1 /* Transformations based on profile information for values.
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
31 #include "data-streamer.h"
32 #include "diagnostic.h"
33 #include "fold-const.h"
34 #include "tree-nested.h"
37 #include "value-prof.h"
40 #include "gimple-iterator.h"
42 #include "gimple-pretty-print.h"
46 #include "tree-chkp.h"
48 /* In this file value profile based optimizations are placed. Currently the
49 following optimizations are implemented (for more detailed descriptions
50 see comments at value_profile_transformations):
52 1) Division/modulo specialization. Provided that we can determine that the
53 operands of the division have some special properties, we may use it to
54 produce more effective code.
56 2) Indirect/virtual call specialization. If we can determine most
57 common function callee in indirect/virtual call. We can use this
58 information to improve code effectiveness (especially info for
61 3) Speculative prefetching. If we are able to determine that the difference
62 between addresses accessed by a memory reference is usually constant, we
63 may add the prefetch instructions.
64 FIXME: This transformation was removed together with RTL based value
68 Value profiling internals
69 ==========================
71 Every value profiling transformation starts with defining what values
72 to profile. There are different histogram types (see HIST_TYPE_* in
73 value-prof.h) and each transformation can request one or more histogram
74 types per GIMPLE statement. The function gimple_find_values_to_profile()
75 collects the values to profile in a vec, and adds the number of counters
76 required for the different histogram types.
78 For a -fprofile-generate run, the statements for which values should be
79 recorded, are instrumented in instrument_values(). The instrumentation
80 is done by helper functions that can be found in tree-profile.c, where
81 new types of histograms can be added if necessary.
83 After a -fprofile-use, the value profiling data is read back in by
84 compute_value_histograms() that translates the collected data to
85 histograms and attaches them to the profiled statements via
86 gimple_add_histogram_value(). Histograms are stored in a hash table
87 that is attached to every intrumented function, see VALUE_HISTOGRAMS
90 The value-profile transformations driver is the function
91 gimple_value_profile_transformations(). It traverses all statements in
92 the to-be-transformed function, and looks for statements with one or
93 more histograms attached to it. If a statement has histograms, the
94 transformation functions are called on the statement.
96 Limitations / FIXME / TODO:
97 * Only one histogram of each type can be associated with a statement.
98 * Some value profile transformations are done in builtins.c (?!)
99 * Updating of histograms needs some TLC.
100 * The value profiling code could be used to record analysis results
101 from non-profiling (e.g. VRP).
102 * Adding new profilers should be simplified, starting with a cleanup
103 of what-happens-where and with making gimple_find_values_to_profile
104 and gimple_value_profile_transformations table-driven, perhaps...
107 static bool gimple_divmod_fixed_value_transform (gimple_stmt_iterator
*);
108 static bool gimple_mod_pow2_value_transform (gimple_stmt_iterator
*);
109 static bool gimple_mod_subtract_transform (gimple_stmt_iterator
*);
110 static bool gimple_stringops_transform (gimple_stmt_iterator
*);
111 static bool gimple_ic_transform (gimple_stmt_iterator
*);
113 /* Allocate histogram value. */
116 gimple_alloc_histogram_value (struct function
*fun ATTRIBUTE_UNUSED
,
117 enum hist_type type
, gimple
*stmt
, tree value
)
119 histogram_value hist
= (histogram_value
) xcalloc (1, sizeof (*hist
));
120 hist
->hvalue
.value
= value
;
121 hist
->hvalue
.stmt
= stmt
;
126 /* Hash value for histogram. */
129 histogram_hash (const void *x
)
131 return htab_hash_pointer (((const_histogram_value
)x
)->hvalue
.stmt
);
134 /* Return nonzero if statement for histogram_value X is Y. */
137 histogram_eq (const void *x
, const void *y
)
139 return ((const_histogram_value
) x
)->hvalue
.stmt
== (const gimple
*) y
;
142 /* Set histogram for STMT. */
145 set_histogram_value (struct function
*fun
, gimple
*stmt
, histogram_value hist
)
148 if (!hist
&& !VALUE_HISTOGRAMS (fun
))
150 if (!VALUE_HISTOGRAMS (fun
))
151 VALUE_HISTOGRAMS (fun
) = htab_create (1, histogram_hash
,
153 loc
= htab_find_slot_with_hash (VALUE_HISTOGRAMS (fun
), stmt
,
154 htab_hash_pointer (stmt
),
155 hist
? INSERT
: NO_INSERT
);
159 htab_clear_slot (VALUE_HISTOGRAMS (fun
), loc
);
165 /* Get histogram list for STMT. */
168 gimple_histogram_value (struct function
*fun
, gimple
*stmt
)
170 if (!VALUE_HISTOGRAMS (fun
))
172 return (histogram_value
) htab_find_with_hash (VALUE_HISTOGRAMS (fun
), stmt
,
173 htab_hash_pointer (stmt
));
176 /* Add histogram for STMT. */
179 gimple_add_histogram_value (struct function
*fun
, gimple
*stmt
,
180 histogram_value hist
)
182 hist
->hvalue
.next
= gimple_histogram_value (fun
, stmt
);
183 set_histogram_value (fun
, stmt
, hist
);
187 /* Remove histogram HIST from STMT's histogram list. */
190 gimple_remove_histogram_value (struct function
*fun
, gimple
*stmt
,
191 histogram_value hist
)
193 histogram_value hist2
= gimple_histogram_value (fun
, stmt
);
196 set_histogram_value (fun
, stmt
, hist
->hvalue
.next
);
200 while (hist2
->hvalue
.next
!= hist
)
201 hist2
= hist2
->hvalue
.next
;
202 hist2
->hvalue
.next
= hist
->hvalue
.next
;
204 free (hist
->hvalue
.counters
);
206 memset (hist
, 0xab, sizeof (*hist
));
210 /* Lookup histogram of type TYPE in the STMT. */
213 gimple_histogram_value_of_type (struct function
*fun
, gimple
*stmt
,
216 histogram_value hist
;
217 for (hist
= gimple_histogram_value (fun
, stmt
); hist
;
218 hist
= hist
->hvalue
.next
)
219 if (hist
->type
== type
)
224 /* Dump information about HIST to DUMP_FILE. */
227 dump_histogram_value (FILE *dump_file
, histogram_value hist
)
231 case HIST_TYPE_INTERVAL
:
232 fprintf (dump_file
, "Interval counter range %d -- %d",
233 hist
->hdata
.intvl
.int_start
,
234 (hist
->hdata
.intvl
.int_start
235 + hist
->hdata
.intvl
.steps
- 1));
236 if (hist
->hvalue
.counters
)
239 fprintf (dump_file
, " [");
240 for (i
= 0; i
< hist
->hdata
.intvl
.steps
; i
++)
241 fprintf (dump_file
, " %d:%" PRId64
,
242 hist
->hdata
.intvl
.int_start
+ i
,
243 (int64_t) hist
->hvalue
.counters
[i
]);
244 fprintf (dump_file
, " ] outside range:%" PRId64
,
245 (int64_t) hist
->hvalue
.counters
[i
]);
247 fprintf (dump_file
, ".\n");
251 fprintf (dump_file
, "Pow2 counter ");
252 if (hist
->hvalue
.counters
)
254 fprintf (dump_file
, "pow2:%" PRId64
256 (int64_t) hist
->hvalue
.counters
[1],
257 (int64_t) hist
->hvalue
.counters
[0]);
