* inclhack.def (aix_complex): New fix.
[official-gcc.git] / gcc / stor-layout.c
blob47ce848b170f506a3f41fc749cd9b3d7b7721321
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "expr.h"
33 #include "output.h"
34 #include "toplev.h"
35 #include "ggc.h"
36 #include "target.h"
37 #include "langhooks.h"
38 #include "regs.h"
39 #include "params.h"
40 #include "cgraph.h"
41 #include "tree-inline.h"
42 #include "tree-dump.h"
43 #include "gimple.h"
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) TYPE_KIND_LAST];
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
52 /* ... and its original value in bytes, specified via -fpack-struct=<value>. */
53 unsigned int initial_max_fld_align = TARGET_DEFAULT_PACK_STRUCT;
55 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be
56 allocated in Pmode, not ptr_mode. Set only by internal_reference_types
57 called only by a front end. */
58 static int reference_types_internal = 0;
60 static tree self_referential_size (tree);
61 static void finalize_record_size (record_layout_info);
62 static void finalize_type_size (tree);
63 static void place_union_field (record_layout_info, tree);
64 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
65 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
66 HOST_WIDE_INT, tree);
67 #endif
68 extern void debug_rli (record_layout_info);
70 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
72 static GTY(()) tree pending_sizes;
74 /* Show that REFERENCE_TYPES are internal and should be Pmode. Called only
75 by front end. */
77 void
78 internal_reference_types (void)
80 reference_types_internal = 1;
83 /* Get a list of all the objects put on the pending sizes list. */
85 tree
86 get_pending_sizes (void)
88 tree chain = pending_sizes;
90 pending_sizes = 0;
91 return chain;
94 /* Add EXPR to the pending sizes list. */
96 void
97 put_pending_size (tree expr)
99 /* Strip any simple arithmetic from EXPR to see if it has an underlying
100 SAVE_EXPR. */
101 expr = skip_simple_arithmetic (expr);
103 if (TREE_CODE (expr) == SAVE_EXPR)
104 pending_sizes = tree_cons (NULL_TREE, expr, pending_sizes);
107 /* Put a chain of objects into the pending sizes list, which must be
108 empty. */
110 void
111 put_pending_sizes (tree chain)
113 gcc_assert (!pending_sizes);
114 pending_sizes = chain;
117 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
118 to serve as the actual size-expression for a type or decl. */
120 tree
121 variable_size (tree size)
123 tree save;
125 /* Obviously. */
126 if (TREE_CONSTANT (size))
127 return size;
129 /* If the size is self-referential, we can't make a SAVE_EXPR (see
130 save_expr for the rationale). But we can do something else. */
131 if (CONTAINS_PLACEHOLDER_P (size))
132 return self_referential_size (size);
134 /* If the language-processor is to take responsibility for variable-sized
135 items (e.g., languages which have elaboration procedures like Ada),
136 just return SIZE unchanged. */
137 if (lang_hooks.decls.global_bindings_p () < 0)
138 return size;
140 size = save_expr (size);
142 /* If an array with a variable number of elements is declared, and
143 the elements require destruction, we will emit a cleanup for the
144 array. That cleanup is run both on normal exit from the block
145 and in the exception-handler for the block. Normally, when code
146 is used in both ordinary code and in an exception handler it is
147 `unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
148 not wish to do that here; the array-size is the same in both
149 places. */
150 save = skip_simple_arithmetic (size);
152 if (cfun && cfun->dont_save_pending_sizes_p)
153 /* The front-end doesn't want us to keep a list of the expressions
154 that determine sizes for variable size objects. Trust it. */
155 return size;
157 if (lang_hooks.decls.global_bindings_p ())
159 if (TREE_CONSTANT (size))
160 error ("type size can%'t be explicitly evaluated");
161 else
162 error ("variable-size type declared outside of any function");
164 return size_one_node;
167 put_pending_size (save);
169 return size;
172 /* An array of functions used for self-referential size computation. */
173 static GTY(()) VEC (tree, gc) *size_functions;
175 /* Similar to copy_tree_r but do not copy component references involving
176 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
177 and substituted in substitute_in_expr. */
179 static tree
180 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
182 enum tree_code code = TREE_CODE (*tp);
184 /* Stop at types, decls, constants like copy_tree_r. */
185 if (TREE_CODE_CLASS (code) == tcc_type
186 || TREE_CODE_CLASS (code) == tcc_declaration
187 || TREE_CODE_CLASS (code) == tcc_constant)
189 *walk_subtrees = 0;
190 return NULL_TREE;
193 /* This is the pattern built in ada/make_aligning_type. */
194 else if (code == ADDR_EXPR
195 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
197 *walk_subtrees = 0;
198 return NULL_TREE;
201 /* Default case: the component reference. */
202 else if (code == COMPONENT_REF)
204 tree inner;
205 for (inner = TREE_OPERAND (*tp, 0);
206 REFERENCE_CLASS_P (inner);
207 inner = TREE_OPERAND (inner, 0))
210 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
212 *walk_subtrees = 0;
213 return NULL_TREE;
217 /* We're not supposed to have them in self-referential size trees
218 because we wouldn't properly control when they are evaluated.
219 However, not creating superfluous SAVE_EXPRs requires accurate
220 tracking of readonly-ness all the way down to here, which we
221 cannot always guarantee in practice. So punt in this case. */
222 else if (code == SAVE_EXPR)
223 return error_mark_node;
225 return copy_tree_r (tp, walk_subtrees, data);
228 /* Given a SIZE expression that is self-referential, return an equivalent
229 expression to serve as the actual size expression for a type. */
231 static tree
232 self_referential_size (tree size)
234 static unsigned HOST_WIDE_INT fnno = 0;
235 VEC (tree, heap) *self_refs = NULL;
236 tree param_type_list = NULL, param_decl_list = NULL, arg_list = NULL;
237 tree t, ref, return_type, fntype, fnname, fndecl;
238 unsigned int i;
239 char buf[128];
241 /* Do not factor out simple operations. */
242 t = skip_simple_arithmetic (size);
243 if (TREE_CODE (t) == CALL_EXPR)
244 return size;
246 /* Collect the list of self-references in the expression. */
247 find_placeholder_in_expr (size, &self_refs);
248 gcc_assert (VEC_length (tree, self_refs) > 0);
250 /* Obtain a private copy of the expression. */
251 t = size;
252 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
253 return size;
254 size = t;
256 /* Build the parameter and argument lists in parallel; also
257 substitute the former for the latter in the expression. */
258 for (i = 0; VEC_iterate (tree, self_refs, i, ref); i++)
260 tree subst, param_name, param_type, param_decl;
262 if (DECL_P (ref))
264 /* We shouldn't have true variables here. */
265 gcc_assert (TREE_READONLY (ref));
266 subst = ref;
268 /* This is the pattern built in ada/make_aligning_type. */
269 else if (TREE_CODE (ref) == ADDR_EXPR)
270 subst = ref;
271 /* Default case: the component reference. */
272 else
273 subst = TREE_OPERAND (ref, 1);
275 sprintf (buf, "p%d", i);
276 param_name = get_identifier (buf);
277 param_type = TREE_TYPE (ref);
278 param_decl
279 = build_decl (input_location, PARM_DECL, param_name, param_type);
280 if (targetm.calls.promote_prototypes (NULL_TREE)
281 && INTEGRAL_TYPE_P (param_type)
282 && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node))
283 DECL_ARG_TYPE (param_decl) = integer_type_node;
284 else
285 DECL_ARG_TYPE (param_decl) = param_type;
286 DECL_ARTIFICIAL (param_decl) = 1;
287 TREE_READONLY (param_decl) = 1;
289 size = substitute_in_expr (size, subst, param_decl);
291 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
292 param_decl_list = chainon (param_decl, param_decl_list);
293 arg_list = tree_cons (NULL_TREE, ref, arg_list);
296 VEC_free (tree, heap, self_refs);
298 /* Append 'void' to indicate that the number of parameters is fixed. */
299 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
301 /* The 3 lists have been created in reverse order. */
302 param_type_list = nreverse (param_type_list);
303 param_decl_list = nreverse (param_decl_list);
304 arg_list = nreverse (arg_list);
306 /* Build the function type. */
307 return_type = TREE_TYPE (size);
308 fntype = build_function_type (return_type, param_type_list);
310 /* Build the function declaration. */
311 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
312 fnname = get_file_function_name (buf);
313 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
314 for (t = param_decl_list; t; t = TREE_CHAIN (t))
315 DECL_CONTEXT (t) = fndecl;
316 DECL_ARGUMENTS (fndecl) = param_decl_list;
317 DECL_RESULT (fndecl)
318 = build_decl (input_location, RESULT_DECL, 0, return_type);
319 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
321 /* The function has been created by the compiler and we don't
322 want to emit debug info for it. */
323 DECL_ARTIFICIAL (fndecl) = 1;
324 DECL_IGNORED_P (fndecl) = 1;
326 /* It is supposed to be "const" and never throw. */
327 TREE_READONLY (fndecl) = 1;
328 TREE_NOTHROW (fndecl) = 1;
330 /* We want it to be inlined when this is deemed profitable, as
331 well as discarded if every call has been integrated. */
332 DECL_DECLARED_INLINE_P (fndecl) = 1;
334 /* It is made up of a unique return statement. */
335 DECL_INITIAL (fndecl) = make_node (BLOCK);
336 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
337 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
338 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
339 TREE_STATIC (fndecl) = 1;
341 /* Put it onto the list of size functions. */
342 VEC_safe_push (tree, gc, size_functions, fndecl);
344 /* Replace the original expression with a call to the size function. */
345 return build_function_call_expr (input_location, fndecl, arg_list);
348 /* Take, queue and compile all the size functions. It is essential that
349 the size functions be gimplified at the very end of the compilation
350 in order to guarantee transparent handling of self-referential sizes.
