[PR c++/84729] reject parenthesized array init
[official-gcc.git] / gcc / alias.c
blob5fa15cbd1022961f8ffb0149d15ba39dd10e1984
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2018 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "gimple-ssa.h"
33 #include "emit-rtl.h"
34 #include "alias.h"
35 #include "fold-const.h"
36 #include "varasm.h"
37 #include "cselib.h"
38 #include "langhooks.h"
39 #include "cfganal.h"
40 #include "rtl-iter.h"
41 #include "cgraph.h"
43 /* The aliasing API provided here solves related but different problems:
45 Say there exists (in c)
47 struct X {
48 struct Y y1;
49 struct Z z2;
50 } x1, *px1, *px2;
52 struct Y y2, *py;
53 struct Z z2, *pz;
56 py = &x1.y1;
57 px2 = &x1;
59 Consider the four questions:
61 Can a store to x1 interfere with px2->y1?
62 Can a store to x1 interfere with px2->z2?
63 Can a store to x1 change the value pointed to by with py?
64 Can a store to x1 change the value pointed to by with pz?
66 The answer to these questions can be yes, yes, yes, and maybe.
68 The first two questions can be answered with a simple examination
69 of the type system. If structure X contains a field of type Y then
70 a store through a pointer to an X can overwrite any field that is
71 contained (recursively) in an X (unless we know that px1 != px2).
73 The last two questions can be solved in the same way as the first
74 two questions but this is too conservative. The observation is
75 that in some cases we can know which (if any) fields are addressed
76 and if those addresses are used in bad ways. This analysis may be
77 language specific. In C, arbitrary operations may be applied to
78 pointers. However, there is some indication that this may be too
79 conservative for some C++ types.
81 The pass ipa-type-escape does this analysis for the types whose
82 instances do not escape across the compilation boundary.
84 Historically in GCC, these two problems were combined and a single
85 data structure that was used to represent the solution to these
86 problems. We now have two similar but different data structures,
87 The data structure to solve the last two questions is similar to
88 the first, but does not contain the fields whose address are never
89 taken. For types that do escape the compilation unit, the data
90 structures will have identical information.
93 /* The alias sets assigned to MEMs assist the back-end in determining
94 which MEMs can alias which other MEMs. In general, two MEMs in
95 different alias sets cannot alias each other, with one important
96 exception. Consider something like:
98 struct S { int i; double d; };
100 a store to an `S' can alias something of either type `int' or type
101 `double'. (However, a store to an `int' cannot alias a `double'
102 and vice versa.) We indicate this via a tree structure that looks
103 like:
104 struct S
107 |/_ _\|
108 int double
110 (The arrows are directed and point downwards.)
111 In this situation we say the alias set for `struct S' is the
112 `superset' and that those for `int' and `double' are `subsets'.
114 To see whether two alias sets can point to the same memory, we must
115 see if either alias set is a subset of the other. We need not trace
116 past immediate descendants, however, since we propagate all
117 grandchildren up one level.
119 Alias set zero is implicitly a superset of all other alias sets.
120 However, this is no actual entry for alias set zero. It is an
121 error to attempt to explicitly construct a subset of zero. */
123 struct alias_set_hash : int_hash <int, INT_MIN, INT_MIN + 1> {};
125 struct GTY(()) alias_set_entry {
126 /* The alias set number, as stored in MEM_ALIAS_SET. */
127 alias_set_type alias_set;
129 /* Nonzero if would have a child of zero: this effectively makes this
130 alias set the same as alias set zero. */
131 bool has_zero_child;
132 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
133 aggregate contaiing pointer.
134 This is used for a special case where we need an universal pointer type
135 compatible with all other pointer types. */
136 bool is_pointer;
137 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
138 bool has_pointer;
140 /* The children of the alias set. These are not just the immediate
141 children, but, in fact, all descendants. So, if we have:
143 struct T { struct S s; float f; }
145 continuing our example above, the children here will be all of
146 `int', `double', `float', and `struct S'. */
147 hash_map<alias_set_hash, int> *children;
150 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
151 static void record_set (rtx, const_rtx, void *);
152 static int base_alias_check (rtx, rtx, rtx, rtx, machine_mode,
153 machine_mode);
154 static rtx find_base_value (rtx);
155 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
156 static alias_set_entry *get_alias_set_entry (alias_set_type);
157 static tree decl_for_component_ref (tree);
158 static int write_dependence_p (const_rtx,
159 const_rtx, machine_mode, rtx,
160 bool, bool, bool);
161 static int compare_base_symbol_refs (const_rtx, const_rtx);
163 static void memory_modified_1 (rtx, const_rtx, void *);
165 /* Query statistics for the different low-level disambiguators.
166 A high-level query may trigger multiple of them. */
168 static struct {
169 unsigned long long num_alias_zero;
170 unsigned long long num_same_alias_set;
171 unsigned long long num_same_objects;
172 unsigned long long num_volatile;
173 unsigned long long num_dag;
174 unsigned long long num_universal;
175 unsigned long long num_disambiguated;
176 } alias_stats;
179 /* Set up all info needed to perform alias analysis on memory references. */
181 /* Returns the size in bytes of the mode of X. */
182 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
184 /* Cap the number of passes we make over the insns propagating alias
185 information through set chains.
186 ??? 10 is a completely arbitrary choice. This should be based on the
187 maximum loop depth in the CFG, but we do not have this information
188 available (even if current_loops _is_ available). */
189 #define MAX_ALIAS_LOOP_PASSES 10
191 /* reg_base_value[N] gives an address to which register N is related.
192 If all sets after the first add or subtract to the current value
193 or otherwise modify it so it does not point to a different top level
194 object, reg_base_value[N] is equal to the address part of the source
195 of the first set.
197 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
198 expressions represent three types of base:
200 1. incoming arguments. There is just one ADDRESS to represent all
201 arguments, since we do not know at this level whether accesses
202 based on different arguments can alias. The ADDRESS has id 0.
204 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
205 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
206 Each of these rtxes has a separate ADDRESS associated with it,
207 each with a negative id.
209 GCC is (and is required to be) precise in which register it
210 chooses to access a particular region of stack. We can therefore
211 assume that accesses based on one of these rtxes do not alias
212 accesses based on another of these rtxes.
214 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
215 Each such piece of memory has a separate ADDRESS associated
216 with it, each with an id greater than 0.
218 Accesses based on one ADDRESS do not alias accesses based on other
219 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
220 alias globals either; the ADDRESSes have Pmode to indicate this.
221 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
222 indicate this. */
224 static GTY(()) vec<rtx, va_gc> *reg_base_value;
225 static rtx *new_reg_base_value;
227 /* The single VOIDmode ADDRESS that represents all argument bases.
228 It has id 0. */
229 static GTY(()) rtx arg_base_value;
231 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
232 static int unique_id;
234 /* We preserve the copy of old array around to avoid amount of garbage
235 produced. About 8% of garbage produced were attributed to this
236 array. */
237 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
239 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
240 registers. */
241 #define UNIQUE_BASE_VALUE_SP -1
242 #define UNIQUE_BASE_VALUE_ARGP -2
243 #define UNIQUE_BASE_VALUE_FP -3
244 #define UNIQUE_BASE_VALUE_HFP -4
246 #define static_reg_base_value \
247 (this_target_rtl->x_static_reg_base_value)
249 #define REG_BASE_VALUE(X) \
250 (REGNO (X) < vec_safe_length (reg_base_value) \
251 ? (*reg_base_value)[REGNO (X)] : 0)
253 /* Vector indexed by N giving the initial (unchanging) value known for
254 pseudo-register N. This vector is initialized in init_alias_analysis,
255 and does not change until end_alias_analysis is called. */
256 static GTY(()) vec<rtx, va_gc> *reg_known_value;
258 /* Vector recording for each reg_known_value whether it is due to a
259 REG_EQUIV note. Future passes (viz., reload) may replace the
260 pseudo with the equivalent expression and so we account for the
261 dependences that would be introduced if that happens.
263 The REG_EQUIV notes created in assign_parms may mention the arg
264 pointer, and there are explicit insns in the RTL that modify the
265 arg pointer. Thus we must ensure that such insns don't get
266 scheduled across each other because that would invalidate the
267 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
268 wrong, but solving the problem in the scheduler will likely give
269 better code, so we do it here. */
270 static sbitmap reg_known_equiv_p;
272 /* True when scanning insns from the start of the rtl to the
273 NOTE_INSN_FUNCTION_BEG note. */
274 static bool copying_arguments;
277 /* The splay-tree used to store the various alias set entries. */
278 static GTY (()) vec<alias_set_entry *, va_gc> *alias_sets;
280 /* Build a decomposed reference object for querying the alias-oracle
281 from the MEM rtx and store it in *REF.
282 Returns false if MEM is not suitable for the alias-oracle. */
284 static bool
285 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
287 tree expr = MEM_EXPR (mem);
288 tree base;
290 if (!expr)
291 return false;
293 ao_ref_init (ref, expr);
295 /* Get the base of the reference and see if we have to reject or
296 adjust it. */
297 base = ao_ref_base (ref);
298 if (base == NULL_TREE)
299 return false;
301 /* The tree oracle doesn't like bases that are neither decls
302 nor indirect references of SSA names. */
303 if (!(DECL_P (base)
304 || (TREE_CODE (base) == MEM_REF
305 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
306 || (TREE_CODE (base) == TARGET_MEM_REF
307 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
308 return false;
310 /* If this is a reference based on a partitioned decl replace the
311 base with a MEM_REF of the pointer representative we
312 created during stack slot partitioning. */
313 if (VAR_P (base)
314 && ! is_global_var (base)
315 && cfun->gimple_df->decls_to_pointers != NULL)
317 tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
318 if (namep)
319 ref->base = build_simple_mem_ref (*namep);
322 ref->ref_alias_set = MEM_ALIAS_SET (mem);
324 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
325 is conservative, so trust it. */
326 if (!MEM_OFFSET_KNOWN_P (mem)
327 || !MEM_SIZE_KNOWN_P (mem))
328 return true;
330 /* If MEM_OFFSET/MEM_SIZE get us outside of ref->offset/ref->max_size
331 drop ref->ref. */
332 if (maybe_lt (MEM_OFFSET (mem), 0)
333 || (ref->max_size_known_p ()
334 && maybe_gt ((MEM_OFFSET (mem) + MEM_SIZE (mem)) * BITS_PER_UNIT,
335 ref->max_size)))
336 ref->ref = NULL_TREE;
338 /* Refine size and offset we got from analyzing MEM_EXPR by using
339 MEM_SIZE and MEM_OFFSET. */
341 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
342 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
344 /* The MEM may extend into adjacent fields, so adjust max_size if
345 necessary. */
346 if (ref->max_size_known_p ())
347 ref->max_size = upper_bound (ref->max_size, ref->size);
349 /* If MEM_OFFSET and MEM_SIZE might get us outside of the base object of
350 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
351 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
352 && (maybe_lt (ref->offset, 0)
353 || (DECL_P (ref->base)
354 && (DECL_SIZE (ref->base) == NULL_TREE
355 || !poly_int_tree_p (DECL_SIZE (ref->base))
356 || maybe_lt (wi::to_poly_offset (DECL_SIZE (ref->base)),
357 ref->offset + ref->size)))))
358 return false;
360 return true;
363 /* Query the alias-oracle on whether the two memory rtx X and MEM may
364 alias. If TBAA_P is set also apply TBAA. Returns true if the
365 two rtxen may alias, false otherwise. */
367 static bool
368 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
370 ao_ref ref1, ref2;
372 if (!ao_ref_from_mem (&ref1, x)
373 || !ao_ref_from_mem (&ref2, mem))
374 return true;
376 return refs_may_alias_p_1 (&ref1, &ref2,
377 tbaa_p
378 && MEM_ALIAS_SET (x) != 0
379 && MEM_ALIAS_SET (mem) != 0);
382 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
383 such an entry, or NULL otherwise. */
385 static inline alias_set_entry *
386 get_alias_set_entry (alias_set_type alias_set)
388 return (*alias_sets)[alias_set];
391 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
392 the two MEMs cannot alias each other. */
394 static inline int
395 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
397 return (flag_strict_aliasing
398 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1),
399 MEM_ALIAS_SET (mem2)));
402 /* Return true if the first alias set is a subset of the second. */
404 bool
405 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
407 alias_set_entry *ase2;
409 /* Disable TBAA oracle with !flag_strict_aliasing. */
410 if (!flag_strict_aliasing)
411 return true;
413 /* Everything is a subset of the "aliases everything" set. */
414 if (set2 == 0)
415 return true;
417 /* Check if set1 is a subset of set2. */
418 ase2 = get_alias_set_entry (set2);
419 if (ase2 != 0
420 && (ase2->has_zero_child
421 || (ase2->children && ase2->children->get (set1))))
422 return true;
424 /* As a special case we consider alias set of "void *" to be both subset
425 and superset of every alias set of a pointer. This extra symmetry does
426 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
427 to return true on the following testcase:
429 void *ptr;
430 char **ptr2=(char **)&ptr;
431 *ptr2 = ...
433 Additionally if a set contains universal pointer, we consider every pointer
434 to be a subset of it, but we do not represent this explicitely - doing so
435 would require us to update transitive closure each time we introduce new
436 pointer type. This makes aliasing_component_refs_p to return true
437 on the following testcase:
439 struct a {void *ptr;}
440 char **ptr = (char **)&a.ptr;
441 ptr = ...
