PR c++/55261
[official-gcc.git] / gcc / lra-eliminations.c
blob24c58f699c94c15efc95c57e06e229f41bed19e5
1 /* Code for RTL register eliminations.
2 Copyright (C) 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Eliminable registers (like a soft argument or frame pointer) are
23 widely used in RTL. These eliminable registers should be replaced
24 by real hard registers (like the stack pointer or hard frame
25 pointer) plus some offset. The offsets usually change whenever the
26 stack is expanded. We know the final offsets only at the very end
27 of LRA.
29 Within LRA, we usually keep the RTL in such a state that the
30 eliminable registers can be replaced by just the corresponding hard
31 register (without any offset). To achieve this we should add the
32 initial elimination offset at the beginning of LRA and update the
33 offsets whenever the stack is expanded. We need to do this before
34 every constraint pass because the choice of offset often affects
35 whether a particular address or memory constraint is satisfied.
37 We keep RTL code at most time in such state that the virtual
38 registers can be changed by just the corresponding hard registers
39 (with zero offsets) and we have the right RTL code. To achieve this
40 we should add initial offset at the beginning of LRA work and update
41 offsets after each stack expanding. But actually we update virtual
42 registers to the same virtual registers + corresponding offsets
43 before every constraint pass because it affects constraint
44 satisfaction (e.g. an address displacement became too big for some
45 target).
47 The final change of eliminable registers to the corresponding hard
48 registers are done at the very end of LRA when there were no change
49 in offsets anymore:
51 fp + 42 => sp + 42
55 #include "config.h"
56 #include "system.h"
57 #include "coretypes.h"
58 #include "tm.h"
59 #include "hard-reg-set.h"
60 #include "rtl.h"
61 #include "tm_p.h"
62 #include "regs.h"
63 #include "insn-config.h"
64 #include "insn-codes.h"
65 #include "recog.h"
66 #include "output.h"
67 #include "addresses.h"
68 #include "target.h"
69 #include "function.h"
70 #include "expr.h"
71 #include "basic-block.h"
72 #include "except.h"
73 #include "optabs.h"
74 #include "df.h"
75 #include "ira.h"
76 #include "rtl-error.h"
77 #include "lra-int.h"
79 /* This structure is used to record information about hard register
80 eliminations. */
81 struct elim_table
83 /* Hard register number to be eliminated. */
84 int from;
85 /* Hard register number used as replacement. */
86 int to;
87 /* Difference between values of the two hard registers above on
88 previous iteration. */
89 HOST_WIDE_INT previous_offset;
90 /* Difference between the values on the current iteration. */
91 HOST_WIDE_INT offset;
92 /* Nonzero if this elimination can be done. */
93 bool can_eliminate;
94 /* CAN_ELIMINATE since the last check. */
95 bool prev_can_eliminate;
96 /* REG rtx for the register to be eliminated. We cannot simply
97 compare the number since we might then spuriously replace a hard
98 register corresponding to a pseudo assigned to the reg to be
99 eliminated. */
100 rtx from_rtx;
101 /* REG rtx for the replacement. */
102 rtx to_rtx;
105 /* The elimination table. Each array entry describes one possible way
106 of eliminating a register in favor of another. If there is more
107 than one way of eliminating a particular register, the most
108 preferred should be specified first. */
109 static struct elim_table *reg_eliminate = 0;
111 /* This is an intermediate structure to initialize the table. It has
112 exactly the members provided by ELIMINABLE_REGS. */
113 static const struct elim_table_1
115 const int from;
116 const int to;
117 } reg_eliminate_1[] =
119 /* If a set of eliminable hard registers was specified, define the
120 table from it. Otherwise, default to the normal case of the frame
121 pointer being replaced by the stack pointer. */
123 #ifdef ELIMINABLE_REGS
124 ELIMINABLE_REGS;
125 #else
126 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
127 #endif
129 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
131 /* Print info about elimination table to file F. */
132 static void
133 print_elim_table (FILE *f)
135 struct elim_table *ep;
137 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
138 fprintf (f, "%s eliminate %d to %d (offset=" HOST_WIDE_INT_PRINT_DEC
139 ", prev_offset=" HOST_WIDE_INT_PRINT_DEC ")\n",
140 ep->can_eliminate ? "Can" : "Can't",
141 ep->from, ep->to, ep->offset, ep->previous_offset);
144 /* Print info about elimination table to stderr. */
145 void
146 lra_debug_elim_table (void)
148 print_elim_table (stderr);
151 /* Setup possibility of elimination in elimination table element EP to
152 VALUE. Setup FRAME_POINTER_NEEDED if elimination from frame
153 pointer to stack pointer is not possible anymore. */
154 static void
155 setup_can_eliminate (struct elim_table *ep, bool value)
157 ep->can_eliminate = ep->prev_can_eliminate = value;
158 if (! value
159 && ep->from == FRAME_POINTER_REGNUM && ep->to == STACK_POINTER_REGNUM)
160 frame_pointer_needed = 1;
163 /* Map: eliminable "from" register -> its current elimination,
164 or NULL if none. The elimination table may contain more than
165 one elimination for the same hard register, but this map specifies
166 the one that we are currently using. */
167 static struct elim_table *elimination_map[FIRST_PSEUDO_REGISTER];
169 /* When an eliminable hard register becomes not eliminable, we use the
170 following special structure to restore original offsets for the
171 register. */
172 static struct elim_table self_elim_table;
174 /* Offsets should be used to restore original offsets for eliminable
175 hard register which just became not eliminable. Zero,
176 otherwise. */
177 static HOST_WIDE_INT self_elim_offsets[FIRST_PSEUDO_REGISTER];
179 /* Map: hard regno -> RTL presentation. RTL presentations of all
180 potentially eliminable hard registers are stored in the map. */
181 static rtx eliminable_reg_rtx[FIRST_PSEUDO_REGISTER];
183 /* Set up ELIMINATION_MAP of the currently used eliminations. */
184 static void
185 setup_elimination_map (void)
187 int i;
188 struct elim_table *ep;
190 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
191 elimination_map[i] = NULL;
192 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
193 if (ep->can_eliminate && elimination_map[ep->from] == NULL)
194 elimination_map[ep->from] = ep;
199 /* Compute the sum of X and Y, making canonicalizations assumed in an
200 address, namely: sum constant integers, surround the sum of two
201 constants with a CONST, put the constant as the second operand, and
202 group the constant on the outermost sum.