351 Otherwise the GENERIC inliner would not be able to inline them back
352 at each of their call sites, thus creating artificial non-constant
353 size expressions which would trigger nasty problems later on. */
355 void
356 finalize_size_functions (void)
358 unsigned int i;
359 tree fndecl;
361 for (i = 0; VEC_iterate(tree, size_functions, i, fndecl); i++)
363 dump_function (TDI_original, fndecl);
364 gimplify_function_tree (fndecl);
365 dump_function (TDI_generic, fndecl);
366 cgraph_finalize_function (fndecl, false);
369 VEC_free (tree, gc, size_functions);
372 #ifndef MAX_FIXED_MODE_SIZE
373 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
374 #endif
376 /* Return the machine mode to use for a nonscalar of SIZE bits. The
377 mode must be in class MCLASS, and have exactly that many value bits;
378 it may have padding as well. If LIMIT is nonzero, modes of wider
379 than MAX_FIXED_MODE_SIZE will not be used. */
381 enum machine_mode
382 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
384 enum machine_mode mode;
386 if (limit && size > MAX_FIXED_MODE_SIZE)
387 return BLKmode;
389 /* Get the first mode which has this size, in the specified class. */
390 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
391 mode = GET_MODE_WIDER_MODE (mode))
392 if (GET_MODE_PRECISION (mode) == size)
393 return mode;
395 return BLKmode;
398 /* Similar, except passed a tree node. */
400 enum machine_mode
401 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
403 unsigned HOST_WIDE_INT uhwi;
404 unsigned int ui;
406 if (!host_integerp (size, 1))
407 return BLKmode;
408 uhwi = tree_low_cst (size, 1);
409 ui = uhwi;
410 if (uhwi != ui)
411 return BLKmode;
412 return mode_for_size (ui, mclass, limit);
415 /* Similar, but never return BLKmode; return the narrowest mode that
416 contains at least the requested number of value bits. */
418 enum machine_mode
419 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
421 enum machine_mode mode;
423 /* Get the first mode which has at least this size, in the
424 specified class. */
425 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
426 mode = GET_MODE_WIDER_MODE (mode))
427 if (GET_MODE_PRECISION (mode) >= size)
428 return mode;
430 gcc_unreachable ();
433 /* Find an integer mode of the exact same size, or BLKmode on failure. */
435 enum machine_mode
436 int_mode_for_mode (enum machine_mode mode)
438 switch (GET_MODE_CLASS (mode))
440 case MODE_INT:
441 case MODE_PARTIAL_INT:
442 break;
444 case MODE_COMPLEX_INT:
445 case MODE_COMPLEX_FLOAT:
446 case MODE_FLOAT:
447 case MODE_DECIMAL_FLOAT:
448 case MODE_VECTOR_INT:
449 case MODE_VECTOR_FLOAT:
450 case MODE_FRACT:
451 case MODE_ACCUM:
452 case MODE_UFRACT:
453 case MODE_UACCUM:
454 case MODE_VECTOR_FRACT:
455 case MODE_VECTOR_ACCUM:
456 case MODE_VECTOR_UFRACT:
457 case MODE_VECTOR_UACCUM:
458 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
459 break;
461 case MODE_RANDOM:
462 if (mode == BLKmode)
463 break;
465 /* ... fall through ... */
467 case MODE_CC:
468 default:
469 gcc_unreachable ();
472 return mode;
475 /* Return the alignment of MODE. This will be bounded by 1 and
476 BIGGEST_ALIGNMENT. */
478 unsigned int
479 get_mode_alignment (enum machine_mode mode)
481 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
485 /* Subroutine of layout_decl: Force alignment required for the data type.
486 But if the decl itself wants greater alignment, don't override that. */
488 static inline void
489 do_type_align (tree type, tree decl)
491 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
493 DECL_ALIGN (decl) = TYPE_ALIGN (type);
494 if (TREE_CODE (decl) == FIELD_DECL)
495 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
499 /* Set the size, mode and alignment of a ..._DECL node.
500 TYPE_DECL does need this for C++.
501 Note that LABEL_DECL and CONST_DECL nodes do not need this,
502 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
503 Don't call layout_decl for them.
505 KNOWN_ALIGN is the amount of alignment we can assume this
506 decl has with no special effort. It is relevant only for FIELD_DECLs
507 and depends on the previous fields.
508 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
509 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
510 the record will be aligned to suit. */
512 void
513 layout_decl (tree decl, unsigned int known_align)
515 tree type = TREE_TYPE (decl);
516 enum tree_code code = TREE_CODE (decl);
517 rtx rtl = NULL_RTX;
518 location_t loc = DECL_SOURCE_LOCATION (decl);
520 if (code == CONST_DECL)
521 return;
523 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
524 || code == TYPE_DECL ||code == FIELD_DECL);
526 rtl = DECL_RTL_IF_SET (decl);
528 if (type == error_mark_node)
529 type = void_type_node;
531 /* Usually the size and mode come from the data type without change,
532 however, the front-end may set the explicit width of the field, so its
533 size may not be the same as the size of its type. This happens with
534 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
535 also happens with other fields. For example, the C++ front-end creates
536 zero-sized fields corresponding to empty base classes, and depends on
537 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
538 size in bytes from the size in bits. If we have already set the mode,
539 don't set it again since we can be called twice for FIELD_DECLs. */
541 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
542 if (DECL_MODE (decl) == VOIDmode)
543 DECL_MODE (decl) = TYPE_MODE (type);
545 if (DECL_SIZE (decl) == 0)
547 DECL_SIZE (decl) = TYPE_SIZE (type);
548 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
550 else if (DECL_SIZE_UNIT (decl) == 0)
551 DECL_SIZE_UNIT (decl)
552 = fold_convert_loc (loc, sizetype,
553 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
554 bitsize_unit_node));
556 if (code != FIELD_DECL)
557 /* For non-fields, update the alignment from the type. */
558 do_type_align (type, decl);
559 else
560 /* For fields, it's a bit more complicated... */
562 bool old_user_align = DECL_USER_ALIGN (decl);
563 bool zero_bitfield = false;
564 bool packed_p = DECL_PACKED (decl);
565 unsigned int mfa;
567 if (DECL_BIT_FIELD (decl))
569 DECL_BIT_FIELD_TYPE (decl) = type;
571 /* A zero-length bit-field affects the alignment of the next
572 field. In essence such bit-fields are not influenced by
573 any packing due to #pragma pack or attribute packed. */
574 if (integer_zerop (DECL_SIZE (decl))
575 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
577 zero_bitfield = true;
578 packed_p = false;
579 #ifdef PCC_BITFIELD_TYPE_MATTERS
580 if (PCC_BITFIELD_TYPE_MATTERS)
581 do_type_align (type, decl);
582 else
583 #endif
585 #ifdef EMPTY_FIELD_BOUNDARY
586 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
588 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
589 DECL_USER_ALIGN (decl) = 0;
591 #endif
595 /* See if we can use an ordinary integer mode for a bit-field.
596 Conditions are: a fixed size that is correct for another mode
597 and occupying a complete byte or bytes on proper boundary. */
598 if (TYPE_SIZE (type) != 0
599 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
600 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
602 enum machine_mode xmode
603 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
604 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
606 if (xmode != BLKmode
607 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
608 && (known_align == 0 || known_align >= xalign))
610 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
611 DECL_MODE (decl) = xmode;
612 DECL_BIT_FIELD (decl) = 0;
616 /* Turn off DECL_BIT_FIELD if we won't need it set. */
617 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
618 && known_align >= TYPE_ALIGN (type)
619 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
620 DECL_BIT_FIELD (decl) = 0;
622 else if (packed_p && DECL_USER_ALIGN (decl))
623 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
624 round up; we'll reduce it again below. We want packing to
625 supersede USER_ALIGN inherited from the type, but defer to
626 alignment explicitly specified on the field decl. */;
627 else
628 do_type_align (type, decl);
630 /* If the field is packed and not explicitly aligned, give it the
631 minimum alignment. Note that do_type_align may set
632 DECL_USER_ALIGN, so we need to check old_user_align instead. */
633 if (packed_p
634 && !old_user_align)
635 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
637 if (! packed_p && ! DECL_USER_ALIGN (decl))
639 /* Some targets (i.e. i386, VMS) limit struct field alignment
640 to a lower boundary than alignment of variables unless
641 it was overridden by attribute aligned. */
642 #ifdef BIGGEST_FIELD_ALIGNMENT
643 DECL_ALIGN (decl)
644 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
645 #endif
646 #ifdef ADJUST_FIELD_ALIGN
647 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
648 #endif
651 if (zero_bitfield)
652 mfa = initial_max_fld_align * BITS_PER_UNIT;
653 else
654 mfa = maximum_field_alignment;
655 /* Should this be controlled by DECL_USER_ALIGN, too? */
656 if (mfa != 0)
657 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
660 /* Evaluate nonconstant size only once, either now or as soon as safe. */
661 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
662 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
663 if (DECL_SIZE_UNIT (decl) != 0
664 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
665 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
667 /* If requested, warn about definitions of large data objects. */
668 if (warn_larger_than
669 && (code == VAR_DECL || code == PARM_DECL)
670 && ! DECL_EXTERNAL (decl))
672 tree size = DECL_SIZE_UNIT (decl);
674 if (size != 0 && TREE_CODE (size) == INTEGER_CST
675 && compare_tree_int (size, larger_than_size) > 0)
677 int size_as_int = TREE_INT_CST_LOW (size);
679 if (compare_tree_int (size, size_as_int) == 0)
680 warning (OPT_Wlarger_than_eq, "size of %q+D is %d bytes", decl, size_as_int);
681 else
682 warning (OPT_Wlarger_than_eq, "size of %q+D is larger than %wd bytes",
683 decl, larger_than_size);
687 /* If the RTL was already set, update its mode and mem attributes. */
688 if (rtl)
690 PUT_MODE (rtl, DECL_MODE (decl));
691 SET_DECL_RTL (decl, 0);
692 set_mem_attributes (rtl, decl, 1);
693 SET_DECL_RTL (decl, rtl);
697 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
698 a previous call to layout_decl and calls it again. */
700 void
701 relayout_decl (tree decl)
703 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
704 DECL_MODE (decl) = VOIDmode;
705 if (!DECL_USER_ALIGN (decl))
706 DECL_ALIGN (decl) = 0;
707 SET_DECL_RTL (decl, 0);
709 layout_decl (decl, 0);
712 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
713 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
714 is to be passed to all other layout functions for this record. It is the
715 responsibility of the caller to call `free' for the storage returned.