443 This makes void * truly universal pointer type. See pointer handling in
444 get_alias_set for more details. */
445 if (ase2 && ase2->has_pointer)
447 alias_set_entry *ase1 = get_alias_set_entry (set1);
449 if (ase1 && ase1->is_pointer)
451 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
452 /* If one is ptr_type_node and other is pointer, then we consider
453 them subset of each other. */
454 if (set1 == voidptr_set || set2 == voidptr_set)
455 return true;
456 /* If SET2 contains universal pointer's alias set, then we consdier
457 every (non-universal) pointer. */
458 if (ase2->children && set1 != voidptr_set
459 && ase2->children->get (voidptr_set))
460 return true;
463 return false;
466 /* Return 1 if the two specified alias sets may conflict. */
469 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
471 alias_set_entry *ase1;
472 alias_set_entry *ase2;
474 /* The easy case. */
475 if (alias_sets_must_conflict_p (set1, set2))
476 return 1;
478 /* See if the first alias set is a subset of the second. */
479 ase1 = get_alias_set_entry (set1);
480 if (ase1 != 0
481 && ase1->children && ase1->children->get (set2))
483 ++alias_stats.num_dag;
484 return 1;
487 /* Now do the same, but with the alias sets reversed. */
488 ase2 = get_alias_set_entry (set2);
489 if (ase2 != 0
490 && ase2->children && ase2->children->get (set1))
492 ++alias_stats.num_dag;
493 return 1;
496 /* We want void * to be compatible with any other pointer without
497 really dropping it to alias set 0. Doing so would make it
498 compatible with all non-pointer types too.
500 This is not strictly necessary by the C/C++ language
501 standards, but avoids common type punning mistakes. In
502 addition to that, we need the existence of such universal
503 pointer to implement Fortran's C_PTR type (which is defined as
504 type compatible with all C pointers). */
505 if (ase1 && ase2 && ase1->has_pointer && ase2->has_pointer)
507 alias_set_type voidptr_set = TYPE_ALIAS_SET (ptr_type_node);
509 /* If one of the sets corresponds to universal pointer,
510 we consider it to conflict with anything that is
511 or contains pointer. */
512 if (set1 == voidptr_set || set2 == voidptr_set)
514 ++alias_stats.num_universal;
515 return true;
517 /* If one of sets is (non-universal) pointer and the other
518 contains universal pointer, we also get conflict. */
519 if (ase1->is_pointer && set2 != voidptr_set
520 && ase2->children && ase2->children->get (voidptr_set))
522 ++alias_stats.num_universal;
523 return true;
525 if (ase2->is_pointer && set1 != voidptr_set
526 && ase1->children && ase1->children->get (voidptr_set))
528 ++alias_stats.num_universal;
529 return true;
533 ++alias_stats.num_disambiguated;
535 /* The two alias sets are distinct and neither one is the
536 child of the other. Therefore, they cannot conflict. */
537 return 0;
540 /* Return 1 if the two specified alias sets will always conflict. */
543 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
545 /* Disable TBAA oracle with !flag_strict_aliasing. */
546 if (!flag_strict_aliasing)
547 return 1;
548 if (set1 == 0 || set2 == 0)
550 ++alias_stats.num_alias_zero;
551 return 1;
553 if (set1 == set2)
555 ++alias_stats.num_same_alias_set;
556 return 1;
559 return 0;
562 /* Return 1 if any MEM object of type T1 will always conflict (using the
563 dependency routines in this file) with any MEM object of type T2.
564 This is used when allocating temporary storage. If T1 and/or T2 are
565 NULL_TREE, it means we know nothing about the storage. */
568 objects_must_conflict_p (tree t1, tree t2)
570 alias_set_type set1, set2;
572 /* If neither has a type specified, we don't know if they'll conflict
573 because we may be using them to store objects of various types, for
574 example the argument and local variables areas of inlined functions. */
575 if (t1 == 0 && t2 == 0)
576 return 0;
578 /* If they are the same type, they must conflict. */
579 if (t1 == t2)
581 ++alias_stats.num_same_objects;
582 return 1;
584 /* Likewise if both are volatile. */
585 if (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2))
587 ++alias_stats.num_volatile;
588 return 1;
591 set1 = t1 ? get_alias_set (t1) : 0;
592 set2 = t2 ? get_alias_set (t2) : 0;
594 /* We can't use alias_sets_conflict_p because we must make sure
595 that every subtype of t1 will conflict with every subtype of
596 t2 for which a pair of subobjects of these respective subtypes
597 overlaps on the stack. */
598 return alias_sets_must_conflict_p (set1, set2);
601 /* Return the outermost parent of component present in the chain of
602 component references handled by get_inner_reference in T with the
603 following property:
604 - the component is non-addressable, or
605 - the parent has alias set zero,
606 or NULL_TREE if no such parent exists. In the former cases, the alias
607 set of this parent is the alias set that must be used for T itself. */
609 tree
610 component_uses_parent_alias_set_from (const_tree t)
612 const_tree found = NULL_TREE;
614 if (AGGREGATE_TYPE_P (TREE_TYPE (t))
615 && TYPE_TYPELESS_STORAGE (TREE_TYPE (t)))
616 return const_cast <tree> (t);
618 while (handled_component_p (t))
620 switch (TREE_CODE (t))
622 case COMPONENT_REF:
623 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
624 found = t;
625 /* Permit type-punning when accessing a union, provided the access
626 is directly through the union. For example, this code does not
627 permit taking the address of a union member and then storing
628 through it. Even the type-punning allowed here is a GCC
629 extension, albeit a common and useful one; the C standard says
630 that such accesses have implementation-defined behavior. */
631 else if (TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == UNION_TYPE)
632 found = t;
633 break;
635 case ARRAY_REF:
636 case ARRAY_RANGE_REF:
637 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
638 found = t;
639 break;
641 case REALPART_EXPR:
642 case IMAGPART_EXPR:
643 break;
645 case BIT_FIELD_REF:
646 case VIEW_CONVERT_EXPR:
647 /* Bitfields and casts are never addressable. */
648 found = t;
649 break;
651 default:
652 gcc_unreachable ();
655 if (get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) == 0)
656 found = t;
658 t = TREE_OPERAND (t, 0);
661 if (found)
662 return TREE_OPERAND (found, 0);
664 return NULL_TREE;
668 /* Return whether the pointer-type T effective for aliasing may
669 access everything and thus the reference has to be assigned
670 alias-set zero. */
672 static bool
673 ref_all_alias_ptr_type_p (const_tree t)
675 return (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
676 || TYPE_REF_CAN_ALIAS_ALL (t));
679 /* Return the alias set for the memory pointed to by T, which may be
680 either a type or an expression. Return -1 if there is nothing
681 special about dereferencing T. */
683 static alias_set_type
684 get_deref_alias_set_1 (tree t)
686 /* All we care about is the type. */
687 if (! TYPE_P (t))
688 t = TREE_TYPE (t);
690 /* If we have an INDIRECT_REF via a void pointer, we don't
691 know anything about what that might alias. Likewise if the
692 pointer is marked that way. */
693 if (ref_all_alias_ptr_type_p (t))
694 return 0;
696 return -1;
699 /* Return the alias set for the memory pointed to by T, which may be
700 either a type or an expression. */
702 alias_set_type
703 get_deref_alias_set (tree t)
705 /* If we're not doing any alias analysis, just assume everything
706 aliases everything else. */
707 if (!flag_strict_aliasing)
708 return 0;
710 alias_set_type set = get_deref_alias_set_1 (t);
712 /* Fall back to the alias-set of the pointed-to type. */
713 if (set == -1)
715 if (! TYPE_P (t))
716 t = TREE_TYPE (t);
717 set = get_alias_set (TREE_TYPE (t));
720 return set;
723 /* Return the pointer-type relevant for TBAA purposes from the
724 memory reference tree *T or NULL_TREE in which case *T is
725 adjusted to point to the outermost component reference that
726 can be used for assigning an alias set. */
728 static tree
729 reference_alias_ptr_type_1 (tree *t)
731 tree inner;
733 /* Get the base object of the reference. */
734 inner = *t;
735 while (handled_component_p (inner))
737 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
738 the type of any component references that wrap it to
739 determine the alias-set. */
740 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
741 *t = TREE_OPERAND (inner, 0);
742 inner = TREE_OPERAND (inner, 0);
745 /* Handle pointer dereferences here, they can override the
746 alias-set. */
747 if (INDIRECT_REF_P (inner)
748 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 0))))
749 return TREE_TYPE (TREE_OPERAND (inner, 0));
750 else if (TREE_CODE (inner) == TARGET_MEM_REF)
751 return TREE_TYPE (TMR_OFFSET (inner));
752 else if (TREE_CODE (inner) == MEM_REF
753 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner, 1))))
754 return TREE_TYPE (TREE_OPERAND (inner, 1));
756 /* If the innermost reference is a MEM_REF that has a
757 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
758 using the memory access type for determining the alias-set. */
759 if (TREE_CODE (inner) == MEM_REF
760 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner))
761 != TYPE_MAIN_VARIANT
762 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1))))))
763 return TREE_TYPE (TREE_OPERAND (inner, 1));
765 /* Otherwise, pick up the outermost object that we could have
766 a pointer to. */
767 tree tem = component_uses_parent_alias_set_from (*t);
768 if (tem)
769 *t = tem;
771 return NULL_TREE;
774 /* Return the pointer-type relevant for TBAA purposes from the
775 gimple memory reference tree T. This is the type to be used for
776 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
777 and guarantees that get_alias_set will return the same alias
778 set for T and the replacement. */
780 tree
781 reference_alias_ptr_type (tree t)
783 /* If the frontend assigns this alias-set zero, preserve that. */
784 if (lang_hooks.get_alias_set (t) == 0)
785 return ptr_type_node;
787 tree ptype = reference_alias_ptr_type_1 (&t);
788 /* If there is a given pointer type for aliasing purposes, return it. */
789 if (ptype != NULL_TREE)
790 return ptype;
792 /* Otherwise build one from the outermost component reference we
793 may use. */
794 if (TREE_CODE (t) == MEM_REF
795 || TREE_CODE (t) == TARGET_MEM_REF)
796 return TREE_TYPE (TREE_OPERAND (t, 1));
797 else
798 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t)));
801 /* Return whether the pointer-types T1 and T2 used to determine
802 two alias sets of two references will yield the same answer
803 from get_deref_alias_set. */
805 bool
806 alias_ptr_types_compatible_p (tree t1, tree t2)
808 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
809 return true;
811 if (ref_all_alias_ptr_type_p (t1)
812 || ref_all_alias_ptr_type_p (t2))
813 return false;
815 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1))
816 == TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
819 /* Create emptry alias set entry. */
821 alias_set_entry *
822 init_alias_set_entry (alias_set_type set)
824 alias_set_entry *ase = ggc_alloc<alias_set_entry> ();
825 ase->alias_set = set;
826 ase->children = NULL;
827 ase->has_zero_child = false;
828 ase->is_pointer = false;
829 ase->has_pointer = false;
830 gcc_checking_assert (!get_alias_set_entry (set));
831 (*alias_sets)[set] = ase;
832 return ase;
835 /* Return the alias set for T, which may be either a type or an
836 expression. Call language-specific routine for help, if needed. */
838 alias_set_type
839 get_alias_set (tree t)
841 alias_set_type set;
843 /* We can not give up with -fno-strict-aliasing because we need to build
844 proper type representation for possible functions which are build with
845 -fstrict-aliasing. */
847 /* return 0 if this or its type is an error. */
848 if (t == error_mark_node
849 || (! TYPE_P (t)
850 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
851 return 0;
853 /* We can be passed either an expression or a type. This and the
854 language-specific routine may make mutually-recursive calls to each other
855 to figure out what to do. At each juncture, we see if this is a tree
856 that the language may need to handle specially. First handle things that
857 aren't types. */
858 if (! TYPE_P (t))
860 /* Give the language a chance to do something with this tree
861 before we look at it. */
862 STRIP_NOPS (t);
863 set = lang_hooks.get_alias_set (t);
864 if (set != -1)
865 return set;
867 /* Get the alias pointer-type to use or the outermost object
868 that we could have a pointer to. */
869 tree ptype = reference_alias_ptr_type_1 (&t);
870 if (ptype != NULL)
871 return get_deref_alias_set (ptype);
873 /* If we've already determined the alias set for a decl, just return
874 it. This is necessary for C++ anonymous unions, whose component
875 variables don't look like union members (boo!). */
876 if (VAR_P (t)
877 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
878 return MEM_ALIAS_SET (DECL_RTL (t));
880 /* Now all we care about is the type. */
881 t = TREE_TYPE (t);
884 /* Variant qualifiers don't affect the alias set, so get the main
885 variant. */
886 t = TYPE_MAIN_VARIANT (t);
888 if (AGGREGATE_TYPE_P (t)
889 && TYPE_TYPELESS_STORAGE (t))
890 return 0;
892 /* Always use the canonical type as well. If this is a type that
893 requires structural comparisons to identify compatible types
894 use alias set zero. */
895 if (TYPE_STRUCTURAL_EQUALITY_P (t))
897 /* Allow the language to specify another alias set for this
898 type. */
899 set = lang_hooks.get_alias_set (t);
900 if (set != -1)
901 return set;
902 /* Handle structure type equality for pointer types, arrays and vectors.
