PR c++/55261
[official-gcc.git] / gcc / combine.c
blobabd67e8ab9c7868085e3b46613dfc83a6473b690
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triplets of insns A, B and C when C has
34 a link back to B and B has a link back to A. Likewise for a
35 small number of quadruplets of insns A, B, C and D for which
36 there's high likelihood of of success.
38 LOG_LINKS does not have links for use of the CC0. They don't
39 need to, because the insn that sets the CC0 is always immediately
40 before the insn that tests it. So we always regard a branch
41 insn as having a logical link to the preceding insn. The same is true
42 for an insn explicitly using CC0.
44 We check (with use_crosses_set_p) to avoid combining in such a way
45 as to move a computation to a place where its value would be different.
47 Combination is done by mathematically substituting the previous
48 insn(s) values for the regs they set into the expressions in
49 the later insns that refer to these regs. If the result is a valid insn
50 for our target machine, according to the machine description,
51 we install it, delete the earlier insns, and update the data flow
52 information (LOG_LINKS and REG_NOTES) for what we did.
54 There are a few exceptions where the dataflow information isn't
55 completely updated (however this is only a local issue since it is
56 regenerated before the next pass that uses it):
58 - reg_live_length is not updated
59 - reg_n_refs is not adjusted in the rare case when a register is
60 no longer required in a computation
61 - there are extremely rare cases (see distribute_notes) when a
62 REG_DEAD note is lost
63 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
64 removed because there is no way to know which register it was
65 linking
67 To simplify substitution, we combine only when the earlier insn(s)
68 consist of only a single assignment. To simplify updating afterward,
69 we never combine when a subroutine call appears in the middle.
71 Since we do not represent assignments to CC0 explicitly except when that
72 is all an insn does, there is no LOG_LINKS entry in an insn that uses
73 the condition code for the insn that set the condition code.
74 Fortunately, these two insns must be consecutive.
75 Therefore, every JUMP_INSN is taken to have an implicit logical link
76 to the preceding insn. This is not quite right, since non-jumps can
77 also use the condition code; but in practice such insns would not
78 combine anyway. */
80 #include "config.h"
81 #include "system.h"
82 #include "coretypes.h"
83 #include "tm.h"
84 #include "rtl.h"
85 #include "tree.h"
86 #include "tm_p.h"
87 #include "flags.h"
88 #include "regs.h"
89 #include "hard-reg-set.h"
90 #include "basic-block.h"
91 #include "insn-config.h"
92 #include "function.h"
93 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
94 #include "expr.h"
95 #include "insn-attr.h"
96 #include "recog.h"
97 #include "diagnostic-core.h"
98 #include "target.h"
99 #include "optabs.h"
100 #include "insn-codes.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "df.h"
105 #include "valtrack.h"
106 #include "cgraph.h"
107 #include "obstack.h"
109 /* Number of attempts to combine instructions in this function. */
111 static int combine_attempts;
113 /* Number of attempts that got as far as substitution in this function. */
115 static int combine_merges;
117 /* Number of instructions combined with added SETs in this function. */
119 static int combine_extras;
121 /* Number of instructions combined in this function. */
123 static int combine_successes;
125 /* Totals over entire compilation. */
127 static int total_attempts, total_merges, total_extras, total_successes;
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
136 static rtx i2mod;
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
140 static rtx i2mod_old_rhs;
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
144 static rtx i2mod_new_rhs;
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
198 rtx last_set_value;
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
208 int last_set_label;
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
245 int truncation_label;
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
256 static vec<reg_stat_type> reg_stat;
258 /* Record the luid of the last insn that invalidated memory
259 (anything that writes memory, and subroutine calls, but not pushes). */
261 static int mem_last_set;
263 /* Record the luid of the last CALL_INSN
264 so we can tell whether a potential combination crosses any calls. */
266 static int last_call_luid;
268 /* When `subst' is called, this is the insn that is being modified
269 (by combining in a previous insn). The PATTERN of this insn
270 is still the old pattern partially modified and it should not be
271 looked at, but this may be used to examine the successors of the insn
272 to judge whether a simplification is valid. */
274 static rtx subst_insn;
276 /* This is the lowest LUID that `subst' is currently dealing with.
277 get_last_value will not return a value if the register was set at or
278 after this LUID. If not for this mechanism, we could get confused if
279 I2 or I1 in try_combine were an insn that used the old value of a register
280 to obtain a new value. In that case, we might erroneously get the
281 new value of the register when we wanted the old one. */
283 static int subst_low_luid;
285 /* This contains any hard registers that are used in newpat; reg_dead_at_p
286 must consider all these registers to be always live. */
288 static HARD_REG_SET newpat_used_regs;
290 /* This is an insn to which a LOG_LINKS entry has been added. If this
291 insn is the earlier than I2 or I3, combine should rescan starting at
292 that location. */
294 static rtx added_links_insn;
296 /* Basic block in which we are performing combines. */
297 static basic_block this_basic_block;
298 static bool optimize_this_for_speed_p;
301 /* Length of the currently allocated uid_insn_cost array. */
303 static int max_uid_known;
305 /* The following array records the insn_rtx_cost for every insn
306 in the instruction stream. */
308 static int *uid_insn_cost;
310 /* The following array records the LOG_LINKS for every insn in the
311 instruction stream as struct insn_link pointers. */
313 struct insn_link {
314 rtx insn;
315 struct insn_link *next;
318 static struct insn_link **uid_log_links;
320 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
321 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
323 #define FOR_EACH_LOG_LINK(L, INSN) \
324 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
326 /* Links for LOG_LINKS are allocated from this obstack. */
328 static struct obstack insn_link_obstack;
330 /* Allocate a link. */
332 static inline struct insn_link *
333 alloc_insn_link (rtx insn, struct insn_link *next)
335 struct insn_link *l
336 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
337 sizeof (struct insn_link));
338 l->insn = insn;
339 l->next = next;
340 return l;
343 /* Incremented for each basic block. */
345 static int label_tick;
347 /* Reset to label_tick for each extended basic block in scanning order. */
349 static int label_tick_ebb_start;
351 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
352 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
354 static enum machine_mode nonzero_bits_mode;
356 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
357 be safely used. It is zero while computing them and after combine has
358 completed. This former test prevents propagating values based on
359 previously set values, which can be incorrect if a variable is modified
360 in a loop. */
362 static int nonzero_sign_valid;
365 /* Record one modification to rtl structure
366 to be undone by storing old_contents into *where. */
368 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
370 struct undo
372 struct undo *next;
373 enum undo_kind kind;
374 union { rtx r; int i; enum machine_mode m; struct insn_link *l; } old_contents;
375 union { rtx *r; int *i; struct insn_link **l; } where;
378 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
379 num_undo says how many are currently recorded.
381 other_insn is nonzero if we have modified some other insn in the process
382 of working on subst_insn. It must be verified too. */
384 struct undobuf
386 struct undo *undos;
387 struct undo *frees;
388 rtx other_insn;
391 static struct undobuf undobuf;
393 /* Number of times the pseudo being substituted for
394 was found and replaced. */
396 static int n_occurrences;
398 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
399 enum machine_mode,
400 unsigned HOST_WIDE_INT,
401 unsigned HOST_WIDE_INT *);
402 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
403 enum machine_mode,
404 unsigned int, unsigned int *);
405 static void do_SUBST (rtx *, rtx);
406 static void do_SUBST_INT (int *, int);
407 static void init_reg_last (void);
408 static void setup_incoming_promotions (rtx);
409 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
410 static int cant_combine_insn_p (rtx);
411 static int can_combine_p (rtx, rtx, rtx, rtx, rtx, rtx, rtx *, rtx *);
412 static int combinable_i3pat (rtx, rtx *, rtx, rtx, rtx, int, int, rtx *);
413 static int contains_muldiv (rtx);
414 static rtx try_combine (rtx, rtx, rtx, rtx, int *, rtx);
415 static void undo_all (void);
416 static void undo_commit (void);
417 static rtx *find_split_point (rtx *, rtx, bool);
418 static rtx subst (rtx, rtx, rtx, int, int, int);
419 static rtx combine_simplify_rtx (rtx, enum machine_mode, int, int);
420 static rtx simplify_if_then_else (rtx);
421 static rtx simplify_set (rtx);
422 static rtx simplify_logical (rtx);
423 static rtx expand_compound_operation (rtx);
424 static const_rtx expand_field_assignment (const_rtx);
425 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
426 rtx, unsigned HOST_WIDE_INT, int, int, int);
427 static rtx extract_left_shift (rtx, int);
428 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
429 unsigned HOST_WIDE_INT *);
430 static rtx canon_reg_for_combine (rtx, rtx);
431 static rtx force_to_mode (rtx, enum machine_mode,
432 unsigned HOST_WIDE_INT, int);
433 static rtx if_then_else_cond (rtx, rtx *, rtx *);
434 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
435 static int rtx_equal_for_field_assignment_p (rtx, rtx);
436 static rtx make_field_assignment (rtx);
437 static rtx apply_distributive_law (rtx);
438 static rtx distribute_and_simplify_rtx (rtx, int);
439 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
440 unsigned HOST_WIDE_INT);
441 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
442 unsigned HOST_WIDE_INT);
443 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
444 HOST_WIDE_INT, enum machine_mode, int *);
445 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
446 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
447 int);
448 static int recog_for_combine (rtx *, rtx, rtx *);
449 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
450 static enum rtx_code simplify_compare_const (enum rtx_code, rtx, rtx *);
451 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
452 static void update_table_tick (rtx);
453 static void record_value_for_reg (rtx, rtx, rtx);
454 static void check_promoted_subreg (rtx, rtx);
455 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
456 static void record_dead_and_set_regs (rtx);
457 static int get_last_value_validate (rtx *, rtx, int, int);
458 static rtx get_last_value (const_rtx);
459 static int use_crosses_set_p (const_rtx, int);
460 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
461 static int reg_dead_at_p (rtx, rtx);
462 static void move_deaths (rtx, rtx, int, rtx, rtx *);
463 static int reg_bitfield_target_p (rtx, rtx);
464 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx, rtx);
465 static void distribute_links (struct insn_link *);
466 static void mark_used_regs_combine (rtx);
467 static void record_promoted_value (rtx, rtx);
468 static int unmentioned_reg_p_1 (rtx *, void *);
469 static bool unmentioned_reg_p (rtx, rtx);
470 static int record_truncated_value (rtx *, void *);
471 static void record_truncated_values (rtx *, void *);
472 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
473 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
476 /* It is not safe to use ordinary gen_lowpart in combine.
477 See comments in gen_lowpart_for_combine. */
478 #undef RTL_HOOKS_GEN_LOWPART
479 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
481 /* Our implementation of gen_lowpart never emits a new pseudo. */
482 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
483 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
485 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
486 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
488 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
489 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
491 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
492 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
494 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
497 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
498 PATTERN can not be split. Otherwise, it returns an insn sequence.
499 This is a wrapper around split_insns which ensures that the
500 reg_stat vector is made larger if the splitter creates a new
501 register. */
503 static rtx
504 combine_split_insns (rtx pattern, rtx insn)
506 rtx ret;
507 unsigned int nregs;
509 ret = split_insns (pattern, insn);
510 nregs = max_reg_num ();
511 if (nregs > reg_stat.length ())
512 reg_stat.safe_grow_cleared (nregs);
513 return ret;
516 /* This is used by find_single_use to locate an rtx in LOC that
517 contains exactly one use of DEST, which is typically either a REG
518 or CC0. It returns a pointer to the innermost rtx expression
519 containing DEST. Appearances of DEST that are being used to
520 totally replace it are not counted. */
522 static rtx *
523 find_single_use_1 (rtx dest, rtx *loc)
525 rtx x = *loc;
526 enum rtx_code code = GET_CODE (x);
527 rtx *result = NULL;
528 rtx *this_result;
529 int i;
530 const char *fmt;
532 switch (code)
534 case CONST:
535 case LABEL_REF:
536 case SYMBOL_REF:
537 CASE_CONST_ANY:
538 case CLOBBER:
539 return 0;
541 case SET:
542 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
543 of a REG that occupies all of the REG, the insn uses DEST if
544 it is mentioned in the destination or the source. Otherwise, we
545 need just check the source. */
546 if (GET_CODE (SET_DEST (x)) != CC0
547 && GET_CODE (SET_DEST (x)) != PC
548 && !REG_P (SET_DEST (x))
549 && ! (GET_CODE (SET_DEST (x)) == SUBREG
550 && REG_P (SUBREG_REG (SET_DEST (x)))
551 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
552 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
553 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
554 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
555 break;
557 return find_single_use_1 (dest, &SET_SRC (x));
559 case MEM:
560 case SUBREG:
561 return find_single_use_1 (dest, &XEXP (x, 0));
563 default:
564 break;
567 /* If it wasn't one of the common cases above, check each expression and
568 vector of this code. Look for a unique usage of DEST. */
570 fmt = GET_RTX_FORMAT (code);
571 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
573 if (fmt[i] == 'e')
575 if (dest == XEXP (x, i)
576 || (REG_P (dest) && REG_P (XEXP (x, i))
577 && REGNO (dest) == REGNO (XEXP (x, i))))
578 this_result = loc;
579 else
580 this_result = find_single_use_1 (dest, &XEXP (x, i));
582 if (result == NULL)
583 result = this_result;
584 else if (this_result)
585 /* Duplicate usage. */
586 return NULL;
588 else if (fmt[i] == 'E')
590 int j;
592 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
594 if (XVECEXP (x, i, j) == dest
595 || (REG_P (dest)
596 && REG_P (XVECEXP (x, i, j))
597 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
598 this_result = loc;
599 else
600 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
602 if (result == NULL)
603 result = this_result;
604 else if (this_result)
605 return NULL;
610 return result;
614 /* See if DEST, produced in INSN, is used only a single time in the
615 sequel. If so, return a pointer to the innermost rtx expression in which
616 it is used.
618 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
620 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
621 care about REG_DEAD notes or LOG_LINKS.
623 Otherwise, we find the single use by finding an insn that has a
624 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
625 only referenced once in that insn, we know that it must be the first
626 and last insn referencing DEST. */
628 static rtx *
629 find_single_use (rtx dest, rtx insn, rtx *ploc)
631 basic_block bb;
632 rtx next;
633 rtx *result;
634 struct insn_link *link;
636 #ifdef HAVE_cc0
637 if (dest == cc0_rtx)
639 next = NEXT_INSN (insn);
640 if (next == 0
641 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
642 return 0;
644 result = find_single_use_1 (dest, &PATTERN (next));
645 if (result && ploc)
646 *ploc = next;
647 return result;
649 #endif
651 if (!REG_P (dest))
652 return 0;
654 bb = BLOCK_FOR_INSN (insn);
655 for (next = NEXT_INSN (insn);
656 next && BLOCK_FOR_INSN (next) == bb;
657 next = NEXT_INSN (next))
658 if (INSN_P (next) && dead_or_set_p (next, dest))
660 FOR_EACH_LOG_LINK (link, next)
661 if (link->insn == insn)
662 break;
664 if (link)
666 result = find_single_use_1 (dest, &PATTERN (next));
667 if (ploc)
668 *ploc = next;
669 return result;
673 return 0;
676 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
677 insn. The substitution can be undone by undo_all. If INTO is already
678 set to NEWVAL, do not record this change. Because computing NEWVAL might
679 also call SUBST, we have to compute it before we put anything into
680 the undo table. */
682 static void
683 do_SUBST (rtx *into, rtx newval)
685 struct undo *buf;
686 rtx oldval = *into;
688 if (oldval == newval)
689 return;
691 /* We'd like to catch as many invalid transformations here as
692 possible. Unfortunately, there are way too many mode changes
693 that are perfectly valid, so we'd waste too much effort for
694 little gain doing the checks here. Focus on catching invalid
695 transformations involving integer constants. */
696 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
697 && CONST_INT_P (newval))
699 /* Sanity check that we're replacing oldval with a CONST_INT
700 that is a valid sign-extension for the original mode. */
701 gcc_assert (INTVAL (newval)
702 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
704 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
705 CONST_INT is not valid, because after the replacement, the
706 original mode would be gone. Unfortunately, we can't tell
707 when do_SUBST is called to replace the operand thereof, so we
708 perform this test on oldval instead, checking whether an
709 invalid replacement took place before we got here. */
710 gcc_assert (!(GET_CODE (oldval) == SUBREG
711 && CONST_INT_P (SUBREG_REG (oldval))));
712 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
713 && CONST_INT_P (XEXP (oldval, 0))));
716 if (undobuf.frees)
717 buf = undobuf.frees, undobuf.frees = buf->next;
718 else
719 buf = XNEW (struct undo);
721 buf->kind = UNDO_RTX;
722 buf->where.r = into;
723 buf->old_contents.r = oldval;
724 *into = newval;
726 buf->next = undobuf.undos, undobuf.undos = buf;
729 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
731 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
732 for the value of a HOST_WIDE_INT value (including CONST_INT) is
733 not safe. */
735 static void
736 do_SUBST_INT (int *into, int newval)
738 struct undo *buf;
739 int oldval = *into;
741 if (oldval == newval)
742 return;
744 if (undobuf.frees)
745 buf = undobuf.frees, undobuf.frees = buf->next;
746 else
747 buf = XNEW (struct undo);
749 buf->kind = UNDO_INT;
750 buf->where.i = into;
751 buf->old_contents.i = oldval;
752 *into = newval;
754 buf->next = undobuf.undos, undobuf.undos = buf;
757 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
759 /* Similar to SUBST, but just substitute the mode. This is used when
760 changing the mode of a pseudo-register, so that any other
761 references to the entry in the regno_reg_rtx array will change as
762 well. */
764 static void
765 do_SUBST_MODE (rtx *into, enum machine_mode newval)
767 struct undo *buf;
768 enum machine_mode oldval = GET_MODE (*into);
770 if (oldval == newval)
771 return;
773 if (undobuf.frees)
774 buf = undobuf.frees, undobuf.frees = buf->next;
775 else
776 buf = XNEW (struct undo);
778 buf->kind = UNDO_MODE;
779 buf->where.r = into;
780 buf->old_contents.m = oldval;
781 adjust_reg_mode (*into, newval);
783 buf->next = undobuf.undos, undobuf.undos = buf;
786 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
788 #ifndef HAVE_cc0
789 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
791 static void
792 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
794 struct undo *buf;
795 struct insn_link * oldval = *into;
797 if (oldval == newval)
798 return;
800 if (undobuf.frees)
801 buf = undobuf.frees, undobuf.frees = buf->next;
802 else
803 buf = XNEW (struct undo);
805 buf->kind = UNDO_LINKS;
806 buf->where.l = into;
807 buf->old_contents.l = oldval;
808 *into = newval;
810 buf->next = undobuf.undos, undobuf.undos = buf;
813 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
814 #endif
816 /* Subroutine of try_combine. Determine whether the replacement patterns
817 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
818 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
819 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
820 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
821 of all the instructions can be estimated and the replacements are more
822 expensive than the original sequence. */
824 static bool
825 combine_validate_cost (rtx i0, rtx i1, rtx i2, rtx i3, rtx newpat,
826 rtx newi2pat, rtx newotherpat)
828 int i0_cost, i1_cost, i2_cost, i3_cost;
829 int new_i2_cost, new_i3_cost;
830 int old_cost, new_cost;
832 /* Lookup the original insn_rtx_costs. */
833 i2_cost = INSN_COST (i2);
834 i3_cost = INSN_COST (i3);
836 if (i1)
838 i1_cost = INSN_COST (i1);
839 if (i0)
841 i0_cost = INSN_COST (i0);
842 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
843 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
845 else
847 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
848 ? i1_cost + i2_cost + i3_cost : 0);
849 i0_cost = 0;
852 else
854 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
855 i1_cost = i0_cost = 0;
858 /* Calculate the replacement insn_rtx_costs. */
859 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
860 if (newi2pat)
862 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
863 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
864 ? new_i2_cost + new_i3_cost : 0;
866 else
868 new_cost = new_i3_cost;
869 new_i2_cost = 0;
872 if (undobuf.other_insn)
874 int old_other_cost, new_other_cost;
876 old_other_cost = INSN_COST (undobuf.other_insn);
877 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
878 if (old_other_cost > 0 && new_other_cost > 0)
880 old_cost += old_other_cost;
881 new_cost += new_other_cost;
883 else
884 old_cost = 0;
887 /* Disallow this combination if both new_cost and old_cost are greater than
888 zero, and new_cost is greater than old cost. */
889 if (old_cost > 0 && new_cost > old_cost)
891 if (dump_file)
893 if (i0)
895 fprintf (dump_file,
896 "rejecting combination of insns %d, %d, %d and %d\n",
897 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2),
898 INSN_UID (i3));
899 fprintf (dump_file, "original costs %d + %d + %d + %d = %d\n",
900 i0_cost, i1_cost, i2_cost, i3_cost, old_cost);
902 else if (i1)
904 fprintf (dump_file,
905 "rejecting combination of insns %d, %d and %d\n",
906 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
907 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
908 i1_cost, i2_cost, i3_cost, old_cost);
910 else
912 fprintf (dump_file,
913 "rejecting combination of insns %d and %d\n",
914 INSN_UID (i2), INSN_UID (i3));
915 fprintf (dump_file, "original costs %d + %d = %d\n",
916 i2_cost, i3_cost, old_cost);
919 if (newi2pat)
921 fprintf (dump_file, "replacement costs %d + %d = %d\n",
922 new_i2_cost, new_i3_cost, new_cost);
924 else
925 fprintf (dump_file, "replacement cost %d\n", new_cost);
928 return false;
931 /* Update the uid_insn_cost array with the replacement costs. */
932 INSN_COST (i2) = new_i2_cost;
933 INSN_COST (i3) = new_i3_cost;
934 if (i1)
936 INSN_COST (i1) = 0;
937 if (i0)
938 INSN_COST (i0) = 0;
941 return true;
945 /* Delete any insns that copy a register to itself. */
947 static void
948 delete_noop_moves (void)
950 rtx insn, next;
951 basic_block bb;
953 FOR_EACH_BB (bb)
955 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
957 next = NEXT_INSN (insn);
958 if (INSN_P (insn) && noop_move_p (insn))
960 if (dump_file)
961 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
963 delete_insn_and_edges (insn);
970 /* Fill in log links field for all insns. */
972 static void
973 create_log_links (void)
975 basic_block bb;
976 rtx *next_use, insn;
977 df_ref *def_vec, *use_vec;
979 next_use = XCNEWVEC (rtx, max_reg_num ());
981 /* Pass through each block from the end, recording the uses of each
982 register and establishing log links when def is encountered.
983 Note that we do not clear next_use array in order to save time,
984 so we have to test whether the use is in the same basic block as def.
986 There are a few cases below when we do not consider the definition or
987 usage -- these are taken from original flow.c did. Don't ask me why it is
988 done this way; I don't know and if it works, I don't want to know. */
990 FOR_EACH_BB (bb)
992 FOR_BB_INSNS_REVERSE (bb, insn)
994 if (!NONDEBUG_INSN_P (insn))
995 continue;
997 /* Log links are created only once. */
998 gcc_assert (!LOG_LINKS (insn));
1000 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
1002 df_ref def = *def_vec;
1003 int regno = DF_REF_REGNO (def);
1004 rtx use_insn;
1006 if (!next_use[regno])
1007 continue;
1009 /* Do not consider if it is pre/post modification in MEM. */
1010 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1011 continue;
1013 /* Do not make the log link for frame pointer. */
1014 if ((regno == FRAME_POINTER_REGNUM
1015 && (! reload_completed || frame_pointer_needed))
1016 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1017 || (regno == HARD_FRAME_POINTER_REGNUM
1018 && (! reload_completed || frame_pointer_needed))
1019 #endif
1020 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1021 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1022 #endif
1024 continue;
1026 use_insn = next_use[regno];
1027 if (BLOCK_FOR_INSN (use_insn) == bb)
1029 /* flow.c claimed:
1031 We don't build a LOG_LINK for hard registers contained
1032 in ASM_OPERANDs. If these registers get replaced,
1033 we might wind up changing the semantics of the insn,
1034 even if reload can make what appear to be valid
1035 assignments later. */
1036 if (regno >= FIRST_PSEUDO_REGISTER
1037 || asm_noperands (PATTERN (use_insn)) < 0)
1039 /* Don't add duplicate links between instructions. */
1040 struct insn_link *links;
1041 FOR_EACH_LOG_LINK (links, use_insn)
1042 if (insn == links->insn)
1043 break;
1045 if (!links)
1046 LOG_LINKS (use_insn)
1047 = alloc_insn_link (insn, LOG_LINKS (use_insn));
1050 next_use[regno] = NULL_RTX;
1053 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1055 df_ref use = *use_vec;
1056 int regno = DF_REF_REGNO (use);
1058 /* Do not consider the usage of the stack pointer
1059 by function call. */
1060 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1061 continue;
1063 next_use[regno] = insn;
1068 free (next_use);
1071 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1072 true if we found a LOG_LINK that proves that A feeds B. This only works
1073 if there are no instructions between A and B which could have a link
1074 depending on A, since in that case we would not record a link for B.
1075 We also check the implicit dependency created by a cc0 setter/user
1076 pair. */
1078 static bool
1079 insn_a_feeds_b (rtx a, rtx b)
1081 struct insn_link *links;
1082 FOR_EACH_LOG_LINK (links, b)
1083 if (links->insn == a)
1084 return true;
1085 #ifdef HAVE_cc0
1086 if (sets_cc0_p (a))
1087 return true;
1088 #endif
1089 return false;
1092 /* Main entry point for combiner. F is the first insn of the function.
1093 NREGS is the first unused pseudo-reg number.
1095 Return nonzero if the combiner has turned an indirect jump
1096 instruction into a direct jump. */
1097 static int
1098 combine_instructions (rtx f, unsigned int nregs)
1100 rtx insn, next;
1101 #ifdef HAVE_cc0
1102 rtx prev;
1103 #endif
1104 struct insn_link *links, *nextlinks;
1105 rtx first;
1106 basic_block last_bb;
1108 int new_direct_jump_p = 0;
1110 for (first = f; first && !INSN_P (first); )
1111 first = NEXT_INSN (first);
1112 if (!first)
1113 return 0;
1115 combine_attempts = 0;
1116 combine_merges = 0;
1117 combine_extras = 0;
1118 combine_successes = 0;
1120 rtl_hooks = combine_rtl_hooks;
1122 reg_stat.safe_grow_cleared (nregs);
1124 init_recog_no_volatile ();
1126 /* Allocate array for insn info. */
1127 max_uid_known = get_max_uid ();
1128 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1129 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1130 gcc_obstack_init (&insn_link_obstack);
1132 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1134 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1135 problems when, for example, we have j <<= 1 in a loop. */
1137 nonzero_sign_valid = 0;
1138 label_tick = label_tick_ebb_start = 1;
1140 /* Scan all SETs and see if we can deduce anything about what
1141 bits are known to be zero for some registers and how many copies
1142 of the sign bit are known to exist for those registers.
1144 Also set any known values so that we can use it while searching
1145 for what bits are known to be set. */
1147 setup_incoming_promotions (first);
1148 /* Allow the entry block and the first block to fall into the same EBB.
1149 Conceptually the incoming promotions are assigned to the entry block. */
1150 last_bb = ENTRY_BLOCK_PTR;
1152 create_log_links ();
1153 FOR_EACH_BB (this_basic_block)
1155 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1156 last_call_luid = 0;
1157 mem_last_set = -1;
1159 label_tick++;
1160 if (!single_pred_p (this_basic_block)
1161 || single_pred (this_basic_block) != last_bb)
1162 label_tick_ebb_start = label_tick;
1163 last_bb = this_basic_block;
1165 FOR_BB_INSNS (this_basic_block, insn)
1166 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1168 #ifdef AUTO_INC_DEC
1169 rtx links;
1170 #endif
1172 subst_low_luid = DF_INSN_LUID (insn);
1173 subst_insn = insn;
1175 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1176 insn);
1177 record_dead_and_set_regs (insn);
1179 #ifdef AUTO_INC_DEC
1180 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1181 if (REG_NOTE_KIND (links) == REG_INC)
1182 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1183 insn);
1184 #endif
1186 /* Record the current insn_rtx_cost of this instruction. */
1187 if (NONJUMP_INSN_P (insn))
1188 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1189 optimize_this_for_speed_p);
1190 if (dump_file)
1191 fprintf(dump_file, "insn_cost %d: %d\n",
1192 INSN_UID (insn), INSN_COST (insn));
1196 nonzero_sign_valid = 1;
1198 /* Now scan all the insns in forward order. */
1199 label_tick = label_tick_ebb_start = 1;
1200 init_reg_last ();
1201 setup_incoming_promotions (first);
1202 last_bb = ENTRY_BLOCK_PTR;
1204 FOR_EACH_BB (this_basic_block)
1206 rtx last_combined_insn = NULL_RTX;
1207 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1208 last_call_luid = 0;
1209 mem_last_set = -1;
1211 label_tick++;
1212 if (!single_pred_p (this_basic_block)
1213 || single_pred (this_basic_block) != last_bb)
1214 label_tick_ebb_start = label_tick;
1215 last_bb = this_basic_block;
1217 rtl_profile_for_bb (this_basic_block);
1218 for (insn = BB_HEAD (this_basic_block);
1219 insn != NEXT_INSN (BB_END (this_basic_block));
1220 insn = next ? next : NEXT_INSN (insn))
1222 next = 0;
1223 if (NONDEBUG_INSN_P (insn))
1225 while (last_combined_insn
1226 && INSN_DELETED_P (last_combined_insn))
1227 last_combined_insn = PREV_INSN (last_combined_insn);
1228 if (last_combined_insn == NULL_RTX
1229 || BARRIER_P (last_combined_insn)
1230 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1231 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1232 last_combined_insn = insn;
1234 /* See if we know about function return values before this
1235 insn based upon SUBREG flags. */
1236 check_promoted_subreg (insn, PATTERN (insn));
1238 /* See if we can find hardregs and subreg of pseudos in
1239 narrower modes. This could help turning TRUNCATEs
1240 into SUBREGs. */
1241 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1243 /* Try this insn with each insn it links back to. */
1245 FOR_EACH_LOG_LINK (links, insn)
1246 if ((next = try_combine (insn, links->insn, NULL_RTX,
1247 NULL_RTX, &new_direct_jump_p,
1248 last_combined_insn)) != 0)
1249 goto retry;
1251 /* Try each sequence of three linked insns ending with this one. */
1253 FOR_EACH_LOG_LINK (links, insn)
1255 rtx link = links->insn;
1257 /* If the linked insn has been replaced by a note, then there
1258 is no point in pursuing this chain any further. */
1259 if (NOTE_P (link))
1260 continue;
1262 FOR_EACH_LOG_LINK (nextlinks, link)
1263 if ((next = try_combine (insn, link, nextlinks->insn,
1264 NULL_RTX, &new_direct_jump_p,
1265 last_combined_insn)) != 0)
1266 goto retry;
1269 #ifdef HAVE_cc0
1270 /* Try to combine a jump insn that uses CC0
1271 with a preceding insn that sets CC0, and maybe with its
1272 logical predecessor as well.
1273 This is how we make decrement-and-branch insns.
1274 We need this special code because data flow connections
1275 via CC0 do not get entered in LOG_LINKS. */
1277 if (JUMP_P (insn)
1278 && (prev = prev_nonnote_insn (insn)) != 0
1279 && NONJUMP_INSN_P (prev)
1280 && sets_cc0_p (PATTERN (prev)))
1282 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1283 &new_direct_jump_p,
1284 last_combined_insn)) != 0)
1285 goto retry;
1287 FOR_EACH_LOG_LINK (nextlinks, prev)
1288 if ((next = try_combine (insn, prev, nextlinks->insn,
1289 NULL_RTX, &new_direct_jump_p,
1290 last_combined_insn)) != 0)
1291 goto retry;
1294 /* Do the same for an insn that explicitly references CC0. */
1295 if (NONJUMP_INSN_P (insn)
1296 && (prev = prev_nonnote_insn (insn)) != 0
1297 && NONJUMP_INSN_P (prev)
1298 && sets_cc0_p (PATTERN (prev))
1299 && GET_CODE (PATTERN (insn)) == SET
1300 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1302 if ((next = try_combine (insn, prev, NULL_RTX, NULL_RTX,
1303 &new_direct_jump_p,
1304 last_combined_insn)) != 0)
1305 goto retry;
1307 FOR_EACH_LOG_LINK (nextlinks, prev)
1308 if ((next = try_combine (insn, prev, nextlinks->insn,
1309 NULL_RTX, &new_direct_jump_p,
1310 last_combined_insn)) != 0)
1311 goto retry;
1314 /* Finally, see if any of the insns that this insn links to
1315 explicitly references CC0. If so, try this insn, that insn,
1316 and its predecessor if it sets CC0. */
1317 FOR_EACH_LOG_LINK (links, insn)
1318 if (NONJUMP_INSN_P (links->insn)
1319 && GET_CODE (PATTERN (links->insn)) == SET
1320 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1321 && (prev = prev_nonnote_insn (links->insn)) != 0
1322 && NONJUMP_INSN_P (prev)
1323 && sets_cc0_p (PATTERN (prev))
1324 && (next = try_combine (insn, links->insn,
1325 prev, NULL_RTX, &new_direct_jump_p,
1326 last_combined_insn)) != 0)
1327 goto retry;
1328 #endif
1330 /* Try combining an insn with two different insns whose results it
1331 uses. */
1332 FOR_EACH_LOG_LINK (links, insn)
1333 for (nextlinks = links->next; nextlinks;
1334 nextlinks = nextlinks->next)
1335 if ((next = try_combine (insn, links->insn,
1336 nextlinks->insn, NULL_RTX,
1337 &new_direct_jump_p,
1338 last_combined_insn)) != 0)
1339 goto retry;
1341 /* Try four-instruction combinations. */
1342 FOR_EACH_LOG_LINK (links, insn)
1344 struct insn_link *next1;
1345 rtx link = links->insn;
1347 /* If the linked insn has been replaced by a note, then there
1348 is no point in pursuing this chain any further. */
1349 if (NOTE_P (link))
1350 continue;
1352 FOR_EACH_LOG_LINK (next1, link)
1354 rtx link1 = next1->insn;
1355 if (NOTE_P (link1))
1356 continue;
1357 /* I0 -> I1 -> I2 -> I3. */
1358 FOR_EACH_LOG_LINK (nextlinks, link1)
1359 if ((next = try_combine (insn, link, link1,
1360 nextlinks->insn,
1361 &new_direct_jump_p,
1362 last_combined_insn)) != 0)
1363 goto retry;
1364 /* I0, I1 -> I2, I2 -> I3. */
1365 for (nextlinks = next1->next; nextlinks;
1366 nextlinks = nextlinks->next)
1367 if ((next = try_combine (insn, link, link1,
1368 nextlinks->insn,
1369 &new_direct_jump_p,
1370 last_combined_insn)) != 0)
1371 goto retry;
1374 for (next1 = links->next; next1; next1 = next1->next)
1376 rtx link1 = next1->insn;
1377 if (NOTE_P (link1))
1378 continue;
1379 /* I0 -> I2; I1, I2 -> I3. */
1380 FOR_EACH_LOG_LINK (nextlinks, link)
1381 if ((next = try_combine (insn, link, link1,
1382 nextlinks->insn,
1383 &new_direct_jump_p,
1384 last_combined_insn)) != 0)
1385 goto retry;
1386 /* I0 -> I1; I1, I2 -> I3. */
1387 FOR_EACH_LOG_LINK (nextlinks, link1)
1388 if ((next = try_combine (insn, link, link1,
1389 nextlinks->insn,
1390 &new_direct_jump_p,
1391 last_combined_insn)) != 0)
1392 goto retry;
1396 /* Try this insn with each REG_EQUAL note it links back to. */
1397 FOR_EACH_LOG_LINK (links, insn)
1399 rtx set, note;
1400 rtx temp = links->insn;
1401 if ((set = single_set (temp)) != 0
1402 && (note = find_reg_equal_equiv_note (temp)) != 0
1403 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1404 /* Avoid using a register that may already been marked
1405 dead by an earlier instruction. */
1406 && ! unmentioned_reg_p (note, SET_SRC (set))
1407 && (GET_MODE (note) == VOIDmode
1408 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1409 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1411 /* Temporarily replace the set's source with the
1412 contents of the REG_EQUAL note. The insn will
1413 be deleted or recognized by try_combine. */
1414 rtx orig = SET_SRC (set);
1415 SET_SRC (set) = note;
1416 i2mod = temp;
1417 i2mod_old_rhs = copy_rtx (orig);
1418 i2mod_new_rhs = copy_rtx (note);
1419 next = try_combine (insn, i2mod, NULL_RTX, NULL_RTX,
1420 &new_direct_jump_p,
1421 last_combined_insn);
1422 i2mod = NULL_RTX;
1423 if (next)
1424 goto retry;
1425 SET_SRC (set) = orig;
1429 if (!NOTE_P (insn))
1430 record_dead_and_set_regs (insn);
1432 retry:
1438 default_rtl_profile ();
1439 clear_bb_flags ();
1440 new_direct_jump_p |= purge_all_dead_edges ();
1441 delete_noop_moves ();
1443 /* Clean up. */
1444 obstack_free (&insn_link_obstack, NULL);
1445 free (uid_log_links);
1446 free (uid_insn_cost);
1447 reg_stat.release ();
1450 struct undo *undo, *next;
1451 for (undo = undobuf.frees; undo; undo = next)
1453 next = undo->next;
1454 free (undo);
1456 undobuf.frees = 0;
1459 total_attempts += combine_attempts;
1460 total_merges += combine_merges;
1461 total_extras += combine_extras;
1462 total_successes += combine_successes;
1464 nonzero_sign_valid = 0;
1465 rtl_hooks = general_rtl_hooks;
1467 /* Make recognizer allow volatile MEMs again. */
1468 init_recog ();
1470 return new_direct_jump_p;
1473 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1475 static void
1476 init_reg_last (void)
1478 unsigned int i;
1479 reg_stat_type *p;
1481 FOR_EACH_VEC_ELT (reg_stat, i, p)
1482 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1485 /* Set up any promoted values for incoming argument registers. */
1487 static void
1488 setup_incoming_promotions (rtx first)
1490 tree arg;
1491 bool strictly_local = false;
1493 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1494 arg = DECL_CHAIN (arg))
1496 rtx x, reg = DECL_INCOMING_RTL (arg);
1497 int uns1, uns3;
1498 enum machine_mode mode1, mode2, mode3, mode4;
1500 /* Only continue if the incoming argument is in a register. */
1501 if (!REG_P (reg))
1502 continue;
1504 /* Determine, if possible, whether all call sites of the current
1505 function lie within the current compilation unit. (This does
1506 take into account the exporting of a function via taking its
1507 address, and so forth.) */
1508 strictly_local = cgraph_local_info (current_function_decl)->local;
1510 /* The mode and signedness of the argument before any promotions happen
1511 (equal to the mode of the pseudo holding it at that stage). */
1512 mode1 = TYPE_MODE (TREE_TYPE (arg));
1513 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1515 /* The mode and signedness of the argument after any source language and
1516 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1517 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1518 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1520 /* The mode and signedness of the argument as it is actually passed,
1521 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1522 mode3 = promote_function_mode (DECL_ARG_TYPE (arg), mode2, &uns3,
1523 TREE_TYPE (cfun->decl), 0);
1525 /* The mode of the register in which the argument is being passed. */
1526 mode4 = GET_MODE (reg);
1528 /* Eliminate sign extensions in the callee when:
1529 (a) A mode promotion has occurred; */
1530 if (mode1 == mode3)
1531 continue;
1532 /* (b) The mode of the register is the same as the mode of
1533 the argument as it is passed; */
1534 if (mode3 != mode4)
1535 continue;
1536 /* (c) There's no language level extension; */
1537 if (mode1 == mode2)
1539 /* (c.1) All callers are from the current compilation unit. If that's
1540 the case we don't have to rely on an ABI, we only have to know
1541 what we're generating right now, and we know that we will do the
1542 mode1 to mode2 promotion with the given sign. */
1543 else if (!strictly_local)
1544 continue;
1545 /* (c.2) The combination of the two promotions is useful. This is
1546 true when the signs match, or if the first promotion is unsigned.
1547 In the later case, (sign_extend (zero_extend x)) is the same as
1548 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1549 else if (uns1)
1550 uns3 = true;
1551 else if (uns3)
1552 continue;
1554 /* Record that the value was promoted from mode1 to mode3,
1555 so that any sign extension at the head of the current
1556 function may be eliminated. */
1557 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1558 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1559 record_value_for_reg (reg, first, x);
1563 /* Called via note_stores. If X is a pseudo that is narrower than
1564 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1566 If we are setting only a portion of X and we can't figure out what
1567 portion, assume all bits will be used since we don't know what will
1568 be happening.
1570 Similarly, set how many bits of X are known to be copies of the sign bit
1571 at all locations in the function. This is the smallest number implied
1572 by any set of X. */
1574 static void
1575 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1577 rtx insn = (rtx) data;
1578 unsigned int num;
1580 if (REG_P (x)
1581 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1582 /* If this register is undefined at the start of the file, we can't
1583 say what its contents were. */
1584 && ! REGNO_REG_SET_P
1585 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1586 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1588 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1590 if (set == 0 || GET_CODE (set) == CLOBBER)
1592 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1593 rsp->sign_bit_copies = 1;
1594 return;
1597 /* If this register is being initialized using itself, and the
1598 register is uninitialized in this basic block, and there are
1599 no LOG_LINKS which set the register, then part of the
1600 register is uninitialized. In that case we can't assume
1601 anything about the number of nonzero bits.
1603 ??? We could do better if we checked this in
1604 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1605 could avoid making assumptions about the insn which initially
1606 sets the register, while still using the information in other
1607 insns. We would have to be careful to check every insn
1608 involved in the combination. */
1610 if (insn
1611 && reg_referenced_p (x, PATTERN (insn))
1612 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1613 REGNO (x)))
1615 struct insn_link *link;
1617 FOR_EACH_LOG_LINK (link, insn)
1618 if (dead_or_set_p (link->insn, x))
1619 break;
1620 if (!link)
1622 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1623 rsp->sign_bit_copies = 1;
1624 return;
1628 /* If this is a complex assignment, see if we can convert it into a
1629 simple assignment. */
1630 set = expand_field_assignment (set);
1632 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1633 set what we know about X. */
1635 if (SET_DEST (set) == x
1636 || (paradoxical_subreg_p (SET_DEST (set))
1637 && SUBREG_REG (SET_DEST (set)) == x))
1639 rtx src = SET_SRC (set);
1641 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1642 /* If X is narrower than a word and SRC is a non-negative
1643 constant that would appear negative in the mode of X,
1644 sign-extend it for use in reg_stat[].nonzero_bits because some
1645 machines (maybe most) will actually do the sign-extension
1646 and this is the conservative approach.
1648 ??? For 2.5, try to tighten up the MD files in this regard
1649 instead of this kludge. */
1651 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
1652 && CONST_INT_P (src)
1653 && INTVAL (src) > 0
1654 && val_signbit_known_set_p (GET_MODE (x), INTVAL (src)))
1655 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (GET_MODE (x)));
1656 #endif
1658 /* Don't call nonzero_bits if it cannot change anything. */
1659 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1660 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1661 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1662 if (rsp->sign_bit_copies == 0
1663 || rsp->sign_bit_copies > num)
1664 rsp->sign_bit_copies = num;
1666 else
1668 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1669 rsp->sign_bit_copies = 1;
1674 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1675 optionally insns that were previously combined into I3 or that will be
1676 combined into the merger of INSN and I3. The order is PRED, PRED2,
1677 INSN, SUCC, SUCC2, I3.
1679 Return 0 if the combination is not allowed for any reason.
1681 If the combination is allowed, *PDEST will be set to the single
1682 destination of INSN and *PSRC to the single source, and this function
1683 will return 1. */
1685 static int
1686 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED,
1687 rtx pred2 ATTRIBUTE_UNUSED, rtx succ, rtx succ2,
1688 rtx *pdest, rtx *psrc)
1690 int i;
1691 const_rtx set = 0;
1692 rtx src, dest;
1693 rtx p;
1694 #ifdef AUTO_INC_DEC
1695 rtx link;
1696 #endif
1697 bool all_adjacent = true;
1698 int (*is_volatile_p) (const_rtx);
1700 if (succ)
1702 if (succ2)
1704 if (next_active_insn (succ2) != i3)
1705 all_adjacent = false;
1706 if (next_active_insn (succ) != succ2)
1707 all_adjacent = false;
1709 else if (next_active_insn (succ) != i3)
1710 all_adjacent = false;
1711 if (next_active_insn (insn) != succ)
1712 all_adjacent = false;
1714 else if (next_active_insn (insn) != i3)
1715 all_adjacent = false;
1717 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1718 or a PARALLEL consisting of such a SET and CLOBBERs.
1720 If INSN has CLOBBER parallel parts, ignore them for our processing.
1721 By definition, these happen during the execution of the insn. When it
1722 is merged with another insn, all bets are off. If they are, in fact,
1723 needed and aren't also supplied in I3, they may be added by
1724 recog_for_combine. Otherwise, it won't match.
1726 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1727 note.
1729 Get the source and destination of INSN. If more than one, can't
1730 combine. */
1732 if (GET_CODE (PATTERN (insn)) == SET)
1733 set = PATTERN (insn);
1734 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1735 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1737 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1739 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1741 switch (GET_CODE (elt))
1743 /* This is important to combine floating point insns
1744 for the SH4 port. */
1745 case USE:
1746 /* Combining an isolated USE doesn't make sense.
1747 We depend here on combinable_i3pat to reject them. */
1748 /* The code below this loop only verifies that the inputs of
1749 the SET in INSN do not change. We call reg_set_between_p
1750 to verify that the REG in the USE does not change between
1751 I3 and INSN.
1752 If the USE in INSN was for a pseudo register, the matching
1753 insn pattern will likely match any register; combining this
1754 with any other USE would only be safe if we knew that the
1755 used registers have identical values, or if there was
1756 something to tell them apart, e.g. different modes. For
1757 now, we forgo such complicated tests and simply disallow
1758 combining of USES of pseudo registers with any other USE. */
1759 if (REG_P (XEXP (elt, 0))
1760 && GET_CODE (PATTERN (i3)) == PARALLEL)
1762 rtx i3pat = PATTERN (i3);
1763 int i = XVECLEN (i3pat, 0) - 1;
1764 unsigned int regno = REGNO (XEXP (elt, 0));
1768 rtx i3elt = XVECEXP (i3pat, 0, i);
1770 if (GET_CODE (i3elt) == USE
1771 && REG_P (XEXP (i3elt, 0))
1772 && (REGNO (XEXP (i3elt, 0)) == regno
1773 ? reg_set_between_p (XEXP (elt, 0),
1774 PREV_INSN (insn), i3)
1775 : regno >= FIRST_PSEUDO_REGISTER))
1776 return 0;
1778 while (--i >= 0);
1780 break;
1782 /* We can ignore CLOBBERs. */
1783 case CLOBBER:
1784 break;
1786 case SET:
1787 /* Ignore SETs whose result isn't used but not those that
1788 have side-effects. */
1789 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1790 && insn_nothrow_p (insn)
1791 && !side_effects_p (elt))
1792 break;
1794 /* If we have already found a SET, this is a second one and
1795 so we cannot combine with this insn. */
1796 if (set)
1797 return 0;
1799 set = elt;
1800 break;
1802 default:
1803 /* Anything else means we can't combine. */
1804 return 0;
1808 if (set == 0
1809 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1810 so don't do anything with it. */
1811 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1812 return 0;
1814 else
1815 return 0;
1817 if (set == 0)
1818 return 0;
1820 /* The simplification in expand_field_assignment may call back to
1821 get_last_value, so set safe guard here. */
1822 subst_low_luid = DF_INSN_LUID (insn);
1824 set = expand_field_assignment (set);
1825 src = SET_SRC (set), dest = SET_DEST (set);
1827 /* Don't eliminate a store in the stack pointer. */
1828 if (dest == stack_pointer_rtx
1829 /* Don't combine with an insn that sets a register to itself if it has
1830 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1831 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1832 /* Can't merge an ASM_OPERANDS. */
1833 || GET_CODE (src) == ASM_OPERANDS
1834 /* Can't merge a function call. */
1835 || GET_CODE (src) == CALL
1836 /* Don't eliminate a function call argument. */
1837 || (CALL_P (i3)
1838 && (find_reg_fusage (i3, USE, dest)
1839 || (REG_P (dest)
1840 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1841 && global_regs[REGNO (dest)])))
1842 /* Don't substitute into an incremented register. */
1843 || FIND_REG_INC_NOTE (i3, dest)
1844 || (succ && FIND_REG_INC_NOTE (succ, dest))
1845 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1846 /* Don't substitute into a non-local goto, this confuses CFG. */
1847 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1848 /* Make sure that DEST is not used after SUCC but before I3. */
1849 || (!all_adjacent
1850 && ((succ2
1851 && (reg_used_between_p (dest, succ2, i3)
1852 || reg_used_between_p (dest, succ, succ2)))
1853 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1854 /* Make sure that the value that is to be substituted for the register
1855 does not use any registers whose values alter in between. However,
1856 If the insns are adjacent, a use can't cross a set even though we
1857 think it might (this can happen for a sequence of insns each setting
1858 the same destination; last_set of that register might point to
1859 a NOTE). If INSN has a REG_EQUIV note, the register is always
1860 equivalent to the memory so the substitution is valid even if there
1861 are intervening stores. Also, don't move a volatile asm or
1862 UNSPEC_VOLATILE across any other insns. */
1863 || (! all_adjacent
1864 && (((!MEM_P (src)
1865 || ! find_reg_note (insn, REG_EQUIV, src))
1866 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1867 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1868 || GET_CODE (src) == UNSPEC_VOLATILE))
1869 /* Don't combine across a CALL_INSN, because that would possibly
1870 change whether the life span of some REGs crosses calls or not,
1871 and it is a pain to update that information.