716 Note that garbage collection is not permitted until we finish laying
717 out the record. */
719 record_layout_info
720 start_record_layout (tree t)
722 record_layout_info rli = XNEW (struct record_layout_info_s);
724 rli->t = t;
726 /* If the type has a minimum specified alignment (via an attribute
727 declaration, for example) use it -- otherwise, start with a
728 one-byte alignment. */
729 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
730 rli->unpacked_align = rli->record_align;
731 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
733 #ifdef STRUCTURE_SIZE_BOUNDARY
734 /* Packed structures don't need to have minimum size. */
735 if (! TYPE_PACKED (t))
737 unsigned tmp;
739 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
740 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
741 if (maximum_field_alignment != 0)
742 tmp = MIN (tmp, maximum_field_alignment);
743 rli->record_align = MAX (rli->record_align, tmp);
745 #endif
747 rli->offset = size_zero_node;
748 rli->bitpos = bitsize_zero_node;
749 rli->prev_field = 0;
750 rli->pending_statics = 0;
751 rli->packed_maybe_necessary = 0;
752 rli->remaining_in_alignment = 0;
754 return rli;
757 /* These four routines perform computations that convert between
758 the offset/bitpos forms and byte and bit offsets. */
760 tree
761 bit_from_pos (tree offset, tree bitpos)
763 return size_binop (PLUS_EXPR, bitpos,
764 size_binop (MULT_EXPR,
765 fold_convert (bitsizetype, offset),
766 bitsize_unit_node));
769 tree
770 byte_from_pos (tree offset, tree bitpos)
772 return size_binop (PLUS_EXPR, offset,
773 fold_convert (sizetype,
774 size_binop (TRUNC_DIV_EXPR, bitpos,
775 bitsize_unit_node)));
778 void
779 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
780 tree pos)
782 *poffset = size_binop (MULT_EXPR,
783 fold_convert (sizetype,
784 size_binop (FLOOR_DIV_EXPR, pos,
785 bitsize_int (off_align))),
786 size_int (off_align / BITS_PER_UNIT));
787 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, bitsize_int (off_align));
790 /* Given a pointer to bit and byte offsets and an offset alignment,
791 normalize the offsets so they are within the alignment. */
793 void
794 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
796 /* If the bit position is now larger than it should be, adjust it
797 downwards. */
798 if (compare_tree_int (*pbitpos, off_align) >= 0)
800 tree extra_aligns = size_binop (FLOOR_DIV_EXPR, *pbitpos,
801 bitsize_int (off_align));
803 *poffset
804 = size_binop (PLUS_EXPR, *poffset,
805 size_binop (MULT_EXPR,
806 fold_convert (sizetype, extra_aligns),
807 size_int (off_align / BITS_PER_UNIT)));
809 *pbitpos
810 = size_binop (FLOOR_MOD_EXPR, *pbitpos, bitsize_int (off_align));
814 /* Print debugging information about the information in RLI. */
816 void
817 debug_rli (record_layout_info rli)
819 print_node_brief (stderr, "type", rli->t, 0);
820 print_node_brief (stderr, "\noffset", rli->offset, 0);
821 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
823 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
824 rli->record_align, rli->unpacked_align,
825 rli->offset_align);
827 /* The ms_struct code is the only that uses this. */
828 if (targetm.ms_bitfield_layout_p (rli->t))
829 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
831 if (rli->packed_maybe_necessary)
832 fprintf (stderr, "packed may be necessary\n");
834 if (rli->pending_statics)
836 fprintf (stderr, "pending statics:\n");
837 debug_tree (rli->pending_statics);
841 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
842 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
844 void
845 normalize_rli (record_layout_info rli)
847 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
850 /* Returns the size in bytes allocated so far. */
852 tree
853 rli_size_unit_so_far (record_layout_info rli)
855 return byte_from_pos (rli->offset, rli->bitpos);
858 /* Returns the size in bits allocated so far. */
860 tree
861 rli_size_so_far (record_layout_info rli)
863 return bit_from_pos (rli->offset, rli->bitpos);
866 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
867 the next available location within the record is given by KNOWN_ALIGN.
868 Update the variable alignment fields in RLI, and return the alignment
869 to give the FIELD. */
871 unsigned int
872 update_alignment_for_field (record_layout_info rli, tree field,
873 unsigned int known_align)
875 /* The alignment required for FIELD. */
876 unsigned int desired_align;
877 /* The type of this field. */
878 tree type = TREE_TYPE (field);
879 /* True if the field was explicitly aligned by the user. */
880 bool user_align;
881 bool is_bitfield;
883 /* Do not attempt to align an ERROR_MARK node */
884 if (TREE_CODE (type) == ERROR_MARK)
885 return 0;
887 /* Lay out the field so we know what alignment it needs. */
888 layout_decl (field, known_align);
889 desired_align = DECL_ALIGN (field);
890 user_align = DECL_USER_ALIGN (field);
892 is_bitfield = (type != error_mark_node
893 && DECL_BIT_FIELD_TYPE (field)
894 && ! integer_zerop (TYPE_SIZE (type)));
896 /* Record must have at least as much alignment as any field.
897 Otherwise, the alignment of the field within the record is
898 meaningless. */
899 if (targetm.ms_bitfield_layout_p (rli->t))
901 /* Here, the alignment of the underlying type of a bitfield can
902 affect the alignment of a record; even a zero-sized field
903 can do this. The alignment should be to the alignment of
904 the type, except that for zero-size bitfields this only
905 applies if there was an immediately prior, nonzero-size
906 bitfield. (That's the way it is, experimentally.) */
907 if ((!is_bitfield && !DECL_PACKED (field))
908 || (!integer_zerop (DECL_SIZE (field))
909 ? !DECL_PACKED (field)
910 : (rli->prev_field
911 && DECL_BIT_FIELD_TYPE (rli->prev_field)
912 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
914 unsigned int type_align = TYPE_ALIGN (type);
915 type_align = MAX (type_align, desired_align);
916 if (maximum_field_alignment != 0)
917 type_align = MIN (type_align, maximum_field_alignment);
918 rli->record_align = MAX (rli->record_align, type_align);
919 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
922 #ifdef PCC_BITFIELD_TYPE_MATTERS
923 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
925 /* Named bit-fields cause the entire structure to have the
926 alignment implied by their type. Some targets also apply the same
927 rules to unnamed bitfields. */
928 if (DECL_NAME (field) != 0
929 || targetm.align_anon_bitfield ())
931 unsigned int type_align = TYPE_ALIGN (type);
933 #ifdef ADJUST_FIELD_ALIGN
934 if (! TYPE_USER_ALIGN (type))
935 type_align = ADJUST_FIELD_ALIGN (field, type_align);
936 #endif
938 /* Targets might chose to handle unnamed and hence possibly
939 zero-width bitfield. Those are not influenced by #pragmas
940 or packed attributes. */
941 if (integer_zerop (DECL_SIZE (field)))
943 if (initial_max_fld_align)
944 type_align = MIN (type_align,
945 initial_max_fld_align * BITS_PER_UNIT);
947 else if (maximum_field_alignment != 0)
948 type_align = MIN (type_align, maximum_field_alignment);
949 else if (DECL_PACKED (field))
950 type_align = MIN (type_align, BITS_PER_UNIT);
952 /* The alignment of the record is increased to the maximum
953 of the current alignment, the alignment indicated on the
954 field (i.e., the alignment specified by an __aligned__
955 attribute), and the alignment indicated by the type of
956 the field. */
957 rli->record_align = MAX (rli->record_align, desired_align);
958 rli->record_align = MAX (rli->record_align, type_align);
960 if (warn_packed)
961 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
962 user_align |= TYPE_USER_ALIGN (type);
965 #endif
966 else
968 rli->record_align = MAX (rli->record_align, desired_align);
969 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
972 TYPE_USER_ALIGN (rli->t) |= user_align;
974 return desired_align;
977 /* Called from place_field to handle unions. */
979 static void
980 place_union_field (record_layout_info rli, tree field)
982 update_alignment_for_field (rli, field, /*known_align=*/0);
984 DECL_FIELD_OFFSET (field) = size_zero_node;
985 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
986 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
988 /* If this is an ERROR_MARK return *after* having set the
989 field at the start of the union. This helps when parsing
990 invalid fields. */
991 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
992 return;
994 /* We assume the union's size will be a multiple of a byte so we don't
995 bother with BITPOS. */
996 if (TREE_CODE (rli->t) == UNION_TYPE)
997 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
998 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
999 rli->offset = fold_build3_loc (input_location, COND_EXPR, sizetype,
1000 DECL_QUALIFIER (field),
1001 DECL_SIZE_UNIT (field), rli->offset);
1004 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1005 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1006 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1007 units of alignment than the underlying TYPE. */
1008 static int
1009 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1010 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1012 /* Note that the calculation of OFFSET might overflow; we calculate it so
1013 that we still get the right result as long as ALIGN is a power of two. */
1014 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1016 offset = offset % align;
1017 return ((offset + size + align - 1) / align
1018 > ((unsigned HOST_WIDE_INT) tree_low_cst (TYPE_SIZE (type), 1)
1019 / align));
1021 #endif
1023 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1024 is a FIELD_DECL to be added after those fields already present in
1025 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1026 callers that desire that behavior must manually perform that step.) */
1028 void
1029 place_field (record_layout_info rli, tree field)
1031 /* The alignment required for FIELD. */
1032 unsigned int desired_align;
1033 /* The alignment FIELD would have if we just dropped it into the
1034 record as it presently stands. */
1035 unsigned int known_align;
1036 unsigned int actual_align;
1037 /* The type of this field. */
1038 tree type = TREE_TYPE (field);
1040 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1042 /* If FIELD is static, then treat it like a separate variable, not
1043 really like a structure field. If it is a FUNCTION_DECL, it's a
1044 method. In both cases, all we do is lay out the decl, and we do
1045 it *after* the record is laid out. */
1046 if (TREE_CODE (field) == VAR_DECL)
1048 rli->pending_statics = tree_cons (NULL_TREE, field,
1049 rli->pending_statics);
1050 return;
1053 /* Enumerators and enum types which are local to this class need not
1054 be laid out. Likewise for initialized constant fields. */
1055 else if (TREE_CODE (field) != FIELD_DECL)
1056 return;
1058 /* Unions are laid out very differently than records, so split
1059 that code off to another function. */
1060 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1062 place_union_field (rli, field);
1063 return;
1066 else if (TREE_CODE (type) == ERROR_MARK)
1068 /* Place this field at the current allocation position, so we
1069 maintain monotonicity. */
1070 DECL_FIELD_OFFSET (field) = rli->offset;
1071 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1072 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1073 return;
1076 /* Work out the known alignment so far. Note that A & (-A) is the
1077 value of the least-significant bit in A that is one. */
1078 if (! integer_zerop (rli->bitpos))
1079 known_align = (tree_low_cst (rli->bitpos, 1)
1080 & - tree_low_cst (rli->bitpos, 1));
1081 else if (integer_zerop (rli->offset))
1082 known_align = 0;
1083 else if (host_integerp (rli->offset, 1))
1084 known_align = (BITS_PER_UNIT
1085 * (tree_low_cst (rli->offset, 1)
1086 & - tree_low_cst (rli->offset, 1)));
1087 else
1088 known_align = rli->offset_align;
1090 desired_align = update_alignment_for_field (rli, field, known_align);
1091 if (known_align == 0)
1092 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1094 if (warn_packed && DECL_PACKED (field))
1096 if (known_align >= TYPE_ALIGN (type))
1098 if (TYPE_ALIGN (type) > desired_align)
1100 if (STRICT_ALIGNMENT)
1101 warning (OPT_Wattributes, "packed attribute causes "
1102 "inefficient alignment for %q+D", field);
1103 else
1104 warning (OPT_Wattributes, "packed attribute is "
1105 "unnecessary for %q+D", field);
1108 else
1109 rli->packed_maybe_necessary = 1;
1112 /* Does this field automatically have alignment it needs by virtue
1113 of the fields that precede it and the record's own alignment?