259 fprintf (dump_file
, ".\n");
262 case HIST_TYPE_SINGLE_VALUE
:
263 fprintf (dump_file
, "Single value ");
264 if (hist
->hvalue
.counters
)
266 fprintf (dump_file
, "value:%" PRId64
269 (int64_t) hist
->hvalue
.counters
[0],
270 (int64_t) hist
->hvalue
.counters
[1],
271 (int64_t) hist
->hvalue
.counters
[2]);
273 fprintf (dump_file
, ".\n");
276 case HIST_TYPE_AVERAGE
:
277 fprintf (dump_file
, "Average value ");
278 if (hist
->hvalue
.counters
)
280 fprintf (dump_file
, "sum:%" PRId64
282 (int64_t) hist
->hvalue
.counters
[0],
283 (int64_t) hist
->hvalue
.counters
[1]);
285 fprintf (dump_file
, ".\n");
289 fprintf (dump_file
, "IOR value ");
290 if (hist
->hvalue
.counters
)
292 fprintf (dump_file
, "ior:%" PRId64
,
293 (int64_t) hist
->hvalue
.counters
[0]);
295 fprintf (dump_file
, ".\n");
298 case HIST_TYPE_INDIR_CALL
:
299 fprintf (dump_file
, "Indirect call ");
300 if (hist
->hvalue
.counters
)
302 fprintf (dump_file
, "value:%" PRId64
305 (int64_t) hist
->hvalue
.counters
[0],
306 (int64_t) hist
->hvalue
.counters
[1],
307 (int64_t) hist
->hvalue
.counters
[2]);
309 fprintf (dump_file
, ".\n");
311 case HIST_TYPE_TIME_PROFILE
:
312 fprintf (dump_file
, "Time profile ");
313 if (hist
->hvalue
.counters
)
315 fprintf (dump_file
, "time:%" PRId64
,
316 (int64_t) hist
->hvalue
.counters
[0]);
318 fprintf (dump_file
, ".\n");
320 case HIST_TYPE_INDIR_CALL_TOPN
:
321 fprintf (dump_file
, "Indirect call topn ");
322 if (hist
->hvalue
.counters
)
326 fprintf (dump_file
, "accu:%" PRId64
, hist
->hvalue
.counters
[0]);
327 for (i
= 1; i
< (GCOV_ICALL_TOPN_VAL
<< 2); i
+= 2)
329 fprintf (dump_file
, " target:%" PRId64
" value:%" PRId64
,
330 (int64_t) hist
->hvalue
.counters
[i
],
331 (int64_t) hist
->hvalue
.counters
[i
+1]);
334 fprintf (dump_file
, ".\n");
341 /* Dump information about HIST to DUMP_FILE. */
344 stream_out_histogram_value (struct output_block
*ob
, histogram_value hist
)
349 bp
= bitpack_create (ob
->main_stream
);
350 bp_pack_enum (&bp
, hist_type
, HIST_TYPE_MAX
, hist
->type
);
351 bp_pack_value (&bp
, hist
->hvalue
.next
!= NULL
, 1);
352 streamer_write_bitpack (&bp
);
355 case HIST_TYPE_INTERVAL
:
356 streamer_write_hwi (ob
, hist
->hdata
.intvl
.int_start
);
357 streamer_write_uhwi (ob
, hist
->hdata
.intvl
.steps
);
362 for (i
= 0; i
< hist
->n_counters
; i
++)
364 /* When user uses an unsigned type with a big value, constant converted
365 to gcov_type (a signed type) can be negative. */
366 gcov_type value
= hist
->hvalue
.counters
[i
];
367 if (hist
->type
== HIST_TYPE_SINGLE_VALUE
&& i
== 0)
370 gcc_assert (value
>= 0);
372 streamer_write_gcov_count (ob
, value
);
374 if (hist
->hvalue
.next
)
375 stream_out_histogram_value (ob
, hist
->hvalue
.next
);
378 /* Dump information about HIST to DUMP_FILE. */
381 stream_in_histogram_value (struct lto_input_block
*ib
, gimple
*stmt
)
384 unsigned int ncounters
= 0;
387 histogram_value new_val
;
389 histogram_value
*next_p
= NULL
;
393 bp
= streamer_read_bitpack (ib
);
394 type
= bp_unpack_enum (&bp
, hist_type
, HIST_TYPE_MAX
);
395 next
= bp_unpack_value (&bp
, 1);
396 new_val
= gimple_alloc_histogram_value (cfun
, type
, stmt
, NULL
);
399 case HIST_TYPE_INTERVAL
:
400 new_val
->hdata
.intvl
.int_start
= streamer_read_hwi (ib
);
401 new_val
->hdata
.intvl
.steps
= streamer_read_uhwi (ib
);
402 ncounters
= new_val
->hdata
.intvl
.steps
+ 2;
406 case HIST_TYPE_AVERAGE
:
410 case HIST_TYPE_SINGLE_VALUE
:
411 case HIST_TYPE_INDIR_CALL
:
416 case HIST_TYPE_TIME_PROFILE
:
420 case HIST_TYPE_INDIR_CALL_TOPN
:
421 ncounters
= (GCOV_ICALL_TOPN_VAL
<< 2) + 1;
427 new_val
->hvalue
.counters
= XNEWVAR (gcov_type
, sizeof (*new_val
->hvalue
.counters
) * ncounters
);
428 new_val
->n_counters
= ncounters
;
429 for (i
= 0; i
< ncounters
; i
++)
430 new_val
->hvalue
.counters
[i
] = streamer_read_gcov_count (ib
);
432 gimple_add_histogram_value (cfun
, stmt
, new_val
);
435 next_p
= &new_val
->hvalue
.next
;
440 /* Dump all histograms attached to STMT to DUMP_FILE. */
443 dump_histograms_for_stmt (struct function
*fun
, FILE *dump_file
, gimple
*stmt
)
445 histogram_value hist
;
446 for (hist
= gimple_histogram_value (fun
, stmt
); hist
; hist
= hist
->hvalue
.next
)
447 dump_histogram_value (dump_file
, hist
);
450 /* Remove all histograms associated with STMT. */
453 gimple_remove_stmt_histograms (struct function
*fun
, gimple
*stmt
)
456 while ((val
= gimple_histogram_value (fun
, stmt
)) != NULL
)
457 gimple_remove_histogram_value (fun
, stmt
, val
);
460 /* Duplicate all histograms associates with OSTMT to STMT. */
463 gimple_duplicate_stmt_histograms (struct function
*fun
, gimple
*stmt
,
464 struct function
*ofun
, gimple
*ostmt
)
467 for (val
= gimple_histogram_value (ofun
, ostmt
); val
!= NULL
; val
= val
->hvalue
.next
)
469 histogram_value new_val
= gimple_alloc_histogram_value (fun
, val
->type
, NULL
, NULL
);
470 memcpy (new_val
, val
, sizeof (*val
));
471 new_val
->hvalue
.stmt
= stmt
;
472 new_val
->hvalue
.counters
= XNEWVAR (gcov_type
, sizeof (*new_val
->hvalue
.counters
) * new_val
->n_counters
);
473 memcpy (new_val
->hvalue
.counters
, val
->hvalue
.counters
, sizeof (*new_val
->hvalue
.counters
) * new_val
->n_counters
);
474 gimple_add_histogram_value (fun
, stmt
, new_val
);
478 /* Move all histograms associated with OSTMT to STMT. */
481 gimple_move_stmt_histograms (struct function
*fun
, gimple
*stmt
, gimple
*ostmt
)
483 histogram_value val
= gimple_histogram_value (fun
, ostmt
);
486 /* The following three statements can't be reordered,
487 because histogram hashtab relies on stmt field value
488 for finding the exact slot. */
489 set_histogram_value (fun
, ostmt
, NULL
);
490 for (; val
!= NULL
; val
= val
->hvalue
.next
)
491 val
->hvalue
.stmt
= stmt
;
492 set_histogram_value (fun
, stmt
, val
);
496 static bool error_found
= false;
498 /* Helper function for verify_histograms. For each histogram reachable via htab
499 walk verify that it was reached via statement walk. */
502 visit_hist (void **slot
, void *data
)
504 hash_set
<histogram_value
> *visited
= (hash_set
<histogram_value
> *) data
;
505 histogram_value hist
= *(histogram_value
*) slot
;
507 if (!visited
->contains (hist
)
508 && hist
->type
!= HIST_TYPE_TIME_PROFILE
)
510 error ("dead histogram");
511 dump_histogram_value (stderr
, hist
);
512 debug_gimple_stmt (hist
->hvalue
.stmt
);
518 /* Verify sanity of the histograms. */
521 verify_histograms (void)
524 gimple_stmt_iterator gsi
;
525 histogram_value hist
;
528 hash_set
<histogram_value
> visited_hists
;
529 FOR_EACH_BB_FN (bb
, cfun
)
530 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
532 gimple
*stmt
= gsi_stmt (gsi
);
534 for (hist
= gimple_histogram_value (cfun
, stmt
); hist
;
535 hist
= hist
->hvalue
.next
)
537 if (hist
->hvalue
.stmt
!= stmt
)