903 This is easy to do, because the code bellow ignore canonical types on
904 these anyway. This is important for LTO, where TYPE_CANONICAL for
905 pointers can not be meaningfuly computed by the frotnend. */
906 if (canonical_type_used_p (t))
908 /* In LTO we set canonical types for all types where it makes
909 sense to do so. Double check we did not miss some type. */
910 gcc_checking_assert (!in_lto_p || !type_with_alias_set_p (t));
911 return 0;
914 else
916 t = TYPE_CANONICAL (t);
917 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
920 /* If this is a type with a known alias set, return it. */
921 gcc_checking_assert (t == TYPE_MAIN_VARIANT (t));
922 if (TYPE_ALIAS_SET_KNOWN_P (t))
923 return TYPE_ALIAS_SET (t);
925 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
926 if (!COMPLETE_TYPE_P (t))
928 /* For arrays with unknown size the conservative answer is the
929 alias set of the element type. */
930 if (TREE_CODE (t) == ARRAY_TYPE)
931 return get_alias_set (TREE_TYPE (t));
933 /* But return zero as a conservative answer for incomplete types. */
934 return 0;
937 /* See if the language has special handling for this type. */
938 set = lang_hooks.get_alias_set (t);
939 if (set != -1)
940 return set;
942 /* There are no objects of FUNCTION_TYPE, so there's no point in
943 using up an alias set for them. (There are, of course, pointers
944 and references to functions, but that's different.) */
945 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
946 set = 0;
948 /* Unless the language specifies otherwise, let vector types alias
949 their components. This avoids some nasty type punning issues in
950 normal usage. And indeed lets vectors be treated more like an
951 array slice. */
952 else if (TREE_CODE (t) == VECTOR_TYPE)
953 set = get_alias_set (TREE_TYPE (t));
955 /* Unless the language specifies otherwise, treat array types the
956 same as their components. This avoids the asymmetry we get
957 through recording the components. Consider accessing a
958 character(kind=1) through a reference to a character(kind=1)[1:1].
959 Or consider if we want to assign integer(kind=4)[0:D.1387] and
960 integer(kind=4)[4] the same alias set or not.
961 Just be pragmatic here and make sure the array and its element
962 type get the same alias set assigned. */
963 else if (TREE_CODE (t) == ARRAY_TYPE
964 && (!TYPE_NONALIASED_COMPONENT (t)
965 || TYPE_STRUCTURAL_EQUALITY_P (t)))
966 set = get_alias_set (TREE_TYPE (t));
968 /* From the former common C and C++ langhook implementation:
970 Unfortunately, there is no canonical form of a pointer type.
971 In particular, if we have `typedef int I', then `int *', and
972 `I *' are different types. So, we have to pick a canonical
973 representative. We do this below.
975 Technically, this approach is actually more conservative that
976 it needs to be. In particular, `const int *' and `int *'
977 should be in different alias sets, according to the C and C++
978 standard, since their types are not the same, and so,
979 technically, an `int **' and `const int **' cannot point at
980 the same thing.
982 But, the standard is wrong. In particular, this code is
983 legal C++:
985 int *ip;
986 int **ipp = &ip;
987 const int* const* cipp = ipp;
988 And, it doesn't make sense for that to be legal unless you
989 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
990 the pointed-to types. This issue has been reported to the
991 C++ committee.
993 For this reason go to canonical type of the unqalified pointer type.
994 Until GCC 6 this code set all pointers sets to have alias set of
995 ptr_type_node but that is a bad idea, because it prevents disabiguations
996 in between pointers. For Firefox this accounts about 20% of all
997 disambiguations in the program. */
998 else if (POINTER_TYPE_P (t) && t != ptr_type_node)
1000 tree p;
1001 auto_vec <bool, 8> reference;
1003 /* Unnest all pointers and references.
1004 We also want to make pointer to array/vector equivalent to pointer to
1005 its element (see the reasoning above). Skip all those types, too. */
1006 for (p = t; POINTER_TYPE_P (p)
1007 || (TREE_CODE (p) == ARRAY_TYPE
1008 && (!TYPE_NONALIASED_COMPONENT (p)
1009 || !COMPLETE_TYPE_P (p)
1010 || TYPE_STRUCTURAL_EQUALITY_P (p)))
1011 || TREE_CODE (p) == VECTOR_TYPE;
1012 p = TREE_TYPE (p))
1014 /* Ada supports recusive pointers. Instead of doing recrusion check
1015 just give up once the preallocated space of 8 elements is up.
1016 In this case just punt to void * alias set. */
1017 if (reference.length () == 8)
1019 p = ptr_type_node;
1020 break;
1022 if (TREE_CODE (p) == REFERENCE_TYPE)
1023 /* In LTO we want languages that use references to be compatible
1024 with languages that use pointers. */
1025 reference.safe_push (true && !in_lto_p);
1026 if (TREE_CODE (p) == POINTER_TYPE)
1027 reference.safe_push (false);
1029 p = TYPE_MAIN_VARIANT (p);
1031 /* Make void * compatible with char * and also void **.
1032 Programs are commonly violating TBAA by this.
1034 We also make void * to conflict with every pointer
1035 (see record_component_aliases) and thus it is safe it to use it for
1036 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1037 if (TREE_CODE (p) == VOID_TYPE || TYPE_STRUCTURAL_EQUALITY_P (p))
1038 set = get_alias_set (ptr_type_node);
1039 else
1041 /* Rebuild pointer type starting from canonical types using
1042 unqualified pointers and references only. This way all such
1043 pointers will have the same alias set and will conflict with
1044 each other.
1046 Most of time we already have pointers or references of a given type.
1047 If not we build new one just to be sure that if someone later
1048 (probably only middle-end can, as we should assign all alias
1049 classes only after finishing translation unit) builds the pointer
1050 type, the canonical type will match. */
1051 p = TYPE_CANONICAL (p);
1052 while (!reference.is_empty ())
1054 if (reference.pop ())
1055 p = build_reference_type (p);
1056 else
1057 p = build_pointer_type (p);
1058 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1059 /* build_pointer_type should always return the canonical type.
1060 For LTO TYPE_CANOINCAL may be NULL, because we do not compute
1061 them. Be sure that frontends do not glob canonical types of
1062 pointers in unexpected way and that p == TYPE_CANONICAL (p)
1063 in all other cases. */
1064 gcc_checking_assert (!TYPE_CANONICAL (p)
1065 || p == TYPE_CANONICAL (p));
1068 /* Assign the alias set to both p and t.
1069 We can not call get_alias_set (p) here as that would trigger
1070 infinite recursion when p == t. In other cases it would just
1071 trigger unnecesary legwork of rebuilding the pointer again. */
1072 gcc_checking_assert (p == TYPE_MAIN_VARIANT (p));
1073 if (TYPE_ALIAS_SET_KNOWN_P (p))
1074 set = TYPE_ALIAS_SET (p);
1075 else
1077 set = new_alias_set ();
1078 TYPE_ALIAS_SET (p) = set;
1082 /* Alias set of ptr_type_node is special and serve as universal pointer which
1083 is TBAA compatible with every other pointer type. Be sure we have the
1084 alias set built even for LTO which otherwise keeps all TYPE_CANONICAL
1085 of pointer types NULL. */
1086 else if (t == ptr_type_node)
1087 set = new_alias_set ();
1089 /* Otherwise make a new alias set for this type. */
1090 else
1092 /* Each canonical type gets its own alias set, so canonical types
1093 shouldn't form a tree. It doesn't really matter for types
1094 we handle specially above, so only check it where it possibly
1095 would result in a bogus alias set. */
1096 gcc_checking_assert (TYPE_CANONICAL (t) == t);
1098 set = new_alias_set ();
1101 TYPE_ALIAS_SET (t) = set;
1103 /* If this is an aggregate type or a complex type, we must record any
1104 component aliasing information. */
1105 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
1106 record_component_aliases (t);
1108 /* We treat pointer types specially in alias_set_subset_of. */
1109 if (POINTER_TYPE_P (t) && set)
1111 alias_set_entry *ase = get_alias_set_entry (set);
1112 if (!ase)
1113 ase = init_alias_set_entry (set);
1114 ase->is_pointer = true;
1115 ase->has_pointer = true;
1118 return set;
1121 /* Return a brand-new alias set. */
1123 alias_set_type
1124 new_alias_set (void)
1126 if (alias_sets == 0)
1127 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1128 vec_safe_push (alias_sets, (alias_set_entry *) NULL);
1129 return alias_sets->length () - 1;
1132 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1133 not everything that aliases SUPERSET also aliases SUBSET. For example,
1134 in C, a store to an `int' can alias a load of a structure containing an
1135 `int', and vice versa. But it can't alias a load of a 'double' member
1136 of the same structure. Here, the structure would be the SUPERSET and
1137 `int' the SUBSET. This relationship is also described in the comment at
1138 the beginning of this file.
1140 This function should be called only once per SUPERSET/SUBSET pair.
1142 It is illegal for SUPERSET to be zero; everything is implicitly a
1143 subset of alias set zero. */
1145 void
1146 record_alias_subset (alias_set_type superset, alias_set_type subset)
1148 alias_set_entry *superset_entry;
1149 alias_set_entry *subset_entry;
1151 /* It is possible in complex type situations for both sets to be the same,
1152 in which case we can ignore this operation. */
1153 if (superset == subset)
1154 return;
1156 gcc_assert (superset);
1158 superset_entry = get_alias_set_entry (superset);
1159 if (superset_entry == 0)
1161 /* Create an entry for the SUPERSET, so that we have a place to
1162 attach the SUBSET. */
1163 superset_entry = init_alias_set_entry (superset);
1166 if (subset == 0)
1167 superset_entry->has_zero_child = 1;
1168 else
1170 subset_entry = get_alias_set_entry (subset);
1171 if (!superset_entry->children)
1172 superset_entry->children
1173 = hash_map<alias_set_hash, int>::create_ggc (64);
1174 /* If there is an entry for the subset, enter all of its children
1175 (if they are not already present) as children of the SUPERSET. */
1176 if (subset_entry)
1178 if (subset_entry->has_zero_child)
1179 superset_entry->has_zero_child = true;
1180 if (subset_entry->has_pointer)
1181 superset_entry->has_pointer = true;
1183 if (subset_entry->children)
1185 hash_map<alias_set_hash, int>::iterator iter
1186 = subset_entry->children->begin ();
1187 for (; iter != subset_entry->children->end (); ++iter)
1188 superset_entry->children->put ((*iter).first, (*iter).second);
1192 /* Enter the SUBSET itself as a child of the SUPERSET. */
1193 superset_entry->children->put (subset, 0);
1197 /* Record that component types of TYPE, if any, are part of that type for
1198 aliasing purposes. For record types, we only record component types
1199 for fields that are not marked non-addressable. For array types, we
1200 only record the component type if it is not marked non-aliased. */
1202 void
1203 record_component_aliases (tree type)
1205 alias_set_type superset = get_alias_set (type);
1206 tree field;
1208 if (superset == 0)
1209 return;
1211 switch (TREE_CODE (type))
1213 case RECORD_TYPE:
1214 case UNION_TYPE:
1215 case QUAL_UNION_TYPE:
1216 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
1217 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
1219 /* LTO type merging does not make any difference between
1220 component pointer types. We may have
1222 struct foo {int *a;};
1224 as TYPE_CANONICAL of
1226 struct bar {float *a;};
1228 Because accesses to int * and float * do not alias, we would get
1229 false negative when accessing the same memory location by
1230 float ** and bar *. We thus record the canonical type as:
1232 struct {void *a;};
1234 void * is special cased and works as a universal pointer type.
1235 Accesses to it conflicts with accesses to any other pointer
1236 type. */
1237 tree t = TREE_TYPE (field);
1238 if (in_lto_p)
1240 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1241 element type and that type has to be normalized to void *,
1242 too, in the case it is a pointer. */
1243 while (!canonical_type_used_p (t) && !POINTER_TYPE_P (t))
1245 gcc_checking_assert (TYPE_STRUCTURAL_EQUALITY_P (t));
1246 t = TREE_TYPE (t);
1248 if (POINTER_TYPE_P (t))
1249 t = ptr_type_node;
1250 else if (flag_checking)
1251 gcc_checking_assert (get_alias_set (t)
1252 == get_alias_set (TREE_TYPE (field)));
1255 record_alias_subset (superset, get_alias_set (t));
1257 break;
1259 case COMPLEX_TYPE:
1260 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
1261 break;
1263 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1264 element type. */
1266 default:
1267 break;
1271 /* Allocate an alias set for use in storing and reading from the varargs
1272 spill area. */
1274 static GTY(()) alias_set_type varargs_set = -1;
1276 alias_set_type
1277 get_varargs_alias_set (void)
1279 #if 1
1280 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1281 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1282 consistently use the varargs alias set for loads from the varargs
1283 area. So don't use it anywhere. */
1284 return 0;
1285 #else
1286 if (varargs_set == -1)
1287 varargs_set = new_alias_set ();
1289 return varargs_set;
1290 #endif
1293 /* Likewise, but used for the fixed portions of the frame, e.g., register
1294 save areas. */
1296 static GTY(()) alias_set_type frame_set = -1;
1298 alias_set_type
1299 get_frame_alias_set (void)
1301 if (frame_set == -1)
1302 frame_set = new_alias_set ();
1304 return frame_set;
1307 /* Create a new, unique base with id ID. */
1309 static rtx
1310 unique_base_value (HOST_WIDE_INT id)
1312 return gen_rtx_ADDRESS (Pmode, id);
1315 /* Return true if accesses based on any other base value cannot alias
1316 those based on X. */
1318 static bool
1319 unique_base_value_p (rtx x)
1321 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1324 /* Return true if X is known to be a base value. */
1326 static bool
1327 known_base_value_p (rtx x)
1329 switch (GET_CODE (x))
1331 case LABEL_REF:
1332 case SYMBOL_REF:
1333 return true;
1335 case ADDRESS:
1336 /* Arguments may or may not be bases; we don't know for sure. */
1337 return GET_MODE (x) != VOIDmode;
1339 default:
1340 return false;
1344 /* Inside SRC, the source of a SET, find a base address. */
1346 static rtx
1347 find_base_value (rtx src)
1349 unsigned int regno;
1350 scalar_int_mode int_mode;
1352 #if defined (FIND_BASE_TERM)
1353 /* Try machine-dependent ways to find the base term. */
1354 src = FIND_BASE_TERM (src);
1355 #endif
1357 switch (GET_CODE (src))
1359 case SYMBOL_REF:
1360 case LABEL_REF:
1361 return src;
1363 case REG:
1364 regno = REGNO (src);
1365 /* At the start of a function, argument registers have known base
1366 values which may be lost later. Returning an ADDRESS
1367 expression here allows optimization based on argument values
1368 even when the argument registers are used for other purposes. */
1369 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1370 return new_reg_base_value[regno];
1372 /* If a pseudo has a known base value, return it. Do not do this
1373 for non-fixed hard regs since it can result in a circular
1374 dependency chain for registers which have values at function entry.