1114 We already align ms_struct fields, so don't re-align them. */
1115 if (known_align < desired_align
1116 && !targetm.ms_bitfield_layout_p (rli->t))
1118 /* No, we need to skip space before this field.
1119 Bump the cumulative size to multiple of field alignment. */
1121 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1123 /* If the alignment is still within offset_align, just align
1124 the bit position. */
1125 if (desired_align < rli->offset_align)
1126 rli->bitpos = round_up (rli->bitpos, desired_align);
1127 else
1129 /* First adjust OFFSET by the partial bits, then align. */
1130 rli->offset
1131 = size_binop (PLUS_EXPR, rli->offset,
1132 fold_convert (sizetype,
1133 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1134 bitsize_unit_node)));
1135 rli->bitpos = bitsize_zero_node;
1137 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1140 if (! TREE_CONSTANT (rli->offset))
1141 rli->offset_align = desired_align;
1145 /* Handle compatibility with PCC. Note that if the record has any
1146 variable-sized fields, we need not worry about compatibility. */
1147 #ifdef PCC_BITFIELD_TYPE_MATTERS
1148 if (PCC_BITFIELD_TYPE_MATTERS
1149 && ! targetm.ms_bitfield_layout_p (rli->t)
1150 && TREE_CODE (field) == FIELD_DECL
1151 && type != error_mark_node
1152 && DECL_BIT_FIELD (field)
1153 && (! DECL_PACKED (field)
1154 /* Enter for these packed fields only to issue a warning. */
1155 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1156 && maximum_field_alignment == 0
1157 && ! integer_zerop (DECL_SIZE (field))
1158 && host_integerp (DECL_SIZE (field), 1)
1159 && host_integerp (rli->offset, 1)
1160 && host_integerp (TYPE_SIZE (type), 1))
1162 unsigned int type_align = TYPE_ALIGN (type);
1163 tree dsize = DECL_SIZE (field);
1164 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1165 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1166 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1168 #ifdef ADJUST_FIELD_ALIGN
1169 if (! TYPE_USER_ALIGN (type))
1170 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1171 #endif
1173 /* A bit field may not span more units of alignment of its type
1174 than its type itself. Advance to next boundary if necessary. */
1175 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1177 if (DECL_PACKED (field))
1179 if (warn_packed_bitfield_compat == 1)
1180 inform
1181 (input_location,
1182 "Offset of packed bit-field %qD has changed in GCC 4.4",
1183 field);
1185 else
1186 rli->bitpos = round_up_loc (input_location, rli->bitpos, type_align);
1189 if (! DECL_PACKED (field))
1190 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1192 #endif
1194 #ifdef BITFIELD_NBYTES_LIMITED
1195 if (BITFIELD_NBYTES_LIMITED
1196 && ! targetm.ms_bitfield_layout_p (rli->t)
1197 && TREE_CODE (field) == FIELD_DECL
1198 && type != error_mark_node
1199 && DECL_BIT_FIELD_TYPE (field)
1200 && ! DECL_PACKED (field)
1201 && ! integer_zerop (DECL_SIZE (field))
1202 && host_integerp (DECL_SIZE (field), 1)
1203 && host_integerp (rli->offset, 1)
1204 && host_integerp (TYPE_SIZE (type), 1))
1206 unsigned int type_align = TYPE_ALIGN (type);
1207 tree dsize = DECL_SIZE (field);
1208 HOST_WIDE_INT field_size = tree_low_cst (dsize, 1);
1209 HOST_WIDE_INT offset = tree_low_cst (rli->offset, 0);
1210 HOST_WIDE_INT bit_offset = tree_low_cst (rli->bitpos, 0);
1212 #ifdef ADJUST_FIELD_ALIGN
1213 if (! TYPE_USER_ALIGN (type))
1214 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1215 #endif
1217 if (maximum_field_alignment != 0)
1218 type_align = MIN (type_align, maximum_field_alignment);
1219 /* ??? This test is opposite the test in the containing if
1220 statement, so this code is unreachable currently. */
1221 else if (DECL_PACKED (field))
1222 type_align = MIN (type_align, BITS_PER_UNIT);
1224 /* A bit field may not span the unit of alignment of its type.
1225 Advance to next boundary if necessary. */
1226 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1227 rli->bitpos = round_up (rli->bitpos, type_align);
1229 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1231 #endif
1233 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1234 A subtlety:
1235 When a bit field is inserted into a packed record, the whole
1236 size of the underlying type is used by one or more same-size
1237 adjacent bitfields. (That is, if its long:3, 32 bits is
1238 used in the record, and any additional adjacent long bitfields are
1239 packed into the same chunk of 32 bits. However, if the size
1240 changes, a new field of that size is allocated.) In an unpacked
1241 record, this is the same as using alignment, but not equivalent
1242 when packing.
1244 Note: for compatibility, we use the type size, not the type alignment
1245 to determine alignment, since that matches the documentation */
1247 if (targetm.ms_bitfield_layout_p (rli->t))
1249 tree prev_saved = rli->prev_field;
1250 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1252 /* This is a bitfield if it exists. */
1253 if (rli->prev_field)
1255 /* If both are bitfields, nonzero, and the same size, this is
1256 the middle of a run. Zero declared size fields are special
1257 and handled as "end of run". (Note: it's nonzero declared
1258 size, but equal type sizes!) (Since we know that both
1259 the current and previous fields are bitfields by the
1260 time we check it, DECL_SIZE must be present for both.) */
1261 if (DECL_BIT_FIELD_TYPE (field)
1262 && !integer_zerop (DECL_SIZE (field))
1263 && !integer_zerop (DECL_SIZE (rli->prev_field))
1264 && host_integerp (DECL_SIZE (rli->prev_field), 0)
1265 && host_integerp (TYPE_SIZE (type), 0)
1266 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1268 /* We're in the middle of a run of equal type size fields; make
1269 sure we realign if we run out of bits. (Not decl size,
1270 type size!) */
1271 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 1);
1273 if (rli->remaining_in_alignment < bitsize)
1275 HOST_WIDE_INT typesize = tree_low_cst (TYPE_SIZE (type), 1);
1277 /* out of bits; bump up to next 'word'. */
1278 rli->bitpos
1279 = size_binop (PLUS_EXPR, rli->bitpos,
1280 bitsize_int (rli->remaining_in_alignment));
1281 rli->prev_field = field;
1282 if (typesize < bitsize)
1283 rli->remaining_in_alignment = 0;
1284 else
1285 rli->remaining_in_alignment = typesize - bitsize;
1287 else
1288 rli->remaining_in_alignment -= bitsize;
1290 else
1292 /* End of a run: if leaving a run of bitfields of the same type
1293 size, we have to "use up" the rest of the bits of the type
1294 size.
1296 Compute the new position as the sum of the size for the prior
1297 type and where we first started working on that type.
1298 Note: since the beginning of the field was aligned then
1299 of course the end will be too. No round needed. */
1301 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1303 rli->bitpos
1304 = size_binop (PLUS_EXPR, rli->bitpos,
1305 bitsize_int (rli->remaining_in_alignment));
1307 else
1308 /* We "use up" size zero fields; the code below should behave
1309 as if the prior field was not a bitfield. */
1310 prev_saved = NULL;
1312 /* Cause a new bitfield to be captured, either this time (if
1313 currently a bitfield) or next time we see one. */
1314 if (!DECL_BIT_FIELD_TYPE(field)
1315 || integer_zerop (DECL_SIZE (field)))
1316 rli->prev_field = NULL;
1319 normalize_rli (rli);
1322 /* If we're starting a new run of same size type bitfields
1323 (or a run of non-bitfields), set up the "first of the run"
1324 fields.
