2011-04-27 Tobias Burnus <burnus@net-b.de>
[official-gcc.git] / gcc / cfgcleanup.c
blob179cd00ad0c8b741dcb5fba981b09144cd1876e5
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file contains optimizer of the control flow. The main entry point is
23 cleanup_cfg. Following optimizations are performed:
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to its
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
29 eliminated).
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "regs.h"
41 #include "timevar.h"
42 #include "output.h"
43 #include "insn-config.h"
44 #include "flags.h"
45 #include "recog.h"
46 #include "diagnostic-core.h"
47 #include "cselib.h"
48 #include "params.h"
49 #include "tm_p.h"
50 #include "target.h"
51 #include "cfglayout.h"
52 #include "emit-rtl.h"
53 #include "tree-pass.h"
54 #include "cfgloop.h"
55 #include "expr.h"
56 #include "df.h"
57 #include "dce.h"
58 #include "dbgcnt.h"
60 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
62 /* Set to true when we are running first pass of try_optimize_cfg loop. */
63 static bool first_pass;
65 /* Set to true if crossjumps occured in the latest run of try_optimize_cfg. */
66 static bool crossjumps_occured;
68 /* Set to true if we couldn't run an optimization due to stale liveness
69 information; we should run df_analyze to enable more opportunities. */
70 static bool block_was_dirty;
72 static bool try_crossjump_to_edge (int, edge, edge, enum replace_direction);
73 static bool try_crossjump_bb (int, basic_block);
74 static bool outgoing_edges_match (int, basic_block, basic_block);
75 static enum replace_direction old_insns_match_p (int, rtx, rtx);
77 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
78 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
79 static bool try_optimize_cfg (int);
80 static bool try_simplify_condjump (basic_block);
81 static bool try_forward_edges (int, basic_block);
82 static edge thread_jump (edge, basic_block);
83 static bool mark_effect (rtx, bitmap);
84 static void notice_new_block (basic_block);
85 static void update_forwarder_flag (basic_block);
86 static int mentions_nonequal_regs (rtx *, void *);
87 static void merge_memattrs (rtx, rtx);
89 /* Set flags for newly created block. */
91 static void
92 notice_new_block (basic_block bb)
94 if (!bb)
95 return;
97 if (forwarder_block_p (bb))
98 bb->flags |= BB_FORWARDER_BLOCK;
101 /* Recompute forwarder flag after block has been modified. */
103 static void
104 update_forwarder_flag (basic_block bb)
106 if (forwarder_block_p (bb))
107 bb->flags |= BB_FORWARDER_BLOCK;
108 else
109 bb->flags &= ~BB_FORWARDER_BLOCK;
112 /* Simplify a conditional jump around an unconditional jump.
113 Return true if something changed. */
115 static bool
116 try_simplify_condjump (basic_block cbranch_block)
118 basic_block jump_block, jump_dest_block, cbranch_dest_block;
119 edge cbranch_jump_edge, cbranch_fallthru_edge;
120 rtx cbranch_insn;
122 /* Verify that there are exactly two successors. */
123 if (EDGE_COUNT (cbranch_block->succs) != 2)
124 return false;
126 /* Verify that we've got a normal conditional branch at the end
127 of the block. */
128 cbranch_insn = BB_END (cbranch_block);
129 if (!any_condjump_p (cbranch_insn))
130 return false;
132 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
133 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
135 /* The next block must not have multiple predecessors, must not
136 be the last block in the function, and must contain just the
137 unconditional jump. */
138 jump_block = cbranch_fallthru_edge->dest;
139 if (!single_pred_p (jump_block)
140 || jump_block->next_bb == EXIT_BLOCK_PTR
141 || !FORWARDER_BLOCK_P (jump_block))
142 return false;
143 jump_dest_block = single_succ (jump_block);
145 /* If we are partitioning hot/cold basic blocks, we don't want to
146 mess up unconditional or indirect jumps that cross between hot
147 and cold sections.
149 Basic block partitioning may result in some jumps that appear to
150 be optimizable (or blocks that appear to be mergeable), but which really
151 must be left untouched (they are required to make it safely across
152 partition boundaries). See the comments at the top of
153 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
155 if (BB_PARTITION (jump_block) != BB_PARTITION (jump_dest_block)
156 || (cbranch_jump_edge->flags & EDGE_CROSSING))
157 return false;
159 /* The conditional branch must target the block after the
160 unconditional branch. */
161 cbranch_dest_block = cbranch_jump_edge->dest;
163 if (cbranch_dest_block == EXIT_BLOCK_PTR
164 || !can_fallthru (jump_block, cbranch_dest_block))
165 return false;
167 /* Invert the conditional branch. */
168 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
169 return false;
171 if (dump_file)
172 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
173 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
175 /* Success. Update the CFG to match. Note that after this point
176 the edge variable names appear backwards; the redirection is done
177 this way to preserve edge profile data. */
178 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
179 cbranch_dest_block);
180 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
181 jump_dest_block);
182 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
183 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
184 update_br_prob_note (cbranch_block);
186 /* Delete the block with the unconditional jump, and clean up the mess. */
187 delete_basic_block (jump_block);
188 tidy_fallthru_edge (cbranch_jump_edge);
189 update_forwarder_flag (cbranch_block);
191 return true;
194 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
195 on register. Used by jump threading. */
197 static bool
198 mark_effect (rtx exp, regset nonequal)
200 int regno;
201 rtx dest;
202 switch (GET_CODE (exp))
204 /* In case we do clobber the register, mark it as equal, as we know the
205 value is dead so it don't have to match. */
206 case CLOBBER:
207 if (REG_P (XEXP (exp, 0)))
209 dest = XEXP (exp, 0);
210 regno = REGNO (dest);
211 if (HARD_REGISTER_NUM_P (regno))
212 bitmap_clear_range (nonequal, regno,
213 hard_regno_nregs[regno][GET_MODE (dest)]);
214 else
215 bitmap_clear_bit (nonequal, regno);
217 return false;
219 case SET:
220 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
221 return false;
222 dest = SET_DEST (exp);
223 if (dest == pc_rtx)
224 return false;
225 if (!REG_P (dest))
226 return true;
227 regno = REGNO (dest);
228 if (HARD_REGISTER_NUM_P (regno))
229 bitmap_set_range (nonequal, regno,
230 hard_regno_nregs[regno][GET_MODE (dest)]);
231 else
232 bitmap_set_bit (nonequal, regno);
233 return false;
235 default:
236 return false;
240 /* Return nonzero if X is a register set in regset DATA.