204 This routine assumes both inputs are already in canonical form. */
205 static rtx
206 form_sum (rtx x, rtx y)
208 rtx tem;
209 enum machine_mode mode = GET_MODE (x);
211 if (mode == VOIDmode)
212 mode = GET_MODE (y);
214 if (mode == VOIDmode)
215 mode = Pmode;
217 if (CONST_INT_P (x))
218 return plus_constant (mode, y, INTVAL (x));
219 else if (CONST_INT_P (y))
220 return plus_constant (mode, x, INTVAL (y));
221 else if (CONSTANT_P (x))
222 tem = x, x = y, y = tem;
224 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
225 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
227 /* Note that if the operands of Y are specified in the opposite
228 order in the recursive calls below, infinite recursion will
229 occur. */
230 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
231 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
233 /* If both constant, encapsulate sum. Otherwise, just form sum. A
234 constant will have been placed second. */
235 if (CONSTANT_P (x) && CONSTANT_P (y))
237 if (GET_CODE (x) == CONST)
238 x = XEXP (x, 0);
239 if (GET_CODE (y) == CONST)
240 y = XEXP (y, 0);
242 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
245 return gen_rtx_PLUS (mode, x, y);
248 /* Return the current substitution hard register of the elimination of
249 HARD_REGNO. If HARD_REGNO is not eliminable, return itself. */
251 lra_get_elimination_hard_regno (int hard_regno)
253 struct elim_table *ep;
255 if (hard_regno < 0 || hard_regno >= FIRST_PSEUDO_REGISTER)
256 return hard_regno;
257 if ((ep = elimination_map[hard_regno]) == NULL)
258 return hard_regno;
259 return ep->to;
262 /* Return elimination which will be used for hard reg REG, NULL
263 otherwise. */
264 static struct elim_table *
265 get_elimination (rtx reg)
267 int hard_regno;
268 struct elim_table *ep;
269 HOST_WIDE_INT offset;
271 lra_assert (REG_P (reg));
272 if ((hard_regno = REGNO (reg)) < 0 || hard_regno >= FIRST_PSEUDO_REGISTER)
273 return NULL;
274 if ((ep = elimination_map[hard_regno]) != NULL)
275 return ep->from_rtx != reg ? NULL : ep;
276 if ((offset = self_elim_offsets[hard_regno]) == 0)
277 return NULL;
278 /* This is an iteration to restore offsets just after HARD_REGNO
279 stopped to be eliminable. */
280 self_elim_table.from = self_elim_table.to = hard_regno;
281 self_elim_table.from_rtx
282 = self_elim_table.to_rtx
283 = eliminable_reg_rtx[hard_regno];
284 lra_assert (self_elim_table.from_rtx != NULL);
285 self_elim_table.offset = offset;
286 return &self_elim_table;
289 /* Scan X and replace any eliminable registers (such as fp) with a
290 replacement (such as sp) if SUBST_P, plus an offset. The offset is
291 a change in the offset between the eliminable register and its
292 substitution if UPDATE_P, or the full offset if FULL_P, or
293 otherwise zero.
295 MEM_MODE is the mode of an enclosing MEM. We need this to know how
296 much to adjust a register for, e.g., PRE_DEC. Also, if we are
297 inside a MEM, we are allowed to replace a sum of a hard register
298 and the constant zero with the hard register, which we cannot do
299 outside a MEM. In addition, we need to record the fact that a
300 hard register is referenced outside a MEM.
