_REORDER and TARG_SCHED_REORDER2. */
11830 static int
11831 mips_sched_reorder (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
11832 rtx *ready, int *nreadyp, int cycle ATTRIBUTE_UNUSED)
11834 if (!reload_completed
11835 && TUNE_MACC_CHAINS
11836 && *nreadyp > 0)
11837 mips_macc_chains_reorder (ready, *nreadyp);
11838 if (reload_completed
11839 && TUNE_MIPS4130
11840 && !TARGET_VR4130_ALIGN
11841 && *nreadyp > 1)
11842 vr4130_reorder (ready, *nreadyp);
11843 if (TUNE_74K)
11844 mips_74k_agen_reorder (ready, *nreadyp);
11845 return mips_issue_rate ();
11848 /* Implement TARGET_SCHED_VARIABLE_ISSUE. */
11850 static int
11851 mips_variable_issue (FILE *file ATTRIBUTE_UNUSED, int verbose ATTRIBUTE_UNUSED,
11852 rtx insn, int more)
11854 if (TUNE_74K)
11855 mips_74k_agen_init (insn);
11856 switch (GET_CODE (PATTERN (insn)))
11858 case USE:
11859 case CLOBBER:
11860 /* Don't count USEs and CLOBBERs against the issue rate. */
11861 break;
11863 default:
11864 more--;
11865 if (!reload_completed && TUNE_MACC_CHAINS)
11866 mips_macc_chains_record (insn);
11867 vr4130_last_insn = insn;
11868 break;
11870 return more;
11873 /* Implement TARGET_SCHED_ADJUST_COST. We assume that anti and output
11874 dependencies have no cost, except on the 20Kc where output-dependence
11875 is treated like input-dependence. */
11877 static int
11878 mips_adjust_cost (rtx insn ATTRIBUTE_UNUSED, rtx link,
11879 rtx dep ATTRIBUTE_UNUSED, int cost)
11881 if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT
11882 && TUNE_20KC)
11883 return cost;
11884 if (REG_NOTE_KIND (link) != 0)
11885 return 0;
11886 return cost;
11889 /* Return the number of instructions that can be issued per cycle. */
11891 static int
11892 mips_issue_rate (void)
11894 switch (mips_tune)
11896 case PROCESSOR_74KC:
11897 case PROCESSOR_74KF2_1:
11898 case PROCESSOR_74KF1_1:
11899 case PROCESSOR_74KF3_2:
11900 /* The 74k is not strictly quad-issue cpu, but can be seen as one
11901 by the scheduler. It can issue 1 ALU, 1 AGEN and 2 FPU insns,
11902 but in reality only a maximum of 3 insns can be issued as the
11903 floating point load/stores also require a slot in the AGEN pipe. */
11904 return 4;
11906 case PROCESSOR_20KC:
11907 case PROCESSOR_R4130:
11908 case PROCESSOR_R5400:
11909 case PROCESSOR_R5500:
11910 case PROCESSOR_R7000:
11911 case PROCESSOR_R9000:
11912 return 2;
11914 case PROCESSOR_SB1:
11915 case PROCESSOR_SB1A:
11916 /* This is actually 4, but we get better performance if we claim 3.
11917 This is partly because of unwanted speculative code motion with the
11918 larger number, and partly because in most common cases we can't
11919 reach the theoretical max of 4. */
11920 return 3;
11922 default:
11923 return 1;
11927 /* Implements TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD. This should
11928 be as wide as the scheduling freedom in the DFA. */
11930 static int
11931 mips_multipass_dfa_lookahead (void)
11933 /* Can schedule up to 4 of the 6 function units in any one cycle. */
11934 if (TUNE_SB1)
11935 return 4;
11937 return 0;
11940 /* Implements a store data bypass check. We need this because the cprestore
11941 pattern is type store, but defined using an UNSPEC. This UNSPEC causes the
11942 default routine to abort. We just return false for that case. */
11943 /* ??? Should try to give a better result here than assuming false. */
11946 mips_store_data_bypass_p (rtx out_insn, rtx in_insn)
11948 if (GET_CODE (PATTERN (in_insn)) == UNSPEC_VOLATILE)
11949 return false;
11951 return ! store_data_bypass_p (out_insn, in_insn);
11954 /* Given that we have an rtx of the form (prefetch ... WRITE LOCALITY),
11955 return the first operand of the associated "pref" or "prefx" insn. */
11958 mips_prefetch_cookie (rtx write, rtx locality)
11960 /* store_streamed / load_streamed. */
11961 if (INTVAL (locality) <= 0)
11962 return GEN_INT (INTVAL (write) + 4);
11964 /* store / load. */
11965 if (INTVAL (locality) <= 2)
11966 return write;
11968 /* store_retained / load_retained. */
11969 return GEN_INT (INTVAL (write) + 6);
11972 /* MIPS builtin function support. */
11974 struct builtin_description
11976 /* The code of the main .md file instruction. See mips_builtin_type
11977 for more information. */
11978 enum insn_code icode;
11980 /* The floating-point comparison code to use with ICODE, if any. */
11981 enum mips_fp_condition cond;
11983 /* The name of the builtin function. */
11984 const char *name;
11986 /* Specifies how the function should be expanded. */
11987 enum mips_builtin_type builtin_type;
11989 /* The function's prototype. */
11990 enum mips_function_type function_type;
11992 /* The target flags required for this function. */
11993 int target_flags;
11996 /* Define a MIPS_BUILTIN_DIRECT function for instruction CODE_FOR_mips_<INSN>.
11997 FUNCTION_TYPE and TARGET_FLAGS are builtin_description fields. */
11998 #define DIRECT_BUILTIN(INSN, FUNCTION_TYPE, TARGET_FLAGS) \
11999 { CODE_FOR_mips_ ## INSN, 0, "__builtin_mips_" #INSN, \
12000 MIPS_BUILTIN_DIRECT, FUNCTION_TYPE, TARGET_FLAGS }
12002 /* Define __builtin_mips_<INSN>_<COND>_{s,d}, both of which require
12003 TARGET_FLAGS. */
12004 #define CMP_SCALAR_BUILTINS(INSN, COND, TARGET_FLAGS) \
12005 { CODE_FOR_mips_ ## INSN ## _cond_s, MIPS_FP_COND_ ## COND, \
12006 "__builtin_mips_" #INSN "_" #COND "_s", \
12007 MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_SF_SF, TARGET_FLAGS }, \
12008 { CODE_FOR_mips_ ## INSN ## _cond_d, MIPS_FP_COND_ ## COND, \
12009 "__builtin_mips_" #INSN "_" #COND "_d", \
12010 MIPS_BUILTIN_CMP_SINGLE, MIPS_INT_FTYPE_DF_DF, TARGET_FLAGS }
12012 /* Define __builtin_mips_{any,all,upper,lower}_<INSN>_<COND>_ps.