241 Called via for_each_rtx. */
242 static int
243 mentions_nonequal_regs (rtx *x, void *data)
245 regset nonequal = (regset) data;
246 if (REG_P (*x))
248 int regno;
250 regno = REGNO (*x);
251 if (REGNO_REG_SET_P (nonequal, regno))
252 return 1;
253 if (regno < FIRST_PSEUDO_REGISTER)
255 int n = hard_regno_nregs[regno][GET_MODE (*x)];
256 while (--n > 0)
257 if (REGNO_REG_SET_P (nonequal, regno + n))
258 return 1;
261 return 0;
263 /* Attempt to prove that the basic block B will have no side effects and
264 always continues in the same edge if reached via E. Return the edge
265 if exist, NULL otherwise. */
267 static edge
268 thread_jump (edge e, basic_block b)
270 rtx set1, set2, cond1, cond2, insn;
271 enum rtx_code code1, code2, reversed_code2;
272 bool reverse1 = false;
273 unsigned i;
274 regset nonequal;
275 bool failed = false;
276 reg_set_iterator rsi;
278 if (b->flags & BB_NONTHREADABLE_BLOCK)
279 return NULL;
281 /* At the moment, we do handle only conditional jumps, but later we may
282 want to extend this code to tablejumps and others. */
283 if (EDGE_COUNT (e->src->succs) != 2)
284 return NULL;
285 if (EDGE_COUNT (b->succs) != 2)
287 b->flags |= BB_NONTHREADABLE_BLOCK;
288 return NULL;
291 /* Second branch must end with onlyjump, as we will eliminate the jump. */
292 if (!any_condjump_p (BB_END (e->src)))
293 return NULL;
295 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
297 b->flags |= BB_NONTHREADABLE_BLOCK;
298 return NULL;
301 set1 = pc_set (BB_END (e->src));
302 set2 = pc_set (BB_END (b));
303 if (((e->flags & EDGE_FALLTHRU) != 0)
304 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
305 reverse1 = true;
307 cond1 = XEXP (SET_SRC (set1), 0);
308 cond2 = XEXP (SET_SRC (set2), 0);
309 if (reverse1)
310 code1 = reversed_comparison_code (cond1, BB_END (e->src));
311 else
312 code1 = GET_CODE (cond1);
314 code2 = GET_CODE (cond2);
315 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
317 if (!comparison_dominates_p (code1, code2)
318 && !comparison_dominates_p (code1, reversed_code2))
319 return NULL;
321 /* Ensure that the comparison operators are equivalent.
322 ??? This is far too pessimistic. We should allow swapped operands,
323 different CCmodes, or for example comparisons for interval, that
324 dominate even when operands are not equivalent. */
325 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
326 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
327 return NULL;
329 /* Short circuit cases where block B contains some side effects, as we can't
330 safely bypass it. */
331 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
332 insn = NEXT_INSN (insn))
333 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
335 b->flags |= BB_NONTHREADABLE_BLOCK;
336 return NULL;
339 cselib_init (0);
341 /* First process all values computed in the source basic block. */
342 for (insn = NEXT_INSN (BB_HEAD (e->src));
343 insn != NEXT_INSN (BB_END (e->src));
344 insn = NEXT_INSN (insn))
345 if (INSN_P (insn))
346 cselib_process_insn (insn);
348 nonequal = BITMAP_ALLOC (NULL);
349 CLEAR_REG_SET (nonequal);
351 /* Now assume that we've continued by the edge E to B and continue
352 processing as if it were same basic block.
353 Our goal is to prove that whole block is an NOOP. */
355 for (insn = NEXT_INSN (BB_HEAD (b));
356 insn != NEXT_INSN (BB_END (b)) && !failed;
357 insn = NEXT_INSN (insn))
359 if (INSN_P (insn))
361 rtx pat = PATTERN (insn);
363 if (GET_CODE (pat) == PARALLEL)
365 for (i = 0; i < (unsigned)XVECLEN (pat, 0); i++)
366 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
368 else
369 failed |= mark_effect (pat, nonequal);
372 cselib_process_insn (insn);
375 /* Later we should clear nonequal of dead registers. So far we don't
376 have life information in cfg_cleanup. */
377 if (failed)
379 b->flags |= BB_NONTHREADABLE_BLOCK;
380 goto failed_exit;
383 /* cond2 must not mention any register that is not equal to the
384 former block. */
385 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
386 goto failed_exit;
388 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, rsi)
389 goto failed_exit;
391 BITMAP_FREE (nonequal);
392 cselib_finish ();
393 if ((comparison_dominates_p (code1, code2) != 0)
394 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
395 return BRANCH_EDGE (b);
396 else
397 return FALLTHRU_EDGE (b);
399 failed_exit:
400 BITMAP_FREE (nonequal);
401 cselib_finish ();
402 return NULL;
405 /* Attempt to forward edges leaving basic block B.
406 Return true if successful. */
408 static bool
409 try_forward_edges (int mode, basic_block b)
411 bool changed = false;
412 edge_iterator ei;
413 edge e, *threaded_edges = NULL;
415 /* If we are partitioning hot/cold basic blocks, we don't want to
416 mess up unconditional or indirect jumps that cross between hot
417 and cold sections.
419 Basic block partitioning may result in some jumps that appear to
420 be optimizable (or blocks that appear to be mergeable), but which really
421 must be left untouched (they are required to make it safely across
422 partition boundaries). See the comments at the top of
423 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
425 if (find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX))
426 return false;
428 for (ei = ei_start (b->succs); (e = ei_safe_edge (ei)); )
430 basic_block target, first;
431 int counter, goto_locus;
432 bool threaded = false;
433 int nthreaded_edges = 0;
434 bool may_thread = first_pass || (b->flags & BB_MODIFIED) != 0;
436 /* Skip complex edges because we don't know how to update them.
438 Still handle fallthru edges, as we can succeed to forward fallthru
439 edge to the same place as the branch edge of conditional branch
440 and turn conditional branch to an unconditional branch. */
441 if (e->flags & EDGE_COMPLEX)
443 ei_next (&ei);
444 continue;
447 target = first = e->dest;
448 counter = NUM_FIXED_BLOCKS;
449 goto_locus = e->goto_locus;
451 /* If we are partitioning hot/cold basic_blocks, we don't want to mess
452 up jumps that cross between hot/cold sections.