1326 That is, if the current field is not a bitfield, or if there
1327 was a prior bitfield the type sizes differ, or if there wasn't
1328 a prior bitfield the size of the current field is nonzero.
1330 Note: we must be sure to test ONLY the type size if there was
1331 a prior bitfield and ONLY for the current field being zero if
1332 there wasn't. */
1334 if (!DECL_BIT_FIELD_TYPE (field)
1335 || (prev_saved != NULL
1336 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1337 : !integer_zerop (DECL_SIZE (field)) ))
1339 /* Never smaller than a byte for compatibility. */
1340 unsigned int type_align = BITS_PER_UNIT;
1342 /* (When not a bitfield), we could be seeing a flex array (with
1343 no DECL_SIZE). Since we won't be using remaining_in_alignment
1344 until we see a bitfield (and come by here again) we just skip
1345 calculating it. */
1346 if (DECL_SIZE (field) != NULL
1347 && host_integerp (TYPE_SIZE (TREE_TYPE (field)), 0)
1348 && host_integerp (DECL_SIZE (field), 0))
1350 HOST_WIDE_INT bitsize = tree_low_cst (DECL_SIZE (field), 1);
1351 HOST_WIDE_INT typesize
1352 = tree_low_cst (TYPE_SIZE (TREE_TYPE (field)), 1);
1354 if (typesize < bitsize)
1355 rli->remaining_in_alignment = 0;
1356 else
1357 rli->remaining_in_alignment = typesize - bitsize;
1360 /* Now align (conventionally) for the new type. */
1361 type_align = TYPE_ALIGN (TREE_TYPE (field));
1363 if (maximum_field_alignment != 0)
1364 type_align = MIN (type_align, maximum_field_alignment);
1366 rli->bitpos = round_up_loc (input_location, rli->bitpos, type_align);
1368 /* If we really aligned, don't allow subsequent bitfields
1369 to undo that. */
1370 rli->prev_field = NULL;
1374 /* Offset so far becomes the position of this field after normalizing. */
1375 normalize_rli (rli);
1376 DECL_FIELD_OFFSET (field) = rli->offset;
1377 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1378 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1380 /* If this field ended up more aligned than we thought it would be (we
1381 approximate this by seeing if its position changed), lay out the field
1382 again; perhaps we can use an integral mode for it now. */
1383 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1384 actual_align = (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1385 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1));
1386 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1387 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1388 else if (host_integerp (DECL_FIELD_OFFSET (field), 1))
1389 actual_align = (BITS_PER_UNIT
1390 * (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1391 & - tree_low_cst (DECL_FIELD_OFFSET (field), 1)));
1392 else
1393 actual_align = DECL_OFFSET_ALIGN (field);
1394 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1395 store / extract bit field operations will check the alignment of the
1396 record against the mode of bit fields. */
1398 if (known_align != actual_align)
1399 layout_decl (field, actual_align);
1401 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1402 rli->prev_field = field;
1404 /* Now add size of this field to the size of the record. If the size is
1405 not constant, treat the field as being a multiple of bytes and just
1406 adjust the offset, resetting the bit position. Otherwise, apportion the
1407 size amongst the bit position and offset. First handle the case of an
1408 unspecified size, which can happen when we have an invalid nested struct
1409 definition, such as struct j { struct j { int i; } }. The error message
1410 is printed in finish_struct. */
1411 if (DECL_SIZE (field) == 0)
1412 /* Do nothing. */;
1413 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1414 || TREE_OVERFLOW (DECL_SIZE (field)))
1416 rli->offset
1417 = size_binop (PLUS_EXPR, rli->offset,
1418 fold_convert (sizetype,
1419 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1420 bitsize_unit_node)));
1421 rli->offset
1422 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1423 rli->bitpos = bitsize_zero_node;
1424 rli->offset_align = MIN (rli->offset_align, desired_align);
1426 else if (targetm.ms_bitfield_layout_p (rli->t))
1428 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1430 /* If we ended a bitfield before the full length of the type then
1431 pad the struct out to the full length of the last type. */
1432 if ((TREE_CHAIN (field) == NULL
1433 || TREE_CODE (TREE_CHAIN (field)) != FIELD_DECL)
1434 && DECL_BIT_FIELD_TYPE (field)
1435 && !integer_zerop (DECL_SIZE (field)))
1436 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1437 bitsize_int (rli->remaining_in_alignment));
1439 normalize_rli (rli);
1441 else
1443 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1444 normalize_rli (rli);
1448 /* Assuming that all the fields have been laid out, this function uses
1449 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1450 indicated by RLI. */
1452 static void
1453 finalize_record_size (record_layout_info rli)
1455 tree unpadded_size, unpadded_size_unit;
1457 /* Now we want just byte and bit offsets, so set the offset alignment
1458 to be a byte and then normalize. */
1459 rli->offset_align = BITS_PER_UNIT;
1460 normalize_rli (rli);
1462 /* Determine the desired alignment. */
1463 #ifdef ROUND_TYPE_ALIGN
1464 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1465 rli->record_align);
1466 #else
1467 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1468 #endif
1470 /* Compute the size so far. Be sure to allow for extra bits in the
1471 size in bytes. We have guaranteed above that it will be no more
1472 than a single byte. */
1473 unpadded_size = rli_size_so_far (rli);
1474 unpadded_size_unit = rli_size_unit_so_far (rli);
1475 if (! integer_zerop (rli->bitpos))
1476 unpadded_size_unit
1477 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1479 /* Round the size up to be a multiple of the required alignment. */
1480 TYPE_SIZE (rli->t) = round_up_loc (input_location, unpadded_size,
1481 TYPE_ALIGN (rli->t));
1482 TYPE_SIZE_UNIT (rli->t)
1483 = round_up_loc (input_location, unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1485 if (TREE_CONSTANT (unpadded_size)
1486 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0)
1487 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1489 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1490 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1491 && TREE_CONSTANT (unpadded_size))
1493 tree unpacked_size;
1495 #ifdef ROUND_TYPE_ALIGN
1496 rli->unpacked_align
1497 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1498 #else
1499 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1500 #endif
1502 unpacked_size = round_up_loc (input_location, TYPE_SIZE (rli->t), rli->unpacked_align);
1503 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1505 TYPE_PACKED (rli->t) = 0;
1507 if (TYPE_NAME (rli->t))
1509 tree name;
1511 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1512 name = TYPE_NAME (rli->t);
1513 else
1514 name = DECL_NAME (TYPE_NAME (rli->t));
1516 if (STRICT_ALIGNMENT)
1517 warning (OPT_Wpacked, "packed attribute causes inefficient "
1518 "alignment for %qE", name);
1519 else
1520 warning (OPT_Wpacked,
1521 "packed attribute is unnecessary for %qE", name);
1523 else
1525 if (STRICT_ALIGNMENT)
1526 warning (OPT_Wpacked,
1527 "packed attribute causes inefficient alignment");
1528 else
1529 warning (OPT_Wpacked, "packed attribute is unnecessary");
1535 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1537 void
1538 compute_record_mode (tree type)
1540 tree field;
1541 enum machine_mode mode = VOIDmode;
1543 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1544 However, if possible, we use a mode that fits in a register
1545 instead, in order to allow for better optimization down the
1546 line. */
1547 SET_TYPE_MODE (type, BLKmode);
1549 if (! host_integerp (TYPE_SIZE (type), 1))
1550 return;
1552 /* A record which has any BLKmode members must itself be
1553 BLKmode; it can't go in a register. Unless the member is
1554 BLKmode only because it isn't aligned. */
1555 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1557 if (TREE_CODE (field) != FIELD_DECL)
1558 continue;
1560 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1561 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1562 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1563 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1564 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1565 || ! host_integerp (bit_position (field), 1)
1566 || DECL_SIZE (field) == 0
1567 || ! host_integerp (DECL_SIZE (field), 1))
1568 return;
1570 /* If this field is the whole struct, remember its mode so
1571 that, say, we can put a double in a class into a DF
1572 register instead of forcing it to live in the stack. */
1573 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1574 mode = DECL_MODE (field);
1576 #ifdef MEMBER_TYPE_FORCES_BLK
1577 /* With some targets, eg. c4x, it is sub-optimal
1578 to access an aligned BLKmode structure as a scalar. */
1580 if (MEMBER_TYPE_FORCES_BLK (field, mode))
1581 return;
1582 #endif /* MEMBER_TYPE_FORCES_BLK */
1585 /* If we only have one real field; use its mode if that mode's size
1586 matches the type's size. This only applies to RECORD_TYPE. This
1587 does not apply to unions. */
1588 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1589 && host_integerp (TYPE_SIZE (type), 1)
1590 && GET_MODE_BITSIZE (mode) == TREE_INT_CST_LOW (TYPE_SIZE (type)))
1591 SET_TYPE_MODE (type, mode);
1592 else
1593 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1595 /* If structure's known alignment is less than what the scalar
1596 mode would need, and it matters, then stick with BLKmode. */
1597 if (TYPE_MODE (type) != BLKmode
1598 && STRICT_ALIGNMENT
1599 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1600 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1602 /* If this is the only reason this type is BLKmode, then
1603 don't force containing types to be BLKmode. */
1604 TYPE_NO_FORCE_BLK (type) = 1;
1605 SET_TYPE_MODE (type, BLKmode);
1609 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1610 out. */
1612 static void
1613 finalize_type_size (tree type)
1615 /* Normally, use the alignment corresponding to the mode chosen.