12013 The lower and upper forms require TARGET_FLAGS while the any and all
12014 forms require MASK_MIPS3D. */
12015 #define CMP_PS_BUILTINS(INSN, COND, TARGET_FLAGS) \
12016 { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND, \
12017 "__builtin_mips_any_" #INSN "_" #COND "_ps", \
12018 MIPS_BUILTIN_CMP_ANY, MIPS_INT_FTYPE_V2SF_V2SF, MASK_MIPS3D }, \
12019 { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND, \
12020 "__builtin_mips_all_" #INSN "_" #COND "_ps", \
12021 MIPS_BUILTIN_CMP_ALL, MIPS_INT_FTYPE_V2SF_V2SF, MASK_MIPS3D }, \
12022 { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND, \
12023 "__builtin_mips_lower_" #INSN "_" #COND "_ps", \
12024 MIPS_BUILTIN_CMP_LOWER, MIPS_INT_FTYPE_V2SF_V2SF, TARGET_FLAGS }, \
12025 { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND, \
12026 "__builtin_mips_upper_" #INSN "_" #COND "_ps", \
12027 MIPS_BUILTIN_CMP_UPPER, MIPS_INT_FTYPE_V2SF_V2SF, TARGET_FLAGS }
12029 /* Define __builtin_mips_{any,all}_<INSN>_<COND>_4s. The functions
12030 require MASK_MIPS3D. */
12031 #define CMP_4S_BUILTINS(INSN, COND) \
12032 { CODE_FOR_mips_ ## INSN ## _cond_4s, MIPS_FP_COND_ ## COND, \
12033 "__builtin_mips_any_" #INSN "_" #COND "_4s", \
12034 MIPS_BUILTIN_CMP_ANY, MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF, \
12035 MASK_MIPS3D }, \
12036 { CODE_FOR_mips_ ## INSN ## _cond_4s, MIPS_FP_COND_ ## COND, \
12037 "__builtin_mips_all_" #INSN "_" #COND "_4s", \
12038 MIPS_BUILTIN_CMP_ALL, MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF, \
12039 MASK_MIPS3D }
12041 /* Define __builtin_mips_mov{t,f}_<INSN>_<COND>_ps. The comparison
12042 instruction requires TARGET_FLAGS. */
12043 #define MOVTF_BUILTINS(INSN, COND, TARGET_FLAGS) \
12044 { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND, \
12045 "__builtin_mips_movt_" #INSN "_" #COND "_ps", \
12046 MIPS_BUILTIN_MOVT, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF, \
12047 TARGET_FLAGS }, \
12048 { CODE_FOR_mips_ ## INSN ## _cond_ps, MIPS_FP_COND_ ## COND, \
12049 "__builtin_mips_movf_" #INSN "_" #COND "_ps", \
12050 MIPS_BUILTIN_MOVF, MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF, \
12051 TARGET_FLAGS }
12053 /* Define all the builtins related to c.cond.fmt condition COND. */
12054 #define CMP_BUILTINS(COND) \
12055 MOVTF_BUILTINS (c, COND, MASK_PAIRED_SINGLE_FLOAT), \
12056 MOVTF_BUILTINS (cabs, COND, MASK_MIPS3D), \
12057 CMP_SCALAR_BUILTINS (cabs, COND, MASK_MIPS3D), \
12058 CMP_PS_BUILTINS (c, COND, MASK_PAIRED_SINGLE_FLOAT), \
12059 CMP_PS_BUILTINS (cabs, COND, MASK_MIPS3D), \
12060 CMP_4S_BUILTINS (c, COND), \
12061 CMP_4S_BUILTINS (cabs, COND)
12063 static const struct builtin_description mips_bdesc[] =
12065 DIRECT_BUILTIN (pll_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_PAIRED_SINGLE_FLOAT),
12066 DIRECT_BUILTIN (pul_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_PAIRED_SINGLE_FLOAT),
12067 DIRECT_BUILTIN (plu_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_PAIRED_SINGLE_FLOAT),
12068 DIRECT_BUILTIN (puu_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_PAIRED_SINGLE_FLOAT),
12069 DIRECT_BUILTIN (cvt_ps_s, MIPS_V2SF_FTYPE_SF_SF, MASK_PAIRED_SINGLE_FLOAT),
12070 DIRECT_BUILTIN (cvt_s_pl, MIPS_SF_FTYPE_V2SF, MASK_PAIRED_SINGLE_FLOAT),
12071 DIRECT_BUILTIN (cvt_s_pu, MIPS_SF_FTYPE_V2SF, MASK_PAIRED_SINGLE_FLOAT),
12072 DIRECT_BUILTIN (abs_ps, MIPS_V2SF_FTYPE_V2SF, MASK_PAIRED_SINGLE_FLOAT),
12074 DIRECT_BUILTIN (alnv_ps, MIPS_V2SF_FTYPE_V2SF_V2SF_INT,
12075 MASK_PAIRED_SINGLE_FLOAT),
12076 DIRECT_BUILTIN (addr_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_MIPS3D),
12077 DIRECT_BUILTIN (mulr_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_MIPS3D),
12078 DIRECT_BUILTIN (cvt_pw_ps, MIPS_V2SF_FTYPE_V2SF, MASK_MIPS3D),
12079 DIRECT_BUILTIN (cvt_ps_pw, MIPS_V2SF_FTYPE_V2SF, MASK_MIPS3D),
12081 DIRECT_BUILTIN (recip1_s, MIPS_SF_FTYPE_SF, MASK_MIPS3D),
12082 DIRECT_BUILTIN (recip1_d, MIPS_DF_FTYPE_DF, MASK_MIPS3D),
12083 DIRECT_BUILTIN (recip1_ps, MIPS_V2SF_FTYPE_V2SF, MASK_MIPS3D),
12084 DIRECT_BUILTIN (recip2_s, MIPS_SF_FTYPE_SF_SF, MASK_MIPS3D),
12085 DIRECT_BUILTIN (recip2_d, MIPS_DF_FTYPE_DF_DF, MASK_MIPS3D),
12086 DIRECT_BUILTIN (recip2_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_MIPS3D),
12088 DIRECT_BUILTIN (rsqrt1_s, MIPS_SF_FTYPE_SF, MASK_MIPS3D),
12089 DIRECT_BUILTIN (rsqrt1_d, MIPS_DF_FTYPE_DF, MASK_MIPS3D),
12090 DIRECT_BUILTIN (rsqrt1_ps, MIPS_V2SF_FTYPE_V2SF, MASK_MIPS3D),
12091 DIRECT_BUILTIN (rsqrt2_s, MIPS_SF_FTYPE_SF_SF, MASK_MIPS3D),
12092 DIRECT_BUILTIN (rsqrt2_d, MIPS_DF_FTYPE_DF_DF, MASK_MIPS3D),
12093 DIRECT_BUILTIN (rsqrt2_ps, MIPS_V2SF_FTYPE_V2SF_V2SF, MASK_MIPS3D),
12095 MIPS_FP_CONDITIONS (CMP_BUILTINS)
12098 /* Builtin functions for the SB-1 processor. */
12100 #define CODE_FOR_mips_sqrt_ps CODE_FOR_sqrtv2sf2
12102 static const struct builtin_description sb1_bdesc[] =
12104 DIRECT_BUILTIN (sqrt_ps, MIPS_V2SF_FTYPE_V2SF, MASK_PAIRED_SINGLE_FLOAT)
12107 /* Builtin functions for DSP ASE. */
12109 #define CODE_FOR_mips_addq_ph CODE_FOR_addv2hi3