302 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
303 That's used when we eliminate in expressions stored in notes. */
305 lra_eliminate_regs_1 (rtx x, enum machine_mode mem_mode,
306 bool subst_p, bool update_p, bool full_p)
308 enum rtx_code code = GET_CODE (x);
309 struct elim_table *ep;
310 rtx new_rtx;
311 int i, j;
312 const char *fmt;
313 int copied = 0;
315 if (! current_function_decl)
316 return x;
318 switch (code)
320 CASE_CONST_ANY:
321 case CONST:
322 case SYMBOL_REF:
323 case CODE_LABEL:
324 case PC:
325 case CC0:
326 case ASM_INPUT:
327 case ADDR_VEC:
328 case ADDR_DIFF_VEC:
329 case RETURN:
330 return x;
332 case REG:
333 /* First handle the case where we encounter a bare hard register
334 that is eliminable. Replace it with a PLUS. */
335 if ((ep = get_elimination (x)) != NULL)
337 rtx to = subst_p ? ep->to_rtx : ep->from_rtx;
339 if (update_p)
340 return plus_constant (Pmode, to, ep->offset - ep->previous_offset);
341 else if (full_p)
342 return plus_constant (Pmode, to, ep->offset);
343 else
344 return to;
346 return x;
348 case PLUS:
349 /* If this is the sum of an eliminable register and a constant, rework
350 the sum. */
351 if (REG_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
353 if ((ep = get_elimination (XEXP (x, 0))) != NULL)
355 HOST_WIDE_INT offset;
356 rtx to = subst_p ? ep->to_rtx : ep->from_rtx;
358 if (! update_p && ! full_p)
359 return gen_rtx_PLUS (Pmode, to, XEXP (x, 1));
361 offset = (update_p
362 ? ep->offset - ep->previous_offset : ep->offset);
363 if (CONST_INT_P (XEXP (x, 1))
364 && INTVAL (XEXP (x, 1)) == -offset)
365 return to;
366 else
367 return gen_rtx_PLUS (Pmode, to,
368 plus_constant (Pmode,
369 XEXP (x, 1), offset));
372 /* If the hard register is not eliminable, we are done since
373 the other operand is a constant. */
374 return x;
377 /* If this is part of an address, we want to bring any constant
378 to the outermost PLUS. We will do this by doing hard
379 register replacement in our operands and seeing if a constant
380 shows up in one of them.
382 Note that there is no risk of modifying the structure of the
383 insn, since we only get called for its operands, thus we are
384 either modifying the address inside a MEM, or something like
385 an address operand of a load-address insn. */
388 rtx new0 = lra_eliminate_regs_1 (XEXP (x, 0), mem_mode,
389 subst_p, update_p, full_p);
390 rtx new1 = lra_eliminate_regs_1 (XEXP (x, 1), mem_mode,
391 subst_p, update_p, full_p);
393 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
394 return form_sum (new0, new1);
396 return x;
398 case MULT:
399 /* If this is the product of an eliminable hard register and a
400 constant, apply the distribute law and move the constant out
401 so that we have (plus (mult ..) ..). This is needed in order
402 to keep load-address insns valid. This case is pathological.
403 We ignore the possibility of overflow here. */
404 if (REG_P (XEXP (x, 0)) && CONST_INT_P (XEXP (x, 1))
405 && (ep = get_elimination (XEXP (x, 0))) != NULL)
407 rtx to = subst_p ? ep->to_rtx : ep->from_rtx;
409 if (update_p)
410 return
411 plus_constant (Pmode,
412 gen_rtx_MULT (Pmode, to, XEXP (x, 1)),
413 (ep->offset - ep->previous_offset)
414 * INTVAL (XEXP (x, 1)));
415 else if (full_p)
416 return
417 plus_constant (Pmode,
418 gen_rtx_MULT (Pmode, to, XEXP (x, 1)),
419 ep->offset * INTVAL (XEXP (x, 1)));
420 else
421 return gen_rtx_MULT (Pmode, to, XEXP (x, 1));
424 /* ... fall through ... */
426 case CALL:
427 case COMPARE:
428 /* See comments before PLUS about handling MINUS. */
429 case MINUS:
430 case DIV: case UDIV:
431 case MOD: case UMOD:
432 case AND: case IOR: case XOR:
433 case ROTATERT: case ROTATE:
434 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
435 case NE: case EQ:
436 case GE: case GT: case GEU: case GTU:
437 case LE: case LT: case LEU: case LTU:
439 rtx new0 = lra_eliminate_regs_1 (XEXP (x, 0), mem_mode,
440 subst_p, update_p, full_p);
441 rtx new1 = XEXP (x, 1)
442 ? lra_eliminate_regs_1 (XEXP (x, 1), mem_mode,
443 subst_p, update_p, full_p) : 0;
445 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
446 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
448 return x;
450 case EXPR_LIST:
451 /* If we have something in XEXP (x, 0), the usual case,
452 eliminate it. */
453 if (XEXP (x, 0))
455 new_rtx = lra_eliminate_regs_1 (XEXP (x, 0), mem_mode,
456 subst_p, update_p, full_p);
457 if (new_rtx != XEXP (x, 0))
459 /* If this is a REG_DEAD note, it is not valid anymore.
460 Using the eliminated version could result in creating a
461 REG_DEAD note for the stack or frame pointer. */
462 if (REG_NOTE_KIND (x) == REG_DEAD)
463 return (XEXP (x, 1)
464 ? lra_eliminate_regs_1 (XEXP (x, 1), mem_mode,
465 subst_p, update_p, full_p)
466 : NULL_RTX);
468 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
472 /* ... fall through ... */
474 case INSN_LIST:
475 /* Now do eliminations in the rest of the chain. If this was
476 an EXPR_LIST, this might result in allocating more memory than is
477 strictly needed, but it simplifies the code. */
478 if (XEXP (x, 1))
480 new_rtx = lra_eliminate_regs_1 (XEXP (x, 1), mem_mode,
481 subst_p, update_p, full_p);
482 if (new_rtx != XEXP (x, 1))
483 return
484 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x),
485 XEXP (x, 0), new_rtx);
487 return x;
489 case PRE_INC:
490 case POST_INC:
491 case PRE_DEC:
492 case POST_DEC:
493 /* We do not support elimination of a register that is modified.