1616 However, where strict alignment is not required, avoid
1617 over-aligning structures, since most compilers do not do this
1618 alignment. */
1620 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1621 && (STRICT_ALIGNMENT
1622 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1623 && TREE_CODE (type) != QUAL_UNION_TYPE
1624 && TREE_CODE (type) != ARRAY_TYPE)))
1626 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1628 /* Don't override a larger alignment requirement coming from a user
1629 alignment of one of the fields. */
1630 if (mode_align >= TYPE_ALIGN (type))
1632 TYPE_ALIGN (type) = mode_align;
1633 TYPE_USER_ALIGN (type) = 0;
1637 /* Do machine-dependent extra alignment. */
1638 #ifdef ROUND_TYPE_ALIGN
1639 TYPE_ALIGN (type)
1640 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1641 #endif
1643 /* If we failed to find a simple way to calculate the unit size
1644 of the type, find it by division. */
1645 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1646 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1647 result will fit in sizetype. We will get more efficient code using
1648 sizetype, so we force a conversion. */
1649 TYPE_SIZE_UNIT (type)
1650 = fold_convert (sizetype,
1651 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1652 bitsize_unit_node));
1654 if (TYPE_SIZE (type) != 0)
1656 TYPE_SIZE (type) = round_up_loc (input_location,
1657 TYPE_SIZE (type), TYPE_ALIGN (type));
1658 TYPE_SIZE_UNIT (type) = round_up_loc (input_location, TYPE_SIZE_UNIT (type),
1659 TYPE_ALIGN_UNIT (type));
1662 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1663 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1664 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1665 if (TYPE_SIZE_UNIT (type) != 0
1666 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1667 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1669 /* Also layout any other variants of the type. */
1670 if (TYPE_NEXT_VARIANT (type)
1671 || type != TYPE_MAIN_VARIANT (type))
1673 tree variant;
1674 /* Record layout info of this variant. */
1675 tree size = TYPE_SIZE (type);
1676 tree size_unit = TYPE_SIZE_UNIT (type);
1677 unsigned int align = TYPE_ALIGN (type);
1678 unsigned int user_align = TYPE_USER_ALIGN (type);
1679 enum machine_mode mode = TYPE_MODE (type);
1681 /* Copy it into all variants. */
1682 for (variant = TYPE_MAIN_VARIANT (type);
1683 variant != 0;
1684 variant = TYPE_NEXT_VARIANT (variant))
1686 TYPE_SIZE (variant) = size;
1687 TYPE_SIZE_UNIT (variant) = size_unit;
1688 TYPE_ALIGN (variant) = align;
1689 TYPE_USER_ALIGN (variant) = user_align;
1690 SET_TYPE_MODE (variant, mode);
1695 /* Do all of the work required to layout the type indicated by RLI,
1696 once the fields have been laid out. This function will call `free'
1697 for RLI, unless FREE_P is false. Passing a value other than false
1698 for FREE_P is bad practice; this option only exists to support the
1699 G++ 3.2 ABI. */
1701 void
1702 finish_record_layout (record_layout_info rli, int free_p)
1704 tree variant;
1706 /* Compute the final size. */
1707 finalize_record_size (rli);
1709 /* Compute the TYPE_MODE for the record. */
1710 compute_record_mode (rli->t);
1712 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1713 finalize_type_size (rli->t);
1715 /* Propagate TYPE_PACKED to variants. With C++ templates,
1716 handle_packed_attribute is too early to do this. */
1717 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
1718 variant = TYPE_NEXT_VARIANT (variant))
1719 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
1721 /* Lay out any static members. This is done now because their type
1722 may use the record's type. */
1723 while (rli->pending_statics)
1725 layout_decl (TREE_VALUE (rli->pending_statics), 0);
1726 rli->pending_statics = TREE_CHAIN (rli->pending_statics);
1729 /* Clean up. */
1730 if (free_p)
1731 free (rli);
1735 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1736 NAME, its fields are chained in reverse on FIELDS.
1738 If ALIGN_TYPE is non-null, it is given the same alignment as
1739 ALIGN_TYPE. */
1741 void
1742 finish_builtin_struct (tree type, const char *name, tree fields,
1743 tree align_type)
1745 tree tail, next;
1747 for (tail = NULL_TREE; fields; tail = fields, fields = next)
1749 DECL_FIELD_CONTEXT (fields) = type;
1750 next = TREE_CHAIN (fields);
1751 TREE_CHAIN (fields) = tail;
1753 TYPE_FIELDS (type) = tail;
1755 if (align_type)
1757 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
1758 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
1761 layout_type (type);
1762 #if 0 /* not yet, should get fixed properly later */
1763 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
1764 #else
1765 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
1766 TYPE_DECL, get_identifier (name), type);
1767 #endif
1768 TYPE_STUB_DECL (type) = TYPE_NAME (type);
1769 layout_decl (TYPE_NAME (type), 0);
1772 /* Calculate the mode, size, and alignment for TYPE.
1773 For an array type, calculate the element separation as well.
1774 Record TYPE on the chain of permanent or temporary types
1775 so that dbxout will find out about it.
1777 TYPE_SIZE of a type is nonzero if the type has been laid out already.
1778 layout_type does nothing on such a type.
1780 If the type is incomplete, its TYPE_SIZE remains zero. */
1782 void
1783 layout_type (tree type)
1785 gcc_assert (type);
1787 if (type == error_mark_node)
1788 return;
1790 /* Do nothing if type has been laid out before. */
1791 if (TYPE_SIZE (type))
1792 return;
1794 switch (TREE_CODE (type))
1796 case LANG_TYPE:
1797 /* This kind of type is the responsibility
1798 of the language-specific code. */
1799 gcc_unreachable ();
1801 case BOOLEAN_TYPE: /* Used for Java, Pascal, and Chill. */
1802 if (TYPE_PRECISION (type) == 0)
1803 TYPE_PRECISION (type) = 1; /* default to one byte/boolean. */
1805 /* ... fall through ... */
1807 case INTEGER_TYPE:
1808 case ENUMERAL_TYPE:
1809 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
1810 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
1811 TYPE_UNSIGNED (type) = 1;
1813 SET_TYPE_MODE (type,
1814 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
1815 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1816 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1817 break;
1819 case REAL_TYPE:
1820 SET_TYPE_MODE (type,
1821 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
1822 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1823 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1824 break;
1826 case FIXED_POINT_TYPE:
1827 /* TYPE_MODE (type) has been set already. */
1828 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1829 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1830 break;
1832 case COMPLEX_TYPE:
1833 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1834 SET_TYPE_MODE (type,
1835 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
1836 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
1837 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
1838 0));
1839 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
1840 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
1841 break;
1843 case VECTOR_TYPE:
1845 int nunits = TYPE_VECTOR_SUBPARTS (type);
1846 tree innertype = TREE_TYPE (type);
1848 gcc_assert (!(nunits & (nunits - 1)));
1850 /* Find an appropriate mode for the vector type. */
1851 if (TYPE_MODE (type) == VOIDmode)
1853 enum machine_mode innermode = TYPE_MODE (innertype);
1854 enum machine_mode mode;
1856 /* First, look for a supported vector type. */
1857 if (SCALAR_FLOAT_MODE_P (innermode))
1858 mode = MIN_MODE_VECTOR_FLOAT;
1859 else if (SCALAR_FRACT_MODE_P (innermode))
1860 mode = MIN_MODE_VECTOR_FRACT;
1861 else if (SCALAR_UFRACT_MODE_P (innermode))
1862 mode = MIN_MODE_VECTOR_UFRACT;
1863 else if (SCALAR_ACCUM_MODE_P (innermode))
1864 mode = MIN_MODE_VECTOR_ACCUM;
1865 else if (SCALAR_UACCUM_MODE_P (innermode))
1866 mode = MIN_MODE_VECTOR_UACCUM;
1867 else
1868 mode = MIN_MODE_VECTOR_INT;
1870 /* Do not check vector_mode_supported_p here. We'll do that
1871 later in vector_type_mode. */
1872 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
1873 if (GET_MODE_NUNITS (mode) == nunits
1874 && GET_MODE_INNER (mode) == innermode)
1875 break;
1877 /* For integers, try mapping it to a same-sized scalar mode. */
1878 if (mode == VOIDmode
1879 && GET_MODE_CLASS (innermode) == MODE_INT)
1880 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
1881 MODE_INT, 0);
1883 if (mode == VOIDmode ||
1884 (GET_MODE_CLASS (mode) == MODE_INT
1885 && !have_regs_of_mode[mode]))
1886 SET_TYPE_MODE (type, BLKmode);
1887 else
1888 SET_TYPE_MODE (type, mode);
1891 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
1892 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
1893 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
1894 TYPE_SIZE_UNIT (innertype),
1895 size_int (nunits), 0);
1896 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
1897 bitsize_int (nunits), 0);
1899 /* Always naturally align vectors. This prevents ABI changes
1900 depending on whether or not native vector modes are supported. */
1901 TYPE_ALIGN (type) = tree_low_cst (TYPE_SIZE (type), 0);
1902 break;
1905 case VOID_TYPE:
1906 /* This is an incomplete type and so doesn't have a size. */
1907 TYPE_ALIGN (type) = 1;
1908 TYPE_USER_ALIGN (type) = 0;
1909 SET_TYPE_MODE (type, VOIDmode);
1910 break;
1912 case OFFSET_TYPE:
1913 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
1914 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE / BITS_PER_UNIT);
1915 /* A pointer might be MODE_PARTIAL_INT,
1916 but ptrdiff_t must be integral. */
1917 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
1918 break;
1920 case FUNCTION_TYPE:
1921 case METHOD_TYPE:
1922 /* It's hard to see what the mode and size of a function ought to
1923 be, but we do know the alignment is FUNCTION_BOUNDARY, so
1924 make it consistent with that. */
1925 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
1926 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
1927 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
1928 break;
1930 case POINTER_TYPE:
1931 case REFERENCE_TYPE:
1933 enum machine_mode mode = ((TREE_CODE (type) == REFERENCE_TYPE
1934 && reference_types_internal)
1935 ? Pmode : TYPE_MODE (type));
1937 int nbits = GET_MODE_BITSIZE (mode);
1939 TYPE_SIZE (type) = bitsize_int (nbits);
1940 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
1941 TYPE_UNSIGNED (type) = 1;
1942 TYPE_PRECISION (type) = nbits;
1944 break;
1946 case ARRAY_TYPE:
1948 tree index = TYPE_DOMAIN (type);
1949 tree element = TREE_TYPE (type);
1951 build_pointer_type (element);
1953 /* We need to know both bounds in order to compute the size. */
1954 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
1955 && TYPE_SIZE (element))
1957 tree ub = TYPE_MAX_VALUE (index);
1958 tree lb = TYPE_MIN_VALUE (index);
1959 tree length;
1960 tree element_size;
1962 /* The initial subtraction should happen in the original type so
1963 that (possible) negative values are handled appropriately. */
1964 length = size_binop (PLUS_EXPR, size_one_node,
1965 fold_convert (sizetype,
1966 fold_build2_loc (input_location,
1967 MINUS_EXPR,
1968 TREE_TYPE (lb),
1969 ub, lb)));
1971 /* Special handling for arrays of bits (for Chill). */
1972 element_size = TYPE_SIZE (element);
1973 if (TYPE_PACKED (type) && INTEGRAL_TYPE_P (element)
1974 && (integer_zerop (TYPE_MAX_VALUE (element))
1975 || integer_onep (TYPE_MAX_VALUE (element)))
1976 && host_integerp (TYPE_MIN_VALUE (element), 1))
1978 HOST_WIDE_INT maxvalue
1979 = tree_low_cst (TYPE_MAX_VALUE (element), 1);
1980 HOST_WIDE_INT minvalue
1981 = tree_low_cst (TYPE_MIN_VALUE (element), 1);
1983 if (maxvalue - minvalue == 1
1984 && (maxvalue == 1 || maxvalue == 0))
1985 element_size = integer_one_node;
1988 /* If neither bound is a constant and sizetype is signed, make
1989 sure the size is never negative. We should really do this
1990 if *either* bound is non-constant, but this is the best
1991 compromise between C and Ada. */
1992 if (!TYPE_UNSIGNED (sizetype)
1993 && TREE_CODE (TYPE_MIN_VALUE (index)) != INTEGER_CST
1994 && TREE_CODE (TYPE_MAX_VALUE (index)) != INTEGER_CST)
1995 length = size_binop (MAX_EXPR, length, size_zero_node);
1997 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
1998 fold_convert (bitsizetype,
1999 length));
2001 /* If we know the size of the element, calculate the total
2002 size directly, rather than do some division thing below.