454 Basic block partitioning may result in some jumps that appear
455 to be optimizable (or blocks that appear to be mergeable), but which
456 really must be left untouched (they are required to make it safely
457 across partition boundaries). See the comments at the top of
458 bb-reorder.c:partition_hot_cold_basic_blocks for complete
459 details. */
461 if (first != EXIT_BLOCK_PTR
462 && find_reg_note (BB_END (first), REG_CROSSING_JUMP, NULL_RTX))
463 return false;
465 while (counter < n_basic_blocks)
467 basic_block new_target = NULL;
468 bool new_target_threaded = false;
469 may_thread |= (target->flags & BB_MODIFIED) != 0;
471 if (FORWARDER_BLOCK_P (target)
472 && !(single_succ_edge (target)->flags & EDGE_CROSSING)
473 && single_succ (target) != EXIT_BLOCK_PTR)
475 /* Bypass trivial infinite loops. */
476 new_target = single_succ (target);
477 if (target == new_target)
478 counter = n_basic_blocks;
479 else if (!optimize)
481 /* When not optimizing, ensure that edges or forwarder
482 blocks with different locus are not optimized out. */
483 int new_locus = single_succ_edge (target)->goto_locus;
484 int locus = goto_locus;
486 if (new_locus && locus && !locator_eq (new_locus, locus))
487 new_target = NULL;
488 else
490 rtx last;
492 if (new_locus)
493 locus = new_locus;
495 last = BB_END (target);
496 if (DEBUG_INSN_P (last))
497 last = prev_nondebug_insn (last);
499 new_locus = last && INSN_P (last)
500 ? INSN_LOCATOR (last) : 0;
502 if (new_locus && locus && !locator_eq (new_locus, locus))
503 new_target = NULL;
504 else
506 if (new_locus)
507 locus = new_locus;
509 goto_locus = locus;
515 /* Allow to thread only over one edge at time to simplify updating
516 of probabilities. */
517 else if ((mode & CLEANUP_THREADING) && may_thread)
519 edge t = thread_jump (e, target);
520 if (t)
522 if (!threaded_edges)
523 threaded_edges = XNEWVEC (edge, n_basic_blocks);
524 else
526 int i;
528 /* Detect an infinite loop across blocks not
529 including the start block. */
530 for (i = 0; i < nthreaded_edges; ++i)
531 if (threaded_edges[i] == t)
532 break;
533 if (i < nthreaded_edges)
535 counter = n_basic_blocks;
536 break;
540 /* Detect an infinite loop across the start block. */
541 if (t->dest == b)
542 break;
544 gcc_assert (nthreaded_edges < n_basic_blocks - NUM_FIXED_BLOCKS);
545 threaded_edges[nthreaded_edges++] = t;
547 new_target = t->dest;
548 new_target_threaded = true;
552 if (!new_target)
553 break;
555 counter++;
556 target = new_target;
557 threaded |= new_target_threaded;
560 if (counter >= n_basic_blocks)
562 if (dump_file)
563 fprintf (dump_file, "Infinite loop in BB %i.\n",
564 target->index);
566 else if (target == first)
567 ; /* We didn't do anything. */
568 else
570 /* Save the values now, as the edge may get removed. */
571 gcov_type edge_count = e->count;
572 int edge_probability = e->probability;
573 int edge_frequency;
574 int n = 0;
576 e->goto_locus = goto_locus;
578 /* Don't force if target is exit block. */
579 if (threaded && target != EXIT_BLOCK_PTR)
581 notice_new_block (redirect_edge_and_branch_force (e, target));
582 if (dump_file)
583 fprintf (dump_file, "Conditionals threaded.\n");
585 else if (!redirect_edge_and_branch (e, target))
587 if (dump_file)
588 fprintf (dump_file,
589 "Forwarding edge %i->%i to %i failed.\n",
590 b->index, e->dest->index, target->index);
591 ei_next (&ei);
592 continue;
595 /* We successfully forwarded the edge. Now update profile
596 data: for each edge we traversed in the chain, remove
597 the original edge's execution count. */
598 edge_frequency = ((edge_probability * b->frequency
599 + REG_BR_PROB_BASE / 2)
600 / REG_BR_PROB_BASE);
602 if (!FORWARDER_BLOCK_P (b) && forwarder_block_p (b))
603 b->flags |= BB_FORWARDER_BLOCK;
607 edge t;
609 if (!single_succ_p (first))
611 gcc_assert (n < nthreaded_edges);
612 t = threaded_edges [n++];
613 gcc_assert (t->src == first);
614 update_bb_profile_for_threading (first, edge_frequency,
615 edge_count, t);
616 update_br_prob_note (first);
618 else
620 first->count -= edge_count;
621 if (first->count < 0)
622 first->count = 0;
623 first->frequency -= edge_frequency;
624 if (first->frequency < 0)
625 first->frequency = 0;
626 /* It is possible that as the result of
627 threading we've removed edge as it is
628 threaded to the fallthru edge. Avoid
629 getting out of sync. */
630 if (n < nthreaded_edges
631 && first == threaded_edges [n]->src)
632 n++;
633 t = single_succ_edge (first);
636 t->count -= edge_count;
637 if (t->count < 0)
638 t->count = 0;
639 first = t->dest;
641 while (first != target);
643 changed = true;
644 continue;
646 ei_next (&ei);
649 free (threaded_edges);
650 return changed;
654 /* Blocks A and B are to be merged into a single block. A has no incoming
655 fallthru edge, so it can be moved before B without adding or modifying
656 any jumps (aside from the jump from A to B). */
658 static void
659 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
661 rtx barrier;
663 /* If we are partitioning hot/cold basic blocks, we don't want to
664 mess up unconditional or indirect jumps that cross between hot
665 and cold sections.
667 Basic block partitioning may result in some jumps that appear to
668 be optimizable (or blocks that appear to be mergeable), but which really
669 must be left untouched (they are required to make it safely across
670 partition boundaries). See the comments at the top of
671 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
673 if (BB_PARTITION (a) != BB_PARTITION (b))
674 return;
676 barrier = next_nonnote_insn (BB_END (a));
677 gcc_assert (BARRIER_P (barrier));
678 delete_insn (barrier);
680 /* Scramble the insn chain. */
681 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
682 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
683 df_set_bb_dirty (a);
685 if (dump_file)
686 fprintf (dump_file, "Moved block %d before %d and merged.\n",
687 a->index, b->index);
689 /* Swap the records for the two blocks around. */
691 unlink_block (a);
692 link_block (a, b->prev_bb);
694 /* Now blocks A and B are contiguous. Merge them. */
695 merge_blocks (a, b);
698 /* Blocks A and B are to be merged into a single block. B has no outgoing
699 fallthru edge, so it can be moved after A without adding or modifying
700 any jumps (aside from the jump from A to B). */
702 static void
703 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
705 rtx barrier, real_b_end;
706 rtx label, table;
708 /* If we are partitioning hot/cold basic blocks, we don't want to
709 mess up unconditional or indirect jumps that cross between hot
710 and cold sections.
712 Basic block partitioning may result in some jumps that appear to
713 be optimizable (or blocks that appear to be mergeable), but which really
714 must be left untouched (they are required to make it safely across
715 partition boundaries). See the comments at the top of
716 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
718 if (BB_PARTITION (a) != BB_PARTITION (b))
719 return;
721 real_b_end = BB_END (b);
723 /* If there is a jump table following block B temporarily add the jump table
724 to block B so that it will also be moved to the correct location. */
725 if (tablejump_p (BB_END (b), &label, &table)
726 && prev_active_insn (label) == BB_END (b))
728 BB_END (b) = table;
731 /* There had better have been a barrier there. Delete it. */
732 barrier = NEXT_INSN (BB_END (b));
733 if (barrier && BARRIER_P (barrier))
734 delete_insn (barrier);
737 /* Scramble the insn chain. */
738 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
740 /* Restore the real end of b. */
741 BB_END (b) = real_b_end;
743 if (dump_file)
744 fprintf (dump_file, "Moved block %d after %d and merged.\n",
745 b->index, a->index);
747 /* Now blocks A and B are contiguous. Merge them. */
748 merge_blocks (a, b);
751 /* Attempt to merge basic blocks that are potentially non-adjacent.
752 Return NULL iff the attempt failed, otherwise return basic block
753 where cleanup_cfg should continue. Because the merging commonly
754 moves basic block away or introduces another optimization
755 possibility, return basic block just before B so cleanup_cfg don't
756 need to iterate.
