1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains optimizer of the control flow. The main entry point is
23 cleanup_cfg. Following optimizations are performed:
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to its
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
36 #include "coretypes.h"
39 #include "hard-reg-set.h"
43 #include "insn-config.h"
46 #include "diagnostic-core.h"
51 #include "cfglayout.h"
53 #include "tree-pass.h"
60 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
62 /* Set to true when we are running first pass of try_optimize_cfg loop. */
63 static bool first_pass
;
65 /* Set to true if crossjumps occured in the latest run of try_optimize_cfg. */
66 static bool crossjumps_occured
;
68 /* Set to true if we couldn't run an optimization due to stale liveness
69 information; we should run df_analyze to enable more opportunities. */
70 static bool block_was_dirty
;
72 static bool try_crossjump_to_edge (int, edge
, edge
, enum replace_direction
);
73 static bool try_crossjump_bb (int, basic_block
);
74 static bool outgoing_edges_match (int, basic_block
, basic_block
);
75 static enum replace_direction
old_insns_match_p (int, rtx
, rtx
);
77 static void merge_blocks_move_predecessor_nojumps (basic_block
, basic_block
);
78 static void merge_blocks_move_successor_nojumps (basic_block
, basic_block
);
79 static bool try_optimize_cfg (int);
80 static bool try_simplify_condjump (basic_block
);
81 static bool try_forward_edges (int, basic_block
);
82 static edge
thread_jump (edge
, basic_block
);
83 static bool mark_effect (rtx
, bitmap
);
84 static void notice_new_block (basic_block
);
85 static void update_forwarder_flag (basic_block
);
86 static int mentions_nonequal_regs (rtx
*, void *);
87 static void merge_memattrs (rtx
, rtx
);
89 /* Set flags for newly created block. */
92 notice_new_block (basic_block bb
)
97 if (forwarder_block_p (bb
))
98 bb
->flags
|= BB_FORWARDER_BLOCK
;
101 /* Recompute forwarder flag after block has been modified. */
104 update_forwarder_flag (basic_block bb
)
106 if (forwarder_block_p (bb
))
107 bb
->flags
|= BB_FORWARDER_BLOCK
;
109 bb
->flags
&= ~BB_FORWARDER_BLOCK
;
112 /* Simplify a conditional jump around an unconditional jump.
113 Return true if something changed. */
116 try_simplify_condjump (basic_block cbranch_block
)
118 basic_block jump_block
, jump_dest_block
, cbranch_dest_block
;
119 edge cbranch_jump_edge
, cbranch_fallthru_edge
;
122 /* Verify that there are exactly two successors. */
123 if (EDGE_COUNT (cbranch_block
->succs
) != 2)
126 /* Verify that we've got a normal conditional branch at the end
128 cbranch_insn
= BB_END (cbranch_block
);
129 if (!any_condjump_p (cbranch_insn
))
132 cbranch_fallthru_edge
= FALLTHRU_EDGE (cbranch_block
);
133 cbranch_jump_edge
= BRANCH_EDGE (cbranch_block
);
135 /* The next block must not have multiple predecessors, must not
136 be the last block in the function, and must contain just the
137 unconditional jump. */
138 jump_block
= cbranch_fallthru_edge
->dest
;
139 if (!single_pred_p (jump_block
)
140 || jump_block
->next_bb
== EXIT_BLOCK_PTR
141 || !FORWARDER_BLOCK_P (jump_block
))
143 jump_dest_block
= single_succ (jump_block
);
145 /* If we are partitioning hot/cold basic blocks, we don't want to
146 mess up unconditional or indirect jumps that cross between hot
149 Basic block partitioning may result in some jumps that appear to
150 be optimizable (or blocks that appear to be mergeable), but which really
151 must be left untouched (they are required to make it safely across
152 partition boundaries). See the comments at the top of
153 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
155 if (BB_PARTITION (jump_block
) != BB_PARTITION (jump_dest_block
)
156 || (cbranch_jump_edge
->flags
& EDGE_CROSSING
))
159 /* The conditional branch must target the block after the
160 unconditional branch. */
161 cbranch_dest_block
= cbranch_jump_edge
->dest
;
163 if (cbranch_dest_block
== EXIT_BLOCK_PTR
164 || !can_fallthru (jump_block
, cbranch_dest_block
))
167 /* Invert the conditional branch. */
168 if (!invert_jump (cbranch_insn
, block_label (jump_dest_block
), 0))
172 fprintf (dump_file
, "Simplifying condjump %i around jump %i\n",
173 INSN_UID (cbranch_insn
), INSN_UID (BB_END (jump_block
)));
175 /* Success. Update the CFG to match. Note that after this point
176 the edge variable names appear backwards; the redirection is done
177 this way to preserve edge profile data. */
178 cbranch_jump_edge
= redirect_edge_succ_nodup (cbranch_jump_edge
,
180 cbranch_fallthru_edge
= redirect_edge_succ_nodup (cbranch_fallthru_edge
,
182 cbranch_jump_edge
->flags
|= EDGE_FALLTHRU
;
183 cbranch_fallthru_edge
->flags
&= ~EDGE_FALLTHRU
;
184 update_br_prob_note (cbranch_block
);
186 /* Delete the block with the unconditional jump, and clean up the mess. */
187 delete_basic_block (jump_block
);
188 tidy_fallthru_edge (cbranch_jump_edge
);
189 update_forwarder_flag (cbranch_block
);
194 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
195 on register. Used by jump threading. */
198 mark_effect (rtx exp
, regset nonequal
)
202 switch (GET_CODE (exp
))
204 /* In case we do clobber the register, mark it as equal, as we know the
205 value is dead so it don't have to match. */
207 if (REG_P (XEXP (exp
, 0)))
209 dest
= XEXP (exp
, 0);
210 regno
= REGNO (dest
);
211 if (HARD_REGISTER_NUM_P (regno
))
212 bitmap_clear_range (nonequal
, regno
,
213 hard_regno_nregs
[regno
][GET_MODE (dest
)]);
215 bitmap_clear_bit (nonequal
, regno
);
220 if (rtx_equal_for_cselib_p (SET_DEST (exp
), SET_SRC (exp
)))
222 dest
= SET_DEST (exp
);
227 regno
= REGNO (dest
);
228 if (HARD_REGISTER_NUM_P (regno
))
229 bitmap_set_range (nonequal
, regno
,
230 hard_regno_nregs
[regno
][GET_MODE (dest
)]);
232 bitmap_set_bit (nonequal
, regno
);
240 /* Return nonzero if X is a register set in regset DATA.
241 Called via for_each_rtx. */
243 mentions_nonequal_regs (rtx
*x
, void *data
)
245 regset nonequal
= (regset
) data
;
251 if (REGNO_REG_SET_P (nonequal
, regno
))
253 if (regno
< FIRST_PSEUDO_REGISTER
)
255 int n
= hard_regno_nregs
[regno
][GET_MODE (*x
)];
257 if (REGNO_REG_SET_P (nonequal
, regno
+ n
))
263 /* Attempt to prove that the basic block B will have no side effects and
264 always continues in the same edge if reached via E. Return the edge
265 if exist, NULL otherwise. */
268 thread_jump (edge e
, basic_block b
)
270 rtx set1
, set2
, cond1
, cond2
, insn
;
271 enum rtx_code code1
, code2
, reversed_code2
;
272 bool reverse1
= false;
276 reg_set_iterator rsi
;
278 if (b
->flags
& BB_NONTHREADABLE_BLOCK
)
281 /* At the moment, we do handle only conditional jumps, but later we may
282 want to extend this code to tablejumps and others. */
283 if (EDGE_COUNT (e
->src
->succs
) != 2)
285 if (EDGE_COUNT (b
->succs
) != 2)
287 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
291 /* Second branch must end with onlyjump, as we will eliminate the jump. */
292 if (!any_condjump_p (BB_END (e
->src
)))
295 if (!any_condjump_p (BB_END (b
)) || !onlyjump_p (BB_END (b
)))
297 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
301 set1
= pc_set (BB_END (e
->src
));
302 set2
= pc_set (BB_END (b
));
303 if (((e
->flags
& EDGE_FALLTHRU
) != 0)
304 != (XEXP (SET_SRC (set1
), 1) == pc_rtx
))
307 cond1
= XEXP (SET_SRC (set1
), 0);
308 cond2
= XEXP (SET_SRC (set2
), 0);
310 code1
= reversed_comparison_code (cond1
, BB_END (e
->src
));
312 code1
= GET_CODE (cond1
);
314 code2
= GET_CODE (cond2
);
315 reversed_code2
= reversed_comparison_code (cond2
, BB_END (b
));
317 if (!comparison_dominates_p (code1
, code2
)
318 && !comparison_dominates_p (code1
, reversed_code2
))
321 /* Ensure that the comparison operators are equivalent.
322 ??? This is far too pessimistic. We should allow swapped operands,
323 different CCmodes, or for example comparisons for interval, that
324 dominate even when operands are not equivalent. */
325 if (!rtx_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
326 || !rtx_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
329 /* Short circuit cases where block B contains some side effects, as we can't
331 for (insn
= NEXT_INSN (BB_HEAD (b
)); insn
!= NEXT_INSN (BB_END (b
));
332 insn
= NEXT_INSN (insn
))
333 if (INSN_P (insn
) && side_effects_p (PATTERN (insn
)))
335 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
341 /* First process all values computed in the source basic block. */
342 for (insn
= NEXT_INSN (BB_HEAD (e
->src
));
343 insn
!= NEXT_INSN (BB_END (e
->src
));
344 insn
= NEXT_INSN (insn
))
346 cselib_process_insn (insn
);
348 nonequal
= BITMAP_ALLOC (NULL
);
349 CLEAR_REG_SET (nonequal
);
351 /* Now assume that we've continued by the edge E to B and continue
352 processing as if it were same basic block.
353 Our goal is to prove that whole block is an NOOP. */
355 for (insn
= NEXT_INSN (BB_HEAD (b
));
356 insn
!= NEXT_INSN (BB_END (b
)) && !failed
;
357 insn
= NEXT_INSN (insn
))
361 rtx pat
= PATTERN (insn
);
363 if (GET_CODE (pat
) == PARALLEL
)
365 for (i
= 0; i
< (unsigned)XVECLEN (pat
, 0); i
++)
366 failed
|= mark_effect (XVECEXP (pat
, 0, i
), nonequal
);
369 failed
|= mark_effect (pat
, nonequal
);
372 cselib_process_insn (insn
);
375 /* Later we should clear nonequal of dead registers. So far we don't
376 have life information in cfg_cleanup. */
379 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
383 /* cond2 must not mention any register that is not equal to the
385 if (for_each_rtx (&cond2
, mentions_nonequal_regs
, nonequal
))
388 EXECUTE_IF_SET_IN_REG_SET (nonequal
, 0, i
, rsi
)
391 BITMAP_FREE (nonequal
);
393 if ((comparison_dominates_p (code1
, code2
) != 0)
394 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
395 return BRANCH_EDGE (b
);
397 return FALLTHRU_EDGE (b
);
400 BITMAP_FREE (nonequal
);
405 /* Attempt to forward edges leaving basic block B.