12110 #define CODE_FOR_mips_addu_qb CODE_FOR_addv4qi3
12111 #define CODE_FOR_mips_subq_ph CODE_FOR_subv2hi3
12112 #define CODE_FOR_mips_subu_qb CODE_FOR_subv4qi3
12113 #define CODE_FOR_mips_mul_ph CODE_FOR_mulv2hi3
12115 /* Define a MIPS_BUILTIN_DIRECT_NO_TARGET function for instruction
12116 CODE_FOR_mips_<INSN>. FUNCTION_TYPE and TARGET_FLAGS are
12117 builtin_description fields. */
12118 #define DIRECT_NO_TARGET_BUILTIN(INSN, FUNCTION_TYPE, TARGET_FLAGS) \
12119 { CODE_FOR_mips_ ## INSN, 0, "__builtin_mips_" #INSN, \
12120 MIPS_BUILTIN_DIRECT_NO_TARGET, FUNCTION_TYPE, TARGET_FLAGS }
12122 /* Define __builtin_mips_bposge<VALUE>. <VALUE> is 32 for the MIPS32 DSP
12123 branch instruction. TARGET_FLAGS is a builtin_description field. */
12124 #define BPOSGE_BUILTIN(VALUE, TARGET_FLAGS) \
12125 { CODE_FOR_mips_bposge, 0, "__builtin_mips_bposge" #VALUE, \
12126 MIPS_BUILTIN_BPOSGE ## VALUE, MIPS_SI_FTYPE_VOID, TARGET_FLAGS }
12128 static const struct builtin_description dsp_bdesc[] =
12130 DIRECT_BUILTIN (addq_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
12131 DIRECT_BUILTIN (addq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
12132 DIRECT_BUILTIN (addq_s_w, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
12133 DIRECT_BUILTIN (addu_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
12134 DIRECT_BUILTIN (addu_s_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
12135 DIRECT_BUILTIN (subq_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
12136 DIRECT_BUILTIN (subq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
12137 DIRECT_BUILTIN (subq_s_w, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
12138 DIRECT_BUILTIN (subu_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
12139 DIRECT_BUILTIN (subu_s_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
12140 DIRECT_BUILTIN (addsc, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
12141 DIRECT_BUILTIN (addwc, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
12142 DIRECT_BUILTIN (modsub, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
12143 DIRECT_BUILTIN (raddu_w_qb, MIPS_SI_FTYPE_V4QI, MASK_DSP),
12144 DIRECT_BUILTIN (absq_s_ph, MIPS_V2HI_FTYPE_V2HI, MASK_DSP),
12145 DIRECT_BUILTIN (absq_s_w, MIPS_SI_FTYPE_SI, MASK_DSP),
12146 DIRECT_BUILTIN (precrq_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, MASK_DSP),
12147 DIRECT_BUILTIN (precrq_ph_w, MIPS_V2HI_FTYPE_SI_SI, MASK_DSP),
12148 DIRECT_BUILTIN (precrq_rs_ph_w, MIPS_V2HI_FTYPE_SI_SI, MASK_DSP),
12149 DIRECT_BUILTIN (precrqu_s_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, MASK_DSP),
12150 DIRECT_BUILTIN (preceq_w_phl, MIPS_SI_FTYPE_V2HI, MASK_DSP),
12151 DIRECT_BUILTIN (preceq_w_phr, MIPS_SI_FTYPE_V2HI, MASK_DSP),
12152 DIRECT_BUILTIN (precequ_ph_qbl, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
12153 DIRECT_BUILTIN (precequ_ph_qbr, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
12154 DIRECT_BUILTIN (precequ_ph_qbla, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
12155 DIRECT_BUILTIN (precequ_ph_qbra, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
12156 DIRECT_BUILTIN (preceu_ph_qbl, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
12157 DIRECT_BUILTIN (preceu_ph_qbr, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
12158 DIRECT_BUILTIN (preceu_ph_qbla, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
12159 DIRECT_BUILTIN (preceu_ph_qbra, MIPS_V2HI_FTYPE_V4QI, MASK_DSP),
12160 DIRECT_BUILTIN (shll_qb, MIPS_V4QI_FTYPE_V4QI_SI, MASK_DSP),
12161 DIRECT_BUILTIN (shll_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSP),
12162 DIRECT_BUILTIN (shll_s_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSP),
12163 DIRECT_BUILTIN (shll_s_w, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
12164 DIRECT_BUILTIN (shrl_qb, MIPS_V4QI_FTYPE_V4QI_SI, MASK_DSP),
12165 DIRECT_BUILTIN (shra_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSP),
12166 DIRECT_BUILTIN (shra_r_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSP),
12167 DIRECT_BUILTIN (shra_r_w, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
12168 DIRECT_BUILTIN (muleu_s_ph_qbl, MIPS_V2HI_FTYPE_V4QI_V2HI, MASK_DSP),
12169 DIRECT_BUILTIN (muleu_s_ph_qbr, MIPS_V2HI_FTYPE_V4QI_V2HI, MASK_DSP),
12170 DIRECT_BUILTIN (mulq_rs_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
12171 DIRECT_BUILTIN (muleq_s_w_phl, MIPS_SI_FTYPE_V2HI_V2HI, MASK_DSP),
12172 DIRECT_BUILTIN (muleq_s_w_phr, MIPS_SI_FTYPE_V2HI_V2HI, MASK_DSP),
12173 DIRECT_BUILTIN (bitrev, MIPS_SI_FTYPE_SI, MASK_DSP),
12174 DIRECT_BUILTIN (insv, MIPS_SI_FTYPE_SI_SI, MASK_DSP),
12175 DIRECT_BUILTIN (repl_qb, MIPS_V4QI_FTYPE_SI, MASK_DSP),
12176 DIRECT_BUILTIN (repl_ph, MIPS_V2HI_FTYPE_SI, MASK_DSP),
12177 DIRECT_NO_TARGET_BUILTIN (cmpu_eq_qb, MIPS_VOID_FTYPE_V4QI_V4QI, MASK_DSP),
12178 DIRECT_NO_TARGET_BUILTIN (cmpu_lt_qb, MIPS_VOID_FTYPE_V4QI_V4QI, MASK_DSP),
12179 DIRECT_NO_TARGET_BUILTIN (cmpu_le_qb, MIPS_VOID_FTYPE_V4QI_V4QI, MASK_DSP),
12180 DIRECT_BUILTIN (cmpgu_eq_qb, MIPS_SI_FTYPE_V4QI_V4QI, MASK_DSP),