758 It may be good idea to return basic block before C in the case
759 C has been moved after B and originally appeared earlier in the
760 insn sequence, but we have no information available about the
761 relative ordering of these two. Hopefully it is not too common. */
763 static basic_block
764 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
766 basic_block next;
768 /* If we are partitioning hot/cold basic blocks, we don't want to
769 mess up unconditional or indirect jumps that cross between hot
770 and cold sections.
772 Basic block partitioning may result in some jumps that appear to
773 be optimizable (or blocks that appear to be mergeable), but which really
774 must be left untouched (they are required to make it safely across
775 partition boundaries). See the comments at the top of
776 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
778 if (BB_PARTITION (b) != BB_PARTITION (c))
779 return NULL;
781 /* If B has a fallthru edge to C, no need to move anything. */
782 if (e->flags & EDGE_FALLTHRU)
784 int b_index = b->index, c_index = c->index;
785 merge_blocks (b, c);
786 update_forwarder_flag (b);
788 if (dump_file)
789 fprintf (dump_file, "Merged %d and %d without moving.\n",
790 b_index, c_index);
792 return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
795 /* Otherwise we will need to move code around. Do that only if expensive
796 transformations are allowed. */
797 else if (mode & CLEANUP_EXPENSIVE)
799 edge tmp_edge, b_fallthru_edge;
800 bool c_has_outgoing_fallthru;
801 bool b_has_incoming_fallthru;
803 /* Avoid overactive code motion, as the forwarder blocks should be
804 eliminated by edge redirection instead. One exception might have
805 been if B is a forwarder block and C has no fallthru edge, but
806 that should be cleaned up by bb-reorder instead. */
807 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
808 return NULL;
810 /* We must make sure to not munge nesting of lexical blocks,
811 and loop notes. This is done by squeezing out all the notes
812 and leaving them there to lie. Not ideal, but functional. */
814 tmp_edge = find_fallthru_edge (c->succs);
815 c_has_outgoing_fallthru = (tmp_edge != NULL);
817 tmp_edge = find_fallthru_edge (b->preds);
818 b_has_incoming_fallthru = (tmp_edge != NULL);
819 b_fallthru_edge = tmp_edge;
820 next = b->prev_bb;
821 if (next == c)
822 next = next->prev_bb;
824 /* Otherwise, we're going to try to move C after B. If C does
825 not have an outgoing fallthru, then it can be moved
826 immediately after B without introducing or modifying jumps. */
827 if (! c_has_outgoing_fallthru)
829 merge_blocks_move_successor_nojumps (b, c);
830 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
833 /* If B does not have an incoming fallthru, then it can be moved
834 immediately before C without introducing or modifying jumps.
835 C cannot be the first block, so we do not have to worry about
836 accessing a non-existent block. */
838 if (b_has_incoming_fallthru)
840 basic_block bb;
842 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
843 return NULL;
844 bb = force_nonfallthru (b_fallthru_edge);
845 if (bb)
846 notice_new_block (bb);
849 merge_blocks_move_predecessor_nojumps (b, c);
850 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
853 return NULL;
857 /* Removes the memory attributes of MEM expression
858 if they are not equal. */
860 void
861 merge_memattrs (rtx x, rtx y)
863 int i;
864 int j;
865 enum rtx_code code;
866 const char *fmt;
868 if (x == y)
869 return;
870 if (x == 0 || y == 0)
871 return;
873 code = GET_CODE (x);
875 if (code != GET_CODE (y))
876 return;
878 if (GET_MODE (x) != GET_MODE (y))
879 return;
881 if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
883 if (! MEM_ATTRS (x))
884 MEM_ATTRS (y) = 0;
885 else if (! MEM_ATTRS (y))
886 MEM_ATTRS (x) = 0;
887 else
889 rtx mem_size;
891 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
893 set_mem_alias_set (x, 0);
894 set_mem_alias_set (y, 0);
897 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
899 set_mem_expr (x, 0);
900 set_mem_expr (y, 0);
901 set_mem_offset (x, 0);
902 set_mem_offset (y, 0);
904 else if (MEM_OFFSET (x) != MEM_OFFSET (y))
906 set_mem_offset (x, 0);
907 set_mem_offset (y, 0);
910 if (!MEM_SIZE (x))
911 mem_size = NULL_RTX;
912 else if (!MEM_SIZE (y))
913 mem_size = NULL_RTX;
914 else
915 mem_size = GEN_INT (MAX (INTVAL (MEM_SIZE (x)),
916 INTVAL (MEM_SIZE (y))));
917 set_mem_size (x, mem_size);
918 set_mem_size (y, mem_size);
920 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
921 set_mem_align (y, MEM_ALIGN (x));
925 fmt = GET_RTX_FORMAT (code);
926 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
928 switch (fmt[i])
930 case 'E':
931 /* Two vectors must have the same length. */
932 if (XVECLEN (x, i) != XVECLEN (y, i))
933 return;
935 for (j = 0; j < XVECLEN (x, i); j++)
936 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
938 break;
940 case 'e':
941 merge_memattrs (XEXP (x, i), XEXP (y, i));
944 return;
948 /* Checks if patterns P1 and P2 are equivalent, apart from the possibly
949 different single sets S1 and S2. */
951 static bool
952 equal_different_set_p (rtx p1, rtx s1, rtx p2, rtx s2)
954 int i;
955 rtx e1, e2;
957 if (p1 == s1 && p2 == s2)
958 return true;
960 if (GET_CODE (p1) != PARALLEL || GET_CODE (p2) != PARALLEL)
961 return false;
963 if (XVECLEN (p1, 0) != XVECLEN (p2, 0))
964 return false;
966 for (i = 0; i < XVECLEN (p1, 0); i++)
968 e1 = XVECEXP (p1, 0, i);
969 e2 = XVECEXP (p2, 0, i);
970 if (e1 == s1 && e2 == s2)
971 continue;
972 if (reload_completed
973 ? rtx_renumbered_equal_p (e1, e2) : rtx_equal_p (e1, e2))
974 continue;
976 return false;
979 return true;
982 /* Examine register notes on I1 and I2 and return:
983 - dir_forward if I1 can be replaced by I2, or
984 - dir_backward if I2 can be replaced by I1, or
985 - dir_both if both are the case. */
987 static enum replace_direction
988 can_replace_by (rtx i1, rtx i2)
990 rtx s1, s2, d1, d2, src1, src2, note1, note2;
991 bool c1, c2;
993 /* Check for 2 sets. */
994 s1 = single_set (i1);
995 s2 = single_set (i2);
996 if (s1 == NULL_RTX || s2 == NULL_RTX)
997 return dir_none;
999 /* Check that the 2 sets set the same dest. */
1000 d1 = SET_DEST (s1);
1001 d2 = SET_DEST (s2);
1002 if (!(reload_completed
1003 ? rtx_renumbered_equal_p (d1, d2) : rtx_equal_p (d1, d2)))
1004 return dir_none;
1006 /* Find identical req_equiv or reg_equal note, which implies that the 2 sets
1007 set dest to the same value. */
1008 note1 = find_reg_equal_equiv_note (i1);
1009 note2 = find_reg_equal_equiv_note (i2);
1010 if (!note1 || !note2 || !rtx_equal_p (XEXP (note1, 0), XEXP (note2, 0))
1011 || !CONST_INT_P (XEXP (note1, 0)))
1012 return dir_none;
1014 if (!equal_different_set_p (PATTERN (i1), s1, PATTERN (i2), s2))
1015 return dir_none;
1017 /* Although the 2 sets set dest to the same value, we cannot replace
1018 (set (dest) (const_int))
1020 (set (dest) (reg))