1376 The test above is not sufficient because the scheduler may move
1377 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1378 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1379 && regno < vec_safe_length (reg_base_value))
1381 /* If we're inside init_alias_analysis, use new_reg_base_value
1382 to reduce the number of relaxation iterations. */
1383 if (new_reg_base_value && new_reg_base_value[regno]
1384 && DF_REG_DEF_COUNT (regno) == 1)
1385 return new_reg_base_value[regno];
1387 if ((*reg_base_value)[regno])
1388 return (*reg_base_value)[regno];
1391 return 0;
1393 case MEM:
1394 /* Check for an argument passed in memory. Only record in the
1395 copying-arguments block; it is too hard to track changes
1396 otherwise. */
1397 if (copying_arguments
1398 && (XEXP (src, 0) == arg_pointer_rtx
1399 || (GET_CODE (XEXP (src, 0)) == PLUS
1400 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1401 return arg_base_value;
1402 return 0;
1404 case CONST:
1405 src = XEXP (src, 0);
1406 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1407 break;
1409 /* fall through */
1411 case PLUS:
1412 case MINUS:
1414 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1416 /* If either operand is a REG that is a known pointer, then it
1417 is the base. */
1418 if (REG_P (src_0) && REG_POINTER (src_0))
1419 return find_base_value (src_0);
1420 if (REG_P (src_1) && REG_POINTER (src_1))
1421 return find_base_value (src_1);
1423 /* If either operand is a REG, then see if we already have
1424 a known value for it. */
1425 if (REG_P (src_0))
1427 temp = find_base_value (src_0);
1428 if (temp != 0)
1429 src_0 = temp;
1432 if (REG_P (src_1))
1434 temp = find_base_value (src_1);
1435 if (temp!= 0)
1436 src_1 = temp;
1439 /* If either base is named object or a special address
1440 (like an argument or stack reference), then use it for the
1441 base term. */
1442 if (src_0 != 0 && known_base_value_p (src_0))
1443 return src_0;
1445 if (src_1 != 0 && known_base_value_p (src_1))
1446 return src_1;
1448 /* Guess which operand is the base address:
1449 If either operand is a symbol, then it is the base. If
1450 either operand is a CONST_INT, then the other is the base. */
1451 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1452 return find_base_value (src_0);
1453 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1454 return find_base_value (src_1);
1456 return 0;
1459 case LO_SUM:
1460 /* The standard form is (lo_sum reg sym) so look only at the
1461 second operand. */
1462 return find_base_value (XEXP (src, 1));
1464 case AND:
1465 /* If the second operand is constant set the base
1466 address to the first operand. */
1467 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1468 return find_base_value (XEXP (src, 0));
1469 return 0;
1471 case TRUNCATE:
1472 /* As we do not know which address space the pointer is referring to, we can
1473 handle this only if the target does not support different pointer or
1474 address modes depending on the address space. */
1475 if (!target_default_pointer_address_modes_p ())
1476 break;
1477 if (!is_a <scalar_int_mode> (GET_MODE (src), &int_mode)
1478 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1479 break;
1480 /* Fall through. */
1481 case HIGH:
1482 case PRE_INC:
1483 case PRE_DEC:
1484 case POST_INC:
1485 case POST_DEC:
1486 case PRE_MODIFY:
1487 case POST_MODIFY:
1488 return find_base_value (XEXP (src, 0));
1490 case ZERO_EXTEND:
1491 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1492 /* As we do not know which address space the pointer is referring to, we can
1493 handle this only if the target does not support different pointer or
1494 address modes depending on the address space. */
1495 if (!target_default_pointer_address_modes_p ())
1496 break;
1499 rtx temp = find_base_value (XEXP (src, 0));
1501 if (temp != 0 && CONSTANT_P (temp))
1502 temp = convert_memory_address (Pmode, temp);
1504 return temp;
1507 default:
1508 break;
1511 return 0;
1514 /* Called from init_alias_analysis indirectly through note_stores,
1515 or directly if DEST is a register with a REG_NOALIAS note attached.
1516 SET is null in the latter case. */
1518 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1519 register N has been set in this function. */
1520 static sbitmap reg_seen;
1522 static void
1523 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1525 unsigned regno;
1526 rtx src;
1527 int n;
1529 if (!REG_P (dest))
1530 return;
1532 regno = REGNO (dest);
1534 gcc_checking_assert (regno < reg_base_value->length ());
1536 n = REG_NREGS (dest);
1537 if (n != 1)
1539 while (--n >= 0)
1541 bitmap_set_bit (reg_seen, regno + n);
1542 new_reg_base_value[regno + n] = 0;
1544 return;
1547 if (set)
1549 /* A CLOBBER wipes out any old value but does not prevent a previously
1550 unset register from acquiring a base address (i.e. reg_seen is not
1551 set). */
1552 if (GET_CODE (set) == CLOBBER)
1554 new_reg_base_value[regno] = 0;
1555 return;
1557 src = SET_SRC (set);
1559 else
1561 /* There's a REG_NOALIAS note against DEST. */
1562 if (bitmap_bit_p (reg_seen, regno))
1564 new_reg_base_value[regno] = 0;
1565 return;
1567 bitmap_set_bit (reg_seen, regno);
1568 new_reg_base_value[regno] = unique_base_value (unique_id++);
1569 return;
1572 /* If this is not the first set of REGNO, see whether the new value
1573 is related to the old one. There are two cases of interest:
1575 (1) The register might be assigned an entirely new value
1576 that has the same base term as the original set.
1578 (2) The set might be a simple self-modification that
1579 cannot change REGNO's base value.
1581 If neither case holds, reject the original base value as invalid.
1582 Note that the following situation is not detected:
1584 extern int x, y; int *p = &x; p += (&y-&x);
1586 ANSI C does not allow computing the difference of addresses
1587 of distinct top level objects. */
1588 if (new_reg_base_value[regno] != 0
1589 && find_base_value (src) != new_reg_base_value[regno])
1590 switch (GET_CODE (src))
1592 case LO_SUM:
1593 case MINUS:
1594 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1595 new_reg_base_value[regno] = 0;
1596 break;
1597 case PLUS:
1598 /* If the value we add in the PLUS is also a valid base value,
1599 this might be the actual base value, and the original value
1600 an index. */
1602 rtx other = NULL_RTX;
1604 if (XEXP (src, 0) == dest)
1605 other = XEXP (src, 1);
1606 else if (XEXP (src, 1) == dest)
1607 other = XEXP (src, 0);
1609 if (! other || find_base_value (other))
1610 new_reg_base_value[regno] = 0;
1611 break;
1613 case AND:
1614 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1615 new_reg_base_value[regno] = 0;
1616 break;
1617 default:
1618 new_reg_base_value[regno] = 0;
1619 break;
1621 /* If this is the first set of a register, record the value. */
1622 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1623 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1624 new_reg_base_value[regno] = find_base_value (src);
1626 bitmap_set_bit (reg_seen, regno);
1629 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1630 using hard registers with non-null REG_BASE_VALUE for renaming. */
1632 get_reg_base_value (unsigned int regno)
1634 return (*reg_base_value)[regno];
1637 /* If a value is known for REGNO, return it. */
1640 get_reg_known_value (unsigned int regno)
1642 if (regno >= FIRST_PSEUDO_REGISTER)
1644 regno -= FIRST_PSEUDO_REGISTER;
1645 if (regno < vec_safe_length (reg_known_value))
1646 return (*reg_known_value)[regno];
1648 return NULL;
1651 /* Set it. */
1653 static void
1654 set_reg_known_value (unsigned int regno, rtx val)
1656 if (regno >= FIRST_PSEUDO_REGISTER)
1658 regno -= FIRST_PSEUDO_REGISTER;
1659 if (regno < vec_safe_length (reg_known_value))
1660 (*reg_known_value)[regno] = val;
1664 /* Similarly for reg_known_equiv_p. */
1666 bool
1667 get_reg_known_equiv_p (unsigned int regno)
1669 if (regno >= FIRST_PSEUDO_REGISTER)
1671 regno -= FIRST_PSEUDO_REGISTER;
1672 if (regno < vec_safe_length (reg_known_value))
1673 return bitmap_bit_p (reg_known_equiv_p, regno);
1675 return false;
1678 static void
1679 set_reg_known_equiv_p (unsigned int regno, bool val)
1681 if (regno >= FIRST_PSEUDO_REGISTER)
1683 regno -= FIRST_PSEUDO_REGISTER;
1684 if (regno < vec_safe_length (reg_known_value))
1686 if (val)
1687 bitmap_set_bit (reg_known_equiv_p, regno);
1688 else
1689 bitmap_clear_bit (reg_known_equiv_p, regno);
1695 /* Returns a canonical version of X, from the point of view alias
1696 analysis. (For example, if X is a MEM whose address is a register,
1697 and the register has a known value (say a SYMBOL_REF), then a MEM
1698 whose address is the SYMBOL_REF is returned.) */
1701 canon_rtx (rtx x)
1703 /* Recursively look for equivalences. */
1704 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1706 rtx t = get_reg_known_value (REGNO (x));
1707 if (t == x)
1708 return x;
1709 if (t)
1710 return canon_rtx (t);
1713 if (GET_CODE (x) == PLUS)
1715 rtx x0 = canon_rtx (XEXP (x, 0));
1716 rtx x1 = canon_rtx (XEXP (x, 1));
1718 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1719 return simplify_gen_binary (PLUS, GET_MODE (x), x0, x1);
1722 /* This gives us much better alias analysis when called from
1723 the loop optimizer. Note we want to leave the original
1724 MEM alone, but need to return the canonicalized MEM with
1725 all the flags with their original values. */
1726 else if (MEM_P (x))
1727 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1729 return x;
1732 /* Return 1 if X and Y are identical-looking rtx's.
1733 Expect that X and Y has been already canonicalized.
1735 We use the data in reg_known_value above to see if two registers with
1736 different numbers are, in fact, equivalent. */
1738 static int
1739 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1741 int i;
1742 int j;
1743 enum rtx_code code;
1744 const char *fmt;
1746 if (x == 0 && y == 0)
1747 return 1;
1748 if (x == 0 || y == 0)
1749 return 0;
1751 if (x == y)
1752 return 1;
1754 code = GET_CODE (x);
1755 /* Rtx's of different codes cannot be equal. */
1756 if (code != GET_CODE (y))
1757 return 0;
1759 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1760 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1762 if (GET_MODE (x) != GET_MODE (y))
1763 return 0;
1765 /* Some RTL can be compared without a recursive examination. */
1766 switch (code)
1768 case REG:
1769 return REGNO (x) == REGNO (y);
1771 case LABEL_REF:
1772 return label_ref_label (x) == label_ref_label (y);
1774 case SYMBOL_REF:
1775 return compare_base_symbol_refs (x, y) == 1;
1777 case ENTRY_VALUE:
1778 /* This is magic, don't go through canonicalization et al. */
1779 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
1781 case VALUE:
1782 CASE_CONST_UNIQUE:
1783 /* Pointer equality guarantees equality for these nodes. */
1784 return 0;
1786 default:
1787 break;
1790 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1791 if (code == PLUS)
1792 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1793 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1794 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1795 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1796 /* For commutative operations, the RTX match if the operand match in any
1797 order. Also handle the simple binary and unary cases without a loop. */
1798 if (COMMUTATIVE_P (x))
1800 rtx xop0 = canon_rtx (XEXP (x, 0));
1801 rtx yop0 = canon_rtx (XEXP (y, 0));
1802 rtx yop1 = canon_rtx (XEXP (y, 1));
1804 return ((rtx_equal_for_memref_p (xop0, yop0)
1805 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1806 || (rtx_equal_for_memref_p (xop0, yop1)
1807 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1809 else if (NON_COMMUTATIVE_P (x))
1811 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1812 canon_rtx (XEXP (y, 0)))
1813 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1814 canon_rtx (XEXP (y, 1))));
1816 else if (UNARY_P (x))
1817 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1818 canon_rtx (XEXP (y, 0)));
1820 /* Compare the elements. If any pair of corresponding elements
1821 fail to match, return 0 for the whole things.