406 Return true if successful. */
409 try_forward_edges (int mode
, basic_block b
)
411 bool changed
= false;
413 edge e
, *threaded_edges
= NULL
;
415 /* If we are partitioning hot/cold basic blocks, we don't want to
416 mess up unconditional or indirect jumps that cross between hot
419 Basic block partitioning may result in some jumps that appear to
420 be optimizable (or blocks that appear to be mergeable), but which really
421 must be left untouched (they are required to make it safely across
422 partition boundaries). See the comments at the top of
423 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
425 if (find_reg_note (BB_END (b
), REG_CROSSING_JUMP
, NULL_RTX
))
428 for (ei
= ei_start (b
->succs
); (e
= ei_safe_edge (ei
)); )
430 basic_block target
, first
;
431 int counter
, goto_locus
;
432 bool threaded
= false;
433 int nthreaded_edges
= 0;
434 bool may_thread
= first_pass
|| (b
->flags
& BB_MODIFIED
) != 0;
436 /* Skip complex edges because we don't know how to update them.
438 Still handle fallthru edges, as we can succeed to forward fallthru
439 edge to the same place as the branch edge of conditional branch
440 and turn conditional branch to an unconditional branch. */
441 if (e
->flags
& EDGE_COMPLEX
)
447 target
= first
= e
->dest
;
448 counter
= NUM_FIXED_BLOCKS
;
449 goto_locus
= e
->goto_locus
;
451 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
452 up jumps that cross between hot/cold sections.
454 Basic block partitioning may result in some jumps that appear
455 to be optimizable (or blocks that appear to be mergeable), but which
456 really must be left untouched (they are required to make it safely
457 across partition boundaries). See the comments at the top of
458 bb-reorder.c:partition_hot_cold_basic_blocks for complete
461 if (first
!= EXIT_BLOCK_PTR
462 && find_reg_note (BB_END (first
), REG_CROSSING_JUMP
, NULL_RTX
))
465 while (counter
< n_basic_blocks
)
467 basic_block new_target
= NULL
;
468 bool new_target_threaded
= false;
469 may_thread
|= (target
->flags
& BB_MODIFIED
) != 0;
471 if (FORWARDER_BLOCK_P (target
)
472 && !(single_succ_edge (target
)->flags
& EDGE_CROSSING
)
473 && single_succ (target
) != EXIT_BLOCK_PTR
)
475 /* Bypass trivial infinite loops. */
476 new_target
= single_succ (target
);
477 if (target
== new_target
)
478 counter
= n_basic_blocks
;
481 /* When not optimizing, ensure that edges or forwarder
482 blocks with different locus are not optimized out. */
483 int new_locus
= single_succ_edge (target
)->goto_locus
;
484 int locus
= goto_locus
;
486 if (new_locus
&& locus
&& !locator_eq (new_locus
, locus
))
495 last
= BB_END (target
);
496 if (DEBUG_INSN_P (last
))
497 last
= prev_nondebug_insn (last
);
499 new_locus
= last
&& INSN_P (last
)
500 ? INSN_LOCATOR (last
) : 0;
502 if (new_locus
&& locus
&& !locator_eq (new_locus
, locus
))
515 /* Allow to thread only over one edge at time to simplify updating
517 else if ((mode
& CLEANUP_THREADING
) && may_thread
)
519 edge t
= thread_jump (e
, target
);
523 threaded_edges
= XNEWVEC (edge
, n_basic_blocks
);
528 /* Detect an infinite loop across blocks not
529 including the start block. */
530 for (i
= 0; i
< nthreaded_edges
; ++i
)
531 if (threaded_edges
[i
] == t
)
533 if (i
< nthreaded_edges
)
535 counter
= n_basic_blocks
;
540 /* Detect an infinite loop across the start block. */
544 gcc_assert (nthreaded_edges
< n_basic_blocks
- NUM_FIXED_BLOCKS
);
545 threaded_edges
[nthreaded_edges
++] = t
;
547 new_target
= t
->dest
;
548 new_target_threaded
= true;
557 threaded
|= new_target_threaded
;
560 if (counter
>= n_basic_blocks
)
563 fprintf (dump_file
, "Infinite loop in BB %i.\n",
566 else if (target
== first
)
567 ; /* We didn't do anything. */
570 /* Save the values now, as the edge may get removed. */
571 gcov_type edge_count
= e
->count
;
572 int edge_probability
= e
->probability
;
576 e
->goto_locus
= goto_locus
;
578 /* Don't force if target is exit block. */
579 if (threaded
&& target
!= EXIT_BLOCK_PTR
)
581 notice_new_block (redirect_edge_and_branch_force (e
, target
));
583 fprintf (dump_file
, "Conditionals threaded.\n");
585 else if (!redirect_edge_and_branch (e
, target
))
589 "Forwarding edge %i->%i to %i failed.\n",
590 b
->index
, e
->dest
->index
, target
->index
);
595 /* We successfully forwarded the edge. Now update profile
596 data: for each edge we traversed in the chain, remove
597 the original edge's execution count. */
598 edge_frequency
= ((edge_probability
* b
->frequency
599 + REG_BR_PROB_BASE
/ 2)
602 if (!FORWARDER_BLOCK_P (b
) && forwarder_block_p (b
))
603 b
->flags
|= BB_FORWARDER_BLOCK
;
609 if (!single_succ_p (first
))
611 gcc_assert (n
< nthreaded_edges
);
612 t
= threaded_edges
[n
++];
613 gcc_assert (t
->src
== first
);
614 update_bb_profile_for_threading (first
, edge_frequency
,
616 update_br_prob_note (first
);
620 first
->count
-= edge_count
;
621 if (first
->count
< 0)
623 first
->frequency
-= edge_frequency
;
624 if (first
->frequency
< 0)
625 first
->frequency
= 0;
626 /* It is possible that as the result of
627 threading we've removed edge as it is
628 threaded to the fallthru edge. Avoid
629 getting out of sync. */
630 if (n
< nthreaded_edges
631 && first
== threaded_edges
[n
]->src
)
633 t
= single_succ_edge (first
);
636 t
->count
-= edge_count
;
641 while (first
!= target
);
649 free (threaded_edges
);
654 /* Blocks A and B are to be merged into a single block. A has no incoming
655 fallthru edge, so it can be moved before B without adding or modifying
656 any jumps (aside from the jump from A to B). */
659 merge_blocks_move_predecessor_nojumps (basic_block a
, basic_block b
)
663 /* If we are partitioning hot/cold basic blocks, we don't want to
664 mess up unconditional or indirect jumps that cross between hot
667 Basic block partitioning may result in some jumps that appear to
668 be optimizable (or blocks that appear to be mergeable), but which really
669 must be left untouched (they are required to make it safely across
670 partition boundaries). See the comments at the top of
671 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
673 if (BB_PARTITION (a
) != BB_PARTITION (b
))
676 barrier
= next_nonnote_insn (BB_END (a
));
677 gcc_assert (BARRIER_P (barrier
));
678 delete_insn (barrier
);
680 /* Scramble the insn chain. */
681 if (BB_END (a
) != PREV_INSN (BB_HEAD (b
)))
682 reorder_insns_nobb (BB_HEAD (a
), BB_END (a
), PREV_INSN (BB_HEAD (b
)));
686 fprintf (dump_file
, "Moved block %d before %d and merged.\n",
689 /* Swap the records for the two blocks around. */
692 link_block (a
, b
->prev_bb
);
694 /* Now blocks A and B are contiguous. Merge them. */
698 /* Blocks A and B are to be merged into a single block. B has no outgoing
699 fallthru edge, so it can be moved after A without adding or modifying
700 any jumps (aside from the jump from A to B). */
703 merge_blocks_move_successor_nojumps (basic_block a
, basic_block b
)
705 rtx barrier
, real_b_end
;
708 /* If we are partitioning hot/cold basic blocks, we don't want to
709 mess up unconditional or indirect jumps that cross between hot
712 Basic block partitioning may result in some jumps that appear to
713 be optimizable (or blocks that appear to be mergeable), but which really
714 must be left untouched (they are required to make it safely across
715 partition boundaries). See the comments at the top of
716 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
718 if (BB_PARTITION (a
) != BB_PARTITION (b
))
721 real_b_end
= BB_END (b
);
723 /* If there is a jump table following block B temporarily add the jump table
724 to block B so that it will also be moved to the correct location. */
725 if (tablejump_p (BB_END (b
), &label
, &table
)
726 && prev_active_insn (label
) == BB_END (b
))
731 /* There had better have been a barrier there. Delete it. */
732 barrier
= NEXT_INSN (BB_END (b
));
733 if (barrier
&& BARRIER_P (barrier
))
734 delete_insn (barrier
);
737 /* Scramble the insn chain. */
738 reorder_insns_nobb (BB_HEAD (b
), BB_END (b
), BB_END (a
));
740 /* Restore the real end of b. */
741 BB_END (b
) = real_b_end
;
744 fprintf (dump_file
, "Moved block %d after %d and merged.\n",
747 /* Now blocks A and B are contiguous. Merge them. */
751 /* Attempt to merge basic blocks that are potentially non-adjacent.
752 Return NULL iff the attempt failed, otherwise return basic block
753 where cleanup_cfg should continue. Because the merging commonly
754 moves basic block away or introduces another optimization
755 possibility, return basic block just before B so cleanup_cfg don't
758 It may be good idea to return basic block before C in the case
759 C has been moved after B and originally appeared earlier in the
760 insn sequence, but we have no information available about the
761 relative ordering of these two. Hopefully it is not too common. */
764 merge_blocks_move (edge e
, basic_block b
, basic_block c
, int mode
)
768 /* If we are partitioning hot/cold basic blocks, we don't want to
769 mess up unconditional or indirect jumps that cross between hot
772 Basic block partitioning may result in some jumps that appear to
773 be optimizable (or blocks that appear to be mergeable), but which really
774 must be left untouched (they are required to make it safely across
775 partition boundaries). See the comments at the top of
776 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
778 if (BB_PARTITION (b
) != BB_PARTITION (c
))
781 /* If B has a fallthru edge to C, no need to move anything. */
782 if (e
->flags
& EDGE_FALLTHRU
)
784 int b_index
= b
->index
, c_index
= c
->index
;
786 update_forwarder_flag (b
);
789 fprintf (dump_file
, "Merged %d and %d without moving.\n",
792 return b
->prev_bb
== ENTRY_BLOCK_PTR
? b
: b
->prev_bb
;
795 /* Otherwise we will need to move code around. Do that only if expensive
796 transformations are allowed. */
797 else if (mode
& CLEANUP_EXPENSIVE
)
799 edge tmp_edge
, b_fallthru_edge
;
800 bool c_has_outgoing_fallthru
;
801 bool b_has_incoming_fallthru
;
803 /* Avoid overactive code motion, as the forwarder blocks should be
804 eliminated by edge redirection instead. One exception might have
805 been if B is a forwarder block and C has no fallthru edge, but
806 that should be cleaned up by bb-reorder instead. */
807 if (FORWARDER_BLOCK_P (b
) || FORWARDER_BLOCK_P (c
))
810 /* We must make sure to not munge nesting of lexical blocks,
811 and loop notes. This is done by squeezing out all the notes
812 and leaving them there to lie. Not ideal, but functional. */
814 tmp_edge
= find_fallthru_edge (c
->succs
);
815 c_has_outgoing_fallthru
= (tmp_edge
!= NULL
);
817 tmp_edge
= find_fallthru_edge (b
->preds
);
818 b_has_incoming_fallthru
= (tmp_edge
!= NULL
);
819 b_fallthru_edge
= tmp_edge
;
822 next
= next
->prev_bb
;
824 /* Otherwise, we're going to try to move C after B. If C does
825 not have an outgoing fallthru, then it can be moved
826 immediately after B without introducing or modifying jumps. */
827 if (! c_has_outgoing_fallthru
)
829 merge_blocks_move_successor_nojumps (b
, c
);
830 return next
== ENTRY_BLOCK_PTR
? next
->next_bb
: next
;
833 /* If B does not have an incoming fallthru, then it can be moved
834 immediately before C without introducing or modifying jumps.