1021 because we don't know if the reg is live and has the same value at the
1022 location of replacement. */
1023 src1 = SET_SRC (s1);
1024 src2 = SET_SRC (s2);
1025 c1 = CONST_INT_P (src1);
1026 c2 = CONST_INT_P (src2);
1027 if (c1 && c2)
1028 return dir_both;
1029 else if (c2)
1030 return dir_forward;
1031 else if (c1)
1032 return dir_backward;
1034 return dir_none;
1037 /* Merges directions A and B. */
1039 static enum replace_direction
1040 merge_dir (enum replace_direction a, enum replace_direction b)
1042 /* Implements the following table:
1043 |bo fw bw no
1044 ---+-----------
1045 bo |bo fw bw no
1046 fw |-- fw no no
1047 bw |-- -- bw no
1048 no |-- -- -- no. */
1050 if (a == b)
1051 return a;
1053 if (a == dir_both)
1054 return b;
1055 if (b == dir_both)
1056 return a;
1058 return dir_none;
1061 /* Examine I1 and I2 and return:
1062 - dir_forward if I1 can be replaced by I2, or
1063 - dir_backward if I2 can be replaced by I1, or
1064 - dir_both if both are the case. */
1066 static enum replace_direction
1067 old_insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
1069 rtx p1, p2;
1071 /* Verify that I1 and I2 are equivalent. */
1072 if (GET_CODE (i1) != GET_CODE (i2))
1073 return dir_none;
1075 /* __builtin_unreachable() may lead to empty blocks (ending with
1076 NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
1077 if (NOTE_INSN_BASIC_BLOCK_P (i1) && NOTE_INSN_BASIC_BLOCK_P (i2))
1078 return dir_both;
1080 p1 = PATTERN (i1);
1081 p2 = PATTERN (i2);
1083 if (GET_CODE (p1) != GET_CODE (p2))
1084 return dir_none;
1086 /* If this is a CALL_INSN, compare register usage information.
1087 If we don't check this on stack register machines, the two
1088 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1089 numbers of stack registers in the same basic block.
1090 If we don't check this on machines with delay slots, a delay slot may
1091 be filled that clobbers a parameter expected by the subroutine.
1093 ??? We take the simple route for now and assume that if they're
1094 equal, they were constructed identically.
1096 Also check for identical exception regions. */
1098 if (CALL_P (i1))
1100 /* Ensure the same EH region. */
1101 rtx n1 = find_reg_note (i1, REG_EH_REGION, 0);
1102 rtx n2 = find_reg_note (i2, REG_EH_REGION, 0);
1104 if (!n1 && n2)
1105 return dir_none;
1107 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1108 return dir_none;
1110 if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
1111 CALL_INSN_FUNCTION_USAGE (i2))
1112 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2))
1113 return dir_none;
1116 #ifdef STACK_REGS
1117 /* If cross_jump_death_matters is not 0, the insn's mode
1118 indicates whether or not the insn contains any stack-like
1119 regs. */
1121 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
1123 /* If register stack conversion has already been done, then
1124 death notes must also be compared before it is certain that
1125 the two instruction streams match. */
1127 rtx note;
1128 HARD_REG_SET i1_regset, i2_regset;
1130 CLEAR_HARD_REG_SET (i1_regset);
1131 CLEAR_HARD_REG_SET (i2_regset);
1133 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1134 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1135 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1137 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1138 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1139 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1141 if (!hard_reg_set_equal_p (i1_regset, i2_regset))
1142 return dir_none;
1144 #endif
1146 if (reload_completed
1147 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
1148 return dir_both;
1150 return can_replace_by (i1, i2);
1153 /* When comparing insns I1 and I2 in flow_find_cross_jump or
1154 flow_find_head_matching_sequence, ensure the notes match. */
1156 static void
1157 merge_notes (rtx i1, rtx i2)
1159 /* If the merged insns have different REG_EQUAL notes, then
1160 remove them. */
1161 rtx equiv1 = find_reg_equal_equiv_note (i1);
1162 rtx equiv2 = find_reg_equal_equiv_note (i2);
1164 if (equiv1 && !equiv2)
1165 remove_note (i1, equiv1);
1166 else if (!equiv1 && equiv2)
1167 remove_note (i2, equiv2);
1168 else if (equiv1 && equiv2
1169 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1171 remove_note (i1, equiv1);
1172 remove_note (i2, equiv2);
1176 /* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
1177 resulting insn in I1, and the corresponding bb in BB1. At the head of a
1178 bb, if there is a predecessor bb that reaches this bb via fallthru, and
1179 FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
1180 DID_FALLTHRU. Otherwise, stops at the head of the bb. */
1182 static void
1183 walk_to_nondebug_insn (rtx *i1, basic_block *bb1, bool follow_fallthru,
1184 bool *did_fallthru)
1186 edge fallthru;
1188 *did_fallthru = false;
1190 /* Ignore notes. */
1191 while (!NONDEBUG_INSN_P (*i1))
1193 if (*i1 != BB_HEAD (*bb1))
1195 *i1 = PREV_INSN (*i1);
1196 continue;
1199 if (!follow_fallthru)
1200 return;
1202 fallthru = find_fallthru_edge ((*bb1)->preds);
1203 if (!fallthru || fallthru->src == ENTRY_BLOCK_PTR_FOR_FUNCTION (cfun)
1204 || !single_succ_p (fallthru->src))
1205 return;
1207 *bb1 = fallthru->src;
1208 *i1 = BB_END (*bb1);
1209 *did_fallthru = true;
1213 /* Look through the insns at the end of BB1 and BB2 and find the longest
1214 sequence that are either equivalent, or allow forward or backward
1215 replacement. Store the first insns for that sequence in *F1 and *F2 and
1216 return the sequence length.
1218 DIR_P indicates the allowed replacement direction on function entry, and
1219 the actual replacement direction on function exit. If NULL, only equivalent
1220 sequences are allowed.
1222 To simplify callers of this function, if the blocks match exactly,
1223 store the head of the blocks in *F1 and *F2. */
1226 flow_find_cross_jump (basic_block bb1, basic_block bb2, rtx *f1, rtx *f2,
1227 enum replace_direction *dir_p)
1229 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1230 int ninsns = 0;
1231 rtx p1;
1232 enum replace_direction dir, last_dir, afterlast_dir;
1233 bool follow_fallthru, did_fallthru;
1235 if (dir_p)
1236 dir = *dir_p;
1237 else
1238 dir = dir_both;
1239 afterlast_dir = dir;
1240 last_dir = afterlast_dir;
1242 /* Skip simple jumps at the end of the blocks. Complex jumps still
1243 need to be compared for equivalence, which we'll do below. */
1245 i1 = BB_END (bb1);
1246 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1247 if (onlyjump_p (i1)
1248 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1250 last1 = i1;
1251 i1 = PREV_INSN (i1);
1254 i2 = BB_END (bb2);
1255 if (onlyjump_p (i2)
1256 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1258 last2 = i2;
1259 /* Count everything except for unconditional jump as insn. */
1260 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1261 ninsns++;
1262 i2 = PREV_INSN (i2);
1265 while (true)
1267 /* In the following example, we can replace all jumps to C by jumps to A.