1823 Limit cases to types which actually appear in addresses. */
1825 fmt = GET_RTX_FORMAT (code);
1826 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1828 switch (fmt[i])
1830 case 'i':
1831 if (XINT (x, i) != XINT (y, i))
1832 return 0;
1833 break;
1835 case 'p':
1836 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1837 return 0;
1838 break;
1840 case 'E':
1841 /* Two vectors must have the same length. */
1842 if (XVECLEN (x, i) != XVECLEN (y, i))
1843 return 0;
1845 /* And the corresponding elements must match. */
1846 for (j = 0; j < XVECLEN (x, i); j++)
1847 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1848 canon_rtx (XVECEXP (y, i, j))) == 0)
1849 return 0;
1850 break;
1852 case 'e':
1853 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1854 canon_rtx (XEXP (y, i))) == 0)
1855 return 0;
1856 break;
1858 /* This can happen for asm operands. */
1859 case 's':
1860 if (strcmp (XSTR (x, i), XSTR (y, i)))
1861 return 0;
1862 break;
1864 /* This can happen for an asm which clobbers memory. */
1865 case '0':
1866 break;
1868 /* It is believed that rtx's at this level will never
1869 contain anything but integers and other rtx's,
1870 except for within LABEL_REFs and SYMBOL_REFs. */
1871 default:
1872 gcc_unreachable ();
1875 return 1;
1878 static rtx
1879 find_base_term (rtx x)
1881 cselib_val *val;
1882 struct elt_loc_list *l, *f;
1883 rtx ret;
1884 scalar_int_mode int_mode;
1886 #if defined (FIND_BASE_TERM)
1887 /* Try machine-dependent ways to find the base term. */
1888 x = FIND_BASE_TERM (x);
1889 #endif
1891 switch (GET_CODE (x))
1893 case REG:
1894 return REG_BASE_VALUE (x);
1896 case TRUNCATE:
1897 /* As we do not know which address space the pointer is referring to, we can
1898 handle this only if the target does not support different pointer or
1899 address modes depending on the address space. */
1900 if (!target_default_pointer_address_modes_p ())
1901 return 0;
1902 if (!is_a <scalar_int_mode> (GET_MODE (x), &int_mode)
1903 || GET_MODE_PRECISION (int_mode) < GET_MODE_PRECISION (Pmode))
1904 return 0;
1905 /* Fall through. */
1906 case HIGH:
1907 case PRE_INC:
1908 case PRE_DEC:
1909 case POST_INC:
1910 case POST_DEC:
1911 case PRE_MODIFY:
1912 case POST_MODIFY:
1913 return find_base_term (XEXP (x, 0));
1915 case ZERO_EXTEND:
1916 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1917 /* As we do not know which address space the pointer is referring to, we can
1918 handle this only if the target does not support different pointer or
1919 address modes depending on the address space. */
1920 if (!target_default_pointer_address_modes_p ())
1921 return 0;
1924 rtx temp = find_base_term (XEXP (x, 0));
1926 if (temp != 0 && CONSTANT_P (temp))
1927 temp = convert_memory_address (Pmode, temp);
1929 return temp;
1932 case VALUE:
1933 val = CSELIB_VAL_PTR (x);
1934 ret = NULL_RTX;
1936 if (!val)
1937 return ret;
1939 if (cselib_sp_based_value_p (val))
1940 return static_reg_base_value[STACK_POINTER_REGNUM];
1942 f = val->locs;
1943 /* Temporarily reset val->locs to avoid infinite recursion. */
1944 val->locs = NULL;
1946 for (l = f; l; l = l->next)
1947 if (GET_CODE (l->loc) == VALUE
1948 && CSELIB_VAL_PTR (l->loc)->locs
1949 && !CSELIB_VAL_PTR (l->loc)->locs->next
1950 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1951 continue;
1952 else if ((ret = find_base_term (l->loc)) != 0)
1953 break;
1955 val->locs = f;
1956 return ret;
1958 case LO_SUM:
1959 /* The standard form is (lo_sum reg sym) so look only at the
1960 second operand. */
1961 return find_base_term (XEXP (x, 1));
1963 case CONST:
1964 x = XEXP (x, 0);
1965 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1966 return 0;
1967 /* Fall through. */
1968 case PLUS:
1969 case MINUS:
1971 rtx tmp1 = XEXP (x, 0);
1972 rtx tmp2 = XEXP (x, 1);
1974 /* This is a little bit tricky since we have to determine which of
1975 the two operands represents the real base address. Otherwise this
1976 routine may return the index register instead of the base register.
1978 That may cause us to believe no aliasing was possible, when in
1979 fact aliasing is possible.
1981 We use a few simple tests to guess the base register. Additional
1982 tests can certainly be added. For example, if one of the operands
1983 is a shift or multiply, then it must be the index register and the
1984 other operand is the base register. */
1986 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1987 return find_base_term (tmp2);
1989 /* If either operand is known to be a pointer, then prefer it
1990 to determine the base term. */
1991 if (REG_P (tmp1) && REG_POINTER (tmp1))
1993 else if (REG_P (tmp2) && REG_POINTER (tmp2))
1994 std::swap (tmp1, tmp2);
1995 /* If second argument is constant which has base term, prefer it
1996 over variable tmp1. See PR64025. */
1997 else if (CONSTANT_P (tmp2) && !CONST_INT_P (tmp2))
1998 std::swap (tmp1, tmp2);
2000 /* Go ahead and find the base term for both operands. If either base
2001 term is from a pointer or is a named object or a special address
2002 (like an argument or stack reference), then use it for the
2003 base term. */
2004 rtx base = find_base_term (tmp1);
2005 if (base != NULL_RTX
2006 && ((REG_P (tmp1) && REG_POINTER (tmp1))
2007 || known_base_value_p (base)))
2008 return base;
2009 base = find_base_term (tmp2);
2010 if (base != NULL_RTX
2011 && ((REG_P (tmp2) && REG_POINTER (tmp2))
2012 || known_base_value_p (base)))
2013 return base;
2015 /* We could not determine which of the two operands was the
2016 base register and which was the index. So we can determine
2017 nothing from the base alias check. */
2018 return 0;
2021 case AND:
2022 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
2023 return find_base_term (XEXP (x, 0));
2024 return 0;
2026 case SYMBOL_REF:
2027 case LABEL_REF:
2028 return x;
2030 default:
2031 return 0;
2035 /* Return true if accesses to address X may alias accesses based
2036 on the stack pointer. */
2038 bool
2039 may_be_sp_based_p (rtx x)
2041 rtx base = find_base_term (x);
2042 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
2045 /* BASE1 and BASE2 are decls. Return 1 if they refer to same object, 0
2046 if they refer to different objects and -1 if we can not decide. */
2049 compare_base_decls (tree base1, tree base2)
2051 int ret;
2052 gcc_checking_assert (DECL_P (base1) && DECL_P (base2));
2053 if (base1 == base2)
2054 return 1;
2056 /* If we have two register decls with register specification we
2057 cannot decide unless their assembler names are the same. */
2058 if (DECL_REGISTER (base1)
2059 && DECL_REGISTER (base2)
2060 && HAS_DECL_ASSEMBLER_NAME_P (base1)
2061 && HAS_DECL_ASSEMBLER_NAME_P (base2)
2062 && DECL_ASSEMBLER_NAME_SET_P (base1)
2063 && DECL_ASSEMBLER_NAME_SET_P (base2))
2065 if (DECL_ASSEMBLER_NAME_RAW (base1) == DECL_ASSEMBLER_NAME_RAW (base2))
2066 return 1;
2067 return -1;
2070 /* Declarations of non-automatic variables may have aliases. All other
2071 decls are unique. */
2072 if (!decl_in_symtab_p (base1)
2073 || !decl_in_symtab_p (base2))
2074 return 0;
2076 /* Don't cause symbols to be inserted by the act of checking. */
2077 symtab_node *node1 = symtab_node::get (base1);
2078 if (!node1)
2079 return 0;
2080 symtab_node *node2 = symtab_node::get (base2);
2081 if (!node2)
2082 return 0;
2084 ret = node1->equal_address_to (node2, true);
2085 return ret;
2088 /* Same as compare_base_decls but for SYMBOL_REF. */
2090 static int
2091 compare_base_symbol_refs (const_rtx x_base, const_rtx y_base)
2093 tree x_decl = SYMBOL_REF_DECL (x_base);
2094 tree y_decl = SYMBOL_REF_DECL (y_base);
2095 bool binds_def = true;
2097 if (XSTR (x_base, 0) == XSTR (y_base, 0))
2098 return 1;
2099 if (x_decl && y_decl)
2100 return compare_base_decls (x_decl, y_decl);
2101 if (x_decl || y_decl)
2103 if (!x_decl)
2105 std::swap (x_decl, y_decl);
2106 std::swap (x_base, y_base);
2108 /* We handle specially only section anchors and assume that other
2109 labels may overlap with user variables in an arbitrary way. */
2110 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2111 return -1;
2112 /* Anchors contains static VAR_DECLs and CONST_DECLs. We are safe
2113 to ignore CONST_DECLs because they are readonly. */
2114 if (!VAR_P (x_decl)
2115 || (!TREE_STATIC (x_decl) && !TREE_PUBLIC (x_decl)))
2116 return 0;
2118 symtab_node *x_node = symtab_node::get_create (x_decl)
2119 ->ultimate_alias_target ();
2120 /* External variable can not be in section anchor. */
2121 if (!x_node->definition)
2122 return 0;
2123 x_base = XEXP (DECL_RTL (x_node->decl), 0);
2124 /* If not in anchor, we can disambiguate. */
2125 if (!SYMBOL_REF_HAS_BLOCK_INFO_P (x_base))
2126 return 0;
2128 /* We have an alias of anchored variable. If it can be interposed;
2129 we must assume it may or may not alias its anchor. */
2130 binds_def = decl_binds_to_current_def_p (x_decl);
2132 /* If we have variable in section anchor, we can compare by offset. */
2133 if (SYMBOL_REF_HAS_BLOCK_INFO_P (x_base)
2134 && SYMBOL_REF_HAS_BLOCK_INFO_P (y_base))
2136 if (SYMBOL_REF_BLOCK (x_base) != SYMBOL_REF_BLOCK (y_base))
2137 return 0;
2138 if (SYMBOL_REF_BLOCK_OFFSET (x_base) == SYMBOL_REF_BLOCK_OFFSET (y_base))
2139 return binds_def ? 1 : -1;
2140 if (SYMBOL_REF_ANCHOR_P (x_base) != SYMBOL_REF_ANCHOR_P (y_base))
2141 return -1;
2142 return 0;
2144 /* In general we assume that memory locations pointed to by different labels
2145 may overlap in undefined ways. */
2146 return -1;
2149 /* Return 0 if the addresses X and Y are known to point to different
2150 objects, 1 if they might be pointers to the same object. */
2152 static int
2153 base_alias_check (rtx x, rtx x_base, rtx y, rtx y_base,
2154 machine_mode x_mode, machine_mode y_mode)
2156 /* If the address itself has no known base see if a known equivalent
2157 value has one. If either address still has no known base, nothing
2158 is known about aliasing. */
2159 if (x_base == 0)
2161 rtx x_c;
2163 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
2164 return 1;
2166 x_base = find_base_term (x_c);
2167 if (x_base == 0)
2168 return 1;
2171 if (y_base == 0)
2173 rtx y_c;
2174 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
2175 return 1;
2177 y_base = find_base_term (y_c);
2178 if (y_base == 0)
2179 return 1;
2182 /* If the base addresses are equal nothing is known about aliasing. */
2183 if (rtx_equal_p (x_base, y_base))
2184 return 1;
2186 /* The base addresses are different expressions. If they are not accessed
2187 via AND, there is no conflict. We can bring knowledge of object
2188 alignment into play here. For example, on alpha, "char a, b;" can
2189 alias one another, though "char a; long b;" cannot. AND addresses may
2190 implicitly alias surrounding objects; i.e. unaligned access in DImode
2191 via AND address can alias all surrounding object types except those
2192 with aligment 8 or higher. */
2193 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
2194 return 1;
2195 if (GET_CODE (x) == AND
2196 && (!CONST_INT_P (XEXP (x, 1))
2197 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
2198 return 1;
2199 if (GET_CODE (y) == AND
2200 && (!CONST_INT_P (XEXP (y, 1))
2201 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
2202 return 1;
2204 /* Differing symbols not accessed via AND never alias. */
2205 if (GET_CODE (x_base) == SYMBOL_REF && GET_CODE (y_base) == SYMBOL_REF)
2206 return compare_base_symbol_refs (x_base, y_base) != 0;
2208 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
2209 return 0;
2211 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
2212 return 0;
2214 return 1;
2217 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2218 (or equal to) that of V. */
2220 static bool
2221 refs_newer_value_p (const_rtx expr, rtx v)
2223 int minuid = CSELIB_VAL_PTR (v)->uid;
2224 subrtx_iterator::array_type array;
2225 FOR_EACH_SUBRTX (iter, array, expr, NONCONST)
2226 if (GET_CODE (*iter) == VALUE && CSELIB_VAL_PTR (*iter)->uid >= minuid)
2227 return true;
2228 return false;
2231 /* Convert the address X into something we can use. This is done by returning
2232 it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE
2233 we call cselib to get a more useful rtx. */
2236 get_addr (rtx x)
2238 cselib_val *v;
2239 struct elt_loc_list *l;
2241 if (GET_CODE (x) != VALUE)
2243 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2244 && GET_CODE (XEXP (x, 0)) == VALUE
2245 && CONST_SCALAR_INT_P (XEXP (x, 1)))
2247 rtx op0 = get_addr (XEXP (x, 0));
2248 if (op0 != XEXP (x, 0))
2250 if (GET_CODE (x) == PLUS
2251 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2252 return plus_constant (GET_MODE (x), op0, INTVAL (XEXP (x, 1)));
2253 return simplify_gen_binary (GET_CODE (x), GET_MODE (x),
2254 op0, XEXP (x, 1));
2257 return x;
2259 v = CSELIB_VAL_PTR (x);
2260 if (v)
2262 bool have_equivs = cselib_have_permanent_equivalences ();
2263 if (have_equivs)
2264 v = canonical_cselib_val (v);
2265 for (l = v->locs; l; l = l->next)
2266 if (CONSTANT_P (l->loc))
2267 return l->loc;
2268 for (l = v->locs; l; l = l->next)
2269 if (!REG_P (l->loc) && !MEM_P (l->loc)
2270 /* Avoid infinite recursion when potentially dealing with
2271 var-tracking artificial equivalences, by skipping the
2272 equivalences themselves, and not choosing expressions
2273 that refer to newer VALUEs. */
2274 && (!have_equivs
2275 || (GET_CODE (l->loc) != VALUE
2276 && !refs_newer_value_p (l->loc, x))))
2277 return l->loc;
2278 if (have_equivs)
2280 for (l = v->locs; l; l = l->next)
2281 if (REG_P (l->loc)
2282 || (GET_CODE (l->loc) != VALUE
2283 && !refs_newer_value_p (l->loc, x)))
2284 return l->loc;
2285 /* Return the canonical value. */
2286 return v->val_rtx;
2288 if (v->locs)
2289 return v->locs->loc;
2291 return x;
2294 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
2295 where SIZE is the size in bytes of the memory reference. If ADDR
2296 is not modified by the memory reference then ADDR is returned. */
2298 static rtx
2299 addr_side_effect_eval (rtx addr, poly_int64 size, int n_refs)
2301 poly_int64 offset = 0;
2303 switch (GET_CODE (addr))
2305 case PRE_INC:
2306 offset = (n_refs + 1) * size;
2307 break;
2308 case PRE_DEC:
2309 offset = -(n_refs + 1) * size;
2310 break;
2311 case POST_INC:
2312 offset = n_refs * size;
2313 break;
2314 case POST_DEC:
2315 offset = -n_refs * size;
2316 break;
2318 default:
2319 return addr;
2322 addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), offset);
2323 addr = canon_rtx (addr);
2325 return addr;
2328 /* Return TRUE if an object X sized at XSIZE bytes and another object
2329 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2330 any of the sizes is zero, assume an overlap, otherwise use the
2331 absolute value of the sizes as the actual sizes. */
2333 static inline bool
2334 offset_overlap_p (poly_int64 c, poly_int64 xsize, poly_int64 ysize)
2336 if (known_eq (xsize, 0) || known_eq (ysize, 0))
2337 return true;
2339 if (maybe_ge (c, 0))
2340 return maybe_gt (maybe_lt (xsize, 0) ? -xsize : xsize, c);
2341 else
2342 return maybe_gt (maybe_lt (ysize, 0) ? -ysize : ysize, -c);
2345 /* Return one if X and Y (memory addresses) reference the
2346 same location in memory or if the references overlap.