835 C cannot be the first block, so we do not have to worry about
836 accessing a non-existent block. */
838 if (b_has_incoming_fallthru
)
842 if (b_fallthru_edge
->src
== ENTRY_BLOCK_PTR
)
844 bb
= force_nonfallthru (b_fallthru_edge
);
846 notice_new_block (bb
);
849 merge_blocks_move_predecessor_nojumps (b
, c
);
850 return next
== ENTRY_BLOCK_PTR
? next
->next_bb
: next
;
857 /* Removes the memory attributes of MEM expression
858 if they are not equal. */
861 merge_memattrs (rtx x
, rtx y
)
870 if (x
== 0 || y
== 0)
875 if (code
!= GET_CODE (y
))
878 if (GET_MODE (x
) != GET_MODE (y
))
881 if (code
== MEM
&& MEM_ATTRS (x
) != MEM_ATTRS (y
))
885 else if (! MEM_ATTRS (y
))
891 if (MEM_ALIAS_SET (x
) != MEM_ALIAS_SET (y
))
893 set_mem_alias_set (x
, 0);
894 set_mem_alias_set (y
, 0);
897 if (! mem_expr_equal_p (MEM_EXPR (x
), MEM_EXPR (y
)))
901 set_mem_offset (x
, 0);
902 set_mem_offset (y
, 0);
904 else if (MEM_OFFSET (x
) != MEM_OFFSET (y
))
906 set_mem_offset (x
, 0);
907 set_mem_offset (y
, 0);
912 else if (!MEM_SIZE (y
))
915 mem_size
= GEN_INT (MAX (INTVAL (MEM_SIZE (x
)),
916 INTVAL (MEM_SIZE (y
))));
917 set_mem_size (x
, mem_size
);
918 set_mem_size (y
, mem_size
);
920 set_mem_align (x
, MIN (MEM_ALIGN (x
), MEM_ALIGN (y
)));
921 set_mem_align (y
, MEM_ALIGN (x
));
925 fmt
= GET_RTX_FORMAT (code
);
926 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
931 /* Two vectors must have the same length. */
932 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
935 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
936 merge_memattrs (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
));
941 merge_memattrs (XEXP (x
, i
), XEXP (y
, i
));
948 /* Checks if patterns P1 and P2 are equivalent, apart from the possibly
949 different single sets S1 and S2. */
952 equal_different_set_p (rtx p1
, rtx s1
, rtx p2
, rtx s2
)
957 if (p1
== s1
&& p2
== s2
)
960 if (GET_CODE (p1
) != PARALLEL
|| GET_CODE (p2
) != PARALLEL
)
963 if (XVECLEN (p1
, 0) != XVECLEN (p2
, 0))
966 for (i
= 0; i
< XVECLEN (p1
, 0); i
++)
968 e1
= XVECEXP (p1
, 0, i
);
969 e2
= XVECEXP (p2
, 0, i
);
970 if (e1
== s1
&& e2
== s2
)
973 ? rtx_renumbered_equal_p (e1
, e2
) : rtx_equal_p (e1
, e2
))
982 /* Examine register notes on I1 and I2 and return:
983 - dir_forward if I1 can be replaced by I2, or
984 - dir_backward if I2 can be replaced by I1, or
985 - dir_both if both are the case. */
987 static enum replace_direction
988 can_replace_by (rtx i1
, rtx i2
)
990 rtx s1
, s2
, d1
, d2
, src1
, src2
, note1
, note2
;
993 /* Check for 2 sets. */
994 s1
= single_set (i1
);
995 s2
= single_set (i2
);
996 if (s1
== NULL_RTX
|| s2
== NULL_RTX
)
999 /* Check that the 2 sets set the same dest. */
1002 if (!(reload_completed
1003 ? rtx_renumbered_equal_p (d1
, d2
) : rtx_equal_p (d1
, d2
)))
1006 /* Find identical req_equiv or reg_equal note, which implies that the 2 sets
1007 set dest to the same value. */
1008 note1
= find_reg_equal_equiv_note (i1
);
1009 note2
= find_reg_equal_equiv_note (i2
);
1010 if (!note1
|| !note2
|| !rtx_equal_p (XEXP (note1
, 0), XEXP (note2
, 0))
1011 || !CONST_INT_P (XEXP (note1
, 0)))
1014 if (!equal_different_set_p (PATTERN (i1
), s1
, PATTERN (i2
), s2
))
1017 /* Although the 2 sets set dest to the same value, we cannot replace
1018 (set (dest) (const_int))
1021 because we don't know if the reg is live and has the same value at the
1022 location of replacement. */
1023 src1
= SET_SRC (s1
);
1024 src2
= SET_SRC (s2
);
1025 c1
= CONST_INT_P (src1
);
1026 c2
= CONST_INT_P (src2
);
1032 return dir_backward
;
1037 /* Merges directions A and B. */
1039 static enum replace_direction
1040 merge_dir (enum replace_direction a
, enum replace_direction b
)
1042 /* Implements the following table:
1061 /* Examine I1 and I2 and return:
1062 - dir_forward if I1 can be replaced by I2, or
1063 - dir_backward if I2 can be replaced by I1, or
1064 - dir_both if both are the case. */
1066 static enum replace_direction
1067 old_insns_match_p (int mode ATTRIBUTE_UNUSED
, rtx i1
, rtx i2
)
1071 /* Verify that I1 and I2 are equivalent. */
1072 if (GET_CODE (i1
) != GET_CODE (i2
))
1075 /* __builtin_unreachable() may lead to empty blocks (ending with
1076 NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
1077 if (NOTE_INSN_BASIC_BLOCK_P (i1
) && NOTE_INSN_BASIC_BLOCK_P (i2
))
1083 if (GET_CODE (p1
) != GET_CODE (p2
))
1086 /* If this is a CALL_INSN, compare register usage information.
1087 If we don't check this on stack register machines, the two
1088 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1089 numbers of stack registers in the same basic block.
1090 If we don't check this on machines with delay slots, a delay slot may
1091 be filled that clobbers a parameter expected by the subroutine.
1093 ??? We take the simple route for now and assume that if they're
1094 equal, they were constructed identically.
1096 Also check for identical exception regions. */
1100 /* Ensure the same EH region. */
1101 rtx n1
= find_reg_note (i1
, REG_EH_REGION
, 0);
1102 rtx n2
= find_reg_note (i2
, REG_EH_REGION
, 0);
1107 if (n1
&& (!n2
|| XEXP (n1
, 0) != XEXP (n2
, 0)))
1110 if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1
),
1111 CALL_INSN_FUNCTION_USAGE (i2
))
1112 || SIBLING_CALL_P (i1
) != SIBLING_CALL_P (i2
))
1117 /* If cross_jump_death_matters is not 0, the insn's mode
1118 indicates whether or not the insn contains any stack-like
1121 if ((mode
& CLEANUP_POST_REGSTACK
) && stack_regs_mentioned (i1
))
1123 /* If register stack conversion has already been done, then
1124 death notes must also be compared before it is certain that
1125 the two instruction streams match. */
1128 HARD_REG_SET i1_regset
, i2_regset
;
1130 CLEAR_HARD_REG_SET (i1_regset
);
1131 CLEAR_HARD_REG_SET (i2_regset
);
1133 for (note
= REG_NOTES (i1
); note
; note
= XEXP (note
, 1))
1134 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
1135 SET_HARD_REG_BIT (i1_regset
, REGNO (XEXP (note
, 0)));
1137 for (note
= REG_NOTES (i2
); note
; note
= XEXP (note
, 1))
1138 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
1139 SET_HARD_REG_BIT (i2_regset
, REGNO (XEXP (note
, 0)));
1141 if (!hard_reg_set_equal_p (i1_regset
, i2_regset
))
1146 if (reload_completed
1147 ? rtx_renumbered_equal_p (p1
, p2
) : rtx_equal_p (p1
, p2
))
1150 return can_replace_by (i1
, i2
);
1153 /* When comparing insns I1 and I2 in flow_find_cross_jump or
1154 flow_find_head_matching_sequence, ensure the notes match. */
1157 merge_notes (rtx i1
, rtx i2
)
1159 /* If the merged insns have different REG_EQUAL notes, then
1161 rtx equiv1
= find_reg_equal_equiv_note (i1
);
1162 rtx equiv2
= find_reg_equal_equiv_note (i2
);
1164 if (equiv1
&& !equiv2
)
1165 remove_note (i1
, equiv1
);
1166 else if (!equiv1
&& equiv2
)
1167 remove_note (i2
, equiv2
);
1168 else if (equiv1
&& equiv2
1169 && !rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))
1171 remove_note (i1
, equiv1
);
1172 remove_note (i2
, equiv2
);
1176 /* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
1177 resulting insn in I1, and the corresponding bb in BB1. At the head of a
1178 bb, if there is a predecessor bb that reaches this bb via fallthru, and
1179 FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
1180 DID_FALLTHRU. Otherwise, stops at the head of the bb. */
1183 walk_to_nondebug_insn (rtx
*i1
, basic_block
*bb1
, bool follow_fallthru
,
1188 *did_fallthru
= false;
1191 while (!NONDEBUG_INSN_P (*i1
))
1193 if (*i1
!= BB_HEAD (*bb1
))
1195 *i1
= PREV_INSN (*i1
);
1199 if (!follow_fallthru
)
1202 fallthru
= find_fallthru_edge ((*bb1
)->preds
);
1203 if (!fallthru
|| fallthru
->src
== ENTRY_BLOCK_PTR_FOR_FUNCTION (cfun
)
1204 || !single_succ_p (fallthru
->src
))
1207 *bb1
= fallthru
->src
;
1208 *i1
= BB_END (*bb1
);
1209 *did_fallthru
= true;
1213 /* Look through the insns at the end of BB1 and BB2 and find the longest
1214 sequence that are either equivalent, or allow forward or backward
1215 replacement. Store the first insns for that sequence in *F1 and *F2 and
1216 return the sequence length.