1269 This removes 4 duplicate insns.
1270 [bb A] insn1 [bb C] insn1
1271 insn2 insn2
1272 [bb B] insn3 insn3
1273 insn4 insn4
1274 jump_insn jump_insn
1276 We could also replace all jumps to A by jumps to C, but that leaves B
1277 alive, and removes only 2 duplicate insns. In a subsequent crossjump
1278 step, all jumps to B would be replaced with jumps to the middle of C,
1279 achieving the same result with more effort.
1280 So we allow only the first possibility, which means that we don't allow
1281 fallthru in the block that's being replaced. */
1283 follow_fallthru = dir_p && dir != dir_forward;
1284 walk_to_nondebug_insn (&i1, &bb1, follow_fallthru, &did_fallthru);
1285 if (did_fallthru)
1286 dir = dir_backward;
1288 follow_fallthru = dir_p && dir != dir_backward;
1289 walk_to_nondebug_insn (&i2, &bb2, follow_fallthru, &did_fallthru);
1290 if (did_fallthru)
1291 dir = dir_forward;
1293 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1294 break;
1296 dir = merge_dir (dir, old_insns_match_p (0, i1, i2));
1297 if (dir == dir_none || (!dir_p && dir != dir_both))
1298 break;
1300 merge_memattrs (i1, i2);
1302 /* Don't begin a cross-jump with a NOTE insn. */
1303 if (INSN_P (i1))
1305 merge_notes (i1, i2);
1307 afterlast1 = last1, afterlast2 = last2;
1308 last1 = i1, last2 = i2;
1309 afterlast_dir = last_dir;
1310 last_dir = dir;
1311 p1 = PATTERN (i1);
1312 if (!(GET_CODE (p1) == USE || GET_CODE (p1) == CLOBBER))
1313 ninsns++;
1316 i1 = PREV_INSN (i1);
1317 i2 = PREV_INSN (i2);
1320 #ifdef HAVE_cc0
1321 /* Don't allow the insn after a compare to be shared by
1322 cross-jumping unless the compare is also shared. */
1323 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1324 last1 = afterlast1, last2 = afterlast2, last_dir = afterlast_dir, ninsns--;
1325 #endif
1327 /* Include preceding notes and labels in the cross-jump. One,
1328 this may bring us to the head of the blocks as requested above.
1329 Two, it keeps line number notes as matched as may be. */
1330 if (ninsns)
1332 bb1 = BLOCK_FOR_INSN (last1);
1333 while (last1 != BB_HEAD (bb1) && !NONDEBUG_INSN_P (PREV_INSN (last1)))
1334 last1 = PREV_INSN (last1);
1336 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1337 last1 = PREV_INSN (last1);
1339 bb2 = BLOCK_FOR_INSN (last2);
1340 while (last2 != BB_HEAD (bb2) && !NONDEBUG_INSN_P (PREV_INSN (last2)))
1341 last2 = PREV_INSN (last2);
1343 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1344 last2 = PREV_INSN (last2);
1346 *f1 = last1;
1347 *f2 = last2;
1350 if (dir_p)
1351 *dir_p = last_dir;
1352 return ninsns;
1355 /* Like flow_find_cross_jump, except start looking for a matching sequence from
1356 the head of the two blocks. Do not include jumps at the end.
1357 If STOP_AFTER is nonzero, stop after finding that many matching
1358 instructions. */
1361 flow_find_head_matching_sequence (basic_block bb1, basic_block bb2, rtx *f1,
1362 rtx *f2, int stop_after)
1364 rtx i1, i2, last1, last2, beforelast1, beforelast2;
1365 int ninsns = 0;
1366 edge e;
1367 edge_iterator ei;
1368 int nehedges1 = 0, nehedges2 = 0;
1370 FOR_EACH_EDGE (e, ei, bb1->succs)
1371 if (e->flags & EDGE_EH)
1372 nehedges1++;
1373 FOR_EACH_EDGE (e, ei, bb2->succs)
1374 if (e->flags & EDGE_EH)
1375 nehedges2++;
1377 i1 = BB_HEAD (bb1);
1378 i2 = BB_HEAD (bb2);
1379 last1 = beforelast1 = last2 = beforelast2 = NULL_RTX;
1381 while (true)
1383 /* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
1384 while (!NONDEBUG_INSN_P (i1) && i1 != BB_END (bb1))
1386 if (NOTE_P (i1) && NOTE_KIND (i1) == NOTE_INSN_EPILOGUE_BEG)
1387 break;
1388 i1 = NEXT_INSN (i1);
1391 while (!NONDEBUG_INSN_P (i2) && i2 != BB_END (bb2))
1393 if (NOTE_P (i2) && NOTE_KIND (i2) == NOTE_INSN_EPILOGUE_BEG)
1394 break;
1395 i2 = NEXT_INSN (i2);
1398 if ((i1 == BB_END (bb1) && !NONDEBUG_INSN_P (i1))
1399 || (i2 == BB_END (bb2) && !NONDEBUG_INSN_P (i2)))
1400 break;
1402 if (NOTE_P (i1) || NOTE_P (i2)
1403 || JUMP_P (i1) || JUMP_P (i2))
1404 break;
1406 /* A sanity check to make sure we're not merging insns with different
1407 effects on EH. If only one of them ends a basic block, it shouldn't
1408 have an EH edge; if both end a basic block, there should be the same
1409 number of EH edges. */
1410 if ((i1 == BB_END (bb1) && i2 != BB_END (bb2)
1411 && nehedges1 > 0)
1412 || (i2 == BB_END (bb2) && i1 != BB_END (bb1)
1413 && nehedges2 > 0)
1414 || (i1 == BB_END (bb1) && i2 == BB_END (bb2)
1415 && nehedges1 != nehedges2))
1416 break;
1418 if (old_insns_match_p (0, i1, i2) != dir_both)
1419 break;
1421 merge_memattrs (i1, i2);
1423 /* Don't begin a cross-jump with a NOTE insn. */
1424 if (INSN_P (i1))
1426 merge_notes (i1, i2);
1428 beforelast1 = last1, beforelast2 = last2;
1429 last1 = i1, last2 = i2;
1430 ninsns++;
1433 if (i1 == BB_END (bb1) || i2 == BB_END (bb2)
1434 || (stop_after > 0 && ninsns == stop_after))
1435 break;
1437 i1 = NEXT_INSN (i1);
1438 i2 = NEXT_INSN (i2);
1441 #ifdef HAVE_cc0
1442 /* Don't allow a compare to be shared by cross-jumping unless the insn
1443 after the compare is also shared. */
1444 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && sets_cc0_p (last1))
1445 last1 = beforelast1, last2 = beforelast2, ninsns--;
1446 #endif
1448 if (ninsns)
1450 *f1 = last1;
1451 *f2 = last2;
1454 return ninsns;
1457 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1458 the branch instruction. This means that if we commonize the control
1459 flow before end of the basic block, the semantic remains unchanged.