539 error ("Histogram value statement does not correspond to "
540 "the statement it is associated with");
541 debug_gimple_stmt (stmt
);
542 dump_histogram_value (stderr
, hist
);
545 visited_hists
.add (hist
);
548 if (VALUE_HISTOGRAMS (cfun
))
549 htab_traverse (VALUE_HISTOGRAMS (cfun
), visit_hist
, &visited_hists
);
551 internal_error ("verify_histograms failed");
554 /* Helper function for verify_histograms. For each histogram reachable via htab
555 walk verify that it was reached via statement walk. */
558 free_hist (void **slot
, void *data ATTRIBUTE_UNUSED
)
560 histogram_value hist
= *(histogram_value
*) slot
;
561 free (hist
->hvalue
.counters
);
567 free_histograms (struct function
*fn
)
569 if (VALUE_HISTOGRAMS (fn
))
571 htab_traverse (VALUE_HISTOGRAMS (fn
), free_hist
, NULL
);
572 htab_delete (VALUE_HISTOGRAMS (fn
));
573 VALUE_HISTOGRAMS (fn
) = NULL
;
577 /* The overall number of invocations of the counter should match
578 execution count of basic block. Report it as error rather than
579 internal error as it might mean that user has misused the profile
583 check_counter (gimple
*stmt
, const char * name
,
584 gcov_type
*count
, gcov_type
*all
, profile_count bb_count_d
)
586 gcov_type bb_count
= bb_count_d
.ipa ().to_gcov_type ();
587 if (*all
!= bb_count
|| *count
> *all
)
590 locus
= (stmt
!= NULL
)
591 ? gimple_location (stmt
)
592 : DECL_SOURCE_LOCATION (current_function_decl
);
593 if (flag_profile_correction
)
595 if (dump_enabled_p ())
596 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, locus
,
597 "correcting inconsistent value profile: %s "
598 "profiler overall count (%d) does not match BB "
599 "count (%d)\n", name
, (int)*all
, (int)bb_count
);
607 error_at (locus
, "corrupted value profile: %s "
608 "profile counter (%d out of %d) inconsistent with "
609 "basic-block count (%d)",
621 /* GIMPLE based transformations. */
624 gimple_value_profile_transformations (void)
627 gimple_stmt_iterator gsi
;
628 bool changed
= false;
630 /* Autofdo does its own transformations for indirect calls,
631 and otherwise does not support value profiling. */
632 if (flag_auto_profile
)
635 FOR_EACH_BB_FN (bb
, cfun
)
637 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
639 gimple
*stmt
= gsi_stmt (gsi
);
640 histogram_value th
= gimple_histogram_value (cfun
, stmt
);
646 fprintf (dump_file
, "Trying transformations on stmt ");
647 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
648 dump_histograms_for_stmt (cfun
, dump_file
, stmt
);
651 /* Transformations: */
652 /* The order of things in this conditional controls which
653 transformation is used when more than one is applicable. */
654 /* It is expected that any code added by the transformations
655 will be added before the current statement, and that the
656 current statement remain valid (although possibly
657 modified) upon return. */
658 if (gimple_mod_subtract_transform (&gsi
)
659 || gimple_divmod_fixed_value_transform (&gsi
)
660 || gimple_mod_pow2_value_transform (&gsi
)
661 || gimple_stringops_transform (&gsi
)
662 || gimple_ic_transform (&gsi
))
664 stmt
= gsi_stmt (gsi
);
666 /* Original statement may no longer be in the same block. */
667 if (bb
!= gimple_bb (stmt
))
669 bb
= gimple_bb (stmt
);
670 gsi
= gsi_for_stmt (stmt
);
679 /* Generate code for transformation 1 (with parent gimple assignment
680 STMT and probability of taking the optimal path PROB, which is
681 equivalent to COUNT/ALL within roundoff error). This generates the
682 result into a temp and returns the temp; it does not replace or
683 alter the original STMT. */
686 gimple_divmod_fixed_value (gassign
*stmt
, tree value
, profile_probability prob
,
687 gcov_type count
, gcov_type all
)
689 gassign
*stmt1
, *stmt2
;
691 tree tmp0
, tmp1
, tmp2
;
692 gimple
*bb1end
, *bb2end
, *bb3end
;
693 basic_block bb
, bb2
, bb3
, bb4
;
694 tree optype
, op1
, op2
;
695 edge e12
, e13
, e23
, e24
, e34
;
696 gimple_stmt_iterator gsi
;
698 gcc_assert (is_gimple_assign (stmt
)
699 && (gimple_assign_rhs_code (stmt
) == TRUNC_DIV_EXPR
700 || gimple_assign_rhs_code (stmt
) == TRUNC_MOD_EXPR
));
702 optype
= TREE_TYPE (gimple_assign_lhs (stmt
));
703 op1
= gimple_assign_rhs1 (stmt
);
704 op2
= gimple_assign_rhs2 (stmt
);
706 bb
= gimple_bb (stmt
);
707 gsi
= gsi_for_stmt (stmt
);
709 tmp0
= make_temp_ssa_name (optype
, NULL
, "PROF");
710 tmp1
= make_temp_ssa_name (optype
, NULL
, "PROF");
711 stmt1
= gimple_build_assign (tmp0
, fold_convert (optype
, value
));
712 stmt2
= gimple_build_assign (tmp1
, op2
);
713 stmt3
= gimple_build_cond (NE_EXPR
, tmp1
, tmp0
, NULL_TREE
, NULL_TREE
);
714 gsi_insert_before (&gsi
, stmt1
, GSI_SAME_STMT
);
715 gsi_insert_before (&gsi
, stmt2
, GSI_SAME_STMT
);
716 gsi_insert_before (&gsi
, stmt3
, GSI_SAME_STMT
);
719 tmp2
= create_tmp_reg (optype
, "PROF");
720 stmt1
= gimple_build_assign (tmp2
, gimple_assign_rhs_code (stmt
), op1
, tmp0
);
721 gsi_insert_before (&gsi
, stmt1
, GSI_SAME_STMT
);
724 stmt1
= gimple_build_assign (tmp2
, gimple_assign_rhs_code (stmt
), op1
, op2
);
725 gsi_insert_before (&gsi
, stmt1
, GSI_SAME_STMT
);
729 /* Edge e23 connects bb2 to bb3, etc. */
730 e12
= split_block (bb
, bb1end
);
732 bb2
->count
= profile_count::from_gcov_type (count
);
733 e23
= split_block (bb2
, bb2end
);
735 bb3
->count
= profile_count::from_gcov_type (all
- count
);
736 e34
= split_block (bb3
, bb3end
);
738 bb4
->count
= profile_count::from_gcov_type (all
);
740 e12
->flags
&= ~EDGE_FALLTHRU
;
741 e12
->flags
|= EDGE_FALSE_VALUE
;
742 e12
->probability
= prob
;
744 e13
= make_edge (bb
, bb3
, EDGE_TRUE_VALUE
);
745 e13
->probability
= prob
.invert ();
749 e24
= make_edge (bb2
, bb4
, EDGE_FALLTHRU
);
750 e24
->probability
= profile_probability::always ();
752 e34
->probability
= profile_probability::always ();
757 /* Do transform 1) on INSN if applicable. */
760 gimple_divmod_fixed_value_transform (gimple_stmt_iterator
*si
)
762 histogram_value histogram
;
764 gcov_type val
, count
, all
;
765 tree result
, value
, tree_val
;
766 profile_probability prob
;
769 stmt
= dyn_cast
<gassign
*> (gsi_stmt (*si
));
773 if (!INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt
))))
776 code
= gimple_assign_rhs_code (stmt
);
778 if (code
!= TRUNC_DIV_EXPR
&& code
!= TRUNC_MOD_EXPR
)
781 histogram
= gimple_histogram_value_of_type (cfun
, stmt
,
782 HIST_TYPE_SINGLE_VALUE
);
786 value
= histogram
->hvalue
.value
;
787 val
= histogram
->hvalue
.counters
[0];
788 count
= histogram
->hvalue
.counters
[1];
789 all
= histogram
->hvalue
.counters
[2];
790 gimple_remove_histogram_value (cfun
, stmt
, histogram
);
792 /* We require that count is at least half of all; this means
793 that for the transformation to fire the value must be constant
794 at least 50% of time (and 75% gives the guarantee of usage). */
795 if (simple_cst_equal (gimple_assign_rhs2 (stmt