1872 Exception: if source is a constant, moving it later can't hurt.
1873 Accept that as a special case. */
1874 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1875 return 0;
1877 /* DEST must either be a REG or CC0. */
1878 if (REG_P (dest))
1880 /* If register alignment is being enforced for multi-word items in all
1881 cases except for parameters, it is possible to have a register copy
1882 insn referencing a hard register that is not allowed to contain the
1883 mode being copied and which would not be valid as an operand of most
1884 insns. Eliminate this problem by not combining with such an insn.
1886 Also, on some machines we don't want to extend the life of a hard
1887 register. */
1889 if (REG_P (src)
1890 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1891 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1892 /* Don't extend the life of a hard register unless it is
1893 user variable (if we have few registers) or it can't
1894 fit into the desired register (meaning something special
1895 is going on).
1896 Also avoid substituting a return register into I3, because
1897 reload can't handle a conflict with constraints of other
1898 inputs. */
1899 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1900 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1901 return 0;
1903 else if (GET_CODE (dest) != CC0)
1904 return 0;
1907 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1908 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1909 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1911 /* Don't substitute for a register intended as a clobberable
1912 operand. */
1913 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1914 if (rtx_equal_p (reg, dest))
1915 return 0;
1917 /* If the clobber represents an earlyclobber operand, we must not
1918 substitute an expression containing the clobbered register.
1919 As we do not analyze the constraint strings here, we have to
1920 make the conservative assumption. However, if the register is
1921 a fixed hard reg, the clobber cannot represent any operand;
1922 we leave it up to the machine description to either accept or
1923 reject use-and-clobber patterns. */
1924 if (!REG_P (reg)
1925 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1926 || !fixed_regs[REGNO (reg)])
1927 if (reg_overlap_mentioned_p (reg, src))
1928 return 0;
1931 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1932 or not), reject, unless nothing volatile comes between it and I3 */
1934 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1936 /* Make sure neither succ nor succ2 contains a volatile reference. */
1937 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
1938 return 0;
1939 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1940 return 0;
1941 /* We'll check insns between INSN and I3 below. */
1944 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1945 to be an explicit register variable, and was chosen for a reason. */
1947 if (GET_CODE (src) == ASM_OPERANDS
1948 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1949 return 0;
1951 /* If INSN contains volatile references (specifically volatile MEMs),
1952 we cannot combine across any other volatile references.
1953 Even if INSN doesn't contain volatile references, any intervening
1954 volatile insn might affect machine state. */
1956 is_volatile_p = volatile_refs_p (PATTERN (insn))
1957 ? volatile_refs_p
1958 : volatile_insn_p;
1960 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1961 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
1962 return 0;
1964 /* If INSN contains an autoincrement or autodecrement, make sure that
1965 register is not used between there and I3, and not already used in
1966 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1967 Also insist that I3 not be a jump; if it were one
1968 and the incremented register were spilled, we would lose. */
1970 #ifdef AUTO_INC_DEC
1971 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1972 if (REG_NOTE_KIND (link) == REG_INC
1973 && (JUMP_P (i3)
1974 || reg_used_between_p (XEXP (link, 0), insn, i3)
1975 || (pred != NULL_RTX
1976 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1977 || (pred2 != NULL_RTX
1978 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
1979 || (succ != NULL_RTX
1980 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1981 || (succ2 != NULL_RTX
1982 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
1983 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1984 return 0;
1985 #endif
1987 #ifdef HAVE_cc0
1988 /* Don't combine an insn that follows a CC0-setting insn.
1989 An insn that uses CC0 must not be separated from the one that sets it.
1990 We do, however, allow I2 to follow a CC0-setting insn if that insn
1991 is passed as I1; in that case it will be deleted also.
1992 We also allow combining in this case if all the insns are adjacent
1993 because that would leave the two CC0 insns adjacent as well.
1994 It would be more logical to test whether CC0 occurs inside I1 or I2,
1995 but that would be much slower, and this ought to be equivalent. */
1997 p = prev_nonnote_insn (insn);
1998 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1999 && ! all_adjacent)
2000 return 0;
2001 #endif
2003 /* If we get here, we have passed all the tests and the combination is
2004 to be allowed. */
2006 *pdest = dest;
2007 *psrc = src;
2009 return 1;
2012 /* LOC is the location within I3 that contains its pattern or the component
2013 of a PARALLEL of the pattern. We validate that it is valid for combining.
2015 One problem is if I3 modifies its output, as opposed to replacing it
2016 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2017 doing so would produce an insn that is not equivalent to the original insns.
2019 Consider:
2021 (set (reg:DI 101) (reg:DI 100))
2022 (set (subreg:SI (reg:DI 101) 0) <foo>)
2024 This is NOT equivalent to:
2026 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2027 (set (reg:DI 101) (reg:DI 100))])
2029 Not only does this modify 100 (in which case it might still be valid
2030 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2032 We can also run into a problem if I2 sets a register that I1
2033 uses and I1 gets directly substituted into I3 (not via I2). In that
2034 case, we would be getting the wrong value of I2DEST into I3, so we
2035 must reject the combination. This case occurs when I2 and I1 both
2036 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2037 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2038 of a SET must prevent combination from occurring. The same situation
2039 can occur for I0, in which case I0_NOT_IN_SRC is set.
2041 Before doing the above check, we first try to expand a field assignment
2042 into a set of logical operations.
2044 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2045 we place a register that is both set and used within I3. If more than one
2046 such register is detected, we fail.
2048 Return 1 if the combination is valid, zero otherwise. */
2050 static int
2051 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2052 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2054 rtx x = *loc;
2056 if (GET_CODE (x) == SET)
2058 rtx set = x ;
2059 rtx dest = SET_DEST (set);
2060 rtx src = SET_SRC (set);
2061 rtx inner_dest = dest;
2062 rtx subdest;
2064 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2065 || GET_CODE (inner_dest) == SUBREG
2066 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2067 inner_dest = XEXP (inner_dest, 0);
2069 /* Check for the case where I3 modifies its output, as discussed
2070 above. We don't want to prevent pseudos from being combined
2071 into the address of a MEM, so only prevent the combination if
2072 i1 or i2 set the same MEM. */
2073 if ((inner_dest != dest &&
2074 (!MEM_P (inner_dest)
2075 || rtx_equal_p (i2dest, inner_dest)
2076 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2077 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2078 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2079 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2080 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2082 /* This is the same test done in can_combine_p except we can't test
2083 all_adjacent; we don't have to, since this instruction will stay
2084 in place, thus we are not considering increasing the lifetime of
2085 INNER_DEST.
2087 Also, if this insn sets a function argument, combining it with
2088 something that might need a spill could clobber a previous
2089 function argument; the all_adjacent test in can_combine_p also
2090 checks this; here, we do a more specific test for this case. */
2092 || (REG_P (inner_dest)
2093 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2094 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2095 GET_MODE (inner_dest))))
2096 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2097 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2098 return 0;
2100 /* If DEST is used in I3, it is being killed in this insn, so
2101 record that for later. We have to consider paradoxical
2102 subregs here, since they kill the whole register, but we
2103 ignore partial subregs, STRICT_LOW_PART, etc.
2104 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2105 STACK_POINTER_REGNUM, since these are always considered to be
2106 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2107 subdest = dest;
2108 if (GET_CODE (subdest) == SUBREG
2109 && (GET_MODE_SIZE (GET_MODE (subdest))
2110 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2111 subdest = SUBREG_REG (subdest);
2112 if (pi3dest_killed
2113 && REG_P (subdest)
2114 && reg_referenced_p (subdest, PATTERN (i3))
2115 && REGNO (subdest) != FRAME_POINTER_REGNUM
2116 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2117 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2118 #endif
2119 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2120 && (REGNO (subdest) != ARG_POINTER_REGNUM
2121 || ! fixed_regs [REGNO (subdest)])
2122 #endif
2123 && REGNO (subdest) != STACK_POINTER_REGNUM)
2125 if (*pi3dest_killed)
2126 return 0;
2128 *pi3dest_killed = subdest;
2132 else if (GET_CODE (x) == PARALLEL)
2134 int i;
2136 for (i = 0; i < XVECLEN (x, 0); i++)
2137 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2138 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2139 return 0;
2142 return 1;
2145 /* Return 1 if X is an arithmetic expression that contains a multiplication
2146 and division. We don't count multiplications by powers of two here. */
2148 static int
2149 contains_muldiv (rtx x)
2151 switch (GET_CODE (x))
2153 case MOD: case DIV: case UMOD: case UDIV:
2154 return 1;
2156 case MULT:
2157 return ! (CONST_INT_P (XEXP (x, 1))
2158 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2159 default:
2160 if (BINARY_P (x))
2161 return contains_muldiv (XEXP (x, 0))
2162 || contains_muldiv (XEXP (x, 1));
2164 if (UNARY_P (x))
2165 return contains_muldiv (XEXP (x, 0));
2167 return 0;
2171 /* Determine whether INSN can be used in a combination. Return nonzero if
2172 not. This is used in try_combine to detect early some cases where we
2173 can't perform combinations. */
2175 static int
2176 cant_combine_insn_p (rtx insn)
2178 rtx set;
2179 rtx src, dest;
2181 /* If this isn't really an insn, we can't do anything.
2182 This can occur when flow deletes an insn that it has merged into an
2183 auto-increment address. */
2184 if (! INSN_P (insn))
2185 return 1;
2187 /* Never combine loads and stores involving hard regs that are likely
2188 to be spilled. The register allocator can usually handle such
2189 reg-reg moves by tying. If we allow the combiner to make
2190 substitutions of likely-spilled regs, reload might die.
2191 As an exception, we allow combinations involving fixed regs; these are
2192 not available to the register allocator so there's no risk involved. */
2194 set = single_set (insn);
2195 if (! set)
2196 return 0;
2197 src = SET_SRC (set);
2198 dest = SET_DEST (set);
2199 if (GET_CODE (src) == SUBREG)
2200 src = SUBREG_REG (src);
2201 if (GET_CODE (dest) == SUBREG)
2202 dest = SUBREG_REG (dest);
2203 if (REG_P (src) && REG_P (dest)
2204 && ((HARD_REGISTER_P (src)
2205 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2206 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2207 || (HARD_REGISTER_P (dest)
2208 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2209 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2210 return 1;
2212 return 0;
2215 struct likely_spilled_retval_info
2217 unsigned regno, nregs;
2218 unsigned mask;
2221 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2222 hard registers that are known to be written to / clobbered in full. */
2223 static void
2224 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2226 struct likely_spilled_retval_info *const info =
2227 (struct likely_spilled_retval_info *) data;
2228 unsigned regno, nregs;
2229 unsigned new_mask;
2231 if (!REG_P (XEXP (set, 0)))
2232 return;
2233 regno = REGNO (x);
2234 if (regno >= info->regno + info->nregs)
2235 return;
2236 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2237 if (regno + nregs <= info->regno)
2238 return;
2239 new_mask = (2U << (nregs - 1)) - 1;
2240 if (regno < info->regno)
2241 new_mask >>= info->regno - regno;
2242 else
2243 new_mask <<= regno - info->regno;
2244 info->mask &= ~new_mask;
2247 /* Return nonzero iff part of the return value is live during INSN, and
2248 it is likely spilled. This can happen when more than one insn is needed
2249 to copy the return value, e.g. when we consider to combine into the
2250 second copy insn for a complex value. */
2252 static int
2253 likely_spilled_retval_p (rtx insn)
2255 rtx use = BB_END (this_basic_block);
2256 rtx reg, p;
2257 unsigned regno, nregs;
2258 /* We assume here that no machine mode needs more than
2259 32 hard registers when the value overlaps with a register
2260 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2261 unsigned mask;
2262 struct likely_spilled_retval_info info;
2264 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2265 return 0;
2266 reg = XEXP (PATTERN (use), 0);
2267 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2268 return 0;
2269 regno = REGNO (reg);
2270 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2271 if (nregs == 1)
2272 return 0;
2273 mask = (2U << (nregs - 1)) - 1;
2275 /* Disregard parts of the return value that are set later. */
2276 info.regno = regno;
2277 info.nregs = nregs;
2278 info.mask = mask;
2279 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2280 if (INSN_P (p))
2281 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2282 mask = info.mask;
2284 /* Check if any of the (probably) live return value registers is
2285 likely spilled. */
2286 nregs --;
2289 if ((mask & 1 << nregs)
2290 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2291 return 1;
2292 } while (nregs--);
2293 return 0;
2296 /* Adjust INSN after we made a change to its destination.
2298 Changing the destination can invalidate notes that say something about
2299 the results of the insn and a LOG_LINK pointing to the insn. */
2301 static void
2302 adjust_for_new_dest (rtx insn)
2304 /* For notes, be conservative and simply remove them. */
2305 remove_reg_equal_equiv_notes (insn);
2307 /* The new insn will have a destination that was previously the destination
2308 of an insn just above it. Call distribute_links to make a LOG_LINK from
2309 the next use of that destination. */
2310 distribute_links (alloc_insn_link (insn, NULL));
2312 df_insn_rescan (insn);
2315 /* Return TRUE if combine can reuse reg X in mode MODE.
2316 ADDED_SETS is nonzero if the original set is still required. */
2317 static bool
2318 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2320 unsigned int regno;
2322 if (!REG_P(x))
2323 return false;
2325 regno = REGNO (x);
2326 /* Allow hard registers if the new mode is legal, and occupies no more
2327 registers than the old mode. */
2328 if (regno < FIRST_PSEUDO_REGISTER)
2329 return (HARD_REGNO_MODE_OK (regno, mode)
2330 && (hard_regno_nregs[regno][GET_MODE (x)]
2331 >= hard_regno_nregs[regno][mode]));
2333 /* Or a pseudo that is only used once. */
2334 return (REG_N_SETS (regno) == 1 && !added_sets
2335 && !REG_USERVAR_P (x));
2339 /* Check whether X, the destination of a set, refers to part of
2340 the register specified by REG. */
2342 static bool
2343 reg_subword_p (rtx x, rtx reg)
2345 /* Check that reg is an integer mode register. */
2346 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2347 return false;
2349 if (GET_CODE (x) == STRICT_LOW_PART
2350 || GET_CODE (x) == ZERO_EXTRACT)
2351 x = XEXP (x, 0);
2353 return GET_CODE (x) == SUBREG
2354 && SUBREG_REG (x) == reg
2355 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2358 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2359 Note that the INSN should be deleted *after* removing dead edges, so
2360 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2361 but not for a (set (pc) (label_ref FOO)). */
2363 static void
2364 update_cfg_for_uncondjump (rtx insn)
2366 basic_block bb = BLOCK_FOR_INSN (insn);
2367 gcc_assert (BB_END (bb) == insn);
2369 purge_dead_edges (bb);
2371 delete_insn (insn);
2372 if (EDGE_COUNT (bb->succs) == 1)
2374 rtx insn;
2376 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2378 /* Remove barriers from the footer if there are any. */
2379 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2380 if (BARRIER_P (insn))
2382 if (PREV_INSN (insn))
2383 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2384 else
2385 BB_FOOTER (bb) = NEXT_INSN (insn);
2386 if (NEXT_INSN (insn))
2387 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2389 else if (LABEL_P (insn))
2390 break;
2394 /* Try to combine the insns I0, I1 and I2 into I3.
2395 Here I0, I1 and I2 appear earlier than I3.
2396 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2399 If we are combining more than two insns and the resulting insn is not
2400 recognized, try splitting it into two insns. If that happens, I2 and I3
2401 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2402 Otherwise, I0, I1 and I2 are pseudo-deleted.
2404 Return 0 if the combination does not work. Then nothing is changed.
2405 If we did the combination, return the insn at which combine should
2406 resume scanning.
2408 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2409 new direct jump instruction.
2411 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2412 been I3 passed to an earlier try_combine within the same basic
2413 block. */
2415 static rtx
2416 try_combine (rtx i3, rtx i2, rtx i1, rtx i0, int *new_direct_jump_p,
2417 rtx last_combined_insn)
2419 /* New patterns for I3 and I2, respectively. */
2420 rtx newpat, newi2pat = 0;
2421 rtvec newpat_vec_with_clobbers = 0;
2422 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2423 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2424 dead. */
2425 int added_sets_0, added_sets_1, added_sets_2;
2426 /* Total number of SETs to put into I3. */
2427 int total_sets;
2428 /* Nonzero if I2's or I1's body now appears in I3. */
2429 int i2_is_used = 0, i1_is_used = 0;
2430 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2431 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2432 /* Contains I3 if the destination of I3 is used in its source, which means
2433 that the old life of I3 is being killed. If that usage is placed into
2434 I2 and not in I3, a REG_DEAD note must be made. */
2435 rtx i3dest_killed = 0;
2436 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2437 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2438 /* Copy of SET_SRC of I1 and I0, if needed. */
2439 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2440 /* Set if I2DEST was reused as a scratch register. */
2441 bool i2scratch = false;
2442 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2443 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2444 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2445 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2446 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2447 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2448 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2449 /* Notes that must be added to REG_NOTES in I3 and I2. */
2450 rtx new_i3_notes, new_i2_notes;
2451 /* Notes that we substituted I3 into I2 instead of the normal case. */
2452 int i3_subst_into_i2 = 0;
2453 /* Notes that I1, I2 or I3 is a MULT operation. */
2454 int have_mult = 0;
2455 int swap_i2i3 = 0;
2456 int changed_i3_dest = 0;
2458 int maxreg;
2459 rtx temp;
2460 struct insn_link *link;
2461 rtx other_pat = 0;
2462 rtx new_other_notes;
2463 int i;
2465 /* Only try four-insn combinations when there's high likelihood of
2466 success. Look for simple insns, such as loads of constants or
2467 binary operations involving a constant. */
2468 if (i0)
2470 int i;
2471 int ngood = 0;
2472 int nshift = 0;
2474 if (!flag_expensive_optimizations)
2475 return 0;
2477 for (i = 0; i < 4; i++)
2479 rtx insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2480 rtx set = single_set (insn);
2481 rtx src;
2482 if (!set)
2483 continue;
2484 src = SET_SRC (set);
2485 if (CONSTANT_P (src))
2487 ngood += 2;
2488 break;
2490 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2491 ngood++;
2492 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2493 || GET_CODE (src) == LSHIFTRT)
2494 nshift++;
2496 if (ngood < 2 && nshift < 2)
2497 return 0;
2500 /* Exit early if one of the insns involved can't be used for
2501 combinations. */
2502 if (cant_combine_insn_p (i3)
2503 || cant_combine_insn_p (i2)
2504 || (i1 && cant_combine_insn_p (i1))
2505 || (i0 && cant_combine_insn_p (i0))
2506 || likely_spilled_retval_p (i3))
2507 return 0;
2509 combine_attempts++;
2510 undobuf.other_insn = 0;
2512 /* Reset the hard register usage information. */
2513 CLEAR_HARD_REG_SET (newpat_used_regs);
2515 if (dump_file && (dump_flags & TDF_DETAILS))
2517 if (i0)
2518 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2519 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2520 else if (i1)
2521 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2522 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2523 else
2524 fprintf (dump_file, "\nTrying %d -> %d:\n",
2525 INSN_UID (i2), INSN_UID (i3));
2528 /* If multiple insns feed into one of I2 or I3, they can be in any
2529 order. To simplify the code below, reorder them in sequence. */
2530 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2531 temp = i2, i2 = i0, i0 = temp;
2532 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2533 temp = i1, i1 = i0, i0 = temp;
2534 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2535 temp = i1, i1 = i2, i2 = temp;
2537 added_links_insn = 0;
2539 /* First check for one important special case that the code below will
2540 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2541 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2542 we may be able to replace that destination with the destination of I3.
2543 This occurs in the common code where we compute both a quotient and
2544 remainder into a structure, in which case we want to do the computation
2545 directly into the structure to avoid register-register copies.
2547 Note that this case handles both multiple sets in I2 and also cases
2548 where I2 has a number of CLOBBERs inside the PARALLEL.
2550 We make very conservative checks below and only try to handle the
2551 most common cases of this. For example, we only handle the case
2552 where I2 and I3 are adjacent to avoid making difficult register
2553 usage tests. */
2555 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2556 && REG_P (SET_SRC (PATTERN (i3)))
2557 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2558 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2559 && GET_CODE (PATTERN (i2)) == PARALLEL
2560 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2561 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2562 below would need to check what is inside (and reg_overlap_mentioned_p
2563 doesn't support those codes anyway). Don't allow those destinations;
2564 the resulting insn isn't likely to be recognized anyway. */
2565 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2566 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2567 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2568 SET_DEST (PATTERN (i3)))
2569 && next_active_insn (i2) == i3)
2571 rtx p2 = PATTERN (i2);
2573 /* Make sure that the destination of I3,
2574 which we are going to substitute into one output of I2,
2575 is not used within another output of I2. We must avoid making this:
2576 (parallel [(set (mem (reg 69)) ...)
2577 (set (reg 69) ...)])
2578 which is not well-defined as to order of actions.
2579 (Besides, reload can't handle output reloads for this.)
2581 The problem can also happen if the dest of I3 is a memory ref,
2582 if another dest in I2 is an indirect memory ref. */
2583 for (i = 0; i < XVECLEN (p2, 0); i++)
2584 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2585 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2586 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2587 SET_DEST (XVECEXP (p2, 0, i))))
2588 break;
2590 if (i == XVECLEN (p2, 0))
2591 for (i = 0; i < XVECLEN (p2, 0); i++)
2592 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2593 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2595 combine_merges++;
2597 subst_insn = i3;
2598 subst_low_luid = DF_INSN_LUID (i2);
2600 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2601 i2src = SET_SRC (XVECEXP (p2, 0, i));
2602 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2603 i2dest_killed = dead_or_set_p (i2, i2dest);
2605 /* Replace the dest in I2 with our dest and make the resulting
2606 insn the new pattern for I3. Then skip to where we validate
2607 the pattern. Everything was set up above. */
2608 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2609 newpat = p2;
2610 i3_subst_into_i2 = 1;
2611 goto validate_replacement;
2615 /* If I2 is setting a pseudo to a constant and I3 is setting some
2616 sub-part of it to another constant, merge them by making a new
2617 constant. */
2618 if (i1 == 0
2619 && (temp = single_set (i2)) != 0
2620 && CONST_SCALAR_INT_P (SET_SRC (temp))
2621 && GET_CODE (PATTERN (i3)) == SET
2622 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2623 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2625 rtx dest = SET_DEST (PATTERN (i3));
2626 int offset = -1;
2627 int width = 0;
2629 /* There are not explicit tests to make sure that this is not a
2630 float, but there is code here that would not be correct if it
2631 was. */
2632 gcc_assert (GET_MODE_CLASS (GET_MODE (SET_SRC (temp))) != MODE_FLOAT);
2634 if (GET_CODE (dest) == ZERO_EXTRACT)
2636 if (CONST_INT_P (XEXP (dest, 1))
2637 && CONST_INT_P (XEXP (dest, 2)))
2639 width = INTVAL (XEXP (dest, 1));
2640 offset = INTVAL (XEXP (dest, 2));
2641 dest = XEXP (dest, 0);
2642 if (BITS_BIG_ENDIAN)
2643 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2646 else
2648 if (GET_CODE (dest) == STRICT_LOW_PART)
2649 dest = XEXP (dest, 0);
2650 width = GET_MODE_PRECISION (GET_MODE (dest));
2651 offset = 0;
2654 if (offset >= 0)
2656 /* If this is the low part, we're done. */
2657 if (subreg_lowpart_p (dest))
2659 /* Handle the case where inner is twice the size of outer. */
2660 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2661 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2662 offset += GET_MODE_PRECISION (GET_MODE (dest));
2663 /* Otherwise give up for now. */
2664 else
2665 offset = -1;
2668 if (offset >= 0
2669 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp)))
2670 <= HOST_BITS_PER_DOUBLE_INT))
2672 double_int m, o, i;
2673 rtx inner = SET_SRC (PATTERN (i3));
2674 rtx outer = SET_SRC (temp);
2676 o = rtx_to_double_int (outer);
2677 i = rtx_to_double_int (inner);
2679 m = double_int::mask (width);
2680 i &= m;
2681 m = m.llshift (offset, HOST_BITS_PER_DOUBLE_INT);
2682 i = i.llshift (offset, HOST_BITS_PER_DOUBLE_INT);
2683 o = o.and_not (m) | i;
2685 combine_merges++;
2686 subst_insn = i3;
2687 subst_low_luid = DF_INSN_LUID (i2);
2688 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2689 i2dest = SET_DEST (temp);
2690 i2dest_killed = dead_or_set_p (i2, i2dest);
2692 /* Replace the source in I2 with the new constant and make the
2693 resulting insn the new pattern for I3. Then skip to where we
2694 validate the pattern. Everything was set up above. */
2695 SUBST (SET_SRC (temp),
2696 immed_double_int_const (o, GET_MODE (SET_DEST (temp))));
2698 newpat = PATTERN (i2);
2700 /* The dest of I3 has been replaced with the dest of I2. */
2701 changed_i3_dest = 1;
2702 goto validate_replacement;
2706 #ifndef HAVE_cc0
2707 /* If we have no I1 and I2 looks like:
2708 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2709 (set Y OP)])
2710 make up a dummy I1 that is
2711 (set Y OP)
2712 and change I2 to be
2713 (set (reg:CC X) (compare:CC Y (const_int 0)))
2715 (We can ignore any trailing CLOBBERs.)
2717 This undoes a previous combination and allows us to match a branch-and-
2718 decrement insn. */
2720 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2721 && XVECLEN (PATTERN (i2), 0) >= 2
2722 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2723 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2724 == MODE_CC)
2725 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2726 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2727 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2728 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2729 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2730 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2732 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2733 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2734 break;
2736 if (i == 1)
2738 /* We make I1 with the same INSN_UID as I2. This gives it
2739 the same DF_INSN_LUID for value tracking. Our fake I1 will
2740 never appear in the insn stream so giving it the same INSN_UID
2741 as I2 will not cause a problem. */
2743 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2744 BLOCK_FOR_INSN (i2), XVECEXP (PATTERN (i2), 0, 1),
2745 INSN_LOCATION (i2), -1, NULL_RTX);
2747 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2748 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2749 SET_DEST (PATTERN (i1)));
2750 SUBST_LINK (LOG_LINKS (i2), alloc_insn_link (i1, LOG_LINKS (i2)));
2753 #endif
2755 /* Verify that I2 and I1 are valid for combining. */
2756 if (! can_combine_p (i2, i3, i0, i1, NULL_RTX, NULL_RTX, &i2dest, &i2src)
2757 || (i1 && ! can_combine_p (i1, i3, i0, NULL_RTX, i2, NULL_RTX,
2758 &i1dest, &i1src))
2759 || (i0 && ! can_combine_p (i0, i3, NULL_RTX, NULL_RTX, i1, i2,
2760 &i0dest, &i0src)))
2762 undo_all ();
2763 return 0;
2766 /* Record whether I2DEST is used in I2SRC and similarly for the other
2767 cases. Knowing this will help in register status updating below. */
2768 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2769 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2770 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2771 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2772 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2773 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2774 i2dest_killed = dead_or_set_p (i2, i2dest);
2775 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2776 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2778 /* For the earlier insns, determine which of the subsequent ones they
2779 feed. */
2780 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2781 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2782 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2783 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2784 && reg_overlap_mentioned_p (i0dest, i2src))));
2786 /* Ensure that I3's pattern can be the destination of combines. */
2787 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2788 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2789 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2790 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2791 &i3dest_killed))
2793 undo_all ();
2794 return 0;
2797 /* See if any of the insns is a MULT operation. Unless one is, we will
2798 reject a combination that is, since it must be slower. Be conservative
2799 here. */
2800 if (GET_CODE (i2src) == MULT
2801 || (i1 != 0 && GET_CODE (i1src) == MULT)
2802 || (i0 != 0 && GET_CODE (i0src) == MULT)
2803 || (GET_CODE (PATTERN (i3)) == SET
2804 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2805 have_mult = 1;
2807 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2808 We used to do this EXCEPT in one case: I3 has a post-inc in an
2809 output operand. However, that exception can give rise to insns like
2810 mov r3,(r3)+
2811 which is a famous insn on the PDP-11 where the value of r3 used as the
2812 source was model-dependent. Avoid this sort of thing. */
2814 #if 0
2815 if (!(GET_CODE (PATTERN (i3)) == SET
2816 && REG_P (SET_SRC (PATTERN (i3)))
2817 && MEM_P (SET_DEST (PATTERN (i3)))
2818 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2819 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2820 /* It's not the exception. */
2821 #endif
2822 #ifdef AUTO_INC_DEC
2824 rtx link;
2825 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2826 if (REG_NOTE_KIND (link) == REG_INC
2827 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2828 || (i1 != 0
2829 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2831 undo_all ();
2832 return 0;
2835 #endif
2837 /* See if the SETs in I1 or I2 need to be kept around in the merged
2838 instruction: whenever the value set there is still needed past I3.
2839 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2841 For the SET in I1, we have two cases: If I1 and I2 independently
2842 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2843 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2844 in I1 needs to be kept around unless I1DEST dies or is set in either
2845 I2 or I3. The same consideration applies to I0. */
2847 added_sets_2 = !dead_or_set_p (i3, i2dest);
2849 if (i1)
2850 added_sets_1 = !(dead_or_set_p (i3, i1dest)
2851 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
2852 else
2853 added_sets_1 = 0;
2855 if (i0)
2856 added_sets_0 = !(dead_or_set_p (i3, i0dest)
2857 || (i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
2858 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)));
2859 else
2860 added_sets_0 = 0;
2862 /* We are about to copy insns for the case where they need to be kept
2863 around. Check that they can be copied in the merged instruction. */
2865 if (targetm.cannot_copy_insn_p
2866 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
2867 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
2868 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
2870 undo_all ();
2871 return 0;
2874 /* If the set in I2 needs to be kept around, we must make a copy of
2875 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2876 PATTERN (I2), we are only substituting for the original I1DEST, not into
2877 an already-substituted copy. This also prevents making self-referential
2878 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2879 I2DEST. */
2881 if (added_sets_2)
2883 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2884 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2885 else
2886 i2pat = copy_rtx (PATTERN (i2));
2889 if (added_sets_1)
2891 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2892 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2893 else
2894 i1pat = copy_rtx (PATTERN (i1));
2897 if (added_sets_0)
2899 if (GET_CODE (PATTERN (i0)) == PARALLEL)
2900 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
2901 else
2902 i0pat = copy_rtx (PATTERN (i0));
2905 combine_merges++;
2907 /* Substitute in the latest insn for the regs set by the earlier ones. */
2909 maxreg = max_reg_num ();
2911 subst_insn = i3;
2913 #ifndef HAVE_cc0
2914 /* Many machines that don't use CC0 have insns that can both perform an
2915 arithmetic operation and set the condition code. These operations will
2916 be represented as a PARALLEL with the first element of the vector
2917 being a COMPARE of an arithmetic operation with the constant zero.
2918 The second element of the vector will set some pseudo to the result
2919 of the same arithmetic operation. If we simplify the COMPARE, we won't
2920 match such a pattern and so will generate an extra insn. Here we test
2921 for this case, where both the comparison and the operation result are
2922 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2923 I2SRC. Later we will make the PARALLEL that contains I2. */
2925 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2926 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2927 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
2928 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2930 rtx newpat_dest;
2931 rtx *cc_use_loc = NULL, cc_use_insn = NULL_RTX;
2932 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
2933 enum machine_mode compare_mode, orig_compare_mode;
2934 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
2936 newpat = PATTERN (i3);
2937 newpat_dest = SET_DEST (newpat);
2938 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
2940 if (undobuf.other_insn == 0
2941 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
2942 &cc_use_insn)))
2944 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
2945 compare_code = simplify_compare_const (compare_code,
2946 op0, &op1);
2947 #ifdef CANONICALIZE_COMPARISON
2948 CANONICALIZE_COMPARISON (compare_code, op0, op1);
2949 #endif
2952 /* Do the rest only if op1 is const0_rtx, which may be the
2953 result of simplification. */
2954 if (op1 == const0_rtx)
2956 /* If a single use of the CC is found, prepare to modify it
2957 when SELECT_CC_MODE returns a new CC-class mode, or when
2958 the above simplify_compare_const() returned a new comparison
2959 operator. undobuf.other_insn is assigned the CC use insn
2960 when modifying it. */
2961 if (cc_use_loc)
2963 #ifdef SELECT_CC_MODE
2964 enum machine_mode new_mode
2965 = SELECT_CC_MODE (compare_code, op0, op1);
2966 if (new_mode != orig_compare_mode
2967 && can_change_dest_mode (SET_DEST (newpat),
2968 added_sets_2, new_mode))
2970 unsigned int regno = REGNO (newpat_dest);
2971 compare_mode = new_mode;
2972 if (regno < FIRST_PSEUDO_REGISTER)
2973 newpat_dest = gen_rtx_REG (compare_mode, regno);
2974 else
2976 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2977 newpat_dest = regno_reg_rtx[regno];
2980 #endif
2981 /* Cases for modifying the CC-using comparison. */
2982 if (compare_code != orig_compare_code
2983 /* ??? Do we need to verify the zero rtx? */
2984 && XEXP (*cc_use_loc, 1) == const0_rtx)
2986 /* Replace cc_use_loc with entire new RTX. */
2987 SUBST (*cc_use_loc,
2988 gen_rtx_fmt_ee (compare_code, compare_mode,
2989 newpat_dest, const0_rtx));
2990 undobuf.other_insn = cc_use_insn;
2992 else if (compare_mode != orig_compare_mode)
2994 /* Just replace the CC reg with a new mode. */
2995 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
2996 undobuf.other_insn = cc_use_insn;
3000 /* Now we modify the current newpat:
3001 First, SET_DEST(newpat) is updated if the CC mode has been
3002 altered. For targets without SELECT_CC_MODE, this should be
3003 optimized away. */
3004 if (compare_mode != orig_compare_mode)
3005 SUBST (SET_DEST (newpat), newpat_dest);
3006 /* This is always done to propagate i2src into newpat. */
3007 SUBST (SET_SRC (newpat),
3008 gen_rtx_COMPARE (compare_mode, op0, op1));
3009 /* Create new version of i2pat if needed; the below PARALLEL
3010 creation needs this to work correctly. */
3011 if (! rtx_equal_p (i2src, op0))
3012 i2pat = gen_rtx_SET (VOIDmode, i2dest, op0);
3013 i2_is_used = 1;
3016 #endif
3018 if (i2_is_used == 0)
3020 /* It is possible that the source of I2 or I1 may be performing
3021 an unneeded operation, such as a ZERO_EXTEND of something
3022 that is known to have the high part zero. Handle that case
3023 by letting subst look at the inner insns.
3025 Another way to do this would be to have a function that tries
3026 to simplify a single insn instead of merging two or more
3027 insns. We don't do this because of the potential of infinite
3028 loops and because of the potential extra memory required.
3029 However, doing it the way we are is a bit of a kludge and
3030 doesn't catch all cases.
3032 But only do this if -fexpensive-optimizations since it slows
3033 things down and doesn't usually win.
3035 This is not done in the COMPARE case above because the
3036 unmodified I2PAT is used in the PARALLEL and so a pattern
3037 with a modified I2SRC would not match. */
3039 if (flag_expensive_optimizations)
3041 /* Pass pc_rtx so no substitutions are done, just
3042 simplifications. */
3043 if (i1)
3045 subst_low_luid = DF_INSN_LUID (i1);
3046 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3049 subst_low_luid = DF_INSN_LUID (i2);
3050 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3053 n_occurrences = 0; /* `subst' counts here */
3054 subst_low_luid = DF_INSN_LUID (i2);
3056 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3057 copy of I2SRC each time we substitute it, in order to avoid creating
3058 self-referential RTL when we will be substituting I1SRC for I1DEST
3059 later. Likewise if I0 feeds into I2, either directly or indirectly
3060 through I1, and I0DEST is in I0SRC. */
3061 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3062 (i1_feeds_i2_n && i1dest_in_i1src)
3063 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3064 && i0dest_in_i0src));
3065 substed_i2 = 1;
3067 /* Record whether I2's body now appears within I3's body. */
3068 i2_is_used = n_occurrences;
3071 /* If we already got a failure, don't try to do more. Otherwise, try to
3072 substitute I1 if we have it. */
3074 if (i1 && GET_CODE (newpat) != CLOBBER)
3076 /* Check that an autoincrement side-effect on I1 has not been lost.
3077 This happens if I1DEST is mentioned in I2 and dies there, and
3078 has disappeared from the new pattern. */
3079 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3080 && i1_feeds_i2_n
3081 && dead_or_set_p (i2, i1dest)
3082 && !reg_overlap_mentioned_p (i1dest, newpat))
3083 /* Before we can do this substitution, we must redo the test done
3084 above (see detailed comments there) that ensures I1DEST isn't
3085 mentioned in any SETs in NEWPAT that are field assignments. */
3086 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, NULL_RTX,
3087 0, 0, 0))
3089 undo_all ();
3090 return 0;
3093 n_occurrences = 0;
3094 subst_low_luid = DF_INSN_LUID (i1);
3096 /* If the following substitution will modify I1SRC, make a copy of it
3097 for the case where it is substituted for I1DEST in I2PAT later. */
3098 if (added_sets_2 && i1_feeds_i2_n)
3099 i1src_copy = copy_rtx (i1src);
3101 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3102 copy of I1SRC each time we substitute it, in order to avoid creating
3103 self-referential RTL when we will be substituting I0SRC for I0DEST
3104 later. */
3105 newpat = subst (newpat, i1dest, i1src, 0, 0,
3106 i0_feeds_i1_n && i0dest_in_i0src);
3107 substed_i1 = 1;
3109 /* Record whether I1's body now appears within I3's body. */
3110 i1_is_used = n_occurrences;
3113 /* Likewise for I0 if we have it. */
3115 if (i0 && GET_CODE (newpat) != CLOBBER)
3117 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3118 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3119 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3120 && !reg_overlap_mentioned_p (i0dest, newpat))
3121 || !combinable_i3pat (NULL_RTX, &newpat, i0dest, NULL_RTX, NULL_RTX,
3122 0, 0, 0))
3124 undo_all ();
3125 return 0;
3128 /* If the following substitution will modify I0SRC, make a copy of it
3129 for the case where it is substituted for I0DEST in I1PAT later. */
3130 if (added_sets_1 && i0_feeds_i1_n)
3131 i0src_copy = copy_rtx (i0src);
3132 /* And a copy for I0DEST in I2PAT substitution. */
3133 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3134 || (i0_feeds_i2_n)))
3135 i0src_copy2 = copy_rtx (i0src);
3137 n_occurrences = 0;
3138 subst_low_luid = DF_INSN_LUID (i0);
3139 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3140 substed_i0 = 1;
3143 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3144 to count all the ways that I2SRC and I1SRC can be used. */
3145 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3146 && i2_is_used + added_sets_2 > 1)
3147 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3148 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3149 > 1))
3150 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3151 && (n_occurrences + added_sets_0
3152 + (added_sets_1 && i0_feeds_i1_n)
3153 + (added_sets_2 && i0_feeds_i2_n)
3154 > 1))
3155 /* Fail if we tried to make a new register. */
3156 || max_reg_num () != maxreg
3157 /* Fail if we couldn't do something and have a CLOBBER. */
3158 || GET_CODE (newpat) == CLOBBER
3159 /* Fail if this new pattern is a MULT and we didn't have one before
3160 at the outer level. */
3161 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3162 && ! have_mult))
3164 undo_all ();
3165 return 0;
3168 /* If the actions of the earlier insns must be kept
3169 in addition to substituting them into the latest one,
3170 we must make a new PARALLEL for the latest insn
3171 to hold additional the SETs. */
3173 if (added_sets_0 || added_sets_1 || added_sets_2)
3175 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3176 combine_extras++;
3178 if (GET_CODE (newpat) == PARALLEL)
3180 rtvec old = XVEC (newpat, 0);
3181 total_sets = XVECLEN (newpat, 0) + extra_sets;
3182 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3183 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3184 sizeof (old->elem[0]) * old->num_elem);
3186 else
3188 rtx old = newpat;
3189 total_sets = 1 + extra_sets;
3190 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3191 XVECEXP (newpat, 0, 0) = old;
3194 if (added_sets_0)
3195 XVECEXP (newpat, 0, --total_sets) = i0pat;
3197 if (added_sets_1)
3199 rtx t = i1pat;
3200 if (i0_feeds_i1_n)
3201 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3203 XVECEXP (newpat, 0, --total_sets) = t;
3205 if (added_sets_2)
3207 rtx t = i2pat;
3208 if (i1_feeds_i2_n)
3209 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3210 i0_feeds_i1_n && i0dest_in_i0src);
3211 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3212 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3214 XVECEXP (newpat, 0, --total_sets) = t;
3218 validate_replacement:
3220 /* Note which hard regs this insn has as inputs. */
3221 mark_used_regs_combine (newpat);
3223 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3224 consider splitting this pattern, we might need these clobbers. */
3225 if (i1 && GET_CODE (newpat) == PARALLEL
3226 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3228 int len = XVECLEN (newpat, 0);
3230 newpat_vec_with_clobbers = rtvec_alloc (len);
3231 for (i = 0; i < len; i++)
3232 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3235 /* Is the result of combination a valid instruction? */
3236 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3238 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3239 the second SET's destination is a register that is unused and isn't
3240 marked as an instruction that might trap in an EH region. In that case,
3241 we just need the first SET. This can occur when simplifying a divmod
3242 insn. We *must* test for this case here because the code below that
3243 splits two independent SETs doesn't handle this case correctly when it
3244 updates the register status.
3246 It's pointless doing this if we originally had two sets, one from
3247 i3, and one from i2. Combining then splitting the parallel results
3248 in the original i2 again plus an invalid insn (which we delete).
3249 The net effect is only to move instructions around, which makes
3250 debug info less accurate.
3252 Also check the case where the first SET's destination is unused.
3253 That would not cause incorrect code, but does cause an unneeded
3254 insn to remain. */
3256 if (insn_code_number < 0
3257 && !(added_sets_2 && i1 == 0)
3258 && GET_CODE (newpat) == PARALLEL
3259 && XVECLEN (newpat, 0) == 2
3260 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3261 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3262 && asm_noperands (newpat) < 0)
3264 rtx set0 = XVECEXP (newpat, 0, 0);
3265 rtx set1 = XVECEXP (newpat, 0, 1);
3267 if (((REG_P (SET_DEST (set1))
3268 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3269 || (GET_CODE (SET_DEST (set1)) == SUBREG
3270 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3271 && insn_nothrow_p (i3)
3272 && !side_effects_p (SET_SRC (set1)))
3274 newpat = set0;
3275 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3278 else if (((REG_P (SET_DEST (set0))
3279 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3280 || (GET_CODE (SET_DEST (set0)) == SUBREG
3281 && find_reg_note (i3, REG_UNUSED,
3282 SUBREG_REG (SET_DEST (set0)))))
3283 && insn_nothrow_p (i3)
3284 && !side_effects_p (SET_SRC (set0)))
3286 newpat = set1;
3287 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3289 if (insn_code_number >= 0)
3290 changed_i3_dest = 1;
3294 /* If we were combining three insns and the result is a simple SET
3295 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3296 insns. There are two ways to do this. It can be split using a
3297 machine-specific method (like when you have an addition of a large
3298 constant) or by combine in the function find_split_point. */
3300 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3301 && asm_noperands (newpat) < 0)
3303 rtx parallel, m_split, *split;
3305 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3306 use I2DEST as a scratch register will help. In the latter case,
3307 convert I2DEST to the mode of the source of NEWPAT if we can. */
3309 m_split = combine_split_insns (newpat, i3);
3311 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3312 inputs of NEWPAT. */
3314 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3315 possible to try that as a scratch reg. This would require adding
3316 more code to make it work though. */
3318 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3320 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3322 /* First try to split using the original register as a
3323 scratch register. */
3324 parallel = gen_rtx_PARALLEL (VOIDmode,
3325 gen_rtvec (2, newpat,
3326 gen_rtx_CLOBBER (VOIDmode,
3327 i2dest)));
3328 m_split = combine_split_insns (parallel, i3);
3330 /* If that didn't work, try changing the mode of I2DEST if
3331 we can. */
3332 if (m_split == 0
3333 && new_mode != GET_MODE (i2dest)
3334 && new_mode != VOIDmode
3335 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3337 enum machine_mode old_mode = GET_MODE (i2dest);
3338 rtx ni2dest;
3340 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3341 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3342 else
3344 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3345 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3348 parallel = (gen_rtx_PARALLEL
3349 (VOIDmode,
3350 gen_rtvec (2, newpat,
3351 gen_rtx_CLOBBER (VOIDmode,
3352 ni2dest))));
3353 m_split = combine_split_insns (parallel, i3);
3355 if (m_split == 0
3356 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3358 struct undo *buf;
3360 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3361 buf = undobuf.undos;
3362 undobuf.undos = buf->next;
3363 buf->next = undobuf.frees;
3364 undobuf.frees = buf;
3368 i2scratch = m_split != 0;
3371 /* If recog_for_combine has discarded clobbers, try to use them
3372 again for the split. */
3373 if (m_split == 0 && newpat_vec_with_clobbers)
3375 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3376 m_split = combine_split_insns (parallel, i3);
3379 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
3381 m_split = PATTERN (m_split);
3382 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
3383 if (insn_code_number >= 0)
3384 newpat = m_split;
3386 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3387 && (next_nonnote_nondebug_insn (i2) == i3
3388 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3390 rtx i2set, i3set;
3391 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3392 newi2pat = PATTERN (m_split);
3394 i3set = single_set (NEXT_INSN (m_split));
3395 i2set = single_set (m_split);
3397 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3399 /* If I2 or I3 has multiple SETs, we won't know how to track
3400 register status, so don't use these insns. If I2's destination
3401 is used between I2 and I3, we also can't use these insns. */
3403 if (i2_code_number >= 0 && i2set && i3set
3404 && (next_nonnote_nondebug_insn (i2) == i3
3405 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3406 insn_code_number = recog_for_combine (&newi3pat, i3,
3407 &new_i3_notes);
3408 if (insn_code_number >= 0)
3409 newpat = newi3pat;
3411 /* It is possible that both insns now set the destination of I3.
3412 If so, we must show an extra use of it. */
3414 if (insn_code_number >= 0)
3416 rtx new_i3_dest = SET_DEST (i3set);
3417 rtx new_i2_dest = SET_DEST (i2set);
3419 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3420 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3421 || GET_CODE (new_i3_dest) == SUBREG)
3422 new_i3_dest = XEXP (new_i3_dest, 0);
3424 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3425 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3426 || GET_CODE (new_i2_dest) == SUBREG)
3427 new_i2_dest = XEXP (new_i2_dest, 0);
3429 if (REG_P (new_i3_dest)
3430 && REG_P (new_i2_dest)
3431 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3432 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3436 /* If we can split it and use I2DEST, go ahead and see if that
3437 helps things be recognized. Verify that none of the registers
3438 are set between I2 and I3. */
3439 if (insn_code_number < 0
3440 && (split = find_split_point (&newpat, i3, false)) != 0
3441 #ifdef HAVE_cc0
3442 && REG_P (i2dest)
3443 #endif
3444 /* We need I2DEST in the proper mode. If it is a hard register
3445 or the only use of a pseudo, we can change its mode.
3446 Make sure we don't change a hard register to have a mode that
3447 isn't valid for it, or change the number of registers. */
3448 && (GET_MODE (*split) == GET_MODE (i2dest)
3449 || GET_MODE (*split) == VOIDmode
3450 || can_change_dest_mode (i2dest, added_sets_2,
3451 GET_MODE (*split)))
3452 && (next_nonnote_nondebug_insn (i2) == i3
3453 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3454 /* We can't overwrite I2DEST if its value is still used by
3455 NEWPAT. */
3456 && ! reg_referenced_p (i2dest, newpat))
3458 rtx newdest = i2dest;
3459 enum rtx_code split_code = GET_CODE (*split);
3460 enum machine_mode split_mode = GET_MODE (*split);
3461 bool subst_done = false;
3462 newi2pat = NULL_RTX;
3464 i2scratch = true;
3466 /* *SPLIT may be part of I2SRC, so make sure we have the
3467 original expression around for later debug processing.