1461 We may assume that there exists one edge with a common destination. */
1463 static bool
1464 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1466 int nehedges1 = 0, nehedges2 = 0;
1467 edge fallthru1 = 0, fallthru2 = 0;
1468 edge e1, e2;
1469 edge_iterator ei;
1471 /* If BB1 has only one successor, we may be looking at either an
1472 unconditional jump, or a fake edge to exit. */
1473 if (single_succ_p (bb1)
1474 && (single_succ_edge (bb1)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1475 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
1476 return (single_succ_p (bb2)
1477 && (single_succ_edge (bb2)->flags
1478 & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1479 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
1481 /* Match conditional jumps - this may get tricky when fallthru and branch
1482 edges are crossed. */
1483 if (EDGE_COUNT (bb1->succs) == 2
1484 && any_condjump_p (BB_END (bb1))
1485 && onlyjump_p (BB_END (bb1)))
1487 edge b1, f1, b2, f2;
1488 bool reverse, match;
1489 rtx set1, set2, cond1, cond2;
1490 enum rtx_code code1, code2;
1492 if (EDGE_COUNT (bb2->succs) != 2
1493 || !any_condjump_p (BB_END (bb2))
1494 || !onlyjump_p (BB_END (bb2)))
1495 return false;
1497 b1 = BRANCH_EDGE (bb1);
1498 b2 = BRANCH_EDGE (bb2);
1499 f1 = FALLTHRU_EDGE (bb1);
1500 f2 = FALLTHRU_EDGE (bb2);
1502 /* Get around possible forwarders on fallthru edges. Other cases
1503 should be optimized out already. */
1504 if (FORWARDER_BLOCK_P (f1->dest))
1505 f1 = single_succ_edge (f1->dest);
1507 if (FORWARDER_BLOCK_P (f2->dest))
1508 f2 = single_succ_edge (f2->dest);
1510 /* To simplify use of this function, return false if there are
1511 unneeded forwarder blocks. These will get eliminated later
1512 during cleanup_cfg. */
1513 if (FORWARDER_BLOCK_P (f1->dest)
1514 || FORWARDER_BLOCK_P (f2->dest)
1515 || FORWARDER_BLOCK_P (b1->dest)
1516 || FORWARDER_BLOCK_P (b2->dest))
1517 return false;
1519 if (f1->dest == f2->dest && b1->dest == b2->dest)
1520 reverse = false;
1521 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1522 reverse = true;
1523 else
1524 return false;
1526 set1 = pc_set (BB_END (bb1));
1527 set2 = pc_set (BB_END (bb2));
1528 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1529 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1530 reverse = !reverse;
1532 cond1 = XEXP (SET_SRC (set1), 0);
1533 cond2 = XEXP (SET_SRC (set2), 0);
1534 code1 = GET_CODE (cond1);
1535 if (reverse)
1536 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1537 else
1538 code2 = GET_CODE (cond2);
1540 if (code2 == UNKNOWN)
1541 return false;
1543 /* Verify codes and operands match. */
1544 match = ((code1 == code2
1545 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1546 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1547 || (code1 == swap_condition (code2)
1548 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1549 XEXP (cond2, 0))
1550 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1551 XEXP (cond2, 1))));
1553 /* If we return true, we will join the blocks. Which means that
1554 we will only have one branch prediction bit to work with. Thus
1555 we require the existing branches to have probabilities that are
1556 roughly similar. */
1557 if (match
1558 && optimize_bb_for_speed_p (bb1)
1559 && optimize_bb_for_speed_p (bb2))
1561 int prob2;
1563 if (b1->dest == b2->dest)
1564 prob2 = b2->probability;
1565 else
1566 /* Do not use f2 probability as f2 may be forwarded. */
1567 prob2 = REG_BR_PROB_BASE - b2->probability;
1569 /* Fail if the difference in probabilities is greater than 50%.
1570 This rules out two well-predicted branches with opposite
1571 outcomes. */
1572 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1574 if (dump_file)
1575 fprintf (dump_file,
1576 "Outcomes of branch in bb %i and %i differ too much (%i %i)\n",
1577 bb1->index, bb2->index, b1->probability, prob2);
1579 return false;
1583 if (dump_file && match)
1584 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1585 bb1->index, bb2->index);
1587 return match;
1590 /* Generic case - we are seeing a computed jump, table jump or trapping
1591 instruction. */
1593 /* Check whether there are tablejumps in the end of BB1 and BB2.
1594 Return true if they are identical. */
1596 rtx label1, label2;
1597 rtx table1, table2;
1599 if (tablejump_p (BB_END (bb1), &label1, &table1)
1600 && tablejump_p (BB_END (bb2), &label2, &table2)
1601 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1603 /* The labels should never be the same rtx. If they really are same
1604 the jump tables are same too. So disable crossjumping of blocks BB1
1605 and BB2 because when deleting the common insns in the end of BB1
1606 by delete_basic_block () the jump table would be deleted too. */
1607 /* If LABEL2 is referenced in BB1->END do not do anything
1608 because we would loose information when replacing
1609 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1610 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1612 /* Set IDENTICAL to true when the tables are identical. */
1613 bool identical = false;
1614 rtx p1, p2;
1616 p1 = PATTERN (table1);
1617 p2 = PATTERN (table2);
1618 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1620 identical = true;
1622 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1623 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1624 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1625 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1627 int i;
1629 identical = true;
1630 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1631 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1632 identical = false;
1635 if (identical)
1637 replace_label_data rr;
1638 bool match;
1640 /* Temporarily replace references to LABEL1 with LABEL2
1641 in BB1->END so that we could compare the instructions. */
1642 rr.r1 = label1;
1643 rr.r2 = label2;
1644 rr.update_label_nuses = false;
1645 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1647 match = (old_insns_match_p (mode, BB_END (bb1), BB_END (bb2))
1648 == dir_both);
1649 if (dump_file && match)
1650 fprintf (dump_file,
1651 "Tablejumps in bb %i and %i match.\n",
1652 bb1->index, bb2->index);
1654 /* Set the original label in BB1->END because when deleting
1655 a block whose end is a tablejump, the tablejump referenced
1656 from the instruction is deleted too. */
1657 rr.r1 = label2;
1658 rr.r2 = label1;
1659 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1661 return match;
1664 return false;
1668 /* First ensure that the instructions match. There may be many outgoing
1669 edges so this test is generally cheaper. */
1670 if (old_insns_match_p (mode, BB_END (bb1), BB_END (bb2)) != dir_both)
1671 return false;
1673 /* Search the outgoing edges, ensure that the counts do match, find possible