2347 Return zero if they do not overlap, else return
2348 minus one in which case they still might reference the same location.
2350 C is an offset accumulator. When
2351 C is nonzero, we are testing aliases between X and Y + C.
2352 XSIZE is the size in bytes of the X reference,
2353 similarly YSIZE is the size in bytes for Y.
2354 Expect that canon_rtx has been already called for X and Y.
2356 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2357 referenced (the reference was BLKmode), so make the most pessimistic
2358 assumptions.
2360 If XSIZE or YSIZE is negative, we may access memory outside the object
2361 being referenced as a side effect. This can happen when using AND to
2362 align memory references, as is done on the Alpha.
2364 Nice to notice that varying addresses cannot conflict with fp if no
2365 local variables had their addresses taken, but that's too hard now.
2367 ??? Contrary to the tree alias oracle this does not return
2368 one for X + non-constant and Y + non-constant when X and Y are equal.
2369 If that is fixed the TBAA hack for union type-punning can be removed. */
2371 static int
2372 memrefs_conflict_p (poly_int64 xsize, rtx x, poly_int64 ysize, rtx y,
2373 poly_int64 c)
2375 if (GET_CODE (x) == VALUE)
2377 if (REG_P (y))
2379 struct elt_loc_list *l = NULL;
2380 if (CSELIB_VAL_PTR (x))
2381 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
2382 l; l = l->next)
2383 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
2384 break;
2385 if (l)
2386 x = y;
2387 else
2388 x = get_addr (x);
2390 /* Don't call get_addr if y is the same VALUE. */
2391 else if (x != y)
2392 x = get_addr (x);
2394 if (GET_CODE (y) == VALUE)
2396 if (REG_P (x))
2398 struct elt_loc_list *l = NULL;
2399 if (CSELIB_VAL_PTR (y))
2400 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
2401 l; l = l->next)
2402 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
2403 break;
2404 if (l)
2405 y = x;
2406 else
2407 y = get_addr (y);
2409 /* Don't call get_addr if x is the same VALUE. */
2410 else if (y != x)
2411 y = get_addr (y);
2413 if (GET_CODE (x) == HIGH)
2414 x = XEXP (x, 0);
2415 else if (GET_CODE (x) == LO_SUM)
2416 x = XEXP (x, 1);
2417 else
2418 x = addr_side_effect_eval (x, maybe_lt (xsize, 0) ? -xsize : xsize, 0);
2419 if (GET_CODE (y) == HIGH)
2420 y = XEXP (y, 0);
2421 else if (GET_CODE (y) == LO_SUM)
2422 y = XEXP (y, 1);
2423 else
2424 y = addr_side_effect_eval (y, maybe_lt (ysize, 0) ? -ysize : ysize, 0);
2426 if (GET_CODE (x) == SYMBOL_REF && GET_CODE (y) == SYMBOL_REF)
2428 int cmp = compare_base_symbol_refs (x,y);
2430 /* If both decls are the same, decide by offsets. */
2431 if (cmp == 1)
2432 return offset_overlap_p (c, xsize, ysize);
2433 /* Assume a potential overlap for symbolic addresses that went
2434 through alignment adjustments (i.e., that have negative
2435 sizes), because we can't know how far they are from each
2436 other. */
2437 if (maybe_lt (xsize, 0) || maybe_lt (ysize, 0))
2438 return -1;
2439 /* If decls are different or we know by offsets that there is no overlap,
2440 we win. */
2441 if (!cmp || !offset_overlap_p (c, xsize, ysize))
2442 return 0;
2443 /* Decls may or may not be different and offsets overlap....*/
2444 return -1;
2446 else if (rtx_equal_for_memref_p (x, y))
2448 return offset_overlap_p (c, xsize, ysize);
2451 /* This code used to check for conflicts involving stack references and
2452 globals but the base address alias code now handles these cases. */
2454 if (GET_CODE (x) == PLUS)
2456 /* The fact that X is canonicalized means that this
2457 PLUS rtx is canonicalized. */
2458 rtx x0 = XEXP (x, 0);
2459 rtx x1 = XEXP (x, 1);
2461 /* However, VALUEs might end up in different positions even in
2462 canonical PLUSes. Comparing their addresses is enough. */
2463 if (x0 == y)
2464 return memrefs_conflict_p (xsize, x1, ysize, const0_rtx, c);
2465 else if (x1 == y)
2466 return memrefs_conflict_p (xsize, x0, ysize, const0_rtx, c);
2468 poly_int64 cx1, cy1;
2469 if (GET_CODE (y) == PLUS)
2471 /* The fact that Y is canonicalized means that this
2472 PLUS rtx is canonicalized. */
2473 rtx y0 = XEXP (y, 0);
2474 rtx y1 = XEXP (y, 1);
2476 if (x0 == y1)
2477 return memrefs_conflict_p (xsize, x1, ysize, y0, c);
2478 if (x1 == y0)
2479 return memrefs_conflict_p (xsize, x0, ysize, y1, c);
2481 if (rtx_equal_for_memref_p (x1, y1))
2482 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2483 if (rtx_equal_for_memref_p (x0, y0))
2484 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2485 if (poly_int_rtx_p (x1, &cx1))
2487 if (poly_int_rtx_p (y1, &cy1))
2488 return memrefs_conflict_p (xsize, x0, ysize, y0,
2489 c - cx1 + cy1);
2490 else
2491 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2493 else if (poly_int_rtx_p (y1, &cy1))
2494 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2496 return -1;
2498 else if (poly_int_rtx_p (x1, &cx1))
2499 return memrefs_conflict_p (xsize, x0, ysize, y, c - cx1);
2501 else if (GET_CODE (y) == PLUS)
2503 /* The fact that Y is canonicalized means that this
2504 PLUS rtx is canonicalized. */
2505 rtx y0 = XEXP (y, 0);
2506 rtx y1 = XEXP (y, 1);
2508 if (x == y0)
2509 return memrefs_conflict_p (xsize, const0_rtx, ysize, y1, c);
2510 if (x == y1)
2511 return memrefs_conflict_p (xsize, const0_rtx, ysize, y0, c);
2513 poly_int64 cy1;
2514 if (poly_int_rtx_p (y1, &cy1))
2515 return memrefs_conflict_p (xsize, x, ysize, y0, c + cy1);
2516 else
2517 return -1;
2520 if (GET_CODE (x) == GET_CODE (y))
2521 switch (GET_CODE (x))
2523 case MULT:
2525 /* Handle cases where we expect the second operands to be the
2526 same, and check only whether the first operand would conflict
2527 or not. */
2528 rtx x0, y0;
2529 rtx x1 = canon_rtx (XEXP (x, 1));
2530 rtx y1 = canon_rtx (XEXP (y, 1));
2531 if (! rtx_equal_for_memref_p (x1, y1))
2532 return -1;
2533 x0 = canon_rtx (XEXP (x, 0));
2534 y0 = canon_rtx (XEXP (y, 0));
2535 if (rtx_equal_for_memref_p (x0, y0))
2536 return offset_overlap_p (c, xsize, ysize);
2538 /* Can't properly adjust our sizes. */
2539 if (!CONST_INT_P (x1)
2540 || !can_div_trunc_p (xsize, INTVAL (x1), &xsize)
2541 || !can_div_trunc_p (ysize, INTVAL (x1), &ysize)
2542 || !can_div_trunc_p (c, INTVAL (x1), &c))
2543 return -1;
2544 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2547 default:
2548 break;
2551 /* Deal with alignment ANDs by adjusting offset and size so as to
2552 cover the maximum range, without taking any previously known
2553 alignment into account. Make a size negative after such an
2554 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2555 assume a potential overlap, because they may end up in contiguous
2556 memory locations and the stricter-alignment access may span over
2557 part of both. */
2558 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2560 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2561 unsigned HOST_WIDE_INT uc = sc;
2562 if (sc < 0 && pow2_or_zerop (-uc))
2564 if (maybe_gt (xsize, 0))
2565 xsize = -xsize;
2566 if (maybe_ne (xsize, 0))
2567 xsize += sc + 1;
2568 c -= sc + 1;
2569 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2570 ysize, y, c);
2573 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2575 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2576 unsigned HOST_WIDE_INT uc = sc;
2577 if (sc < 0 && pow2_or_zerop (-uc))
2579 if (maybe_gt (ysize, 0))
2580 ysize = -ysize;
2581 if (maybe_ne (ysize, 0))
2582 ysize += sc + 1;
2583 c += sc + 1;
2584 return memrefs_conflict_p (xsize, x,
2585 ysize, canon_rtx (XEXP (y, 0)), c);
2589 if (CONSTANT_P (x))
2591 poly_int64 cx, cy;
2592 if (poly_int_rtx_p (x, &cx) && poly_int_rtx_p (y, &cy))
2594 c += cy - cx;
2595 return offset_overlap_p (c, xsize, ysize);
2598 if (GET_CODE (x) == CONST)
2600 if (GET_CODE (y) == CONST)
2601 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2602 ysize, canon_rtx (XEXP (y, 0)), c);
2603 else
2604 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2605 ysize, y, c);
2607 if (GET_CODE (y) == CONST)
2608 return memrefs_conflict_p (xsize, x, ysize,
2609 canon_rtx (XEXP (y, 0)), c);
2611 /* Assume a potential overlap for symbolic addresses that went
2612 through alignment adjustments (i.e., that have negative
2613 sizes), because we can't know how far they are from each
2614 other. */
2615 if (CONSTANT_P (y))
2616 return (maybe_lt (xsize, 0)
2617 || maybe_lt (ysize, 0)
2618 || offset_overlap_p (c, xsize, ysize));
2620 return -1;
2623 return -1;
2626 /* Functions to compute memory dependencies.
2628 Since we process the insns in execution order, we can build tables
2629 to keep track of what registers are fixed (and not aliased), what registers
2630 are varying in known ways, and what registers are varying in unknown
2631 ways.
2633 If both memory references are volatile, then there must always be a
2634 dependence between the two references, since their order can not be
2635 changed. A volatile and non-volatile reference can be interchanged
2636 though.