494 elimination_effects has already make sure that this does not
495 happen. */
496 return x;
498 case PRE_MODIFY:
499 case POST_MODIFY:
500 /* We do not support elimination of a hard register that is
501 modified. LRA has already make sure that this does not
502 happen. The only remaining case we need to consider here is
503 that the increment value may be an eliminable register. */
504 if (GET_CODE (XEXP (x, 1)) == PLUS
505 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
507 rtx new_rtx = lra_eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
508 subst_p, update_p, full_p);
510 if (new_rtx != XEXP (XEXP (x, 1), 1))
511 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
512 gen_rtx_PLUS (GET_MODE (x),
513 XEXP (x, 0), new_rtx));
515 return x;
517 case STRICT_LOW_PART:
518 case NEG: case NOT:
519 case SIGN_EXTEND: case ZERO_EXTEND:
520 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
521 case FLOAT: case FIX:
522 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
523 case ABS:
524 case SQRT:
525 case FFS:
526 case CLZ:
527 case CTZ:
528 case POPCOUNT:
529 case PARITY:
530 case BSWAP:
531 new_rtx = lra_eliminate_regs_1 (XEXP (x, 0), mem_mode,
532 subst_p, update_p, full_p);
533 if (new_rtx != XEXP (x, 0))
534 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
535 return x;
537 case SUBREG:
538 new_rtx = lra_eliminate_regs_1 (SUBREG_REG (x), mem_mode,
539 subst_p, update_p, full_p);
541 if (new_rtx != SUBREG_REG (x))
543 int x_size = GET_MODE_SIZE (GET_MODE (x));
544 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
546 if (MEM_P (new_rtx) && x_size <= new_size)
548 SUBREG_REG (x) = new_rtx;
549 alter_subreg (&x, false);
550 return x;
552 else
553 return simplify_gen_subreg (GET_MODE (x), new_rtx,
554 GET_MODE (new_rtx), SUBREG_BYTE (x));
557 return x;
559 case MEM:
560 /* Our only special processing is to pass the mode of the MEM to our
561 recursive call and copy the flags. While we are here, handle this
562 case more efficiently. */
563 return
564 replace_equiv_address_nv
566 lra_eliminate_regs_1 (XEXP (x, 0), GET_MODE (x),
567 subst_p, update_p, full_p));
569 case USE:
570 /* Handle insn_list USE that a call to a pure function may generate. */
571 new_rtx = lra_eliminate_regs_1 (XEXP (x, 0), VOIDmode,
572 subst_p, update_p, full_p);
573 if (new_rtx != XEXP (x, 0))
574 return gen_rtx_USE (GET_MODE (x), new_rtx);
575 return x;
577 case CLOBBER:
578 case SET:
579 gcc_unreachable ();
581 default:
582 break;
585 /* Process each of our operands recursively. If any have changed, make a
586 copy of the rtx. */
587 fmt = GET_RTX_FORMAT (code);
588 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
590 if (*fmt == 'e')
592 new_rtx = lra_eliminate_regs_1 (XEXP (x, i), mem_mode,
593 subst_p, update_p, full_p);
594 if (new_rtx != XEXP (x, i) && ! copied)
596 x = shallow_copy_rtx (x);
597 copied = 1;
599 XEXP (x, i) = new_rtx;
601 else if (*fmt == 'E')
603 int copied_vec = 0;
604 for (j = 0; j < XVECLEN (x, i); j++)
606 new_rtx = lra_eliminate_regs_1 (XVECEXP (x, i, j), mem_mode,
607 subst_p, update_p, full_p);
608 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
610 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
611 XVEC (x, i)->elem);
612 if (! copied)
614 x = shallow_copy_rtx (x);
615 copied = 1;
617 XVEC (x, i) = new_v;
618 copied_vec = 1;
620 XVECEXP (x, i, j) = new_rtx;
625 return x;
628 /* This function is used externally in subsequent passes of GCC. It
629 always does a full elimination of X. */
631 lra_eliminate_regs (rtx x, enum machine_mode mem_mode,
632 rtx insn ATTRIBUTE_UNUSED)
634 return lra_eliminate_regs_1 (x, mem_mode, true, false, true);
637 /* Scan rtx X for references to elimination source or target registers
638 in contexts that would prevent the elimination from happening.
639 Update the table of eliminables to reflect the changed state.
640 MEM_MODE is the mode of an enclosing MEM rtx, or VOIDmode if not
641 within a MEM. */
642 static void
643 mark_not_eliminable (rtx x)
645 enum rtx_code code = GET_CODE (x);
646 struct elim_table *ep;
647 int i, j;
648 const char *fmt;
650 switch (code)
652 case PRE_INC:
653 case POST_INC:
654 case PRE_DEC:
655 case POST_DEC:
656 case POST_MODIFY:
657 case PRE_MODIFY:
658 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
659 /* If we modify the source of an elimination rule, disable
660 it. Do the same if it is the source and not the hard frame
661 register. */
662 for (ep = reg_eliminate;
663 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
664 ep++)
665 if (ep->from_rtx == XEXP (x, 0)
666 || (ep->to_rtx == XEXP (x, 0)
667 && ep->to_rtx != hard_frame_pointer_rtx))
668 setup_can_eliminate (ep, false);
669 return;
671 case USE:
672 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
673 /* If using a hard register that is the source of an eliminate
674 we still think can be performed, note it cannot be
675 performed since we don't know how this hard register is
676 used. */
677 for (ep = reg_eliminate;
678 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
679 ep++)
680 if (ep->from_rtx == XEXP (x, 0)
681 && ep->to_rtx != hard_frame_pointer_rtx)
682 setup_can_eliminate (ep, false);
683 return;
685 case CLOBBER:
686 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
687 /* If clobbering a hard register that is the replacement
688 register for an elimination we still think can be
689 performed, note that it cannot be performed. Otherwise, we
690 need not be concerned about it. */
691 for (ep = reg_eliminate;
692 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
693 ep++)
694 if (ep->to_rtx == XEXP (x, 0)
695 && ep->to_rtx != hard_frame_pointer_rtx)
696 setup_can_eliminate (ep, false);
697 return;
699 case SET:
700 /* Check for setting a hard register that we know about. */
701 if (REG_P (SET_DEST (x)) && REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER)
703 /* See if this is setting the replacement hard register for
704 an elimination.