12181 DIRECT_BUILTIN (cmpgu_lt_qb, MIPS_SI_FTYPE_V4QI_V4QI, MASK_DSP),
12182 DIRECT_BUILTIN (cmpgu_le_qb, MIPS_SI_FTYPE_V4QI_V4QI, MASK_DSP),
12183 DIRECT_NO_TARGET_BUILTIN (cmp_eq_ph, MIPS_VOID_FTYPE_V2HI_V2HI, MASK_DSP),
12184 DIRECT_NO_TARGET_BUILTIN (cmp_lt_ph, MIPS_VOID_FTYPE_V2HI_V2HI, MASK_DSP),
12185 DIRECT_NO_TARGET_BUILTIN (cmp_le_ph, MIPS_VOID_FTYPE_V2HI_V2HI, MASK_DSP),
12186 DIRECT_BUILTIN (pick_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSP),
12187 DIRECT_BUILTIN (pick_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
12188 DIRECT_BUILTIN (packrl_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSP),
12189 DIRECT_NO_TARGET_BUILTIN (wrdsp, MIPS_VOID_FTYPE_SI_SI, MASK_DSP),
12190 DIRECT_BUILTIN (rddsp, MIPS_SI_FTYPE_SI, MASK_DSP),
12191 DIRECT_BUILTIN (lbux, MIPS_SI_FTYPE_PTR_SI, MASK_DSP),
12192 DIRECT_BUILTIN (lhx, MIPS_SI_FTYPE_PTR_SI, MASK_DSP),
12193 DIRECT_BUILTIN (lwx, MIPS_SI_FTYPE_PTR_SI, MASK_DSP),
12194 BPOSGE_BUILTIN (32, MASK_DSP),
12196 /* The following are for the MIPS DSP ASE REV 2. */
12197 DIRECT_BUILTIN (absq_s_qb, MIPS_V4QI_FTYPE_V4QI, MASK_DSPR2),
12198 DIRECT_BUILTIN (addu_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSPR2),
12199 DIRECT_BUILTIN (addu_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSPR2),
12200 DIRECT_BUILTIN (adduh_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSPR2),
12201 DIRECT_BUILTIN (adduh_r_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSPR2),
12202 DIRECT_BUILTIN (append, MIPS_SI_FTYPE_SI_SI_SI, MASK_DSPR2),
12203 DIRECT_BUILTIN (balign, MIPS_SI_FTYPE_SI_SI_SI, MASK_DSPR2),
12204 DIRECT_BUILTIN (cmpgdu_eq_qb, MIPS_SI_FTYPE_V4QI_V4QI, MASK_DSPR2),
12205 DIRECT_BUILTIN (cmpgdu_lt_qb, MIPS_SI_FTYPE_V4QI_V4QI, MASK_DSPR2),
12206 DIRECT_BUILTIN (cmpgdu_le_qb, MIPS_SI_FTYPE_V4QI_V4QI, MASK_DSPR2),
12207 DIRECT_BUILTIN (mul_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSPR2),
12208 DIRECT_BUILTIN (mul_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSPR2),
12209 DIRECT_BUILTIN (mulq_rs_w, MIPS_SI_FTYPE_SI_SI, MASK_DSPR2),
12210 DIRECT_BUILTIN (mulq_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSPR2),
12211 DIRECT_BUILTIN (mulq_s_w, MIPS_SI_FTYPE_SI_SI, MASK_DSPR2),
12212 DIRECT_BUILTIN (precr_qb_ph, MIPS_V4QI_FTYPE_V2HI_V2HI, MASK_DSPR2),
12213 DIRECT_BUILTIN (precr_sra_ph_w, MIPS_V2HI_FTYPE_SI_SI_SI, MASK_DSPR2),
12214 DIRECT_BUILTIN (precr_sra_r_ph_w, MIPS_V2HI_FTYPE_SI_SI_SI, MASK_DSPR2),
12215 DIRECT_BUILTIN (prepend, MIPS_SI_FTYPE_SI_SI_SI, MASK_DSPR2),
12216 DIRECT_BUILTIN (shra_qb, MIPS_V4QI_FTYPE_V4QI_SI, MASK_DSPR2),
12217 DIRECT_BUILTIN (shra_r_qb, MIPS_V4QI_FTYPE_V4QI_SI, MASK_DSPR2),
12218 DIRECT_BUILTIN (shrl_ph, MIPS_V2HI_FTYPE_V2HI_SI, MASK_DSPR2),
12219 DIRECT_BUILTIN (subu_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSPR2),
12220 DIRECT_BUILTIN (subu_s_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSPR2),
12221 DIRECT_BUILTIN (subuh_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSPR2),
12222 DIRECT_BUILTIN (subuh_r_qb, MIPS_V4QI_FTYPE_V4QI_V4QI, MASK_DSPR2),
12223 DIRECT_BUILTIN (addqh_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSPR2),
12224 DIRECT_BUILTIN (addqh_r_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSPR2),
12225 DIRECT_BUILTIN (addqh_w, MIPS_SI_FTYPE_SI_SI, MASK_DSPR2),
12226 DIRECT_BUILTIN (addqh_r_w, MIPS_SI_FTYPE_SI_SI, MASK_DSPR2),
12227 DIRECT_BUILTIN (subqh_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSPR2),
12228 DIRECT_BUILTIN (subqh_r_ph, MIPS_V2HI_FTYPE_V2HI_V2HI, MASK_DSPR2),
12229 DIRECT_BUILTIN (subqh_w, MIPS_SI_FTYPE_SI_SI, MASK_DSPR2),
12230 DIRECT_BUILTIN (subqh_r_w, MIPS_SI_FTYPE_SI_SI, MASK_DSPR2)
12233 static const struct builtin_description dsp_32only_bdesc[] =
12235 DIRECT_BUILTIN (dpau_h_qbl, MIPS_DI_FTYPE_DI_V4QI_V4QI, MASK_DSP),
12236 DIRECT_BUILTIN (dpau_h_qbr, MIPS_DI_FTYPE_DI_V4QI_V4QI, MASK_DSP),
12237 DIRECT_BUILTIN (dpsu_h_qbl, MIPS_DI_FTYPE_DI_V4QI_V4QI, MASK_DSP),
12238 DIRECT_BUILTIN (dpsu_h_qbr, MIPS_DI_FTYPE_DI_V4QI_V4QI, MASK_DSP),
12239 DIRECT_BUILTIN (dpaq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
12240 DIRECT_BUILTIN (dpsq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
12241 DIRECT_BUILTIN (mulsaq_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
12242 DIRECT_BUILTIN (dpaq_sa_l_w, MIPS_DI_FTYPE_DI_SI_SI, MASK_DSP),
12243 DIRECT_BUILTIN (dpsq_sa_l_w, MIPS_DI_FTYPE_DI_SI_SI, MASK_DSP),
12244 DIRECT_BUILTIN (maq_s_w_phl, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
12245 DIRECT_BUILTIN (maq_s_w_phr, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
12246 DIRECT_BUILTIN (maq_sa_w_phl, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
12247 DIRECT_BUILTIN (maq_sa_w_phr, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSP),
12248 DIRECT_BUILTIN (extr_w, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
12249 DIRECT_BUILTIN (extr_r_w, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
12250 DIRECT_BUILTIN (extr_rs_w, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