), value
) != 1
797 || optimize_bb_for_size_p (gimple_bb (stmt
)))
800 if (check_counter (stmt
, "value", &count
, &all
, gimple_bb (stmt
)->count
))
803 /* Compute probability of taking the optimal path. */
805 prob
= profile_probability::probability_in_gcov_type (count
, all
);
807 prob
= profile_probability::never ();
809 if (sizeof (gcov_type
) == sizeof (HOST_WIDE_INT
))
810 tree_val
= build_int_cst (get_gcov_type (), val
);
814 a
[0] = (unsigned HOST_WIDE_INT
) val
;
815 a
[1] = val
>> (HOST_BITS_PER_WIDE_INT
- 1) >> 1;
817 tree_val
= wide_int_to_tree (get_gcov_type (), wide_int::from_array (a
, 2,
818 TYPE_PRECISION (get_gcov_type ()), false));
820 result
= gimple_divmod_fixed_value (stmt
, tree_val
, prob
, count
, all
);
824 fprintf (dump_file
, "Div/mod by constant ");
825 print_generic_expr (dump_file
, value
, TDF_SLIM
);
826 fprintf (dump_file
, "=");
827 print_generic_expr (dump_file
, tree_val
, TDF_SLIM
);
828 fprintf (dump_file
, " transformation on insn ");
829 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
832 gimple_assign_set_rhs_from_tree (si
, result
);
833 update_stmt (gsi_stmt (*si
));
838 /* Generate code for transformation 2 (with parent gimple assign STMT and
839 probability of taking the optimal path PROB, which is equivalent to COUNT/ALL
840 within roundoff error). This generates the result into a temp and returns
841 the temp; it does not replace or alter the original STMT. */
844 gimple_mod_pow2 (gassign
*stmt
, profile_probability prob
, gcov_type count
, gcov_type all
)
846 gassign
*stmt1
, *stmt2
, *stmt3
;
849 gimple
*bb1end
, *bb2end
, *bb3end
;
850 basic_block bb
, bb2
, bb3
, bb4
;
851 tree optype
, op1
, op2
;
852 edge e12
, e13
, e23
, e24
, e34
;
853 gimple_stmt_iterator gsi
;
856 gcc_assert (is_gimple_assign (stmt
)
857 && gimple_assign_rhs_code (stmt
) == TRUNC_MOD_EXPR
);
859 optype
= TREE_TYPE (gimple_assign_lhs (stmt
));
860 op1
= gimple_assign_rhs1 (stmt
);
861 op2
= gimple_assign_rhs2 (stmt
);
863 bb
= gimple_bb (stmt
);
864 gsi
= gsi_for_stmt (stmt
);
866 result
= create_tmp_reg (optype
, "PROF");
867 tmp2
= make_temp_ssa_name (optype
, NULL
, "PROF");
868 tmp3
= make_temp_ssa_name (optype
, NULL
, "PROF");
869 stmt2
= gimple_build_assign (tmp2
, PLUS_EXPR
, op2
,
870 build_int_cst (optype
, -1));
871 stmt3
= gimple_build_assign (tmp3
, BIT_AND_EXPR
, tmp2
, op2
);
872 stmt4
= gimple_build_cond (NE_EXPR
, tmp3
, build_int_cst (optype
, 0),
873 NULL_TREE
, NULL_TREE
);
874 gsi_insert_before (&gsi
, stmt2
, GSI_SAME_STMT
);
875 gsi_insert_before (&gsi
, stmt3
, GSI_SAME_STMT
);
876 gsi_insert_before (&gsi
, stmt4
, GSI_SAME_STMT
);
879 /* tmp2 == op2-1 inherited from previous block. */
880 stmt1
= gimple_build_assign (result
, BIT_AND_EXPR
, op1
, tmp2
);
881 gsi_insert_before (&gsi
, stmt1
, GSI_SAME_STMT
);
884 stmt1
= gimple_build_assign (result
, gimple_assign_rhs_code (stmt
),
886 gsi_insert_before (&gsi
, stmt1
, GSI_SAME_STMT
);
890 /* Edge e23 connects bb2 to bb3, etc. */
891 e12
= split_block (bb
, bb1end
);
893 bb2
->count
= profile_count::from_gcov_type (count
);
894 e23
= split_block (bb2
, bb2end
);
896 bb3
->count
= profile_count::from_gcov_type (all
- count
);
897 e34
= split_block (bb3
, bb3end
);
899 bb4
->count
= profile_count::from_gcov_type (all
);
901 e12
->flags
&= ~EDGE_FALLTHRU
;
902 e12
->flags
|= EDGE_FALSE_VALUE
;
903 e12
->probability
= prob
;
905 e13
= make_edge (bb
, bb3
, EDGE_TRUE_VALUE
);
906 e13
->probability
= prob
.invert ();
910 e24
= make_edge (bb2
, bb4
, EDGE_FALLTHRU
);
911 e24
->probability
= profile_probability::always ();
913 e34
->probability
= profile_probability::always ();
918 /* Do transform 2) on INSN if applicable. */
921 gimple_mod_pow2_value_transform (gimple_stmt_iterator
*si
)
923 histogram_value histogram
;
925 gcov_type count
, wrong_values
, all
;
926 tree lhs_type
, result
, value
;
927 profile_probability prob
;
930 stmt
= dyn_cast
<gassign
*> (gsi_stmt (*si
));
934 lhs_type
= TREE_TYPE (gimple_assign_lhs (stmt
));
935 if (!INTEGRAL_TYPE_P (lhs_type
))
938 code
= gimple_assign_rhs_code (stmt
);
940 if (code
!= TRUNC_MOD_EXPR
|| !TYPE_UNSIGNED (lhs_type
))
943 histogram
= gimple_histogram_value_of_type (cfun
, stmt
, HIST_TYPE_POW2
);
947 value
= histogram
->hvalue
.value
;
948 wrong_values
= histogram
->hvalue
.counters
[0];
949 count
= histogram
->hvalue
.counters
[1];
951 gimple_remove_histogram_value (cfun
, stmt
, histogram
);
953 /* We require that we hit a power of 2 at least half of all evaluations. */
954 if (simple_cst_equal (gimple_assign_rhs2 (stmt
), value
) != 1
955 || count
< wrong_values
956 || optimize_bb_for_size_p (gimple_bb (stmt
)))
961 fprintf (dump_file
, "Mod power of 2 transformation on insn ");
962 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
965 /* Compute probability of taking the optimal path. */
966 all
= count
+ wrong_values
;
968 if (check_counter (stmt
, "pow2", &count
, &all
, gimple_bb (stmt
)->count
))
972 prob
= profile_probability::probability_in_gcov_type (count
, all
);
974 prob
= profile_probability::never ();
976 result
= gimple_mod_pow2 (stmt
, prob
, count
, all
);
978 gimple_assign_set_rhs_from_tree (si
, result
);
979 update_stmt (gsi_stmt (*si
));
984 /* Generate code for transformations 3 and 4 (with parent gimple assign STMT, and
985 NCOUNTS the number of cases to support. Currently only NCOUNTS==0 or 1 is
986 supported and this is built into this interface. The probabilities of taking
987 the optimal paths are PROB1 and PROB2, which are equivalent to COUNT1/ALL and
988 COUNT2/ALL respectively within roundoff error). This generates the
989 result into a temp and returns the temp; it does not replace or alter
990 the original STMT. */
991 /* FIXME: Generalize the interface to handle NCOUNTS > 1. */
994 gimple_mod_subtract (gassign
*stmt
, profile_probability prob1
,
995 profile_probability prob2
, int ncounts
,
996 gcov_type count1
, gcov_type count2
, gcov_type all
)
1002 gimple
*bb1end
, *bb2end
= NULL
, *bb3end
;
1003 basic_block bb
, bb2
, bb3
, bb4
;
1004 tree optype
, op1
, op2
;
1005 edge e12
, e23
= 0, e24
, e34
, e14
;
1006 gimple_stmt_iterator gsi
;
1009 gcc_assert (is_gimple_assign (stmt
)
1010 && gimple_assign_rhs_code (stmt
) == TRUNC_MOD_EXPR
);
1012 optype
= TREE_TYPE (gimple_assign_lhs (stmt
));
1013 op1
= gimple_assign_rhs1 (stmt
);
1014 op2
= gimple_assign_rhs2 (stmt
);
1016 bb
= gimple_bb (stmt
);
1017 gsi
= gsi_for_stmt (stmt
);
1019 result
= create_tmp_reg (optype
, "PROF");
1020 tmp1
= make_temp_ssa_name (optype
, NULL
, "PROF");
1021 stmt1
= gimple_build_assign (result
, op1
);
1022 stmt2
= gimple_build_assign (tmp1
, op2
);
1023 stmt3
= gimple_build_cond (LT_EXPR
, result
, tmp1
, NULL_TREE
, NULL_TREE
);
1024 gsi_insert_before (&gsi
, stmt1
, GSI_SAME_STMT
);