706 If DEST is the hard frame pointer, we do nothing because
707 we assume that all assignments to the frame pointer are
708 for non-local gotos and are being done at a time when
709 they are valid and do not disturb anything else. Some
710 machines want to eliminate a fake argument pointer (or
711 even a fake frame pointer) with either the real frame
712 pointer or the stack pointer. Assignments to the hard
713 frame pointer must not prevent this elimination. */
715 for (ep = reg_eliminate;
716 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
717 ep++)
718 if (ep->to_rtx == SET_DEST (x)
719 && SET_DEST (x) != hard_frame_pointer_rtx)
720 setup_can_eliminate (ep, false);
723 mark_not_eliminable (SET_DEST (x));
724 mark_not_eliminable (SET_SRC (x));
725 return;
727 default:
728 break;
731 fmt = GET_RTX_FORMAT (code);
732 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
734 if (*fmt == 'e')
735 mark_not_eliminable (XEXP (x, i));
736 else if (*fmt == 'E')
737 for (j = 0; j < XVECLEN (x, i); j++)
738 mark_not_eliminable (XVECEXP (x, i, j));
744 /* Scan INSN and eliminate all eliminable hard registers in it.
746 If REPLACE_P is true, do the replacement destructively. Also
747 delete the insn as dead it if it is setting an eliminable register.
749 If REPLACE_P is false, just update the offsets while keeping the
750 base register the same. */
752 static void
753 eliminate_regs_in_insn (rtx insn, bool replace_p)
755 int icode = recog_memoized (insn);
756 rtx old_set = single_set (insn);
757 bool validate_p;
758 int i;
759 rtx substed_operand[MAX_RECOG_OPERANDS];
760 rtx orig_operand[MAX_RECOG_OPERANDS];
761 struct elim_table *ep;
762 rtx plus_src, plus_cst_src;
763 lra_insn_recog_data_t id;
764 struct lra_static_insn_data *static_id;
766 if (icode < 0 && asm_noperands (PATTERN (insn)) < 0 && ! DEBUG_INSN_P (insn))
768 lra_assert (GET_CODE (PATTERN (insn)) == USE
769 || GET_CODE (PATTERN (insn)) == CLOBBER
770 || GET_CODE (PATTERN (insn)) == ADDR_VEC
771 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
772 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
773 return;
776 /* Check for setting an eliminable register. */
777 if (old_set != 0 && REG_P (SET_DEST (old_set))
778 && (ep = get_elimination (SET_DEST (old_set))) != NULL)
780 bool delete_p = replace_p;
782 #ifdef HARD_FRAME_POINTER_REGNUM
783 /* If this is setting the frame pointer register to the hardware
784 frame pointer register and this is an elimination that will
785 be done (tested above), this insn is really adjusting the
786 frame pointer downward to compensate for the adjustment done
787 before a nonlocal goto. */
788 if (ep->from == FRAME_POINTER_REGNUM
789 && ep->to == HARD_FRAME_POINTER_REGNUM)
791 if (replace_p)
793 SET_DEST (old_set) = ep->to_rtx;
794 lra_update_insn_recog_data (insn);
795 return;
797 else
799 rtx base = SET_SRC (old_set);
800 HOST_WIDE_INT offset = 0;
801 rtx base_insn = insn;
803 while (base != ep->to_rtx)
805 rtx prev_insn, prev_set;
807 if (GET_CODE (base) == PLUS && CONST_INT_P (XEXP (base, 1)))
809 offset += INTVAL (XEXP (base, 1));
810 base = XEXP (base, 0);
812 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
813 && (prev_set = single_set (prev_insn)) != 0
814 && rtx_equal_p (SET_DEST (prev_set), base))
816 base = SET_SRC (prev_set);
817 base_insn = prev_insn;
819 else
820 break;
823 if (base == ep->to_rtx)
825 rtx src;
827 offset -= (ep->offset - ep->previous_offset);
828 src = plus_constant (Pmode, ep->to_rtx, offset);
830 /* First see if this insn remains valid when we make
831 the change. If not, keep the INSN_CODE the same
832 and let the constraint pass fit it up. */
833 validate_change (insn, &SET_SRC (old_set), src, 1);
834 validate_change (insn, &SET_DEST (old_set),
835 ep->from_rtx, 1);
836 if (! apply_change_group ())
838 SET_SRC (old_set) = src;
839 SET_DEST (old_set) = ep->from_rtx;
841 lra_update_insn_recog_data (insn);
842 return;
847 /* We can't delete this insn, but needn't process it
848 since it won't be used unless something changes. */
849 delete_p = false;
851 #endif
853 /* This insn isn't serving a useful purpose. We delete it
854 when REPLACE is set. */
855 if (delete_p)
856 lra_delete_dead_insn (insn);
857 return;