3468 We should not need I2SRC any more in other cases. */
3469 if (MAY_HAVE_DEBUG_INSNS)
3470 i2src = copy_rtx (i2src);
3471 else
3472 i2src = NULL;
3474 /* Get NEWDEST as a register in the proper mode. We have already
3475 validated that we can do this. */
3476 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3478 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3479 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3480 else
3482 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3483 newdest = regno_reg_rtx[REGNO (i2dest)];
3487 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3488 an ASHIFT. This can occur if it was inside a PLUS and hence
3489 appeared to be a memory address. This is a kludge. */
3490 if (split_code == MULT
3491 && CONST_INT_P (XEXP (*split, 1))
3492 && INTVAL (XEXP (*split, 1)) > 0
3493 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3495 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3496 XEXP (*split, 0), GEN_INT (i)));
3497 /* Update split_code because we may not have a multiply
3498 anymore. */
3499 split_code = GET_CODE (*split);
3502 #ifdef INSN_SCHEDULING
3503 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3504 be written as a ZERO_EXTEND. */
3505 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3507 #ifdef LOAD_EXTEND_OP
3508 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3509 what it really is. */
3510 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3511 == SIGN_EXTEND)
3512 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3513 SUBREG_REG (*split)));
3514 else
3515 #endif
3516 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3517 SUBREG_REG (*split)));
3519 #endif
3521 /* Attempt to split binary operators using arithmetic identities. */
3522 if (BINARY_P (SET_SRC (newpat))
3523 && split_mode == GET_MODE (SET_SRC (newpat))
3524 && ! side_effects_p (SET_SRC (newpat)))
3526 rtx setsrc = SET_SRC (newpat);
3527 enum machine_mode mode = GET_MODE (setsrc);
3528 enum rtx_code code = GET_CODE (setsrc);
3529 rtx src_op0 = XEXP (setsrc, 0);
3530 rtx src_op1 = XEXP (setsrc, 1);
3532 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3533 if (rtx_equal_p (src_op0, src_op1))
3535 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3536 SUBST (XEXP (setsrc, 0), newdest);
3537 SUBST (XEXP (setsrc, 1), newdest);
3538 subst_done = true;
3540 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3541 else if ((code == PLUS || code == MULT)
3542 && GET_CODE (src_op0) == code
3543 && GET_CODE (XEXP (src_op0, 0)) == code
3544 && (INTEGRAL_MODE_P (mode)
3545 || (FLOAT_MODE_P (mode)
3546 && flag_unsafe_math_optimizations)))
3548 rtx p = XEXP (XEXP (src_op0, 0), 0);
3549 rtx q = XEXP (XEXP (src_op0, 0), 1);
3550 rtx r = XEXP (src_op0, 1);
3551 rtx s = src_op1;
3553 /* Split both "((X op Y) op X) op Y" and
3554 "((X op Y) op Y) op X" as "T op T" where T is
3555 "X op Y". */
3556 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3557 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3559 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3560 XEXP (src_op0, 0));
3561 SUBST (XEXP (setsrc, 0), newdest);
3562 SUBST (XEXP (setsrc, 1), newdest);
3563 subst_done = true;
3565 /* Split "((X op X) op Y) op Y)" as "T op T" where
3566 T is "X op Y". */
3567 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3569 rtx tmp = simplify_gen_binary (code, mode, p, r);
3570 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3571 SUBST (XEXP (setsrc, 0), newdest);
3572 SUBST (XEXP (setsrc, 1), newdest);
3573 subst_done = true;
3578 if (!subst_done)
3580 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3581 SUBST (*split, newdest);
3584 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3586 /* recog_for_combine might have added CLOBBERs to newi2pat.
3587 Make sure NEWPAT does not depend on the clobbered regs. */
3588 if (GET_CODE (newi2pat) == PARALLEL)
3589 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3590 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3592 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3593 if (reg_overlap_mentioned_p (reg, newpat))
3595 undo_all ();
3596 return 0;
3600 /* If the split point was a MULT and we didn't have one before,
3601 don't use one now. */
3602 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3603 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3607 /* Check for a case where we loaded from memory in a narrow mode and
3608 then sign extended it, but we need both registers. In that case,
3609 we have a PARALLEL with both loads from the same memory location.
3610 We can split this into a load from memory followed by a register-register
3611 copy. This saves at least one insn, more if register allocation can
3612 eliminate the copy.
3614 We cannot do this if the destination of the first assignment is a
3615 condition code register or cc0. We eliminate this case by making sure
3616 the SET_DEST and SET_SRC have the same mode.
3618 We cannot do this if the destination of the second assignment is
3619 a register that we have already assumed is zero-extended. Similarly
3620 for a SUBREG of such a register. */
3622 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3623 && GET_CODE (newpat) == PARALLEL
3624 && XVECLEN (newpat, 0) == 2
3625 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3626 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3627 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3628 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3629 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3630 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3631 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3632 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3633 DF_INSN_LUID (i2))
3634 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3635 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3636 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3637 (REG_P (temp)
3638 && reg_stat[REGNO (temp)].nonzero_bits != 0
3639 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3640 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3641 && (reg_stat[REGNO (temp)].nonzero_bits
3642 != GET_MODE_MASK (word_mode))))
3643 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3644 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3645 (REG_P (temp)
3646 && reg_stat[REGNO (temp)].nonzero_bits != 0
3647 && GET_MODE_PRECISION (GET_MODE (temp)) < BITS_PER_WORD
3648 && GET_MODE_PRECISION (GET_MODE (temp)) < HOST_BITS_PER_INT
3649 && (reg_stat[REGNO (temp)].nonzero_bits
3650 != GET_MODE_MASK (word_mode)))))
3651 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3652 SET_SRC (XVECEXP (newpat, 0, 1)))
3653 && ! find_reg_note (i3, REG_UNUSED,
3654 SET_DEST (XVECEXP (newpat, 0, 0))))
3656 rtx ni2dest;
3658 newi2pat = XVECEXP (newpat, 0, 0);
3659 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3660 newpat = XVECEXP (newpat, 0, 1);
3661 SUBST (SET_SRC (newpat),
3662 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3663 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3665 if (i2_code_number >= 0)
3666 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3668 if (insn_code_number >= 0)
3669 swap_i2i3 = 1;
3672 /* Similarly, check for a case where we have a PARALLEL of two independent
3673 SETs but we started with three insns. In this case, we can do the sets
3674 as two separate insns. This case occurs when some SET allows two
3675 other insns to combine, but the destination of that SET is still live. */
3677 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3678 && GET_CODE (newpat) == PARALLEL
3679 && XVECLEN (newpat, 0) == 2
3680 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3681 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3682 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3683 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3684 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3685 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3686 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3687 XVECEXP (newpat, 0, 0))
3688 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3689 XVECEXP (newpat, 0, 1))
3690 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3691 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3693 /* Normally, it doesn't matter which of the two is done first,
3694 but the one that references cc0 can't be the second, and
3695 one which uses any regs/memory set in between i2 and i3 can't
3696 be first. */
3697 if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3698 DF_INSN_LUID (i2))
3699 #ifdef HAVE_cc0
3700 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3701 #endif
3704 newi2pat = XVECEXP (newpat, 0, 1);
3705 newpat = XVECEXP (newpat, 0, 0);
3707 else if (!use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 0)),
3708 DF_INSN_LUID (i2))
3709 #ifdef HAVE_cc0
3710 && !reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1))
3711 #endif
3714 newi2pat = XVECEXP (newpat, 0, 0);
3715 newpat = XVECEXP (newpat, 0, 1);
3717 else
3719 undo_all ();
3720 return 0;
3723 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3725 if (i2_code_number >= 0)
3727 /* recog_for_combine might have added CLOBBERs to newi2pat.
3728 Make sure NEWPAT does not depend on the clobbered regs. */
3729 if (GET_CODE (newi2pat) == PARALLEL)
3731 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3732 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3734 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3735 if (reg_overlap_mentioned_p (reg, newpat))
3737 undo_all ();
3738 return 0;
3743 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3747 /* If it still isn't recognized, fail and change things back the way they
3748 were. */
3749 if ((insn_code_number < 0
3750 /* Is the result a reasonable ASM_OPERANDS? */
3751 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3753 undo_all ();
3754 return 0;
3757 /* If we had to change another insn, make sure it is valid also. */
3758 if (undobuf.other_insn)
3760 CLEAR_HARD_REG_SET (newpat_used_regs);
3762 other_pat = PATTERN (undobuf.other_insn);
3763 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3764 &new_other_notes);
3766 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3768 undo_all ();
3769 return 0;
3773 #ifdef HAVE_cc0
3774 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3775 they are adjacent to each other or not. */
3777 rtx p = prev_nonnote_insn (i3);
3778 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3779 && sets_cc0_p (newi2pat))
3781 undo_all ();
3782 return 0;
3785 #endif
3787 /* Only allow this combination if insn_rtx_costs reports that the
3788 replacement instructions are cheaper than the originals. */
3789 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
3791 undo_all ();
3792 return 0;
3795 if (MAY_HAVE_DEBUG_INSNS)
3797 struct undo *undo;
3799 for (undo = undobuf.undos; undo; undo = undo->next)
3800 if (undo->kind == UNDO_MODE)
3802 rtx reg = *undo->where.r;
3803 enum machine_mode new_mode = GET_MODE (reg);
3804 enum machine_mode old_mode = undo->old_contents.m;
3806 /* Temporarily revert mode back. */
3807 adjust_reg_mode (reg, old_mode);
3809 if (reg == i2dest && i2scratch)
3811 /* If we used i2dest as a scratch register with a
3812 different mode, substitute it for the original
3813 i2src while its original mode is temporarily
3814 restored, and then clear i2scratch so that we don't
3815 do it again later. */
3816 propagate_for_debug (i2, last_combined_insn, reg, i2src,
3817 this_basic_block);
3818 i2scratch = false;
3819 /* Put back the new mode. */
3820 adjust_reg_mode (reg, new_mode);
3822 else
3824 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
3825 rtx first, last;
3827 if (reg == i2dest)
3829 first = i2;
3830 last = last_combined_insn;
3832 else
3834 first = i3;
3835 last = undobuf.other_insn;
3836 gcc_assert (last);
3837 if (DF_INSN_LUID (last)
3838 < DF_INSN_LUID (last_combined_insn))
3839 last = last_combined_insn;
3842 /* We're dealing with a reg that changed mode but not
3843 meaning, so we want to turn it into a subreg for
3844 the new mode. However, because of REG sharing and
3845 because its mode had already changed, we have to do
3846 it in two steps. First, replace any debug uses of
3847 reg, with its original mode temporarily restored,
3848 with this copy we have created; then, replace the
3849 copy with the SUBREG of the original shared reg,
3850 once again changed to the new mode. */
3851 propagate_for_debug (first, last, reg, tempreg,
3852 this_basic_block);
3853 adjust_reg_mode (reg, new_mode);
3854 propagate_for_debug (first, last, tempreg,
3855 lowpart_subreg (old_mode, reg, new_mode),
3856 this_basic_block);
3861 /* If we will be able to accept this, we have made a
3862 change to the destination of I3. This requires us to
3863 do a few adjustments. */
3865 if (changed_i3_dest)
3867 PATTERN (i3) = newpat;
3868 adjust_for_new_dest (i3);
3871 /* We now know that we can do this combination. Merge the insns and
3872 update the status of registers and LOG_LINKS. */
3874 if (undobuf.other_insn)
3876 rtx note, next;
3878 PATTERN (undobuf.other_insn) = other_pat;
3880 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3881 are still valid. Then add any non-duplicate notes added by
3882 recog_for_combine. */
3883 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3885 next = XEXP (note, 1);
3887 if (REG_NOTE_KIND (note) == REG_UNUSED
3888 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3889 remove_note (undobuf.other_insn, note);
3892 distribute_notes (new_other_notes, undobuf.other_insn,
3893 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX,
3894 NULL_RTX);
3897 if (swap_i2i3)
3899 rtx insn;
3900 struct insn_link *link;
3901 rtx ni2dest;
3903 /* I3 now uses what used to be its destination and which is now
3904 I2's destination. This requires us to do a few adjustments. */
3905 PATTERN (i3) = newpat;
3906 adjust_for_new_dest (i3);
3908 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3909 so we still will.
3911 However, some later insn might be using I2's dest and have
3912 a LOG_LINK pointing at I3. We must remove this link.
3913 The simplest way to remove the link is to point it at I1,
3914 which we know will be a NOTE. */
3916 /* newi2pat is usually a SET here; however, recog_for_combine might
3917 have added some clobbers. */
3918 if (GET_CODE (newi2pat) == PARALLEL)
3919 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3920 else
3921 ni2dest = SET_DEST (newi2pat);
3923 for (insn = NEXT_INSN (i3);
3924 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3925 || insn != BB_HEAD (this_basic_block->next_bb));
3926 insn = NEXT_INSN (insn))
3928 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3930 FOR_EACH_LOG_LINK (link, insn)
3931 if (link->insn == i3)
3932 link->insn = i1;
3934 break;
3940 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
3941 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
3942 rtx midnotes = 0;
3943 int from_luid;
3944 /* Compute which registers we expect to eliminate. newi2pat may be setting
3945 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3946 same as i3dest, in which case newi2pat may be setting i1dest. */
3947 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3948 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
3949 || !i2dest_killed
3950 ? 0 : i2dest);
3951 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
3952 || (newi2pat && reg_set_p (i1dest, newi2pat))
3953 || !i1dest_killed
3954 ? 0 : i1dest);
3955 rtx elim_i0 = (i0 == 0 || i0dest_in_i0src
3956 || (newi2pat && reg_set_p (i0dest, newi2pat))
3957 || !i0dest_killed
3958 ? 0 : i0dest);
3960 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3961 clear them. */
3962 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3963 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3964 if (i1)
3965 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3966 if (i0)
3967 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
3969 /* Ensure that we do not have something that should not be shared but
3970 occurs multiple times in the new insns. Check this by first
3971 resetting all the `used' flags and then copying anything is shared. */
3973 reset_used_flags (i3notes);
3974 reset_used_flags (i2notes);
3975 reset_used_flags (i1notes);
3976 reset_used_flags (i0notes);
3977 reset_used_flags (newpat);
3978 reset_used_flags (newi2pat);
3979 if (undobuf.other_insn)
3980 reset_used_flags (PATTERN (undobuf.other_insn));
3982 i3notes = copy_rtx_if_shared (i3notes);
3983 i2notes = copy_rtx_if_shared (i2notes);
3984 i1notes = copy_rtx_if_shared (i1notes);
3985 i0notes = copy_rtx_if_shared (i0notes);
3986 newpat = copy_rtx_if_shared (newpat);
3987 newi2pat = copy_rtx_if_shared (newi2pat);
3988 if (undobuf.other_insn)
3989 reset_used_flags (PATTERN (undobuf.other_insn));
3991 INSN_CODE (i3) = insn_code_number;
3992 PATTERN (i3) = newpat;
3994 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3996 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3998 reset_used_flags (call_usage);
3999 call_usage = copy_rtx (call_usage);
4001 if (substed_i2)
4003 /* I2SRC must still be meaningful at this point. Some splitting
4004 operations can invalidate I2SRC, but those operations do not
4005 apply to calls. */
4006 gcc_assert (i2src);
4007 replace_rtx (call_usage, i2dest, i2src);
4010 if (substed_i1)
4011 replace_rtx (call_usage, i1dest, i1src);
4012 if (substed_i0)
4013 replace_rtx (call_usage, i0dest, i0src);
4015 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4018 if (undobuf.other_insn)
4019 INSN_CODE (undobuf.other_insn) = other_code_number;
4021 /* We had one special case above where I2 had more than one set and
4022 we replaced a destination of one of those sets with the destination
4023 of I3. In that case, we have to update LOG_LINKS of insns later
4024 in this basic block. Note that this (expensive) case is rare.
4026 Also, in this case, we must pretend that all REG_NOTEs for I2
4027 actually came from I3, so that REG_UNUSED notes from I2 will be
4028 properly handled. */
4030 if (i3_subst_into_i2)
4032 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4033 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4034 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4035 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4036 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4037 && ! find_reg_note (i2, REG_UNUSED,
4038 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4039 for (temp = NEXT_INSN (i2);
4040 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
4041 || BB_HEAD (this_basic_block) != temp);
4042 temp = NEXT_INSN (temp))
4043 if (temp != i3 && INSN_P (temp))
4044 FOR_EACH_LOG_LINK (link, temp)
4045 if (link->insn == i2)
4046 link->insn = i3;
4048 if (i3notes)
4050 rtx link = i3notes;
4051 while (XEXP (link, 1))
4052 link = XEXP (link, 1);
4053 XEXP (link, 1) = i2notes;
4055 else
4056 i3notes = i2notes;
4057 i2notes = 0;
4060 LOG_LINKS (i3) = NULL;
4061 REG_NOTES (i3) = 0;
4062 LOG_LINKS (i2) = NULL;
4063 REG_NOTES (i2) = 0;
4065 if (newi2pat)
4067 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4068 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4069 this_basic_block);
4070 INSN_CODE (i2) = i2_code_number;
4071 PATTERN (i2) = newi2pat;
4073 else
4075 if (MAY_HAVE_DEBUG_INSNS && i2src)
4076 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4077 this_basic_block);
4078 SET_INSN_DELETED (i2);
4081 if (i1)
4083 LOG_LINKS (i1) = NULL;
4084 REG_NOTES (i1) = 0;
4085 if (MAY_HAVE_DEBUG_INSNS)
4086 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4087 this_basic_block);
4088 SET_INSN_DELETED (i1);
4091 if (i0)
4093 LOG_LINKS (i0) = NULL;
4094 REG_NOTES (i0) = 0;
4095 if (MAY_HAVE_DEBUG_INSNS)
4096 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4097 this_basic_block);
4098 SET_INSN_DELETED (i0);
4101 /* Get death notes for everything that is now used in either I3 or
4102 I2 and used to die in a previous insn. If we built two new
4103 patterns, move from I1 to I2 then I2 to I3 so that we get the
4104 proper movement on registers that I2 modifies. */
4106 if (i0)
4107 from_luid = DF_INSN_LUID (i0);
4108 else if (i1)
4109 from_luid = DF_INSN_LUID (i1);
4110 else
4111 from_luid = DF_INSN_LUID (i2);
4112 if (newi2pat)
4113 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4114 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4116 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4117 if (i3notes)
4118 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
4119 elim_i2, elim_i1, elim_i0);
4120 if (i2notes)
4121 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
4122 elim_i2, elim_i1, elim_i0);
4123 if (i1notes)
4124 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
4125 elim_i2, elim_i1, elim_i0);
4126 if (i0notes)
4127 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL_RTX,
4128 elim_i2, elim_i1, elim_i0);
4129 if (midnotes)
4130 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4131 elim_i2, elim_i1, elim_i0);
4133 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4134 know these are REG_UNUSED and want them to go to the desired insn,
4135 so we always pass it as i3. */
4137 if (newi2pat && new_i2_notes)
4138 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX,
4139 NULL_RTX);
4141 if (new_i3_notes)
4142 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX,
4143 NULL_RTX);
4145 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4146 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4147 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4148 in that case, it might delete I2. Similarly for I2 and I1.
4149 Show an additional death due to the REG_DEAD note we make here. If
4150 we discard it in distribute_notes, we will decrement it again. */
4152 if (i3dest_killed)
4154 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4155 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4156 NULL_RTX),
4157 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1, elim_i0);
4158 else
4159 distribute_notes (alloc_reg_note (REG_DEAD, i3dest_killed,
4160 NULL_RTX),
4161 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4162 elim_i2, elim_i1, elim_i0);
4165 if (i2dest_in_i2src)
4167 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4168 if (newi2pat && reg_set_p (i2dest, newi2pat))
4169 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4170 NULL_RTX, NULL_RTX);
4171 else
4172 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4173 NULL_RTX, NULL_RTX, NULL_RTX);
4176 if (i1dest_in_i1src)
4178 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4179 if (newi2pat && reg_set_p (i1dest, newi2pat))
4180 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4181 NULL_RTX, NULL_RTX);
4182 else
4183 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4184 NULL_RTX, NULL_RTX, NULL_RTX);
4187 if (i0dest_in_i0src)
4189 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4190 if (newi2pat && reg_set_p (i0dest, newi2pat))
4191 distribute_notes (new_note, NULL_RTX, i2, NULL_RTX, NULL_RTX,
4192 NULL_RTX, NULL_RTX);
4193 else
4194 distribute_notes (new_note, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
4195 NULL_RTX, NULL_RTX, NULL_RTX);
4198 distribute_links (i3links);
4199 distribute_links (i2links);
4200 distribute_links (i1links);
4201 distribute_links (i0links);
4203 if (REG_P (i2dest))
4205 struct insn_link *link;
4206 rtx i2_insn = 0, i2_val = 0, set;
4208 /* The insn that used to set this register doesn't exist, and
4209 this life of the register may not exist either. See if one of
4210 I3's links points to an insn that sets I2DEST. If it does,
4211 that is now the last known value for I2DEST. If we don't update
4212 this and I2 set the register to a value that depended on its old
4213 contents, we will get confused. If this insn is used, thing
4214 will be set correctly in combine_instructions. */
4215 FOR_EACH_LOG_LINK (link, i3)
4216 if ((set = single_set (link->insn)) != 0
4217 && rtx_equal_p (i2dest, SET_DEST (set)))
4218 i2_insn = link->insn, i2_val = SET_SRC (set);
4220 record_value_for_reg (i2dest, i2_insn, i2_val);
4222 /* If the reg formerly set in I2 died only once and that was in I3,
4223 zero its use count so it won't make `reload' do any work. */
4224 if (! added_sets_2
4225 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4226 && ! i2dest_in_i2src)
4227 INC_REG_N_SETS (REGNO (i2dest), -1);
4230 if (i1 && REG_P (i1dest))
4232 struct insn_link *link;
4233 rtx i1_insn = 0, i1_val = 0, set;
4235 FOR_EACH_LOG_LINK (link, i3)
4236 if ((set = single_set (link->insn)) != 0
4237 && rtx_equal_p (i1dest, SET_DEST (set)))
4238 i1_insn = link->insn, i1_val = SET_SRC (set);
4240 record_value_for_reg (i1dest, i1_insn, i1_val);
4242 if (! added_sets_1 && ! i1dest_in_i1src)
4243 INC_REG_N_SETS (REGNO (i1dest), -1);
4246 if (i0 && REG_P (i0dest))
4248 struct insn_link *link;
4249 rtx i0_insn = 0, i0_val = 0, set;
4251 FOR_EACH_LOG_LINK (link, i3)
4252 if ((set = single_set (link->insn)) != 0
4253 && rtx_equal_p (i0dest, SET_DEST (set)))
4254 i0_insn = link->insn, i0_val = SET_SRC (set);
4256 record_value_for_reg (i0dest, i0_insn, i0_val);
4258 if (! added_sets_0 && ! i0dest_in_i0src)
4259 INC_REG_N_SETS (REGNO (i0dest), -1);
4262 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4263 been made to this insn. The order of
4264 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
4265 can affect nonzero_bits of newpat */
4266 if (newi2pat)
4267 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4268 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4271 if (undobuf.other_insn != NULL_RTX)
4273 if (dump_file)
4275 fprintf (dump_file, "modifying other_insn ");
4276 dump_insn_slim (dump_file, undobuf.other_insn);
4278 df_insn_rescan (undobuf.other_insn);
4281 if (i0 && !(NOTE_P(i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4283 if (dump_file)
4285 fprintf (dump_file, "modifying insn i1 ");
4286 dump_insn_slim (dump_file, i0);
4288 df_insn_rescan (i0);
4291 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4293 if (dump_file)
4295 fprintf (dump_file, "modifying insn i1 ");
4296 dump_insn_slim (dump_file, i1);
4298 df_insn_rescan (i1);
4301 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4303 if (dump_file)
4305 fprintf (dump_file, "modifying insn i2 ");
4306 dump_insn_slim (dump_file, i2);
4308 df_insn_rescan (i2);
4311 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4313 if (dump_file)
4315 fprintf (dump_file, "modifying insn i3 ");
4316 dump_insn_slim (dump_file, i3);
4318 df_insn_rescan (i3);
4321 /* Set new_direct_jump_p if a new return or simple jump instruction
4322 has been created. Adjust the CFG accordingly. */
4324 if (returnjump_p (i3) || any_uncondjump_p (i3))
4326 *new_direct_jump_p = 1;
4327 mark_jump_label (PATTERN (i3), i3, 0);
4328 update_cfg_for_uncondjump (i3);
4331 if (undobuf.other_insn != NULL_RTX
4332 && (returnjump_p (undobuf.other_insn)
4333 || any_uncondjump_p (undobuf.other_insn)))
4335 *new_direct_jump_p = 1;
4336 update_cfg_for_uncondjump (undobuf.other_insn);
4339 /* A noop might also need cleaning up of CFG, if it comes from the
4340 simplification of a jump. */
4341 if (JUMP_P (i3)
4342 && GET_CODE (newpat) == SET
4343 && SET_SRC (newpat) == pc_rtx
4344 && SET_DEST (newpat) == pc_rtx)
4346 *new_direct_jump_p = 1;
4347 update_cfg_for_uncondjump (i3);
4350 if (undobuf.other_insn != NULL_RTX
4351 && JUMP_P (undobuf.other_insn)
4352 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4353 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4354 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4356 *new_direct_jump_p = 1;
4357 update_cfg_for_uncondjump (undobuf.other_insn);
4360 combine_successes++;
4361 undo_commit ();
4363 if (added_links_insn
4364 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4365 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4366 return added_links_insn;
4367 else
4368 return newi2pat ? i2 : i3;
4371 /* Undo all the modifications recorded in undobuf. */
4373 static void
4374 undo_all (void)
4376 struct undo *undo, *next;
4378 for (undo = undobuf.undos; undo; undo = next)
4380 next = undo->next;
4381 switch (undo->kind)
4383 case UNDO_RTX:
4384 *undo->where.r = undo->old_contents.r;
4385 break;
4386 case UNDO_INT:
4387 *undo->where.i = undo->old_contents.i;
4388 break;
4389 case UNDO_MODE:
4390 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4391 break;
4392 case UNDO_LINKS:
4393 *undo->where.l = undo->old_contents.l;
4394 break;
4395 default:
4396 gcc_unreachable ();
4399 undo->next = undobuf.frees;
4400 undobuf.frees = undo;
4403 undobuf.undos = 0;
4406 /* We've committed to accepting the changes we made. Move all
4407 of the undos to the free list. */
4409 static void
4410 undo_commit (void)
4412 struct undo *undo, *next;
4414 for (undo = undobuf.undos; undo; undo = next)
4416 next = undo->next;
4417 undo->next = undobuf.frees;
4418 undobuf.frees = undo;
4420 undobuf.undos = 0;
4423 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4424 where we have an arithmetic expression and return that point. LOC will
4425 be inside INSN.
4427 try_combine will call this function to see if an insn can be split into
4428 two insns. */
4430 static rtx *
4431 find_split_point (rtx *loc, rtx insn, bool set_src)
4433 rtx x = *loc;
4434 enum rtx_code code = GET_CODE (x);
4435 rtx *split;
4436 unsigned HOST_WIDE_INT len = 0;
4437 HOST_WIDE_INT pos = 0;
4438 int unsignedp = 0;
4439 rtx inner = NULL_RTX;
4441 /* First special-case some codes. */
4442 switch (code)
4444 case SUBREG:
4445 #ifdef INSN_SCHEDULING
4446 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4447 point. */
4448 if (MEM_P (SUBREG_REG (x)))
4449 return loc;
4450 #endif
4451 return find_split_point (&SUBREG_REG (x), insn, false);
4453 case MEM:
4454 #ifdef HAVE_lo_sum
4455 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4456 using LO_SUM and HIGH. */
4457 if (GET_CODE (XEXP (x, 0)) == CONST
4458 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4460 enum machine_mode address_mode = get_address_mode (x);
4462 SUBST (XEXP (x, 0),
4463 gen_rtx_LO_SUM (address_mode,
4464 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4465 XEXP (x, 0)));
4466 return &XEXP (XEXP (x, 0), 0);
4468 #endif
4470 /* If we have a PLUS whose second operand is a constant and the
4471 address is not valid, perhaps will can split it up using
4472 the machine-specific way to split large constants. We use
4473 the first pseudo-reg (one of the virtual regs) as a placeholder;
4474 it will not remain in the result. */
4475 if (GET_CODE (XEXP (x, 0)) == PLUS
4476 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4477 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4478 MEM_ADDR_SPACE (x)))
4480 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4481 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4482 XEXP (x, 0)),
4483 subst_insn);
4485 /* This should have produced two insns, each of which sets our
4486 placeholder. If the source of the second is a valid address,
4487 we can make put both sources together and make a split point
4488 in the middle. */
4490 if (seq
4491 && NEXT_INSN (seq) != NULL_RTX
4492 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4493 && NONJUMP_INSN_P (seq)
4494 && GET_CODE (PATTERN (seq)) == SET
4495 && SET_DEST (PATTERN (seq)) == reg
4496 && ! reg_mentioned_p (reg,
4497 SET_SRC (PATTERN (seq)))
4498 && NONJUMP_INSN_P (NEXT_INSN (seq))
4499 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4500 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4501 && memory_address_addr_space_p
4502 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4503 MEM_ADDR_SPACE (x)))
4505 rtx src1 = SET_SRC (PATTERN (seq));
4506 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4508 /* Replace the placeholder in SRC2 with SRC1. If we can
4509 find where in SRC2 it was placed, that can become our
4510 split point and we can replace this address with SRC2.
4511 Just try two obvious places. */
4513 src2 = replace_rtx (src2, reg, src1);
4514 split = 0;
4515 if (XEXP (src2, 0) == src1)
4516 split = &XEXP (src2, 0);
4517 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4518 && XEXP (XEXP (src2, 0), 0) == src1)
4519 split = &XEXP (XEXP (src2, 0), 0);
4521 if (split)
4523 SUBST (XEXP (x, 0), src2);
4524 return split;
4528 /* If that didn't work, perhaps the first operand is complex and
4529 needs to be computed separately, so make a split point there.
4530 This will occur on machines that just support REG + CONST
4531 and have a constant moved through some previous computation. */
4533 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4534 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4535 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4536 return &XEXP (XEXP (x, 0), 0);
4539 /* If we have a PLUS whose first operand is complex, try computing it
4540 separately by making a split there. */
4541 if (GET_CODE (XEXP (x, 0)) == PLUS
4542 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4543 MEM_ADDR_SPACE (x))
4544 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4545 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4546 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4547 return &XEXP (XEXP (x, 0), 0);
4548 break;
4550 case SET:
4551 #ifdef HAVE_cc0
4552 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4553 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4554 we need to put the operand into a register. So split at that
4555 point. */
4557 if (SET_DEST (x) == cc0_rtx
4558 && GET_CODE (SET_SRC (x)) != COMPARE
4559 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4560 && !OBJECT_P (SET_SRC (x))
4561 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4562 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4563 return &SET_SRC (x);
4564 #endif
4566 /* See if we can split SET_SRC as it stands. */
4567 split = find_split_point (&SET_SRC (x), insn, true);
4568 if (split && split != &SET_SRC (x))
4569 return split;
4571 /* See if we can split SET_DEST as it stands. */
4572 split = find_split_point (&SET_DEST (x), insn, false);
4573 if (split && split != &SET_DEST (x))
4574 return split;
4576 /* See if this is a bitfield assignment with everything constant. If
4577 so, this is an IOR of an AND, so split it into that. */
4578 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4579 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4580 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4581 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4582 && CONST_INT_P (SET_SRC (x))
4583 && ((INTVAL (XEXP (SET_DEST (x), 1))
4584 + INTVAL (XEXP (SET_DEST (x), 2)))
4585 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4586 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4588 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4589 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4590 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4591 rtx dest = XEXP (SET_DEST (x), 0);
4592 enum machine_mode mode = GET_MODE (dest);
4593 unsigned HOST_WIDE_INT mask
4594 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4595 rtx or_mask;
4597 if (BITS_BIG_ENDIAN)
4598 pos = GET_MODE_PRECISION (mode) - len - pos;
4600 or_mask = gen_int_mode (src << pos, mode);
4601 if (src == mask)
4602 SUBST (SET_SRC (x),
4603 simplify_gen_binary (IOR, mode, dest, or_mask));
4604 else
4606 rtx negmask = gen_int_mode (~(mask << pos), mode);
4607 SUBST (SET_SRC (x),
4608 simplify_gen_binary (IOR, mode,
4609 simplify_gen_binary (AND, mode,
4610 dest, negmask),
4611 or_mask));
4614 SUBST (SET_DEST (x), dest);
4616 split = find_split_point (&SET_SRC (x), insn, true);
4617 if (split && split != &SET_SRC (x))
4618 return split;
4621 /* Otherwise, see if this is an operation that we can split into two.
4622 If so, try to split that. */
4623 code = GET_CODE (SET_SRC (x));
4625 switch (code)
4627 case AND:
4628 /* If we are AND'ing with a large constant that is only a single
4629 bit and the result is only being used in a context where we
4630 need to know if it is zero or nonzero, replace it with a bit
4631 extraction. This will avoid the large constant, which might
4632 have taken more than one insn to make. If the constant were
4633 not a valid argument to the AND but took only one insn to make,
4634 this is no worse, but if it took more than one insn, it will
4635 be better. */
4637 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4638 && REG_P (XEXP (SET_SRC (x), 0))
4639 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4640 && REG_P (SET_DEST (x))
4641 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4642 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4643 && XEXP (*split, 0) == SET_DEST (x)
4644 && XEXP (*split, 1) == const0_rtx)
4646 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4647 XEXP (SET_SRC (x), 0),
4648 pos, NULL_RTX, 1, 1, 0, 0);
4649 if (extraction != 0)
4651 SUBST (SET_SRC (x), extraction);
4652 return find_split_point (loc, insn, false);
4655 break;
4657 case NE:
4658 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4659 is known to be on, this can be converted into a NEG of a shift. */
4660 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4661 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4662 && 1 <= (pos = exact_log2
4663 (nonzero_bits (XEXP (SET_SRC (x), 0),
4664 GET_MODE (XEXP (SET_SRC (x), 0))))))
4666 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4668 SUBST (SET_SRC (x),
4669 gen_rtx_NEG (mode,
4670 gen_rtx_LSHIFTRT (mode,
4671 XEXP (SET_SRC (x), 0),
4672 GEN_INT (pos))));
4674 split = find_split_point (&SET_SRC (x), insn, true);
4675 if (split && split != &SET_SRC (x))
4676 return split;
4678 break;
4680 case SIGN_EXTEND:
4681 inner = XEXP (SET_SRC (x), 0);
4683 /* We can't optimize if either mode is a partial integer
4684 mode as we don't know how many bits are significant
4685 in those modes. */
4686 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4687 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4688 break;
4690 pos = 0;
4691 len = GET_MODE_PRECISION (GET_MODE (inner));
4692 unsignedp = 0;
4693 break;
4695 case SIGN_EXTRACT:
4696 case ZERO_EXTRACT:
4697 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4698 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4700 inner = XEXP (SET_SRC (x), 0);
4701 len = INTVAL (XEXP (SET_SRC (x), 1));
4702 pos = INTVAL (XEXP (SET_SRC (x), 2));
4704 if (BITS_BIG_ENDIAN)
4705 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4706 unsignedp = (code == ZERO_EXTRACT);
4708 break;
4710 default:
4711 break;
4714 if (len && pos >= 0
4715 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
4717 enum machine_mode mode = GET_MODE (SET_SRC (x));
4719 /* For unsigned, we have a choice of a shift followed by an
4720 AND or two shifts. Use two shifts for field sizes where the
4721 constant might be too large. We assume here that we can
4722 always at least get 8-bit constants in an AND insn, which is
4723 true for every current RISC. */
4725 if (unsignedp && len <= 8)
4727 SUBST (SET_SRC (x),
4728 gen_rtx_AND (mode,
4729 gen_rtx_LSHIFTRT
4730 (mode, gen_lowpart (mode, inner),
4731 GEN_INT (pos)),
4732 GEN_INT (((unsigned HOST_WIDE_INT) 1 << len)
4733 - 1)));
4735 split = find_split_point (&SET_SRC (x), insn, true);
4736 if (split && split != &SET_SRC (x))
4737 return split;
4739 else
4741 SUBST (SET_SRC (x),
4742 gen_rtx_fmt_ee
4743 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4744 gen_rtx_ASHIFT (mode,
4745 gen_lowpart (mode, inner),
4746 GEN_INT (GET_MODE_PRECISION (mode)
4747 - len - pos)),
4748 GEN_INT (GET_MODE_PRECISION (mode) - len)));
4750 split = find_split_point (&SET_SRC (x), insn, true);
4751 if (split && split != &SET_SRC (x))
4752 return split;
4756 /* See if this is a simple operation with a constant as the second
4757 operand. It might be that this constant is out of range and hence
4758 could be used as a split point. */
4759 if (BINARY_P (SET_SRC (x))
4760 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4761 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4762 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4763 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4764 return &XEXP (SET_SRC (x), 1);
4766 /* Finally, see if this is a simple operation with its first operand
4767 not in a register. The operation might require this operand in a
4768 register, so return it as a split point. We can always do this
4769 because if the first operand were another operation, we would have
4770 already found it as a split point. */
4771 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4772 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4773 return &XEXP (SET_SRC (x), 0);
4775 return 0;
4777 case AND:
4778 case IOR:
4779 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4780 it is better to write this as (not (ior A B)) so we can split it.
4781 Similarly for IOR. */
4782 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4784 SUBST (*loc,
4785 gen_rtx_NOT (GET_MODE (x),
4786 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4787 GET_MODE (x),
4788 XEXP (XEXP (x, 0), 0),
4789 XEXP (XEXP (x, 1), 0))));
4790 return find_split_point (loc, insn, set_src);
4793 /* Many RISC machines have a large set of logical insns. If the
4794 second operand is a NOT, put it first so we will try to split the
4795 other operand first. */
4796 if (GET_CODE (XEXP (x, 1)) == NOT)
4798 rtx tem = XEXP (x, 0);
4799 SUBST (XEXP (x, 0), XEXP (x, 1));
4800 SUBST (XEXP (x, 1), tem);
4802 break;
4804 case PLUS:
4805 case MINUS:
4806 /* Canonicalization can produce (minus A (mult B C)), where C is a
4807 constant. It may be better to try splitting (plus (mult B -C) A)
4808 instead if this isn't a multiply by a power of two. */
4809 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
4810 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4811 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
4813 enum machine_mode mode = GET_MODE (x);
4814 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
4815 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
4816 SUBST (*loc, gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
4817 XEXP (XEXP (x, 1), 0),
4818 GEN_INT (other_int)),
4819 XEXP (x, 0)));
4820 return find_split_point (loc, insn, set_src);
4823 /* Split at a multiply-accumulate instruction. However if this is
4824 the SET_SRC, we likely do not have such an instruction and it's
4825 worthless to try this split. */
4826 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
4827 return loc;
4829 default:
4830 break;
4833 /* Otherwise, select our actions depending on our rtx class. */
4834 switch (GET_RTX_CLASS (code))
4836 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4837 case RTX_TERNARY:
4838 split = find_split_point (&XEXP (x, 2), insn, false);
4839 if (split)
4840 return split;
4841 /* ... fall through ... */
4842 case RTX_BIN_ARITH:
4843 case RTX_COMM_ARITH:
4844 case RTX_COMPARE:
4845 case RTX_COMM_COMPARE:
4846 split = find_split_point (&XEXP (x, 1), insn, false);
4847 if (split)
4848 return split;
4849 /* ... fall through ... */
4850 case RTX_UNARY:
4851 /* Some machines have (and (shift ...) ...) insns. If X is not
4852 an AND, but XEXP (X, 0) is, use it as our split point. */
4853 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4854 return &XEXP (x, 0);
4856 split = find_split_point (&XEXP (x, 0), insn, false);
4857 if (split)
4858 return split;
4859 return loc;
4861 default:
4862 /* Otherwise, we don't have a split point. */
4863 return 0;
4867 /* Throughout X, replace FROM with TO, and return the result.
4868 The result is TO if X is FROM;
4869 otherwise the result is X, but its contents may have been modified.
4870 If they were modified, a record was made in undobuf so that
4871 undo_all will (among other things) return X to its original state.
4873 If the number of changes necessary is too much to record to undo,
4874 the excess changes are not made, so the result is invalid.
4875 The changes already made can still be undone.
4876 undobuf.num_undo is incremented for such changes, so by testing that
4877 the caller can tell whether the result is valid.
4879 `n_occurrences' is incremented each time FROM is replaced.
4881 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4883 IN_COND is nonzero if we are at the top level of a condition.
4885 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4886 by copying if `n_occurrences' is nonzero. */
4888 static rtx
4889 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
4891 enum rtx_code code = GET_CODE (x);
4892 enum machine_mode op0_mode = VOIDmode;
4893 const char *fmt;
4894 int len, i;
4895 rtx new_rtx;
4897 /* Two expressions are equal if they are identical copies of a shared
4898 RTX or if they are both registers with the same register number
4899 and mode. */
4901 #define COMBINE_RTX_EQUAL_P(X,Y) \
4902 ((X) == (Y) \
4903 || (REG_P (X) && REG_P (Y) \
4904 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4906 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4908 n_occurrences++;
4909 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4912 /* If X and FROM are the same register but different modes, they
4913 will not have been seen as equal above. However, the log links code
4914 will make a LOG_LINKS entry for that case. If we do nothing, we
4915 will try to rerecognize our original insn and, when it succeeds,
4916 we will delete the feeding insn, which is incorrect.
4918 So force this insn not to match in this (rare) case. */
4919 if (! in_dest && code == REG && REG_P (from)
4920 && reg_overlap_mentioned_p (x, from))
4921 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4923 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4924 of which may contain things that can be combined. */
4925 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4926 return x;
4928 /* It is possible to have a subexpression appear twice in the insn.
4929 Suppose that FROM is a register that appears within TO.
4930 Then, after that subexpression has been scanned once by `subst',
4931 the second time it is scanned, TO may be found. If we were
4932 to scan TO here, we would find FROM within it and create a
4933 self-referent rtl structure which is completely wrong. */
4934 if (COMBINE_RTX_EQUAL_P (x, to))
4935 return to;
4937 /* Parallel asm_operands need special attention because all of the
4938 inputs are shared across the arms. Furthermore, unsharing the
4939 rtl results in recognition failures. Failure to handle this case
4940 specially can result in circular rtl.
4942 Solve this by doing a normal pass across the first entry of the
4943 parallel, and only processing the SET_DESTs of the subsequent
4944 entries. Ug. */
4946 if (code == PARALLEL
4947 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4948 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4950 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
4952 /* If this substitution failed, this whole thing fails. */
4953 if (GET_CODE (new_rtx) == CLOBBER
4954 && XEXP (new_rtx, 0) == const0_rtx)
4955 return new_rtx;
4957 SUBST (XVECEXP (x, 0, 0), new_rtx);
4959 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4961 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4963 if (!REG_P (dest)
4964 && GET_CODE (dest) != CC0
4965 && GET_CODE (dest) != PC)
4967 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
4969 /* If this substitution failed, this whole thing fails. */
4970 if (GET_CODE (new_rtx) == CLOBBER
4971 && XEXP (new_rtx, 0) == const0_rtx)
4972 return new_rtx;
4974 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4978 else
4980 len = GET_RTX_LENGTH (code);
4981 fmt = GET_RTX_FORMAT (code);
4983 /* We don't need to process a SET_DEST that is a register, CC0,
4984 or PC, so set up to skip this common case. All other cases
4985 where we want to suppress replacing something inside a
4986 SET_SRC are handled via the IN_DEST operand. */
4987 if (code == SET
4988 && (REG_P (SET_DEST (x))
4989 || GET_CODE (SET_DEST (x)) == CC0
4990 || GET_CODE (SET_DEST (x)) == PC))
4991 fmt = "ie";
4993 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
4994 constant. */
4995 if (fmt[0] == 'e')
4996 op0_mode = GET_MODE (XEXP (x, 0));
4998 for (i = 0; i < len; i++)
5000 if (fmt[i] == 'E')
5002 int j;
5003 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5005 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5007 new_rtx = (unique_copy && n_occurrences
5008 ? copy_rtx (to) : to);
5009 n_occurrences++;
5011 else
5013 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5014 unique_copy);
5016 /* If this substitution failed, this whole thing
5017 fails. */
5018 if (GET_CODE (new_rtx) == CLOBBER
5019 && XEXP (new_rtx, 0) == const0_rtx)
5020 return new_rtx;
5023 SUBST (XVECEXP (x, i, j), new_rtx);
5026 else if (fmt[i] == 'e')
5028 /* If this is a register being set, ignore it. */
5029 new_rtx = XEXP (x, i);
5030 if (in_dest
5031 && i == 0
5032 && (((code == SUBREG || code == ZERO_EXTRACT)
5033 && REG_P (new_rtx))
5034 || code == STRICT_LOW_PART))
5037 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5039 /* In general, don't install a subreg involving two
5040 modes not tieable. It can worsen register
5041 allocation, and can even make invalid reload
5042 insns, since the reg inside may need to be copied
5043 from in the outside mode, and that may be invalid
5044 if it is an fp reg copied in integer mode.
5046 We allow two exceptions to this: It is valid if
5047 it is inside another SUBREG and the mode of that
5048 SUBREG and the mode of the inside of TO is
5049 tieable and it is valid if X is a SET that copies
5050 FROM to CC0. */
5052 if (GET_CODE (to) == SUBREG
5053 && ! MODES_TIEABLE_P (GET_MODE (to),
5054 GET_MODE (SUBREG_REG (to)))
5055 && ! (code == SUBREG
5056 && MODES_TIEABLE_P (GET_MODE (x),
5057 GET_MODE (SUBREG_REG (to))))
5058 #ifdef HAVE_cc0
5059 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5060 #endif
5062 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5064 #ifdef CANNOT_CHANGE_MODE_CLASS
5065 if (code == SUBREG
5066 && REG_P (to)
5067 && REGNO (to) < FIRST_PSEUDO_REGISTER
5068 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
5069 GET_MODE (to),
5070 GET_MODE (x)))
5071 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5072 #endif
5074 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5075 n_occurrences++;
5077 else
5078 /* If we are in a SET_DEST, suppress most cases unless we
5079 have gone inside a MEM, in which case we want to
5080 simplify the address. We assume here that things that
5081 are actually part of the destination have their inner
5082 parts in the first expression. This is true for SUBREG,
5083 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5084 things aside from REG and MEM that should appear in a
5085 SET_DEST. */
5086 new_rtx = subst (XEXP (x, i), from, to,
5087 (((in_dest
5088 && (code == SUBREG || code == STRICT_LOW_PART
5089 || code == ZERO_EXTRACT))
5090 || code == SET)
5091 && i == 0),
5092 code == IF_THEN_ELSE && i == 0,
5093 unique_copy);
5095 /* If we found that we will have to reject this combination,
5096 indicate that by returning the CLOBBER ourselves, rather than
5097 an expression containing it. This will speed things up as
5098 well as prevent accidents where two CLOBBERs are considered
5099 to be equal, thus producing an incorrect simplification. */
5101 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5102 return new_rtx;
5104 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5106 enum machine_mode mode = GET_MODE (x);
5108 x = simplify_subreg (GET_MODE (x), new_rtx,
5109 GET_MODE (SUBREG_REG (x)),
5110 SUBREG_BYTE (x));
5111 if (! x)
5112 x = gen_rtx_CLOBBER (mode, const0_rtx);
5114 else if (CONST_INT_P (new_rtx)
5115 && GET_CODE (x) == ZERO_EXTEND)
5117 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5118 new_rtx, GET_MODE (XEXP (x, 0)));
5119 gcc_assert (x);
5121 else
5122 SUBST (XEXP (x, i), new_rtx);
5127 /* Check if we are loading something from the constant pool via float
5128 extension; in this case we would undo compress_float_constant
5129 optimization and degenerate constant load to an immediate value. */
5130 if (GET_CODE (x) == FLOAT_EXTEND
5131 && MEM_P (XEXP (x, 0))
5132 && MEM_READONLY_P (XEXP (x, 0)))
5134 rtx tmp = avoid_constant_pool_reference (x);
5135 if (x != tmp)
5136 return x;
5139 /* Try to simplify X. If the simplification changed the code, it is likely
5140 that further simplification will help, so loop, but limit the number
5141 of repetitions that will be performed. */
5143 for (i = 0; i < 4; i++)
5145 /* If X is sufficiently simple, don't bother trying to do anything
5146 with it. */
5147 if (code != CONST_INT && code != REG && code != CLOBBER)
5148 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5150 if (GET_CODE (x) == code)
5151 break;
5153 code = GET_CODE (x);
5155 /* We no longer know the original mode of operand 0 since we
5156 have changed the form of X) */
5157 op0_mode = VOIDmode;
5160 return x;
5163 /* Simplify X, a piece of RTL. We just operate on the expression at the
5164 outer level; call `subst' to simplify recursively. Return the new
5165 expression.