1025 gsi_insert_before (&gsi
, stmt2
, GSI_SAME_STMT
);
1026 gsi_insert_before (&gsi
, stmt3
, GSI_SAME_STMT
);
1029 if (ncounts
) /* Assumed to be 0 or 1 */
1031 stmt1
= gimple_build_assign (result
, MINUS_EXPR
, result
, tmp1
);
1032 stmt2
= gimple_build_cond (LT_EXPR
, result
, tmp1
, NULL_TREE
, NULL_TREE
);
1033 gsi_insert_before (&gsi
, stmt1
, GSI_SAME_STMT
);
1034 gsi_insert_before (&gsi
, stmt2
, GSI_SAME_STMT
);
1038 /* Fallback case. */
1039 stmt1
= gimple_build_assign (result
, gimple_assign_rhs_code (stmt
),
1041 gsi_insert_before (&gsi
, stmt1
, GSI_SAME_STMT
);
1045 /* Edge e23 connects bb2 to bb3, etc. */
1046 /* However block 3 is optional; if it is not there, references
1047 to 3 really refer to block 2. */
1048 e12
= split_block (bb
, bb1end
);
1050 bb2
->count
= profile_count::from_gcov_type (all
- count1
);
1052 if (ncounts
) /* Assumed to be 0 or 1. */
1054 e23
= split_block (bb2
, bb2end
);
1056 bb3
->count
= profile_count::from_gcov_type (all
- count1
- count2
);
1059 e34
= split_block (ncounts
? bb3
: bb2
, bb3end
);
1061 bb4
->count
= profile_count::from_gcov_type (all
);
1063 e12
->flags
&= ~EDGE_FALLTHRU
;
1064 e12
->flags
|= EDGE_FALSE_VALUE
;
1065 e12
->probability
= prob1
.invert ();
1067 e14
= make_edge (bb
, bb4
, EDGE_TRUE_VALUE
);
1068 e14
->probability
= prob1
;
1070 if (ncounts
) /* Assumed to be 0 or 1. */
1072 e23
->flags
&= ~EDGE_FALLTHRU
;
1073 e23
->flags
|= EDGE_FALSE_VALUE
;
1074 e23
->probability
= prob2
.invert ();
1076 e24
= make_edge (bb2
, bb4
, EDGE_TRUE_VALUE
);
1077 e24
->probability
= prob2
;
1080 e34
->probability
= profile_probability::always ();
1085 /* Do transforms 3) and 4) on the statement pointed-to by SI if applicable. */
1088 gimple_mod_subtract_transform (gimple_stmt_iterator
*si
)
1090 histogram_value histogram
;
1091 enum tree_code code
;
1092 gcov_type count
, wrong_values
, all
;
1093 tree lhs_type
, result
;
1094 profile_probability prob1
, prob2
;
1095 unsigned int i
, steps
;
1096 gcov_type count1
, count2
;
1098 stmt
= dyn_cast
<gassign
*> (gsi_stmt (*si
));
1102 lhs_type
= TREE_TYPE (gimple_assign_lhs (stmt
));
1103 if (!INTEGRAL_TYPE_P (lhs_type
))
1106 code
= gimple_assign_rhs_code (stmt
);
1108 if (code
!= TRUNC_MOD_EXPR
|| !TYPE_UNSIGNED (lhs_type
))
1111 histogram
= gimple_histogram_value_of_type (cfun
, stmt
, HIST_TYPE_INTERVAL
);
1117 for (i
= 0; i
< histogram
->hdata
.intvl
.steps
; i
++)
1118 all
+= histogram
->hvalue
.counters
[i
];
1120 wrong_values
+= histogram
->hvalue
.counters
[i
];
1121 wrong_values
+= histogram
->hvalue
.counters
[i
+1];
1122 steps
= histogram
->hdata
.intvl
.steps
;
1123 all
+= wrong_values
;
1124 count1
= histogram
->hvalue
.counters
[0];
1125 count2
= histogram
->hvalue
.counters
[1];
1127 /* Compute probability of taking the optimal path. */
1128 if (check_counter (stmt
, "interval", &count1
, &all
, gimple_bb (stmt
)->count
))
1130 gimple_remove_histogram_value (cfun
, stmt
, histogram
);
1134 if (flag_profile_correction
&& count1
+ count2
> all
)
1135 all
= count1
+ count2
;
1137 gcc_assert (count1
+ count2
<= all
);
1139 /* We require that we use just subtractions in at least 50% of all
1142 for (i
= 0; i
< histogram
->hdata
.intvl
.steps
; i
++)
1144 count
+= histogram
->hvalue
.counters
[i
];
1145 if (count
* 2 >= all
)
1149 || optimize_bb_for_size_p (gimple_bb (stmt
)))
1152 gimple_remove_histogram_value (cfun
, stmt
, histogram
);
1155 fprintf (dump_file
, "Mod subtract transformation on insn ");
1156 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1159 /* Compute probability of taking the optimal path(s). */
1162 prob1
= profile_probability::probability_in_gcov_type (count1
, all
);
1163 prob2
= profile_probability::probability_in_gcov_type (count2
, all
);
1167 prob1
= prob2
= profile_probability::never ();
1170 /* In practice, "steps" is always 2. This interface reflects this,
1171 and will need to be changed if "steps" can change. */
1172 result
= gimple_mod_subtract (stmt
, prob1
, prob2
, i
, count1
, count2
, all
);
1174 gimple_assign_set_rhs_from_tree (si
, result
);
1175 update_stmt (gsi_stmt (*si
));
1180 typedef int_hash
<unsigned int, 0, UINT_MAX
> profile_id_hash
;
1182 static hash_map
<profile_id_hash
, cgraph_node
*> *cgraph_node_map
= 0;
1184 /* Returns true if node graph is initialized. This
1185 is used to test if profile_id has been created
1186 for cgraph_nodes. */
1189 coverage_node_map_initialized_p (void)
1191 return cgraph_node_map
!= 0;
1194 /* Initialize map from PROFILE_ID to CGRAPH_NODE.
1195 When LOCAL is true, the PROFILE_IDs are computed. when it is false we assume
1196 that the PROFILE_IDs was already assigned. */
1199 init_node_map (bool local
)
1201 struct cgraph_node
*n
;
1202 cgraph_node_map
= new hash_map
<profile_id_hash
, cgraph_node
*>;
1204 FOR_EACH_DEFINED_FUNCTION (n
)
1205 if (n
->has_gimple_body_p ())
1210 n
->profile_id
= coverage_compute_profile_id (n
);
1211 while ((val
= cgraph_node_map
->get (n
->profile_id
))
1215 fprintf (dump_file
, "Local profile-id %i conflict"
1216 " with nodes %s %s\n",
1219 (*val
)->dump_name ());
1220 n
->profile_id
= (n
->profile_id
+ 1) & 0x7fffffff;
1223 else if (!n
->profile_id
)
1227 "Node %s has no profile-id"
1228 " (profile feedback missing?)\n",
1232 else if ((val
= cgraph_node_map
->get (n
->profile_id
)))
1236 "Node %s has IP profile-id %i conflict. "
1238 n
->dump_name (), n
->profile_id
);
1242 cgraph_node_map
->put (n
->profile_id
, n
);
1246 /* Delete the CGRAPH_NODE_MAP. */
1251 delete cgraph_node_map
;
1254 /* Return cgraph node for function with pid */
1257 find_func_by_profile_id (int profile_id
)
1259 cgraph_node
**val
= cgraph_node_map
->get (profile_id
);
1266 /* Perform sanity check on the indirect call target. Due to race conditions,
1267 false function target may be attributed to an indirect call site. If the
1268 call expression type mismatches with the target function's type, expand_call
1269 may ICE. Here we only do very minimal sanity check just to make compiler happy.
1270 Returns true if TARGET is considered ok for call CALL_STMT. */
1273 check_ic_target (gcall
*call_stmt
, struct cgraph_node
*target
)
1276 if (gimple_check_call_matching_types (call_stmt
, target
->decl
, true))
1279 locus
= gimple_location (call_stmt
);
1280 if (dump_enabled_p ())
1281 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, locus
,
1282 "Skipping target %s with mismatching types for icall\n",
1287 /* Do transformation
1289 if (actual_callee_address == address_of_most_common_function/method)
1296 gimple_ic (gcall
*icall_stmt
, struct cgraph_node
*direct_call
,
1297 profile_probability prob
)
1302 gcall
*iretbnd_stmt
= NULL
;
1303 tree tmp0
, tmp1
, tmp
;
1304 basic_block cond_bb
, dcall_bb
, icall_bb
, join_bb
= NULL
;
1305 tree optype
= build_pointer_type (void_type_node
);
1306 edge e_cd