12251 DIRECT_BUILTIN (extr_s_h, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
12252 DIRECT_BUILTIN (extp, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
12253 DIRECT_BUILTIN (extpdp, MIPS_SI_FTYPE_DI_SI, MASK_DSP),
12254 DIRECT_BUILTIN (shilo, MIPS_DI_FTYPE_DI_SI, MASK_DSP),
12255 DIRECT_BUILTIN (mthlip, MIPS_DI_FTYPE_DI_SI, MASK_DSP),
12257 /* The following are for the MIPS DSP ASE REV 2. */
12258 DIRECT_BUILTIN (dpa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSPR2),
12259 DIRECT_BUILTIN (dps_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSPR2),
12260 DIRECT_BUILTIN (madd, MIPS_DI_FTYPE_DI_SI_SI, MASK_DSPR2),
12261 DIRECT_BUILTIN (maddu, MIPS_DI_FTYPE_DI_USI_USI, MASK_DSPR2),
12262 DIRECT_BUILTIN (msub, MIPS_DI_FTYPE_DI_SI_SI, MASK_DSPR2),
12263 DIRECT_BUILTIN (msubu, MIPS_DI_FTYPE_DI_USI_USI, MASK_DSPR2),
12264 DIRECT_BUILTIN (mulsa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSPR2),
12265 DIRECT_BUILTIN (mult, MIPS_DI_FTYPE_SI_SI, MASK_DSPR2),
12266 DIRECT_BUILTIN (multu, MIPS_DI_FTYPE_USI_USI, MASK_DSPR2),
12267 DIRECT_BUILTIN (dpax_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSPR2),
12268 DIRECT_BUILTIN (dpsx_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSPR2),
12269 DIRECT_BUILTIN (dpaqx_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSPR2),
12270 DIRECT_BUILTIN (dpaqx_sa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSPR2),
12271 DIRECT_BUILTIN (dpsqx_s_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSPR2),
12272 DIRECT_BUILTIN (dpsqx_sa_w_ph, MIPS_DI_FTYPE_DI_V2HI_V2HI, MASK_DSPR2)
12275 /* This helps provide a mapping from builtin function codes to bdesc
12276 arrays. */
12278 struct bdesc_map
12280 /* The builtin function table that this entry describes. */
12281 const struct builtin_description *bdesc;
12283 /* The number of entries in the builtin function table. */
12284 unsigned int size;
12286 /* The target processor that supports these builtin functions.
12287 PROCESSOR_MAX means we enable them for all processors. */
12288 enum processor_type proc;
12290 /* If the target has these flags, this builtin function table
12291 will not be supported. */
12292 int unsupported_target_flags;
12295 static const struct bdesc_map bdesc_arrays[] =
12297 { mips_bdesc, ARRAY_SIZE (mips_bdesc), PROCESSOR_MAX, 0 },
12298 { sb1_bdesc, ARRAY_SIZE (sb1_bdesc), PROCESSOR_SB1, 0 },
12299 { dsp_bdesc, ARRAY_SIZE (dsp_bdesc), PROCESSOR_MAX, 0 },
12300 { dsp_32only_bdesc, ARRAY_SIZE (dsp_32only_bdesc), PROCESSOR_MAX,
12301 MASK_64BIT }
12304 /* Take the argument ARGNUM of the arglist of EXP and convert it into a form
12305 suitable for input operand OP of instruction ICODE. Return the value. */
12307 static rtx
12308 mips_prepare_builtin_arg (enum insn_code icode,
12309 unsigned int op, tree exp, unsigned int argnum)
12311 rtx value;
12312 enum machine_mode mode;
12314 value = expand_normal (CALL_EXPR_ARG (exp, argnum));
12315 mode = insn_data[icode].operand[op].mode;
12316 if (!insn_data[icode].operand[op].predicate (value, mode))
12318 value = copy_to_mode_reg (mode, value);
12319 /* Check the predicate again. */
12320 if (!insn_data[icode].operand[op].predicate (value, mode))
12322 error ("invalid argument to builtin function");
12323 return const0_rtx;
12327 return value;
12330 /* Return an rtx suitable for output operand OP of instruction ICODE.
12331 If TARGET is non-null, try to use it where possible. */
12333 static rtx
12334 mips_prepare_builtin_target (enum insn_code icode, unsigned int op, rtx target)
12336 enum machine_mode mode;
12338 mode = insn_data[icode].operand[op].mode;
12339 if (target == 0 || !insn_data[icode].operand[op].predicate (target, mode))
12340 target = gen_reg_rtx (mode);
12342 return target;
12345 /* Expand builtin functions. This is called from TARGET_EXPAND_BUILTIN. */
12348 mips_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
12349 enum machine_mode mode ATTRIBUTE_UNUSED,
12350 int ignore ATTRIBUTE_UNUSED)
12352 enum insn_code icode;
12353 enum mips_builtin_type type;
12354 tree fndecl;
12355 unsigned int fcode;
12356 const struct builtin_description *bdesc;
12357 const struct bdesc_map *m;
12359 fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
12360 fcode = DECL_FUNCTION_CODE (fndecl);
12362 if (TARGET_MIPS16)
12364 error ("built-in function %qs not supported for MIPS16",
12365 IDENTIFIER_POINTER (DECL_NAME (fndecl)));
12366 return const0_rtx;
12369 bdesc = NULL;
12370 for (m = bdesc_arrays; m < &bdesc_arrays[ARRAY_SIZE (bdesc_arrays)]; m++)
12372 if (fcode < m->size)
12374 bdesc = m->bdesc;
12375 icode = bdesc[fcode].icode;
12376 type = bdesc[fcode].builtin_type;
12377 break;
12379 fcode -= m->size;
12381 if (bdesc == NULL)
12382 return 0;
12384 switch (type)
12386 case MIPS_BUILTIN_DIRECT:
12387 return mips_expand_builtin_direct (icode, target, exp, true);
12389 case MIPS_BUILTIN_DIRECT_NO_TARGET:
12390 return mips_expand_builtin_direct (icode, target, exp, false);
12392 case MIPS_BUILTIN_MOVT:
12393 case MIPS_BUILTIN_MOVF:
12394 return mips_expand_builtin_movtf (type, icode, bdesc[fcode].cond,
12395 target, exp);
12397 case MIPS_BUILTIN_CMP_ANY:
12398 case MIPS_BUILTIN_CMP_ALL:
12399 case MIPS_BUILTIN_CMP_UPPER:
12400 case MIPS_BUILTIN_CMP_LOWER:
12401 case MIPS_BUILTIN_CMP_SINGLE:
12402 return mips_expand_builtin_compare (type, icode, bdesc[fcode].cond,
12403 target, exp);
12405 case MIPS_BUILTIN_BPOSGE32:
12406 return mips_expand_builtin_bposge (type, target);
12408 default:
12409 return 0;
12413 /* Init builtin functions. This is called from TARGET_INIT_BUILTIN. */
12415 void
12416 mips_init_builtins (void)
12418 const struct builtin_description *d;
12419 const struct bdesc_map *m;
12420 tree types[(int) MIPS_MAX_FTYPE_MAX];
12421 tree V2SF_type_node;
12422 tree V2HI_type_node;
12423 tree V4QI_type_node;
12424 unsigned int offset;
12426 /* We have only builtins for -mpaired-single, -mips3d and -mdsp. */
12427 if (!TARGET_PAIRED_SINGLE_FLOAT && !TARGET_DSP)
12428 return;
12430 if (TARGET_PAIRED_SINGLE_FLOAT)
12432 V2SF_type_node = build_vector_type_for_mode (float_type_node, V2SFmode);
12434 types[MIPS_V2SF_FTYPE_V2SF]
12435 = build_function_type_list (V2SF_type_node, V2SF_type_node, NULL_TREE);
12437 types[MIPS_V2SF_FTYPE_V2SF_V2SF]
12438 = build_function_type_list (V2SF_type_node,
12439 V2SF_type_node, V2SF_type_node, NULL_TREE);
12441 types[MIPS_V2SF_FTYPE_V2SF_V2SF_INT]
12442 = build_function_type_list (V2SF_type_node,
12443 V2SF_type_node, V2SF_type_node,
12444 integer_type_node, NULL_TREE);
12446 types[MIPS_V2SF_FTYPE_V2SF_V2SF_V2SF_V2SF]
12447 = build_function_type_list (V2SF_type_node,
12448 V2SF_type_node, V2SF_type_node,
12449 V2SF_type_node, V2SF_type_node, NULL_TREE);
12451 types[MIPS_V2SF_FTYPE_SF_SF]
12452 = build_function_type_list (V2SF_type_node,
12453 float_type_node, float_type_node, NULL_TREE);
12455 types[MIPS_INT_FTYPE_V2SF_V2SF]
12456 = build_function_type_list (integer_type_node,
12457 V2SF_type_node, V2SF_type_node, NULL_TREE);
12459 types[MIPS_INT_FTYPE_V2SF_V2SF_V2SF_V2SF]
12460 = build_function_type_list (integer_type_node,
12461 V2SF_type_node, V2SF_type_node,
12462 V2SF_type_node, V2SF_type_node, NULL_TREE);
12464 types[MIPS_INT_FTYPE_SF_SF]
12465 = build_function_type_list (integer_type_node,
12466 float_type_node, float_type_node, NULL_TREE);
12468 types[MIPS_INT_FTYPE_DF_DF]
12469 = build_function_type_list (integer_type_node,
12470 double_type_node, double_type_node, NULL_TREE);
12472 types[MIPS_SF_FTYPE_V2SF]
12473 = build_function_type_list (float_type_node, V2SF_type_node, NULL_TREE);
12475 types[MIPS_SF_FTYPE_SF]
12476 = build_function_type_list (float_type_node,
12477 float_type_node, NULL_TREE);
12479 types[MIPS_SF_FTYPE_SF_SF]
12480 = build_function_type_list (float_type_node,
12481 float_type_node, float_type_node, NULL_TREE);
12483 types[MIPS_DF_FTYPE_DF]
12484 = build_function_type_list (double_type_node,
12485 double_type_node, NULL_TREE);
12487 types[MIPS_DF_FTYPE_DF_DF]
12488 = build_function_type_list (double_type_node,
12489 double_type_node, double_type_node, NULL_TREE);
12492 if (TARGET_DSP)
12494 V2HI_type_node = build_vector_type_for_mode (intHI_type_node, V2HImode);
12495 V4QI_type_node = build_vector_type_for_mode (intQI_type_node, V4QImode);
12497 types[MIPS_V2HI_FTYPE_V2HI_V2HI]
12498 = build_function_type_list (V2HI_type_node,
12499 V2HI_type_node, V2HI_type_node,
12500 NULL_TREE);
12502 types[MIPS_SI_FTYPE_SI_SI]
12503 = build_function_type_list (intSI_type_node,
12504 intSI_type_node, intSI_type_node,
12505 NULL_TREE);
12507 types[MIPS_V4QI_FTYPE_V4QI_V4QI]
12508 = build_function_type_list (V4QI_type_node,
12509 V4QI_type_node, V4QI_type_node,
12510 NULL_TREE);
12512 types[MIPS_SI_FTYPE_V4QI]
12513 = build_function_type_list (intSI_type_node,
12514 V4QI_type_node,
12515 NULL_TREE);
12517 types[MIPS_V2HI_FTYPE_V2HI]
12518 = build_function_type_list (V2HI_type_node,
12519 V2HI_type_node,
12520 NULL_TREE);
12522 types[MIPS_SI_FTYPE_SI]
12523 = build_function_type_list (intSI_type_node,
12524 intSI_type_node,
12525 NULL_TREE);
12527 types[MIPS_V4QI_FTYPE_V2HI_V2HI]
12528 = build_function_type_list (V4QI_type_node,
12529 V2HI_type_node, V2HI_type_node,
12530 NULL_TREE);
12532 types[MIPS_V2HI_FTYPE_SI_SI]
12533 = build_function_type_list (V2HI_type_node,
12534 intSI_type_node, intSI_type_node,
12535 NULL_TREE);
12537 types[MIPS_SI_FTYPE_V2HI]
12538 = build_function_type_list (intSI_type_node,
12539 V2HI_type_node,
12540 NULL_TREE);
12542 types[MIPS_V2HI_FTYPE_V4QI]
12543 = build_function_type_list (V2HI_type_node,
12544 V4QI_type_node,
12545 NULL_TREE);
12547 types[MIPS_V4QI_FTYPE_V4QI_SI]
12548 = build_function_type_list (V4QI_type_node,
12549 V4QI_type_node, intSI_type_node,
12550 NULL_TREE);
12552 types[MIPS_V2HI_FTYPE_V2HI_SI]
12553 = build_function_type_list (V2HI_type_node,
12554 V2HI_type_node, intSI_type_node,
12555 NULL_TREE);
12557 types[MIPS_V2HI_FTYPE_V4QI_V2HI]
12558 = build_function_type_list (V2HI_type_node,
12559 V4QI_type_node, V2HI_type_node,