1218 DIR_P indicates the allowed replacement direction on function entry, and
1219 the actual replacement direction on function exit. If NULL, only equivalent
1220 sequences are allowed.
1222 To simplify callers of this function, if the blocks match exactly,
1223 store the head of the blocks in *F1 and *F2. */
1226 flow_find_cross_jump (basic_block bb1
, basic_block bb2
, rtx
*f1
, rtx
*f2
,
1227 enum replace_direction
*dir_p
)
1229 rtx i1
, i2
, last1
, last2
, afterlast1
, afterlast2
;
1232 enum replace_direction dir
, last_dir
, afterlast_dir
;
1233 bool follow_fallthru
, did_fallthru
;
1239 afterlast_dir
= dir
;
1240 last_dir
= afterlast_dir
;
1242 /* Skip simple jumps at the end of the blocks. Complex jumps still
1243 need to be compared for equivalence, which we'll do below. */
1246 last1
= afterlast1
= last2
= afterlast2
= NULL_RTX
;
1248 || (returnjump_p (i1
) && !side_effects_p (PATTERN (i1
))))
1251 i1
= PREV_INSN (i1
);
1256 || (returnjump_p (i2
) && !side_effects_p (PATTERN (i2
))))
1259 /* Count everything except for unconditional jump as insn. */
1260 if (!simplejump_p (i2
) && !returnjump_p (i2
) && last1
)
1262 i2
= PREV_INSN (i2
);
1267 /* In the following example, we can replace all jumps to C by jumps to A.
1269 This removes 4 duplicate insns.
1270 [bb A] insn1 [bb C] insn1
1276 We could also replace all jumps to A by jumps to C, but that leaves B
1277 alive, and removes only 2 duplicate insns. In a subsequent crossjump
1278 step, all jumps to B would be replaced with jumps to the middle of C,
1279 achieving the same result with more effort.
1280 So we allow only the first possibility, which means that we don't allow
1281 fallthru in the block that's being replaced. */
1283 follow_fallthru
= dir_p
&& dir
!= dir_forward
;
1284 walk_to_nondebug_insn (&i1
, &bb1
, follow_fallthru
, &did_fallthru
);
1288 follow_fallthru
= dir_p
&& dir
!= dir_backward
;
1289 walk_to_nondebug_insn (&i2
, &bb2
, follow_fallthru
, &did_fallthru
);
1293 if (i1
== BB_HEAD (bb1
) || i2
== BB_HEAD (bb2
))
1296 dir
= merge_dir (dir
, old_insns_match_p (0, i1
, i2
));
1297 if (dir
== dir_none
|| (!dir_p
&& dir
!= dir_both
))
1300 merge_memattrs (i1
, i2
);
1302 /* Don't begin a cross-jump with a NOTE insn. */
1305 merge_notes (i1
, i2
);
1307 afterlast1
= last1
, afterlast2
= last2
;
1308 last1
= i1
, last2
= i2
;
1309 afterlast_dir
= last_dir
;
1312 if (!(GET_CODE (p1
) == USE
|| GET_CODE (p1
) == CLOBBER
))
1316 i1
= PREV_INSN (i1
);
1317 i2
= PREV_INSN (i2
);
1321 /* Don't allow the insn after a compare to be shared by
1322 cross-jumping unless the compare is also shared. */
1323 if (ninsns
&& reg_mentioned_p (cc0_rtx
, last1
) && ! sets_cc0_p (last1
))
1324 last1
= afterlast1
, last2
= afterlast2
, last_dir
= afterlast_dir
, ninsns
--;
1327 /* Include preceding notes and labels in the cross-jump. One,
1328 this may bring us to the head of the blocks as requested above.
1329 Two, it keeps line number notes as matched as may be. */
1332 bb1
= BLOCK_FOR_INSN (last1
);
1333 while (last1
!= BB_HEAD (bb1
) && !NONDEBUG_INSN_P (PREV_INSN (last1
)))
1334 last1
= PREV_INSN (last1
);
1336 if (last1
!= BB_HEAD (bb1
) && LABEL_P (PREV_INSN (last1
)))
1337 last1
= PREV_INSN (last1
);
1339 bb2
= BLOCK_FOR_INSN (last2
);
1340 while (last2
!= BB_HEAD (bb2
) && !NONDEBUG_INSN_P (PREV_INSN (last2
)))
1341 last2
= PREV_INSN (last2
);
1343 if (last2
!= BB_HEAD (bb2
) && LABEL_P (PREV_INSN (last2
)))
1344 last2
= PREV_INSN (last2
);
1355 /* Like flow_find_cross_jump, except start looking for a matching sequence from
1356 the head of the two blocks. Do not include jumps at the end.
1357 If STOP_AFTER is nonzero, stop after finding that many matching
1361 flow_find_head_matching_sequence (basic_block bb1
, basic_block bb2
, rtx
*f1
,
1362 rtx
*f2
, int stop_after
)
1364 rtx i1
, i2
, last1
, last2
, beforelast1
, beforelast2
;
1368 int nehedges1
= 0, nehedges2
= 0;
1370 FOR_EACH_EDGE (e
, ei
, bb1
->succs
)
1371 if (e
->flags
& EDGE_EH
)
1373 FOR_EACH_EDGE (e
, ei
, bb2
->succs
)
1374 if (e
->flags
& EDGE_EH
)
1379 last1
= beforelast1
= last2
= beforelast2
= NULL_RTX
;
1383 /* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
1384 while (!NONDEBUG_INSN_P (i1
) && i1
!= BB_END (bb1
))
1386 if (NOTE_P (i1
) && NOTE_KIND (i1
) == NOTE_INSN_EPILOGUE_BEG
)
1388 i1
= NEXT_INSN (i1
);
1391 while (!NONDEBUG_INSN_P (i2
) && i2
!= BB_END (bb2
))
1393 if (NOTE_P (i2
) && NOTE_KIND (i2
) == NOTE_INSN_EPILOGUE_BEG
)
1395 i2
= NEXT_INSN (i2
);
1398 if ((i1
== BB_END (bb1
) && !NONDEBUG_INSN_P (i1
))
1399 || (i2
== BB_END (bb2
) && !NONDEBUG_INSN_P (i2
)))
1402 if (NOTE_P (i1
) || NOTE_P (i2
)
1403 || JUMP_P (i1
) || JUMP_P (i2
))
1406 /* A sanity check to make sure we're not merging insns with different
1407 effects on EH. If only one of them ends a basic block, it shouldn't
1408 have an EH edge; if both end a basic block, there should be the same
1409 number of EH edges. */
1410 if ((i1
== BB_END (bb1
) && i2
!= BB_END (bb2
)
1412 || (i2
== BB_END (bb2
) && i1
!= BB_END (bb1
)
1414 || (i1
== BB_END (bb1
) && i2
== BB_END (bb2
)
1415 && nehedges1
!= nehedges2
))
1418 if (old_insns_match_p (0, i1
, i2
) != dir_both
)
1421 merge_memattrs (i1
, i2
);
1423 /* Don't begin a cross-jump with a NOTE insn. */
1426 merge_notes (i1
, i2
);
1428 beforelast1
= last1
, beforelast2
= last2
;
1429 last1
= i1
, last2
= i2
;
1433 if (i1
== BB_END (bb1
) || i2
== BB_END (bb2
)
1434 || (stop_after
> 0 && ninsns
== stop_after
))
1437 i1
= NEXT_INSN (i1
);
1438 i2
= NEXT_INSN (i2
);
1442 /* Don't allow a compare to be shared by cross-jumping unless the insn
1443 after the compare is also shared. */
1444 if (ninsns
&& reg_mentioned_p (cc0_rtx
, last1
) && sets_cc0_p (last1
))
1445 last1
= beforelast1
, last2
= beforelast2
, ninsns
--;
1457 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1458 the branch instruction. This means that if we commonize the control
1459 flow before end of the basic block, the semantic remains unchanged.
1461 We may assume that there exists one edge with a common destination. */
1464 outgoing_edges_match (int mode
, basic_block bb1
, basic_block bb2
)
1466 int nehedges1
= 0, nehedges2
= 0;
1467 edge fallthru1
= 0, fallthru2
= 0;
1471 /* If BB1 has only one successor, we may be looking at either an
1472 unconditional jump, or a fake edge to exit. */
1473 if (single_succ_p (bb1
)
1474 && (single_succ_edge (bb1
)->flags
& (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1475 && (!JUMP_P (BB_END (bb1
)) || simplejump_p (BB_END (bb1
))))
1476 return (single_succ_p (bb2
)
1477 && (single_succ_edge (bb2
)->flags
1478 & (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1479 && (!JUMP_P (BB_END (bb2
)) || simplejump_p (BB_END (bb2
))));
1481 /* Match conditional jumps - this may get tricky when fallthru and branch
1482 edges are crossed. */
1483 if (EDGE_COUNT (bb1
->succs
) == 2
1484 && any_condjump_p (BB_END (bb1
))
1485 && onlyjump_p (BB_END (bb1
)))
1487 edge b1
, f1
, b2
, f2
;
1488 bool reverse
, match
;
1489 rtx set1
, set2
, cond1
, cond2
;
1490 enum rtx_code code1
, code2
;
1492 if (EDGE_COUNT (bb2
->succs
) != 2
1493 || !any_condjump_p (BB_END (bb2
))
1494 || !onlyjump_p (BB_END (bb2
)))
1497 b1
= BRANCH_EDGE (bb1
);
1498 b2
= BRANCH_EDGE (bb2
);
1499 f1
= FALLTHRU_EDGE (bb1
);
1500 f2
= FALLTHRU_EDGE (bb2
);
1502 /* Get around possible forwarders on fallthru edges. Other cases
1503 should be optimized out already. */
1504 if (FORWARDER_BLOCK_P (f1
->dest
))
1505 f1
= single_succ_edge (f1
->dest
);
1507 if (FORWARDER_BLOCK_P (f2
->dest
))
1508 f2
= single_succ_edge (f2
->dest
);
1510 /* To simplify use of this function, return false if there are
1511 unneeded forwarder blocks. These will get eliminated later
1512 during cleanup_cfg. */
1513 if (FORWARDER_BLOCK_P (f1
->dest
)
1514 || FORWARDER_BLOCK_P (f2
->dest
)
1515 || FORWARDER_BLOCK_P (b1
->dest
)
1516 || FORWARDER_BLOCK_P (b2
->dest
))
1519 if (f1
->dest
== f2
->dest
&& b1
->dest
== b2
->dest
)
1521 else if (f1
->dest
== b2
->dest
&& b1
->dest
== f2
->dest
)
1526 set1
= pc_set (BB_END (bb1
));
1527 set2
= pc_set (BB_END (bb2
));
1528 if ((XEXP (SET_SRC (set1
), 1) == pc_rtx
)
1529 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
1532 cond1
= XEXP (SET_SRC (set1
), 0);
1533 cond2
= XEXP (SET_SRC (set2
), 0);
1534 code1
= GET_CODE (cond1
);
1536 code2
= reversed_comparison_code (cond2
, BB_END (bb2
));
1538 code2
= GET_CODE (cond2
);
1540 if (code2
== UNKNOWN
)
1543 /* Verify codes and operands match. */
1544 match
= ((code1
== code2
1545 && rtx_renumbered_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
1546 && rtx_renumbered_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
1547 || (code1
== swap_condition (code2
)
1548 && rtx_renumbered_equal_p (XEXP (cond1
, 1),
1550 && rtx_renumbered_equal_p (XEXP (cond1
, 0),
1553 /* If we return true, we will join the blocks. Which means that
1554 we will only have one branch prediction bit to work with. Thus
1555 we require the existing branches to have probabilities that are
1558 && optimize_bb_for_speed_p (bb1
)
1559 && optimize_bb_for_speed_p (bb2
))
1563 if (b1
->dest
== b2
->dest
)
1564 prob2
= b2
->probability
;
1566 /* Do not use f2 probability as f2 may be forwarded. */
1567 prob2
= REG_BR_PROB_BASE
- b2
->probability
;
1569 /* Fail if the difference in probabilities is greater than 50%.