5167 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5168 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5169 of a condition. */
5171 static rtx
5172 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest,
5173 int in_cond)
5175 enum rtx_code code = GET_CODE (x);
5176 enum machine_mode mode = GET_MODE (x);
5177 rtx temp;
5178 int i;
5180 /* If this is a commutative operation, put a constant last and a complex
5181 expression first. We don't need to do this for comparisons here. */
5182 if (COMMUTATIVE_ARITH_P (x)
5183 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5185 temp = XEXP (x, 0);
5186 SUBST (XEXP (x, 0), XEXP (x, 1));
5187 SUBST (XEXP (x, 1), temp);
5190 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5191 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5192 things. Check for cases where both arms are testing the same
5193 condition.
5195 Don't do anything if all operands are very simple. */
5197 if ((BINARY_P (x)
5198 && ((!OBJECT_P (XEXP (x, 0))
5199 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5200 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5201 || (!OBJECT_P (XEXP (x, 1))
5202 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5203 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5204 || (UNARY_P (x)
5205 && (!OBJECT_P (XEXP (x, 0))
5206 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5207 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5209 rtx cond, true_rtx, false_rtx;
5211 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5212 if (cond != 0
5213 /* If everything is a comparison, what we have is highly unlikely
5214 to be simpler, so don't use it. */
5215 && ! (COMPARISON_P (x)
5216 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5218 rtx cop1 = const0_rtx;
5219 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5221 if (cond_code == NE && COMPARISON_P (cond))
5222 return x;
5224 /* Simplify the alternative arms; this may collapse the true and
5225 false arms to store-flag values. Be careful to use copy_rtx
5226 here since true_rtx or false_rtx might share RTL with x as a
5227 result of the if_then_else_cond call above. */
5228 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5229 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5231 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5232 is unlikely to be simpler. */
5233 if (general_operand (true_rtx, VOIDmode)
5234 && general_operand (false_rtx, VOIDmode))
5236 enum rtx_code reversed;
5238 /* Restarting if we generate a store-flag expression will cause
5239 us to loop. Just drop through in this case. */
5241 /* If the result values are STORE_FLAG_VALUE and zero, we can
5242 just make the comparison operation. */
5243 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5244 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5245 cond, cop1);
5246 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5247 && ((reversed = reversed_comparison_code_parts
5248 (cond_code, cond, cop1, NULL))
5249 != UNKNOWN))
5250 x = simplify_gen_relational (reversed, mode, VOIDmode,
5251 cond, cop1);
5253 /* Likewise, we can make the negate of a comparison operation
5254 if the result values are - STORE_FLAG_VALUE and zero. */
5255 else if (CONST_INT_P (true_rtx)
5256 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5257 && false_rtx == const0_rtx)
5258 x = simplify_gen_unary (NEG, mode,
5259 simplify_gen_relational (cond_code,
5260 mode, VOIDmode,
5261 cond, cop1),
5262 mode);
5263 else if (CONST_INT_P (false_rtx)
5264 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5265 && true_rtx == const0_rtx
5266 && ((reversed = reversed_comparison_code_parts
5267 (cond_code, cond, cop1, NULL))
5268 != UNKNOWN))
5269 x = simplify_gen_unary (NEG, mode,
5270 simplify_gen_relational (reversed,
5271 mode, VOIDmode,
5272 cond, cop1),
5273 mode);
5274 else
5275 return gen_rtx_IF_THEN_ELSE (mode,
5276 simplify_gen_relational (cond_code,
5277 mode,
5278 VOIDmode,
5279 cond,
5280 cop1),
5281 true_rtx, false_rtx);
5283 code = GET_CODE (x);
5284 op0_mode = VOIDmode;
5289 /* Try to fold this expression in case we have constants that weren't
5290 present before. */
5291 temp = 0;
5292 switch (GET_RTX_CLASS (code))
5294 case RTX_UNARY:
5295 if (op0_mode == VOIDmode)
5296 op0_mode = GET_MODE (XEXP (x, 0));
5297 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5298 break;
5299 case RTX_COMPARE:
5300 case RTX_COMM_COMPARE:
5302 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5303 if (cmp_mode == VOIDmode)
5305 cmp_mode = GET_MODE (XEXP (x, 1));
5306 if (cmp_mode == VOIDmode)
5307 cmp_mode = op0_mode;
5309 temp = simplify_relational_operation (code, mode, cmp_mode,
5310 XEXP (x, 0), XEXP (x, 1));
5312 break;
5313 case RTX_COMM_ARITH:
5314 case RTX_BIN_ARITH:
5315 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5316 break;
5317 case RTX_BITFIELD_OPS:
5318 case RTX_TERNARY:
5319 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5320 XEXP (x, 1), XEXP (x, 2));
5321 break;
5322 default:
5323 break;
5326 if (temp)
5328 x = temp;
5329 code = GET_CODE (temp);
5330 op0_mode = VOIDmode;
5331 mode = GET_MODE (temp);
5334 /* First see if we can apply the inverse distributive law. */
5335 if (code == PLUS || code == MINUS
5336 || code == AND || code == IOR || code == XOR)
5338 x = apply_distributive_law (x);
5339 code = GET_CODE (x);
5340 op0_mode = VOIDmode;
5343 /* If CODE is an associative operation not otherwise handled, see if we
5344 can associate some operands. This can win if they are constants or
5345 if they are logically related (i.e. (a & b) & a). */
5346 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5347 || code == AND || code == IOR || code == XOR
5348 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5349 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5350 || (flag_associative_math && FLOAT_MODE_P (mode))))
5352 if (GET_CODE (XEXP (x, 0)) == code)
5354 rtx other = XEXP (XEXP (x, 0), 0);
5355 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5356 rtx inner_op1 = XEXP (x, 1);
5357 rtx inner;
5359 /* Make sure we pass the constant operand if any as the second
5360 one if this is a commutative operation. */
5361 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5363 rtx tem = inner_op0;
5364 inner_op0 = inner_op1;
5365 inner_op1 = tem;
5367 inner = simplify_binary_operation (code == MINUS ? PLUS
5368 : code == DIV ? MULT
5369 : code,
5370 mode, inner_op0, inner_op1);
5372 /* For commutative operations, try the other pair if that one
5373 didn't simplify. */
5374 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5376 other = XEXP (XEXP (x, 0), 1);
5377 inner = simplify_binary_operation (code, mode,
5378 XEXP (XEXP (x, 0), 0),
5379 XEXP (x, 1));
5382 if (inner)
5383 return simplify_gen_binary (code, mode, other, inner);
5387 /* A little bit of algebraic simplification here. */
5388 switch (code)
5390 case MEM:
5391 /* Ensure that our address has any ASHIFTs converted to MULT in case
5392 address-recognizing predicates are called later. */
5393 temp = make_compound_operation (XEXP (x, 0), MEM);
5394 SUBST (XEXP (x, 0), temp);
5395 break;
5397 case SUBREG:
5398 if (op0_mode == VOIDmode)
5399 op0_mode = GET_MODE (SUBREG_REG (x));
5401 /* See if this can be moved to simplify_subreg. */
5402 if (CONSTANT_P (SUBREG_REG (x))
5403 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5404 /* Don't call gen_lowpart if the inner mode
5405 is VOIDmode and we cannot simplify it, as SUBREG without
5406 inner mode is invalid. */
5407 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5408 || gen_lowpart_common (mode, SUBREG_REG (x))))
5409 return gen_lowpart (mode, SUBREG_REG (x));
5411 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5412 break;
5414 rtx temp;
5415 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5416 SUBREG_BYTE (x));
5417 if (temp)
5418 return temp;
5421 /* Don't change the mode of the MEM if that would change the meaning
5422 of the address. */
5423 if (MEM_P (SUBREG_REG (x))
5424 && (MEM_VOLATILE_P (SUBREG_REG (x))
5425 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5426 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5427 return gen_rtx_CLOBBER (mode, const0_rtx);
5429 /* Note that we cannot do any narrowing for non-constants since
5430 we might have been counting on using the fact that some bits were
5431 zero. We now do this in the SET. */
5433 break;
5435 case NEG:
5436 temp = expand_compound_operation (XEXP (x, 0));
5438 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5439 replaced by (lshiftrt X C). This will convert
5440 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5442 if (GET_CODE (temp) == ASHIFTRT
5443 && CONST_INT_P (XEXP (temp, 1))
5444 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5445 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5446 INTVAL (XEXP (temp, 1)));
5448 /* If X has only a single bit that might be nonzero, say, bit I, convert
5449 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5450 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5451 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5452 or a SUBREG of one since we'd be making the expression more
5453 complex if it was just a register. */
5455 if (!REG_P (temp)
5456 && ! (GET_CODE (temp) == SUBREG
5457 && REG_P (SUBREG_REG (temp)))
5458 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5460 rtx temp1 = simplify_shift_const
5461 (NULL_RTX, ASHIFTRT, mode,
5462 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5463 GET_MODE_PRECISION (mode) - 1 - i),
5464 GET_MODE_PRECISION (mode) - 1 - i);
5466 /* If all we did was surround TEMP with the two shifts, we
5467 haven't improved anything, so don't use it. Otherwise,
5468 we are better off with TEMP1. */
5469 if (GET_CODE (temp1) != ASHIFTRT
5470 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5471 || XEXP (XEXP (temp1, 0), 0) != temp)
5472 return temp1;
5474 break;
5476 case TRUNCATE:
5477 /* We can't handle truncation to a partial integer mode here
5478 because we don't know the real bitsize of the partial
5479 integer mode. */
5480 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5481 break;
5483 if (HWI_COMPUTABLE_MODE_P (mode))
5484 SUBST (XEXP (x, 0),
5485 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5486 GET_MODE_MASK (mode), 0));
5488 /* We can truncate a constant value and return it. */
5489 if (CONST_INT_P (XEXP (x, 0)))
5490 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5492 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5493 whose value is a comparison can be replaced with a subreg if
5494 STORE_FLAG_VALUE permits. */
5495 if (HWI_COMPUTABLE_MODE_P (mode)
5496 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5497 && (temp = get_last_value (XEXP (x, 0)))
5498 && COMPARISON_P (temp))
5499 return gen_lowpart (mode, XEXP (x, 0));
5500 break;
5502 case CONST:
5503 /* (const (const X)) can become (const X). Do it this way rather than
5504 returning the inner CONST since CONST can be shared with a
5505 REG_EQUAL note. */
5506 if (GET_CODE (XEXP (x, 0)) == CONST)
5507 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5508 break;
5510 #ifdef HAVE_lo_sum
5511 case LO_SUM:
5512 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5513 can add in an offset. find_split_point will split this address up
5514 again if it doesn't match. */
5515 if (GET_CODE (XEXP (x, 0)) == HIGH
5516 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5517 return XEXP (x, 1);
5518 break;
5519 #endif
5521 case PLUS:
5522 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5523 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5524 bit-field and can be replaced by either a sign_extend or a
5525 sign_extract. The `and' may be a zero_extend and the two
5526 <c>, -<c> constants may be reversed. */
5527 if (GET_CODE (XEXP (x, 0)) == XOR
5528 && CONST_INT_P (XEXP (x, 1))
5529 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5530 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5531 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5532 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5533 && HWI_COMPUTABLE_MODE_P (mode)
5534 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5535 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5536 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5537 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5538 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5539 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5540 == (unsigned int) i + 1))))
5541 return simplify_shift_const
5542 (NULL_RTX, ASHIFTRT, mode,
5543 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5544 XEXP (XEXP (XEXP (x, 0), 0), 0),
5545 GET_MODE_PRECISION (mode) - (i + 1)),
5546 GET_MODE_PRECISION (mode) - (i + 1));
5548 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5549 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5550 the bitsize of the mode - 1. This allows simplification of
5551 "a = (b & 8) == 0;" */
5552 if (XEXP (x, 1) == constm1_rtx
5553 && !REG_P (XEXP (x, 0))
5554 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5555 && REG_P (SUBREG_REG (XEXP (x, 0))))
5556 && nonzero_bits (XEXP (x, 0), mode) == 1)
5557 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5558 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5559 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5560 GET_MODE_PRECISION (mode) - 1),
5561 GET_MODE_PRECISION (mode) - 1);
5563 /* If we are adding two things that have no bits in common, convert
5564 the addition into an IOR. This will often be further simplified,
5565 for example in cases like ((a & 1) + (a & 2)), which can
5566 become a & 3. */
5568 if (HWI_COMPUTABLE_MODE_P (mode)
5569 && (nonzero_bits (XEXP (x, 0), mode)
5570 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5572 /* Try to simplify the expression further. */
5573 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5574 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5576 /* If we could, great. If not, do not go ahead with the IOR
5577 replacement, since PLUS appears in many special purpose
5578 address arithmetic instructions. */
5579 if (GET_CODE (temp) != CLOBBER
5580 && (GET_CODE (temp) != IOR
5581 || ((XEXP (temp, 0) != XEXP (x, 0)
5582 || XEXP (temp, 1) != XEXP (x, 1))
5583 && (XEXP (temp, 0) != XEXP (x, 1)
5584 || XEXP (temp, 1) != XEXP (x, 0)))))
5585 return temp;
5587 break;
5589 case MINUS:
5590 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5591 (and <foo> (const_int pow2-1)) */
5592 if (GET_CODE (XEXP (x, 1)) == AND
5593 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5594 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5595 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5596 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5597 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5598 break;
5600 case MULT:
5601 /* If we have (mult (plus A B) C), apply the distributive law and then
5602 the inverse distributive law to see if things simplify. This
5603 occurs mostly in addresses, often when unrolling loops. */
5605 if (GET_CODE (XEXP (x, 0)) == PLUS)
5607 rtx result = distribute_and_simplify_rtx (x, 0);
5608 if (result)
5609 return result;
5612 /* Try simplify a*(b/c) as (a*b)/c. */
5613 if (FLOAT_MODE_P (mode) && flag_associative_math
5614 && GET_CODE (XEXP (x, 0)) == DIV)
5616 rtx tem = simplify_binary_operation (MULT, mode,
5617 XEXP (XEXP (x, 0), 0),
5618 XEXP (x, 1));
5619 if (tem)
5620 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5622 break;
5624 case UDIV:
5625 /* If this is a divide by a power of two, treat it as a shift if
5626 its first operand is a shift. */
5627 if (CONST_INT_P (XEXP (x, 1))
5628 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5629 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5630 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5631 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5632 || GET_CODE (XEXP (x, 0)) == ROTATE
5633 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5634 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5635 break;
5637 case EQ: case NE:
5638 case GT: case GTU: case GE: case GEU:
5639 case LT: case LTU: case LE: case LEU:
5640 case UNEQ: case LTGT:
5641 case UNGT: case UNGE:
5642 case UNLT: case UNLE:
5643 case UNORDERED: case ORDERED:
5644 /* If the first operand is a condition code, we can't do anything
5645 with it. */
5646 if (GET_CODE (XEXP (x, 0)) == COMPARE
5647 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5648 && ! CC0_P (XEXP (x, 0))))
5650 rtx op0 = XEXP (x, 0);
5651 rtx op1 = XEXP (x, 1);
5652 enum rtx_code new_code;
5654 if (GET_CODE (op0) == COMPARE)
5655 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5657 /* Simplify our comparison, if possible. */
5658 new_code = simplify_comparison (code, &op0, &op1);
5660 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5661 if only the low-order bit is possibly nonzero in X (such as when
5662 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5663 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5664 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5665 (plus X 1).
5667 Remove any ZERO_EXTRACT we made when thinking this was a
5668 comparison. It may now be simpler to use, e.g., an AND. If a
5669 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5670 the call to make_compound_operation in the SET case.
5672 Don't apply these optimizations if the caller would
5673 prefer a comparison rather than a value.
5674 E.g., for the condition in an IF_THEN_ELSE most targets need
5675 an explicit comparison. */
5677 if (in_cond)
5680 else if (STORE_FLAG_VALUE == 1
5681 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5682 && op1 == const0_rtx
5683 && mode == GET_MODE (op0)
5684 && nonzero_bits (op0, mode) == 1)
5685 return gen_lowpart (mode,
5686 expand_compound_operation (op0));
5688 else if (STORE_FLAG_VALUE == 1
5689 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5690 && op1 == const0_rtx
5691 && mode == GET_MODE (op0)
5692 && (num_sign_bit_copies (op0, mode)
5693 == GET_MODE_PRECISION (mode)))
5695 op0 = expand_compound_operation (op0);
5696 return simplify_gen_unary (NEG, mode,
5697 gen_lowpart (mode, op0),
5698 mode);
5701 else if (STORE_FLAG_VALUE == 1
5702 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5703 && op1 == const0_rtx
5704 && mode == GET_MODE (op0)
5705 && nonzero_bits (op0, mode) == 1)
5707 op0 = expand_compound_operation (op0);
5708 return simplify_gen_binary (XOR, mode,
5709 gen_lowpart (mode, op0),
5710 const1_rtx);
5713 else if (STORE_FLAG_VALUE == 1
5714 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5715 && op1 == const0_rtx
5716 && mode == GET_MODE (op0)
5717 && (num_sign_bit_copies (op0, mode)
5718 == GET_MODE_PRECISION (mode)))
5720 op0 = expand_compound_operation (op0);
5721 return plus_constant (mode, gen_lowpart (mode, op0), 1);
5724 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5725 those above. */
5726 if (in_cond)
5729 else if (STORE_FLAG_VALUE == -1
5730 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5731 && op1 == const0_rtx
5732 && (num_sign_bit_copies (op0, mode)
5733 == GET_MODE_PRECISION (mode)))
5734 return gen_lowpart (mode,
5735 expand_compound_operation (op0));
5737 else if (STORE_FLAG_VALUE == -1
5738 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5739 && op1 == const0_rtx
5740 && mode == GET_MODE (op0)
5741 && nonzero_bits (op0, mode) == 1)
5743 op0 = expand_compound_operation (op0);
5744 return simplify_gen_unary (NEG, mode,
5745 gen_lowpart (mode, op0),
5746 mode);
5749 else if (STORE_FLAG_VALUE == -1
5750 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5751 && op1 == const0_rtx
5752 && mode == GET_MODE (op0)
5753 && (num_sign_bit_copies (op0, mode)
5754 == GET_MODE_PRECISION (mode)))
5756 op0 = expand_compound_operation (op0);
5757 return simplify_gen_unary (NOT, mode,
5758 gen_lowpart (mode, op0),
5759 mode);
5762 /* If X is 0/1, (eq X 0) is X-1. */
5763 else if (STORE_FLAG_VALUE == -1
5764 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5765 && op1 == const0_rtx
5766 && mode == GET_MODE (op0)
5767 && nonzero_bits (op0, mode) == 1)
5769 op0 = expand_compound_operation (op0);
5770 return plus_constant (mode, gen_lowpart (mode, op0), -1);
5773 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5774 one bit that might be nonzero, we can convert (ne x 0) to
5775 (ashift x c) where C puts the bit in the sign bit. Remove any
5776 AND with STORE_FLAG_VALUE when we are done, since we are only
5777 going to test the sign bit. */
5778 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5779 && HWI_COMPUTABLE_MODE_P (mode)
5780 && val_signbit_p (mode, STORE_FLAG_VALUE)
5781 && op1 == const0_rtx
5782 && mode == GET_MODE (op0)
5783 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5785 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5786 expand_compound_operation (op0),
5787 GET_MODE_PRECISION (mode) - 1 - i);
5788 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5789 return XEXP (x, 0);
5790 else
5791 return x;
5794 /* If the code changed, return a whole new comparison. */
5795 if (new_code != code)
5796 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5798 /* Otherwise, keep this operation, but maybe change its operands.
5799 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5800 SUBST (XEXP (x, 0), op0);
5801 SUBST (XEXP (x, 1), op1);
5803 break;
5805 case IF_THEN_ELSE:
5806 return simplify_if_then_else (x);
5808 case ZERO_EXTRACT:
5809 case SIGN_EXTRACT:
5810 case ZERO_EXTEND:
5811 case SIGN_EXTEND:
5812 /* If we are processing SET_DEST, we are done. */
5813 if (in_dest)
5814 return x;
5816 return expand_compound_operation (x);
5818 case SET:
5819 return simplify_set (x);
5821 case AND:
5822 case IOR:
5823 return simplify_logical (x);
5825 case ASHIFT:
5826 case LSHIFTRT:
5827 case ASHIFTRT:
5828 case ROTATE:
5829 case ROTATERT:
5830 /* If this is a shift by a constant amount, simplify it. */
5831 if (CONST_INT_P (XEXP (x, 1)))
5832 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5833 INTVAL (XEXP (x, 1)));
5835 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5836 SUBST (XEXP (x, 1),
5837 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5838 ((unsigned HOST_WIDE_INT) 1
5839 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5840 - 1,
5841 0));
5842 break;
5844 default:
5845 break;
5848 return x;
5851 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5853 static rtx
5854 simplify_if_then_else (rtx x)
5856 enum machine_mode mode = GET_MODE (x);
5857 rtx cond = XEXP (x, 0);
5858 rtx true_rtx = XEXP (x, 1);
5859 rtx false_rtx = XEXP (x, 2);
5860 enum rtx_code true_code = GET_CODE (cond);
5861 int comparison_p = COMPARISON_P (cond);
5862 rtx temp;
5863 int i;
5864 enum rtx_code false_code;
5865 rtx reversed;
5867 /* Simplify storing of the truth value. */
5868 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5869 return simplify_gen_relational (true_code, mode, VOIDmode,
5870 XEXP (cond, 0), XEXP (cond, 1));
5872 /* Also when the truth value has to be reversed. */
5873 if (comparison_p
5874 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5875 && (reversed = reversed_comparison (cond, mode)))
5876 return reversed;
5878 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5879 in it is being compared against certain values. Get the true and false
5880 comparisons and see if that says anything about the value of each arm. */
5882 if (comparison_p
5883 && ((false_code = reversed_comparison_code (cond, NULL))
5884 != UNKNOWN)
5885 && REG_P (XEXP (cond, 0)))
5887 HOST_WIDE_INT nzb;
5888 rtx from = XEXP (cond, 0);
5889 rtx true_val = XEXP (cond, 1);
5890 rtx false_val = true_val;
5891 int swapped = 0;
5893 /* If FALSE_CODE is EQ, swap the codes and arms. */
5895 if (false_code == EQ)
5897 swapped = 1, true_code = EQ, false_code = NE;
5898 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5901 /* If we are comparing against zero and the expression being tested has
5902 only a single bit that might be nonzero, that is its value when it is
5903 not equal to zero. Similarly if it is known to be -1 or 0. */
5905 if (true_code == EQ && true_val == const0_rtx
5906 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5908 false_code = EQ;
5909 false_val = gen_int_mode (nzb, GET_MODE (from));
5911 else if (true_code == EQ && true_val == const0_rtx
5912 && (num_sign_bit_copies (from, GET_MODE (from))
5913 == GET_MODE_PRECISION (GET_MODE (from))))
5915 false_code = EQ;
5916 false_val = constm1_rtx;
5919 /* Now simplify an arm if we know the value of the register in the
5920 branch and it is used in the arm. Be careful due to the potential
5921 of locally-shared RTL. */
5923 if (reg_mentioned_p (from, true_rtx))
5924 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5925 from, true_val),
5926 pc_rtx, pc_rtx, 0, 0, 0);
5927 if (reg_mentioned_p (from, false_rtx))
5928 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5929 from, false_val),
5930 pc_rtx, pc_rtx, 0, 0, 0);
5932 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5933 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5935 true_rtx = XEXP (x, 1);
5936 false_rtx = XEXP (x, 2);
5937 true_code = GET_CODE (cond);
5940 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5941 reversed, do so to avoid needing two sets of patterns for
5942 subtract-and-branch insns. Similarly if we have a constant in the true
5943 arm, the false arm is the same as the first operand of the comparison, or
5944 the false arm is more complicated than the true arm. */
5946 if (comparison_p
5947 && reversed_comparison_code (cond, NULL) != UNKNOWN
5948 && (true_rtx == pc_rtx
5949 || (CONSTANT_P (true_rtx)
5950 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
5951 || true_rtx == const0_rtx
5952 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5953 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5954 && !OBJECT_P (false_rtx))
5955 || reg_mentioned_p (true_rtx, false_rtx)
5956 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5958 true_code = reversed_comparison_code (cond, NULL);
5959 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5960 SUBST (XEXP (x, 1), false_rtx);
5961 SUBST (XEXP (x, 2), true_rtx);
5963 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5964 cond = XEXP (x, 0);
5966 /* It is possible that the conditional has been simplified out. */
5967 true_code = GET_CODE (cond);
5968 comparison_p = COMPARISON_P (cond);
5971 /* If the two arms are identical, we don't need the comparison. */
5973 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5974 return true_rtx;
5976 /* Convert a == b ? b : a to "a". */
5977 if (true_code == EQ && ! side_effects_p (cond)
5978 && !HONOR_NANS (mode)
5979 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5980 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5981 return false_rtx;
5982 else if (true_code == NE && ! side_effects_p (cond)
5983 && !HONOR_NANS (mode)
5984 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5985 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5986 return true_rtx;
5988 /* Look for cases where we have (abs x) or (neg (abs X)). */
5990 if (GET_MODE_CLASS (mode) == MODE_INT
5991 && comparison_p
5992 && XEXP (cond, 1) == const0_rtx
5993 && GET_CODE (false_rtx) == NEG
5994 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5995 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5996 && ! side_effects_p (true_rtx))
5997 switch (true_code)
5999 case GT:
6000 case GE:
6001 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6002 case LT:
6003 case LE:
6004 return
6005 simplify_gen_unary (NEG, mode,
6006 simplify_gen_unary (ABS, mode, true_rtx, mode),
6007 mode);
6008 default:
6009 break;
6012 /* Look for MIN or MAX. */
6014 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6015 && comparison_p
6016 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6017 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6018 && ! side_effects_p (cond))
6019 switch (true_code)
6021 case GE:
6022 case GT:
6023 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6024 case LE:
6025 case LT:
6026 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6027 case GEU:
6028 case GTU:
6029 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6030 case LEU:
6031 case LTU:
6032 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6033 default:
6034 break;
6037 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6038 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6039 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6040 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6041 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6042 neither 1 or -1, but it isn't worth checking for. */
6044 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6045 && comparison_p
6046 && GET_MODE_CLASS (mode) == MODE_INT
6047 && ! side_effects_p (x))
6049 rtx t = make_compound_operation (true_rtx, SET);
6050 rtx f = make_compound_operation (false_rtx, SET);
6051 rtx cond_op0 = XEXP (cond, 0);
6052 rtx cond_op1 = XEXP (cond, 1);
6053 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6054 enum machine_mode m = mode;
6055 rtx z = 0, c1 = NULL_RTX;
6057 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6058 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6059 || GET_CODE (t) == ASHIFT
6060 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6061 && rtx_equal_p (XEXP (t, 0), f))
6062 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6064 /* If an identity-zero op is commutative, check whether there
6065 would be a match if we swapped the operands. */
6066 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6067 || GET_CODE (t) == XOR)
6068 && rtx_equal_p (XEXP (t, 1), f))
6069 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6070 else if (GET_CODE (t) == SIGN_EXTEND
6071 && (GET_CODE (XEXP (t, 0)) == PLUS
6072 || GET_CODE (XEXP (t, 0)) == MINUS
6073 || GET_CODE (XEXP (t, 0)) == IOR
6074 || GET_CODE (XEXP (t, 0)) == XOR
6075 || GET_CODE (XEXP (t, 0)) == ASHIFT
6076 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6077 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6078 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6079 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6080 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6081 && (num_sign_bit_copies (f, GET_MODE (f))
6082 > (unsigned int)
6083 (GET_MODE_PRECISION (mode)
6084 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6086 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6087 extend_op = SIGN_EXTEND;
6088 m = GET_MODE (XEXP (t, 0));
6090 else if (GET_CODE (t) == SIGN_EXTEND
6091 && (GET_CODE (XEXP (t, 0)) == PLUS
6092 || GET_CODE (XEXP (t, 0)) == IOR
6093 || GET_CODE (XEXP (t, 0)) == XOR)
6094 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6095 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6096 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6097 && (num_sign_bit_copies (f, GET_MODE (f))
6098 > (unsigned int)
6099 (GET_MODE_PRECISION (mode)
6100 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6102 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6103 extend_op = SIGN_EXTEND;
6104 m = GET_MODE (XEXP (t, 0));
6106 else if (GET_CODE (t) == ZERO_EXTEND
6107 && (GET_CODE (XEXP (t, 0)) == PLUS
6108 || GET_CODE (XEXP (t, 0)) == MINUS
6109 || GET_CODE (XEXP (t, 0)) == IOR
6110 || GET_CODE (XEXP (t, 0)) == XOR
6111 || GET_CODE (XEXP (t, 0)) == ASHIFT
6112 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6113 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6114 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6115 && HWI_COMPUTABLE_MODE_P (mode)
6116 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6117 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6118 && ((nonzero_bits (f, GET_MODE (f))
6119 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6120 == 0))
6122 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6123 extend_op = ZERO_EXTEND;
6124 m = GET_MODE (XEXP (t, 0));
6126 else if (GET_CODE (t) == ZERO_EXTEND
6127 && (GET_CODE (XEXP (t, 0)) == PLUS
6128 || GET_CODE (XEXP (t, 0)) == IOR
6129 || GET_CODE (XEXP (t, 0)) == XOR)
6130 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6131 && HWI_COMPUTABLE_MODE_P (mode)
6132 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6133 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6134 && ((nonzero_bits (f, GET_MODE (f))
6135 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6136 == 0))
6138 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6139 extend_op = ZERO_EXTEND;
6140 m = GET_MODE (XEXP (t, 0));
6143 if (z)
6145 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6146 cond_op0, cond_op1),
6147 pc_rtx, pc_rtx, 0, 0, 0);
6148 temp = simplify_gen_binary (MULT, m, temp,
6149 simplify_gen_binary (MULT, m, c1,
6150 const_true_rtx));
6151 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6152 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6154 if (extend_op != UNKNOWN)
6155 temp = simplify_gen_unary (extend_op, mode, temp, m);
6157 return temp;
6161 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6162 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6163 negation of a single bit, we can convert this operation to a shift. We
6164 can actually do this more generally, but it doesn't seem worth it. */
6166 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6167 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6168 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6169 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6170 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6171 == GET_MODE_PRECISION (mode))
6172 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6173 return
6174 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6175 gen_lowpart (mode, XEXP (cond, 0)), i);
6177 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6178 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6179 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6180 && GET_MODE (XEXP (cond, 0)) == mode
6181 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6182 == nonzero_bits (XEXP (cond, 0), mode)
6183 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6184 return XEXP (cond, 0);
6186 return x;
6189 /* Simplify X, a SET expression. Return the new expression. */
6191 static rtx
6192 simplify_set (rtx x)
6194 rtx src = SET_SRC (x);
6195 rtx dest = SET_DEST (x);
6196 enum machine_mode mode
6197 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6198 rtx other_insn;
6199 rtx *cc_use;
6201 /* (set (pc) (return)) gets written as (return). */
6202 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6203 return src;
6205 /* Now that we know for sure which bits of SRC we are using, see if we can
6206 simplify the expression for the object knowing that we only need the
6207 low-order bits. */
6209 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6211 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6212 SUBST (SET_SRC (x), src);
6215 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6216 the comparison result and try to simplify it unless we already have used
6217 undobuf.other_insn. */
6218 if ((GET_MODE_CLASS (mode) == MODE_CC
6219 || GET_CODE (src) == COMPARE
6220 || CC0_P (dest))
6221 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6222 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6223 && COMPARISON_P (*cc_use)
6224 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6226 enum rtx_code old_code = GET_CODE (*cc_use);
6227 enum rtx_code new_code;
6228 rtx op0, op1, tmp;
6229 int other_changed = 0;
6230 rtx inner_compare = NULL_RTX;
6231 enum machine_mode compare_mode = GET_MODE (dest);
6233 if (GET_CODE (src) == COMPARE)
6235 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6236 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6238 inner_compare = op0;
6239 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6242 else
6243 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6245 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6246 op0, op1);
6247 if (!tmp)
6248 new_code = old_code;
6249 else if (!CONSTANT_P (tmp))
6251 new_code = GET_CODE (tmp);
6252 op0 = XEXP (tmp, 0);
6253 op1 = XEXP (tmp, 1);
6255 else
6257 rtx pat = PATTERN (other_insn);
6258 undobuf.other_insn = other_insn;
6259 SUBST (*cc_use, tmp);
6261 /* Attempt to simplify CC user. */
6262 if (GET_CODE (pat) == SET)
6264 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6265 if (new_rtx != NULL_RTX)
6266 SUBST (SET_SRC (pat), new_rtx);
6269 /* Convert X into a no-op move. */
6270 SUBST (SET_DEST (x), pc_rtx);
6271 SUBST (SET_SRC (x), pc_rtx);
6272 return x;
6275 /* Simplify our comparison, if possible. */
6276 new_code = simplify_comparison (new_code, &op0, &op1);
6278 #ifdef SELECT_CC_MODE
6279 /* If this machine has CC modes other than CCmode, check to see if we
6280 need to use a different CC mode here. */
6281 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6282 compare_mode = GET_MODE (op0);
6283 else if (inner_compare
6284 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6285 && new_code == old_code
6286 && op0 == XEXP (inner_compare, 0)
6287 && op1 == XEXP (inner_compare, 1))
6288 compare_mode = GET_MODE (inner_compare);
6289 else
6290 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6292 #ifndef HAVE_cc0
6293 /* If the mode changed, we have to change SET_DEST, the mode in the
6294 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6295 a hard register, just build new versions with the proper mode. If it
6296 is a pseudo, we lose unless it is only time we set the pseudo, in
6297 which case we can safely change its mode. */
6298 if (compare_mode != GET_MODE (dest))
6300 if (can_change_dest_mode (dest, 0, compare_mode))
6302 unsigned int regno = REGNO (dest);
6303 rtx new_dest;
6305 if (regno < FIRST_PSEUDO_REGISTER)
6306 new_dest = gen_rtx_REG (compare_mode, regno);
6307 else
6309 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6310 new_dest = regno_reg_rtx[regno];
6313 SUBST (SET_DEST (x), new_dest);
6314 SUBST (XEXP (*cc_use, 0), new_dest);
6315 other_changed = 1;
6317 dest = new_dest;
6320 #endif /* cc0 */
6321 #endif /* SELECT_CC_MODE */
6323 /* If the code changed, we have to build a new comparison in
6324 undobuf.other_insn. */
6325 if (new_code != old_code)
6327 int other_changed_previously = other_changed;
6328 unsigned HOST_WIDE_INT mask;
6329 rtx old_cc_use = *cc_use;
6331 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6332 dest, const0_rtx));
6333 other_changed = 1;
6335 /* If the only change we made was to change an EQ into an NE or
6336 vice versa, OP0 has only one bit that might be nonzero, and OP1
6337 is zero, check if changing the user of the condition code will
6338 produce a valid insn. If it won't, we can keep the original code
6339 in that insn by surrounding our operation with an XOR. */
6341 if (((old_code == NE && new_code == EQ)
6342 || (old_code == EQ && new_code == NE))
6343 && ! other_changed_previously && op1 == const0_rtx
6344 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6345 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6347 rtx pat = PATTERN (other_insn), note = 0;
6349 if ((recog_for_combine (&pat, other_insn, &note) < 0
6350 && ! check_asm_operands (pat)))
6352 *cc_use = old_cc_use;
6353 other_changed = 0;
6355 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
6356 op0, GEN_INT (mask));
6361 if (other_changed)
6362 undobuf.other_insn = other_insn;
6364 /* Otherwise, if we didn't previously have a COMPARE in the
6365 correct mode, we need one. */
6366 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6368 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6369 src = SET_SRC (x);
6371 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6373 SUBST (SET_SRC (x), op0);
6374 src = SET_SRC (x);
6376 /* Otherwise, update the COMPARE if needed. */
6377 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6379 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6380 src = SET_SRC (x);
6383 else
6385 /* Get SET_SRC in a form where we have placed back any
6386 compound expressions. Then do the checks below. */
6387 src = make_compound_operation (src, SET);
6388 SUBST (SET_SRC (x), src);
6391 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6392 and X being a REG or (subreg (reg)), we may be able to convert this to
6393 (set (subreg:m2 x) (op)).
6395 We can always do this if M1 is narrower than M2 because that means that
6396 we only care about the low bits of the result.
6398 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6399 perform a narrower operation than requested since the high-order bits will
6400 be undefined. On machine where it is defined, this transformation is safe
6401 as long as M1 and M2 have the same number of words. */
6403 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6404 && !OBJECT_P (SUBREG_REG (src))
6405 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6406 / UNITS_PER_WORD)
6407 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6408 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6409 #ifndef WORD_REGISTER_OPERATIONS
6410 && (GET_MODE_SIZE (GET_MODE (src))
6411 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6412 #endif
6413 #ifdef CANNOT_CHANGE_MODE_CLASS
6414 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6415 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6416 GET_MODE (SUBREG_REG (src)),
6417 GET_MODE (src)))
6418 #endif
6419 && (REG_P (dest)
6420 || (GET_CODE (dest) == SUBREG
6421 && REG_P (SUBREG_REG (dest)))))
6423 SUBST (SET_DEST (x),
6424 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6425 dest));
6426 SUBST (SET_SRC (x), SUBREG_REG (src));
6428 src = SET_SRC (x), dest = SET_DEST (x);
6431 #ifdef HAVE_cc0
6432 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6433 in SRC. */
6434 if (dest == cc0_rtx
6435 && GET_CODE (src) == SUBREG
6436 && subreg_lowpart_p (src)
6437 && (GET_MODE_PRECISION (GET_MODE (src))
6438 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6440 rtx inner = SUBREG_REG (src);
6441 enum machine_mode inner_mode = GET_MODE (inner);
6443 /* Here we make sure that we don't have a sign bit on. */
6444 if (val_signbit_known_clear_p (GET_MODE (src),
6445 nonzero_bits (inner, inner_mode)))
6447 SUBST (SET_SRC (x), inner);
6448 src = SET_SRC (x);
6451 #endif
6453 #ifdef LOAD_EXTEND_OP
6454 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6455 would require a paradoxical subreg. Replace the subreg with a
6456 zero_extend to avoid the reload that would otherwise be required. */
6458 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6459 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6460 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6461 && SUBREG_BYTE (src) == 0
6462 && paradoxical_subreg_p (src)
6463 && MEM_P (SUBREG_REG (src)))
6465 SUBST (SET_SRC (x),
6466 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6467 GET_MODE (src), SUBREG_REG (src)));
6469 src = SET_SRC (x);
6471 #endif
6473 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6474 are comparing an item known to be 0 or -1 against 0, use a logical
6475 operation instead. Check for one of the arms being an IOR of the other
6476 arm with some value. We compute three terms to be IOR'ed together. In
6477 practice, at most two will be nonzero. Then we do the IOR's. */
6479 if (GET_CODE (dest) != PC
6480 && GET_CODE (src) == IF_THEN_ELSE
6481 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6482 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6483 && XEXP (XEXP (src, 0), 1) == const0_rtx
6484 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6485 #ifdef HAVE_conditional_move
6486 && ! can_conditionally_move_p (GET_MODE (src))
6487 #endif
6488 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6489 GET_MODE (XEXP (XEXP (src, 0), 0)))
6490 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6491 && ! side_effects_p (src))
6493 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6494 ? XEXP (src, 1) : XEXP (src, 2));
6495 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6496 ? XEXP (src, 2) : XEXP (src, 1));
6497 rtx term1 = const0_rtx, term2, term3;
6499 if (GET_CODE (true_rtx) == IOR
6500 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6501 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6502 else if (GET_CODE (true_rtx) == IOR
6503 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6504 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6505 else if (GET_CODE (false_rtx) == IOR
6506 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6507 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6508 else if (GET_CODE (false_rtx) == IOR
6509 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6510 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6512 term2 = simplify_gen_binary (AND, GET_MODE (src),
6513 XEXP (XEXP (src, 0), 0), true_rtx);
6514 term3 = simplify_gen_binary (AND, GET_MODE (src),
6515 simplify_gen_unary (NOT, GET_MODE (src),
6516 XEXP (XEXP (src, 0), 0),
6517 GET_MODE (src)),
6518 false_rtx);
6520 SUBST (SET_SRC (x),
6521 simplify_gen_binary (IOR, GET_MODE (src),
6522 simplify_gen_binary (IOR, GET_MODE (src),
6523 term1, term2),
6524 term3));
6526 src = SET_SRC (x);
6529 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6530 whole thing fail. */
6531 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6532 return src;
6533 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6534 return dest;
6535 else
6536 /* Convert this into a field assignment operation, if possible. */
6537 return make_field_assignment (x);
6540 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6541 result. */
6543 static rtx
6544 simplify_logical (rtx x)
6546 enum machine_mode mode = GET_MODE (x);
6547 rtx op0 = XEXP (x, 0);
6548 rtx op1 = XEXP (x, 1);
6550 switch (GET_CODE (x))
6552 case AND:
6553 /* We can call simplify_and_const_int only if we don't lose
6554 any (sign) bits when converting INTVAL (op1) to
6555 "unsigned HOST_WIDE_INT". */
6556 if (CONST_INT_P (op1)
6557 && (HWI_COMPUTABLE_MODE_P (mode)
6558 || INTVAL (op1) > 0))
6560 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6561 if (GET_CODE (x) != AND)
6562 return x;
6564 op0 = XEXP (x, 0);
6565 op1 = XEXP (x, 1);
6568 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6569 apply the distributive law and then the inverse distributive
6570 law to see if things simplify. */
6571 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6573 rtx result = distribute_and_simplify_rtx (x, 0);
6574 if (result)
6575 return result;
6577 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6579 rtx result = distribute_and_simplify_rtx (x, 1);
6580 if (result)
6581 return result;
6583 break;
6585 case IOR:
6586 /* If we have (ior (and A B) C), apply the distributive law and then
6587 the inverse distributive law to see if things simplify. */
6589 if (GET_CODE (op0) == AND)
6591 rtx result = distribute_and_simplify_rtx (x, 0);
6592 if (result)
6593 return result;
6596 if (GET_CODE (op1) == AND)
6598 rtx result = distribute_and_simplify_rtx (x, 1);
6599 if (result)
6600 return result;
6602 break;
6604 default:
6605 gcc_unreachable ();
6608 return x;
6611 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6612 operations" because they can be replaced with two more basic operations.
6613 ZERO_EXTEND is also considered "compound" because it can be replaced with
6614 an AND operation, which is simpler, though only one operation.
6616 The function expand_compound_operation is called with an rtx expression
6617 and will convert it to the appropriate shifts and AND operations,
6618 simplifying at each stage.
6620 The function make_compound_operation is called to convert an expression
6621 consisting of shifts and ANDs into the equivalent compound expression.
6622 It is the inverse of this function, loosely speaking. */
6624 static rtx
6625 expand_compound_operation (rtx x)
6627 unsigned HOST_WIDE_INT pos = 0, len;
6628 int unsignedp = 0;
6629 unsigned int modewidth;
6630 rtx tem;
6632 switch (GET_CODE (x))
6634 case ZERO_EXTEND:
6635 unsignedp = 1;
6636 case SIGN_EXTEND:
6637 /* We can't necessarily use a const_int for a multiword mode;
6638 it depends on implicitly extending the value.
6639 Since we don't know the right way to extend it,
6640 we can't tell whether the implicit way is right.
6642 Even for a mode that is no wider than a const_int,
6643 we can't win, because we need to sign extend one of its bits through
6644 the rest of it, and we don't know which bit. */
6645 if (CONST_INT_P (XEXP (x, 0)))
6646 return x;
6648 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6649 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6650 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6651 reloaded. If not for that, MEM's would very rarely be safe.
6653 Reject MODEs bigger than a word, because we might not be able
6654 to reference a two-register group starting with an arbitrary register
6655 (and currently gen_lowpart might crash for a SUBREG). */
6657 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6658 return x;
6660 /* Reject MODEs that aren't scalar integers because turning vector
6661 or complex modes into shifts causes problems. */
6663 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6664 return x;
6666 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6667 /* If the inner object has VOIDmode (the only way this can happen
6668 is if it is an ASM_OPERANDS), we can't do anything since we don't
6669 know how much masking to do. */
6670 if (len == 0)
6671 return x;
6673 break;
6675 case ZERO_EXTRACT:
6676 unsignedp = 1;
6678 /* ... fall through ... */
6680 case SIGN_EXTRACT:
6681 /* If the operand is a CLOBBER, just return it. */
6682 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6683 return XEXP (x, 0);
6685 if (!CONST_INT_P (XEXP (x, 1))
6686 || !CONST_INT_P (XEXP (x, 2))
6687 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6688 return x;
6690 /* Reject MODEs that aren't scalar integers because turning vector
6691 or complex modes into shifts causes problems. */
6693 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6694 return x;
6696 len = INTVAL (XEXP (x, 1));
6697 pos = INTVAL (XEXP (x, 2));
6699 /* This should stay within the object being extracted, fail otherwise. */
6700 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
6701 return x;
6703 if (BITS_BIG_ENDIAN)
6704 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
6706 break;
6708 default:
6709 return x;
6711 /* Convert sign extension to zero extension, if we know that the high
6712 bit is not set, as this is easier to optimize. It will be converted
6713 back to cheaper alternative in make_extraction. */
6714 if (GET_CODE (x) == SIGN_EXTEND
6715 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6716 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6717 & ~(((unsigned HOST_WIDE_INT)
6718 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6719 >> 1))
6720 == 0)))
6722 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6723 rtx temp2 = expand_compound_operation (temp);
6725 /* Make sure this is a profitable operation. */
6726 if (set_src_cost (x, optimize_this_for_speed_p)
6727 > set_src_cost (temp2, optimize_this_for_speed_p))
6728 return temp2;
6729 else if (set_src_cost (x, optimize_this_for_speed_p)
6730 > set_src_cost (temp, optimize_this_for_speed_p))
6731 return temp;
6732 else
6733 return x;
6736 /* We can optimize some special cases of ZERO_EXTEND. */
6737 if (GET_CODE (x) == ZERO_EXTEND)
6739 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6740 know that the last value didn't have any inappropriate bits
6741 set. */
6742 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6743 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6744 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6745 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6746 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6747 return XEXP (XEXP (x, 0), 0);
6749 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6750 if (GET_CODE (XEXP (x, 0)) == SUBREG
6751 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6752 && subreg_lowpart_p (XEXP (x, 0))
6753 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
6754 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6755 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6756 return SUBREG_REG (XEXP (x, 0));
6758 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6759 is a comparison and STORE_FLAG_VALUE permits. This is like
6760 the first case, but it works even when GET_MODE (x) is larger
6761 than HOST_WIDE_INT. */
6762 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6763 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6764 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6765 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6766 <= HOST_BITS_PER_WIDE_INT)
6767 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6768 return XEXP (XEXP (x, 0), 0);
6770 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6771 if (GET_CODE (XEXP (x, 0)) == SUBREG
6772 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6773 && subreg_lowpart_p (XEXP (x, 0))
6774 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6775 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
6776 <= HOST_BITS_PER_WIDE_INT)
6777 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6778 return SUBREG_REG (XEXP (x, 0));
6782 /* If we reach here, we want to return a pair of shifts. The inner
6783 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6784 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6785 logical depending on the value of UNSIGNEDP.
6787 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6788 converted into an AND of a shift.
6790 We must check for the case where the left shift would have a negative
6791 count. This can happen in a case like (x >> 31) & 255 on machines
6792 that can't shift by a constant. On those machines, we would first
6793 combine the shift with the AND to produce a variable-position
6794 extraction. Then the constant of 31 would be substituted in
6795 to produce such a position. */
6797 modewidth = GET_MODE_PRECISION (GET_MODE (x));
6798 if (modewidth >= pos + len)
6800 enum machine_mode mode = GET_MODE (x);
6801 tem = gen_lowpart (mode, XEXP (x, 0));
6802 if (!tem || GET_CODE (tem) == CLOBBER)
6803 return x;
6804 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6805 tem, modewidth - pos - len);
6806 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6807 mode, tem, modewidth - len);
6809 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6810 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6811 simplify_shift_const (NULL_RTX, LSHIFTRT,
6812 GET_MODE (x),
6813 XEXP (x, 0), pos),
6814 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
6815 else
6816 /* Any other cases we can't handle. */
6817 return x;
6819 /* If we couldn't do this for some reason, return the original
6820 expression. */
6821 if (GET_CODE (tem) == CLOBBER)
6822 return x;
6824 return tem;
6827 /* X is a SET which contains an assignment of one object into
6828 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6829 or certain SUBREGS). If possible, convert it into a series of
6830 logical operations.