, e_ci
, e_di
, e_dj
= NULL
, e_ij
;
1307 gimple_stmt_iterator gsi
;
1311 gimple_stmt_iterator psi
;
1313 cond_bb
= gimple_bb (icall_stmt
);
1314 gsi
= gsi_for_stmt (icall_stmt
);
1316 if (gimple_call_with_bounds_p (icall_stmt
) && gimple_call_lhs (icall_stmt
))
1317 iretbnd_stmt
= chkp_retbnd_call_by_val (gimple_call_lhs (icall_stmt
));
1319 tmp0
= make_temp_ssa_name (optype
, NULL
, "PROF");
1320 tmp1
= make_temp_ssa_name (optype
, NULL
, "PROF");
1321 tmp
= unshare_expr (gimple_call_fn (icall_stmt
));
1322 load_stmt
= gimple_build_assign (tmp0
, tmp
);
1323 gsi_insert_before (&gsi
, load_stmt
, GSI_SAME_STMT
);
1325 tmp
= fold_convert (optype
, build_addr (direct_call
->decl
));
1326 load_stmt
= gimple_build_assign (tmp1
, tmp
);
1327 gsi_insert_before (&gsi
, load_stmt
, GSI_SAME_STMT
);
1329 cond_stmt
= gimple_build_cond (EQ_EXPR
, tmp1
, tmp0
, NULL_TREE
, NULL_TREE
);
1330 gsi_insert_before (&gsi
, cond_stmt
, GSI_SAME_STMT
);
1332 if (TREE_CODE (gimple_vdef (icall_stmt
)) == SSA_NAME
)
1334 unlink_stmt_vdef (icall_stmt
);
1335 release_ssa_name (gimple_vdef (icall_stmt
));
1337 gimple_set_vdef (icall_stmt
, NULL_TREE
);
1338 gimple_set_vuse (icall_stmt
, NULL_TREE
);
1339 update_stmt (icall_stmt
);
1340 dcall_stmt
= as_a
<gcall
*> (gimple_copy (icall_stmt
));
1341 gimple_call_set_fndecl (dcall_stmt
, direct_call
->decl
);
1342 dflags
= flags_from_decl_or_type (direct_call
->decl
);
1343 if ((dflags
& ECF_NORETURN
) != 0
1344 && should_remove_lhs_p (gimple_call_lhs (dcall_stmt
)))
1345 gimple_call_set_lhs (dcall_stmt
, NULL_TREE
);
1346 gsi_insert_before (&gsi
, dcall_stmt
, GSI_SAME_STMT
);
1349 /* Edge e_cd connects cond_bb to dcall_bb, etc; note the first letters. */
1350 e_cd
= split_block (cond_bb
, cond_stmt
);
1351 dcall_bb
= e_cd
->dest
;
1352 dcall_bb
->count
= cond_bb
->count
.apply_probability (prob
);
1354 e_di
= split_block (dcall_bb
, dcall_stmt
);
1355 icall_bb
= e_di
->dest
;
1356 icall_bb
->count
= cond_bb
->count
- dcall_bb
->count
;
1358 /* Do not disturb existing EH edges from the indirect call. */
1359 if (!stmt_ends_bb_p (icall_stmt
))
1360 e_ij
= split_block (icall_bb
, icall_stmt
);
1363 e_ij
= find_fallthru_edge (icall_bb
->succs
);
1364 /* The indirect call might be noreturn. */
1367 e_ij
->probability
= profile_probability::always ();
1368 e_ij
= single_pred_edge (split_edge (e_ij
));
1373 join_bb
= e_ij
->dest
;
1374 join_bb
->count
= cond_bb
->count
;
1377 e_cd
->flags
= (e_cd
->flags
& ~EDGE_FALLTHRU
) | EDGE_TRUE_VALUE
;
1378 e_cd
->probability
= prob
;
1380 e_ci
= make_edge (cond_bb
, icall_bb
, EDGE_FALSE_VALUE
);
1381 e_ci
->probability
= prob
.invert ();
1387 if ((dflags
& ECF_NORETURN
) == 0)
1389 e_dj
= make_edge (dcall_bb
, join_bb
, EDGE_FALLTHRU
);
1390 e_dj
->probability
= profile_probability::always ();
1392 e_ij
->probability
= profile_probability::always ();
1395 /* Insert PHI node for the call result if necessary. */
1396 if (gimple_call_lhs (icall_stmt
)
1397 && TREE_CODE (gimple_call_lhs (icall_stmt
)) == SSA_NAME
1398 && (dflags
& ECF_NORETURN
) == 0)
1400 tree result
= gimple_call_lhs (icall_stmt
);
1401 gphi
*phi
= create_phi_node (result
, join_bb
);
1402 gimple_call_set_lhs (icall_stmt
,
1403 duplicate_ssa_name (result
, icall_stmt
));
1404 add_phi_arg (phi
, gimple_call_lhs (icall_stmt
), e_ij
, UNKNOWN_LOCATION
);
1405 gimple_call_set_lhs (dcall_stmt
,
1406 duplicate_ssa_name (result
, dcall_stmt
));
1407 add_phi_arg (phi
, gimple_call_lhs (dcall_stmt
), e_dj
, UNKNOWN_LOCATION
);
1409 /* If indirect call has following BUILT_IN_CHKP_BNDRET
1410 call then we need to make it's copy for the direct
1414 if (gimple_call_lhs (iretbnd_stmt
))
1418 if (TREE_CODE (gimple_vdef (iretbnd_stmt
)) == SSA_NAME
)
1420 unlink_stmt_vdef (iretbnd_stmt
);
1421 release_ssa_name (gimple_vdef (iretbnd_stmt
));
1423 gimple_set_vdef (iretbnd_stmt
, NULL_TREE
);
1424 gimple_set_vuse (iretbnd_stmt
, NULL_TREE
);
1425 update_stmt (iretbnd_stmt
);
1427 result
= gimple_call_lhs (iretbnd_stmt
);
1428 phi
= create_phi_node (result
, join_bb
);
1430 copy
= gimple_copy (iretbnd_stmt
);
1431 gimple_call_set_arg (copy
, 0,
1432 gimple_call_lhs (dcall_stmt
));
1433 gimple_call_set_lhs (copy
, duplicate_ssa_name (result
, copy
));
1434 gsi_insert_on_edge (e_dj
, copy
);
1435 add_phi_arg (phi
, gimple_call_lhs (copy
),
1436 e_dj
, UNKNOWN_LOCATION
);
1438 gimple_call_set_arg (iretbnd_stmt
, 0,
1439 gimple_call_lhs (icall_stmt
));
1440 gimple_call_set_lhs (iretbnd_stmt
,
1441 duplicate_ssa_name (result
, iretbnd_stmt
));
1442 psi
= gsi_for_stmt (iretbnd_stmt
);
1443 gsi_remove (&psi
, false);
1444 gsi_insert_on_edge (e_ij
, iretbnd_stmt
);
1445 add_phi_arg (phi
, gimple_call_lhs (iretbnd_stmt
),
1446 e_ij
, UNKNOWN_LOCATION
);
1448 gsi_commit_one_edge_insert (e_dj
, NULL
);
1449 gsi_commit_one_edge_insert (e_ij
, NULL
);
1453 psi
= gsi_for_stmt (iretbnd_stmt
);
1454 gsi_remove (&psi
, true);
1459 /* Build an EH edge for the direct call if necessary. */
1460 lp_nr
= lookup_stmt_eh_lp (icall_stmt
);
1461 if (lp_nr
> 0 && stmt_could_throw_p (dcall_stmt
))
1463 add_stmt_to_eh_lp (dcall_stmt
, lp_nr
);
1466 FOR_EACH_EDGE (e_eh
, ei
, icall_bb
->succs
)
1467 if (e_eh
->flags
& (EDGE_EH
| EDGE_ABNORMAL
))
1469 e
= make_edge (dcall_bb
, e_eh
->dest
, e_eh
->flags
);
1470 e
->probability
= e_eh
->probability
;
1471 for (gphi_iterator psi
= gsi_start_phis (e_eh
->dest
);
1472 !gsi_end_p (psi
); gsi_next (&psi
))
1474 gphi
*phi
= psi
.phi ();
1475 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi
, e
),
1476 PHI_ARG_DEF_FROM_EDGE (phi
, e_eh
));
1479 if (!stmt_could_throw_p (dcall_stmt
))
1480 gimple_purge_dead_eh_edges (dcall_bb
);
1485 For every checked indirect/virtual call determine if most common pid of
1486 function/class method has probability more than 50%. If yes modify code of
1491 gimple_ic_transform (gimple_stmt_iterator
*gsi
)
1494 histogram_value histogram
;
1495 gcov_type val
, count
, all
, bb_all
;
1496 struct cgraph_node
*direct_call
;
1498 stmt
= dyn_cast
<gcall
*> (gsi_stmt (*gsi
));
1502 if (gimple_call_fndecl (stmt
) != NULL_TREE
)
1505 if (gimple_call_internal_p (stmt
))
1508 histogram
= gimple_histogram_value_of_type (cfun
, stmt
, HIST_TYPE_INDIR_CALL
);
1512 val
= histogram
->hvalue
.counters
[0];
1513 count
= histogram
->hvalue
.counters
[1];
1514 all
= histogram
->hvalue
.counters
[2];
1516 bb_all
= gimple_bb (stmt
)->count
.ipa ().to_gcov_type ();
1517 /* The order of CHECK_COUNTER calls is important -
1518 since check_counter can correct the third parameter
1519 and we want to make count <= all <= bb_all. */
1520 if (check_counter (stmt
, "ic", &all
, &bb_all
, gimple_bb (stmt
)->count
)
1521 || check_counter (stmt
, "ic", &count
, &all
,
1522 profile_count::from_gcov_type (all
)))
1524 gimple_remove_histogram_value (cfun
, stmt
, histogram