1570 This rules out two well-predicted branches with opposite
1572 if (abs (b1
->probability
- prob2
) > REG_BR_PROB_BASE
/ 2)
1576 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1577 bb1
->index
, bb2
->index
, b1
->probability
, prob2
);
1583 if (dump_file
&& match
)
1584 fprintf (dump_file
, "Conditionals in bb %i and %i match.\n",
1585 bb1
->index
, bb2
->index
);
1590 /* Generic case - we are seeing a computed jump, table jump or trapping
1593 /* Check whether there are tablejumps in the end of BB1 and BB2.
1594 Return true if they are identical. */
1599 if (tablejump_p (BB_END (bb1
), &label1
, &table1
)
1600 && tablejump_p (BB_END (bb2
), &label2
, &table2
)
1601 && GET_CODE (PATTERN (table1
)) == GET_CODE (PATTERN (table2
)))
1603 /* The labels should never be the same rtx. If they really are same
1604 the jump tables are same too. So disable crossjumping of blocks BB1
1605 and BB2 because when deleting the common insns in the end of BB1
1606 by delete_basic_block () the jump table would be deleted too. */
1607 /* If LABEL2 is referenced in BB1->END do not do anything
1608 because we would loose information when replacing
1609 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1610 if (label1
!= label2
&& !rtx_referenced_p (label2
, BB_END (bb1
)))
1612 /* Set IDENTICAL to true when the tables are identical. */
1613 bool identical
= false;
1616 p1
= PATTERN (table1
);
1617 p2
= PATTERN (table2
);
1618 if (GET_CODE (p1
) == ADDR_VEC
&& rtx_equal_p (p1
, p2
))
1622 else if (GET_CODE (p1
) == ADDR_DIFF_VEC
1623 && (XVECLEN (p1
, 1) == XVECLEN (p2
, 1))
1624 && rtx_equal_p (XEXP (p1
, 2), XEXP (p2
, 2))
1625 && rtx_equal_p (XEXP (p1
, 3), XEXP (p2
, 3)))
1630 for (i
= XVECLEN (p1
, 1) - 1; i
>= 0 && identical
; i
--)
1631 if (!rtx_equal_p (XVECEXP (p1
, 1, i
), XVECEXP (p2
, 1, i
)))
1637 replace_label_data rr
;
1640 /* Temporarily replace references to LABEL1 with LABEL2
1641 in BB1->END so that we could compare the instructions. */
1644 rr
.update_label_nuses
= false;
1645 for_each_rtx (&BB_END (bb1
), replace_label
, &rr
);
1647 match
= (old_insns_match_p (mode
, BB_END (bb1
), BB_END (bb2
))
1649 if (dump_file
&& match
)
1651 "Tablejumps in bb %i and %i match.\n",
1652 bb1
->index
, bb2
->index
);
1654 /* Set the original label in BB1->END because when deleting
1655 a block whose end is a tablejump, the tablejump referenced
1656 from the instruction is deleted too. */
1659 for_each_rtx (&BB_END (bb1
), replace_label
, &rr
);
1668 /* First ensure that the instructions match. There may be many outgoing
1669 edges so this test is generally cheaper. */
1670 if (old_insns_match_p (mode
, BB_END (bb1
), BB_END (bb2
)) != dir_both
)
1673 /* Search the outgoing edges, ensure that the counts do match, find possible
1674 fallthru and exception handling edges since these needs more
1676 if (EDGE_COUNT (bb1
->succs
) != EDGE_COUNT (bb2
->succs
))
1679 FOR_EACH_EDGE (e1
, ei
, bb1
->succs
)
1681 e2
= EDGE_SUCC (bb2
, ei
.index
);
1683 if (e1
->flags
& EDGE_EH
)
1686 if (e2
->flags
& EDGE_EH
)
1689 if (e1
->flags
& EDGE_FALLTHRU
)
1691 if (e2
->flags
& EDGE_FALLTHRU
)
1695 /* If number of edges of various types does not match, fail. */
1696 if (nehedges1
!= nehedges2
1697 || (fallthru1
!= 0) != (fallthru2
!= 0))
1700 /* fallthru edges must be forwarded to the same destination. */
1703 basic_block d1
= (forwarder_block_p (fallthru1
->dest
)
1704 ? single_succ (fallthru1
->dest
): fallthru1
->dest
);
1705 basic_block d2
= (forwarder_block_p (fallthru2
->dest
)
1706 ? single_succ (fallthru2
->dest
): fallthru2
->dest
);
1712 /* Ensure the same EH region. */
1714 rtx n1
= find_reg_note (BB_END (bb1
), REG_EH_REGION
, 0);
1715 rtx n2
= find_reg_note (BB_END (bb2
), REG_EH_REGION
, 0);
1720 if (n1
&& (!n2
|| XEXP (n1
, 0) != XEXP (n2
, 0)))
1724 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1725 version of sequence abstraction. */
1726 FOR_EACH_EDGE (e1
, ei
, bb2
->succs
)
1730 basic_block d1
= e1
->dest
;
1732 if (FORWARDER_BLOCK_P (d1
))
1733 d1
= EDGE_SUCC (d1
, 0)->dest
;
1735 FOR_EACH_EDGE (e2
, ei
, bb1
->succs
)
1737 basic_block d2
= e2
->dest
;
1738 if (FORWARDER_BLOCK_P (d2
))
1739 d2
= EDGE_SUCC (d2
, 0)->dest
;
1751 /* Returns true if BB basic block has a preserve label. */
1754 block_has_preserve_label (basic_block bb
)
1758 && LABEL_PRESERVE_P (block_label (bb
)));
1761 /* E1 and E2 are edges with the same destination block. Search their
1762 predecessors for common code. If found, redirect control flow from
1763 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC (dir_forward),
1764 or the other way around (dir_backward). DIR specifies the allowed
1765 replacement direction. */
1768 try_crossjump_to_edge (int mode
, edge e1
, edge e2
,
1769 enum replace_direction dir
)
1772 basic_block src1
= e1
->src
, src2
= e2
->src
;
1773 basic_block redirect_to
, redirect_from
, to_remove
;
1774 basic_block osrc1
, osrc2
, redirect_edges_to
, tmp
;
1775 rtx newpos1
, newpos2
;
1779 newpos1
= newpos2
= NULL_RTX
;
1781 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1782 to try this optimization.
1784 Basic block partitioning may result in some jumps that appear to
1785 be optimizable (or blocks that appear to be mergeable), but which really
1786 must be left untouched (they are required to make it safely across
1787 partition boundaries). See the comments at the top of
1788 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1790 if (flag_reorder_blocks_and_partition
&& reload_completed
)
1793 /* Search backward through forwarder blocks. We don't need to worry
1794 about multiple entry or chained forwarders, as they will be optimized
1795 away. We do this to look past the unconditional jump following a
1796 conditional jump that is required due to the current CFG shape. */
1797 if (single_pred_p (src1
)
1798 && FORWARDER_BLOCK_P (src1
))
1799 e1
= single_pred_edge (src1
), src1
= e1
->src
;
1801 if (single_pred_p (src2
)
1802 && FORWARDER_BLOCK_P (src2
))
1803 e2
= single_pred_edge (src2
), src2
= e2
->src
;
1805 /* Nothing to do if we reach ENTRY, or a common source block. */
1806 if (src1
== ENTRY_BLOCK_PTR
|| src2
== ENTRY_BLOCK_PTR
)
1811 /* Seeing more than 1 forwarder blocks would confuse us later... */
1812 if (FORWARDER_BLOCK_P (e1
->dest
)
1813 && FORWARDER_BLOCK_P (single_succ (e1
->dest
)))
1816 if (FORWARDER_BLOCK_P (e2
->dest
)
1817 && FORWARDER_BLOCK_P (single_succ (e2
->dest
)))
1820 /* Likewise with dead code (possibly newly created by the other optimizations
1822 if (EDGE_COUNT (src1
->preds
) == 0 || EDGE_COUNT (src2
->preds
) == 0)
1825 /* Look for the common insn sequence, part the first ... */
1826 if (!outgoing_edges_match (mode
, src1
, src2
))
1829 /* ... and part the second. */
1830 nmatch
= flow_find_cross_jump (src1
, src2
, &newpos1
, &newpos2
, &dir
);
1834 if (newpos1
!= NULL_RTX
)
1835 src1
= BLOCK_FOR_INSN (newpos1
);
1836 if (newpos2
!= NULL_RTX
)
1837 src2
= BLOCK_FOR_INSN (newpos2
);
1839 if (dir
== dir_backward
)
1841 #define SWAP(T, X, Y) do { T tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
1842 SWAP (basic_block
, osrc1
, osrc2
);
1843 SWAP (basic_block
, src1
, src2
);
1844 SWAP (edge
, e1
, e2
);
1845 SWAP (rtx
, newpos1
, newpos2
);
1849 /* Don't proceed with the crossjump unless we found a sufficient number
1850 of matching instructions or the 'from' block was totally matched
1851 (such that its predecessors will hopefully be redirected and the
1853 if ((nmatch
< PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS
))
1854 && (newpos1
!= BB_HEAD (src1
)))
1857 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
1858 if (block_has_preserve_label (e1
->dest
)
1859 && (e1
->flags
& EDGE_ABNORMAL
))
1862 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1864 If we have tablejumps in the end of SRC1 and SRC2
1865 they have been already compared for equivalence in outgoing_edges_match ()
1866 so replace the references to TABLE1 by references to TABLE2. */
1871 if (tablejump_p (BB_END (osrc1
), &label1
, &table1
)
1872 && tablejump_p (BB_END (osrc2
), &label2
, &table2
)
1873 && label1
!= label2
)
1875 replace_label_data rr
;
1878 /* Replace references to LABEL1 with LABEL2. */
1881 rr
.update_label_nuses
= true;
1882 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1884 /* Do not replace the label in SRC1->END because when deleting
1885 a block whose end is a tablejump, the tablejump referenced
1886 from the instruction is deleted too. */
1887 if (insn
!= BB_END (osrc1
))
1888 for_each_rtx (&insn
, replace_label
, &rr
);
1893 /* Avoid splitting if possible. We must always split when SRC2 has
1894 EH predecessor edges, or we may end up with basic blocks with both
1895 normal and EH predecessor edges. */
1896 if (newpos2
== BB_HEAD (src2
)
1897 && !(EDGE_PRED (src2