6832 We half-heartedly support variable positions, but do not at all
6833 support variable lengths. */
6835 static const_rtx
6836 expand_field_assignment (const_rtx x)
6838 rtx inner;
6839 rtx pos; /* Always counts from low bit. */
6840 int len;
6841 rtx mask, cleared, masked;
6842 enum machine_mode compute_mode;
6844 /* Loop until we find something we can't simplify. */
6845 while (1)
6847 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6848 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6850 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6851 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
6852 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6854 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6855 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
6857 inner = XEXP (SET_DEST (x), 0);
6858 len = INTVAL (XEXP (SET_DEST (x), 1));
6859 pos = XEXP (SET_DEST (x), 2);
6861 /* A constant position should stay within the width of INNER. */
6862 if (CONST_INT_P (pos)
6863 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
6864 break;
6866 if (BITS_BIG_ENDIAN)
6868 if (CONST_INT_P (pos))
6869 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
6870 - INTVAL (pos));
6871 else if (GET_CODE (pos) == MINUS
6872 && CONST_INT_P (XEXP (pos, 1))
6873 && (INTVAL (XEXP (pos, 1))
6874 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
6875 /* If position is ADJUST - X, new position is X. */
6876 pos = XEXP (pos, 0);
6877 else
6878 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6879 GEN_INT (GET_MODE_PRECISION (
6880 GET_MODE (inner))
6881 - len),
6882 pos);
6886 /* A SUBREG between two modes that occupy the same numbers of words
6887 can be done by moving the SUBREG to the source. */
6888 else if (GET_CODE (SET_DEST (x)) == SUBREG
6889 /* We need SUBREGs to compute nonzero_bits properly. */
6890 && nonzero_sign_valid
6891 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6892 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6893 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6894 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6896 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6897 gen_lowpart
6898 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6899 SET_SRC (x)));
6900 continue;
6902 else
6903 break;
6905 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6906 inner = SUBREG_REG (inner);
6908 compute_mode = GET_MODE (inner);
6910 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6911 if (! SCALAR_INT_MODE_P (compute_mode))
6913 enum machine_mode imode;
6915 /* Don't do anything for vector or complex integral types. */
6916 if (! FLOAT_MODE_P (compute_mode))
6917 break;
6919 /* Try to find an integral mode to pun with. */
6920 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6921 if (imode == BLKmode)
6922 break;
6924 compute_mode = imode;
6925 inner = gen_lowpart (imode, inner);
6928 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6929 if (len >= HOST_BITS_PER_WIDE_INT)
6930 break;
6932 /* Now compute the equivalent expression. Make a copy of INNER
6933 for the SET_DEST in case it is a MEM into which we will substitute;
6934 we don't want shared RTL in that case. */
6935 mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << len) - 1);
6936 cleared = simplify_gen_binary (AND, compute_mode,
6937 simplify_gen_unary (NOT, compute_mode,
6938 simplify_gen_binary (ASHIFT,
6939 compute_mode,
6940 mask, pos),
6941 compute_mode),
6942 inner);
6943 masked = simplify_gen_binary (ASHIFT, compute_mode,
6944 simplify_gen_binary (
6945 AND, compute_mode,
6946 gen_lowpart (compute_mode, SET_SRC (x)),
6947 mask),
6948 pos);
6950 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6951 simplify_gen_binary (IOR, compute_mode,
6952 cleared, masked));
6955 return x;
6958 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6959 it is an RTX that represents the (variable) starting position; otherwise,
6960 POS is the (constant) starting bit position. Both are counted from the LSB.
6962 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
6964 IN_DEST is nonzero if this is a reference in the destination of a SET.
6965 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6966 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6967 be used.
6969 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6970 ZERO_EXTRACT should be built even for bits starting at bit 0.
6972 MODE is the desired mode of the result (if IN_DEST == 0).
6974 The result is an RTX for the extraction or NULL_RTX if the target
6975 can't handle it. */
6977 static rtx
6978 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6979 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6980 int in_dest, int in_compare)
6982 /* This mode describes the size of the storage area
6983 to fetch the overall value from. Within that, we
6984 ignore the POS lowest bits, etc. */
6985 enum machine_mode is_mode = GET_MODE (inner);
6986 enum machine_mode inner_mode;
6987 enum machine_mode wanted_inner_mode;
6988 enum machine_mode wanted_inner_reg_mode = word_mode;
6989 enum machine_mode pos_mode = word_mode;
6990 enum machine_mode extraction_mode = word_mode;
6991 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6992 rtx new_rtx = 0;
6993 rtx orig_pos_rtx = pos_rtx;
6994 HOST_WIDE_INT orig_pos;
6996 if (pos_rtx && CONST_INT_P (pos_rtx))
6997 pos = INTVAL (pos_rtx), pos_rtx = 0;
6999 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7001 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7002 consider just the QI as the memory to extract from.
7003 The subreg adds or removes high bits; its mode is
7004 irrelevant to the meaning of this extraction,
7005 since POS and LEN count from the lsb. */
7006 if (MEM_P (SUBREG_REG (inner)))
7007 is_mode = GET_MODE (SUBREG_REG (inner));
7008 inner = SUBREG_REG (inner);
7010 else if (GET_CODE (inner) == ASHIFT
7011 && CONST_INT_P (XEXP (inner, 1))
7012 && pos_rtx == 0 && pos == 0
7013 && len > UINTVAL (XEXP (inner, 1)))
7015 /* We're extracting the least significant bits of an rtx
7016 (ashift X (const_int C)), where LEN > C. Extract the
7017 least significant (LEN - C) bits of X, giving an rtx
7018 whose mode is MODE, then shift it left C times. */
7019 new_rtx = make_extraction (mode, XEXP (inner, 0),
7020 0, 0, len - INTVAL (XEXP (inner, 1)),
7021 unsignedp, in_dest, in_compare);
7022 if (new_rtx != 0)
7023 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7025 else if (GET_CODE (inner) == TRUNCATE)
7026 inner = XEXP (inner, 0);
7028 inner_mode = GET_MODE (inner);
7030 /* See if this can be done without an extraction. We never can if the
7031 width of the field is not the same as that of some integer mode. For
7032 registers, we can only avoid the extraction if the position is at the
7033 low-order bit and this is either not in the destination or we have the
7034 appropriate STRICT_LOW_PART operation available.
7036 For MEM, we can avoid an extract if the field starts on an appropriate
7037 boundary and we can change the mode of the memory reference. */
7039 if (tmode != BLKmode
7040 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7041 && !MEM_P (inner)
7042 && (inner_mode == tmode
7043 || !REG_P (inner)
7044 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7045 || reg_truncated_to_mode (tmode, inner))
7046 && (! in_dest
7047 || (REG_P (inner)
7048 && have_insn_for (STRICT_LOW_PART, tmode))))
7049 || (MEM_P (inner) && pos_rtx == 0
7050 && (pos
7051 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7052 : BITS_PER_UNIT)) == 0
7053 /* We can't do this if we are widening INNER_MODE (it
7054 may not be aligned, for one thing). */
7055 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7056 && (inner_mode == tmode
7057 || (! mode_dependent_address_p (XEXP (inner, 0),
7058 MEM_ADDR_SPACE (inner))
7059 && ! MEM_VOLATILE_P (inner))))))
7061 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7062 field. If the original and current mode are the same, we need not
7063 adjust the offset. Otherwise, we do if bytes big endian.
7065 If INNER is not a MEM, get a piece consisting of just the field
7066 of interest (in this case POS % BITS_PER_WORD must be 0). */
7068 if (MEM_P (inner))
7070 HOST_WIDE_INT offset;
7072 /* POS counts from lsb, but make OFFSET count in memory order. */
7073 if (BYTES_BIG_ENDIAN)
7074 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7075 else
7076 offset = pos / BITS_PER_UNIT;
7078 new_rtx = adjust_address_nv (inner, tmode, offset);
7080 else if (REG_P (inner))
7082 if (tmode != inner_mode)
7084 /* We can't call gen_lowpart in a DEST since we
7085 always want a SUBREG (see below) and it would sometimes
7086 return a new hard register. */
7087 if (pos || in_dest)
7089 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7091 if (WORDS_BIG_ENDIAN
7092 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7093 final_word = ((GET_MODE_SIZE (inner_mode)
7094 - GET_MODE_SIZE (tmode))
7095 / UNITS_PER_WORD) - final_word;
7097 final_word *= UNITS_PER_WORD;
7098 if (BYTES_BIG_ENDIAN &&
7099 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7100 final_word += (GET_MODE_SIZE (inner_mode)
7101 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7103 /* Avoid creating invalid subregs, for example when
7104 simplifying (x>>32)&255. */
7105 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7106 return NULL_RTX;
7108 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7110 else
7111 new_rtx = gen_lowpart (tmode, inner);
7113 else
7114 new_rtx = inner;
7116 else
7117 new_rtx = force_to_mode (inner, tmode,
7118 len >= HOST_BITS_PER_WIDE_INT
7119 ? ~(unsigned HOST_WIDE_INT) 0
7120 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7123 /* If this extraction is going into the destination of a SET,
7124 make a STRICT_LOW_PART unless we made a MEM. */
7126 if (in_dest)
7127 return (MEM_P (new_rtx) ? new_rtx
7128 : (GET_CODE (new_rtx) != SUBREG
7129 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7130 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7132 if (mode == tmode)
7133 return new_rtx;
7135 if (CONST_SCALAR_INT_P (new_rtx))
7136 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7137 mode, new_rtx, tmode);
7139 /* If we know that no extraneous bits are set, and that the high
7140 bit is not set, convert the extraction to the cheaper of
7141 sign and zero extension, that are equivalent in these cases. */
7142 if (flag_expensive_optimizations
7143 && (HWI_COMPUTABLE_MODE_P (tmode)
7144 && ((nonzero_bits (new_rtx, tmode)
7145 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7146 == 0)))
7148 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7149 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7151 /* Prefer ZERO_EXTENSION, since it gives more information to
7152 backends. */
7153 if (set_src_cost (temp, optimize_this_for_speed_p)
7154 <= set_src_cost (temp1, optimize_this_for_speed_p))
7155 return temp;
7156 return temp1;
7159 /* Otherwise, sign- or zero-extend unless we already are in the
7160 proper mode. */
7162 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7163 mode, new_rtx));
7166 /* Unless this is a COMPARE or we have a funny memory reference,
7167 don't do anything with zero-extending field extracts starting at
7168 the low-order bit since they are simple AND operations. */
7169 if (pos_rtx == 0 && pos == 0 && ! in_dest
7170 && ! in_compare && unsignedp)
7171 return 0;
7173 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7174 if the position is not a constant and the length is not 1. In all
7175 other cases, we would only be going outside our object in cases when
7176 an original shift would have been undefined. */
7177 if (MEM_P (inner)
7178 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7179 || (pos_rtx != 0 && len != 1)))
7180 return 0;
7182 enum extraction_pattern pattern = (in_dest ? EP_insv
7183 : unsignedp ? EP_extzv : EP_extv);
7185 /* If INNER is not from memory, we want it to have the mode of a register
7186 extraction pattern's structure operand, or word_mode if there is no
7187 such pattern. The same applies to extraction_mode and pos_mode
7188 and their respective operands.
7190 For memory, assume that the desired extraction_mode and pos_mode
7191 are the same as for a register operation, since at present we don't
7192 have named patterns for aligned memory structures. */
7193 struct extraction_insn insn;
7194 if (get_best_reg_extraction_insn (&insn, pattern,
7195 GET_MODE_BITSIZE (inner_mode), mode))
7197 wanted_inner_reg_mode = insn.struct_mode;
7198 pos_mode = insn.pos_mode;
7199 extraction_mode = insn.field_mode;
7202 /* Never narrow an object, since that might not be safe. */
7204 if (mode != VOIDmode
7205 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7206 extraction_mode = mode;
7208 if (!MEM_P (inner))
7209 wanted_inner_mode = wanted_inner_reg_mode;
7210 else
7212 /* Be careful not to go beyond the extracted object and maintain the
7213 natural alignment of the memory. */
7214 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7215 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7216 > GET_MODE_BITSIZE (wanted_inner_mode))
7218 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7219 gcc_assert (wanted_inner_mode != VOIDmode);
7223 orig_pos = pos;
7225 if (BITS_BIG_ENDIAN)
7227 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7228 BITS_BIG_ENDIAN style. If position is constant, compute new
7229 position. Otherwise, build subtraction.
7230 Note that POS is relative to the mode of the original argument.
7231 If it's a MEM we need to recompute POS relative to that.
7232 However, if we're extracting from (or inserting into) a register,
7233 we want to recompute POS relative to wanted_inner_mode. */
7234 int width = (MEM_P (inner)
7235 ? GET_MODE_BITSIZE (is_mode)
7236 : GET_MODE_BITSIZE (wanted_inner_mode));
7238 if (pos_rtx == 0)
7239 pos = width - len - pos;
7240 else
7241 pos_rtx
7242 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
7243 /* POS may be less than 0 now, but we check for that below.
7244 Note that it can only be less than 0 if !MEM_P (inner). */
7247 /* If INNER has a wider mode, and this is a constant extraction, try to
7248 make it smaller and adjust the byte to point to the byte containing
7249 the value. */
7250 if (wanted_inner_mode != VOIDmode
7251 && inner_mode != wanted_inner_mode
7252 && ! pos_rtx
7253 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7254 && MEM_P (inner)
7255 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7256 && ! MEM_VOLATILE_P (inner))
7258 int offset = 0;
7260 /* The computations below will be correct if the machine is big
7261 endian in both bits and bytes or little endian in bits and bytes.
7262 If it is mixed, we must adjust. */
7264 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7265 adjust OFFSET to compensate. */
7266 if (BYTES_BIG_ENDIAN
7267 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7268 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7270 /* We can now move to the desired byte. */
7271 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7272 * GET_MODE_SIZE (wanted_inner_mode);
7273 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7275 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7276 && is_mode != wanted_inner_mode)
7277 offset = (GET_MODE_SIZE (is_mode)
7278 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7280 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7283 /* If INNER is not memory, get it into the proper mode. If we are changing
7284 its mode, POS must be a constant and smaller than the size of the new
7285 mode. */
7286 else if (!MEM_P (inner))
7288 /* On the LHS, don't create paradoxical subregs implicitely truncating
7289 the register unless TRULY_NOOP_TRUNCATION. */
7290 if (in_dest
7291 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7292 wanted_inner_mode))
7293 return NULL_RTX;
7295 if (GET_MODE (inner) != wanted_inner_mode
7296 && (pos_rtx != 0
7297 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7298 return NULL_RTX;
7300 if (orig_pos < 0)
7301 return NULL_RTX;
7303 inner = force_to_mode (inner, wanted_inner_mode,
7304 pos_rtx
7305 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7306 ? ~(unsigned HOST_WIDE_INT) 0
7307 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7308 << orig_pos),
7312 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7313 have to zero extend. Otherwise, we can just use a SUBREG. */
7314 if (pos_rtx != 0
7315 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7317 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
7319 /* If we know that no extraneous bits are set, and that the high
7320 bit is not set, convert extraction to cheaper one - either
7321 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7322 cases. */
7323 if (flag_expensive_optimizations
7324 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7325 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7326 & ~(((unsigned HOST_WIDE_INT)
7327 GET_MODE_MASK (GET_MODE (pos_rtx)))
7328 >> 1))
7329 == 0)))
7331 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
7333 /* Prefer ZERO_EXTENSION, since it gives more information to
7334 backends. */
7335 if (set_src_cost (temp1, optimize_this_for_speed_p)
7336 < set_src_cost (temp, optimize_this_for_speed_p))
7337 temp = temp1;
7339 pos_rtx = temp;
7342 /* Make POS_RTX unless we already have it and it is correct. If we don't
7343 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7344 be a CONST_INT. */
7345 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7346 pos_rtx = orig_pos_rtx;
7348 else if (pos_rtx == 0)
7349 pos_rtx = GEN_INT (pos);
7351 /* Make the required operation. See if we can use existing rtx. */
7352 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7353 extraction_mode, inner, GEN_INT (len), pos_rtx);
7354 if (! in_dest)
7355 new_rtx = gen_lowpart (mode, new_rtx);
7357 return new_rtx;
7360 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7361 with any other operations in X. Return X without that shift if so. */
7363 static rtx
7364 extract_left_shift (rtx x, int count)
7366 enum rtx_code code = GET_CODE (x);
7367 enum machine_mode mode = GET_MODE (x);
7368 rtx tem;
7370 switch (code)
7372 case ASHIFT:
7373 /* This is the shift itself. If it is wide enough, we will return
7374 either the value being shifted if the shift count is equal to
7375 COUNT or a shift for the difference. */
7376 if (CONST_INT_P (XEXP (x, 1))
7377 && INTVAL (XEXP (x, 1)) >= count)
7378 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7379 INTVAL (XEXP (x, 1)) - count);
7380 break;
7382 case NEG: case NOT:
7383 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7384 return simplify_gen_unary (code, mode, tem, mode);
7386 break;
7388 case PLUS: case IOR: case XOR: case AND:
7389 /* If we can safely shift this constant and we find the inner shift,
7390 make a new operation. */
7391 if (CONST_INT_P (XEXP (x, 1))
7392 && (UINTVAL (XEXP (x, 1))
7393 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7394 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7395 return simplify_gen_binary (code, mode, tem,
7396 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
7398 break;
7400 default:
7401 break;
7404 return 0;
7407 /* Look at the expression rooted at X. Look for expressions
7408 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7409 Form these expressions.
7411 Return the new rtx, usually just X.
7413 Also, for machines like the VAX that don't have logical shift insns,
7414 try to convert logical to arithmetic shift operations in cases where
7415 they are equivalent. This undoes the canonicalizations to logical
7416 shifts done elsewhere.
7418 We try, as much as possible, to re-use rtl expressions to save memory.
7420 IN_CODE says what kind of expression we are processing. Normally, it is
7421 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7422 being kludges), it is MEM. When processing the arguments of a comparison
7423 or a COMPARE against zero, it is COMPARE. */
7426 make_compound_operation (rtx x, enum rtx_code in_code)
7428 enum rtx_code code = GET_CODE (x);
7429 enum machine_mode mode = GET_MODE (x);
7430 int mode_width = GET_MODE_PRECISION (mode);
7431 rtx rhs, lhs;
7432 enum rtx_code next_code;
7433 int i, j;
7434 rtx new_rtx = 0;
7435 rtx tem;
7436 const char *fmt;
7438 /* Select the code to be used in recursive calls. Once we are inside an
7439 address, we stay there. If we have a comparison, set to COMPARE,
7440 but once inside, go back to our default of SET. */
7442 next_code = (code == MEM ? MEM
7443 : ((code == PLUS || code == MINUS)
7444 && SCALAR_INT_MODE_P (mode)) ? MEM
7445 : ((code == COMPARE || COMPARISON_P (x))
7446 && XEXP (x, 1) == const0_rtx) ? COMPARE
7447 : in_code == COMPARE ? SET : in_code);
7449 /* Process depending on the code of this operation. If NEW is set
7450 nonzero, it will be returned. */
7452 switch (code)
7454 case ASHIFT:
7455 /* Convert shifts by constants into multiplications if inside
7456 an address. */
7457 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7458 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7459 && INTVAL (XEXP (x, 1)) >= 0
7460 && SCALAR_INT_MODE_P (mode))
7462 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7463 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7465 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7466 if (GET_CODE (new_rtx) == NEG)
7468 new_rtx = XEXP (new_rtx, 0);
7469 multval = -multval;
7471 multval = trunc_int_for_mode (multval, mode);
7472 new_rtx = gen_rtx_MULT (mode, new_rtx, GEN_INT (multval));
7474 break;
7476 case PLUS:
7477 lhs = XEXP (x, 0);
7478 rhs = XEXP (x, 1);
7479 lhs = make_compound_operation (lhs, next_code);
7480 rhs = make_compound_operation (rhs, next_code);
7481 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7482 && SCALAR_INT_MODE_P (mode))
7484 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7485 XEXP (lhs, 1));
7486 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7488 else if (GET_CODE (lhs) == MULT
7489 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7491 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7492 simplify_gen_unary (NEG, mode,
7493 XEXP (lhs, 1),
7494 mode));
7495 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7497 else
7499 SUBST (XEXP (x, 0), lhs);
7500 SUBST (XEXP (x, 1), rhs);
7501 goto maybe_swap;
7503 x = gen_lowpart (mode, new_rtx);
7504 goto maybe_swap;
7506 case MINUS:
7507 lhs = XEXP (x, 0);
7508 rhs = XEXP (x, 1);
7509 lhs = make_compound_operation (lhs, next_code);
7510 rhs = make_compound_operation (rhs, next_code);
7511 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7512 && SCALAR_INT_MODE_P (mode))
7514 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7515 XEXP (rhs, 1));
7516 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7518 else if (GET_CODE (rhs) == MULT
7519 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7521 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7522 simplify_gen_unary (NEG, mode,
7523 XEXP (rhs, 1),
7524 mode));
7525 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7527 else
7529 SUBST (XEXP (x, 0), lhs);
7530 SUBST (XEXP (x, 1), rhs);
7531 return x;
7533 return gen_lowpart (mode, new_rtx);
7535 case AND:
7536 /* If the second operand is not a constant, we can't do anything
7537 with it. */
7538 if (!CONST_INT_P (XEXP (x, 1)))
7539 break;
7541 /* If the constant is a power of two minus one and the first operand
7542 is a logical right shift, make an extraction. */
7543 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7544 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7546 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7547 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7548 0, in_code == COMPARE);
7551 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7552 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7553 && subreg_lowpart_p (XEXP (x, 0))
7554 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7555 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7557 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7558 next_code);
7559 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7560 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7561 0, in_code == COMPARE);
7563 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7564 else if ((GET_CODE (XEXP (x, 0)) == XOR
7565 || GET_CODE (XEXP (x, 0)) == IOR)
7566 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7567 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7568 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7570 /* Apply the distributive law, and then try to make extractions. */
7571 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7572 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7573 XEXP (x, 1)),
7574 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7575 XEXP (x, 1)));
7576 new_rtx = make_compound_operation (new_rtx, in_code);
7579 /* If we are have (and (rotate X C) M) and C is larger than the number
7580 of bits in M, this is an extraction. */
7582 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7583 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7584 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7585 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7587 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7588 new_rtx = make_extraction (mode, new_rtx,
7589 (GET_MODE_PRECISION (mode)
7590 - INTVAL (XEXP (XEXP (x, 0), 1))),
7591 NULL_RTX, i, 1, 0, in_code == COMPARE);
7594 /* On machines without logical shifts, if the operand of the AND is
7595 a logical shift and our mask turns off all the propagated sign
7596 bits, we can replace the logical shift with an arithmetic shift. */
7597 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7598 && !have_insn_for (LSHIFTRT, mode)
7599 && have_insn_for (ASHIFTRT, mode)
7600 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7601 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7602 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7603 && mode_width <= HOST_BITS_PER_WIDE_INT)
7605 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7607 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7608 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7609 SUBST (XEXP (x, 0),
7610 gen_rtx_ASHIFTRT (mode,
7611 make_compound_operation
7612 (XEXP (XEXP (x, 0), 0), next_code),
7613 XEXP (XEXP (x, 0), 1)));
7616 /* If the constant is one less than a power of two, this might be
7617 representable by an extraction even if no shift is present.
7618 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7619 we are in a COMPARE. */
7620 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7621 new_rtx = make_extraction (mode,
7622 make_compound_operation (XEXP (x, 0),
7623 next_code),
7624 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7626 /* If we are in a comparison and this is an AND with a power of two,
7627 convert this into the appropriate bit extract. */
7628 else if (in_code == COMPARE
7629 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7630 new_rtx = make_extraction (mode,
7631 make_compound_operation (XEXP (x, 0),
7632 next_code),
7633 i, NULL_RTX, 1, 1, 0, 1);
7635 break;
7637 case LSHIFTRT:
7638 /* If the sign bit is known to be zero, replace this with an
7639 arithmetic shift. */
7640 if (have_insn_for (ASHIFTRT, mode)
7641 && ! have_insn_for (LSHIFTRT, mode)
7642 && mode_width <= HOST_BITS_PER_WIDE_INT
7643 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7645 new_rtx = gen_rtx_ASHIFTRT (mode,
7646 make_compound_operation (XEXP (x, 0),
7647 next_code),
7648 XEXP (x, 1));
7649 break;
7652 /* ... fall through ... */
7654 case ASHIFTRT:
7655 lhs = XEXP (x, 0);
7656 rhs = XEXP (x, 1);
7658 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7659 this is a SIGN_EXTRACT. */
7660 if (CONST_INT_P (rhs)
7661 && GET_CODE (lhs) == ASHIFT
7662 && CONST_INT_P (XEXP (lhs, 1))
7663 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7664 && INTVAL (XEXP (lhs, 1)) >= 0
7665 && INTVAL (rhs) < mode_width)
7667 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7668 new_rtx = make_extraction (mode, new_rtx,
7669 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7670 NULL_RTX, mode_width - INTVAL (rhs),
7671 code == LSHIFTRT, 0, in_code == COMPARE);
7672 break;
7675 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7676 If so, try to merge the shifts into a SIGN_EXTEND. We could
7677 also do this for some cases of SIGN_EXTRACT, but it doesn't
7678 seem worth the effort; the case checked for occurs on Alpha. */
7680 if (!OBJECT_P (lhs)
7681 && ! (GET_CODE (lhs) == SUBREG
7682 && (OBJECT_P (SUBREG_REG (lhs))))
7683 && CONST_INT_P (rhs)
7684 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7685 && INTVAL (rhs) < mode_width
7686 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7687 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7688 0, NULL_RTX, mode_width - INTVAL (rhs),
7689 code == LSHIFTRT, 0, in_code == COMPARE);
7691 break;
7693 case SUBREG:
7694 /* Call ourselves recursively on the inner expression. If we are
7695 narrowing the object and it has a different RTL code from
7696 what it originally did, do this SUBREG as a force_to_mode. */
7698 rtx inner = SUBREG_REG (x), simplified;
7700 tem = make_compound_operation (inner, in_code);
7702 simplified
7703 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
7704 if (simplified)
7705 tem = simplified;
7707 if (GET_CODE (tem) != GET_CODE (inner)
7708 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
7709 && subreg_lowpart_p (x))
7711 rtx newer
7712 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
7714 /* If we have something other than a SUBREG, we might have
7715 done an expansion, so rerun ourselves. */
7716 if (GET_CODE (newer) != SUBREG)
7717 newer = make_compound_operation (newer, in_code);
7719 /* force_to_mode can expand compounds. If it just re-expanded the
7720 compound, use gen_lowpart to convert to the desired mode. */
7721 if (rtx_equal_p (newer, x)
7722 /* Likewise if it re-expanded the compound only partially.
7723 This happens for SUBREG of ZERO_EXTRACT if they extract
7724 the same number of bits. */
7725 || (GET_CODE (newer) == SUBREG
7726 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
7727 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
7728 && GET_CODE (inner) == AND
7729 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
7730 return gen_lowpart (GET_MODE (x), tem);
7732 return newer;
7735 if (simplified)
7736 return tem;
7738 break;
7740 default:
7741 break;
7744 if (new_rtx)
7746 x = gen_lowpart (mode, new_rtx);
7747 code = GET_CODE (x);
7750 /* Now recursively process each operand of this operation. We need to
7751 handle ZERO_EXTEND specially so that we don't lose track of the
7752 inner mode. */
7753 if (GET_CODE (x) == ZERO_EXTEND)
7755 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7756 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
7757 new_rtx, GET_MODE (XEXP (x, 0)));
7758 if (tem)
7759 return tem;
7760 SUBST (XEXP (x, 0), new_rtx);
7761 return x;
7764 fmt = GET_RTX_FORMAT (code);
7765 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7766 if (fmt[i] == 'e')
7768 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7769 SUBST (XEXP (x, i), new_rtx);
7771 else if (fmt[i] == 'E')
7772 for (j = 0; j < XVECLEN (x, i); j++)
7774 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7775 SUBST (XVECEXP (x, i, j), new_rtx);
7778 maybe_swap:
7779 /* If this is a commutative operation, the changes to the operands
7780 may have made it noncanonical. */
7781 if (COMMUTATIVE_ARITH_P (x)
7782 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7784 tem = XEXP (x, 0);
7785 SUBST (XEXP (x, 0), XEXP (x, 1));
7786 SUBST (XEXP (x, 1), tem);
7789 return x;
7792 /* Given M see if it is a value that would select a field of bits
7793 within an item, but not the entire word. Return -1 if not.
7794 Otherwise, return the starting position of the field, where 0 is the
7795 low-order bit.
7797 *PLEN is set to the length of the field. */
7799 static int
7800 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7802 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7803 int pos = m ? ctz_hwi (m) : -1;
7804 int len = 0;
7806 if (pos >= 0)
7807 /* Now shift off the low-order zero bits and see if we have a
7808 power of two minus 1. */
7809 len = exact_log2 ((m >> pos) + 1);
7811 if (len <= 0)
7812 pos = -1;
7814 *plen = len;
7815 return pos;
7818 /* If X refers to a register that equals REG in value, replace these
7819 references with REG. */
7820 static rtx
7821 canon_reg_for_combine (rtx x, rtx reg)
7823 rtx op0, op1, op2;
7824 const char *fmt;
7825 int i;
7826 bool copied;
7828 enum rtx_code code = GET_CODE (x);
7829 switch (GET_RTX_CLASS (code))
7831 case RTX_UNARY:
7832 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7833 if (op0 != XEXP (x, 0))
7834 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7835 GET_MODE (reg));
7836 break;
7838 case RTX_BIN_ARITH:
7839 case RTX_COMM_ARITH:
7840 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7841 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7842 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7843 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7844 break;
7846 case RTX_COMPARE:
7847 case RTX_COMM_COMPARE:
7848 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7849 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7850 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7851 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7852 GET_MODE (op0), op0, op1);
7853 break;
7855 case RTX_TERNARY:
7856 case RTX_BITFIELD_OPS:
7857 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7858 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7859 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7860 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7861 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7862 GET_MODE (op0), op0, op1, op2);
7864 case RTX_OBJ:
7865 if (REG_P (x))
7867 if (rtx_equal_p (get_last_value (reg), x)
7868 || rtx_equal_p (reg, get_last_value (x)))
7869 return reg;
7870 else
7871 break;
7874 /* fall through */
7876 default:
7877 fmt = GET_RTX_FORMAT (code);
7878 copied = false;
7879 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7880 if (fmt[i] == 'e')
7882 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7883 if (op != XEXP (x, i))
7885 if (!copied)
7887 copied = true;
7888 x = copy_rtx (x);
7890 XEXP (x, i) = op;
7893 else if (fmt[i] == 'E')
7895 int j;
7896 for (j = 0; j < XVECLEN (x, i); j++)
7898 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7899 if (op != XVECEXP (x, i, j))
7901 if (!copied)
7903 copied = true;
7904 x = copy_rtx (x);
7906 XVECEXP (x, i, j) = op;
7911 break;
7914 return x;
7917 /* Return X converted to MODE. If the value is already truncated to
7918 MODE we can just return a subreg even though in the general case we
7919 would need an explicit truncation. */
7921 static rtx
7922 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7924 if (!CONST_INT_P (x)
7925 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
7926 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
7927 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
7929 /* Bit-cast X into an integer mode. */
7930 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
7931 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
7932 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
7933 x, GET_MODE (x));
7936 return gen_lowpart (mode, x);
7939 /* See if X can be simplified knowing that we will only refer to it in
7940 MODE and will only refer to those bits that are nonzero in MASK.
7941 If other bits are being computed or if masking operations are done
7942 that select a superset of the bits in MASK, they can sometimes be
7943 ignored.
7945 Return a possibly simplified expression, but always convert X to
7946 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7948 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7949 are all off in X. This is used when X will be complemented, by either
7950 NOT, NEG, or XOR. */
7952 static rtx
7953 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7954 int just_select)
7956 enum rtx_code code = GET_CODE (x);
7957 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7958 enum machine_mode op_mode;
7959 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7960 rtx op0, op1, temp;
7962 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7963 code below will do the wrong thing since the mode of such an
7964 expression is VOIDmode.
7966 Also do nothing if X is a CLOBBER; this can happen if X was
7967 the return value from a call to gen_lowpart. */
7968 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7969 return x;
7971 /* We want to perform the operation is its present mode unless we know
7972 that the operation is valid in MODE, in which case we do the operation
7973 in MODE. */
7974 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7975 && have_insn_for (code, mode))
7976 ? mode : GET_MODE (x));
7978 /* It is not valid to do a right-shift in a narrower mode
7979 than the one it came in with. */
7980 if ((code == LSHIFTRT || code == ASHIFTRT)
7981 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
7982 op_mode = GET_MODE (x);
7984 /* Truncate MASK to fit OP_MODE. */
7985 if (op_mode)
7986 mask &= GET_MODE_MASK (op_mode);
7988 /* When we have an arithmetic operation, or a shift whose count we
7989 do not know, we need to assume that all bits up to the highest-order
7990 bit in MASK will be needed. This is how we form such a mask. */
7991 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7992 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7993 else
7994 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7995 - 1);
7997 /* Determine what bits of X are guaranteed to be (non)zero. */
7998 nonzero = nonzero_bits (x, mode);
8000 /* If none of the bits in X are needed, return a zero. */
8001 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8002 x = const0_rtx;
8004 /* If X is a CONST_INT, return a new one. Do this here since the
8005 test below will fail. */
8006 if (CONST_INT_P (x))
8008 if (SCALAR_INT_MODE_P (mode))
8009 return gen_int_mode (INTVAL (x) & mask, mode);
8010 else
8012 x = GEN_INT (INTVAL (x) & mask);
8013 return gen_lowpart_common (mode, x);
8017 /* If X is narrower than MODE and we want all the bits in X's mode, just
8018 get X in the proper mode. */
8019 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8020 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8021 return gen_lowpart (mode, x);
8023 /* We can ignore the effect of a SUBREG if it narrows the mode or
8024 if the constant masks to zero all the bits the mode doesn't have. */
8025 if (GET_CODE (x) == SUBREG
8026 && subreg_lowpart_p (x)
8027 && ((GET_MODE_SIZE (GET_MODE (x))
8028 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8029 || (0 == (mask
8030 & GET_MODE_MASK (GET_MODE (x))
8031 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8032 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8034 /* The arithmetic simplifications here only work for scalar integer modes. */
8035 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8036 return gen_lowpart_or_truncate (mode, x);
8038 switch (code)
8040 case CLOBBER:
8041 /* If X is a (clobber (const_int)), return it since we know we are
8042 generating something that won't match. */
8043 return x;
8045 case SIGN_EXTEND:
8046 case ZERO_EXTEND:
8047 case ZERO_EXTRACT:
8048 case SIGN_EXTRACT:
8049 x = expand_compound_operation (x);
8050 if (GET_CODE (x) != code)
8051 return force_to_mode (x, mode, mask, next_select);
8052 break;
8054 case TRUNCATE:
8055 /* Similarly for a truncate. */
8056 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8058 case AND:
8059 /* If this is an AND with a constant, convert it into an AND
8060 whose constant is the AND of that constant with MASK. If it
8061 remains an AND of MASK, delete it since it is redundant. */
8063 if (CONST_INT_P (XEXP (x, 1)))
8065 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8066 mask & INTVAL (XEXP (x, 1)));
8068 /* If X is still an AND, see if it is an AND with a mask that
8069 is just some low-order bits. If so, and it is MASK, we don't
8070 need it. */
8072 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8073 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8074 == mask))
8075 x = XEXP (x, 0);
8077 /* If it remains an AND, try making another AND with the bits
8078 in the mode mask that aren't in MASK turned on. If the
8079 constant in the AND is wide enough, this might make a
8080 cheaper constant. */
8082 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8083 && GET_MODE_MASK (GET_MODE (x)) != mask
8084 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8086 unsigned HOST_WIDE_INT cval
8087 = UINTVAL (XEXP (x, 1))
8088 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8089 int width = GET_MODE_PRECISION (GET_MODE (x));
8090 rtx y;
8092 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
8093 number, sign extend it. */
8094 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8095 && (cval & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8096 cval |= (unsigned HOST_WIDE_INT) -1 << width;
8098 y = simplify_gen_binary (AND, GET_MODE (x),
8099 XEXP (x, 0), GEN_INT (cval));
8100 if (set_src_cost (y, optimize_this_for_speed_p)
8101 < set_src_cost (x, optimize_this_for_speed_p))
8102 x = y;
8105 break;
8108 goto binop;
8110 case PLUS:
8111 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8112 low-order bits (as in an alignment operation) and FOO is already
8113 aligned to that boundary, mask C1 to that boundary as well.
8114 This may eliminate that PLUS and, later, the AND. */
8117 unsigned int width = GET_MODE_PRECISION (mode);
8118 unsigned HOST_WIDE_INT smask = mask;
8120 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8121 number, sign extend it. */
8123 if (width < HOST_BITS_PER_WIDE_INT
8124 && (smask & ((unsigned HOST_WIDE_INT) 1 << (width - 1))) != 0)
8125 smask |= (unsigned HOST_WIDE_INT) (-1) << width;
8127 if (CONST_INT_P (XEXP (x, 1))
8128 && exact_log2 (- smask) >= 0
8129 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8130 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8131 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8132 (INTVAL (XEXP (x, 1)) & smask)),
8133 mode, smask, next_select);
8136 /* ... fall through ... */
8138 case MULT:
8139 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8140 most significant bit in MASK since carries from those bits will
8141 affect the bits we are interested in. */
8142 mask = fuller_mask;
8143 goto binop;
8145 case MINUS:
8146 /* If X is (minus C Y) where C's least set bit is larger than any bit
8147 in the mask, then we may replace with (neg Y). */
8148 if (CONST_INT_P (XEXP (x, 0))
8149 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
8150 & -INTVAL (XEXP (x, 0))))
8151 > mask))
8153 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8154 GET_MODE (x));
8155 return force_to_mode (x, mode, mask, next_select);
8158 /* Similarly, if C contains every bit in the fuller_mask, then we may
8159 replace with (not Y). */
8160 if (CONST_INT_P (XEXP (x, 0))
8161 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8163 x = simplify_gen_unary (NOT, GET_MODE (x),
8164 XEXP (x, 1), GET_MODE (x));
8165 return force_to_mode (x, mode, mask, next_select);
8168 mask = fuller_mask;
8169 goto binop;
8171 case IOR:
8172 case XOR:
8173 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8174 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8175 operation which may be a bitfield extraction. Ensure that the
8176 constant we form is not wider than the mode of X. */
8178 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8179 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8180 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8181 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8182 && CONST_INT_P (XEXP (x, 1))
8183 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8184 + floor_log2 (INTVAL (XEXP (x, 1))))
8185 < GET_MODE_PRECISION (GET_MODE (x)))
8186 && (UINTVAL (XEXP (x, 1))
8187 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8189 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
8190 << INTVAL (XEXP (XEXP (x, 0), 1)));
8191 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8192 XEXP (XEXP (x, 0), 0), temp);
8193 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8194 XEXP (XEXP (x, 0), 1));
8195 return force_to_mode (x, mode, mask, next_select);
8198 binop:
8199 /* For most binary operations, just propagate into the operation and
8200 change the mode if we have an operation of that mode. */
8202 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8203 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8205 /* If we ended up truncating both operands, truncate the result of the
8206 operation instead. */
8207 if (GET_CODE (op0) == TRUNCATE
8208 && GET_CODE (op1) == TRUNCATE)
8210 op0 = XEXP (op0, 0);
8211 op1 = XEXP (op1, 0);
8214 op0 = gen_lowpart_or_truncate (op_mode, op0);
8215 op1 = gen_lowpart_or_truncate (op_mode, op1);
8217 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8218 x = simplify_gen_binary (code, op_mode, op0, op1);
8219 break;
8221 case ASHIFT:
8222 /* For left shifts, do the same, but just for the first operand.
8223 However, we cannot do anything with shifts where we cannot
8224 guarantee that the counts are smaller than the size of the mode
8225 because such a count will have a different meaning in a
8226 wider mode. */
8228 if (! (CONST_INT_P (XEXP (x, 1))
8229 && INTVAL (XEXP (x, 1)) >= 0
8230 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8231 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8232 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8233 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8234 break;
8236 /* If the shift count is a constant and we can do arithmetic in
8237 the mode of the shift, refine which bits we need. Otherwise, use the
8238 conservative form of the mask. */
8239 if (CONST_INT_P (XEXP (x, 1))
8240 && INTVAL (XEXP (x, 1)) >= 0
8241 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8242 && HWI_COMPUTABLE_MODE_P (op_mode))
8243 mask >>= INTVAL (XEXP (x, 1));
8244 else
8245 mask = fuller_mask;
8247 op0 = gen_lowpart_or_truncate (op_mode,
8248 force_to_mode (XEXP (x, 0), op_mode,
8249 mask, next_select));
8251 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8252 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8253 break;
8255 case LSHIFTRT:
8256 /* Here we can only do something if the shift count is a constant,
8257 this shift constant is valid for the host, and we can do arithmetic
8258 in OP_MODE. */
8260 if (CONST_INT_P (XEXP (x, 1))
8261 && INTVAL (XEXP (x, 1)) >= 0
8262 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8263 && HWI_COMPUTABLE_MODE_P (op_mode))
8265 rtx inner = XEXP (x, 0);
8266 unsigned HOST_WIDE_INT inner_mask;
8268 /* Select the mask of the bits we need for the shift operand. */
8269 inner_mask = mask << INTVAL (XEXP (x, 1));
8271 /* We can only change the mode of the shift if we can do arithmetic
8272 in the mode of the shift and INNER_MASK is no wider than the
8273 width of X's mode. */
8274 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8275 op_mode = GET_MODE (x);
8277 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8279 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8280 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8283 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8284 shift and AND produces only copies of the sign bit (C2 is one less
8285 than a power of two), we can do this with just a shift. */
8287 if (GET_CODE (x) == LSHIFTRT
8288 && CONST_INT_P (XEXP (x, 1))
8289 /* The shift puts one of the sign bit copies in the least significant
8290 bit. */
8291 && ((INTVAL (XEXP (x, 1))
8292 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8293 >= GET_MODE_PRECISION (GET_MODE (x)))
8294 && exact_log2 (mask + 1) >= 0
8295 /* Number of bits left after the shift must be more than the mask
8296 needs. */
8297 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8298 <= GET_MODE_PRECISION (GET_MODE (x)))
8299 /* Must be more sign bit copies than the mask needs. */
8300 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8301 >= exact_log2 (mask + 1)))
8302 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8303 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8304 - exact_log2 (mask + 1)));
8306 goto shiftrt;
8308 case ASHIFTRT:
8309 /* If we are just looking for the sign bit, we don't need this shift at
8310 all, even if it has a variable count. */
8311 if (val_signbit_p (GET_MODE (x), mask))
8312 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8314 /* If this is a shift by a constant, get a mask that contains those bits
8315 that are not copies of the sign bit. We then have two cases: If
8316 MASK only includes those bits, this can be a logical shift, which may
8317 allow simplifications. If MASK is a single-bit field not within
8318 those bits, we are requesting a copy of the sign bit and hence can
8319 shift the sign bit to the appropriate location. */
8321 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8322 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8324 int i;
8326 /* If the considered data is wider than HOST_WIDE_INT, we can't
8327 represent a mask for all its bits in a single scalar.
8328 But we only care about the lower bits, so calculate these. */
8330 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8332 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8334 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8335 is the number of bits a full-width mask would have set.
8336 We need only shift if these are fewer than nonzero can
8337 hold. If not, we must keep all bits set in nonzero. */
8339 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8340 < HOST_BITS_PER_WIDE_INT)
8341 nonzero >>= INTVAL (XEXP (x, 1))
8342 + HOST_BITS_PER_WIDE_INT
8343 - GET_MODE_PRECISION (GET_MODE (x)) ;
8345 else
8347 nonzero = GET_MODE_MASK (GET_MODE (x));
8348 nonzero >>= INTVAL (XEXP (x, 1));
8351 if ((mask & ~nonzero) == 0)
8353 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8354 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8355 if (GET_CODE (x) != ASHIFTRT)
8356 return force_to_mode (x, mode, mask, next_select);
8359 else if ((i = exact_log2 (mask)) >= 0)
8361 x = simplify_shift_const
8362 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8363 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8365 if (GET_CODE (x) != ASHIFTRT)
8366 return force_to_mode (x, mode, mask, next_select);
8370 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8371 even if the shift count isn't a constant. */
8372 if (mask == 1)
8373 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8374 XEXP (x, 0), XEXP (x, 1));
8376 shiftrt:
8378 /* If this is a zero- or sign-extension operation that just affects bits
8379 we don't care about, remove it. Be sure the call above returned
8380 something that is still a shift. */
8382 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8383 && CONST_INT_P (XEXP (x, 1))
8384 && INTVAL (XEXP (x, 1)) >= 0
8385 && (INTVAL (XEXP (x, 1))
8386 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8387 && GET_CODE (XEXP (x, 0)) == ASHIFT
8388 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8389 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8390 next_select);
8392 break;
8394 case ROTATE:
8395 case ROTATERT:
8396 /* If the shift count is constant and we can do computations
8397 in the mode of X, compute where the bits we care about are.
8398 Otherwise, we can't do anything. Don't change the mode of
8399 the shift or propagate MODE into the shift, though. */
8400 if (CONST_INT_P (XEXP (x, 1))
8401 && INTVAL (XEXP (x, 1)) >= 0)
8403 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8404 GET_MODE (x), GEN_INT (mask),
8405 XEXP (x, 1));
8406 if (temp && CONST_INT_P (temp))
8407 SUBST (XEXP (x, 0),
8408 force_to_mode (XEXP (x, 0), GET_MODE (x),
8409 INTVAL (temp), next_select));
8411 break;
8413 case NEG:
8414 /* If we just want the low-order bit, the NEG isn't needed since it
8415 won't change the low-order bit. */
8416 if (mask == 1)
8417 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8419 /* We need any bits less significant than the most significant bit in
8420 MASK since carries from those bits will affect the bits we are
8421 interested in. */
8422 mask = fuller_mask;
8423 goto unop;
8425 case NOT:
8426 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8427 same as the XOR case above. Ensure that the constant we form is not
8428 wider than the mode of X. */
8430 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8431 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8432 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8433 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8434 < GET_MODE_PRECISION (GET_MODE (x)))
8435 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8437 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8438 GET_MODE (x));
8439 temp = simplify_gen_binary (XOR, GET_MODE (x),
8440 XEXP (XEXP (x, 0), 0), temp);
8441 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8442 temp, XEXP (XEXP (x, 0), 1));
8444 return force_to_mode (x, mode, mask, next_select);
8447 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8448 use the full mask inside the NOT. */
8449 mask = fuller_mask;
8451 unop:
8452 op0 = gen_lowpart_or_truncate (op_mode,
8453 force_to_mode (XEXP (x, 0), mode, mask,
8454 next_select));
8455 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8456 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8457 break;
8459 case NE:
8460 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8461 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8462 which is equal to STORE_FLAG_VALUE. */
8463 if ((mask & ~STORE_FLAG_VALUE) == 0
8464 && XEXP (x, 1) == const0_rtx
8465 && GET_MODE (XEXP (x, 0)) == mode
8466 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8467 && (nonzero_bits (XEXP (x, 0), mode)
8468 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8469 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8471 break;
8473 case IF_THEN_ELSE:
8474 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8475 written in a narrower mode. We play it safe and do not do so. */
8477 SUBST (XEXP (x, 1),
8478 gen_lowpart_or_truncate (GET_MODE (x),
8479 force_to_mode (XEXP (x, 1), mode,
8480 mask, next_select)));
8481 SUBST (XEXP (x, 2),
8482 gen_lowpart_or_truncate (GET_MODE (x),
8483 force_to_mode (XEXP (x, 2), mode,
8484 mask, next_select)));
8485 break;
8487 default:
8488 break;
8491 /* Ensure we return a value of the proper mode. */
8492 return gen_lowpart_or_truncate (mode, x);
8495 /* Return nonzero if X is an expression that has one of two values depending on
8496 whether some other value is zero or nonzero. In that case, we return the
8497 value that is being tested, *PTRUE is set to the value if the rtx being
8498 returned has a nonzero value, and *PFALSE is set to the other alternative.