2638 We also must allow AND addresses, because they may generate accesses
2639 outside the object being referenced. This is used to generate aligned
2640 addresses from unaligned addresses, for instance, the alpha
2641 storeqi_unaligned pattern. */
2643 /* Read dependence: X is read after read in MEM takes place. There can
2644 only be a dependence here if both reads are volatile, or if either is
2645 an explicit barrier. */
2648 read_dependence (const_rtx mem, const_rtx x)
2650 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2651 return true;
2652 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2653 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2654 return true;
2655 return false;
2658 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2660 static tree
2661 decl_for_component_ref (tree x)
2665 x = TREE_OPERAND (x, 0);
2667 while (x && TREE_CODE (x) == COMPONENT_REF);
2669 return x && DECL_P (x) ? x : NULL_TREE;
2672 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2673 for the offset of the field reference. *KNOWN_P says whether the
2674 offset is known. */
2676 static void
2677 adjust_offset_for_component_ref (tree x, bool *known_p,
2678 poly_int64 *offset)
2680 if (!*known_p)
2681 return;
2684 tree xoffset = component_ref_field_offset (x);
2685 tree field = TREE_OPERAND (x, 1);
2686 if (TREE_CODE (xoffset) != INTEGER_CST)
2688 *known_p = false;
2689 return;
2692 offset_int woffset
2693 = (wi::to_offset (xoffset)
2694 + (wi::to_offset (DECL_FIELD_BIT_OFFSET (field))
2695 >> LOG2_BITS_PER_UNIT));
2696 if (!wi::fits_uhwi_p (woffset))
2698 *known_p = false;
2699 return;
2701 *offset += woffset.to_uhwi ();
2703 x = TREE_OPERAND (x, 0);
2705 while (x && TREE_CODE (x) == COMPONENT_REF);
2708 /* Return nonzero if we can determine the exprs corresponding to memrefs
2709 X and Y and they do not overlap.
2710 If LOOP_VARIANT is set, skip offset-based disambiguation */
2713 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2715 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2716 rtx rtlx, rtly;
2717 rtx basex, basey;
2718 bool moffsetx_known_p, moffsety_known_p;
2719 poly_int64 moffsetx = 0, moffsety = 0;
2720 poly_int64 offsetx = 0, offsety = 0, sizex, sizey;
2722 /* Unless both have exprs, we can't tell anything. */
2723 if (exprx == 0 || expry == 0)
2724 return 0;
2726 /* For spill-slot accesses make sure we have valid offsets. */
2727 if ((exprx == get_spill_slot_decl (false)
2728 && ! MEM_OFFSET_KNOWN_P (x))
2729 || (expry == get_spill_slot_decl (false)
2730 && ! MEM_OFFSET_KNOWN_P (y)))
2731 return 0;
2733 /* If the field reference test failed, look at the DECLs involved. */
2734 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2735 if (moffsetx_known_p)
2736 moffsetx = MEM_OFFSET (x);
2737 if (TREE_CODE (exprx) == COMPONENT_REF)
2739 tree t = decl_for_component_ref (exprx);
2740 if (! t)
2741 return 0;
2742 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2743 exprx = t;
2746 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2747 if (moffsety_known_p)
2748 moffsety = MEM_OFFSET (y);
2749 if (TREE_CODE (expry) == COMPONENT_REF)
2751 tree t = decl_for_component_ref (expry);
2752 if (! t)
2753 return 0;
2754 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2755 expry = t;
2758 if (! DECL_P (exprx) || ! DECL_P (expry))
2759 return 0;
2761 /* If we refer to different gimple registers, or one gimple register
2762 and one non-gimple-register, we know they can't overlap. First,
2763 gimple registers don't have their addresses taken. Now, there
2764 could be more than one stack slot for (different versions of) the
2765 same gimple register, but we can presumably tell they don't
2766 overlap based on offsets from stack base addresses elsewhere.
2767 It's important that we don't proceed to DECL_RTL, because gimple
2768 registers may not pass DECL_RTL_SET_P, and make_decl_rtl won't be
2769 able to do anything about them since no SSA information will have
2770 remained to guide it. */
2771 if (is_gimple_reg (exprx) || is_gimple_reg (expry))
2772 return exprx != expry
2773 || (moffsetx_known_p && moffsety_known_p
2774 && MEM_SIZE_KNOWN_P (x) && MEM_SIZE_KNOWN_P (y)
2775 && !offset_overlap_p (moffsety - moffsetx,
2776 MEM_SIZE (x), MEM_SIZE (y)));
2778 /* With invalid code we can end up storing into the constant pool.
2779 Bail out to avoid ICEing when creating RTL for this.
2780 See gfortran.dg/lto/20091028-2_0.f90. */
2781 if (TREE_CODE (exprx) == CONST_DECL
2782 || TREE_CODE (expry) == CONST_DECL)
2783 return 1;
2785 /* If one decl is known to be a function or label in a function and
2786 the other is some kind of data, they can't overlap. */
2787 if ((TREE_CODE (exprx) == FUNCTION_DECL
2788 || TREE_CODE (exprx) == LABEL_DECL)
2789 != (TREE_CODE (expry) == FUNCTION_DECL
2790 || TREE_CODE (expry) == LABEL_DECL))
2791 return 1;
2793 /* If either of the decls doesn't have DECL_RTL set (e.g. marked as
2794 living in multiple places), we can't tell anything. Exception
2795 are FUNCTION_DECLs for which we can create DECL_RTL on demand. */
2796 if ((!DECL_RTL_SET_P (exprx) && TREE_CODE (exprx) != FUNCTION_DECL)
2797 || (!DECL_RTL_SET_P (expry) && TREE_CODE (expry) != FUNCTION_DECL))
2798 return 0;
2800 rtlx = DECL_RTL (exprx);
2801 rtly = DECL_RTL (expry);
2803 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2804 can't overlap unless they are the same because we never reuse that part
2805 of the stack frame used for locals for spilled pseudos. */
2806 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2807 && ! rtx_equal_p (rtlx, rtly))
2808 return 1;
2810 /* If we have MEMs referring to different address spaces (which can
2811 potentially overlap), we cannot easily tell from the addresses
2812 whether the references overlap. */
2813 if (MEM_P (rtlx) && MEM_P (rtly)
2814 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2815 return 0;
2817 /* Get the base and offsets of both decls. If either is a register, we
2818 know both are and are the same, so use that as the base. The only
2819 we can avoid overlap is if we can deduce that they are nonoverlapping
2820 pieces of that decl, which is very rare. */
2821 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2822 basex = strip_offset_and_add (basex, &offsetx);
2824 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2825 basey = strip_offset_and_add (basey, &offsety);
2827 /* If the bases are different, we know they do not overlap if both
2828 are constants or if one is a constant and the other a pointer into the
2829 stack frame. Otherwise a different base means we can't tell if they
2830 overlap or not. */
2831 if (compare_base_decls (exprx, expry) == 0)
2832 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2833 || (CONSTANT_P (basex) && REG_P (basey)
2834 && REGNO_PTR_FRAME_P (REGNO (basey)))
2835 || (CONSTANT_P (basey) && REG_P (basex)
2836 && REGNO_PTR_FRAME_P (REGNO (basex))));
2838 /* Offset based disambiguation not appropriate for loop invariant */
2839 if (loop_invariant)
2840 return 0;
2842 /* Offset based disambiguation is OK even if we do not know that the
2843 declarations are necessarily different
2844 (i.e. compare_base_decls (exprx, expry) == -1) */
2846 sizex = (!MEM_P (rtlx) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtlx)))
2847 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2848 : -1);
2849 sizey = (!MEM_P (rtly) ? poly_int64 (GET_MODE_SIZE (GET_MODE (rtly)))
2850 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2851 : -1);
2853 /* If we have an offset for either memref, it can update the values computed
2854 above. */
2855 if (moffsetx_known_p)
2856 offsetx += moffsetx, sizex -= moffsetx;
2857 if (moffsety_known_p)
2858 offsety += moffsety, sizey -= moffsety;
2860 /* If a memref has both a size and an offset, we can use the smaller size.
2861 We can't do this if the offset isn't known because we must view this
2862 memref as being anywhere inside the DECL's MEM. */
2863 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2864 sizex = MEM_SIZE (x);
2865 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2866 sizey = MEM_SIZE (y);
2868 return !ranges_maybe_overlap_p (offsetx, sizex, offsety, sizey);
2871 /* Helper for true_dependence and canon_true_dependence.
2872 Checks for true dependence: X is read after store in MEM takes place.
2874 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2875 NULL_RTX, and the canonical addresses of MEM and X are both computed
2876 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2878 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2880 Returns 1 if there is a true dependence, 0 otherwise. */
2882 static int
2883 true_dependence_1 (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2884 const_rtx x, rtx x_addr, bool mem_canonicalized)
2886 rtx true_mem_addr;
2887 rtx base;
2888 int ret;
2890 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2891 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2893 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2894 return 1;
2896 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2897 This is used in epilogue deallocation functions, and in cselib. */
2898 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2899 return 1;
2900 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2901 return 1;
2902 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2903 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2904 return 1;
2906 if (! x_addr)
2907 x_addr = XEXP (x, 0);
2908 x_addr = get_addr (x_addr);
2910 if (! mem_addr)
2912 mem_addr = XEXP (mem, 0);
2913 if (mem_mode == VOIDmode)
2914 mem_mode = GET_MODE (mem);
2916 true_mem_addr = get_addr (mem_addr);
2918 /* Read-only memory is by definition never modified, and therefore can't
2919 conflict with anything. However, don't assume anything when AND
2920 addresses are involved and leave to the code below to determine
2921 dependence. We don't expect to find read-only set on MEM, but
2922 stupid user tricks can produce them, so don't die. */
2923 if (MEM_READONLY_P (x)
2924 && GET_CODE (x_addr) != AND
2925 && GET_CODE (true_mem_addr) != AND)
2926 return 0;
2928 /* If we have MEMs referring to different address spaces (which can
2929 potentially overlap), we cannot easily tell from the addresses
2930 whether the references overlap. */
2931 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2932 return 1;
2934 base = find_base_term (x_addr);
2935 if (base && (GET_CODE (base) == LABEL_REF
2936 || (GET_CODE (base) == SYMBOL_REF
2937 && CONSTANT_POOL_ADDRESS_P (base))))
2938 return 0;
2940 rtx mem_base = find_base_term (true_mem_addr);
2941 if (! base_alias_check (x_addr, base, true_mem_addr, mem_base,
2942 GET_MODE (x), mem_mode))
2943 return 0;
2945 x_addr = canon_rtx (x_addr);
2946 if (!mem_canonicalized)
2947 mem_addr = canon_rtx (true_mem_addr);
2949 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2950 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2951 return ret;
2953 if (mems_in_disjoint_alias_sets_p (x, mem))
2954 return 0;
2956 if (nonoverlapping_memrefs_p (mem, x, false))
2957 return 0;
2959 return rtx_refs_may_alias_p (x, mem, true);
2962 /* True dependence: X is read after store in MEM takes place. */
2965 true_dependence (const_rtx mem, machine_mode mem_mode, const_rtx x)
2967 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2968 x, NULL_RTX, /*mem_canonicalized=*/false);
2971 /* Canonical true dependence: X is read after store in MEM takes place.
2972 Variant of true_dependence which assumes MEM has already been
2973 canonicalized (hence we no longer do that here).
2974 The mem_addr argument has been added, since true_dependence_1 computed
2975 this value prior to canonicalizing. */
2978 canon_true_dependence (const_rtx mem, machine_mode mem_mode, rtx mem_addr,
2979 const_rtx x, rtx x_addr)
2981 return true_dependence_1 (mem, mem_mode, mem_addr,
2982 x, x_addr, /*mem_canonicalized=*/true);
2985 /* Returns nonzero if a write to X might alias a previous read from
2986 (or, if WRITEP is true, a write to) MEM.
2987 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
2988 and X_MODE the mode for that access.
2989 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2991 static int
2992 write_dependence_p (const_rtx mem,
2993 const_rtx x, machine_mode x_mode, rtx x_addr,
2994 bool mem_canonicalized, bool x_canonicalized, bool writep)
2996 rtx mem_addr;
2997 rtx true_mem_addr, true_x_addr;
2998 rtx base;
2999 int ret;
3001 gcc_checking_assert (x_canonicalized
3002 ? (x_addr != NULL_RTX && x_mode != VOIDmode)
3003 : (x_addr == NULL_RTX && x_mode == VOIDmode));
3005 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3006 return 1;
3008 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3009 This is used in epilogue deallocation functions. */
3010 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3011 return 1;
3012 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3013 return 1;
3014 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3015 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3016 return 1;
3018 if (!x_addr)
3019 x_addr = XEXP (x, 0);
3020 true_x_addr = get_addr (x_addr);
3022 mem_addr = XEXP (mem, 0);
3023 true_mem_addr = get_addr (mem_addr);
3025 /* A read from read-only memory can't conflict with read-write memory.