860 /* We allow one special case which happens to work on all machines we
861 currently support: a single set with the source or a REG_EQUAL
862 note being a PLUS of an eliminable register and a constant. */
863 plus_src = plus_cst_src = 0;
864 if (old_set && REG_P (SET_DEST (old_set)))
866 if (GET_CODE (SET_SRC (old_set)) == PLUS)
867 plus_src = SET_SRC (old_set);
868 /* First see if the source is of the form (plus (...) CST). */
869 if (plus_src
870 && CONST_INT_P (XEXP (plus_src, 1)))
871 plus_cst_src = plus_src;
872 /* Check that the first operand of the PLUS is a hard reg or
873 the lowpart subreg of one. */
874 if (plus_cst_src)
876 rtx reg = XEXP (plus_cst_src, 0);
878 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
879 reg = SUBREG_REG (reg);
881 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
882 plus_cst_src = 0;
885 if (plus_cst_src)
887 rtx reg = XEXP (plus_cst_src, 0);
888 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
890 if (GET_CODE (reg) == SUBREG)
891 reg = SUBREG_REG (reg);
893 if (REG_P (reg) && (ep = get_elimination (reg)) != NULL)
895 rtx to_rtx = replace_p ? ep->to_rtx : ep->from_rtx;
897 if (! replace_p)
899 offset += (ep->offset - ep->previous_offset);
900 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
903 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
904 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)), to_rtx);
905 /* If we have a nonzero offset, and the source is already a
906 simple REG, the following transformation would increase
907 the cost of the insn by replacing a simple REG with (plus
908 (reg sp) CST). So try only when we already had a PLUS
909 before. */
910 if (offset == 0 || plus_src)
912 rtx new_src = plus_constant (GET_MODE (to_rtx), to_rtx, offset);
914 old_set = single_set (insn);
916 /* First see if this insn remains valid when we make the
917 change. If not, try to replace the whole pattern
918 with a simple set (this may help if the original insn
919 was a PARALLEL that was only recognized as single_set
920 due to REG_UNUSED notes). If this isn't valid
921 either, keep the INSN_CODE the same and let the
922 constraint pass fix it up. */
923 if (! validate_change (insn, &SET_SRC (old_set), new_src, 0))
925 rtx new_pat = gen_rtx_SET (VOIDmode,
926 SET_DEST (old_set), new_src);
928 if (! validate_change (insn, &PATTERN (insn), new_pat, 0))
929 SET_SRC (old_set) = new_src;
931 lra_update_insn_recog_data (insn);
932 /* This can't have an effect on elimination offsets, so skip
933 right to the end. */
934 return;
939 /* Eliminate all eliminable registers occurring in operands that
940 can be handled by the constraint pass. */
941 id = lra_get_insn_recog_data (insn);
942 static_id = id->insn_static_data;
943 validate_p = false;
944 for (i = 0; i < static_id->n_operands; i++)
946 orig_operand[i] = *id->operand_loc[i];
947 substed_operand[i] = *id->operand_loc[i];
949 /* For an asm statement, every operand is eliminable. */
950 if (icode < 0 || insn_data[icode].operand[i].eliminable)
952 /* Check for setting a hard register that we know about. */
953 if (static_id->operand[i].type != OP_IN
954 && REG_P (orig_operand[i]))
956 /* If we are assigning to a hard register that can be
957 eliminated, it must be as part of a PARALLEL, since
958 the code above handles single SETs. This reg can not
959 be longer eliminated -- it is forced by
960 mark_not_eliminable. */
961 for (ep = reg_eliminate;
962 ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
963 ep++)
964 lra_assert (ep->from_rtx != orig_operand[i]
965 || ! ep->can_eliminate);
968 /* Companion to the above plus substitution, we can allow
969 invariants as the source of a plain move. */
970 substed_operand[i]
971 = lra_eliminate_regs_1 (*id->operand_loc[i], VOIDmode,
972 replace_p, ! replace_p, false);
973 if (substed_operand[i] != orig_operand[i])
974 validate_p = true;
978 /* Substitute the operands; the new values are in the substed_operand
979 array. */
980 for (i = 0; i < static_id->n_operands; i++)
981 *id->operand_loc[i] = substed_operand[i];
982 for (i = 0; i < static_id->n_dups; i++)
983 *id->dup_loc[i] = substed_operand[(int) static_id->dup_num[i]];
985 if (validate_p)
987 /* If we had a move insn but now we don't, re-recognize it.