8500 If we return zero, we set *PTRUE and *PFALSE to X. */
8502 static rtx
8503 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8505 enum machine_mode mode = GET_MODE (x);
8506 enum rtx_code code = GET_CODE (x);
8507 rtx cond0, cond1, true0, true1, false0, false1;
8508 unsigned HOST_WIDE_INT nz;
8510 /* If we are comparing a value against zero, we are done. */
8511 if ((code == NE || code == EQ)
8512 && XEXP (x, 1) == const0_rtx)
8514 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8515 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8516 return XEXP (x, 0);
8519 /* If this is a unary operation whose operand has one of two values, apply
8520 our opcode to compute those values. */
8521 else if (UNARY_P (x)
8522 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8524 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8525 *pfalse = simplify_gen_unary (code, mode, false0,
8526 GET_MODE (XEXP (x, 0)));
8527 return cond0;
8530 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8531 make can't possibly match and would suppress other optimizations. */
8532 else if (code == COMPARE)
8535 /* If this is a binary operation, see if either side has only one of two
8536 values. If either one does or if both do and they are conditional on
8537 the same value, compute the new true and false values. */
8538 else if (BINARY_P (x))
8540 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8541 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8543 if ((cond0 != 0 || cond1 != 0)
8544 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8546 /* If if_then_else_cond returned zero, then true/false are the
8547 same rtl. We must copy one of them to prevent invalid rtl
8548 sharing. */
8549 if (cond0 == 0)
8550 true0 = copy_rtx (true0);
8551 else if (cond1 == 0)
8552 true1 = copy_rtx (true1);
8554 if (COMPARISON_P (x))
8556 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8557 true0, true1);
8558 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8559 false0, false1);
8561 else
8563 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8564 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8567 return cond0 ? cond0 : cond1;
8570 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8571 operands is zero when the other is nonzero, and vice-versa,
8572 and STORE_FLAG_VALUE is 1 or -1. */
8574 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8575 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8576 || code == UMAX)
8577 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8579 rtx op0 = XEXP (XEXP (x, 0), 1);
8580 rtx op1 = XEXP (XEXP (x, 1), 1);
8582 cond0 = XEXP (XEXP (x, 0), 0);
8583 cond1 = XEXP (XEXP (x, 1), 0);
8585 if (COMPARISON_P (cond0)
8586 && COMPARISON_P (cond1)
8587 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8588 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8589 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8590 || ((swap_condition (GET_CODE (cond0))
8591 == reversed_comparison_code (cond1, NULL))
8592 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8593 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8594 && ! side_effects_p (x))
8596 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8597 *pfalse = simplify_gen_binary (MULT, mode,
8598 (code == MINUS
8599 ? simplify_gen_unary (NEG, mode,
8600 op1, mode)
8601 : op1),
8602 const_true_rtx);
8603 return cond0;
8607 /* Similarly for MULT, AND and UMIN, except that for these the result
8608 is always zero. */
8609 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8610 && (code == MULT || code == AND || code == UMIN)
8611 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8613 cond0 = XEXP (XEXP (x, 0), 0);
8614 cond1 = XEXP (XEXP (x, 1), 0);
8616 if (COMPARISON_P (cond0)
8617 && COMPARISON_P (cond1)
8618 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8619 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8620 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8621 || ((swap_condition (GET_CODE (cond0))
8622 == reversed_comparison_code (cond1, NULL))
8623 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8624 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8625 && ! side_effects_p (x))
8627 *ptrue = *pfalse = const0_rtx;
8628 return cond0;
8633 else if (code == IF_THEN_ELSE)
8635 /* If we have IF_THEN_ELSE already, extract the condition and
8636 canonicalize it if it is NE or EQ. */
8637 cond0 = XEXP (x, 0);
8638 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8639 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8640 return XEXP (cond0, 0);
8641 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8643 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8644 return XEXP (cond0, 0);
8646 else
8647 return cond0;
8650 /* If X is a SUBREG, we can narrow both the true and false values
8651 if the inner expression, if there is a condition. */
8652 else if (code == SUBREG
8653 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8654 &true0, &false0)))
8656 true0 = simplify_gen_subreg (mode, true0,
8657 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8658 false0 = simplify_gen_subreg (mode, false0,
8659 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8660 if (true0 && false0)
8662 *ptrue = true0;
8663 *pfalse = false0;
8664 return cond0;
8668 /* If X is a constant, this isn't special and will cause confusions
8669 if we treat it as such. Likewise if it is equivalent to a constant. */
8670 else if (CONSTANT_P (x)
8671 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8674 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8675 will be least confusing to the rest of the compiler. */
8676 else if (mode == BImode)
8678 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8679 return x;
8682 /* If X is known to be either 0 or -1, those are the true and
8683 false values when testing X. */
8684 else if (x == constm1_rtx || x == const0_rtx
8685 || (mode != VOIDmode
8686 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
8688 *ptrue = constm1_rtx, *pfalse = const0_rtx;
8689 return x;
8692 /* Likewise for 0 or a single bit. */
8693 else if (HWI_COMPUTABLE_MODE_P (mode)
8694 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
8696 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
8697 return x;
8700 /* Otherwise fail; show no condition with true and false values the same. */
8701 *ptrue = *pfalse = x;
8702 return 0;
8705 /* Return the value of expression X given the fact that condition COND
8706 is known to be true when applied to REG as its first operand and VAL
8707 as its second. X is known to not be shared and so can be modified in
8708 place.
8710 We only handle the simplest cases, and specifically those cases that
8711 arise with IF_THEN_ELSE expressions. */
8713 static rtx
8714 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8716 enum rtx_code code = GET_CODE (x);
8717 rtx temp;
8718 const char *fmt;
8719 int i, j;
8721 if (side_effects_p (x))
8722 return x;
8724 /* If either operand of the condition is a floating point value,
8725 then we have to avoid collapsing an EQ comparison. */
8726 if (cond == EQ
8727 && rtx_equal_p (x, reg)
8728 && ! FLOAT_MODE_P (GET_MODE (x))
8729 && ! FLOAT_MODE_P (GET_MODE (val)))
8730 return val;
8732 if (cond == UNEQ && rtx_equal_p (x, reg))
8733 return val;
8735 /* If X is (abs REG) and we know something about REG's relationship
8736 with zero, we may be able to simplify this. */
8738 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8739 switch (cond)
8741 case GE: case GT: case EQ:
8742 return XEXP (x, 0);
8743 case LT: case LE:
8744 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8745 XEXP (x, 0),
8746 GET_MODE (XEXP (x, 0)));
8747 default:
8748 break;
8751 /* The only other cases we handle are MIN, MAX, and comparisons if the
8752 operands are the same as REG and VAL. */
8754 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8756 if (rtx_equal_p (XEXP (x, 0), val))
8757 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8759 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8761 if (COMPARISON_P (x))
8763 if (comparison_dominates_p (cond, code))
8764 return const_true_rtx;
8766 code = reversed_comparison_code (x, NULL);
8767 if (code != UNKNOWN
8768 && comparison_dominates_p (cond, code))
8769 return const0_rtx;
8770 else
8771 return x;
8773 else if (code == SMAX || code == SMIN
8774 || code == UMIN || code == UMAX)
8776 int unsignedp = (code == UMIN || code == UMAX);
8778 /* Do not reverse the condition when it is NE or EQ.
8779 This is because we cannot conclude anything about
8780 the value of 'SMAX (x, y)' when x is not equal to y,
8781 but we can when x equals y. */
8782 if ((code == SMAX || code == UMAX)
8783 && ! (cond == EQ || cond == NE))
8784 cond = reverse_condition (cond);
8786 switch (cond)
8788 case GE: case GT:
8789 return unsignedp ? x : XEXP (x, 1);
8790 case LE: case LT:
8791 return unsignedp ? x : XEXP (x, 0);
8792 case GEU: case GTU:
8793 return unsignedp ? XEXP (x, 1) : x;
8794 case LEU: case LTU:
8795 return unsignedp ? XEXP (x, 0) : x;
8796 default:
8797 break;
8802 else if (code == SUBREG)
8804 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8805 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8807 if (SUBREG_REG (x) != r)
8809 /* We must simplify subreg here, before we lose track of the
8810 original inner_mode. */
8811 new_rtx = simplify_subreg (GET_MODE (x), r,
8812 inner_mode, SUBREG_BYTE (x));
8813 if (new_rtx)
8814 return new_rtx;
8815 else
8816 SUBST (SUBREG_REG (x), r);
8819 return x;
8821 /* We don't have to handle SIGN_EXTEND here, because even in the
8822 case of replacing something with a modeless CONST_INT, a
8823 CONST_INT is already (supposed to be) a valid sign extension for
8824 its narrower mode, which implies it's already properly
8825 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8826 story is different. */
8827 else if (code == ZERO_EXTEND)
8829 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8830 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8832 if (XEXP (x, 0) != r)
8834 /* We must simplify the zero_extend here, before we lose
8835 track of the original inner_mode. */
8836 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8837 r, inner_mode);
8838 if (new_rtx)
8839 return new_rtx;
8840 else
8841 SUBST (XEXP (x, 0), r);
8844 return x;
8847 fmt = GET_RTX_FORMAT (code);
8848 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8850 if (fmt[i] == 'e')
8851 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8852 else if (fmt[i] == 'E')
8853 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8854 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8855 cond, reg, val));
8858 return x;
8861 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8862 assignment as a field assignment. */
8864 static int
8865 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8867 if (x == y || rtx_equal_p (x, y))
8868 return 1;
8870 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8871 return 0;
8873 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8874 Note that all SUBREGs of MEM are paradoxical; otherwise they
8875 would have been rewritten. */
8876 if (MEM_P (x) && GET_CODE (y) == SUBREG
8877 && MEM_P (SUBREG_REG (y))
8878 && rtx_equal_p (SUBREG_REG (y),
8879 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8880 return 1;
8882 if (MEM_P (y) && GET_CODE (x) == SUBREG
8883 && MEM_P (SUBREG_REG (x))
8884 && rtx_equal_p (SUBREG_REG (x),
8885 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8886 return 1;
8888 /* We used to see if get_last_value of X and Y were the same but that's
8889 not correct. In one direction, we'll cause the assignment to have
8890 the wrong destination and in the case, we'll import a register into this
8891 insn that might have already have been dead. So fail if none of the
8892 above cases are true. */
8893 return 0;
8896 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8897 Return that assignment if so.
8899 We only handle the most common cases. */
8901 static rtx
8902 make_field_assignment (rtx x)
8904 rtx dest = SET_DEST (x);
8905 rtx src = SET_SRC (x);
8906 rtx assign;
8907 rtx rhs, lhs;
8908 HOST_WIDE_INT c1;
8909 HOST_WIDE_INT pos;
8910 unsigned HOST_WIDE_INT len;
8911 rtx other;
8912 enum machine_mode mode;
8914 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8915 a clear of a one-bit field. We will have changed it to
8916 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8917 for a SUBREG. */
8919 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8920 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
8921 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8922 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8924 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8925 1, 1, 1, 0);
8926 if (assign != 0)
8927 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8928 return x;
8931 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8932 && subreg_lowpart_p (XEXP (src, 0))
8933 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8934 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8935 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8936 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
8937 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8938 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8940 assign = make_extraction (VOIDmode, dest, 0,
8941 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8942 1, 1, 1, 0);
8943 if (assign != 0)
8944 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8945 return x;
8948 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8949 one-bit field. */
8950 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8951 && XEXP (XEXP (src, 0), 0) == const1_rtx
8952 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8954 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8955 1, 1, 1, 0);
8956 if (assign != 0)
8957 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8958 return x;
8961 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8962 SRC is an AND with all bits of that field set, then we can discard
8963 the AND. */
8964 if (GET_CODE (dest) == ZERO_EXTRACT
8965 && CONST_INT_P (XEXP (dest, 1))
8966 && GET_CODE (src) == AND
8967 && CONST_INT_P (XEXP (src, 1)))
8969 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8970 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8971 unsigned HOST_WIDE_INT ze_mask;
8973 if (width >= HOST_BITS_PER_WIDE_INT)
8974 ze_mask = -1;
8975 else
8976 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8978 /* Complete overlap. We can remove the source AND. */
8979 if ((and_mask & ze_mask) == ze_mask)
8980 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8982 /* Partial overlap. We can reduce the source AND. */
8983 if ((and_mask & ze_mask) != and_mask)
8985 mode = GET_MODE (src);
8986 src = gen_rtx_AND (mode, XEXP (src, 0),
8987 gen_int_mode (and_mask & ze_mask, mode));
8988 return gen_rtx_SET (VOIDmode, dest, src);
8992 /* The other case we handle is assignments into a constant-position
8993 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8994 a mask that has all one bits except for a group of zero bits and
8995 OTHER is known to have zeros where C1 has ones, this is such an
8996 assignment. Compute the position and length from C1. Shift OTHER
8997 to the appropriate position, force it to the required mode, and
8998 make the extraction. Check for the AND in both operands. */
9000 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9001 return x;
9003 rhs = expand_compound_operation (XEXP (src, 0));
9004 lhs = expand_compound_operation (XEXP (src, 1));
9006 if (GET_CODE (rhs) == AND
9007 && CONST_INT_P (XEXP (rhs, 1))
9008 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9009 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9010 else if (GET_CODE (lhs) == AND
9011 && CONST_INT_P (XEXP (lhs, 1))
9012 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9013 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9014 else
9015 return x;
9017 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9018 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9019 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9020 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9021 return x;
9023 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9024 if (assign == 0)
9025 return x;
9027 /* The mode to use for the source is the mode of the assignment, or of
9028 what is inside a possible STRICT_LOW_PART. */
9029 mode = (GET_CODE (assign) == STRICT_LOW_PART
9030 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9032 /* Shift OTHER right POS places and make it the source, restricting it
9033 to the proper length and mode. */
9035 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9036 GET_MODE (src),
9037 other, pos),
9038 dest);
9039 src = force_to_mode (src, mode,
9040 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9041 ? ~(unsigned HOST_WIDE_INT) 0
9042 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9045 /* If SRC is masked by an AND that does not make a difference in
9046 the value being stored, strip it. */
9047 if (GET_CODE (assign) == ZERO_EXTRACT
9048 && CONST_INT_P (XEXP (assign, 1))
9049 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9050 && GET_CODE (src) == AND
9051 && CONST_INT_P (XEXP (src, 1))
9052 && UINTVAL (XEXP (src, 1))
9053 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9054 src = XEXP (src, 0);
9056 return gen_rtx_SET (VOIDmode, assign, src);
9059 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9060 if so. */
9062 static rtx
9063 apply_distributive_law (rtx x)
9065 enum rtx_code code = GET_CODE (x);
9066 enum rtx_code inner_code;
9067 rtx lhs, rhs, other;
9068 rtx tem;
9070 /* Distributivity is not true for floating point as it can change the
9071 value. So we don't do it unless -funsafe-math-optimizations. */
9072 if (FLOAT_MODE_P (GET_MODE (x))
9073 && ! flag_unsafe_math_optimizations)
9074 return x;
9076 /* The outer operation can only be one of the following: */
9077 if (code != IOR && code != AND && code != XOR
9078 && code != PLUS && code != MINUS)
9079 return x;
9081 lhs = XEXP (x, 0);
9082 rhs = XEXP (x, 1);
9084 /* If either operand is a primitive we can't do anything, so get out
9085 fast. */
9086 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9087 return x;
9089 lhs = expand_compound_operation (lhs);
9090 rhs = expand_compound_operation (rhs);
9091 inner_code = GET_CODE (lhs);
9092 if (inner_code != GET_CODE (rhs))
9093 return x;
9095 /* See if the inner and outer operations distribute. */
9096 switch (inner_code)
9098 case LSHIFTRT:
9099 case ASHIFTRT:
9100 case AND:
9101 case IOR:
9102 /* These all distribute except over PLUS. */
9103 if (code == PLUS || code == MINUS)
9104 return x;
9105 break;
9107 case MULT:
9108 if (code != PLUS && code != MINUS)
9109 return x;
9110 break;
9112 case ASHIFT:
9113 /* This is also a multiply, so it distributes over everything. */
9114 break;
9116 /* This used to handle SUBREG, but this turned out to be counter-
9117 productive, since (subreg (op ...)) usually is not handled by
9118 insn patterns, and this "optimization" therefore transformed
9119 recognizable patterns into unrecognizable ones. Therefore the
9120 SUBREG case was removed from here.
9122 It is possible that distributing SUBREG over arithmetic operations
9123 leads to an intermediate result than can then be optimized further,
9124 e.g. by moving the outer SUBREG to the other side of a SET as done
9125 in simplify_set. This seems to have been the original intent of
9126 handling SUBREGs here.
9128 However, with current GCC this does not appear to actually happen,
9129 at least on major platforms. If some case is found where removing
9130 the SUBREG case here prevents follow-on optimizations, distributing
9131 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9133 default:
9134 return x;
9137 /* Set LHS and RHS to the inner operands (A and B in the example
9138 above) and set OTHER to the common operand (C in the example).
9139 There is only one way to do this unless the inner operation is
9140 commutative. */
9141 if (COMMUTATIVE_ARITH_P (lhs)
9142 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9143 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9144 else if (COMMUTATIVE_ARITH_P (lhs)
9145 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9146 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9147 else if (COMMUTATIVE_ARITH_P (lhs)
9148 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9149 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9150 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9151 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9152 else
9153 return x;
9155 /* Form the new inner operation, seeing if it simplifies first. */
9156 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9158 /* There is one exception to the general way of distributing:
9159 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9160 if (code == XOR && inner_code == IOR)
9162 inner_code = AND;
9163 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9166 /* We may be able to continuing distributing the result, so call
9167 ourselves recursively on the inner operation before forming the
9168 outer operation, which we return. */
9169 return simplify_gen_binary (inner_code, GET_MODE (x),
9170 apply_distributive_law (tem), other);
9173 /* See if X is of the form (* (+ A B) C), and if so convert to
9174 (+ (* A C) (* B C)) and try to simplify.
9176 Most of the time, this results in no change. However, if some of
9177 the operands are the same or inverses of each other, simplifications
9178 will result.
9180 For example, (and (ior A B) (not B)) can occur as the result of
9181 expanding a bit field assignment. When we apply the distributive
9182 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9183 which then simplifies to (and (A (not B))).
9185 Note that no checks happen on the validity of applying the inverse
9186 distributive law. This is pointless since we can do it in the
9187 few places where this routine is called.
9189 N is the index of the term that is decomposed (the arithmetic operation,
9190 i.e. (+ A B) in the first example above). !N is the index of the term that
9191 is distributed, i.e. of C in the first example above. */
9192 static rtx
9193 distribute_and_simplify_rtx (rtx x, int n)
9195 enum machine_mode mode;
9196 enum rtx_code outer_code, inner_code;
9197 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9199 /* Distributivity is not true for floating point as it can change the
9200 value. So we don't do it unless -funsafe-math-optimizations. */
9201 if (FLOAT_MODE_P (GET_MODE (x))
9202 && ! flag_unsafe_math_optimizations)
9203 return NULL_RTX;
9205 decomposed = XEXP (x, n);
9206 if (!ARITHMETIC_P (decomposed))
9207 return NULL_RTX;
9209 mode = GET_MODE (x);
9210 outer_code = GET_CODE (x);
9211 distributed = XEXP (x, !n);
9213 inner_code = GET_CODE (decomposed);
9214 inner_op0 = XEXP (decomposed, 0);
9215 inner_op1 = XEXP (decomposed, 1);
9217 /* Special case (and (xor B C) (not A)), which is equivalent to
9218 (xor (ior A B) (ior A C)) */
9219 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9221 distributed = XEXP (distributed, 0);
9222 outer_code = IOR;
9225 if (n == 0)
9227 /* Distribute the second term. */
9228 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9229 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9231 else
9233 /* Distribute the first term. */
9234 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9235 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9238 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9239 new_op0, new_op1));
9240 if (GET_CODE (tmp) != outer_code
9241 && (set_src_cost (tmp, optimize_this_for_speed_p)
9242 < set_src_cost (x, optimize_this_for_speed_p)))
9243 return tmp;
9245 return NULL_RTX;
9248 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9249 in MODE. Return an equivalent form, if different from (and VAROP
9250 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9252 static rtx
9253 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
9254 unsigned HOST_WIDE_INT constop)
9256 unsigned HOST_WIDE_INT nonzero;
9257 unsigned HOST_WIDE_INT orig_constop;
9258 rtx orig_varop;
9259 int i;
9261 orig_varop = varop;
9262 orig_constop = constop;
9263 if (GET_CODE (varop) == CLOBBER)
9264 return NULL_RTX;
9266 /* Simplify VAROP knowing that we will be only looking at some of the
9267 bits in it.
9269 Note by passing in CONSTOP, we guarantee that the bits not set in
9270 CONSTOP are not significant and will never be examined. We must
9271 ensure that is the case by explicitly masking out those bits
9272 before returning. */
9273 varop = force_to_mode (varop, mode, constop, 0);
9275 /* If VAROP is a CLOBBER, we will fail so return it. */
9276 if (GET_CODE (varop) == CLOBBER)
9277 return varop;
9279 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9280 to VAROP and return the new constant. */
9281 if (CONST_INT_P (varop))
9282 return gen_int_mode (INTVAL (varop) & constop, mode);
9284 /* See what bits may be nonzero in VAROP. Unlike the general case of
9285 a call to nonzero_bits, here we don't care about bits outside
9286 MODE. */
9288 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9290 /* Turn off all bits in the constant that are known to already be zero.
9291 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9292 which is tested below. */
9294 constop &= nonzero;
9296 /* If we don't have any bits left, return zero. */
9297 if (constop == 0)
9298 return const0_rtx;
9300 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9301 a power of two, we can replace this with an ASHIFT. */
9302 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9303 && (i = exact_log2 (constop)) >= 0)
9304 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9306 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9307 or XOR, then try to apply the distributive law. This may eliminate
9308 operations if either branch can be simplified because of the AND.
9309 It may also make some cases more complex, but those cases probably
9310 won't match a pattern either with or without this. */
9312 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9313 return
9314 gen_lowpart
9315 (mode,
9316 apply_distributive_law
9317 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9318 simplify_and_const_int (NULL_RTX,
9319 GET_MODE (varop),
9320 XEXP (varop, 0),
9321 constop),
9322 simplify_and_const_int (NULL_RTX,
9323 GET_MODE (varop),
9324 XEXP (varop, 1),
9325 constop))));
9327 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9328 the AND and see if one of the operands simplifies to zero. If so, we
9329 may eliminate it. */
9331 if (GET_CODE (varop) == PLUS
9332 && exact_log2 (constop + 1) >= 0)
9334 rtx o0, o1;
9336 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9337 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9338 if (o0 == const0_rtx)
9339 return o1;
9340 if (o1 == const0_rtx)
9341 return o0;
9344 /* Make a SUBREG if necessary. If we can't make it, fail. */
9345 varop = gen_lowpart (mode, varop);
9346 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9347 return NULL_RTX;
9349 /* If we are only masking insignificant bits, return VAROP. */
9350 if (constop == nonzero)
9351 return varop;
9353 if (varop == orig_varop && constop == orig_constop)
9354 return NULL_RTX;
9356 /* Otherwise, return an AND. */
9357 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9361 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9362 in MODE.
9364 Return an equivalent form, if different from X. Otherwise, return X. If
9365 X is zero, we are to always construct the equivalent form. */
9367 static rtx
9368 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
9369 unsigned HOST_WIDE_INT constop)
9371 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9372 if (tem)
9373 return tem;
9375 if (!x)
9376 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9377 gen_int_mode (constop, mode));
9378 if (GET_MODE (x) != mode)
9379 x = gen_lowpart (mode, x);
9380 return x;
9383 /* Given a REG, X, compute which bits in X can be nonzero.
9384 We don't care about bits outside of those defined in MODE.
9386 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9387 a shift, AND, or zero_extract, we can do better. */
9389 static rtx
9390 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
9391 const_rtx known_x ATTRIBUTE_UNUSED,
9392 enum machine_mode known_mode ATTRIBUTE_UNUSED,
9393 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9394 unsigned HOST_WIDE_INT *nonzero)
9396 rtx tem;
9397 reg_stat_type *rsp;
9399 /* If X is a register whose nonzero bits value is current, use it.
9400 Otherwise, if X is a register whose value we can find, use that
9401 value. Otherwise, use the previously-computed global nonzero bits
9402 for this register. */
9404 rsp = &reg_stat[REGNO (x)];
9405 if (rsp->last_set_value != 0
9406 && (rsp->last_set_mode == mode
9407 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9408 && GET_MODE_CLASS (mode) == MODE_INT))
9409 && ((rsp->last_set_label >= label_tick_ebb_start
9410 && rsp->last_set_label < label_tick)
9411 || (rsp->last_set_label == label_tick
9412 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9413 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9414 && REG_N_SETS (REGNO (x)) == 1
9415 && !REGNO_REG_SET_P
9416 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9418 *nonzero &= rsp->last_set_nonzero_bits;
9419 return NULL;
9422 tem = get_last_value (x);
9424 if (tem)
9426 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9427 /* If X is narrower than MODE and TEM is a non-negative
9428 constant that would appear negative in the mode of X,
9429 sign-extend it for use in reg_nonzero_bits because some
9430 machines (maybe most) will actually do the sign-extension
9431 and this is the conservative approach.
9433 ??? For 2.5, try to tighten up the MD files in this regard
9434 instead of this kludge. */
9436 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode)
9437 && CONST_INT_P (tem)
9438 && INTVAL (tem) > 0
9439 && val_signbit_known_set_p (GET_MODE (x), INTVAL (tem)))
9440 tem = GEN_INT (INTVAL (tem) | ~GET_MODE_MASK (GET_MODE (x)));
9441 #endif
9442 return tem;
9444 else if (nonzero_sign_valid && rsp->nonzero_bits)
9446 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9448 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9449 /* We don't know anything about the upper bits. */
9450 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9451 *nonzero &= mask;
9454 return NULL;
9457 /* Return the number of bits at the high-order end of X that are known to
9458 be equal to the sign bit. X will be used in mode MODE; if MODE is
9459 VOIDmode, X will be used in its own mode. The returned value will always
9460 be between 1 and the number of bits in MODE. */
9462 static rtx
9463 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
9464 const_rtx known_x ATTRIBUTE_UNUSED,
9465 enum machine_mode known_mode
9466 ATTRIBUTE_UNUSED,
9467 unsigned int known_ret ATTRIBUTE_UNUSED,
9468 unsigned int *result)
9470 rtx tem;
9471 reg_stat_type *rsp;
9473 rsp = &reg_stat[REGNO (x)];
9474 if (rsp->last_set_value != 0
9475 && rsp->last_set_mode == mode
9476 && ((rsp->last_set_label >= label_tick_ebb_start
9477 && rsp->last_set_label < label_tick)
9478 || (rsp->last_set_label == label_tick
9479 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9480 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9481 && REG_N_SETS (REGNO (x)) == 1
9482 && !REGNO_REG_SET_P
9483 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
9485 *result = rsp->last_set_sign_bit_copies;
9486 return NULL;
9489 tem = get_last_value (x);
9490 if (tem != 0)
9491 return tem;
9493 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9494 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9495 *result = rsp->sign_bit_copies;
9497 return NULL;
9500 /* Return the number of "extended" bits there are in X, when interpreted
9501 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9502 unsigned quantities, this is the number of high-order zero bits.
9503 For signed quantities, this is the number of copies of the sign bit
9504 minus 1. In both case, this function returns the number of "spare"
9505 bits. For example, if two quantities for which this function returns
9506 at least 1 are added, the addition is known not to overflow.
9508 This function will always return 0 unless called during combine, which
9509 implies that it must be called from a define_split. */
9511 unsigned int
9512 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
9514 if (nonzero_sign_valid == 0)
9515 return 0;
9517 return (unsignedp
9518 ? (HWI_COMPUTABLE_MODE_P (mode)
9519 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9520 - floor_log2 (nonzero_bits (x, mode)))
9521 : 0)
9522 : num_sign_bit_copies (x, mode) - 1);
9525 /* This function is called from `simplify_shift_const' to merge two
9526 outer operations. Specifically, we have already found that we need
9527 to perform operation *POP0 with constant *PCONST0 at the outermost
9528 position. We would now like to also perform OP1 with constant CONST1
9529 (with *POP0 being done last).
9531 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9532 the resulting operation. *PCOMP_P is set to 1 if we would need to
9533 complement the innermost operand, otherwise it is unchanged.
9535 MODE is the mode in which the operation will be done. No bits outside
9536 the width of this mode matter. It is assumed that the width of this mode
9537 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9539 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9540 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9541 result is simply *PCONST0.
9543 If the resulting operation cannot be expressed as one operation, we
9544 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9546 static int
9547 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
9549 enum rtx_code op0 = *pop0;
9550 HOST_WIDE_INT const0 = *pconst0;
9552 const0 &= GET_MODE_MASK (mode);
9553 const1 &= GET_MODE_MASK (mode);
9555 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9556 if (op0 == AND)
9557 const1 &= const0;
9559 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9560 if OP0 is SET. */
9562 if (op1 == UNKNOWN || op0 == SET)
9563 return 1;
9565 else if (op0 == UNKNOWN)
9566 op0 = op1, const0 = const1;
9568 else if (op0 == op1)
9570 switch (op0)
9572 case AND:
9573 const0 &= const1;
9574 break;
9575 case IOR:
9576 const0 |= const1;
9577 break;
9578 case XOR:
9579 const0 ^= const1;
9580 break;
9581 case PLUS:
9582 const0 += const1;
9583 break;
9584 case NEG:
9585 op0 = UNKNOWN;
9586 break;
9587 default:
9588 break;
9592 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9593 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9594 return 0;
9596 /* If the two constants aren't the same, we can't do anything. The
9597 remaining six cases can all be done. */
9598 else if (const0 != const1)
9599 return 0;
9601 else
9602 switch (op0)
9604 case IOR:
9605 if (op1 == AND)
9606 /* (a & b) | b == b */
9607 op0 = SET;
9608 else /* op1 == XOR */
9609 /* (a ^ b) | b == a | b */
9611 break;
9613 case XOR:
9614 if (op1 == AND)
9615 /* (a & b) ^ b == (~a) & b */
9616 op0 = AND, *pcomp_p = 1;
9617 else /* op1 == IOR */
9618 /* (a | b) ^ b == a & ~b */
9619 op0 = AND, const0 = ~const0;
9620 break;
9622 case AND:
9623 if (op1 == IOR)
9624 /* (a | b) & b == b */
9625 op0 = SET;
9626 else /* op1 == XOR */
9627 /* (a ^ b) & b) == (~a) & b */
9628 *pcomp_p = 1;
9629 break;
9630 default:
9631 break;
9634 /* Check for NO-OP cases. */
9635 const0 &= GET_MODE_MASK (mode);
9636 if (const0 == 0
9637 && (op0 == IOR || op0 == XOR || op0 == PLUS))
9638 op0 = UNKNOWN;
9639 else if (const0 == 0 && op0 == AND)
9640 op0 = SET;
9641 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
9642 && op0 == AND)
9643 op0 = UNKNOWN;
9645 *pop0 = op0;
9647 /* ??? Slightly redundant with the above mask, but not entirely.
9648 Moving this above means we'd have to sign-extend the mode mask
9649 for the final test. */
9650 if (op0 != UNKNOWN && op0 != NEG)
9651 *pconst0 = trunc_int_for_mode (const0, mode);
9653 return 1;
9656 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9657 the shift in. The original shift operation CODE is performed on OP in
9658 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9659 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9660 result of the shift is subject to operation OUTER_CODE with operand
9661 OUTER_CONST. */
9663 static enum machine_mode
9664 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
9665 enum machine_mode orig_mode, enum machine_mode mode,
9666 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
9668 if (orig_mode == mode)
9669 return mode;
9670 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
9672 /* In general we can't perform in wider mode for right shift and rotate. */
9673 switch (code)
9675 case ASHIFTRT:
9676 /* We can still widen if the bits brought in from the left are identical
9677 to the sign bit of ORIG_MODE. */
9678 if (num_sign_bit_copies (op, mode)
9679 > (unsigned) (GET_MODE_PRECISION (mode)
9680 - GET_MODE_PRECISION (orig_mode)))
9681 return mode;
9682 return orig_mode;
9684 case LSHIFTRT:
9685 /* Similarly here but with zero bits. */
9686 if (HWI_COMPUTABLE_MODE_P (mode)
9687 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
9688 return mode;
9690 /* We can also widen if the bits brought in will be masked off. This
9691 operation is performed in ORIG_MODE. */
9692 if (outer_code == AND)
9694 int care_bits = low_bitmask_len (orig_mode, outer_const);
9696 if (care_bits >= 0
9697 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
9698 return mode;
9700 /* fall through */
9702 case ROTATE:
9703 return orig_mode;
9705 case ROTATERT:
9706 gcc_unreachable ();
9708 default:
9709 return mode;
9713 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
9714 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
9715 if we cannot simplify it. Otherwise, return a simplified value.
9717 The shift is normally computed in the widest mode we find in VAROP, as
9718 long as it isn't a different number of words than RESULT_MODE. Exceptions
9719 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9721 static rtx
9722 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
9723 rtx varop, int orig_count)
9725 enum rtx_code orig_code = code;
9726 rtx orig_varop = varop;
9727 int count;
9728 enum machine_mode mode = result_mode;
9729 enum machine_mode shift_mode, tmode;
9730 unsigned int mode_words
9731 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
9732 /* We form (outer_op (code varop count) (outer_const)). */
9733 enum rtx_code outer_op = UNKNOWN;
9734 HOST_WIDE_INT outer_const = 0;
9735 int complement_p = 0;
9736 rtx new_rtx, x;
9738 /* Make sure and truncate the "natural" shift on the way in. We don't
9739 want to do this inside the loop as it makes it more difficult to
9740 combine shifts. */
9741 if (SHIFT_COUNT_TRUNCATED)
9742 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9744 /* If we were given an invalid count, don't do anything except exactly
9745 what was requested. */
9747 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
9748 return NULL_RTX;
9750 count = orig_count;
9752 /* Unless one of the branches of the `if' in this loop does a `continue',
9753 we will `break' the loop after the `if'. */
9755 while (count != 0)
9757 /* If we have an operand of (clobber (const_int 0)), fail. */
9758 if (GET_CODE (varop) == CLOBBER)
9759 return NULL_RTX;
9761 /* Convert ROTATERT to ROTATE. */
9762 if (code == ROTATERT)
9764 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
9765 code = ROTATE;
9766 if (VECTOR_MODE_P (result_mode))
9767 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9768 else
9769 count = bitsize - count;
9772 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
9773 mode, outer_op, outer_const);
9775 /* Handle cases where the count is greater than the size of the mode
9776 minus 1. For ASHIFT, use the size minus one as the count (this can
9777 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9778 take the count modulo the size. For other shifts, the result is
9779 zero.
9781 Since these shifts are being produced by the compiler by combining
9782 multiple operations, each of which are defined, we know what the
9783 result is supposed to be. */
9785 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
9787 if (code == ASHIFTRT)
9788 count = GET_MODE_PRECISION (shift_mode) - 1;
9789 else if (code == ROTATE || code == ROTATERT)
9790 count %= GET_MODE_PRECISION (shift_mode);
9791 else
9793 /* We can't simply return zero because there may be an
9794 outer op. */
9795 varop = const0_rtx;
9796 count = 0;
9797 break;
9801 /* If we discovered we had to complement VAROP, leave. Making a NOT
9802 here would cause an infinite loop. */
9803 if (complement_p)
9804 break;
9806 /* An arithmetic right shift of a quantity known to be -1 or 0
9807 is a no-op. */
9808 if (code == ASHIFTRT
9809 && (num_sign_bit_copies (varop, shift_mode)
9810 == GET_MODE_PRECISION (shift_mode)))
9812 count = 0;
9813 break;
9816 /* If we are doing an arithmetic right shift and discarding all but
9817 the sign bit copies, this is equivalent to doing a shift by the
9818 bitsize minus one. Convert it into that shift because it will often
9819 allow other simplifications. */
9821 if (code == ASHIFTRT
9822 && (count + num_sign_bit_copies (varop, shift_mode)
9823 >= GET_MODE_PRECISION (shift_mode)))
9824 count = GET_MODE_PRECISION (shift_mode) - 1;
9826 /* We simplify the tests below and elsewhere by converting
9827 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9828 `make_compound_operation' will convert it to an ASHIFTRT for
9829 those machines (such as VAX) that don't have an LSHIFTRT. */
9830 if (code == ASHIFTRT
9831 && val_signbit_known_clear_p (shift_mode,
9832 nonzero_bits (varop, shift_mode)))
9833 code = LSHIFTRT;
9835 if (((code == LSHIFTRT
9836 && HWI_COMPUTABLE_MODE_P (shift_mode)
9837 && !(nonzero_bits (varop, shift_mode) >> count))
9838 || (code == ASHIFT
9839 && HWI_COMPUTABLE_MODE_P (shift_mode)
9840 && !((nonzero_bits (varop, shift_mode) << count)
9841 & GET_MODE_MASK (shift_mode))))
9842 && !side_effects_p (varop))
9843 varop = const0_rtx;
9845 switch (GET_CODE (varop))
9847 case SIGN_EXTEND:
9848 case ZERO_EXTEND:
9849 case SIGN_EXTRACT:
9850 case ZERO_EXTRACT:
9851 new_rtx = expand_compound_operation (varop);
9852 if (new_rtx != varop)
9854 varop = new_rtx;
9855 continue;
9857 break;
9859 case MEM:
9860 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9861 minus the width of a smaller mode, we can do this with a
9862 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9863 if ((code == ASHIFTRT || code == LSHIFTRT)
9864 && ! mode_dependent_address_p (XEXP (varop, 0),
9865 MEM_ADDR_SPACE (varop))
9866 && ! MEM_VOLATILE_P (varop)
9867 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9868 MODE_INT, 1)) != BLKmode)
9870 new_rtx = adjust_address_nv (varop, tmode,
9871 BYTES_BIG_ENDIAN ? 0
9872 : count / BITS_PER_UNIT);
9874 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9875 : ZERO_EXTEND, mode, new_rtx);
9876 count = 0;
9877 continue;
9879 break;
9881 case SUBREG:
9882 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9883 the same number of words as what we've seen so far. Then store
9884 the widest mode in MODE. */
9885 if (subreg_lowpart_p (varop)
9886 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9887 > GET_MODE_SIZE (GET_MODE (varop)))
9888 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9889 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9890 == mode_words
9891 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
9892 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
9894 varop = SUBREG_REG (varop);
9895 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9896 mode = GET_MODE (varop);
9897 continue;
9899 break;
9901 case MULT:
9902 /* Some machines use MULT instead of ASHIFT because MULT
9903 is cheaper. But it is still better on those machines to
9904 merge two shifts into one. */
9905 if (CONST_INT_P (XEXP (varop, 1))
9906 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9908 varop
9909 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9910 XEXP (varop, 0),
9911 GEN_INT (exact_log2 (
9912 UINTVAL (XEXP (varop, 1)))));
9913 continue;
9915 break;
9917 case UDIV:
9918 /* Similar, for when divides are cheaper. */
9919 if (CONST_INT_P (XEXP (varop, 1))
9920 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
9922 varop
9923 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9924 XEXP (varop, 0),
9925 GEN_INT (exact_log2 (
9926 UINTVAL (XEXP (varop, 1)))));
9927 continue;
9929 break;
9931 case ASHIFTRT:
9932 /* If we are extracting just the sign bit of an arithmetic
9933 right shift, that shift is not needed. However, the sign
9934 bit of a wider mode may be different from what would be
9935 interpreted as the sign bit in a narrower mode, so, if
9936 the result is narrower, don't discard the shift. */
9937 if (code == LSHIFTRT
9938 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9939 && (GET_MODE_BITSIZE (result_mode)
9940 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9942 varop = XEXP (varop, 0);
9943 continue;
9946 /* ... fall through ... */
9948 case LSHIFTRT:
9949 case ASHIFT:
9950 case ROTATE:
9951 /* Here we have two nested shifts. The result is usually the
9952 AND of a new shift with a mask. We compute the result below. */
9953 if (CONST_INT_P (XEXP (varop, 1))
9954 && INTVAL (XEXP (varop, 1)) >= 0
9955 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
9956 && HWI_COMPUTABLE_MODE_P (result_mode)
9957 && HWI_COMPUTABLE_MODE_P (mode)
9958 && !VECTOR_MODE_P (result_mode))
9960 enum rtx_code first_code = GET_CODE (varop);
9961 unsigned int first_count = INTVAL (XEXP (varop, 1));
9962 unsigned HOST_WIDE_INT mask;
9963 rtx mask_rtx;
9965 /* We have one common special case. We can't do any merging if
9966 the inner code is an ASHIFTRT of a smaller mode. However, if
9967 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9968 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9969 we can convert it to
9970 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
9971 This simplifies certain SIGN_EXTEND operations. */
9972 if (code == ASHIFT && first_code == ASHIFTRT
9973 && count == (GET_MODE_PRECISION (result_mode)
9974 - GET_MODE_PRECISION (GET_MODE (varop))))
9976 /* C3 has the low-order C1 bits zero. */
9978 mask = GET_MODE_MASK (mode)
9979 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
9981 varop = simplify_and_const_int (NULL_RTX, result_mode,
9982 XEXP (varop, 0), mask);
9983 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9984 varop, count);
9985 count = first_count;
9986 code = ASHIFTRT;
9987 continue;
9990 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9991 than C1 high-order bits equal to the sign bit, we can convert
9992 this to either an ASHIFT or an ASHIFTRT depending on the
9993 two counts.
9995 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9997 if (code == ASHIFTRT && first_code == ASHIFT
9998 && GET_MODE (varop) == shift_mode
9999 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10000 > first_count))
10002 varop = XEXP (varop, 0);
10003 count -= first_count;
10004 if (count < 0)
10006 count = -count;
10007 code = ASHIFT;
10010 continue;
10013 /* There are some cases we can't do. If CODE is ASHIFTRT,
10014 we can only do this if FIRST_CODE is also ASHIFTRT.
10016 We can't do the case when CODE is ROTATE and FIRST_CODE is
10017 ASHIFTRT.
10019 If the mode of this shift is not the mode of the outer shift,
10020 we can't do this if either shift is a right shift or ROTATE.
10022 Finally, we can't do any of these if the mode is too wide
10023 unless the codes are the same.
10025 Handle the case where the shift codes are the same
10026 first. */
10028 if (code == first_code)
10030 if (GET_MODE (varop) != result_mode
10031 && (code == ASHIFTRT || code == LSHIFTRT
10032 || code == ROTATE))
10033 break;
10035 count += first_count;
10036 varop = XEXP (varop, 0);
10037 continue;
10040 if (code == ASHIFTRT
10041 || (code == ROTATE && first_code == ASHIFTRT)
10042 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10043 || (GET_MODE (varop) != result_mode
10044 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10045 || first_code == ROTATE
10046 || code == ROTATE)))
10047 break;
10049 /* To compute the mask to apply after the shift, shift the
10050 nonzero bits of the inner shift the same way the
10051 outer shift will. */
10053 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
10055 mask_rtx
10056 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10057 GEN_INT (count));
10059 /* Give up if we can't compute an outer operation to use. */
10060 if (mask_rtx == 0
10061 || !CONST_INT_P (mask_rtx)
10062 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10063 INTVAL (mask_rtx),
10064 result_mode, &complement_p))
10065 break;
10067 /* If the shifts are in the same direction, we add the
10068 counts. Otherwise, we subtract them. */
10069 if ((code == ASHIFTRT || code == LSHIFTRT)
10070 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10071 count += first_count;
10072 else
10073 count -= first_count;
10075 /* If COUNT is positive, the new shift is usually CODE,
10076 except for the two exceptions below, in which case it is
10077 FIRST_CODE. If the count is negative, FIRST_CODE should
10078 always be used */
10079 if (count > 0
10080 && ((first_code == ROTATE && code == ASHIFT)
10081 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10082 code = first_code;
10083 else if (count < 0)
10084 code = first_code, count = -count;
10086 varop = XEXP (varop, 0);
10087 continue;
10090 /* If we have (A << B << C) for any shift, we can convert this to
10091 (A << C << B). This wins if A is a constant. Only try this if
10092 B is not a constant. */
10094 else if (GET_CODE (varop) == code
10095 && CONST_INT_P (XEXP (varop, 0))
10096 && !CONST_INT_P (XEXP (varop, 1)))
10098 rtx new_rtx = simplify_const_binary_operation (code, mode,
10099 XEXP (varop, 0),
10100 GEN_INT (count));
10101 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10102 count = 0;
10103 continue;
10105 break;
10107 case NOT:
10108 if (VECTOR_MODE_P (mode))
10109 break;
10111 /* Make this fit the case below. */
10112 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10113 continue;
10115 case IOR:
10116 case AND:
10117 case XOR:
10118 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10119 with C the size of VAROP - 1 and the shift is logical if
10120 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10121 we have an (le X 0) operation. If we have an arithmetic shift
10122 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10123 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10125 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10126 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10127 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10128 && (code == LSHIFTRT || code == ASHIFTRT)
10129 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10130 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10132 count = 0;
10133 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10134 const0_rtx);
10136 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10137 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10139 continue;
10142 /* If we have (shift (logical)), move the logical to the outside
10143 to allow it to possibly combine with another logical and the
10144 shift to combine with another shift. This also canonicalizes to
10145 what a ZERO_EXTRACT looks like. Also, some machines have
10146 (and (shift)) insns. */
10148 if (CONST_INT_P (XEXP (varop, 1))
10149 /* We can't do this if we have (ashiftrt (xor)) and the
10150 constant has its sign bit set in shift_mode. */
10151 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10152 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10153 shift_mode))
10154 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10155 XEXP (varop, 1),
10156 GEN_INT (count))) != 0
10157 && CONST_INT_P (new_rtx)
10158 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10159 INTVAL (new_rtx), result_mode, &complement_p))
10161 varop = XEXP (varop, 0);
10162 continue;
10165 /* If we can't do that, try to simplify the shift in each arm of the
10166 logical expression, make a new logical expression, and apply
10167 the inverse distributive law. This also can't be done
10168 for some (ashiftrt (xor)). */
10169 if (CONST_INT_P (XEXP (varop, 1))
10170 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10171 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10172 shift_mode)))
10174 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10175 XEXP (varop, 0), count);
10176 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10177 XEXP (varop, 1), count);
10179 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10180 lhs, rhs);
10181 varop = apply_distributive_law (varop);
10183 count = 0;
10184 continue;
10186 break;
10188 case EQ:
10189 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10190 says that the sign bit can be tested, FOO has mode MODE, C is
10191 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10192 that may be nonzero. */
10193 if (code == LSHIFTRT
10194 && XEXP (varop, 1) == const0_rtx
10195 && GET_MODE (XEXP (varop, 0)) == result_mode
10196 && count == (GET_MODE_PRECISION (result_mode) - 1)
10197 && HWI_COMPUTABLE_MODE_P (result_mode)
10198 && STORE_FLAG_VALUE == -1
10199 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10200 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10201 &complement_p))
10203 varop = XEXP (varop, 0);
10204 count = 0;
10205 continue;
10207 break;
10209 case NEG:
10210 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10211 than the number of bits in the mode is equivalent to A. */
10212 if (code == LSHIFTRT
10213 && count == (GET_MODE_PRECISION (result_mode) - 1)
10214 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10216 varop = XEXP (varop, 0);
10217 count = 0;
10218 continue;
10221 /* NEG commutes with ASHIFT since it is multiplication. Move the
10222 NEG outside to allow shifts to combine. */
10223 if (code == ASHIFT
10224 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10225 &complement_p))
10227 varop = XEXP (varop, 0);
10228 continue;
10230 break;
10232 case PLUS:
10233 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10234 is one less than the number of bits in the mode is
10235 equivalent to (xor A 1). */
10236 if (code == LSHIFTRT
10237 && count == (GET_MODE_PRECISION (result_mode) - 1)
10238 && XEXP (varop, 1) == constm1_rtx
10239 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10240 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10241 &complement_p))
10243 count = 0;
10244 varop = XEXP (varop, 0);
10245 continue;
10248 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10249 that might be nonzero in BAR are those being shifted out and those
10250 bits are known zero in FOO, we can replace the PLUS with FOO.