2003 This optimization helps Fortran assumed-size arrays
2004 (where the size of the array is determined at runtime)
2005 substantially.
2006 Note that we can't do this in the case where the size of
2007 the elements is one bit since TYPE_SIZE_UNIT cannot be
2008 set correctly in that case. */
2009 if (TYPE_SIZE_UNIT (element) != 0 && ! integer_onep (element_size))
2010 TYPE_SIZE_UNIT (type)
2011 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2014 /* Now round the alignment and size,
2015 using machine-dependent criteria if any. */
2017 #ifdef ROUND_TYPE_ALIGN
2018 TYPE_ALIGN (type)
2019 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
2020 #else
2021 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2022 #endif
2023 if (!TYPE_SIZE (element))
2024 /* We don't know the size of the underlying element type, so
2025 our alignment calculations will be wrong, forcing us to
2026 fall back on structural equality. */
2027 SET_TYPE_STRUCTURAL_EQUALITY (type);
2028 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2029 SET_TYPE_MODE (type, BLKmode);
2030 if (TYPE_SIZE (type) != 0
2031 #ifdef MEMBER_TYPE_FORCES_BLK
2032 && ! MEMBER_TYPE_FORCES_BLK (type, VOIDmode)
2033 #endif
2034 /* BLKmode elements force BLKmode aggregate;
2035 else extract/store fields may lose. */
2036 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2037 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2039 /* One-element arrays get the component type's mode. */
2040 if (simple_cst_equal (TYPE_SIZE (type),
2041 TYPE_SIZE (TREE_TYPE (type))))
2042 SET_TYPE_MODE (type, TYPE_MODE (TREE_TYPE (type)));
2043 else
2044 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type),
2045 MODE_INT, 1));
2047 if (TYPE_MODE (type) != BLKmode
2048 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2049 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2051 TYPE_NO_FORCE_BLK (type) = 1;
2052 SET_TYPE_MODE (type, BLKmode);
2055 /* When the element size is constant, check that it is at least as
2056 large as the element alignment. */
2057 if (TYPE_SIZE_UNIT (element)
2058 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2059 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2060 TYPE_ALIGN_UNIT. */
2061 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2062 && !integer_zerop (TYPE_SIZE_UNIT (element))
2063 && compare_tree_int (TYPE_SIZE_UNIT (element),
2064 TYPE_ALIGN_UNIT (element)) < 0)
2065 error ("alignment of array elements is greater than element size");
2066 break;
2069 case RECORD_TYPE:
2070 case UNION_TYPE:
2071 case QUAL_UNION_TYPE:
2073 tree field;
2074 record_layout_info rli;
2076 /* Initialize the layout information. */
2077 rli = start_record_layout (type);
2079 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2080 in the reverse order in building the COND_EXPR that denotes
2081 its size. We reverse them again later. */
2082 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2083 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2085 /* Place all the fields. */
2086 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2087 place_field (rli, field);
2089 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2090 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2092 /* Finish laying out the record. */
2093 finish_record_layout (rli, /*free_p=*/true);
2095 break;
2097 default:
2098 gcc_unreachable ();
2101 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2102 records and unions, finish_record_layout already called this
2103 function. */
2104 if (TREE_CODE (type) != RECORD_TYPE
2105 && TREE_CODE (type) != UNION_TYPE
2106 && TREE_CODE (type) != QUAL_UNION_TYPE)
2107 finalize_type_size (type);
2109 /* We should never see alias sets on incomplete aggregates. And we
2110 should not call layout_type on not incomplete aggregates. */
2111 if (AGGREGATE_TYPE_P (type))
2112 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2115 /* Vector types need to re-check the target flags each time we report
2116 the machine mode. We need to do this because attribute target can
2117 change the result of vector_mode_supported_p and have_regs_of_mode
2118 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2119 change on a per-function basis. */
2120 /* ??? Possibly a better solution is to run through all the types
2121 referenced by a function and re-compute the TYPE_MODE once, rather
2122 than make the TYPE_MODE macro call a function. */
2124 enum machine_mode
2125 vector_type_mode (const_tree t)
2127 enum machine_mode mode;
2129 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2131 mode = t->type.mode;
2132 if (VECTOR_MODE_P (mode)
2133 && (!targetm.vector_mode_supported_p (mode)
2134 || !have_regs_of_mode[mode]))
2136 enum machine_mode innermode = TREE_TYPE (t)->type.mode;
2138 /* For integers, try mapping it to a same-sized scalar mode. */
2139 if (GET_MODE_CLASS (innermode) == MODE_INT)
2141 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2142 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2144 if (mode != VOIDmode && have_regs_of_mode[mode])
2145 return mode;
2148 return BLKmode;
2151 return mode;
2154 /* Create and return a type for signed integers of PRECISION bits. */
2156 tree
2157 make_signed_type (int precision)
2159 tree type = make_node (INTEGER_TYPE);
2161 TYPE_PRECISION (type) = precision;
2163 fixup_signed_type (type);
2164 return type;
2167 /* Create and return a type for unsigned integers of PRECISION bits. */
2169 tree
2170 make_unsigned_type (int precision)
2172 tree type = make_node (INTEGER_TYPE);
2174 TYPE_PRECISION (type) = precision;
2176 fixup_unsigned_type (type);
2177 return type;
2180 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2181 and SATP. */
2183 tree
2184 make_fract_type (int precision, int unsignedp, int satp)
2186 tree type = make_node (FIXED_POINT_TYPE);
2188 TYPE_PRECISION (type) = precision;
2190 if (satp)
2191 TYPE_SATURATING (type) = 1;
2193 /* Lay out the type: set its alignment, size, etc. */
2194 if (unsignedp)
2196 TYPE_UNSIGNED (type) = 1;
2197 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2199 else
2200 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2201 layout_type (type);
2203 return type;
2206 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2207 and SATP. */
2209 tree
2210 make_accum_type (int precision, int unsignedp, int satp)
2212 tree type = make_node (FIXED_POINT_TYPE);
2214 TYPE_PRECISION (type) = precision;
2216 if (satp)
2217 TYPE_SATURATING (type) = 1;
2219 /* Lay out the type: set its alignment, size, etc. */
2220 if (unsignedp)
2222 TYPE_UNSIGNED (type) = 1;
2223 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2225 else
2226 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2227 layout_type (type);
2229 return type;
2232 /* Initialize sizetype and bitsizetype to a reasonable and temporary
2233 value to enable integer types to be created. */
2235 void
2236 initialize_sizetypes (bool signed_p)
2238 tree t = make_node (INTEGER_TYPE);
2239 int precision = GET_MODE_BITSIZE (SImode);
2241 SET_TYPE_MODE (t, SImode);
2242 TYPE_ALIGN (t) = GET_MODE_ALIGNMENT (SImode);
2243 TYPE_USER_ALIGN (t) = 0;
2244 TYPE_IS_SIZETYPE (t) = 1;
2245 TYPE_UNSIGNED (t) = !signed_p;
2246 TYPE_SIZE (t) = build_int_cst (t, precision);
2247 TYPE_SIZE_UNIT (t) = build_int_cst (t, GET_MODE_SIZE (SImode));
2248 TYPE_PRECISION (t) = precision;
2250 /* Set TYPE_MIN_VALUE and TYPE_MAX_VALUE. */
2251 set_min_and_max_values_for_integral_type (t, precision, !signed_p);
2253 sizetype = t;
2254 bitsizetype = build_distinct_type_copy (t);
2257 /* Make sizetype a version of TYPE, and initialize *sizetype
2258 accordingly. We do this by overwriting the stub sizetype and
2259 bitsizetype nodes created by initialize_sizetypes. This makes sure
2260 that (a) anything stubby about them no longer exists, (b) any
2261 INTEGER_CSTs created with such a type, remain valid. */
2263 void
2264 set_sizetype (tree type)
2266 tree t;
2267 int oprecision = TYPE_PRECISION (type);
2268 /* The *bitsizetype types use a precision that avoids overflows when
2269 calculating signed sizes / offsets in bits. However, when
2270 cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
2271 precision. */
2272 int precision
2273 = MIN (oprecision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2274 precision
2275 = GET_MODE_PRECISION (smallest_mode_for_size (precision, MODE_INT));
2276 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2277 precision = HOST_BITS_PER_WIDE_INT * 2;