988 This will cause spurious re-recognition if the old move had a
989 PARALLEL since the new one still will, but we can't call
990 single_set without having put new body into the insn and the
991 re-recognition won't hurt in this rare case. */
992 id = lra_update_insn_recog_data (insn);
993 static_id = id->insn_static_data;
997 /* Spill pseudos which are assigned to hard registers in SET. Add
998 affected insns for processing in the subsequent constraint
999 pass. */
1000 static void
1001 spill_pseudos (HARD_REG_SET set)
1003 int i;
1004 bitmap_head to_process;
1005 rtx insn;
1007 if (hard_reg_set_empty_p (set))
1008 return;
1009 if (lra_dump_file != NULL)
1011 fprintf (lra_dump_file, " Spilling non-eliminable hard regs:");
1012 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1013 if (TEST_HARD_REG_BIT (set, i))
1014 fprintf (lra_dump_file, " %d", i);
1015 fprintf (lra_dump_file, "\n");
1017 bitmap_initialize (&to_process, &reg_obstack);
1018 for (i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++)
1019 if (lra_reg_info[i].nrefs != 0 && reg_renumber[i] >= 0
1020 && overlaps_hard_reg_set_p (set,
1021 PSEUDO_REGNO_MODE (i), reg_renumber[i]))
1023 if (lra_dump_file != NULL)
1024 fprintf (lra_dump_file, " Spilling r%d(%d)\n",
1025 i, reg_renumber[i]);
1026 reg_renumber[i] = -1;
1027 bitmap_ior_into (&to_process, &lra_reg_info[i].insn_bitmap);
1029 IOR_HARD_REG_SET (lra_no_alloc_regs, set);
1030 for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
1031 if (bitmap_bit_p (&to_process, INSN_UID (insn)))
1033 lra_push_insn (insn);
1034 lra_set_used_insn_alternative (insn, -1);
1036 bitmap_clear (&to_process);
1039 /* Update all offsets and possibility for elimination on eliminable
1040 registers. Spill pseudos assigned to registers which became
1041 uneliminable, update LRA_NO_ALLOC_REGS and ELIMINABLE_REG_SET. Add
1042 insns to INSNS_WITH_CHANGED_OFFSETS containing eliminable hard
1043 registers whose offsets should be changed. */
1044 static void
1045 update_reg_eliminate (bitmap insns_with_changed_offsets)
1047 bool prev;
1048 struct elim_table *ep, *ep1;
1049 HARD_REG_SET temp_hard_reg_set;
1051 /* Clear self elimination offsets. */
1052 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1053 self_elim_offsets[ep->from] = 0;
1054 CLEAR_HARD_REG_SET (temp_hard_reg_set);
1055 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1057 /* If it is a currently used elimination: update the previous
1058 offset. */
1059 if (elimination_map[ep->from] == ep)
1060 ep->previous_offset = ep->offset;
1062 prev = ep->prev_can_eliminate;
1063 setup_can_eliminate (ep, targetm.can_eliminate (ep->from, ep->to));
1064 if (ep->can_eliminate && ! prev)
1066 /* It is possible that not eliminable register becomes
1067 eliminable because we took other reasons into account to
1068 set up eliminable regs in the initial set up. Just
1069 ignore new eliminable registers. */
1070 setup_can_eliminate (ep, false);
1071 continue;
1073 if (ep->can_eliminate != prev && elimination_map[ep->from] == ep)
1075 /* We cannot use this elimination anymore -- find another
1076 one. */
1077 if (lra_dump_file != NULL)
1078 fprintf (lra_dump_file,
1079 " Elimination %d to %d is not possible anymore\n",
1080 ep->from, ep->to);
1081 /* Mark that is not eliminable anymore. */
1082 elimination_map[ep->from] = NULL;
1083 for (ep1 = ep + 1; ep1 < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep1++)
1084 if (ep1->can_eliminate && ep1->from == ep->from)
1085 break;
1086 if (ep1 < &reg_eliminate[NUM_ELIMINABLE_REGS])
1088 if (lra_dump_file != NULL)
1089 fprintf (lra_dump_file, " Using elimination %d to %d now\n",
1090 ep1->from, ep1->to);
1091 /* Prevent the hard register into which we eliminate now
1092 from the usage for pseudos. */
1093 SET_HARD_REG_BIT (temp_hard_reg_set, ep1->to);
1094 lra_assert (ep1->previous_offset == 0);
1095 ep1->previous_offset = ep->offset;
1097 else
1099 /* There is no elimination anymore just use the hard
1100 register `from' itself. Setup self elimination
1101 offset to restore the original offset values. */
1102 if (lra_dump_file != NULL)
1103 fprintf (lra_dump_file, " %d is not eliminable at all\n",
1104 ep->from);
1105 self_elim_offsets[ep->from] = -ep->offset;
1106 SET_HARD_REG_BIT (temp_hard_reg_set, ep->from);
1107 if (ep->offset != 0)
1108 bitmap_ior_into (insns_with_changed_offsets,
1109 &lra_reg_info[ep->from].insn_bitmap);
1113 #ifdef ELIMINABLE_REGS
1114 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->offset);
1115 #else
1116 INITIAL_FRAME_POINTER_OFFSET (ep->offset);
1117 #endif
1119 IOR_HARD_REG_SET (lra_no_alloc_regs, temp_hard_reg_set);
1120 AND_COMPL_HARD_REG_SET (eliminable_regset, temp_hard_reg_set);
1121 spill_pseudos (temp_hard_reg_set);
1122 setup_elimination_map ();
1123 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1124 if (elimination_map[ep->from] == ep && ep->previous_offset != ep->offset)
1125 bitmap_ior_into (insns_with_changed_offsets,
1126 &lra_reg_info[ep->from].insn_bitmap);
1129 /* Initialize the table of hard registers to eliminate.