10251 Similarly in the other operand order. This code occurs when
10252 we are computing the size of a variable-size array. */
10254 if ((code == ASHIFTRT || code == LSHIFTRT)
10255 && count < HOST_BITS_PER_WIDE_INT
10256 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10257 && (nonzero_bits (XEXP (varop, 1), result_mode)
10258 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10260 varop = XEXP (varop, 0);
10261 continue;
10263 else if ((code == ASHIFTRT || code == LSHIFTRT)
10264 && count < HOST_BITS_PER_WIDE_INT
10265 && HWI_COMPUTABLE_MODE_P (result_mode)
10266 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10267 >> count)
10268 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10269 & nonzero_bits (XEXP (varop, 1),
10270 result_mode)))
10272 varop = XEXP (varop, 1);
10273 continue;
10276 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10277 if (code == ASHIFT
10278 && CONST_INT_P (XEXP (varop, 1))
10279 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
10280 XEXP (varop, 1),
10281 GEN_INT (count))) != 0
10282 && CONST_INT_P (new_rtx)
10283 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10284 INTVAL (new_rtx), result_mode, &complement_p))
10286 varop = XEXP (varop, 0);
10287 continue;
10290 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10291 signbit', and attempt to change the PLUS to an XOR and move it to
10292 the outer operation as is done above in the AND/IOR/XOR case
10293 leg for shift(logical). See details in logical handling above
10294 for reasoning in doing so. */
10295 if (code == LSHIFTRT
10296 && CONST_INT_P (XEXP (varop, 1))
10297 && mode_signbit_p (result_mode, XEXP (varop, 1))
10298 && (new_rtx = simplify_const_binary_operation (code, result_mode,
10299 XEXP (varop, 1),
10300 GEN_INT (count))) != 0
10301 && CONST_INT_P (new_rtx)
10302 && merge_outer_ops (&outer_op, &outer_const, XOR,
10303 INTVAL (new_rtx), result_mode, &complement_p))
10305 varop = XEXP (varop, 0);
10306 continue;
10309 break;
10311 case MINUS:
10312 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10313 with C the size of VAROP - 1 and the shift is logical if
10314 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10315 we have a (gt X 0) operation. If the shift is arithmetic with
10316 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10317 we have a (neg (gt X 0)) operation. */
10319 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10320 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10321 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10322 && (code == LSHIFTRT || code == ASHIFTRT)
10323 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10324 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10325 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10327 count = 0;
10328 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10329 const0_rtx);
10331 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10332 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10334 continue;
10336 break;
10338 case TRUNCATE:
10339 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10340 if the truncate does not affect the value. */
10341 if (code == LSHIFTRT
10342 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10343 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10344 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10345 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10346 - GET_MODE_PRECISION (GET_MODE (varop)))))
10348 rtx varop_inner = XEXP (varop, 0);
10350 varop_inner
10351 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10352 XEXP (varop_inner, 0),
10353 GEN_INT
10354 (count + INTVAL (XEXP (varop_inner, 1))));
10355 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10356 count = 0;
10357 continue;
10359 break;
10361 default:
10362 break;
10365 break;
10368 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10369 outer_op, outer_const);
10371 /* We have now finished analyzing the shift. The result should be
10372 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10373 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10374 to the result of the shift. OUTER_CONST is the relevant constant,
10375 but we must turn off all bits turned off in the shift. */
10377 if (outer_op == UNKNOWN
10378 && orig_code == code && orig_count == count
10379 && varop == orig_varop
10380 && shift_mode == GET_MODE (varop))
10381 return NULL_RTX;
10383 /* Make a SUBREG if necessary. If we can't make it, fail. */
10384 varop = gen_lowpart (shift_mode, varop);
10385 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10386 return NULL_RTX;
10388 /* If we have an outer operation and we just made a shift, it is
10389 possible that we could have simplified the shift were it not
10390 for the outer operation. So try to do the simplification
10391 recursively. */
10393 if (outer_op != UNKNOWN)
10394 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10395 else
10396 x = NULL_RTX;
10398 if (x == NULL_RTX)
10399 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10401 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10402 turn off all the bits that the shift would have turned off. */
10403 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10404 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10405 GET_MODE_MASK (result_mode) >> orig_count);
10407 /* Do the remainder of the processing in RESULT_MODE. */
10408 x = gen_lowpart_or_truncate (result_mode, x);
10410 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10411 operation. */
10412 if (complement_p)
10413 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10415 if (outer_op != UNKNOWN)
10417 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10418 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10419 outer_const = trunc_int_for_mode (outer_const, result_mode);
10421 if (outer_op == AND)
10422 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10423 else if (outer_op == SET)
10425 /* This means that we have determined that the result is
10426 equivalent to a constant. This should be rare. */
10427 if (!side_effects_p (x))
10428 x = GEN_INT (outer_const);
10430 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10431 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10432 else
10433 x = simplify_gen_binary (outer_op, result_mode, x,
10434 GEN_INT (outer_const));
10437 return x;
10440 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10441 The result of the shift is RESULT_MODE. If we cannot simplify it,
10442 return X or, if it is NULL, synthesize the expression with
10443 simplify_gen_binary. Otherwise, return a simplified value.
10445 The shift is normally computed in the widest mode we find in VAROP, as
10446 long as it isn't a different number of words than RESULT_MODE. Exceptions
10447 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10449 static rtx
10450 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
10451 rtx varop, int count)
10453 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10454 if (tem)
10455 return tem;
10457 if (!x)
10458 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10459 if (GET_MODE (x) != result_mode)
10460 x = gen_lowpart (result_mode, x);
10461 return x;
10465 /* Like recog, but we receive the address of a pointer to a new pattern.
10466 We try to match the rtx that the pointer points to.
10467 If that fails, we may try to modify or replace the pattern,
10468 storing the replacement into the same pointer object.
10470 Modifications include deletion or addition of CLOBBERs.
10472 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10473 the CLOBBERs are placed.
10475 The value is the final insn code from the pattern ultimately matched,
10476 or -1. */
10478 static int
10479 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
10481 rtx pat = *pnewpat;
10482 rtx pat_without_clobbers;
10483 int insn_code_number;
10484 int num_clobbers_to_add = 0;
10485 int i;
10486 rtx notes = NULL_RTX;
10487 rtx old_notes, old_pat;
10488 int old_icode;
10490 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10491 we use to indicate that something didn't match. If we find such a
10492 thing, force rejection. */
10493 if (GET_CODE (pat) == PARALLEL)
10494 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10495 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10496 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10497 return -1;
10499 old_pat = PATTERN (insn);
10500 old_notes = REG_NOTES (insn);
10501 PATTERN (insn) = pat;
10502 REG_NOTES (insn) = NULL_RTX;
10504 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10505 if (dump_file && (dump_flags & TDF_DETAILS))
10507 if (insn_code_number < 0)
10508 fputs ("Failed to match this instruction:\n", dump_file);
10509 else
10510 fputs ("Successfully matched this instruction:\n", dump_file);
10511 print_rtl_single (dump_file, pat);
10514 /* If it isn't, there is the possibility that we previously had an insn
10515 that clobbered some register as a side effect, but the combined
10516 insn doesn't need to do that. So try once more without the clobbers
10517 unless this represents an ASM insn. */
10519 if (insn_code_number < 0 && ! check_asm_operands (pat)
10520 && GET_CODE (pat) == PARALLEL)
10522 int pos;
10524 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10525 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10527 if (i != pos)
10528 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10529 pos++;
10532 SUBST_INT (XVECLEN (pat, 0), pos);
10534 if (pos == 1)
10535 pat = XVECEXP (pat, 0, 0);
10537 PATTERN (insn) = pat;
10538 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10539 if (dump_file && (dump_flags & TDF_DETAILS))
10541 if (insn_code_number < 0)
10542 fputs ("Failed to match this instruction:\n", dump_file);
10543 else
10544 fputs ("Successfully matched this instruction:\n", dump_file);
10545 print_rtl_single (dump_file, pat);
10549 pat_without_clobbers = pat;
10551 PATTERN (insn) = old_pat;
10552 REG_NOTES (insn) = old_notes;
10554 /* Recognize all noop sets, these will be killed by followup pass. */
10555 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10556 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10558 /* If we had any clobbers to add, make a new pattern than contains
10559 them. Then check to make sure that all of them are dead. */
10560 if (num_clobbers_to_add)
10562 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10563 rtvec_alloc (GET_CODE (pat) == PARALLEL
10564 ? (XVECLEN (pat, 0)
10565 + num_clobbers_to_add)
10566 : num_clobbers_to_add + 1));
10568 if (GET_CODE (pat) == PARALLEL)
10569 for (i = 0; i < XVECLEN (pat, 0); i++)
10570 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10571 else
10572 XVECEXP (newpat, 0, 0) = pat;
10574 add_clobbers (newpat, insn_code_number);
10576 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10577 i < XVECLEN (newpat, 0); i++)
10579 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10580 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10581 return -1;
10582 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10584 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10585 notes = alloc_reg_note (REG_UNUSED,
10586 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10589 pat = newpat;
10592 if (insn_code_number >= 0
10593 && insn_code_number != NOOP_MOVE_INSN_CODE)
10595 old_pat = PATTERN (insn);
10596 old_notes = REG_NOTES (insn);
10597 old_icode = INSN_CODE (insn);
10598 PATTERN (insn) = pat;
10599 REG_NOTES (insn) = notes;
10601 /* Allow targets to reject combined insn. */
10602 if (!targetm.legitimate_combined_insn (insn))
10604 if (dump_file && (dump_flags & TDF_DETAILS))
10605 fputs ("Instruction not appropriate for target.",
10606 dump_file);
10608 /* Callers expect recog_for_combine to strip
10609 clobbers from the pattern on failure. */
10610 pat = pat_without_clobbers;
10611 notes = NULL_RTX;
10613 insn_code_number = -1;
10616 PATTERN (insn) = old_pat;
10617 REG_NOTES (insn) = old_notes;
10618 INSN_CODE (insn) = old_icode;
10621 *pnewpat = pat;
10622 *pnotes = notes;
10624 return insn_code_number;
10627 /* Like gen_lowpart_general but for use by combine. In combine it
10628 is not possible to create any new pseudoregs. However, it is
10629 safe to create invalid memory addresses, because combine will
10630 try to recognize them and all they will do is make the combine
10631 attempt fail.
10633 If for some reason this cannot do its job, an rtx
10634 (clobber (const_int 0)) is returned.
10635 An insn containing that will not be recognized. */
10637 static rtx
10638 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
10640 enum machine_mode imode = GET_MODE (x);
10641 unsigned int osize = GET_MODE_SIZE (omode);
10642 unsigned int isize = GET_MODE_SIZE (imode);
10643 rtx result;
10645 if (omode == imode)
10646 return x;
10648 /* We can only support MODE being wider than a word if X is a
10649 constant integer or has a mode the same size. */
10650 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
10651 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
10652 goto fail;
10654 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10655 won't know what to do. So we will strip off the SUBREG here and
10656 process normally. */
10657 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
10659 x = SUBREG_REG (x);
10661 /* For use in case we fall down into the address adjustments
10662 further below, we need to adjust the known mode and size of
10663 x; imode and isize, since we just adjusted x. */
10664 imode = GET_MODE (x);
10666 if (imode == omode)
10667 return x;
10669 isize = GET_MODE_SIZE (imode);
10672 result = gen_lowpart_common (omode, x);
10674 if (result)
10675 return result;
10677 if (MEM_P (x))
10679 int offset = 0;
10681 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10682 address. */
10683 if (MEM_VOLATILE_P (x)
10684 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
10685 goto fail;
10687 /* If we want to refer to something bigger than the original memref,
10688 generate a paradoxical subreg instead. That will force a reload
10689 of the original memref X. */
10690 if (isize < osize)
10691 return gen_rtx_SUBREG (omode, x, 0);
10693 if (WORDS_BIG_ENDIAN)
10694 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
10696 /* Adjust the address so that the address-after-the-data is
10697 unchanged. */
10698 if (BYTES_BIG_ENDIAN)
10699 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
10701 return adjust_address_nv (x, omode, offset);
10704 /* If X is a comparison operator, rewrite it in a new mode. This
10705 probably won't match, but may allow further simplifications. */
10706 else if (COMPARISON_P (x))
10707 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
10709 /* If we couldn't simplify X any other way, just enclose it in a
10710 SUBREG. Normally, this SUBREG won't match, but some patterns may
10711 include an explicit SUBREG or we may simplify it further in combine. */
10712 else
10714 int offset = 0;
10715 rtx res;
10717 offset = subreg_lowpart_offset (omode, imode);
10718 if (imode == VOIDmode)
10720 imode = int_mode_for_mode (omode);
10721 x = gen_lowpart_common (imode, x);
10722 if (x == NULL)
10723 goto fail;
10725 res = simplify_gen_subreg (omode, x, imode, offset);
10726 if (res)
10727 return res;
10730 fail:
10731 return gen_rtx_CLOBBER (omode, const0_rtx);
10734 /* Try to simplify a comparison between OP0 and a constant OP1,
10735 where CODE is the comparison code that will be tested, into a
10736 (CODE OP0 const0_rtx) form.
10738 The result is a possibly different comparison code to use.
10739 *POP1 may be updated. */
10741 static enum rtx_code
10742 simplify_compare_const (enum rtx_code code, rtx op0, rtx *pop1)
10744 enum machine_mode mode = GET_MODE (op0);
10745 unsigned int mode_width = GET_MODE_PRECISION (mode);
10746 HOST_WIDE_INT const_op = INTVAL (*pop1);
10748 /* Get the constant we are comparing against and turn off all bits
10749 not on in our mode. */
10750 if (mode != VOIDmode)
10751 const_op = trunc_int_for_mode (const_op, mode);
10753 /* If we are comparing against a constant power of two and the value
10754 being compared can only have that single bit nonzero (e.g., it was
10755 `and'ed with that bit), we can replace this with a comparison
10756 with zero. */
10757 if (const_op
10758 && (code == EQ || code == NE || code == GE || code == GEU
10759 || code == LT || code == LTU)
10760 && mode_width <= HOST_BITS_PER_WIDE_INT
10761 && exact_log2 (const_op) >= 0
10762 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10764 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10765 const_op = 0;
10768 /* Similarly, if we are comparing a value known to be either -1 or
10769 0 with -1, change it to the opposite comparison against zero. */
10770 if (const_op == -1
10771 && (code == EQ || code == NE || code == GT || code == LE
10772 || code == GEU || code == LTU)
10773 && num_sign_bit_copies (op0, mode) == mode_width)
10775 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10776 const_op = 0;
10779 /* Do some canonicalizations based on the comparison code. We prefer
10780 comparisons against zero and then prefer equality comparisons.
10781 If we can reduce the size of a constant, we will do that too. */
10782 switch (code)
10784 case LT:
10785 /* < C is equivalent to <= (C - 1) */
10786 if (const_op > 0)
10788 const_op -= 1;
10789 code = LE;
10790 /* ... fall through to LE case below. */
10792 else
10793 break;
10795 case LE:
10796 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10797 if (const_op < 0)
10799 const_op += 1;
10800 code = LT;
10803 /* If we are doing a <= 0 comparison on a value known to have
10804 a zero sign bit, we can replace this with == 0. */
10805 else if (const_op == 0
10806 && mode_width <= HOST_BITS_PER_WIDE_INT
10807 && (nonzero_bits (op0, mode)
10808 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10809 == 0)
10810 code = EQ;
10811 break;
10813 case GE:
10814 /* >= C is equivalent to > (C - 1). */
10815 if (const_op > 0)
10817 const_op -= 1;
10818 code = GT;
10819 /* ... fall through to GT below. */
10821 else
10822 break;
10824 case GT:
10825 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10826 if (const_op < 0)
10828 const_op += 1;
10829 code = GE;
10832 /* If we are doing a > 0 comparison on a value known to have
10833 a zero sign bit, we can replace this with != 0. */
10834 else if (const_op == 0
10835 && mode_width <= HOST_BITS_PER_WIDE_INT
10836 && (nonzero_bits (op0, mode)
10837 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10838 == 0)
10839 code = NE;
10840 break;
10842 case LTU:
10843 /* < C is equivalent to <= (C - 1). */
10844 if (const_op > 0)
10846 const_op -= 1;
10847 code = LEU;
10848 /* ... fall through ... */
10850 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10851 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10852 && (unsigned HOST_WIDE_INT) const_op
10853 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
10855 const_op = 0;
10856 code = GE;
10857 break;
10859 else
10860 break;
10862 case LEU:
10863 /* unsigned <= 0 is equivalent to == 0 */
10864 if (const_op == 0)
10865 code = EQ;
10866 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10867 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10868 && (unsigned HOST_WIDE_INT) const_op
10869 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
10871 const_op = 0;
10872 code = GE;
10874 break;
10876 case GEU:
10877 /* >= C is equivalent to > (C - 1). */
10878 if (const_op > 1)
10880 const_op -= 1;
10881 code = GTU;
10882 /* ... fall through ... */
10885 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10886 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10887 && (unsigned HOST_WIDE_INT) const_op
10888 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
10890 const_op = 0;
10891 code = LT;
10892 break;
10894 else
10895 break;
10897 case GTU:
10898 /* unsigned > 0 is equivalent to != 0 */
10899 if (const_op == 0)
10900 code = NE;
10901 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10902 else if (mode_width <= HOST_BITS_PER_WIDE_INT
10903 && (unsigned HOST_WIDE_INT) const_op
10904 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
10906 const_op = 0;
10907 code = LT;
10909 break;
10911 default:
10912 break;
10915 *pop1 = GEN_INT (const_op);
10916 return code;
10919 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10920 comparison code that will be tested.
10922 The result is a possibly different comparison code to use. *POP0 and
10923 *POP1 may be updated.
10925 It is possible that we might detect that a comparison is either always
10926 true or always false. However, we do not perform general constant
10927 folding in combine, so this knowledge isn't useful. Such tautologies
10928 should have been detected earlier. Hence we ignore all such cases. */
10930 static enum rtx_code
10931 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
10933 rtx op0 = *pop0;
10934 rtx op1 = *pop1;
10935 rtx tem, tem1;
10936 int i;
10937 enum machine_mode mode, tmode;
10939 /* Try a few ways of applying the same transformation to both operands. */
10940 while (1)
10942 #ifndef WORD_REGISTER_OPERATIONS
10943 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10944 so check specially. */
10945 if (code != GTU && code != GEU && code != LTU && code != LEU
10946 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10947 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10948 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10949 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10950 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10951 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10952 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10953 && CONST_INT_P (XEXP (op0, 1))
10954 && XEXP (op0, 1) == XEXP (op1, 1)
10955 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10956 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10957 && (INTVAL (XEXP (op0, 1))
10958 == (GET_MODE_PRECISION (GET_MODE (op0))
10959 - (GET_MODE_PRECISION
10960 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10962 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10963 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10965 #endif
10967 /* If both operands are the same constant shift, see if we can ignore the
10968 shift. We can if the shift is a rotate or if the bits shifted out of
10969 this shift are known to be zero for both inputs and if the type of
10970 comparison is compatible with the shift. */
10971 if (GET_CODE (op0) == GET_CODE (op1)
10972 && HWI_COMPUTABLE_MODE_P (GET_MODE(op0))
10973 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10974 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10975 && (code != GT && code != LT && code != GE && code != LE))
10976 || (GET_CODE (op0) == ASHIFTRT
10977 && (code != GTU && code != LTU
10978 && code != GEU && code != LEU)))
10979 && CONST_INT_P (XEXP (op0, 1))
10980 && INTVAL (XEXP (op0, 1)) >= 0
10981 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10982 && XEXP (op0, 1) == XEXP (op1, 1))
10984 enum machine_mode mode = GET_MODE (op0);
10985 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10986 int shift_count = INTVAL (XEXP (op0, 1));
10988 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10989 mask &= (mask >> shift_count) << shift_count;
10990 else if (GET_CODE (op0) == ASHIFT)
10991 mask = (mask & (mask << shift_count)) >> shift_count;
10993 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10994 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10995 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10996 else
10997 break;
11000 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11001 SUBREGs are of the same mode, and, in both cases, the AND would
11002 be redundant if the comparison was done in the narrower mode,
11003 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11004 and the operand's possibly nonzero bits are 0xffffff01; in that case
11005 if we only care about QImode, we don't need the AND). This case
11006 occurs if the output mode of an scc insn is not SImode and
11007 STORE_FLAG_VALUE == 1 (e.g., the 386).
11009 Similarly, check for a case where the AND's are ZERO_EXTEND
11010 operations from some narrower mode even though a SUBREG is not
11011 present. */
11013 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11014 && CONST_INT_P (XEXP (op0, 1))
11015 && CONST_INT_P (XEXP (op1, 1)))
11017 rtx inner_op0 = XEXP (op0, 0);
11018 rtx inner_op1 = XEXP (op1, 0);
11019 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11020 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11021 int changed = 0;
11023 if (paradoxical_subreg_p (inner_op0)
11024 && GET_CODE (inner_op1) == SUBREG
11025 && (GET_MODE (SUBREG_REG (inner_op0))
11026 == GET_MODE (SUBREG_REG (inner_op1)))
11027 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11028 <= HOST_BITS_PER_WIDE_INT)
11029 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11030 GET_MODE (SUBREG_REG (inner_op0)))))
11031 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11032 GET_MODE (SUBREG_REG (inner_op1))))))
11034 op0 = SUBREG_REG (inner_op0);
11035 op1 = SUBREG_REG (inner_op1);
11037 /* The resulting comparison is always unsigned since we masked
11038 off the original sign bit. */
11039 code = unsigned_condition (code);
11041 changed = 1;
11044 else if (c0 == c1)
11045 for (tmode = GET_CLASS_NARROWEST_MODE
11046 (GET_MODE_CLASS (GET_MODE (op0)));
11047 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11048 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11050 op0 = gen_lowpart (tmode, inner_op0);
11051 op1 = gen_lowpart (tmode, inner_op1);
11052 code = unsigned_condition (code);
11053 changed = 1;
11054 break;
11057 if (! changed)
11058 break;
11061 /* If both operands are NOT, we can strip off the outer operation
11062 and adjust the comparison code for swapped operands; similarly for
11063 NEG, except that this must be an equality comparison. */
11064 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11065 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11066 && (code == EQ || code == NE)))
11067 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11069 else
11070 break;
11073 /* If the first operand is a constant, swap the operands and adjust the
11074 comparison code appropriately, but don't do this if the second operand
11075 is already a constant integer. */
11076 if (swap_commutative_operands_p (op0, op1))
11078 tem = op0, op0 = op1, op1 = tem;
11079 code = swap_condition (code);
11082 /* We now enter a loop during which we will try to simplify the comparison.
11083 For the most part, we only are concerned with comparisons with zero,
11084 but some things may really be comparisons with zero but not start
11085 out looking that way. */
11087 while (CONST_INT_P (op1))
11089 enum machine_mode mode = GET_MODE (op0);
11090 unsigned int mode_width = GET_MODE_PRECISION (mode);
11091 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11092 int equality_comparison_p;
11093 int sign_bit_comparison_p;
11094 int unsigned_comparison_p;
11095 HOST_WIDE_INT const_op;
11097 /* We only want to handle integral modes. This catches VOIDmode,
11098 CCmode, and the floating-point modes. An exception is that we
11099 can handle VOIDmode if OP0 is a COMPARE or a comparison
11100 operation. */
11102 if (GET_MODE_CLASS (mode) != MODE_INT
11103 && ! (mode == VOIDmode
11104 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11105 break;
11107 /* Try to simplify the compare to constant, possibly changing the
11108 comparison op, and/or changing op1 to zero. */
11109 code = simplify_compare_const (code, op0, &op1);
11110 const_op = INTVAL (op1);
11112 /* Compute some predicates to simplify code below. */
11114 equality_comparison_p = (code == EQ || code == NE);
11115 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11116 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11117 || code == GEU);
11119 /* If this is a sign bit comparison and we can do arithmetic in
11120 MODE, say that we will only be needing the sign bit of OP0. */
11121 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11122 op0 = force_to_mode (op0, mode,
11123 (unsigned HOST_WIDE_INT) 1
11124 << (GET_MODE_PRECISION (mode) - 1),
11127 /* Now try cases based on the opcode of OP0. If none of the cases
11128 does a "continue", we exit this loop immediately after the
11129 switch. */
11131 switch (GET_CODE (op0))
11133 case ZERO_EXTRACT:
11134 /* If we are extracting a single bit from a variable position in
11135 a constant that has only a single bit set and are comparing it
11136 with zero, we can convert this into an equality comparison
11137 between the position and the location of the single bit. */
11138 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11139 have already reduced the shift count modulo the word size. */
11140 if (!SHIFT_COUNT_TRUNCATED
11141 && CONST_INT_P (XEXP (op0, 0))
11142 && XEXP (op0, 1) == const1_rtx
11143 && equality_comparison_p && const_op == 0
11144 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11146 if (BITS_BIG_ENDIAN)
11147 i = BITS_PER_WORD - 1 - i;
11149 op0 = XEXP (op0, 2);
11150 op1 = GEN_INT (i);
11151 const_op = i;
11153 /* Result is nonzero iff shift count is equal to I. */
11154 code = reverse_condition (code);
11155 continue;
11158 /* ... fall through ... */
11160 case SIGN_EXTRACT:
11161 tem = expand_compound_operation (op0);
11162 if (tem != op0)
11164 op0 = tem;
11165 continue;
11167 break;
11169 case NOT:
11170 /* If testing for equality, we can take the NOT of the constant. */
11171 if (equality_comparison_p
11172 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11174 op0 = XEXP (op0, 0);
11175 op1 = tem;
11176 continue;
11179 /* If just looking at the sign bit, reverse the sense of the
11180 comparison. */
11181 if (sign_bit_comparison_p)
11183 op0 = XEXP (op0, 0);
11184 code = (code == GE ? LT : GE);
11185 continue;
11187 break;
11189 case NEG:
11190 /* If testing for equality, we can take the NEG of the constant. */
11191 if (equality_comparison_p
11192 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11194 op0 = XEXP (op0, 0);
11195 op1 = tem;
11196 continue;
11199 /* The remaining cases only apply to comparisons with zero. */
11200 if (const_op != 0)
11201 break;
11203 /* When X is ABS or is known positive,
11204 (neg X) is < 0 if and only if X != 0. */
11206 if (sign_bit_comparison_p
11207 && (GET_CODE (XEXP (op0, 0)) == ABS
11208 || (mode_width <= HOST_BITS_PER_WIDE_INT
11209 && (nonzero_bits (XEXP (op0, 0), mode)
11210 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11211 == 0)))
11213 op0 = XEXP (op0, 0);
11214 code = (code == LT ? NE : EQ);
11215 continue;
11218 /* If we have NEG of something whose two high-order bits are the
11219 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11220 if (num_sign_bit_copies (op0, mode) >= 2)
11222 op0 = XEXP (op0, 0);
11223 code = swap_condition (code);
11224 continue;
11226 break;
11228 case ROTATE:
11229 /* If we are testing equality and our count is a constant, we
11230 can perform the inverse operation on our RHS. */
11231 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11232 && (tem = simplify_binary_operation (ROTATERT, mode,
11233 op1, XEXP (op0, 1))) != 0)
11235 op0 = XEXP (op0, 0);
11236 op1 = tem;
11237 continue;
11240 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11241 a particular bit. Convert it to an AND of a constant of that
11242 bit. This will be converted into a ZERO_EXTRACT. */
11243 if (const_op == 0 && sign_bit_comparison_p
11244 && CONST_INT_P (XEXP (op0, 1))
11245 && mode_width <= HOST_BITS_PER_WIDE_INT)
11247 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11248 ((unsigned HOST_WIDE_INT) 1
11249 << (mode_width - 1
11250 - INTVAL (XEXP (op0, 1)))));
11251 code = (code == LT ? NE : EQ);
11252 continue;
11255 /* Fall through. */
11257 case ABS:
11258 /* ABS is ignorable inside an equality comparison with zero. */
11259 if (const_op == 0 && equality_comparison_p)
11261 op0 = XEXP (op0, 0);
11262 continue;
11264 break;
11266 case SIGN_EXTEND:
11267 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11268 (compare FOO CONST) if CONST fits in FOO's mode and we
11269 are either testing inequality or have an unsigned
11270 comparison with ZERO_EXTEND or a signed comparison with
11271 SIGN_EXTEND. But don't do it if we don't have a compare
11272 insn of the given mode, since we'd have to revert it
11273 later on, and then we wouldn't know whether to sign- or
11274 zero-extend. */
11275 mode = GET_MODE (XEXP (op0, 0));
11276 if (GET_MODE_CLASS (mode) == MODE_INT
11277 && ! unsigned_comparison_p
11278 && HWI_COMPUTABLE_MODE_P (mode)
11279 && trunc_int_for_mode (const_op, mode) == const_op
11280 && have_insn_for (COMPARE, mode))
11282 op0 = XEXP (op0, 0);
11283 continue;
11285 break;
11287 case SUBREG:
11288 /* Check for the case where we are comparing A - C1 with C2, that is
11290 (subreg:MODE (plus (A) (-C1))) op (C2)
11292 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11293 comparison in the wider mode. One of the following two conditions
11294 must be true in order for this to be valid:
11296 1. The mode extension results in the same bit pattern being added
11297 on both sides and the comparison is equality or unsigned. As
11298 C2 has been truncated to fit in MODE, the pattern can only be
11299 all 0s or all 1s.
11301 2. The mode extension results in the sign bit being copied on
11302 each side.
11304 The difficulty here is that we have predicates for A but not for
11305 (A - C1) so we need to check that C1 is within proper bounds so
11306 as to perturbate A as little as possible. */
11308 if (mode_width <= HOST_BITS_PER_WIDE_INT
11309 && subreg_lowpart_p (op0)
11310 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11311 && GET_CODE (SUBREG_REG (op0)) == PLUS
11312 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11314 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11315 rtx a = XEXP (SUBREG_REG (op0), 0);
11316 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11318 if ((c1 > 0
11319 && (unsigned HOST_WIDE_INT) c1
11320 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11321 && (equality_comparison_p || unsigned_comparison_p)
11322 /* (A - C1) zero-extends if it is positive and sign-extends
11323 if it is negative, C2 both zero- and sign-extends. */
11324 && ((0 == (nonzero_bits (a, inner_mode)
11325 & ~GET_MODE_MASK (mode))
11326 && const_op >= 0)
11327 /* (A - C1) sign-extends if it is positive and 1-extends
11328 if it is negative, C2 both sign- and 1-extends. */
11329 || (num_sign_bit_copies (a, inner_mode)
11330 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11331 - mode_width)
11332 && const_op < 0)))
11333 || ((unsigned HOST_WIDE_INT) c1
11334 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11335 /* (A - C1) always sign-extends, like C2. */
11336 && num_sign_bit_copies (a, inner_mode)
11337 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11338 - (mode_width - 1))))
11340 op0 = SUBREG_REG (op0);
11341 continue;
11345 /* If the inner mode is narrower and we are extracting the low part,
11346 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11347 if (subreg_lowpart_p (op0)
11348 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11349 /* Fall through */ ;
11350 else
11351 break;
11353 /* ... fall through ... */
11355 case ZERO_EXTEND:
11356 mode = GET_MODE (XEXP (op0, 0));
11357 if (GET_MODE_CLASS (mode) == MODE_INT
11358 && (unsigned_comparison_p || equality_comparison_p)
11359 && HWI_COMPUTABLE_MODE_P (mode)
11360 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11361 && const_op >= 0
11362 && have_insn_for (COMPARE, mode))
11364 op0 = XEXP (op0, 0);
11365 continue;
11367 break;
11369 case PLUS:
11370 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11371 this for equality comparisons due to pathological cases involving
11372 overflows. */
11373 if (equality_comparison_p
11374 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11375 op1, XEXP (op0, 1))))
11377 op0 = XEXP (op0, 0);
11378 op1 = tem;
11379 continue;
11382 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11383 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11384 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11386 op0 = XEXP (XEXP (op0, 0), 0);
11387 code = (code == LT ? EQ : NE);
11388 continue;
11390 break;
11392 case MINUS:
11393 /* We used to optimize signed comparisons against zero, but that
11394 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11395 arrive here as equality comparisons, or (GEU, LTU) are
11396 optimized away. No need to special-case them. */
11398 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11399 (eq B (minus A C)), whichever simplifies. We can only do
11400 this for equality comparisons due to pathological cases involving
11401 overflows. */
11402 if (equality_comparison_p
11403 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11404 XEXP (op0, 1), op1)))
11406 op0 = XEXP (op0, 0);
11407 op1 = tem;
11408 continue;
11411 if (equality_comparison_p
11412 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11413 XEXP (op0, 0), op1)))
11415 op0 = XEXP (op0, 1);
11416 op1 = tem;
11417 continue;
11420 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11421 of bits in X minus 1, is one iff X > 0. */
11422 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11423 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11424 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11425 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11427 op0 = XEXP (op0, 1);
11428 code = (code == GE ? LE : GT);
11429 continue;
11431 break;
11433 case XOR:
11434 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11435 if C is zero or B is a constant. */
11436 if (equality_comparison_p
11437 && 0 != (tem = simplify_binary_operation (XOR, mode,
11438 XEXP (op0, 1), op1)))
11440 op0 = XEXP (op0, 0);
11441 op1 = tem;
11442 continue;
11444 break;
11446 case EQ: case NE:
11447 case UNEQ: case LTGT:
11448 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11449 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11450 case UNORDERED: case ORDERED:
11451 /* We can't do anything if OP0 is a condition code value, rather
11452 than an actual data value. */
11453 if (const_op != 0
11454 || CC0_P (XEXP (op0, 0))
11455 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11456 break;
11458 /* Get the two operands being compared. */
11459 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11460 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11461 else
11462 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11464 /* Check for the cases where we simply want the result of the
11465 earlier test or the opposite of that result. */
11466 if (code == NE || code == EQ
11467 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11468 && (code == LT || code == GE)))
11470 enum rtx_code new_code;
11471 if (code == LT || code == NE)
11472 new_code = GET_CODE (op0);
11473 else
11474 new_code = reversed_comparison_code (op0, NULL);
11476 if (new_code != UNKNOWN)
11478 code = new_code;
11479 op0 = tem;
11480 op1 = tem1;
11481 continue;
11484 break;
11486 case IOR:
11487 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11488 iff X <= 0. */
11489 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11490 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11491 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11493 op0 = XEXP (op0, 1);
11494 code = (code == GE ? GT : LE);
11495 continue;
11497 break;
11499 case AND:
11500 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11501 will be converted to a ZERO_EXTRACT later. */
11502 if (const_op == 0 && equality_comparison_p
11503 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11504 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11506 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11507 XEXP (XEXP (op0, 0), 1));
11508 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11509 continue;
11512 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11513 zero and X is a comparison and C1 and C2 describe only bits set
11514 in STORE_FLAG_VALUE, we can compare with X. */
11515 if (const_op == 0 && equality_comparison_p
11516 && mode_width <= HOST_BITS_PER_WIDE_INT
11517 && CONST_INT_P (XEXP (op0, 1))
11518 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11519 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11520 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11521 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11523 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11524 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11525 if ((~STORE_FLAG_VALUE & mask) == 0
11526 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11527 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11528 && COMPARISON_P (tem))))
11530 op0 = XEXP (XEXP (op0, 0), 0);
11531 continue;
11535 /* If we are doing an equality comparison of an AND of a bit equal
11536 to the sign bit, replace this with a LT or GE comparison of
11537 the underlying value. */
11538 if (equality_comparison_p
11539 && const_op == 0
11540 && CONST_INT_P (XEXP (op0, 1))
11541 && mode_width <= HOST_BITS_PER_WIDE_INT
11542 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11543 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11545 op0 = XEXP (op0, 0);
11546 code = (code == EQ ? GE : LT);
11547 continue;
11550 /* If this AND operation is really a ZERO_EXTEND from a narrower
11551 mode, the constant fits within that mode, and this is either an
11552 equality or unsigned comparison, try to do this comparison in
11553 the narrower mode.
11555 Note that in:
11557 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11558 -> (ne:DI (reg:SI 4) (const_int 0))
11560 unless TRULY_NOOP_TRUNCATION allows it or the register is
11561 known to hold a value of the required mode the
11562 transformation is invalid. */
11563 if ((equality_comparison_p || unsigned_comparison_p)
11564 && CONST_INT_P (XEXP (op0, 1))
11565 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
11566 & GET_MODE_MASK (mode))
11567 + 1)) >= 0
11568 && const_op >> i == 0
11569 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11570 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode, GET_MODE (op0))
11571 || (REG_P (XEXP (op0, 0))
11572 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11574 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11575 continue;
11578 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11579 fits in both M1 and M2 and the SUBREG is either paradoxical
11580 or represents the low part, permute the SUBREG and the AND
11581 and try again. */
11582 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11584 unsigned HOST_WIDE_INT c1;
11585 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11586 /* Require an integral mode, to avoid creating something like
11587 (AND:SF ...). */
11588 if (SCALAR_INT_MODE_P (tmode)
11589 /* It is unsafe to commute the AND into the SUBREG if the
11590 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11591 not defined. As originally written the upper bits
11592 have a defined value due to the AND operation.
11593 However, if we commute the AND inside the SUBREG then
11594 they no longer have defined values and the meaning of
11595 the code has been changed. */
11596 && (0
11597 #ifdef WORD_REGISTER_OPERATIONS
11598 || (mode_width > GET_MODE_PRECISION (tmode)
11599 && mode_width <= BITS_PER_WORD)
11600 #endif
11601 || (mode_width <= GET_MODE_PRECISION (tmode)
11602 && subreg_lowpart_p (XEXP (op0, 0))))
11603 && CONST_INT_P (XEXP (op0, 1))
11604 && mode_width <= HOST_BITS_PER_WIDE_INT
11605 && HWI_COMPUTABLE_MODE_P (tmode)
11606 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11607 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11608 && c1 != mask
11609 && c1 != GET_MODE_MASK (tmode))
11611 op0 = simplify_gen_binary (AND, tmode,
11612 SUBREG_REG (XEXP (op0, 0)),
11613 gen_int_mode (c1, tmode));
11614 op0 = gen_lowpart (mode, op0);
11615 continue;
11619 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11620 if (const_op == 0 && equality_comparison_p
11621 && XEXP (op0, 1) == const1_rtx
11622 && GET_CODE (XEXP (op0, 0)) == NOT)
11624 op0 = simplify_and_const_int (NULL_RTX, mode,
11625 XEXP (XEXP (op0, 0), 0), 1);
11626 code = (code == NE ? EQ : NE);
11627 continue;
11630 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11631 (eq (and (lshiftrt X) 1) 0).
11632 Also handle the case where (not X) is expressed using xor. */
11633 if (const_op == 0 && equality_comparison_p
11634 && XEXP (op0, 1) == const1_rtx
11635 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
11637 rtx shift_op = XEXP (XEXP (op0, 0), 0);
11638 rtx shift_count = XEXP (XEXP (op0, 0), 1);
11640 if (GET_CODE (shift_op) == NOT
11641 || (GET_CODE (shift_op) == XOR
11642 && CONST_INT_P (XEXP (shift_op, 1))
11643 && CONST_INT_P (shift_count)
11644 && HWI_COMPUTABLE_MODE_P (mode)
11645 && (UINTVAL (XEXP (shift_op, 1))
11646 == (unsigned HOST_WIDE_INT) 1
11647 << INTVAL (shift_count))))
11650 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
11651 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11652 code = (code == NE ? EQ : NE);
11653 continue;
11656 break;
11658 case ASHIFT:
11659 /* If we have (compare (ashift FOO N) (const_int C)) and
11660 the high order N bits of FOO (N+1 if an inequality comparison)
11661 are known to be zero, we can do this by comparing FOO with C
11662 shifted right N bits so long as the low-order N bits of C are
11663 zero. */
11664 if (CONST_INT_P (XEXP (op0, 1))
11665 && INTVAL (XEXP (op0, 1)) >= 0
11666 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
11667 < HOST_BITS_PER_WIDE_INT)
11668 && (((unsigned HOST_WIDE_INT) const_op
11669 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
11670 - 1)) == 0)
11671 && mode_width <= HOST_BITS_PER_WIDE_INT
11672 && (nonzero_bits (XEXP (op0, 0), mode)
11673 & ~(mask >> (INTVAL (XEXP (op0, 1))
11674 + ! equality_comparison_p))) == 0)
11676 /* We must perform a logical shift, not an arithmetic one,
11677 as we want the top N bits of C to be zero. */
11678 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
11680 temp >>= INTVAL (XEXP (op0, 1));
11681 op1 = gen_int_mode (temp, mode);
11682 op0 = XEXP (op0, 0);
11683 continue;
11686 /* If we are doing a sign bit comparison, it means we are testing
11687 a particular bit. Convert it to the appropriate AND. */
11688 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
11689 && mode_width <= HOST_BITS_PER_WIDE_INT)
11691 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11692 ((unsigned HOST_WIDE_INT) 1
11693 << (mode_width - 1
11694 - INTVAL (XEXP (op0, 1)))));
11695 code = (code == LT ? NE : EQ);
11696 continue;
11699 /* If this an equality comparison with zero and we are shifting
11700 the low bit to the sign bit, we can convert this to an AND of the
11701 low-order bit. */
11702 if (const_op == 0 && equality_comparison_p
11703 && CONST_INT_P (XEXP (op0, 1))
11704 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11706 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
11707 continue;
11709 break;
11711 case ASHIFTRT:
11712 /* If this is an equality comparison with zero, we can do this
11713 as a logical shift, which might be much simpler. */
11714 if (equality_comparison_p && const_op == 0
11715 && CONST_INT_P (XEXP (op0, 1)))
11717 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
11718 XEXP (op0, 0),
11719 INTVAL (XEXP (op0, 1)));
11720 continue;
11723 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11724 do the comparison in a narrower mode. */
11725 if (! unsigned_comparison_p
11726 && CONST_INT_P (XEXP (op0, 1))
11727 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11728 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11729 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11730 MODE_INT, 1)) != BLKmode
11731 && (((unsigned HOST_WIDE_INT) const_op
11732 + (GET_MODE_MASK (tmode) >> 1) + 1)
11733 <= GET_MODE_MASK (tmode)))
11735 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
11736 continue;
11739 /* Likewise if OP0 is a PLUS of a sign extension with a
11740 constant, which is usually represented with the PLUS
11741 between the shifts. */
11742 if (! unsigned_comparison_p
11743 && CONST_INT_P (XEXP (op0, 1))
11744 && GET_CODE (XEXP (op0, 0)) == PLUS
11745 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11746 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
11747 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
11748 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11749 MODE_INT, 1)) != BLKmode
11750 && (((unsigned HOST_WIDE_INT) const_op
11751 + (GET_MODE_MASK (tmode) >> 1) + 1)
11752 <= GET_MODE_MASK (tmode)))
11754 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11755 rtx add_const = XEXP (XEXP (op0, 0), 1);
11756 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11757 add_const, XEXP (op0, 1));
11759 op0 = simplify_gen_binary (PLUS, tmode,
11760 gen_lowpart (tmode, inner),
11761 new_const);
11762 continue;
11765 /* ... fall through ... */
11766 case LSHIFTRT:
11767 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11768 the low order N bits of FOO are known to be zero, we can do this
11769 by comparing FOO with C shifted left N bits so long as no
11770 overflow occurs. Even if the low order N bits of FOO aren't known
11771 to be zero, if the comparison is >= or < we can use the same
11772 optimization and for > or <= by setting all the low
11773 order N bits in the comparison constant. */
11774 if (CONST_INT_P (XEXP (op0, 1))
11775 && INTVAL (XEXP (op0, 1)) > 0
11776 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11777 && mode_width <= HOST_BITS_PER_WIDE_INT
11778 && (((unsigned HOST_WIDE_INT) const_op
11779 + (GET_CODE (op0) != LSHIFTRT
11780 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11781 + 1)
11782 : 0))
11783 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11785 unsigned HOST_WIDE_INT low_bits
11786 = (nonzero_bits (XEXP (op0, 0), mode)
11787 & (((unsigned HOST_WIDE_INT) 1
11788 << INTVAL (XEXP (op0, 1))) - 1));
11789 if (low_bits == 0 || !equality_comparison_p)
11791 /* If the shift was logical, then we must make the condition
11792 unsigned. */
11793 if (GET_CODE (op0) == LSHIFTRT)
11794 code = unsigned_condition (code);
11796 const_op <<= INTVAL (XEXP (op0, 1));
11797 if (low_bits != 0
11798 && (code == GT || code == GTU
11799 || code == LE || code == LEU))
11800 const_op
11801 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
11802 op1 = GEN_INT (const_op);
11803 op0 = XEXP (op0, 0);
11804 continue;
11808 /* If we are using this shift to extract just the sign bit, we
11809 can replace this with an LT or GE comparison. */
11810 if (const_op == 0
11811 && (equality_comparison_p || sign_bit_comparison_p)
11812 && CONST_INT_P (XEXP (op0, 1))
11813 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
11815 op0 = XEXP (op0, 0);
11816 code = (code == NE || code == GT ? LT : GE);
11817 continue;
11819 break;
11821 default:
11822 break;
11825 break;
11828 /* Now make any compound operations involved in this comparison. Then,
11829 check for an outmost SUBREG on OP0 that is not doing anything or is
11830 paradoxical. The latter transformation must only be performed when
11831 it is known that the "extra" bits will be the same in op0 and op1 or
11832 that they don't matter. There are three cases to consider:
11834 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11835 care bits and we can assume they have any convenient value. So
11836 making the transformation is safe.
11838 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11839 In this case the upper bits of op0 are undefined. We should not make
11840 the simplification in that case as we do not know the contents of
11841 those bits.
11843 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11844 UNKNOWN. In that case we know those bits are zeros or ones. We must
11845 also be sure that they are the same as the upper bits of op1.
11847 We can never remove a SUBREG for a non-equality comparison because
11848 the sign bit is in a different place in the underlying object. */
11850 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11851 op1 = make_compound_operation (op1, SET);
11853 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11854 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11855 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11856 && (code == NE || code == EQ))
11858 if (paradoxical_subreg_p (op0))
11860 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11861 implemented. */
11862 if (REG_P (SUBREG_REG (op0)))
11864 op0 = SUBREG_REG (op0);
11865 op1 = gen_lowpart (GET_MODE (op0), op1);
11868 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
11869 <= HOST_BITS_PER_WIDE_INT)
11870 && (nonzero_bits (SUBREG_REG (op0),
11871 GET_MODE (SUBREG_REG (op0)))
11872 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11874 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11876 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11877 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11878 op0 = SUBREG_REG (op0), op1 = tem;
11882 /* We now do the opposite procedure: Some machines don't have compare
11883 insns in all modes. If OP0's mode is an integer mode smaller than a
11884 word and we can't do a compare in that mode, see if there is a larger
11885 mode for which we can do the compare. There are a number of cases in
11886 which we can use the wider mode. */
11888 mode = GET_MODE (op0);
11889 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11890 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11891 && ! have_insn_for (COMPARE, mode))
11892 for (tmode = GET_MODE_WIDER_MODE (mode);
11893 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
11894 tmode = GET_MODE_WIDER_MODE (tmode))
11895 if (have_insn_for (COMPARE, tmode))
11897 int zero_extended;
11899 /* If this is a test for negative, we can make an explicit
11900 test of the sign bit. Test this first so we can use
11901 a paradoxical subreg to extend OP0. */
11903 if (op1 == const0_rtx && (code == LT || code == GE)
11904 && HWI_COMPUTABLE_MODE_P (mode))
11906 op0 = simplify_gen_binary (AND, tmode,
11907 gen_lowpart (tmode, op0),
11908 GEN_INT ((unsigned HOST_WIDE_INT) 1
11909 << (GET_MODE_BITSIZE (mode)
11910 - 1)));
11911 code = (code == LT) ? NE : EQ;
11912 break;
11915 /* If the only nonzero bits in OP0 and OP1 are those in the
11916 narrower mode and this is an equality or unsigned comparison,
11917 we can use the wider mode. Similarly for sign-extended
11918 values, in which case it is true for all comparisons. */
11919 zero_extended = ((code == EQ || code == NE
11920 || code == GEU || code == GTU
11921 || code == LEU || code == LTU)
11922 && (nonzero_bits (op0, tmode)
11923 & ~GET_MODE_MASK (mode)) == 0
11924 && ((CONST_INT_P (op1)
11925 || (nonzero_bits (op1, tmode)
11926 & ~GET_MODE_MASK (mode)) == 0)));
11928 if (zero_extended
11929 || ((num_sign_bit_copies (op0, tmode)
11930 > (unsigned int) (GET_MODE_PRECISION (tmode)
11931 - GET_MODE_PRECISION (mode)))
11932 && (num_sign_bit_copies (op1, tmode)
11933 > (unsigned int) (GET_MODE_PRECISION (tmode)
11934 - GET_MODE_PRECISION (mode)))))
11936 /* If OP0 is an AND and we don't have an AND in MODE either,
11937 make a new AND in the proper mode. */
11938 if (GET_CODE (op0) == AND
11939 && !have_insn_for (AND, mode))
11940 op0 = simplify_gen_binary (AND, tmode,
11941 gen_lowpart (tmode,
11942 XEXP (op0, 0)),
11943 gen_lowpart (tmode,
11944 XEXP (op0, 1)));
11945 else
11947 if (zero_extended)
11949 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
11950 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
11952 else
11954 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
11955 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
11957 break;
11962 #ifdef CANONICALIZE_COMPARISON
11963 /* If this machine only supports a subset of valid comparisons, see if we
11964 can convert an unsupported one into a supported one. */
11965 CANONICALIZE_COMPARISON (code, op0, op1);
11966 #endif
11968 *pop0 = op0;
11969 *pop1 = op1;
11971 return code;
11974 /* Utility function for record_value_for_reg. Count number of
11975 rtxs in X. */
11976 static int
11977 count_rtxs (rtx x)
11979 enum rtx_code code = GET_CODE (x);
11980 const char *fmt;
11981 int i, j, ret = 1;
11983 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
11984 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
11986 rtx x0 = XEXP (x, 0);
11987 rtx x1 = XEXP (x, 1);
11989 if (x0 == x1)
11990 return 1 + 2 * count_rtxs (x0);
11992 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
11993 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
11994 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11995 return 2 + 2 * count_rtxs (x0)
11996 + count_rtxs (x == XEXP (x1, 0)
11997 ? XEXP (x1, 1) : XEXP (x1, 0));
11999 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12000 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12001 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12002 return 2 + 2 * count_rtxs (x1)
12003 + count_rtxs (x == XEXP (x0, 0)
12004 ? XEXP (x0, 1) : XEXP (x0, 0));
12007 fmt = GET_RTX_FORMAT (code);
12008 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12009 if (fmt[i] == 'e')
12010 ret += count_rtxs (XEXP (x, i));
12011 else if (fmt[i] == 'E')
12012 for (j = 0; j < XVECLEN (x, i); j++)
12013 ret += count_rtxs (XVECEXP (x, i, j));
12015 return ret;
12018 /* Utility function for following routine. Called when X is part of a value
12019 being stored into last_set_value. Sets last_set_table_tick
12020 for each register mentioned. Similar to mention_regs in cse.c */
12022 static void
12023 update_table_tick (rtx x)
12025 enum rtx_code code = GET_CODE (x);
12026 const char *fmt = GET_RTX_FORMAT (code);
12027 int i, j;
12029 if (code == REG)
12031 unsigned int regno = REGNO (x);
12032 unsigned int endregno = END_REGNO (x);
12033 unsigned int r;
12035 for (r = regno; r < endregno; r++)
12037 reg_stat_type *rsp = &reg_stat[r];
12038 rsp->last_set_table_tick = label_tick;
12041 return;
12044 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12045 if (fmt[i] == 'e')
12047 /* Check for identical subexpressions. If x contains
12048 identical subexpression we only have to traverse one of
12049 them. */
12050 if (i == 0 && ARITHMETIC_P (x))
12052 /* Note that at this point x1 has already been
12053 processed. */
12054 rtx x0 = XEXP (x, 0);
12055 rtx x1 = XEXP (x, 1);
12057 /* If x0 and x1 are identical then there is no need to
12058 process x0. */
12059 if (x0 == x1)
12060 break;
12062 /* If x0 is identical to a subexpression of x1 then while
12063 processing x1, x0 has already been processed. Thus we
12064 are done with x. */
12065 if (ARITHMETIC_P (x1)
12066 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12067 break;
12069 /* If x1 is identical to a subexpression of x0 then we
12070 still have to process the rest of x0. */
12071 if (ARITHMETIC_P (x0)
12072 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12074 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12075 break;
12079 update_table_tick (XEXP (x, i));
12081 else if (fmt[i] == 'E')
12082 for (j = 0; j < XVECLEN (x, i); j++)
12083 update_table_tick (XVECEXP (x, i, j));
12086 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12087 are saying that the register is clobbered and we no longer know its
12088 value. If INSN is zero, don't update reg_stat[].last_set; this is
12089 only permitted with VALUE also zero and is used to invalidate the
12090 register. */
12092 static void
12093 record_value_for_reg (rtx reg, rtx insn, rtx value)
12095 unsigned int regno = REGNO (reg);
12096 unsigned int endregno = END_REGNO (reg);
12097 unsigned int i;
12098 reg_stat_type *rsp;
12100 /* If VALUE contains REG and we have a previous value for REG, substitute
12101 the previous value. */
12102 if (value && insn && reg_overlap_mentioned_p (reg, value))
12104 rtx tem;
12106 /* Set things up so get_last_value is allowed to see anything set up to
12107 our insn. */
12108 subst_low_luid = DF_INSN_LUID (insn);
12109 tem = get_last_value (reg);
12111 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12112 it isn't going to be useful and will take a lot of time to process,
12113 so just use the CLOBBER. */
12115 if (tem)
12117 if (ARITHMETIC_P (tem)
12118 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12119 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12120 tem = XEXP (tem, 0);
12121 else if (count_occurrences (value, reg, 1) >= 2)
12123 /* If there are two or more occurrences of REG in VALUE,
12124 prevent the value from growing too much. */
12125 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12126 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12129 value = replace_rtx (copy_rtx (value), reg, tem);
12133 /* For each register modified, show we don't know its value, that
12134 we don't know about its bitwise content, that its value has been
12135 updated, and that we don't know the location of the death of the
12136 register. */
12137 for (i = regno; i < endregno; i++)
12139 rsp = &reg_stat[i];
12141 if (insn)
12142 rsp->last_set = insn;
12144 rsp->last_set_value = 0;
12145 rsp->last_set_mode = VOIDmode;
12146 rsp->last_set_nonzero_bits = 0;
12147 rsp->last_set_sign_bit_copies = 0;
12148 rsp->last_death = 0;
12149 rsp->truncated_to_mode = VOIDmode;
12152 /* Mark registers that are being referenced in this value. */
12153 if (value)
12154 update_table_tick (value);
12156 /* Now update the status of each register being set.