, 0)->flags
& EDGE_EH
))
1901 if (newpos2
== BB_HEAD (src2
))
1903 /* Skip possible basic block header. */
1904 if (LABEL_P (newpos2
))
1905 newpos2
= NEXT_INSN (newpos2
);
1906 while (DEBUG_INSN_P (newpos2
))
1907 newpos2
= NEXT_INSN (newpos2
);
1908 if (NOTE_P (newpos2
))
1909 newpos2
= NEXT_INSN (newpos2
);
1910 while (DEBUG_INSN_P (newpos2
))
1911 newpos2
= NEXT_INSN (newpos2
);
1915 fprintf (dump_file
, "Splitting bb %i before %i insns\n",
1916 src2
->index
, nmatch
);
1917 redirect_to
= split_block (src2
, PREV_INSN (newpos2
))->dest
;
1922 "Cross jumping from bb %i to bb %i; %i common insns\n",
1923 src1
->index
, src2
->index
, nmatch
);
1925 /* We may have some registers visible through the block. */
1926 df_set_bb_dirty (redirect_to
);
1929 redirect_edges_to
= redirect_to
;
1931 redirect_edges_to
= osrc2
;
1933 /* Recompute the frequencies and counts of outgoing edges. */
1934 FOR_EACH_EDGE (s
, ei
, redirect_edges_to
->succs
)
1938 basic_block d
= s
->dest
;
1940 if (FORWARDER_BLOCK_P (d
))
1941 d
= single_succ (d
);
1943 FOR_EACH_EDGE (s2
, ei
, src1
->succs
)
1945 basic_block d2
= s2
->dest
;
1946 if (FORWARDER_BLOCK_P (d2
))
1947 d2
= single_succ (d2
);
1952 s
->count
+= s2
->count
;
1954 /* Take care to update possible forwarder blocks. We verified
1955 that there is no more than one in the chain, so we can't run
1956 into infinite loop. */
1957 if (FORWARDER_BLOCK_P (s
->dest
))
1959 single_succ_edge (s
->dest
)->count
+= s2
->count
;
1960 s
->dest
->count
+= s2
->count
;
1961 s
->dest
->frequency
+= EDGE_FREQUENCY (s
);
1964 if (FORWARDER_BLOCK_P (s2
->dest
))
1966 single_succ_edge (s2
->dest
)->count
-= s2
->count
;
1967 if (single_succ_edge (s2
->dest
)->count
< 0)
1968 single_succ_edge (s2
->dest
)->count
= 0;
1969 s2
->dest
->count
-= s2
->count
;
1970 s2
->dest
->frequency
-= EDGE_FREQUENCY (s
);
1971 if (s2
->dest
->frequency
< 0)
1972 s2
->dest
->frequency
= 0;
1973 if (s2
->dest
->count
< 0)
1974 s2
->dest
->count
= 0;
1977 if (!redirect_edges_to
->frequency
&& !src1
->frequency
)
1978 s
->probability
= (s
->probability
+ s2
->probability
) / 2;
1981 = ((s
->probability
* redirect_edges_to
->frequency
+
1982 s2
->probability
* src1
->frequency
)
1983 / (redirect_edges_to
->frequency
+ src1
->frequency
));
1986 /* Adjust count and frequency for the block. An earlier jump
1987 threading pass may have left the profile in an inconsistent
1988 state (see update_bb_profile_for_threading) so we must be
1989 prepared for overflows. */
1993 tmp
->count
+= src1
->count
;
1994 tmp
->frequency
+= src1
->frequency
;
1995 if (tmp
->frequency
> BB_FREQ_MAX
)
1996 tmp
->frequency
= BB_FREQ_MAX
;
1997 if (tmp
== redirect_edges_to
)
1999 tmp
= find_fallthru_edge (tmp
->succs
)->dest
;
2002 update_br_prob_note (redirect_edges_to
);
2004 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
2006 /* Skip possible basic block header. */
2007 if (LABEL_P (newpos1
))
2008 newpos1
= NEXT_INSN (newpos1
);
2010 while (DEBUG_INSN_P (newpos1
))
2011 newpos1
= NEXT_INSN (newpos1
);
2013 if (NOTE_INSN_BASIC_BLOCK_P (newpos1
))
2014 newpos1
= NEXT_INSN (newpos1
);
2016 while (DEBUG_INSN_P (newpos1
))
2017 newpos1
= NEXT_INSN (newpos1
);
2019 redirect_from
= split_block (src1
, PREV_INSN (newpos1
))->src
;
2020 to_remove
= single_succ (redirect_from
);
2022 redirect_edge_and_branch_force (single_succ_edge (redirect_from
), redirect_to
);
2023 delete_basic_block (to_remove
);
2025 update_forwarder_flag (redirect_from
);
2026 if (redirect_to
!= src2
)
2027 update_forwarder_flag (src2
);
2032 /* Search the predecessors of BB for common insn sequences. When found,
2033 share code between them by redirecting control flow. Return true if
2034 any changes made. */
2037 try_crossjump_bb (int mode
, basic_block bb
)
2039 edge e
, e2
, fallthru
;
2041 unsigned max
, ix
, ix2
;
2043 /* Nothing to do if there is not at least two incoming edges. */
2044 if (EDGE_COUNT (bb
->preds
) < 2)
2047 /* Don't crossjump if this block ends in a computed jump,
2048 unless we are optimizing for size. */
2049 if (optimize_bb_for_size_p (bb
)
2050 && bb
!= EXIT_BLOCK_PTR
2051 && computed_jump_p (BB_END (bb
)))
2054 /* If we are partitioning hot/cold basic blocks, we don't want to
2055 mess up unconditional or indirect jumps that cross between hot
2058 Basic block partitioning may result in some jumps that appear to
2059 be optimizable (or blocks that appear to be mergeable), but which really
2060 must be left untouched (they are required to make it safely across
2061 partition boundaries). See the comments at the top of
2062 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2064 if (BB_PARTITION (EDGE_PRED (bb
, 0)->src
) !=
2065 BB_PARTITION (EDGE_PRED (bb
, 1)->src
)
2066 || (EDGE_PRED (bb
, 0)->flags
& EDGE_CROSSING
))
2069 /* It is always cheapest to redirect a block that ends in a branch to
2070 a block that falls through into BB, as that adds no branches to the
2071 program. We'll try that combination first. */
2073 max
= PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES
);
2075 if (EDGE_COUNT (bb
->preds
) > max
)
2078 fallthru
= find_fallthru_edge (bb
->preds
);
2081 for (ix
= 0; ix
< EDGE_COUNT (bb
->preds
);)
2083 e
= EDGE_PRED (bb
, ix
);
2086 /* As noted above, first try with the fallthru predecessor (or, a
2087 fallthru predecessor if we are in cfglayout mode). */
2090 /* Don't combine the fallthru edge into anything else.
2091 If there is a match, we'll do it the other way around. */
2094 /* If nothing changed since the last attempt, there is nothing
2097 && !((e
->src
->flags
& BB_MODIFIED
)
2098 || (fallthru
->src
->flags
& BB_MODIFIED
)))
2101 if (try_crossjump_to_edge (mode
, e
, fallthru
, dir_forward
))
2109 /* Non-obvious work limiting check: Recognize that we're going
2110 to call try_crossjump_bb on every basic block. So if we have
2111 two blocks with lots of outgoing edges (a switch) and they
2112 share lots of common destinations, then we would do the
2113 cross-jump check once for each common destination.
2115 Now, if the blocks actually are cross-jump candidates, then
2116 all of their destinations will be shared. Which means that
2117 we only need check them for cross-jump candidacy once. We
2118 can eliminate redundant checks of crossjump(A,B) by arbitrarily
2119 choosing to do the check from the block for which the edge
2120 in question is the first successor of A. */
2121 if (EDGE_SUCC (e
->src
, 0) != e
)
2124 for (ix2
= 0; ix2
< EDGE_COUNT (bb
->preds
); ix2
++)
2126 e2
= EDGE_PRED (bb
, ix2
);
2131 /* We've already checked the fallthru edge above. */
2135 /* The "first successor" check above only prevents multiple
2136 checks of crossjump(A,B). In order to prevent redundant
2137 checks of crossjump(B,A), require that A be the block
2138 with the lowest index. */
2139 if (e
->src
->index
> e2
->src
->index
)
2142 /* If nothing changed since the last attempt, there is nothing
2145 && !((e
->src
->flags
& BB_MODIFIED
)
2146 || (e2
->src
->flags
& BB_MODIFIED
)))
2149 /* Both e and e2 are not fallthru edges, so we can crossjump in either
2151 if (try_crossjump_to_edge (mode
, e
, e2
, dir_both
))
2161 crossjumps_occured
= true;
2166 /* Search the successors of BB for common insn sequences. When found,
2167 share code between them by moving it across the basic block
2168 boundary. Return true if any changes made. */
2171 try_head_merge_bb (basic_block bb
)
2173 basic_block final_dest_bb
= NULL
;
2174 int max_match
= INT_MAX
;
2176 rtx
*headptr
, *currptr
, *nextptr
;
2177 bool changed
, moveall
;
2179 rtx e0_last_head
, cond
, move_before
;
2180 unsigned nedges
= EDGE_COUNT (bb
->succs
);
2181 rtx jump
= BB_END (bb
);
2182 regset live
, live_union
;
2184 /* Nothing to do if there is not at least two outgoing edges. */
2188 /* Don't crossjump if this block ends in a computed jump,
2189 unless we are optimizing for size. */
2190 if (optimize_bb_for_size_p (bb
)
2191 && bb
!= EXIT_BLOCK_PTR
2192 && computed_jump_p (BB_END (bb
)))
2195 cond
= get_condition (jump
, &move_before
, true, false);
2196 if (cond
== NULL_RTX
)
2199 for (ix
= 0; ix
< nedges
; ix
++)
2200 if (EDGE_SUCC (bb
, ix
)->dest
== EXIT_BLOCK_PTR
)
2203 for (ix
= 0; ix
< nedges
; ix
++)
2205 edge e
= EDGE_SUCC (bb
, ix
);
2206 basic_block other_bb
= e
->dest
;
2208 if (df_get_bb_dirty (other_bb
))
2210 block_was_dirty
= true;
2214 if (e
->flags
& EDGE_ABNORMAL
)
2217 /* Normally, all destination blocks must only be reachable from this
2218 block, i.e. they must have one incoming edge.
2220 There is one special case we can handle, that of multiple consecutive
2221 jumps where the first jumps to one of the targets of the second jump.
2222 This happens frequently in switch statements for default labels.
2223 The structure is as follows:
2229 jump with targets A, B, C, D...