3026 Don't assume anything when AND addresses are involved and leave to
3027 the code below to determine dependence. */
3028 if (!writep
3029 && MEM_READONLY_P (mem)
3030 && GET_CODE (true_x_addr) != AND
3031 && GET_CODE (true_mem_addr) != AND)
3032 return 0;
3034 /* If we have MEMs referring to different address spaces (which can
3035 potentially overlap), we cannot easily tell from the addresses
3036 whether the references overlap. */
3037 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3038 return 1;
3040 base = find_base_term (true_mem_addr);
3041 if (! writep
3042 && base
3043 && (GET_CODE (base) == LABEL_REF
3044 || (GET_CODE (base) == SYMBOL_REF
3045 && CONSTANT_POOL_ADDRESS_P (base))))
3046 return 0;
3048 rtx x_base = find_base_term (true_x_addr);
3049 if (! base_alias_check (true_x_addr, x_base, true_mem_addr, base,
3050 GET_MODE (x), GET_MODE (mem)))
3051 return 0;
3053 if (!x_canonicalized)
3055 x_addr = canon_rtx (true_x_addr);
3056 x_mode = GET_MODE (x);
3058 if (!mem_canonicalized)
3059 mem_addr = canon_rtx (true_mem_addr);
3061 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
3062 GET_MODE_SIZE (x_mode), x_addr, 0)) != -1)
3063 return ret;
3065 if (nonoverlapping_memrefs_p (x, mem, false))
3066 return 0;
3068 return rtx_refs_may_alias_p (x, mem, false);
3071 /* Anti dependence: X is written after read in MEM takes place. */
3074 anti_dependence (const_rtx mem, const_rtx x)
3076 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3077 /*mem_canonicalized=*/false,
3078 /*x_canonicalized*/false, /*writep=*/false);
3081 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3082 Also, consider X in X_MODE (which might be from an enclosing
3083 STRICT_LOW_PART / ZERO_EXTRACT).
3084 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3087 canon_anti_dependence (const_rtx mem, bool mem_canonicalized,
3088 const_rtx x, machine_mode x_mode, rtx x_addr)
3090 return write_dependence_p (mem, x, x_mode, x_addr,
3091 mem_canonicalized, /*x_canonicalized=*/true,
3092 /*writep=*/false);
3095 /* Output dependence: X is written after store in MEM takes place. */
3098 output_dependence (const_rtx mem, const_rtx x)
3100 return write_dependence_p (mem, x, VOIDmode, NULL_RTX,
3101 /*mem_canonicalized=*/false,
3102 /*x_canonicalized*/false, /*writep=*/true);
3105 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
3106 Also, consider X in X_MODE (which might be from an enclosing
3107 STRICT_LOW_PART / ZERO_EXTRACT).
3108 If MEM_CANONICALIZED is true, MEM is canonicalized. */
3111 canon_output_dependence (const_rtx mem, bool mem_canonicalized,
3112 const_rtx x, machine_mode x_mode, rtx x_addr)
3114 return write_dependence_p (mem, x, x_mode, x_addr,
3115 mem_canonicalized, /*x_canonicalized=*/true,
3116 /*writep=*/true);
3121 /* Check whether X may be aliased with MEM. Don't do offset-based
3122 memory disambiguation & TBAA. */
3124 may_alias_p (const_rtx mem, const_rtx x)
3126 rtx x_addr, mem_addr;
3128 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
3129 return 1;
3131 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
3132 This is used in epilogue deallocation functions. */
3133 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
3134 return 1;
3135 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
3136 return 1;
3137 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
3138 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
3139 return 1;
3141 x_addr = XEXP (x, 0);
3142 x_addr = get_addr (x_addr);
3144 mem_addr = XEXP (mem, 0);
3145 mem_addr = get_addr (mem_addr);
3147 /* Read-only memory is by definition never modified, and therefore can't
3148 conflict with anything. However, don't assume anything when AND
3149 addresses are involved and leave to the code below to determine
3150 dependence. We don't expect to find read-only set on MEM, but
3151 stupid user tricks can produce them, so don't die. */
3152 if (MEM_READONLY_P (x)
3153 && GET_CODE (x_addr) != AND
3154 && GET_CODE (mem_addr) != AND)
3155 return 0;
3157 /* If we have MEMs referring to different address spaces (which can
3158 potentially overlap), we cannot easily tell from the addresses
3159 whether the references overlap. */
3160 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
3161 return 1;
3163 rtx x_base = find_base_term (x_addr);
3164 rtx mem_base = find_base_term (mem_addr);
3165 if (! base_alias_check (x_addr, x_base, mem_addr, mem_base,
3166 GET_MODE (x), GET_MODE (mem_addr)))
3167 return 0;
3169 if (nonoverlapping_memrefs_p (mem, x, true))
3170 return 0;
3172 /* TBAA not valid for loop_invarint */
3173 return rtx_refs_may_alias_p (x, mem, false);
3176 void
3177 init_alias_target (void)
3179 int i;
3181 if (!arg_base_value)
3182 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
3184 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
3186 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3187 /* Check whether this register can hold an incoming pointer
3188 argument. FUNCTION_ARG_REGNO_P tests outgoing register
3189 numbers, so translate if necessary due to register windows. */
3190 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
3191 && targetm.hard_regno_mode_ok (i, Pmode))
3192 static_reg_base_value[i] = arg_base_value;
3194 /* RTL code is required to be consistent about whether it uses the
3195 stack pointer, the frame pointer or the argument pointer to
3196 access a given area of the frame. We can therefore use the
3197 base address to distinguish between the different areas. */
3198 static_reg_base_value[STACK_POINTER_REGNUM]
3199 = unique_base_value (UNIQUE_BASE_VALUE_SP);
3200 static_reg_base_value[ARG_POINTER_REGNUM]
3201 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
3202 static_reg_base_value[FRAME_POINTER_REGNUM]
3203 = unique_base_value (UNIQUE_BASE_VALUE_FP);
3205 /* The above rules extend post-reload, with eliminations applying
3206 consistently to each of the three pointers. Cope with cases in
3207 which the frame pointer is eliminated to the hard frame pointer
3208 rather than the stack pointer. */
3209 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
3210 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
3211 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
3214 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
3215 to be memory reference. */
3216 static bool memory_modified;
3217 static void
3218 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3220 if (MEM_P (x))
3222 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
3223 memory_modified = true;
3228 /* Return true when INSN possibly modify memory contents of MEM
3229 (i.e. address can be modified). */
3230 bool
3231 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
3233 if (!INSN_P (insn))
3234 return false;
3235 /* Conservatively assume all non-readonly MEMs might be modified in
3236 calls. */
3237 if (CALL_P (insn))
3238 return true;
3239 memory_modified = false;
3240 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
3241 return memory_modified;
3244 /* Return TRUE if the destination of a set is rtx identical to
3245 ITEM. */
3246 static inline bool
3247 set_dest_equal_p (const_rtx set, const_rtx item)
3249 rtx dest = SET_DEST (set);
3250 return rtx_equal_p (dest, item);
3253 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3254 array. */
3256 void
3257 init_alias_analysis (void)
3259 unsigned int maxreg = max_reg_num ();
3260 int changed, pass;
3261 int i;
3262 unsigned int ui;
3263 rtx_insn *insn;
3264 rtx val;
3265 int rpo_cnt;
3266 int *rpo;
3268 timevar_push (TV_ALIAS_ANALYSIS);
3270 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
3271 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
3272 bitmap_clear (reg_known_equiv_p);
3274 /* If we have memory allocated from the previous run, use it. */
3275 if (old_reg_base_value)
3276 reg_base_value = old_reg_base_value;
3278 if (reg_base_value)
3279 reg_base_value->truncate (0);
3281 vec_safe_grow_cleared (reg_base_value, maxreg);
3283 new_reg_base_value = XNEWVEC (rtx, maxreg);
3284 reg_seen = sbitmap_alloc (maxreg);
3286 /* The basic idea is that each pass through this loop will use the
3287 "constant" information from the previous pass to propagate alias
3288 information through another level of assignments.
3290 The propagation is done on the CFG in reverse post-order, to propagate
3291 things forward as far as possible in each iteration.
3293 This could get expensive if the assignment chains are long. Maybe
3294 we should throttle the number of iterations, possibly based on
3295 the optimization level or flag_expensive_optimizations.
3297 We could propagate more information in the first pass by making use
3298 of DF_REG_DEF_COUNT to determine immediately that the alias information
3299 for a pseudo is "constant".
3301 A program with an uninitialized variable can cause an infinite loop
3302 here. Instead of doing a full dataflow analysis to detect such problems
3303 we just cap the number of iterations for the loop.
3305 The state of the arrays for the set chain in question does not matter
3306 since the program has undefined behavior. */
3308 rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
3309 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3311 /* The prologue/epilogue insns are not threaded onto the
3312 insn chain until after reload has completed. Thus,
3313 there is no sense wasting time checking if INSN is in
3314 the prologue/epilogue until after reload has completed. */
3315 bool could_be_prologue_epilogue = ((targetm.have_prologue ()
3316 || targetm.have_epilogue ())
3317 && reload_completed);
3319 pass = 0;
3322 /* Assume nothing will change this iteration of the loop. */
3323 changed = 0;
3325 /* We want to assign the same IDs each iteration of this loop, so
3326 start counting from one each iteration of the loop. */
3327 unique_id = 1;
3329 /* We're at the start of the function each iteration through the
3330 loop, so we're copying arguments. */
3331 copying_arguments = true;
3333 /* Wipe the potential alias information clean for this pass. */
3334 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
3336 /* Wipe the reg_seen array clean. */
3337 bitmap_clear (reg_seen);
3339 /* Initialize the alias information for this pass. */
3340 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3341 if (static_reg_base_value[i]
3342 /* Don't treat the hard frame pointer as special if we
3343 eliminated the frame pointer to the stack pointer instead. */
3344 && !(i == HARD_FRAME_POINTER_REGNUM
3345 && reload_completed
3346 && !frame_pointer_needed
3347 && targetm.can_eliminate (FRAME_POINTER_REGNUM,
3348 STACK_POINTER_REGNUM)))
3350 new_reg_base_value[i] = static_reg_base_value[i];
3351 bitmap_set_bit (reg_seen, i);
3354 /* Walk the insns adding values to the new_reg_base_value array. */
3355 for (i = 0; i < rpo_cnt; i++)
3357 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3358 FOR_BB_INSNS (bb, insn)
3360 if (NONDEBUG_INSN_P (insn))
3362 rtx note, set;
3364 if (could_be_prologue_epilogue
3365 && prologue_epilogue_contains (insn))
3366 continue;
3368 /* If this insn has a noalias note, process it, Otherwise,
3369 scan for sets. A simple set will have no side effects
3370 which could change the base value of any other register. */
3372 if (GET_CODE (PATTERN (insn)) == SET
3373 && REG_NOTES (insn) != 0
3374 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
3375 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
3376 else
3377 note_stores (PATTERN (insn), record_set, NULL);
3379 set = single_set (insn);
3381 if (set != 0
3382 && REG_P (SET_DEST (set))
3383 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3385 unsigned int regno = REGNO (SET_DEST (set));
3386 rtx src = SET_SRC (set);
3387 rtx t;
3389 note = find_reg_equal_equiv_note (insn);
3390 if (note && REG_NOTE_KIND (note) == REG_EQUAL
3391 && DF_REG_DEF_COUNT (regno) != 1)
3392 note = NULL_RTX;
3394 if (note != NULL_RTX
3395 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3396 && ! rtx_varies_p (XEXP (note, 0), 1)
3397 && ! reg_overlap_mentioned_p (SET_DEST (set),
3398 XEXP (note, 0)))
3400 set_reg_known_value (regno, XEXP (note, 0));
3401 set_reg_known_equiv_p (regno,
3402 REG_NOTE_KIND (note) == REG_EQUIV);
3404 else if (DF_REG_DEF_COUNT (regno) == 1
3405 && GET_CODE (src) == PLUS
3406 && REG_P (XEXP (src, 0))
3407 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
3408 && CONST_INT_P (XEXP (src, 1)))
3410 t = plus_constant (GET_MODE (src), t,
3411 INTVAL (XEXP (src, 1)));
3412 set_reg_known_value (regno, t);
3413 set_reg_known_equiv_p (regno, false);
3415 else if (DF_REG_DEF_COUNT (regno) == 1
3416 && ! rtx_varies_p (src, 1))
3418 set_reg_known_value (regno, src);
3419 set_reg_known_equiv_p (regno, false);
3423 else if (NOTE_P (insn)
3424 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3425 copying_arguments = false;
3429 /* Now propagate values from new_reg_base_value to reg_base_value. */
3430 gcc_assert (maxreg == (unsigned int) max_reg_num ());
3432 for (ui = 0; ui < maxreg; ui++)
3434 if (new_reg_base_value[ui]
3435 && new_reg_base_value[ui] != (*reg_base_value)[ui]
3436 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
3438 (*reg_base_value)[ui] = new_reg_base_value[ui];
3439 changed = 1;
3443 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
3444 XDELETEVEC (rpo);
3446 /* Fill in the remaining entries. */
3447 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
3449 int regno = i + FIRST_PSEUDO_REGISTER;
3450 if (! val)
3451 set_reg_known_value (regno, regno_reg_rtx[regno]);
3454 /* Clean up. */
3455 free (new_reg_base_value);
3456 new_reg_base_value = 0;
3457 sbitmap_free (reg_seen);
3458 reg_seen = 0;
3459 timevar_pop (TV_ALIAS_ANALYSIS);
3462 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3463 Special API for var-tracking pass purposes. */
3465 void
3466 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3468 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
3471 void
3472 end_alias_analysis (void)
3474 old_reg_base_value = reg_base_value;
3475 vec_free (reg_known_value);
3476 sbitmap_free (reg_known_equiv_p);
3479 void
3480 dump_alias_stats_in_alias_c (FILE *s)
3482 fprintf (s, " TBAA oracle: %llu disambiguations %llu queries\n"
3483 " %llu are in alias set 0\n"
3484 " %llu queries asked about the same object\n"
3485 " %llu queries asked about the same alias set\n"
3486 " %llu access volatile\n"
3487 " %llu are dependent in the DAG\n"
3488 " %llu are aritificially in conflict with void *\n",
3489 alias_stats.num_disambiguated,
3490 alias_stats.num_alias_zero + alias_stats.num_same_alias_set
3491 + alias_stats.num_same_objects + alias_stats.num_volatile
3492 + alias_stats.num_dag + alias_stats.num_disambiguated
3493 + alias_stats.num_universal,
3494 alias_stats.num_alias_zero, alias_stats.num_same_alias_set,
3495 alias_stats.num_same_objects, alias_stats.num_volatile,
3496 alias_stats.num_dag, alias_stats.num_universal);
3498 #include "gt-alias.h"