12157 If someone is using this register in this block, set this register
12158 to invalid since we will get confused between the two lives in this
12159 basic block. This makes using this register always invalid. In cse, we
12160 scan the table to invalidate all entries using this register, but this
12161 is too much work for us. */
12163 for (i = regno; i < endregno; i++)
12165 rsp = &reg_stat[i];
12166 rsp->last_set_label = label_tick;
12167 if (!insn
12168 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12169 rsp->last_set_invalid = 1;
12170 else
12171 rsp->last_set_invalid = 0;
12174 /* The value being assigned might refer to X (like in "x++;"). In that
12175 case, we must replace it with (clobber (const_int 0)) to prevent
12176 infinite loops. */
12177 rsp = &reg_stat[regno];
12178 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12180 value = copy_rtx (value);
12181 if (!get_last_value_validate (&value, insn, label_tick, 1))
12182 value = 0;
12185 /* For the main register being modified, update the value, the mode, the
12186 nonzero bits, and the number of sign bit copies. */
12188 rsp->last_set_value = value;
12190 if (value)
12192 enum machine_mode mode = GET_MODE (reg);
12193 subst_low_luid = DF_INSN_LUID (insn);
12194 rsp->last_set_mode = mode;
12195 if (GET_MODE_CLASS (mode) == MODE_INT
12196 && HWI_COMPUTABLE_MODE_P (mode))
12197 mode = nonzero_bits_mode;
12198 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12199 rsp->last_set_sign_bit_copies
12200 = num_sign_bit_copies (value, GET_MODE (reg));
12204 /* Called via note_stores from record_dead_and_set_regs to handle one
12205 SET or CLOBBER in an insn. DATA is the instruction in which the
12206 set is occurring. */
12208 static void
12209 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12211 rtx record_dead_insn = (rtx) data;
12213 if (GET_CODE (dest) == SUBREG)
12214 dest = SUBREG_REG (dest);
12216 if (!record_dead_insn)
12218 if (REG_P (dest))
12219 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
12220 return;
12223 if (REG_P (dest))
12225 /* If we are setting the whole register, we know its value. Otherwise
12226 show that we don't know the value. We can handle SUBREG in
12227 some cases. */
12228 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12229 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12230 else if (GET_CODE (setter) == SET
12231 && GET_CODE (SET_DEST (setter)) == SUBREG
12232 && SUBREG_REG (SET_DEST (setter)) == dest
12233 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12234 && subreg_lowpart_p (SET_DEST (setter)))
12235 record_value_for_reg (dest, record_dead_insn,
12236 gen_lowpart (GET_MODE (dest),
12237 SET_SRC (setter)));
12238 else
12239 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12241 else if (MEM_P (dest)
12242 /* Ignore pushes, they clobber nothing. */
12243 && ! push_operand (dest, GET_MODE (dest)))
12244 mem_last_set = DF_INSN_LUID (record_dead_insn);
12247 /* Update the records of when each REG was most recently set or killed
12248 for the things done by INSN. This is the last thing done in processing
12249 INSN in the combiner loop.
12251 We update reg_stat[], in particular fields last_set, last_set_value,
12252 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12253 last_death, and also the similar information mem_last_set (which insn
12254 most recently modified memory) and last_call_luid (which insn was the
12255 most recent subroutine call). */
12257 static void
12258 record_dead_and_set_regs (rtx insn)
12260 rtx link;
12261 unsigned int i;
12263 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12265 if (REG_NOTE_KIND (link) == REG_DEAD
12266 && REG_P (XEXP (link, 0)))
12268 unsigned int regno = REGNO (XEXP (link, 0));
12269 unsigned int endregno = END_REGNO (XEXP (link, 0));
12271 for (i = regno; i < endregno; i++)
12273 reg_stat_type *rsp;
12275 rsp = &reg_stat[i];
12276 rsp->last_death = insn;
12279 else if (REG_NOTE_KIND (link) == REG_INC)
12280 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12283 if (CALL_P (insn))
12285 hard_reg_set_iterator hrsi;
12286 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12288 reg_stat_type *rsp;
12290 rsp = &reg_stat[i];
12291 rsp->last_set_invalid = 1;
12292 rsp->last_set = insn;
12293 rsp->last_set_value = 0;
12294 rsp->last_set_mode = VOIDmode;
12295 rsp->last_set_nonzero_bits = 0;
12296 rsp->last_set_sign_bit_copies = 0;
12297 rsp->last_death = 0;
12298 rsp->truncated_to_mode = VOIDmode;
12301 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12303 /* We can't combine into a call pattern. Remember, though, that
12304 the return value register is set at this LUID. We could
12305 still replace a register with the return value from the
12306 wrong subroutine call! */
12307 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12309 else
12310 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12313 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12314 register present in the SUBREG, so for each such SUBREG go back and
12315 adjust nonzero and sign bit information of the registers that are
12316 known to have some zero/sign bits set.
12318 This is needed because when combine blows the SUBREGs away, the
12319 information on zero/sign bits is lost and further combines can be
12320 missed because of that. */
12322 static void
12323 record_promoted_value (rtx insn, rtx subreg)
12325 struct insn_link *links;
12326 rtx set;
12327 unsigned int regno = REGNO (SUBREG_REG (subreg));
12328 enum machine_mode mode = GET_MODE (subreg);
12330 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12331 return;
12333 for (links = LOG_LINKS (insn); links;)
12335 reg_stat_type *rsp;
12337 insn = links->insn;
12338 set = single_set (insn);
12340 if (! set || !REG_P (SET_DEST (set))
12341 || REGNO (SET_DEST (set)) != regno
12342 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12344 links = links->next;
12345 continue;
12348 rsp = &reg_stat[regno];
12349 if (rsp->last_set == insn)
12351 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
12352 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12355 if (REG_P (SET_SRC (set)))
12357 regno = REGNO (SET_SRC (set));
12358 links = LOG_LINKS (insn);
12360 else
12361 break;
12365 /* Check if X, a register, is known to contain a value already
12366 truncated to MODE. In this case we can use a subreg to refer to
12367 the truncated value even though in the generic case we would need
12368 an explicit truncation. */
12370 static bool
12371 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
12373 reg_stat_type *rsp = &reg_stat[REGNO (x)];
12374 enum machine_mode truncated = rsp->truncated_to_mode;
12376 if (truncated == 0
12377 || rsp->truncation_label < label_tick_ebb_start)
12378 return false;
12379 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12380 return true;
12381 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12382 return true;
12383 return false;
12386 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12387 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12388 might be able to turn a truncate into a subreg using this information.
12389 Return -1 if traversing *P is complete or 0 otherwise. */
12391 static int
12392 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
12394 rtx x = *p;
12395 enum machine_mode truncated_mode;
12396 reg_stat_type *rsp;
12398 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12400 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12401 truncated_mode = GET_MODE (x);
12403 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12404 return -1;
12406 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12407 return -1;
12409 x = SUBREG_REG (x);
12411 /* ??? For hard-regs we now record everything. We might be able to
12412 optimize this using last_set_mode. */
12413 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12414 truncated_mode = GET_MODE (x);
12415 else
12416 return 0;
12418 rsp = &reg_stat[REGNO (x)];
12419 if (rsp->truncated_to_mode == 0
12420 || rsp->truncation_label < label_tick_ebb_start
12421 || (GET_MODE_SIZE (truncated_mode)
12422 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12424 rsp->truncated_to_mode = truncated_mode;
12425 rsp->truncation_label = label_tick;
12428 return -1;
12431 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12432 the modes they are used in. This can help truning TRUNCATEs into
12433 SUBREGs. */
12435 static void
12436 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
12438 for_each_rtx (x, record_truncated_value, NULL);
12441 /* Scan X for promoted SUBREGs. For each one found,
12442 note what it implies to the registers used in it. */
12444 static void
12445 check_promoted_subreg (rtx insn, rtx x)
12447 if (GET_CODE (x) == SUBREG
12448 && SUBREG_PROMOTED_VAR_P (x)
12449 && REG_P (SUBREG_REG (x)))
12450 record_promoted_value (insn, x);
12451 else
12453 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12454 int i, j;
12456 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12457 switch (format[i])
12459 case 'e':
12460 check_promoted_subreg (insn, XEXP (x, i));
12461 break;
12462 case 'V':
12463 case 'E':
12464 if (XVEC (x, i) != 0)
12465 for (j = 0; j < XVECLEN (x, i); j++)
12466 check_promoted_subreg (insn, XVECEXP (x, i, j));
12467 break;
12472 /* Verify that all the registers and memory references mentioned in *LOC are
12473 still valid. *LOC was part of a value set in INSN when label_tick was
12474 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12475 the invalid references with (clobber (const_int 0)) and return 1. This
12476 replacement is useful because we often can get useful information about
12477 the form of a value (e.g., if it was produced by a shift that always
12478 produces -1 or 0) even though we don't know exactly what registers it
12479 was produced from. */
12481 static int
12482 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
12484 rtx x = *loc;
12485 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12486 int len = GET_RTX_LENGTH (GET_CODE (x));
12487 int i, j;
12489 if (REG_P (x))
12491 unsigned int regno = REGNO (x);
12492 unsigned int endregno = END_REGNO (x);
12493 unsigned int j;
12495 for (j = regno; j < endregno; j++)
12497 reg_stat_type *rsp = &reg_stat[j];
12498 if (rsp->last_set_invalid
12499 /* If this is a pseudo-register that was only set once and not
12500 live at the beginning of the function, it is always valid. */
12501 || (! (regno >= FIRST_PSEUDO_REGISTER
12502 && REG_N_SETS (regno) == 1
12503 && (!REGNO_REG_SET_P
12504 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
12505 && rsp->last_set_label > tick))
12507 if (replace)
12508 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12509 return replace;
12513 return 1;
12515 /* If this is a memory reference, make sure that there were no stores after
12516 it that might have clobbered the value. We don't have alias info, so we
12517 assume any store invalidates it. Moreover, we only have local UIDs, so
12518 we also assume that there were stores in the intervening basic blocks. */
12519 else if (MEM_P (x) && !MEM_READONLY_P (x)
12520 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12522 if (replace)
12523 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12524 return replace;
12527 for (i = 0; i < len; i++)
12529 if (fmt[i] == 'e')
12531 /* Check for identical subexpressions. If x contains
12532 identical subexpression we only have to traverse one of
12533 them. */
12534 if (i == 1 && ARITHMETIC_P (x))
12536 /* Note that at this point x0 has already been checked
12537 and found valid. */
12538 rtx x0 = XEXP (x, 0);
12539 rtx x1 = XEXP (x, 1);
12541 /* If x0 and x1 are identical then x is also valid. */
12542 if (x0 == x1)
12543 return 1;
12545 /* If x1 is identical to a subexpression of x0 then
12546 while checking x0, x1 has already been checked. Thus
12547 it is valid and so as x. */
12548 if (ARITHMETIC_P (x0)
12549 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12550 return 1;
12552 /* If x0 is identical to a subexpression of x1 then x is
12553 valid iff the rest of x1 is valid. */
12554 if (ARITHMETIC_P (x1)
12555 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12556 return
12557 get_last_value_validate (&XEXP (x1,
12558 x0 == XEXP (x1, 0) ? 1 : 0),
12559 insn, tick, replace);
12562 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12563 replace) == 0)
12564 return 0;
12566 else if (fmt[i] == 'E')
12567 for (j = 0; j < XVECLEN (x, i); j++)
12568 if (get_last_value_validate (&XVECEXP (x, i, j),
12569 insn, tick, replace) == 0)
12570 return 0;
12573 /* If we haven't found a reason for it to be invalid, it is valid. */
12574 return 1;
12577 /* Get the last value assigned to X, if known. Some registers
12578 in the value may be replaced with (clobber (const_int 0)) if their value
12579 is known longer known reliably. */
12581 static rtx
12582 get_last_value (const_rtx x)
12584 unsigned int regno;
12585 rtx value;
12586 reg_stat_type *rsp;
12588 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12589 then convert it to the desired mode. If this is a paradoxical SUBREG,
12590 we cannot predict what values the "extra" bits might have. */
12591 if (GET_CODE (x) == SUBREG
12592 && subreg_lowpart_p (x)
12593 && !paradoxical_subreg_p (x)
12594 && (value = get_last_value (SUBREG_REG (x))) != 0)
12595 return gen_lowpart (GET_MODE (x), value);
12597 if (!REG_P (x))
12598 return 0;
12600 regno = REGNO (x);
12601 rsp = &reg_stat[regno];
12602 value = rsp->last_set_value;
12604 /* If we don't have a value, or if it isn't for this basic block and
12605 it's either a hard register, set more than once, or it's a live
12606 at the beginning of the function, return 0.
12608 Because if it's not live at the beginning of the function then the reg
12609 is always set before being used (is never used without being set).
12610 And, if it's set only once, and it's always set before use, then all
12611 uses must have the same last value, even if it's not from this basic
12612 block. */
12614 if (value == 0
12615 || (rsp->last_set_label < label_tick_ebb_start
12616 && (regno < FIRST_PSEUDO_REGISTER
12617 || REG_N_SETS (regno) != 1
12618 || REGNO_REG_SET_P
12619 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
12620 return 0;
12622 /* If the value was set in a later insn than the ones we are processing,
12623 we can't use it even if the register was only set once. */
12624 if (rsp->last_set_label == label_tick
12625 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
12626 return 0;
12628 /* If the value has all its registers valid, return it. */
12629 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
12630 return value;
12632 /* Otherwise, make a copy and replace any invalid register with
12633 (clobber (const_int 0)). If that fails for some reason, return 0. */
12635 value = copy_rtx (value);
12636 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
12637 return value;
12639 return 0;
12642 /* Return nonzero if expression X refers to a REG or to memory
12643 that is set in an instruction more recent than FROM_LUID. */
12645 static int
12646 use_crosses_set_p (const_rtx x, int from_luid)
12648 const char *fmt;
12649 int i;
12650 enum rtx_code code = GET_CODE (x);
12652 if (code == REG)
12654 unsigned int regno = REGNO (x);
12655 unsigned endreg = END_REGNO (x);
12657 #ifdef PUSH_ROUNDING
12658 /* Don't allow uses of the stack pointer to be moved,
12659 because we don't know whether the move crosses a push insn. */
12660 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
12661 return 1;
12662 #endif
12663 for (; regno < endreg; regno++)
12665 reg_stat_type *rsp = &reg_stat[regno];
12666 if (rsp->last_set
12667 && rsp->last_set_label == label_tick
12668 && DF_INSN_LUID (rsp->last_set) > from_luid)
12669 return 1;
12671 return 0;
12674 if (code == MEM && mem_last_set > from_luid)
12675 return 1;
12677 fmt = GET_RTX_FORMAT (code);
12679 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12681 if (fmt[i] == 'E')
12683 int j;
12684 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12685 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
12686 return 1;
12688 else if (fmt[i] == 'e'
12689 && use_crosses_set_p (XEXP (x, i), from_luid))
12690 return 1;
12692 return 0;
12695 /* Define three variables used for communication between the following
12696 routines. */
12698 static unsigned int reg_dead_regno, reg_dead_endregno;
12699 static int reg_dead_flag;
12701 /* Function called via note_stores from reg_dead_at_p.
12703 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12704 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12706 static void
12707 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
12709 unsigned int regno, endregno;
12711 if (!REG_P (dest))
12712 return;
12714 regno = REGNO (dest);
12715 endregno = END_REGNO (dest);
12716 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
12717 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
12720 /* Return nonzero if REG is known to be dead at INSN.
12722 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12723 referencing REG, it is dead. If we hit a SET referencing REG, it is
12724 live. Otherwise, see if it is live or dead at the start of the basic
12725 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12726 must be assumed to be always live. */
12728 static int
12729 reg_dead_at_p (rtx reg, rtx insn)
12731 basic_block block;
12732 unsigned int i;
12734 /* Set variables for reg_dead_at_p_1. */
12735 reg_dead_regno = REGNO (reg);
12736 reg_dead_endregno = END_REGNO (reg);
12738 reg_dead_flag = 0;
12740 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12741 we allow the machine description to decide whether use-and-clobber
12742 patterns are OK. */
12743 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
12745 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12746 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
12747 return 0;
12750 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12751 beginning of basic block. */
12752 block = BLOCK_FOR_INSN (insn);
12753 for (;;)
12755 if (INSN_P (insn))
12757 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
12758 if (reg_dead_flag)
12759 return reg_dead_flag == 1 ? 1 : 0;
12761 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
12762 return 1;
12765 if (insn == BB_HEAD (block))
12766 break;
12768 insn = PREV_INSN (insn);
12771 /* Look at live-in sets for the basic block that we were in. */
12772 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12773 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12774 return 0;
12776 return 1;
12779 /* Note hard registers in X that are used. */
12781 static void
12782 mark_used_regs_combine (rtx x)
12784 RTX_CODE code = GET_CODE (x);
12785 unsigned int regno;
12786 int i;
12788 switch (code)
12790 case LABEL_REF:
12791 case SYMBOL_REF:
12792 case CONST:
12793 CASE_CONST_ANY:
12794 case PC:
12795 case ADDR_VEC:
12796 case ADDR_DIFF_VEC:
12797 case ASM_INPUT:
12798 #ifdef HAVE_cc0
12799 /* CC0 must die in the insn after it is set, so we don't need to take
12800 special note of it here. */
12801 case CC0:
12802 #endif
12803 return;
12805 case CLOBBER:
12806 /* If we are clobbering a MEM, mark any hard registers inside the
12807 address as used. */
12808 if (MEM_P (XEXP (x, 0)))
12809 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12810 return;
12812 case REG:
12813 regno = REGNO (x);
12814 /* A hard reg in a wide mode may really be multiple registers.
12815 If so, mark all of them just like the first. */
12816 if (regno < FIRST_PSEUDO_REGISTER)
12818 /* None of this applies to the stack, frame or arg pointers. */
12819 if (regno == STACK_POINTER_REGNUM
12820 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12821 || regno == HARD_FRAME_POINTER_REGNUM
12822 #endif
12823 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12824 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12825 #endif
12826 || regno == FRAME_POINTER_REGNUM)
12827 return;
12829 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12831 return;
12833 case SET:
12835 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12836 the address. */
12837 rtx testreg = SET_DEST (x);
12839 while (GET_CODE (testreg) == SUBREG
12840 || GET_CODE (testreg) == ZERO_EXTRACT
12841 || GET_CODE (testreg) == STRICT_LOW_PART)
12842 testreg = XEXP (testreg, 0);
12844 if (MEM_P (testreg))
12845 mark_used_regs_combine (XEXP (testreg, 0));
12847 mark_used_regs_combine (SET_SRC (x));
12849 return;
12851 default:
12852 break;
12855 /* Recursively scan the operands of this expression. */
12858 const char *fmt = GET_RTX_FORMAT (code);
12860 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12862 if (fmt[i] == 'e')
12863 mark_used_regs_combine (XEXP (x, i));
12864 else if (fmt[i] == 'E')
12866 int j;
12868 for (j = 0; j < XVECLEN (x, i); j++)
12869 mark_used_regs_combine (XVECEXP (x, i, j));
12875 /* Remove register number REGNO from the dead registers list of INSN.
12877 Return the note used to record the death, if there was one. */
12880 remove_death (unsigned int regno, rtx insn)
12882 rtx note = find_regno_note (insn, REG_DEAD, regno);
12884 if (note)
12885 remove_note (insn, note);
12887 return note;
12890 /* For each register (hardware or pseudo) used within expression X, if its
12891 death is in an instruction with luid between FROM_LUID (inclusive) and
12892 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12893 list headed by PNOTES.
12895 That said, don't move registers killed by maybe_kill_insn.
12897 This is done when X is being merged by combination into TO_INSN. These
12898 notes will then be distributed as needed. */
12900 static void
12901 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12902 rtx *pnotes)
12904 const char *fmt;
12905 int len, i;
12906 enum rtx_code code = GET_CODE (x);
12908 if (code == REG)
12910 unsigned int regno = REGNO (x);
12911 rtx where_dead = reg_stat[regno].last_death;
12913 /* Don't move the register if it gets killed in between from and to. */
12914 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12915 && ! reg_referenced_p (x, maybe_kill_insn))
12916 return;
12918 if (where_dead
12919 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
12920 && DF_INSN_LUID (where_dead) >= from_luid
12921 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12923 rtx note = remove_death (regno, where_dead);
12925 /* It is possible for the call above to return 0. This can occur
12926 when last_death points to I2 or I1 that we combined with.
12927 In that case make a new note.
12929 We must also check for the case where X is a hard register
12930 and NOTE is a death note for a range of hard registers
12931 including X. In that case, we must put REG_DEAD notes for
12932 the remaining registers in place of NOTE. */
12934 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12935 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12936 > GET_MODE_SIZE (GET_MODE (x))))
12938 unsigned int deadregno = REGNO (XEXP (note, 0));
12939 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12940 unsigned int ourend = END_HARD_REGNO (x);
12941 unsigned int i;
12943 for (i = deadregno; i < deadend; i++)
12944 if (i < regno || i >= ourend)
12945 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12948 /* If we didn't find any note, or if we found a REG_DEAD note that
12949 covers only part of the given reg, and we have a multi-reg hard
12950 register, then to be safe we must check for REG_DEAD notes
12951 for each register other than the first. They could have
12952 their own REG_DEAD notes lying around. */
12953 else if ((note == 0
12954 || (note != 0
12955 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12956 < GET_MODE_SIZE (GET_MODE (x)))))
12957 && regno < FIRST_PSEUDO_REGISTER
12958 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12960 unsigned int ourend = END_HARD_REGNO (x);
12961 unsigned int i, offset;
12962 rtx oldnotes = 0;
12964 if (note)
12965 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12966 else
12967 offset = 1;
12969 for (i = regno + offset; i < ourend; i++)
12970 move_deaths (regno_reg_rtx[i],
12971 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12974 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12976 XEXP (note, 1) = *pnotes;
12977 *pnotes = note;
12979 else
12980 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
12983 return;
12986 else if (GET_CODE (x) == SET)
12988 rtx dest = SET_DEST (x);
12990 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
12992 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12993 that accesses one word of a multi-word item, some
12994 piece of everything register in the expression is used by
12995 this insn, so remove any old death. */
12996 /* ??? So why do we test for equality of the sizes? */
12998 if (GET_CODE (dest) == ZERO_EXTRACT
12999 || GET_CODE (dest) == STRICT_LOW_PART
13000 || (GET_CODE (dest) == SUBREG
13001 && (((GET_MODE_SIZE (GET_MODE (dest))
13002 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13003 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13004 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13006 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13007 return;
13010 /* If this is some other SUBREG, we know it replaces the entire
13011 value, so use that as the destination. */
13012 if (GET_CODE (dest) == SUBREG)
13013 dest = SUBREG_REG (dest);
13015 /* If this is a MEM, adjust deaths of anything used in the address.
13016 For a REG (the only other possibility), the entire value is
13017 being replaced so the old value is not used in this insn. */
13019 if (MEM_P (dest))
13020 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13021 to_insn, pnotes);
13022 return;
13025 else if (GET_CODE (x) == CLOBBER)
13026 return;
13028 len = GET_RTX_LENGTH (code);
13029 fmt = GET_RTX_FORMAT (code);
13031 for (i = 0; i < len; i++)
13033 if (fmt[i] == 'E')
13035 int j;
13036 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13037 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13038 to_insn, pnotes);
13040 else if (fmt[i] == 'e')
13041 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13045 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13046 pattern of an insn. X must be a REG. */
13048 static int
13049 reg_bitfield_target_p (rtx x, rtx body)
13051 int i;
13053 if (GET_CODE (body) == SET)
13055 rtx dest = SET_DEST (body);
13056 rtx target;
13057 unsigned int regno, tregno, endregno, endtregno;
13059 if (GET_CODE (dest) == ZERO_EXTRACT)
13060 target = XEXP (dest, 0);
13061 else if (GET_CODE (dest) == STRICT_LOW_PART)
13062 target = SUBREG_REG (XEXP (dest, 0));
13063 else
13064 return 0;
13066 if (GET_CODE (target) == SUBREG)
13067 target = SUBREG_REG (target);
13069 if (!REG_P (target))
13070 return 0;
13072 tregno = REGNO (target), regno = REGNO (x);
13073 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13074 return target == x;
13076 endtregno = end_hard_regno (GET_MODE (target), tregno);
13077 endregno = end_hard_regno (GET_MODE (x), regno);
13079 return endregno > tregno && regno < endtregno;
13082 else if (GET_CODE (body) == PARALLEL)
13083 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13084 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13085 return 1;
13087 return 0;
13090 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13091 as appropriate. I3 and I2 are the insns resulting from the combination
13092 insns including FROM (I2 may be zero).
13094 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13095 not need REG_DEAD notes because they are being substituted for. This
13096 saves searching in the most common cases.
13098 Each note in the list is either ignored or placed on some insns, depending
13099 on the type of note. */
13101 static void
13102 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
13103 rtx elim_i1, rtx elim_i0)
13105 rtx note, next_note;
13106 rtx tem;
13108 for (note = notes; note; note = next_note)
13110 rtx place = 0, place2 = 0;
13112 next_note = XEXP (note, 1);
13113 switch (REG_NOTE_KIND (note))
13115 case REG_BR_PROB:
13116 case REG_BR_PRED:
13117 /* Doesn't matter much where we put this, as long as it's somewhere.
13118 It is preferable to keep these notes on branches, which is most
13119 likely to be i3. */
13120 place = i3;
13121 break;
13123 case REG_NON_LOCAL_GOTO:
13124 if (JUMP_P (i3))
13125 place = i3;
13126 else
13128 gcc_assert (i2 && JUMP_P (i2));
13129 place = i2;
13131 break;
13133 case REG_EH_REGION:
13134 /* These notes must remain with the call or trapping instruction. */
13135 if (CALL_P (i3))
13136 place = i3;
13137 else if (i2 && CALL_P (i2))
13138 place = i2;
13139 else
13141 gcc_assert (cfun->can_throw_non_call_exceptions);
13142 if (may_trap_p (i3))
13143 place = i3;
13144 else if (i2 && may_trap_p (i2))
13145 place = i2;
13146 /* ??? Otherwise assume we've combined things such that we
13147 can now prove that the instructions can't trap. Drop the
13148 note in this case. */
13150 break;
13152 case REG_ARGS_SIZE:
13153 /* ??? How to distribute between i3-i1. Assume i3 contains the
13154 entire adjustment. Assert i3 contains at least some adjust. */
13155 if (!noop_move_p (i3))
13157 int old_size, args_size = INTVAL (XEXP (note, 0));
13158 /* fixup_args_size_notes looks at REG_NORETURN note,
13159 so ensure the note is placed there first. */
13160 if (CALL_P (i3))
13162 rtx *np;
13163 for (np = &next_note; *np; np = &XEXP (*np, 1))
13164 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13166 rtx n = *np;
13167 *np = XEXP (n, 1);
13168 XEXP (n, 1) = REG_NOTES (i3);
13169 REG_NOTES (i3) = n;
13170 break;
13173 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13174 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13175 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13176 gcc_assert (old_size != args_size
13177 || (CALL_P (i3)
13178 && !ACCUMULATE_OUTGOING_ARGS
13179 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13181 break;
13183 case REG_NORETURN:
13184 case REG_SETJMP:
13185 case REG_TM:
13186 /* These notes must remain with the call. It should not be
13187 possible for both I2 and I3 to be a call. */
13188 if (CALL_P (i3))
13189 place = i3;
13190 else
13192 gcc_assert (i2 && CALL_P (i2));
13193 place = i2;
13195 break;
13197 case REG_UNUSED:
13198 /* Any clobbers for i3 may still exist, and so we must process
13199 REG_UNUSED notes from that insn.
13201 Any clobbers from i2 or i1 can only exist if they were added by
13202 recog_for_combine. In that case, recog_for_combine created the
13203 necessary REG_UNUSED notes. Trying to keep any original
13204 REG_UNUSED notes from these insns can cause incorrect output
13205 if it is for the same register as the original i3 dest.
13206 In that case, we will notice that the register is set in i3,
13207 and then add a REG_UNUSED note for the destination of i3, which
13208 is wrong. However, it is possible to have REG_UNUSED notes from
13209 i2 or i1 for register which were both used and clobbered, so
13210 we keep notes from i2 or i1 if they will turn into REG_DEAD
13211 notes. */
13213 /* If this register is set or clobbered in I3, put the note there
13214 unless there is one already. */
13215 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13217 if (from_insn != i3)
13218 break;
13220 if (! (REG_P (XEXP (note, 0))
13221 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13222 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13223 place = i3;
13225 /* Otherwise, if this register is used by I3, then this register
13226 now dies here, so we must put a REG_DEAD note here unless there
13227 is one already. */
13228 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13229 && ! (REG_P (XEXP (note, 0))
13230 ? find_regno_note (i3, REG_DEAD,
13231 REGNO (XEXP (note, 0)))
13232 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13234 PUT_REG_NOTE_KIND (note, REG_DEAD);
13235 place = i3;
13237 break;
13239 case REG_EQUAL:
13240 case REG_EQUIV:
13241 case REG_NOALIAS:
13242 /* These notes say something about results of an insn. We can
13243 only support them if they used to be on I3 in which case they
13244 remain on I3. Otherwise they are ignored.
13246 If the note refers to an expression that is not a constant, we
13247 must also ignore the note since we cannot tell whether the
13248 equivalence is still true. It might be possible to do
13249 slightly better than this (we only have a problem if I2DEST
13250 or I1DEST is present in the expression), but it doesn't
13251 seem worth the trouble. */
13253 if (from_insn == i3
13254 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13255 place = i3;
13256 break;
13258 case REG_INC:
13259 /* These notes say something about how a register is used. They must
13260 be present on any use of the register in I2 or I3. */
13261 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13262 place = i3;
13264 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13266 if (place)
13267 place2 = i2;
13268 else
13269 place = i2;
13271 break;
13273 case REG_LABEL_TARGET:
13274 case REG_LABEL_OPERAND:
13275 /* This can show up in several ways -- either directly in the
13276 pattern, or hidden off in the constant pool with (or without?)
13277 a REG_EQUAL note. */
13278 /* ??? Ignore the without-reg_equal-note problem for now. */
13279 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13280 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13281 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13282 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
13283 place = i3;
13285 if (i2
13286 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13287 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13288 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
13289 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
13291 if (place)
13292 place2 = i2;
13293 else
13294 place = i2;
13297 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13298 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13299 there. */
13300 if (place && JUMP_P (place)
13301 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13302 && (JUMP_LABEL (place) == NULL
13303 || JUMP_LABEL (place) == XEXP (note, 0)))
13305 rtx label = JUMP_LABEL (place);
13307 if (!label)
13308 JUMP_LABEL (place) = XEXP (note, 0);
13309 else if (LABEL_P (label))
13310 LABEL_NUSES (label)--;
13313 if (place2 && JUMP_P (place2)
13314 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13315 && (JUMP_LABEL (place2) == NULL
13316 || JUMP_LABEL (place2) == XEXP (note, 0)))
13318 rtx label = JUMP_LABEL (place2);
13320 if (!label)
13321 JUMP_LABEL (place2) = XEXP (note, 0);
13322 else if (LABEL_P (label))
13323 LABEL_NUSES (label)--;
13324 place2 = 0;
13326 break;
13328 case REG_NONNEG:
13329 /* This note says something about the value of a register prior
13330 to the execution of an insn. It is too much trouble to see
13331 if the note is still correct in all situations. It is better
13332 to simply delete it. */
13333 break;
13335 case REG_DEAD:
13336 /* If we replaced the right hand side of FROM_INSN with a
13337 REG_EQUAL note, the original use of the dying register
13338 will not have been combined into I3 and I2. In such cases,
13339 FROM_INSN is guaranteed to be the first of the combined
13340 instructions, so we simply need to search back before
13341 FROM_INSN for the previous use or set of this register,
13342 then alter the notes there appropriately.
13344 If the register is used as an input in I3, it dies there.
13345 Similarly for I2, if it is nonzero and adjacent to I3.
13347 If the register is not used as an input in either I3 or I2
13348 and it is not one of the registers we were supposed to eliminate,
13349 there are two possibilities. We might have a non-adjacent I2
13350 or we might have somehow eliminated an additional register
13351 from a computation. For example, we might have had A & B where
13352 we discover that B will always be zero. In this case we will
13353 eliminate the reference to A.
13355 In both cases, we must search to see if we can find a previous
13356 use of A and put the death note there. */
13358 if (from_insn
13359 && from_insn == i2mod
13360 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13361 tem = from_insn;
13362 else
13364 if (from_insn
13365 && CALL_P (from_insn)
13366 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13367 place = from_insn;
13368 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13369 place = i3;
13370 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13371 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13372 place = i2;
13373 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13374 && !(i2mod
13375 && reg_overlap_mentioned_p (XEXP (note, 0),
13376 i2mod_old_rhs)))
13377 || rtx_equal_p (XEXP (note, 0), elim_i1)
13378 || rtx_equal_p (XEXP (note, 0), elim_i0))
13379 break;
13380 tem = i3;
13383 if (place == 0)
13385 basic_block bb = this_basic_block;
13387 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
13389 if (!NONDEBUG_INSN_P (tem))
13391 if (tem == BB_HEAD (bb))
13392 break;
13393 continue;
13396 /* If the register is being set at TEM, see if that is all
13397 TEM is doing. If so, delete TEM. Otherwise, make this
13398 into a REG_UNUSED note instead. Don't delete sets to
13399 global register vars. */
13400 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13401 || !global_regs[REGNO (XEXP (note, 0))])
13402 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
13404 rtx set = single_set (tem);
13405 rtx inner_dest = 0;
13406 #ifdef HAVE_cc0
13407 rtx cc0_setter = NULL_RTX;
13408 #endif
13410 if (set != 0)
13411 for (inner_dest = SET_DEST (set);
13412 (GET_CODE (inner_dest) == STRICT_LOW_PART
13413 || GET_CODE (inner_dest) == SUBREG
13414 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13415 inner_dest = XEXP (inner_dest, 0))
13418 /* Verify that it was the set, and not a clobber that
13419 modified the register.
13421 CC0 targets must be careful to maintain setter/user
13422 pairs. If we cannot delete the setter due to side
13423 effects, mark the user with an UNUSED note instead
13424 of deleting it. */
13426 if (set != 0 && ! side_effects_p (SET_SRC (set))
13427 && rtx_equal_p (XEXP (note, 0), inner_dest)
13428 #ifdef HAVE_cc0
13429 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13430 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
13431 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13432 #endif
13435 /* Move the notes and links of TEM elsewhere.
13436 This might delete other dead insns recursively.
13437 First set the pattern to something that won't use
13438 any register. */
13439 rtx old_notes = REG_NOTES (tem);
13441 PATTERN (tem) = pc_rtx;
13442 REG_NOTES (tem) = NULL;
13444 distribute_notes (old_notes, tem, tem, NULL_RTX,
13445 NULL_RTX, NULL_RTX, NULL_RTX);
13446 distribute_links (LOG_LINKS (tem));
13448 SET_INSN_DELETED (tem);
13449 if (tem == i2)
13450 i2 = NULL_RTX;
13452 #ifdef HAVE_cc0
13453 /* Delete the setter too. */
13454 if (cc0_setter)
13456 PATTERN (cc0_setter) = pc_rtx;
13457 old_notes = REG_NOTES (cc0_setter);
13458 REG_NOTES (cc0_setter) = NULL;
13460 distribute_notes (old_notes, cc0_setter,
13461 cc0_setter, NULL_RTX,
13462 NULL_RTX, NULL_RTX, NULL_RTX);
13463 distribute_links (LOG_LINKS (cc0_setter));
13465 SET_INSN_DELETED (cc0_setter);
13466 if (cc0_setter == i2)
13467 i2 = NULL_RTX;
13469 #endif
13471 else
13473 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13475 /* If there isn't already a REG_UNUSED note, put one
13476 here. Do not place a REG_DEAD note, even if
13477 the register is also used here; that would not
13478 match the algorithm used in lifetime analysis
13479 and can cause the consistency check in the
13480 scheduler to fail. */
13481 if (! find_regno_note (tem, REG_UNUSED,
13482 REGNO (XEXP (note, 0))))
13483 place = tem;
13484 break;
13487 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
13488 || (CALL_P (tem)
13489 && find_reg_fusage (tem, USE, XEXP (note, 0))))
13491 place = tem;
13493 /* If we are doing a 3->2 combination, and we have a
13494 register which formerly died in i3 and was not used
13495 by i2, which now no longer dies in i3 and is used in
13496 i2 but does not die in i2, and place is between i2
13497 and i3, then we may need to move a link from place to
13498 i2. */
13499 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13500 && from_insn
13501 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13502 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13504 struct insn_link *links = LOG_LINKS (place);
13505 LOG_LINKS (place) = NULL;
13506 distribute_links (links);
13508 break;
13511 if (tem == BB_HEAD (bb))
13512 break;
13517 /* If the register is set or already dead at PLACE, we needn't do
13518 anything with this note if it is still a REG_DEAD note.
13519 We check here if it is set at all, not if is it totally replaced,
13520 which is what `dead_or_set_p' checks, so also check for it being
13521 set partially. */
13523 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13525 unsigned int regno = REGNO (XEXP (note, 0));
13526 reg_stat_type *rsp = &reg_stat[regno];
13528 if (dead_or_set_p (place, XEXP (note, 0))
13529 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13531 /* Unless the register previously died in PLACE, clear
13532 last_death. [I no longer understand why this is
13533 being done.] */
13534 if (rsp->last_death != place)
13535 rsp->last_death = 0;
13536 place = 0;
13538 else
13539 rsp->last_death = place;
13541 /* If this is a death note for a hard reg that is occupying
13542 multiple registers, ensure that we are still using all
13543 parts of the object. If we find a piece of the object
13544 that is unused, we must arrange for an appropriate REG_DEAD
13545 note to be added for it. However, we can't just emit a USE
13546 and tag the note to it, since the register might actually
13547 be dead; so we recourse, and the recursive call then finds
13548 the previous insn that used this register. */
13550 if (place && regno < FIRST_PSEUDO_REGISTER
13551 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13553 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13554 int all_used = 1;
13555 unsigned int i;
13557 for (i = regno; i < endregno; i++)
13558 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
13559 && ! find_regno_fusage (place, USE, i))
13560 || dead_or_set_regno_p (place, i))
13561 all_used = 0;
13563 if (! all_used)
13565 /* Put only REG_DEAD notes for pieces that are
13566 not already dead or set. */
13568 for (i = regno; i < endregno;
13569 i += hard_regno_nregs[i][reg_raw_mode[i]])
13571 rtx piece = regno_reg_rtx[i];
13572 basic_block bb = this_basic_block;
13574 if (! dead_or_set_p (place, piece)
13575 && ! reg_bitfield_target_p (piece,
13576 PATTERN (place)))
13578 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13579 NULL_RTX);
13581 distribute_notes (new_note, place, place,
13582 NULL_RTX, NULL_RTX, NULL_RTX,
13583 NULL_RTX);
13585 else if (! refers_to_regno_p (i, i + 1,
13586 PATTERN (place), 0)
13587 && ! find_regno_fusage (place, USE, i))
13588 for (tem = PREV_INSN (place); ;
13589 tem = PREV_INSN (tem))
13591 if (!NONDEBUG_INSN_P (tem))
13593 if (tem == BB_HEAD (bb))
13594 break;
13595 continue;
13597 if (dead_or_set_p (tem, piece)
13598 || reg_bitfield_target_p (piece,
13599 PATTERN (tem)))
13601 add_reg_note (tem, REG_UNUSED, piece);
13602 break;
13608 place = 0;
13612 break;
13614 default:
13615 /* Any other notes should not be present at this point in the
13616 compilation. */
13617 gcc_unreachable ();
13620 if (place)
13622 XEXP (note, 1) = REG_NOTES (place);
13623 REG_NOTES (place) = note;
13626 if (place2)
13627 add_reg_note (place2, REG_NOTE_KIND (note), XEXP (note, 0));
13631 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13632 I3, I2, and I1 to new locations. This is also called to add a link
13633 pointing at I3 when I3's destination is changed. */
13635 static void
13636 distribute_links (struct insn_link *links)
13638 struct insn_link *link, *next_link;
13640 for (link = links; link; link = next_link)
13642 rtx place = 0;
13643 rtx insn;
13644 rtx set, reg;
13646 next_link = link->next;
13648 /* If the insn that this link points to is a NOTE or isn't a single
13649 set, ignore it. In the latter case, it isn't clear what we
13650 can do other than ignore the link, since we can't tell which
13651 register it was for. Such links wouldn't be used by combine
13652 anyway.
13654 It is not possible for the destination of the target of the link to
13655 have been changed by combine. The only potential of this is if we
13656 replace I3, I2, and I1 by I3 and I2. But in that case the
13657 destination of I2 also remains unchanged. */
13659 if (NOTE_P (link->insn)
13660 || (set = single_set (link->insn)) == 0)
13661 continue;
13663 reg = SET_DEST (set);
13664 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
13665 || GET_CODE (reg) == STRICT_LOW_PART)
13666 reg = XEXP (reg, 0);
13668 /* A LOG_LINK is defined as being placed on the first insn that uses
13669 a register and points to the insn that sets the register. Start
13670 searching at the next insn after the target of the link and stop
13671 when we reach a set of the register or the end of the basic block.
13673 Note that this correctly handles the link that used to point from
13674 I3 to I2. Also note that not much searching is typically done here
13675 since most links don't point very far away. */
13677 for (insn = NEXT_INSN (link->insn);
13678 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
13679 || BB_HEAD (this_basic_block->next_bb) != insn));
13680 insn = NEXT_INSN (insn))
13681 if (DEBUG_INSN_P (insn))
13682 continue;
13683 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
13685 if (reg_referenced_p (reg, PATTERN (insn)))
13686 place = insn;
13687 break;
13689 else if (CALL_P (insn)
13690 && find_reg_fusage (insn, USE, reg))
13692 place = insn;
13693 break;
13695 else if (INSN_P (insn) && reg_set_p (reg, insn))
13696 break;
13698 /* If we found a place to put the link, place it there unless there
13699 is already a link to the same insn as LINK at that point. */
13701 if (place)
13703 struct insn_link *link2;
13705 FOR_EACH_LOG_LINK (link2, place)
13706 if (link2->insn == link->insn)
13707 break;
13709 if (link2 == NULL)
13711 link->next = LOG_LINKS (place);
13712 LOG_LINKS (place) = link;
13714 /* Set added_links_insn to the earliest insn we added a
13715 link to. */
13716 if (added_links_insn == 0
13717 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
13718 added_links_insn = place;
13724 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13725 Check whether the expression pointer to by LOC is a register or
13726 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13727 Otherwise return zero. */
13729 static int
13730 unmentioned_reg_p_1 (rtx *loc, void *expr)
13732 rtx x = *loc;
13734 if (x != NULL_RTX
13735 && (REG_P (x) || MEM_P (x))
13736 && ! reg_mentioned_p (x, (rtx) expr))
13737 return 1;
13738 return 0;
13741 /* Check for any register or memory mentioned in EQUIV that is not
13742 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13743 of EXPR where some registers may have been replaced by constants. */
13745 static bool
13746 unmentioned_reg_p (rtx equiv, rtx expr)
13748 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
13751 DEBUG_FUNCTION void
13752 dump_combine_stats (FILE *file)
13754 fprintf
13755 (file,
13756 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13757 combine_attempts, combine_merges, combine_extras, combine_successes);
13760 void
13761 dump_combine_total_stats (FILE *file)
13763 fprintf
13764 (file,
13765 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13766 total_attempts, total_merges, total_extras, total_successes);
13769 static bool
13770 gate_handle_combine (void)
13772 return (optimize > 0);
13775 /* Try combining insns through substitution. */
13776 static unsigned int
13777 rest_of_handle_combine (void)
13779 int rebuild_jump_labels_after_combine;
13781 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
13782 df_note_add_problem ();
13783 df_analyze ();
13785 regstat_init_n_sets_and_refs ();
13787 rebuild_jump_labels_after_combine
13788 = combine_instructions (get_insns (), max_reg_num ());
13790 /* Combining insns may have turned an indirect jump into a
13791 direct jump. Rebuild the JUMP_LABEL fields of jumping
13792 instructions. */
13793 if (rebuild_jump_labels_after_combine)
13795 timevar_push (TV_JUMP);
13796 rebuild_jump_labels (get_insns ());
13797 cleanup_cfg (0);
13798 timevar_pop (TV_JUMP);
13801 regstat_free_n_sets_and_refs ();
13802 return 0;
13805 struct rtl_opt_pass pass_combine =
13808 RTL_PASS,
13809 "combine", /* name */
13810 OPTGROUP_NONE, /* optinfo_flags */
13811 gate_handle_combine, /* gate */
13812 rest_of_handle_combine, /* execute */
13813 NULL, /* sub */
13814 NULL, /* next */
13815 0, /* static_pass_number */
13816 TV_COMBINE, /* tv_id */
13817 PROP_cfglayout, /* properties_required */
13818 0, /* properties_provided */
13819 0, /* properties_destroyed */
13820 0, /* todo_flags_start */
13821 TODO_df_finish | TODO_verify_rtl_sharing |
13822 TODO_ggc_collect, /* todo_flags_finish */