1130 Pre-condition: global flag frame_pointer_needed has been set before
1131 calling this function. */
1132 static void
1133 init_elim_table (void)
1135 bool value_p;
1136 struct elim_table *ep;
1137 #ifdef ELIMINABLE_REGS
1138 const struct elim_table_1 *ep1;
1139 #endif
1141 if (!reg_eliminate)
1142 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
1144 memset (self_elim_offsets, 0, sizeof (self_elim_offsets));
1145 /* Initiate member values which will be never changed. */
1146 self_elim_table.can_eliminate = self_elim_table.prev_can_eliminate = true;
1147 self_elim_table.previous_offset = 0;
1148 #ifdef ELIMINABLE_REGS
1149 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
1150 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
1152 ep->offset = ep->previous_offset = 0;
1153 ep->from = ep1->from;
1154 ep->to = ep1->to;
1155 value_p = (targetm.can_eliminate (ep->from, ep->to)
1156 && ! (ep->to == STACK_POINTER_REGNUM
1157 && frame_pointer_needed
1158 && (! SUPPORTS_STACK_ALIGNMENT
1159 || ! stack_realign_fp)));
1160 setup_can_eliminate (ep, value_p);
1162 #else
1163 reg_eliminate[0].offset = reg_eliminate[0].previous_offset = 0;
1164 reg_eliminate[0].from = reg_eliminate_1[0].from;
1165 reg_eliminate[0].to = reg_eliminate_1[0].to;
1166 setup_can_eliminate (&reg_eliminate[0], ! frame_pointer_needed);
1167 #endif
1169 /* Count the number of eliminable registers and build the FROM and TO
1170 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
1171 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
1172 We depend on this. */
1173 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1175 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
1176 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
1177 eliminable_reg_rtx[ep->from] = ep->from_rtx;
1181 /* Entry function for initialization of elimination once per
1182 function. */
1183 void
1184 lra_init_elimination (void)
1186 basic_block bb;
1187 rtx insn;
1189 init_elim_table ();
1190 FOR_EACH_BB (bb)
1191 FOR_BB_INSNS (bb, insn)
1192 if (NONDEBUG_INSN_P (insn))
1193 mark_not_eliminable (PATTERN (insn));
1194 setup_elimination_map ();
1197 /* Eliminate hard reg given by its location LOC. */
1198 void
1199 lra_eliminate_reg_if_possible (rtx *loc)
1201 int regno;
1202 struct elim_table *ep;
1204 lra_assert (REG_P (*loc));
1205 if ((regno = REGNO (*loc)) >= FIRST_PSEUDO_REGISTER
1206 || ! TEST_HARD_REG_BIT (lra_no_alloc_regs, regno))
1207 return;
1208 if ((ep = get_elimination (*loc)) != NULL)
1209 *loc = ep->to_rtx;
1212 /* Do (final if FINAL_P) elimination in INSN. Add the insn for
1213 subsequent processing in the constraint pass, update the insn info. */
1214 static void
1215 process_insn_for_elimination (rtx insn, bool final_p)
1217 eliminate_regs_in_insn (insn, final_p);
1218 if (! final_p)
1220 /* Check that insn changed its code. This is a case when a move
1221 insn becomes an add insn and we do not want to process the
1222 insn as a move anymore. */
1223 int icode = recog (PATTERN (insn), insn, 0);
1225 if (icode >= 0 && icode != INSN_CODE (insn))
1227 INSN_CODE (insn) = icode;
1228 lra_update_insn_recog_data (insn);
1230 lra_update_insn_regno_info (insn);
1231 lra_push_insn (insn);
1232 lra_set_used_insn_alternative (insn, -1);
1236 /* Entry function to do final elimination if FINAL_P or to update
1237 elimination register offsets. */
1238 void
1239 lra_eliminate (bool final_p)
1241 int i;
1242 unsigned int uid;
1243 rtx mem_loc, invariant;
1244 bitmap_head insns_with_changed_offsets;
1245 bitmap_iterator bi;
1246 struct elim_table *ep;
1247 int regs_num = max_reg_num ();
1249 timevar_push (TV_LRA_ELIMINATE);
1251 bitmap_initialize (&insns_with_changed_offsets, &reg_obstack);
1252 if (final_p)
1254 #ifdef ENABLE_CHECKING
1255 update_reg_eliminate (&insns_with_changed_offsets);
1256 if (! bitmap_empty_p (&insns_with_changed_offsets))
1257 gcc_unreachable ();
1258 #endif
1259 /* We change eliminable hard registers in insns so we should do
1260 this for all insns containing any eliminable hard
1261 register. */
1262 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1263 if (elimination_map[ep->from] != NULL)
1264 bitmap_ior_into (&insns_with_changed_offsets,
1265 &lra_reg_info[ep->from].insn_bitmap);
1267 else
1269 update_reg_eliminate (&insns_with_changed_offsets);
1270 if (bitmap_empty_p (&insns_with_changed_offsets))
1271 goto lra_eliminate_done;
1273 if (lra_dump_file != NULL)
1275 fprintf (lra_dump_file, "New elimination table:\n");
1276 print_elim_table (lra_dump_file);
1278 for (i = FIRST_PSEUDO_REGISTER; i < regs_num; i++)
1279 if (lra_reg_info[i].nrefs != 0)
1281 mem_loc = ira_reg_equiv[i].memory;
1282 if (mem_loc != NULL_RTX)
1283 mem_loc = lra_eliminate_regs_1 (mem_loc, VOIDmode,
1284 final_p, ! final_p, false);
1285 ira_reg_equiv[i].memory = mem_loc;
1286 invariant = ira_reg_equiv[i].invariant;
1287 if (invariant != NULL_RTX)
1288 invariant = lra_eliminate_regs_1 (invariant, VOIDmode,
1289 final_p, ! final_p, false);
1290 ira_reg_equiv[i].invariant = invariant;
1291 if (lra_dump_file != NULL
1292 && (mem_loc != NULL_RTX || invariant != NULL))
1293 fprintf (lra_dump_file,
1294 "Updating elimination of equiv for reg %d\n", i);
1296 EXECUTE_IF_SET_IN_BITMAP (&insns_with_changed_offsets, 0, uid, bi)
1297 process_insn_for_elimination (lra_insn_recog_data[uid]->insn, final_p);
1298 bitmap_clear (&insns_with_changed_offsets);
1300 lra_eliminate_done:
1301 timevar_pop (TV_LRA_ELIMINATE);