12560 NULL_TREE);
12562 types[MIPS_SI_FTYPE_V2HI_V2HI]
12563 = build_function_type_list (intSI_type_node,
12564 V2HI_type_node, V2HI_type_node,
12565 NULL_TREE);
12567 types[MIPS_DI_FTYPE_DI_V4QI_V4QI]
12568 = build_function_type_list (intDI_type_node,
12569 intDI_type_node, V4QI_type_node, V4QI_type_node,
12570 NULL_TREE);
12572 types[MIPS_DI_FTYPE_DI_V2HI_V2HI]
12573 = build_function_type_list (intDI_type_node,
12574 intDI_type_node, V2HI_type_node, V2HI_type_node,
12575 NULL_TREE);
12577 types[MIPS_DI_FTYPE_DI_SI_SI]
12578 = build_function_type_list (intDI_type_node,
12579 intDI_type_node, intSI_type_node, intSI_type_node,
12580 NULL_TREE);
12582 types[MIPS_V4QI_FTYPE_SI]
12583 = build_function_type_list (V4QI_type_node,
12584 intSI_type_node,
12585 NULL_TREE);
12587 types[MIPS_V2HI_FTYPE_SI]
12588 = build_function_type_list (V2HI_type_node,
12589 intSI_type_node,
12590 NULL_TREE);
12592 types[MIPS_VOID_FTYPE_V4QI_V4QI]
12593 = build_function_type_list (void_type_node,
12594 V4QI_type_node, V4QI_type_node,
12595 NULL_TREE);
12597 types[MIPS_SI_FTYPE_V4QI_V4QI]
12598 = build_function_type_list (intSI_type_node,
12599 V4QI_type_node, V4QI_type_node,
12600 NULL_TREE);
12602 types[MIPS_VOID_FTYPE_V2HI_V2HI]
12603 = build_function_type_list (void_type_node,
12604 V2HI_type_node, V2HI_type_node,
12605 NULL_TREE);
12607 types[MIPS_SI_FTYPE_DI_SI]
12608 = build_function_type_list (intSI_type_node,
12609 intDI_type_node, intSI_type_node,
12610 NULL_TREE);
12612 types[MIPS_DI_FTYPE_DI_SI]
12613 = build_function_type_list (intDI_type_node,
12614 intDI_type_node, intSI_type_node,
12615 NULL_TREE);
12617 types[MIPS_VOID_FTYPE_SI_SI]
12618 = build_function_type_list (void_type_node,
12619 intSI_type_node, intSI_type_node,
12620 NULL_TREE);
12622 types[MIPS_SI_FTYPE_PTR_SI]
12623 = build_function_type_list (intSI_type_node,
12624 ptr_type_node, intSI_type_node,
12625 NULL_TREE);
12627 types[MIPS_SI_FTYPE_VOID]
12628 = build_function_type (intSI_type_node, void_list_node);
12630 if (TARGET_DSPR2)
12632 types[MIPS_V4QI_FTYPE_V4QI]
12633 = build_function_type_list (V4QI_type_node,
12634 V4QI_type_node,
12635 NULL_TREE);
12637 types[MIPS_SI_FTYPE_SI_SI_SI]
12638 = build_function_type_list (intSI_type_node,
12639 intSI_type_node, intSI_type_node,
12640 intSI_type_node, NULL_TREE);
12642 types[MIPS_DI_FTYPE_DI_USI_USI]
12643 = build_function_type_list (intDI_type_node,
12644 intDI_type_node,
12645 unsigned_intSI_type_node,
12646 unsigned_intSI_type_node, NULL_TREE);
12648 types[MIPS_DI_FTYPE_SI_SI]
12649 = build_function_type_list (intDI_type_node,
12650 intSI_type_node, intSI_type_node,
12651 NULL_TREE);
12653 types[MIPS_DI_FTYPE_USI_USI]
12654 = build_function_type_list (intDI_type_node,
12655 unsigned_intSI_type_node,
12656 unsigned_intSI_type_node, NULL_TREE);
12658 types[MIPS_V2HI_FTYPE_SI_SI_SI]
12659 = build_function_type_list (V2HI_type_node,
12660 intSI_type_node, intSI_type_node,
12661 intSI_type_node, NULL_TREE);
12666 /* Iterate through all of the bdesc arrays, initializing all of the
12667 builtin functions. */
12669 offset = 0;
12670 for (m = bdesc_arrays; m < &bdesc_arrays[ARRAY_SIZE (bdesc_arrays)]; m++)
12672 if ((m->proc == PROCESSOR_MAX || (m->proc == mips_arch))
12673 && (m->unsupported_target_flags & target_flags) == 0)
12674 for (d = m->bdesc; d < &m->bdesc[m->size]; d++)
12675 if ((d->target_flags & target_flags) == d->target_flags)
12676 add_builtin_function (d->name, types[d->function_type],
12677 d - m->bdesc + offset,
12678 BUILT_IN_MD, NULL, NULL);
12679 offset += m->size;
12683 /* Expand a MIPS_BUILTIN_DIRECT function. ICODE is the code of the
12684 .md pattern and CALL is the function expr with arguments. TARGET,
12685 if nonnull, suggests a good place to put the result.
12686 HAS_TARGET indicates the function must return something. */
12688 static rtx
12689 mips_expand_builtin_direct (enum insn_code icode, rtx target, tree exp,
12690 bool has_target)
12692 rtx ops[MAX_RECOG_OPERANDS];
12693 int i = 0;
12694 int j = 0;
12696 if (has_target)
12698 /* We save target to ops[0]. */
12699 ops[0] = mips_prepare_builtin_target (icode, 0, target);
12700 i = 1;
12703 /* We need to test if the arglist is not zero. Some instructions have extra
12704 clobber registers. */
12705 for (; i < insn_data[icode].n_operands && i <= call_expr_nargs (exp); i++, j++)
12706 ops[i] = mips_prepare_builtin_arg (icode, i, exp, j);
12708 switch (i)
12710 case 2:
12711 emit_insn (GEN_FCN (icode) (ops[0], ops[1]));
12712 break;
12714 case 3:
12715 emit_insn (GEN_FCN (icode) (ops[0], ops[1], ops[2]));
12716 break;
12718 case 4:
12719 emit_insn (GEN_FCN (icode) (ops[0], ops[1], ops[2], ops[3]));
12720 break;
12722 default:
12723 gcc_unreachable ();
12725 return target;
12728 /* Expand a __builtin_mips_movt_*_ps() or __builtin_mips_movf_*_ps()
12729 function (TYPE says which). EXP is the tree for the function
12730 function, ICODE is the instruction that should be used to compare
12731 the first two arguments, and COND is the condition it should test.