2279 gcc_assert (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (sizetype));
2281 t = build_distinct_type_copy (type);
2282 /* We do want to use sizetype's cache, as we will be replacing that
2283 type. */
2284 TYPE_CACHED_VALUES (t) = TYPE_CACHED_VALUES (sizetype);
2285 TYPE_CACHED_VALUES_P (t) = TYPE_CACHED_VALUES_P (sizetype);
2286 TREE_TYPE (TYPE_CACHED_VALUES (t)) = type;
2287 TYPE_UID (t) = TYPE_UID (sizetype);
2288 TYPE_IS_SIZETYPE (t) = 1;
2290 /* Replace our original stub sizetype. */
2291 memcpy (sizetype, t, tree_size (sizetype));
2292 TYPE_MAIN_VARIANT (sizetype) = sizetype;
2293 TYPE_CANONICAL (sizetype) = sizetype;
2295 t = make_node (INTEGER_TYPE);
2296 TYPE_NAME (t) = get_identifier ("bit_size_type");
2297 /* We do want to use bitsizetype's cache, as we will be replacing that
2298 type. */
2299 TYPE_CACHED_VALUES (t) = TYPE_CACHED_VALUES (bitsizetype);
2300 TYPE_CACHED_VALUES_P (t) = TYPE_CACHED_VALUES_P (bitsizetype);
2301 TYPE_PRECISION (t) = precision;
2302 TYPE_UID (t) = TYPE_UID (bitsizetype);
2303 TYPE_IS_SIZETYPE (t) = 1;
2305 /* Replace our original stub bitsizetype. */
2306 memcpy (bitsizetype, t, tree_size (bitsizetype));
2307 TYPE_MAIN_VARIANT (bitsizetype) = bitsizetype;
2308 TYPE_CANONICAL (bitsizetype) = bitsizetype;
2310 if (TYPE_UNSIGNED (type))
2312 fixup_unsigned_type (bitsizetype);
2313 ssizetype = build_distinct_type_copy (make_signed_type (oprecision));
2314 TYPE_IS_SIZETYPE (ssizetype) = 1;
2315 sbitsizetype = build_distinct_type_copy (make_signed_type (precision));
2316 TYPE_IS_SIZETYPE (sbitsizetype) = 1;
2318 else
2320 fixup_signed_type (bitsizetype);
2321 ssizetype = sizetype;
2322 sbitsizetype = bitsizetype;
2325 /* If SIZETYPE is unsigned, we need to fix TYPE_MAX_VALUE so that
2326 it is sign extended in a way consistent with force_fit_type. */
2327 if (TYPE_UNSIGNED (type))
2329 tree orig_max, new_max;
2331 orig_max = TYPE_MAX_VALUE (sizetype);
2333 /* Build a new node with the same values, but a different type.
2334 Sign extend it to ensure consistency. */
2335 new_max = build_int_cst_wide_type (sizetype,
2336 TREE_INT_CST_LOW (orig_max),
2337 TREE_INT_CST_HIGH (orig_max));
2338 TYPE_MAX_VALUE (sizetype) = new_max;
2342 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2343 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2344 for TYPE, based on the PRECISION and whether or not the TYPE
2345 IS_UNSIGNED. PRECISION need not correspond to a width supported
2346 natively by the hardware; for example, on a machine with 8-bit,
2347 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2348 61. */
2350 void
2351 set_min_and_max_values_for_integral_type (tree type,
2352 int precision,
2353 bool is_unsigned)
2355 tree min_value;
2356 tree max_value;
2358 if (is_unsigned)
2360 min_value = build_int_cst (type, 0);
2361 max_value
2362 = build_int_cst_wide (type, precision - HOST_BITS_PER_WIDE_INT >= 0
2363 ? -1
2364 : ((HOST_WIDE_INT) 1 << precision) - 1,
2365 precision - HOST_BITS_PER_WIDE_INT > 0
2366 ? ((unsigned HOST_WIDE_INT) ~0
2367 >> (HOST_BITS_PER_WIDE_INT
2368 - (precision - HOST_BITS_PER_WIDE_INT)))
2369 : 0);
2371 else
2373 min_value
2374 = build_int_cst_wide (type,
2375 (precision - HOST_BITS_PER_WIDE_INT > 0
2377 : (HOST_WIDE_INT) (-1) << (precision - 1)),
2378 (((HOST_WIDE_INT) (-1)
2379 << (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2380 ? precision - HOST_BITS_PER_WIDE_INT - 1
2381 : 0))));
2382 max_value
2383 = build_int_cst_wide (type,
2384 (precision - HOST_BITS_PER_WIDE_INT > 0
2385 ? -1
2386 : ((HOST_WIDE_INT) 1 << (precision - 1)) - 1),
2387 (precision - HOST_BITS_PER_WIDE_INT - 1 > 0
2388 ? (((HOST_WIDE_INT) 1
2389 << (precision - HOST_BITS_PER_WIDE_INT - 1))) - 1
2390 : 0));
2393 TYPE_MIN_VALUE (type) = min_value;
2394 TYPE_MAX_VALUE (type) = max_value;
2397 /* Set the extreme values of TYPE based on its precision in bits,
2398 then lay it out. Used when make_signed_type won't do
2399 because the tree code is not INTEGER_TYPE.
2400 E.g. for Pascal, when the -fsigned-char option is given. */
2402 void
2403 fixup_signed_type (tree type)
2405 int precision = TYPE_PRECISION (type);
2407 /* We can not represent properly constants greater then
2408 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2409 as they are used by i386 vector extensions and friends. */
2410 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2411 precision = HOST_BITS_PER_WIDE_INT * 2;
2413 set_min_and_max_values_for_integral_type (type, precision,
2414 /*is_unsigned=*/false);
2416 /* Lay out the type: set its alignment, size, etc. */
2417 layout_type (type);
2420 /* Set the extreme values of TYPE based on its precision in bits,
2421 then lay it out. This is used both in `make_unsigned_type'
2422 and for enumeral types. */
2424 void
2425 fixup_unsigned_type (tree type)
2427 int precision = TYPE_PRECISION (type);
2429 /* We can not represent properly constants greater then
2430 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2431 as they are used by i386 vector extensions and friends. */
2432 if (precision > HOST_BITS_PER_WIDE_INT * 2)
2433 precision = HOST_BITS_PER_WIDE_INT * 2;
2435 TYPE_UNSIGNED (type) = 1;
2437 set_min_and_max_values_for_integral_type (type, precision,
2438 /*is_unsigned=*/true);
2440 /* Lay out the type: set its alignment, size, etc. */
2441 layout_type (type);
2444 /* Find the best machine mode to use when referencing a bit field of length
2445 BITSIZE bits starting at BITPOS.
2447 The underlying object is known to be aligned to a boundary of ALIGN bits.
2448 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2449 larger than LARGEST_MODE (usually SImode).
2451 If no mode meets all these conditions, we return VOIDmode.
2453 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2454 smallest mode meeting these conditions.
2456 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2457 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2458 all the conditions.
2460 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2461 decide which of the above modes should be used. */
2463 enum machine_mode
2464 get_best_mode (int bitsize, int bitpos, unsigned int align,
2465 enum machine_mode largest_mode, int volatilep)
2467 enum machine_mode mode;
2468 unsigned int unit = 0;
2470 /* Find the narrowest integer mode that contains the bit field. */
2471 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2472 mode = GET_MODE_WIDER_MODE (mode))
2474 unit = GET_MODE_BITSIZE (mode);
2475 if ((bitpos % unit) + bitsize <= unit)
2476 break;
2479 if (mode == VOIDmode
2480 /* It is tempting to omit the following line
2481 if STRICT_ALIGNMENT is true.
2482 But that is incorrect, since if the bitfield uses part of 3 bytes
2483 and we use a 4-byte mode, we could get a spurious segv
2484 if the extra 4th byte is past the end of memory.
2485 (Though at least one Unix compiler ignores this problem:
2486 that on the Sequent 386 machine. */
2487 || MIN (unit, BIGGEST_ALIGNMENT) > align
2488 || (largest_mode != VOIDmode && unit > GET_MODE_BITSIZE (largest_mode)))
2489 return VOIDmode;
2491 if ((SLOW_BYTE_ACCESS && ! volatilep)
2492 || (volatilep && !targetm.narrow_volatile_bitfield ()))
2494 enum machine_mode wide_mode = VOIDmode, tmode;
2496 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT); tmode != VOIDmode;
2497 tmode = GET_MODE_WIDER_MODE (tmode))
2499 unit = GET_MODE_BITSIZE (tmode);
2500 if (bitpos / unit == (bitpos + bitsize - 1) / unit
2501 && unit <= BITS_PER_WORD
2502 && unit <= MIN (align, BIGGEST_ALIGNMENT)
2503 && (largest_mode == VOIDmode
2504 || unit <= GET_MODE_BITSIZE (largest_mode)))
2505 wide_mode = tmode;
2508 if (wide_mode != VOIDmode)
2509 return wide_mode;
2512 return mode;
2515 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2516 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2518 void
2519 get_mode_bounds (enum machine_mode mode, int sign,
2520 enum machine_mode target_mode,
2521 rtx *mmin, rtx *mmax)
2523 unsigned size = GET_MODE_BITSIZE (mode);
2524 unsigned HOST_WIDE_INT min_val, max_val;
2526 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2528 if (sign)
2530 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2531 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2533 else
2535 min_val = 0;
2536 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2539 *mmin = gen_int_mode (min_val, target_mode);
2540 *mmax = gen_int_mode (max_val, target_mode);
2543 #include "gt-stor-layout.h"