2231 has two incoming edges, from FINAL_DEST_BB and BB
2233 In this case, we can try to move the insns through BB and into
2235 if (EDGE_COUNT (other_bb
->preds
) != 1)
2237 edge incoming_edge
, incoming_bb_other_edge
;
2240 if (final_dest_bb
!= NULL
2241 || EDGE_COUNT (other_bb
->preds
) != 2)
2244 /* We must be able to move the insns across the whole block. */
2245 move_before
= BB_HEAD (bb
);
2246 while (!NONDEBUG_INSN_P (move_before
))
2247 move_before
= NEXT_INSN (move_before
);
2249 if (EDGE_COUNT (bb
->preds
) != 1)
2251 incoming_edge
= EDGE_PRED (bb
, 0);
2252 final_dest_bb
= incoming_edge
->src
;
2253 if (EDGE_COUNT (final_dest_bb
->succs
) != 2)
2255 FOR_EACH_EDGE (incoming_bb_other_edge
, ei
, final_dest_bb
->succs
)
2256 if (incoming_bb_other_edge
!= incoming_edge
)
2258 if (incoming_bb_other_edge
->dest
!= other_bb
)
2263 e0
= EDGE_SUCC (bb
, 0);
2264 e0_last_head
= NULL_RTX
;
2267 for (ix
= 1; ix
< nedges
; ix
++)
2269 edge e
= EDGE_SUCC (bb
, ix
);
2270 rtx e0_last
, e_last
;
2273 nmatch
= flow_find_head_matching_sequence (e0
->dest
, e
->dest
,
2274 &e0_last
, &e_last
, 0);
2278 if (nmatch
< max_match
)
2281 e0_last_head
= e0_last
;
2285 /* If we matched an entire block, we probably have to avoid moving the
2288 && e0_last_head
== BB_END (e0
->dest
)
2289 && (find_reg_note (e0_last_head
, REG_EH_REGION
, 0)
2290 || control_flow_insn_p (e0_last_head
)))
2296 e0_last_head
= prev_real_insn (e0_last_head
);
2297 while (DEBUG_INSN_P (e0_last_head
));
2303 /* We must find a union of the live registers at each of the end points. */
2304 live
= BITMAP_ALLOC (NULL
);
2305 live_union
= BITMAP_ALLOC (NULL
);
2307 currptr
= XNEWVEC (rtx
, nedges
);
2308 headptr
= XNEWVEC (rtx
, nedges
);
2309 nextptr
= XNEWVEC (rtx
, nedges
);
2311 for (ix
= 0; ix
< nedges
; ix
++)
2314 basic_block merge_bb
= EDGE_SUCC (bb
, ix
)->dest
;
2315 rtx head
= BB_HEAD (merge_bb
);
2317 while (!NONDEBUG_INSN_P (head
))
2318 head
= NEXT_INSN (head
);
2322 /* Compute the end point and live information */
2323 for (j
= 1; j
< max_match
; j
++)
2325 head
= NEXT_INSN (head
);
2326 while (!NONDEBUG_INSN_P (head
));
2327 simulate_backwards_to_point (merge_bb
, live
, head
);
2328 IOR_REG_SET (live_union
, live
);
2331 /* If we're moving across two blocks, verify the validity of the
2332 first move, then adjust the target and let the loop below deal
2333 with the final move. */
2334 if (final_dest_bb
!= NULL
)
2338 moveall
= can_move_insns_across (currptr
[0], e0_last_head
, move_before
,
2339 jump
, e0
->dest
, live_union
,
2343 if (move_upto
== NULL_RTX
)
2346 while (e0_last_head
!= move_upto
)
2348 df_simulate_one_insn_backwards (e0
->dest
, e0_last_head
,
2350 e0_last_head
= PREV_INSN (e0_last_head
);
2353 if (e0_last_head
== NULL_RTX
)
2356 jump
= BB_END (final_dest_bb
);
2357 cond
= get_condition (jump
, &move_before
, true, false);
2358 if (cond
== NULL_RTX
)
2365 moveall
= can_move_insns_across (currptr
[0], e0_last_head
,
2366 move_before
, jump
, e0
->dest
, live_union
,
2368 if (!moveall
&& move_upto
== NULL_RTX
)
2370 if (jump
== move_before
)
2373 /* Try again, using a different insertion point. */
2377 /* Don't try moving before a cc0 user, as that may invalidate
2379 if (reg_mentioned_p (cc0_rtx
, jump
))
2386 if (final_dest_bb
&& !moveall
)
2387 /* We haven't checked whether a partial move would be OK for the first
2388 move, so we have to fail this case. */
2394 if (currptr
[0] == move_upto
)
2396 for (ix
= 0; ix
< nedges
; ix
++)
2398 rtx curr
= currptr
[ix
];
2400 curr
= NEXT_INSN (curr
);
2401 while (!NONDEBUG_INSN_P (curr
));
2406 /* If we can't currently move all of the identical insns, remember
2407 each insn after the range that we'll merge. */
2409 for (ix
= 0; ix
< nedges
; ix
++)
2411 rtx curr
= currptr
[ix
];
2413 curr
= NEXT_INSN (curr
);
2414 while (!NONDEBUG_INSN_P (curr
));
2418 reorder_insns (headptr
[0], currptr
[0], PREV_INSN (move_before
));
2419 df_set_bb_dirty (EDGE_SUCC (bb
, 0)->dest
);
2420 if (final_dest_bb
!= NULL
)
2421 df_set_bb_dirty (final_dest_bb
);
2422 df_set_bb_dirty (bb
);
2423 for (ix
= 1; ix
< nedges
; ix
++)
2425 df_set_bb_dirty (EDGE_SUCC (bb
, ix
)->dest
);
2426 delete_insn_chain (headptr
[ix
], currptr
[ix
], false);
2430 if (jump
== move_before
)
2433 /* For the unmerged insns, try a different insertion point. */
2437 /* Don't try moving before a cc0 user, as that may invalidate
2439 if (reg_mentioned_p (cc0_rtx
, jump
))
2443 for (ix
= 0; ix
< nedges
; ix
++)
2444 currptr
[ix
] = headptr
[ix
] = nextptr
[ix
];
2454 crossjumps_occured
|= changed
;
2459 /* Return true if BB contains just bb note, or bb note followed
2460 by only DEBUG_INSNs. */
2463 trivially_empty_bb_p (basic_block bb
)
2465 rtx insn
= BB_END (bb
);
2469 if (insn
== BB_HEAD (bb
))
2471 if (!DEBUG_INSN_P (insn
))
2473 insn
= PREV_INSN (insn
);
2477 /* Do simple CFG optimizations - basic block merging, simplifying of jump
2478 instructions etc. Return nonzero if changes were made. */
2481 try_optimize_cfg (int mode
)
2483 bool changed_overall
= false;
2486 basic_block bb
, b
, next
;
2488 if (mode
& (CLEANUP_CROSSJUMP
| CLEANUP_THREADING
))
2491 crossjumps_occured
= false;
2494 update_forwarder_flag (bb
);
2496 if (! targetm
.cannot_modify_jumps_p ())
2499 /* Attempt to merge blocks as made possible by edge removal. If
2500 a block has only one successor, and the successor has only
2501 one predecessor, they may be combined. */
2504 block_was_dirty
= false;
2510 "\n\ntry_optimize_cfg iteration %i\n\n",
2513 for (b
= ENTRY_BLOCK_PTR
->next_bb
; b
!= EXIT_BLOCK_PTR
;)
2517 bool changed_here
= false;
2519 /* Delete trivially dead basic blocks. This is either
2520 blocks with no predecessors, or empty blocks with no
2521 successors. However if the empty block with no
2522 successors is the successor of the ENTRY_BLOCK, it is
2523 kept. This ensures that the ENTRY_BLOCK will have a
2524 successor which is a precondition for many RTL
2525 passes. Empty blocks may result from expanding
2526 __builtin_unreachable (). */
2527 if (EDGE_COUNT (b
->preds
) == 0
2528 || (EDGE_COUNT (b
->succs
) == 0
2529 && trivially_empty_bb_p (b
)
2530 && single_succ_edge (ENTRY_BLOCK_PTR
)->dest
!= b
))
2533 if (EDGE_COUNT (b
->preds
) > 0)
2538 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
2540 if (b
->il
.rtl
->footer
2541 && BARRIER_P (b
->il
.rtl
->footer
))
2542 FOR_EACH_EDGE (e
, ei
, b
->preds
)
2543 if ((e
->flags
& EDGE_FALLTHRU
)
2544 && e
->src
->il
.rtl
->footer
== NULL
)
2546 if (b
->il
.rtl
->footer
)
2548 e
->src
->il
.rtl
->footer
= b
->il
.rtl
->footer
;
2549 b
->il
.rtl
->footer
= NULL
;
2554 e
->src
->il
.rtl
->footer
= emit_barrier ();
2561 rtx last
= get_last_bb_insn (b
);
2562 if (last
&& BARRIER_P (last
))
2563 FOR_EACH_EDGE (e
, ei
, b
->preds
)
2564 if ((e
->flags
& EDGE_FALLTHRU
))
2565 emit_barrier_after (BB_END (e
->src
));
2568 delete_basic_block (b
);
2570 /* Avoid trying to remove ENTRY_BLOCK_PTR. */
2571 b
= (c
== ENTRY_BLOCK_PTR
? c
->next_bb
: c
);
2575 /* Remove code labels no longer used. */
2576 if (single_pred_p (b
)
2577 && (single_pred_edge (b
)->flags
& EDGE_FALLTHRU
)
2578 && !(single_pred_edge (b
)->flags
& EDGE_COMPLEX
)
2579 && LABEL_P (BB_HEAD (b
))
2580 /* If the previous block ends with a branch to this
2581 block, we can't delete the label. Normally this
2582 is a condjump that is yet to be simplified, but
2583 if CASE_DROPS_THRU, this can be a tablejump with
2584 some element going to the same place as the
2585 default (fallthru). */
2586 && (single_pred (b
) == ENTRY_BLOCK_PTR
2587 || !JUMP_P (BB_END (single_pred (b
)))
2588 || ! label_is_jump_target_p (BB_HEAD (b
),
2589 BB_END (single_pred (b
)))))
2591 rtx label
= BB_HEAD (b
);
2593 delete_insn_chain (label
, label
, false);
2594 /* If the case label is undeletable, move it after the
2595 BASIC_BLOCK note. */
2596 if (NOTE_KIND (BB_HEAD (b
)) == NOTE_INSN_DELETED_LABEL
)
2598 rtx bb_note
= NEXT_INSN (BB_HEAD (b
));
2600 reorder_insns_nobb (label
, label
, bb_note
);
2601 BB_HEAD (b
) = bb_note
;
2602 if (BB_END (b
) == bb_note
)
2606 fprintf (dump_file
, "Deleted label in block %i.\n",
2610 /* If we fall through an empty block, we can remove it. */
2611 if (!(mode
& CLEANUP_CFGLAYOUT
)
2612 && single_pred_p (b
)
2613 && (single_pred_edge (b
)->flags
& EDGE_FALLTHRU
)
2614 && !LABEL_P (BB_HEAD (b
))
2615 && FORWARDER_BLOCK_P (b
)
2616 /* Note that forwarder_block_p true ensures that
2617 there is a successor for this block. */
2618 && (single_succ_edge (b
)->flags
& EDGE_FALLTHRU
)
2619 && n_basic_blocks
> NUM_FIXED_BLOCKS
+ 1)