12732 TARGET, if nonnull, suggests a good place to put the result. */
12734 static rtx
12735 mips_expand_builtin_movtf (enum mips_builtin_type type,
12736 enum insn_code icode, enum mips_fp_condition cond,
12737 rtx target, tree exp)
12739 rtx cmp_result, op0, op1;
12741 cmp_result = mips_prepare_builtin_target (icode, 0, 0);
12742 op0 = mips_prepare_builtin_arg (icode, 1, exp, 0);
12743 op1 = mips_prepare_builtin_arg (icode, 2, exp, 1);
12744 emit_insn (GEN_FCN (icode) (cmp_result, op0, op1, GEN_INT (cond)));
12746 icode = CODE_FOR_mips_cond_move_tf_ps;
12747 target = mips_prepare_builtin_target (icode, 0, target);
12748 if (type == MIPS_BUILTIN_MOVT)
12750 op1 = mips_prepare_builtin_arg (icode, 2, exp, 2);
12751 op0 = mips_prepare_builtin_arg (icode, 1, exp, 3);
12753 else
12755 op0 = mips_prepare_builtin_arg (icode, 1, exp, 2);
12756 op1 = mips_prepare_builtin_arg (icode, 2, exp, 3);
12758 emit_insn (gen_mips_cond_move_tf_ps (target, op0, op1, cmp_result));
12759 return target;
12762 /* Move VALUE_IF_TRUE into TARGET if CONDITION is true; move VALUE_IF_FALSE
12763 into TARGET otherwise. Return TARGET. */
12765 static rtx
12766 mips_builtin_branch_and_move (rtx condition, rtx target,
12767 rtx value_if_true, rtx value_if_false)
12769 rtx true_label, done_label;
12771 true_label = gen_label_rtx ();
12772 done_label = gen_label_rtx ();
12774 /* First assume that CONDITION is false. */
12775 mips_emit_move (target, value_if_false);
12777 /* Branch to TRUE_LABEL if CONDITION is true and DONE_LABEL otherwise. */
12778 emit_jump_insn (gen_condjump (condition, true_label));
12779 emit_jump_insn (gen_jump (done_label));
12780 emit_barrier ();
12782 /* Fix TARGET if CONDITION is true. */
12783 emit_label (true_label);
12784 mips_emit_move (target, value_if_true);
12786 emit_label (done_label);
12787 return target;
12790 /* Expand a comparison builtin of type BUILTIN_TYPE. ICODE is the code
12791 of the comparison instruction and COND is the condition it should test.
12792 EXP is the function call and arguments and TARGET, if nonnull,
12793 suggests a good place to put the boolean result. */
12795 static rtx
12796 mips_expand_builtin_compare (enum mips_builtin_type builtin_type,
12797 enum insn_code icode, enum mips_fp_condition cond,
12798 rtx target, tree exp)
12800 rtx offset, condition, cmp_result, ops[MAX_RECOG_OPERANDS];
12801 int i;
12802 int j = 0;
12804 if (target == 0 || GET_MODE (target) != SImode)
12805 target = gen_reg_rtx (SImode);
12807 /* Prepare the operands to the comparison. */
12808 cmp_result = mips_prepare_builtin_target (icode, 0, 0);
12809 for (i = 1; i < insn_data[icode].n_operands - 1; i++, j++)
12810 ops[i] = mips_prepare_builtin_arg (icode, i, exp, j);
12812 switch (insn_data[icode].n_operands)
12814 case 4:
12815 emit_insn (GEN_FCN (icode) (cmp_result, ops[1], ops[2], GEN_INT (cond)));
12816 break;
12818 case 6:
12819 emit_insn (GEN_FCN (icode) (cmp_result, ops[1], ops[2],
12820 ops[3], ops[4], GEN_INT (cond)));
12821 break;
12823 default:
12824 gcc_unreachable ();
12827 /* If the comparison sets more than one register, we define the result
12828 to be 0 if all registers are false and -1 if all registers are true.
12829 The value of the complete result is indeterminate otherwise. */
12830 switch (builtin_type)
12832 case MIPS_BUILTIN_CMP_ALL:
12833 condition = gen_rtx_NE (VOIDmode, cmp_result, constm1_rtx);
12834 return mips_builtin_branch_and_move (condition, target,
12835 const0_rtx, const1_rtx);
12837 case MIPS_BUILTIN_CMP_UPPER:
12838 case MIPS_BUILTIN_CMP_LOWER:
12839 offset = GEN_INT (builtin_type == MIPS_BUILTIN_CMP_UPPER);
12840 condition = gen_single_cc (cmp_result, offset);
12841 return mips_builtin_branch_and_move (condition, target,
12842 const1_rtx, const0_rtx);
12844 default:
12845 condition = gen_rtx_NE (VOIDmode, cmp_result, const0_rtx);
12846 return mips_builtin_branch_and_move (condition, target,
12847 const1_rtx, const0_rtx);
12851 /* Expand a bposge builtin of type BUILTIN_TYPE. TARGET, if nonnull,
12852 suggests a good place to put the boolean result. */
12854 static rtx
12855 mips_expand_builtin_bposge (enum mips_builtin_type builtin_type, rtx target)
12857 rtx condition, cmp_result;
12858 int cmp_value;
12860 if (target == 0 || GET_MODE (target) != SImode)
12861 target = gen_reg_rtx (SImode);
12863 cmp_result = gen_rtx_REG (CCDSPmode, CCDSP_PO_REGNUM);
12865 if (builtin_type == MIPS_BUILTIN_BPOSGE32)
12866 cmp_value = 32;
12867 else
12868 gcc_assert (0);
12870 condition = gen_rtx_GE (VOIDmode, cmp_result, GEN_INT (cmp_value));
12871 return mips_builtin_branch_and_move (condition, target,
12872 const1_rtx, const0_rtx);
12875 /* Set SYMBOL_REF_FLAGS for the SYMBOL_REF inside RTL, which belongs to DECL.
12876 FIRST is true if this is the first time handling this decl. */
12878 static void
12879 mips_encode_section_info (tree decl, rtx rtl, int first)
12881 default_encode_section_info (decl, rtl, first);
12883 if (TREE_CODE (decl) == FUNCTION_DECL)
12885 rtx symbol = XEXP (rtl, 0);
12886 tree type = TREE_TYPE (decl);
12888 if ((TARGET_LONG_CALLS && !mips_near_type_p (type))
12889 || mips_far_type_p (type))
12890 SYMBOL_REF_FLAGS (symbol) |= SYMBOL_FLAG_LONG_CALL;
12894 /* Implement TARGET_EXTRA_LIVE_ON_ENTRY. Some code models use the incoming
12895 value of PIC_FUNCTION_ADDR_REGNUM to set up the global pointer. */
12897 static void
12898 mips_extra_live_on_entry (bitmap regs)
12900 if (TARGET_USE_GOT && !TARGET_ABSOLUTE_ABICALLS)
12901 bitmap_set_bit (regs, PIC_FUNCTION_ADDR_REGNUM);
12904 /* SImode values are represented as sign-extended to DImode. */
12907 mips_mode_rep_extended (enum machine_mode mode, enum machine_mode mode_rep)
12909 if (TARGET_64BIT && mode == SImode && mode_rep == DImode)
12910 return SIGN_EXTEND;
12912 return UNKNOWN;
12915 /* MIPS implementation of TARGET_ASM_OUTPUT_DWARF_DTPREL. */
12917 static void
12918 mips_output_dwarf_dtprel (FILE *file, int size, rtx x)
12920 switch (size)
12922 case 4:
12923 fputs ("\t.dtprelword\t", file);
12924 break;
12926 case 8:
12927 fputs ("\t.dtpreldword\t", file);
12928 break;
12930 default:
12931 gcc_unreachable ();
12933 output_addr_const (file, x);
12934 fputs ("+0x8000", file);
12937 #include "gt-mips.h"