);
1528 if (4 * count
<= 3 * all
)
1531 direct_call
= find_func_by_profile_id ((int)val
);
1533 if (direct_call
== NULL
)
1539 fprintf (dump_file
, "Indirect call -> direct call from other module");
1540 print_generic_expr (dump_file
, gimple_call_fn (stmt
), TDF_SLIM
);
1541 fprintf (dump_file
, "=> %i (will resolve only with LTO)\n", (int)val
);
1547 if (!check_ic_target (stmt
, direct_call
))
1551 fprintf (dump_file
, "Indirect call -> direct call ");
1552 print_generic_expr (dump_file
, gimple_call_fn (stmt
), TDF_SLIM
);
1553 fprintf (dump_file
, "=> ");
1554 print_generic_expr (dump_file
, direct_call
->decl
, TDF_SLIM
);
1555 fprintf (dump_file
, " transformation skipped because of type mismatch");
1556 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1558 gimple_remove_histogram_value (cfun
, stmt
, histogram
);
1564 fprintf (dump_file
, "Indirect call -> direct call ");
1565 print_generic_expr (dump_file
, gimple_call_fn (stmt
), TDF_SLIM
);
1566 fprintf (dump_file
, "=> ");
1567 print_generic_expr (dump_file
, direct_call
->decl
, TDF_SLIM
);
1568 fprintf (dump_file
, " transformation on insn postponned to ipa-profile");
1569 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1570 fprintf (dump_file
, "hist->count %" PRId64
1571 " hist->all %" PRId64
"\n", count
, all
);
1577 /* Return true if the stringop CALL shall be profiled. SIZE_ARG be
1578 set to the argument index for the size of the string operation. */
1581 interesting_stringop_to_profile_p (gcall
*call
, int *size_arg
)
1583 enum built_in_function fcode
;
1585 fcode
= DECL_FUNCTION_CODE (gimple_call_fndecl (call
));
1586 if (fcode
!= BUILT_IN_MEMCPY
&& fcode
!= BUILT_IN_MEMPCPY
1587 && fcode
!= BUILT_IN_MEMSET
&& fcode
!= BUILT_IN_BZERO
)
1592 case BUILT_IN_MEMCPY
:
1593 case BUILT_IN_MEMPCPY
:
1595 return validate_gimple_arglist (call
, POINTER_TYPE
, POINTER_TYPE
,
1596 INTEGER_TYPE
, VOID_TYPE
);
1597 case BUILT_IN_MEMSET
:
1599 return validate_gimple_arglist (call
, POINTER_TYPE
, INTEGER_TYPE
,
1600 INTEGER_TYPE
, VOID_TYPE
);
1601 case BUILT_IN_BZERO
:
1603 return validate_gimple_arglist (call
, POINTER_TYPE
, INTEGER_TYPE
,
1610 /* Convert stringop (..., vcall_size)
1612 if (vcall_size == icall_size)
1613 stringop (..., icall_size);
1615 stringop (..., vcall_size);
1616 assuming we'll propagate a true constant into ICALL_SIZE later. */
1619 gimple_stringop_fixed_value (gcall
*vcall_stmt
, tree icall_size
, profile_probability prob
,
1620 gcov_type count
, gcov_type all
)
1625 tree tmp0
, tmp1
, vcall_size
, optype
;
1626 basic_block cond_bb
, icall_bb
, vcall_bb
, join_bb
;
1627 edge e_ci
, e_cv
, e_iv
, e_ij
, e_vj
;
1628 gimple_stmt_iterator gsi
;
1631 if (!interesting_stringop_to_profile_p (vcall_stmt
, &size_arg
))
1634 cond_bb
= gimple_bb (vcall_stmt
);
1635 gsi
= gsi_for_stmt (vcall_stmt
);
1637 vcall_size
= gimple_call_arg (vcall_stmt
, size_arg
);
1638 optype
= TREE_TYPE (vcall_size
);
1640 tmp0
= make_temp_ssa_name (optype
, NULL
, "PROF");
1641 tmp1
= make_temp_ssa_name (optype
, NULL
, "PROF");
1642 tmp_stmt
= gimple_build_assign (tmp0
, fold_convert (optype
, icall_size
));
1643 gsi_insert_before (&gsi
, tmp_stmt
, GSI_SAME_STMT
);
1645 tmp_stmt
= gimple_build_assign (tmp1
, vcall_size
);
1646 gsi_insert_before (&gsi
, tmp_stmt
, GSI_SAME_STMT
);
1648 cond_stmt
= gimple_build_cond (EQ_EXPR
, tmp1
, tmp0
, NULL_TREE
, NULL_TREE
);
1649 gsi_insert_before (&gsi
, cond_stmt
, GSI_SAME_STMT
);
1651 if (TREE_CODE (gimple_vdef (vcall_stmt
)) == SSA_NAME
)
1653 unlink_stmt_vdef (vcall_stmt
);
1654 release_ssa_name (gimple_vdef (vcall_stmt
));
1656 gimple_set_vdef (vcall_stmt
, NULL
);
1657 gimple_set_vuse (vcall_stmt
, NULL
);
1658 update_stmt (vcall_stmt
);
1659 icall_stmt
= as_a
<gcall
*> (gimple_copy (vcall_stmt
));
1660 gimple_call_set_arg (icall_stmt
, size_arg
,
1661 fold_convert (optype
, icall_size
));
1662 gsi_insert_before (&gsi
, icall_stmt
, GSI_SAME_STMT
);
1665 /* Edge e_ci connects cond_bb to icall_bb, etc. */
1666 e_ci
= split_block (cond_bb
, cond_stmt
);
1667 icall_bb
= e_ci
->dest
;
1668 icall_bb
->count
= profile_count::from_gcov_type (count
);
1670 e_iv
= split_block (icall_bb
, icall_stmt
);
1671 vcall_bb
= e_iv
->dest
;
1672 vcall_bb
->count
= profile_count::from_gcov_type (all
- count
);
1674 e_vj
= split_block (vcall_bb
, vcall_stmt
);
1675 join_bb
= e_vj
->dest
;
1676 join_bb
->count
= profile_count::from_gcov_type (all
);
1678 e_ci
->flags
= (e_ci
->flags
& ~EDGE_FALLTHRU
) | EDGE_TRUE_VALUE
;
1679 e_ci
->probability
= prob
;
1681 e_cv
= make_edge (cond_bb
, vcall_bb
, EDGE_FALSE_VALUE
);
1682 e_cv
->probability
= prob
.invert ();
1686 e_ij
= make_edge (icall_bb
, join_bb
, EDGE_FALLTHRU
);
1687 e_ij
->probability
= profile_probability::always ();
1689 e_vj
->probability
= profile_probability::always ();
1691 /* Insert PHI node for the call result if necessary. */
1692 if (gimple_call_lhs (vcall_stmt
)
1693 && TREE_CODE (gimple_call_lhs (vcall_stmt
)) == SSA_NAME
)
1695 tree result
= gimple_call_lhs (vcall_stmt
);
1696 gphi
*phi
= create_phi_node (result
, join_bb
);
1697 gimple_call_set_lhs (vcall_stmt
,
1698 duplicate_ssa_name (result
, vcall_stmt
));
1699 add_phi_arg (phi
, gimple_call_lhs (vcall_stmt
), e_vj
, UNKNOWN_LOCATION
);
1700 gimple_call_set_lhs (icall_stmt
,
1701 duplicate_ssa_name (result
, icall_stmt
));
1702 add_phi_arg (phi
, gimple_call_lhs (icall_stmt
), e_ij
, UNKNOWN_LOCATION
);
1705 /* Because these are all string op builtins, they're all nothrow. */
1706 gcc_assert (!stmt_could_throw_p (vcall_stmt
));
1707 gcc_assert (!stmt_could_throw_p (icall_stmt
));
1710 /* Find values inside STMT for that we want to measure histograms for
1711 division/modulo optimization. */
1714 gimple_stringops_transform (gimple_stmt_iterator
*gsi
)
1718 enum built_in_function fcode
;
1719 histogram_value histogram
;
1720 gcov_type count
, all
, val
;
1722 unsigned int dest_align
, src_align
;
1723 profile_probability prob
;
1727 stmt
= dyn_cast
<gcall
*> (gsi_stmt (*gsi
));
1731 if (!gimple_call_builtin_p (gsi_stmt (*gsi
), BUILT_IN_NORMAL
))
1734 if (!interesting_stringop_to_profile_p (stmt
, &size_arg
))
1737 blck_size
= gimple_call_arg (stmt
, size_arg
);
1738 if (TREE_CODE (blck_size
) == INTEGER_CST
)
1741 histogram
= gimple_histogram_value_of_type (cfun
, stmt
, HIST_TYPE_SINGLE_VALUE
);
1745 val
= histogram
->hvalue
.counters
[0];
1746 count
= histogram
->hvalue
.counters
[1];
1747 all
= histogram
->hvalue
.counters
[2];
1748 gimple_remove_histogram_value (cfun
, stmt
, histogram
);
1750 /* We require that count is at least half of all; this means
1751 that for the transformation to fire the value must be constant
1752 at least 80% of time. */
1753 if ((6 * count
/ 5) < all
|| optimize_bb_for_size_p (gimple_bb (stmt
)))
1755 if (check_counter (stmt
, "value", &count