2623 "Deleting fallthru block %i.\n",
2626 c
= b
->prev_bb
== ENTRY_BLOCK_PTR
? b
->next_bb
: b
->prev_bb
;
2627 redirect_edge_succ_nodup (single_pred_edge (b
),
2629 delete_basic_block (b
);
2635 /* Merge B with its single successor, if any. */
2636 if (single_succ_p (b
)
2637 && (s
= single_succ_edge (b
))
2638 && !(s
->flags
& EDGE_COMPLEX
)
2639 && (c
= s
->dest
) != EXIT_BLOCK_PTR
2640 && single_pred_p (c
)
2643 /* When not in cfg_layout mode use code aware of reordering
2644 INSN. This code possibly creates new basic blocks so it
2645 does not fit merge_blocks interface and is kept here in
2646 hope that it will become useless once more of compiler
2647 is transformed to use cfg_layout mode. */
2649 if ((mode
& CLEANUP_CFGLAYOUT
)
2650 && can_merge_blocks_p (b
, c
))
2652 merge_blocks (b
, c
);
2653 update_forwarder_flag (b
);
2654 changed_here
= true;
2656 else if (!(mode
& CLEANUP_CFGLAYOUT
)
2657 /* If the jump insn has side effects,
2658 we can't kill the edge. */
2659 && (!JUMP_P (BB_END (b
))
2660 || (reload_completed
2661 ? simplejump_p (BB_END (b
))
2662 : (onlyjump_p (BB_END (b
))
2663 && !tablejump_p (BB_END (b
),
2665 && (next
= merge_blocks_move (s
, b
, c
, mode
)))
2668 changed_here
= true;
2672 /* Simplify branch over branch. */
2673 if ((mode
& CLEANUP_EXPENSIVE
)
2674 && !(mode
& CLEANUP_CFGLAYOUT
)
2675 && try_simplify_condjump (b
))
2676 changed_here
= true;
2678 /* If B has a single outgoing edge, but uses a
2679 non-trivial jump instruction without side-effects, we
2680 can either delete the jump entirely, or replace it
2681 with a simple unconditional jump. */
2682 if (single_succ_p (b
)
2683 && single_succ (b
) != EXIT_BLOCK_PTR
2684 && onlyjump_p (BB_END (b
))
2685 && !find_reg_note (BB_END (b
), REG_CROSSING_JUMP
, NULL_RTX
)
2686 && try_redirect_by_replacing_jump (single_succ_edge (b
),
2688 (mode
& CLEANUP_CFGLAYOUT
) != 0))
2690 update_forwarder_flag (b
);
2691 changed_here
= true;
2694 /* Simplify branch to branch. */
2695 if (try_forward_edges (mode
, b
))
2696 changed_here
= true;
2698 /* Look for shared code between blocks. */
2699 if ((mode
& CLEANUP_CROSSJUMP
)
2700 && try_crossjump_bb (mode
, b
))
2701 changed_here
= true;
2703 if ((mode
& CLEANUP_CROSSJUMP
)
2704 /* This can lengthen register lifetimes. Do it only after
2707 && try_head_merge_bb (b
))
2708 changed_here
= true;
2710 /* Don't get confused by the index shift caused by
2718 if ((mode
& CLEANUP_CROSSJUMP
)
2719 && try_crossjump_bb (mode
, EXIT_BLOCK_PTR
))
2722 if (block_was_dirty
)
2724 /* This should only be set by head-merging. */
2725 gcc_assert (mode
& CLEANUP_CROSSJUMP
);
2729 #ifdef ENABLE_CHECKING
2731 verify_flow_info ();
2734 changed_overall
|= changed
;
2741 b
->flags
&= ~(BB_FORWARDER_BLOCK
| BB_NONTHREADABLE_BLOCK
);
2743 return changed_overall
;
2746 /* Delete all unreachable basic blocks. */
2749 delete_unreachable_blocks (void)
2751 bool changed
= false;
2752 basic_block b
, prev_bb
;
2754 find_unreachable_blocks ();
2756 /* When we're in GIMPLE mode and there may be debug insns, we should
2757 delete blocks in reverse dominator order, so as to get a chance
2758 to substitute all released DEFs into debug stmts. If we don't
2759 have dominators information, walking blocks backward gets us a
2760 better chance of retaining most debug information than
2762 if (MAY_HAVE_DEBUG_STMTS
&& current_ir_type () == IR_GIMPLE
2763 && dom_info_available_p (CDI_DOMINATORS
))
2765 for (b
= EXIT_BLOCK_PTR
->prev_bb
; b
!= ENTRY_BLOCK_PTR
; b
= prev_bb
)
2767 prev_bb
= b
->prev_bb
;
2769 if (!(b
->flags
& BB_REACHABLE
))
2771 /* Speed up the removal of blocks that don't dominate
2772 others. Walking backwards, this should be the common
2774 if (!first_dom_son (CDI_DOMINATORS
, b
))
2775 delete_basic_block (b
);
2778 VEC (basic_block
, heap
) *h
2779 = get_all_dominated_blocks (CDI_DOMINATORS
, b
);
2781 while (VEC_length (basic_block
, h
))
2783 b
= VEC_pop (basic_block
, h
);
2785 prev_bb
= b
->prev_bb
;
2787 gcc_assert (!(b
->flags
& BB_REACHABLE
));
2789 delete_basic_block (b
);
2792 VEC_free (basic_block
, heap
, h
);
2801 for (b
= EXIT_BLOCK_PTR
->prev_bb
; b
!= ENTRY_BLOCK_PTR
; b
= prev_bb
)
2803 prev_bb
= b
->prev_bb
;
2805 if (!(b
->flags
& BB_REACHABLE
))
2807 delete_basic_block (b
);
2814 tidy_fallthru_edges ();
2818 /* Delete any jump tables never referenced. We can't delete them at the
2819 time of removing tablejump insn as they are referenced by the preceding
2820 insns computing the destination, so we delay deleting and garbagecollect
2821 them once life information is computed. */
2823 delete_dead_jumptables (void)
2827 /* A dead jump table does not belong to any basic block. Scan insns
2828 between two adjacent basic blocks. */
2833 for (insn
= NEXT_INSN (BB_END (bb
));
2834 insn
&& !NOTE_INSN_BASIC_BLOCK_P (insn
);
2837 next
= NEXT_INSN (insn
);
2839 && LABEL_NUSES (insn
) == LABEL_PRESERVE_P (insn
)
2840 && JUMP_TABLE_DATA_P (next
))
2842 rtx label
= insn
, jump
= next
;
2845 fprintf (dump_file
, "Dead jumptable %i removed\n",
2848 next
= NEXT_INSN (next
);
2850 delete_insn (label
);
2857 /* Tidy the CFG by deleting unreachable code and whatnot. */
2860 cleanup_cfg (int mode
)
2862 bool changed
= false;
2864 /* Set the cfglayout mode flag here. We could update all the callers
2865 but that is just inconvenient, especially given that we eventually
2866 want to have cfglayout mode as the default. */
2867 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
2868 mode
|= CLEANUP_CFGLAYOUT
;
2870 timevar_push (TV_CLEANUP_CFG
);
2871 if (delete_unreachable_blocks ())
2874 /* We've possibly created trivially dead code. Cleanup it right
2875 now to introduce more opportunities for try_optimize_cfg. */
2876 if (!(mode
& (CLEANUP_NO_INSN_DEL
))
2877 && !reload_completed
)
2878 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2883 /* To tail-merge blocks ending in the same noreturn function (e.g.
2884 a call to abort) we have to insert fake edges to exit. Do this
2885 here once. The fake edges do not interfere with any other CFG
2887 if (mode
& CLEANUP_CROSSJUMP
)
2888 add_noreturn_fake_exit_edges ();
2890 if (!dbg_cnt (cfg_cleanup
))
2893 while (try_optimize_cfg (mode
))
2895 delete_unreachable_blocks (), changed
= true;
2896 if (!(mode
& CLEANUP_NO_INSN_DEL
))
2898 /* Try to remove some trivially dead insns when doing an expensive
2899 cleanup. But delete_trivially_dead_insns doesn't work after
2900 reload (it only handles pseudos) and run_fast_dce is too costly
2901 to run in every iteration.
2903 For effective cross jumping, we really want to run a fast DCE to
2904 clean up any dead conditions, or they get in the way of performing
2907 Other transformations in cleanup_cfg are not so sensitive to dead
2908 code, so delete_trivially_dead_insns or even doing nothing at all
2910 if ((mode
& CLEANUP_EXPENSIVE
) && !reload_completed
2911 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
2913 if ((mode
& CLEANUP_CROSSJUMP
) && crossjumps_occured
)
2920 if (mode
& CLEANUP_CROSSJUMP
)
2921 remove_fake_exit_edges ();
2923 /* Don't call delete_dead_jumptables in cfglayout mode, because
2924 that function assumes that jump tables are in the insns stream.
2925 But we also don't _have_ to delete dead jumptables in cfglayout
2926 mode because we shouldn't even be looking at things that are
2927 not in a basic block. Dead jumptables are cleaned up when
2928 going out of cfglayout mode. */
2929 if (!(mode
& CLEANUP_CFGLAYOUT
))
2930 delete_dead_jumptables ();
2932 timevar_pop (TV_CLEANUP_CFG
);
2938 rest_of_handle_jump (void)
2940 if (crtl
->tail_call_emit
)
2941 fixup_tail_calls ();
2945 struct rtl_opt_pass pass_jump
=
2949 "sibling", /* name */
2951 rest_of_handle_jump
, /* execute */
2954 0, /* static_pass_number */
2955 TV_JUMP
, /* tv_id */
2956 0, /* properties_required */
2957 0, /* properties_provided */
2958 0, /* properties_destroyed */
2959 TODO_ggc_collect
, /* todo_flags_start */
2960 TODO_verify_flow
, /* todo_flags_finish */
2966 rest_of_handle_jump2 (void)
2968 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2970 dump_flow_info (dump_file
, dump_flags
);
2971 cleanup_cfg ((optimize
? CLEANUP_EXPENSIVE
: 0)
2972 | (flag_thread_jumps
? CLEANUP_THREADING
: 0));
2977 struct rtl_opt_pass pass_jump2
=
2983 rest_of_handle_jump2
, /* execute */
2986 0, /* static_pass_number */
2987 TV_JUMP
, /* tv_id */
2988 0, /* properties_required */
2989 0, /* properties_provided */
2990 0, /* properties_destroyed */
2991 TODO_ggc_collect
, /* todo_flags_start */
2992 TODO_dump_func
| TODO_verify_rtl_sharing
,/* todo_flags_finish */