, &all
, gimple_bb (stmt
)->count
))
1758 prob
= profile_probability::probability_in_gcov_type (count
, all
);
1760 prob
= profile_probability::never ();
1762 dest
= gimple_call_arg (stmt
, 0);
1763 dest_align
= get_pointer_alignment (dest
);
1764 fcode
= DECL_FUNCTION_CODE (gimple_call_fndecl (stmt
));
1767 case BUILT_IN_MEMCPY
:
1768 case BUILT_IN_MEMPCPY
:
1769 src
= gimple_call_arg (stmt
, 1);
1770 src_align
= get_pointer_alignment (src
);
1771 if (!can_move_by_pieces (val
, MIN (dest_align
, src_align
)))
1774 case BUILT_IN_MEMSET
:
1775 if (!can_store_by_pieces (val
, builtin_memset_read_str
,
1776 gimple_call_arg (stmt
, 1),
1780 case BUILT_IN_BZERO
:
1781 if (!can_store_by_pieces (val
, builtin_memset_read_str
,
1790 if (sizeof (gcov_type
) == sizeof (HOST_WIDE_INT
))
1791 tree_val
= build_int_cst (get_gcov_type (), val
);
1795 a
[0] = (unsigned HOST_WIDE_INT
) val
;
1796 a
[1] = val
>> (HOST_BITS_PER_WIDE_INT
- 1) >> 1;
1798 tree_val
= wide_int_to_tree (get_gcov_type (), wide_int::from_array (a
, 2,
1799 TYPE_PRECISION (get_gcov_type ()), false));
1804 fprintf (dump_file
, "Single value %i stringop transformation on ",
1806 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1809 gimple_stringop_fixed_value (stmt
, tree_val
, prob
, count
, all
);
1815 stringop_block_profile (gimple
*stmt
, unsigned int *expected_align
,
1816 HOST_WIDE_INT
*expected_size
)
1818 histogram_value histogram
;
1819 histogram
= gimple_histogram_value_of_type (cfun
, stmt
, HIST_TYPE_AVERAGE
);
1822 *expected_size
= -1;
1823 else if (!histogram
->hvalue
.counters
[1])
1825 *expected_size
= -1;
1826 gimple_remove_histogram_value (cfun
, stmt
, histogram
);
1831 size
= ((histogram
->hvalue
.counters
[0]
1832 + histogram
->hvalue
.counters
[1] / 2)
1833 / histogram
->hvalue
.counters
[1]);
1834 /* Even if we can hold bigger value in SIZE, INT_MAX
1835 is safe "infinity" for code generation strategies. */
1838 *expected_size
= size
;
1839 gimple_remove_histogram_value (cfun
, stmt
, histogram
);
1842 histogram
= gimple_histogram_value_of_type (cfun
, stmt
, HIST_TYPE_IOR
);
1845 *expected_align
= 0;
1846 else if (!histogram
->hvalue
.counters
[0])
1848 gimple_remove_histogram_value (cfun
, stmt
, histogram
);
1849 *expected_align
= 0;
1854 unsigned int alignment
;
1856 count
= histogram
->hvalue
.counters
[0];
1858 while (!(count
& alignment
)
1859 && (alignment
<= UINT_MAX
/ 2 / BITS_PER_UNIT
))
1861 *expected_align
= alignment
* BITS_PER_UNIT
;
1862 gimple_remove_histogram_value (cfun
, stmt
, histogram
);
1867 /* Find values inside STMT for that we want to measure histograms for
1868 division/modulo optimization. */
1871 gimple_divmod_values_to_profile (gimple
*stmt
, histogram_values
*values
)
1873 tree lhs
, divisor
, op0
, type
;
1874 histogram_value hist
;
1876 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1879 lhs
= gimple_assign_lhs (stmt
);
1880 type
= TREE_TYPE (lhs
);
1881 if (!INTEGRAL_TYPE_P (type
))
1884 switch (gimple_assign_rhs_code (stmt
))
1886 case TRUNC_DIV_EXPR
:
1887 case TRUNC_MOD_EXPR
:
1888 divisor
= gimple_assign_rhs2 (stmt
);
1889 op0
= gimple_assign_rhs1 (stmt
);
1891 values
->reserve (3);
1893 if (TREE_CODE (divisor
) == SSA_NAME
)
1894 /* Check for the case where the divisor is the same value most
1896 values
->quick_push (gimple_alloc_histogram_value (cfun
,
1897 HIST_TYPE_SINGLE_VALUE
,
1900 /* For mod, check whether it is not often a noop (or replaceable by
1901 a few subtractions). */
1902 if (gimple_assign_rhs_code (stmt
) == TRUNC_MOD_EXPR
1903 && TYPE_UNSIGNED (type
)
1904 && TREE_CODE (divisor
) == SSA_NAME
)
1907 /* Check for a special case where the divisor is power of 2. */
1908 values
->quick_push (gimple_alloc_histogram_value (cfun
,
1912 val
= build2 (TRUNC_DIV_EXPR
, type
, op0
, divisor
);
1913 hist
= gimple_alloc_histogram_value (cfun
, HIST_TYPE_INTERVAL
,
1915 hist
->hdata
.intvl
.int_start
= 0;
1916 hist
->hdata
.intvl
.steps
= 2;
1917 values
->quick_push (hist
);
1926 /* Find calls inside STMT for that we want to measure histograms for
1927 indirect/virtual call optimization. */
1930 gimple_indirect_call_to_profile (gimple
*stmt
, histogram_values
*values
)
1934 if (gimple_code (stmt
) != GIMPLE_CALL
1935 || gimple_call_internal_p (stmt
)
1936 || gimple_call_fndecl (stmt
) != NULL_TREE
)
1939 callee
= gimple_call_fn (stmt
);
1941 values
->reserve (3);
1943 values
->quick_push (gimple_alloc_histogram_value (
1945 PARAM_VALUE (PARAM_INDIR_CALL_TOPN_PROFILE
) ?
1946 HIST_TYPE_INDIR_CALL_TOPN
:
1947 HIST_TYPE_INDIR_CALL
,
1953 /* Find values inside STMT for that we want to measure histograms for
1954 string operations. */
1957 gimple_stringops_values_to_profile (gimple
*gs
, histogram_values
*values
)
1964 stmt
= dyn_cast
<gcall
*> (gs
);
1968 if (!gimple_call_builtin_p (gs
, BUILT_IN_NORMAL
))
1971 if (!interesting_stringop_to_profile_p (stmt
, &size_arg
))
1974 dest
= gimple_call_arg (stmt
, 0);
1975 blck_size
= gimple_call_arg (stmt
, size_arg
);
1977 if (TREE_CODE (blck_size
) != INTEGER_CST
)
1979 values
->safe_push (gimple_alloc_histogram_value (cfun
,
1980 HIST_TYPE_SINGLE_VALUE
,
1982 values
->safe_push (gimple_alloc_histogram_value (cfun
, HIST_TYPE_AVERAGE
,
1986 if (TREE_CODE (blck_size
) != INTEGER_CST
)
1987 values
->safe_push (gimple_alloc_histogram_value (cfun
, HIST_TYPE_IOR
,
1991 /* Find values inside STMT for that we want to measure histograms and adds
1992 them to list VALUES. */
1995 gimple_values_to_profile (gimple
*stmt
, histogram_values
*values
)
1997 gimple_divmod_values_to_profile (stmt
, values
);
1998 gimple_stringops_values_to_profile (stmt
, values
);
1999 gimple_indirect_call_to_profile (stmt
, values
);
2003 gimple_find_values_to_profile (histogram_values
*values
)
2006 gimple_stmt_iterator gsi
;
2008 histogram_value hist
= NULL
;
2011 FOR_EACH_BB_FN (bb
, cfun
)
2012 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2013 gimple_values_to_profile (gsi_stmt (gsi
), values
);
2015 values
->safe_push (gimple_alloc_histogram_value (cfun
, HIST_TYPE_TIME_PROFILE
, 0, 0));
2017 FOR_EACH_VEC_ELT (*values
, i
, hist
)
2021 case HIST_TYPE_INTERVAL
:
2022 hist
->n_counters
= hist
->hdata
.intvl
.steps
+ 2;
2025 case HIST_TYPE_POW2
:
2026 hist
->n_counters
= 2;
2029 case HIST_TYPE_SINGLE_VALUE
:
2030 hist
->n_counters
= 3;
2033 case HIST_TYPE_INDIR_CALL
:
2034 hist
->n_counters
= 3;
2037 case HIST_TYPE_TIME_PROFILE
:
2038 hist
->n_counters
= 1;
2041 case HIST_TYPE_AVERAGE
:
2042 hist
->n_counters
= 2;
2046 hist
->n_counters
= 1;
2049 case HIST_TYPE_INDIR_CALL_TOPN
:
2050 hist
->n_counters
= GCOV_ICALL_TOPN_NCOUNTS
;
2056 if (dump_file
&& hist
->hvalue
.stmt
!= NULL
)
2058 fprintf (dump_file
, "Stmt ");
2059 print_gimple_stmt (dump_file
, hist
->hvalue
.stmt
, 0, TDF_SLIM
);
2060 dump_histogram_value (dump_file
, hist
);