1674 fallthru and exception handling edges since these needs more
1675 validation. */
1676 if (EDGE_COUNT (bb1->succs) != EDGE_COUNT (bb2->succs))
1677 return false;
1679 FOR_EACH_EDGE (e1, ei, bb1->succs)
1681 e2 = EDGE_SUCC (bb2, ei.index);
1683 if (e1->flags & EDGE_EH)
1684 nehedges1++;
1686 if (e2->flags & EDGE_EH)
1687 nehedges2++;
1689 if (e1->flags & EDGE_FALLTHRU)
1690 fallthru1 = e1;
1691 if (e2->flags & EDGE_FALLTHRU)
1692 fallthru2 = e2;
1695 /* If number of edges of various types does not match, fail. */
1696 if (nehedges1 != nehedges2
1697 || (fallthru1 != 0) != (fallthru2 != 0))
1698 return false;
1700 /* fallthru edges must be forwarded to the same destination. */
1701 if (fallthru1)
1703 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1704 ? single_succ (fallthru1->dest): fallthru1->dest);
1705 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1706 ? single_succ (fallthru2->dest): fallthru2->dest);
1708 if (d1 != d2)
1709 return false;
1712 /* Ensure the same EH region. */
1714 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1715 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
1717 if (!n1 && n2)
1718 return false;
1720 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1721 return false;
1724 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1725 version of sequence abstraction. */
1726 FOR_EACH_EDGE (e1, ei, bb2->succs)
1728 edge e2;
1729 edge_iterator ei;
1730 basic_block d1 = e1->dest;
1732 if (FORWARDER_BLOCK_P (d1))
1733 d1 = EDGE_SUCC (d1, 0)->dest;
1735 FOR_EACH_EDGE (e2, ei, bb1->succs)
1737 basic_block d2 = e2->dest;
1738 if (FORWARDER_BLOCK_P (d2))
1739 d2 = EDGE_SUCC (d2, 0)->dest;
1740 if (d1 == d2)
1741 break;
1744 if (!e2)
1745 return false;
1748 return true;
1751 /* Returns true if BB basic block has a preserve label. */
1753 static bool
1754 block_has_preserve_label (basic_block bb)
1756 return (bb
1757 && block_label (bb)
1758 && LABEL_PRESERVE_P (block_label (bb)));
1761 /* E1 and E2 are edges with the same destination block. Search their
1762 predecessors for common code. If found, redirect control flow from
1763 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC (dir_forward),
1764 or the other way around (dir_backward). DIR specifies the allowed
1765 replacement direction. */
1767 static bool
1768 try_crossjump_to_edge (int mode, edge e1, edge e2,
1769 enum replace_direction dir)
1771 int nmatch;
1772 basic_block src1 = e1->src, src2 = e2->src;
1773 basic_block redirect_to, redirect_from, to_remove;
1774 basic_block osrc1, osrc2, redirect_edges_to, tmp;
1775 rtx newpos1, newpos2;
1776 edge s;
1777 edge_iterator ei;
1779 newpos1 = newpos2 = NULL_RTX;
1781 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1782 to try this optimization.
1784 Basic block partitioning may result in some jumps that appear to
1785 be optimizable (or blocks that appear to be mergeable), but which really
1786 must be left untouched (they are required to make it safely across
1787 partition boundaries). See the comments at the top of
1788 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
1790 if (flag_reorder_blocks_and_partition && reload_completed)
1791 return false;
1793 /* Search backward through forwarder blocks. We don't need to worry
1794 about multiple entry or chained forwarders, as they will be optimized
1795 away. We do this to look past the unconditional jump following a
1796 conditional jump that is required due to the current CFG shape. */
1797 if (single_pred_p (src1)
1798 && FORWARDER_BLOCK_P (src1))
1799 e1 = single_pred_edge (src1), src1 = e1->src;
1801 if (single_pred_p (src2)
1802 && FORWARDER_BLOCK_P (src2))
1803 e2 = single_pred_edge (src2), src2 = e2->src;
1805 /* Nothing to do if we reach ENTRY, or a common source block. */
1806 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1807 return false;
1808 if (src1 == src2)
1809 return false;
1811 /* Seeing more than 1 forwarder blocks would confuse us later... */
1812 if (FORWARDER_BLOCK_P (e1->dest)
1813 && FORWARDER_BLOCK_P (single_succ (e1->dest)))
1814 return false;
1816 if (FORWARDER_BLOCK_P (e2->dest)
1817 && FORWARDER_BLOCK_P (single_succ (e2->dest)))
1818 return false;
1820 /* Likewise with dead code (possibly newly created by the other optimizations
1821 of cfg_cleanup). */
1822 if (EDGE_COUNT (src1->preds) == 0 || EDGE_COUNT (src2->preds) == 0)
1823 return false;
1825 /* Look for the common insn sequence, part the first ... */
1826 if (!outgoing_edges_match (mode, src1, src2))
1827 return false;
1829 /* ... and part the second. */
1830 nmatch = flow_find_cross_jump (src1, src2, &newpos1, &newpos2, &dir);
1832 osrc1 = src1;
1833 osrc2 = src2;
1834 if (newpos1 != NULL_RTX)
1835 src1 = BLOCK_FOR_INSN (newpos1);
1836 if (newpos2 != NULL_RTX)
1837 src2 = BLOCK_FOR_INSN (newpos2);
1839 if (dir == dir_backward)
1841 #define SWAP(T, X, Y) do { T tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
1842 SWAP (basic_block, osrc1, osrc2);
1843 SWAP (basic_block, src1, src2);
1844 SWAP (edge, e1, e2);
1845 SWAP (rtx, newpos1, newpos2);
1846 #undef SWAP
1849 /* Don't proceed with the crossjump unless we found a sufficient number
1850 of matching instructions or the 'from' block was totally matched
1851 (such that its predecessors will hopefully be redirected and the
1852 block removed). */
1853 if ((nmatch < PARAM_VALUE (PARAM_MIN_CROSSJUMP_INSNS))
1854 && (newpos1 != BB_HEAD (src1)))
1855 return false;
1857 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
1858 if (block_has_preserve_label (e1->dest)
1859 && (e1->flags & EDGE_ABNORMAL))
1860 return false;
1862 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1863 will be deleted.
1864 If we have tablejumps in the end of SRC1 and SRC2
1865 they have been already compared for equivalence in outgoing_edges_match ()
1866 so replace the references to TABLE1 by references to TABLE2. */
1868 rtx label1, label2;
1869 rtx table1, table2;
1871 if (tablejump_p (BB_END (osrc1), &label1, &table1)
1872 && tablejump_p (BB_END (osrc2), &label2, &table2)
1873 && label1 != label2)
1875 replace_label_data rr;
1876 rtx insn;
1878 /* Replace references to LABEL1 with LABEL2. */
1879 rr.r1 = label1;
1880 rr.r2 = label2;
1881 rr.update_label_nuses = true;
1882 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1884 /* Do not replace the label in SRC1->END because when deleting
1885 a block whose end is a tablejump, the tablejump referenced
1886 from the instruction is deleted too. */
1887 if (insn != BB_END (osrc1))
1888 for_each_rtx (&insn, replace_label, &rr);
1893 /* Avoid splitting if possible. We must always split when SRC2 has
1894 EH predecessor edges, or we may end up with basic blocks with both
1895 normal and EH predecessor edges. */
1896 if (newpos2 == BB_HEAD (src2)
1897 && !(EDGE_PRED (src2, 0)->flags & EDGE_EH))
1898 redirect_to = src2;
1899 else
1901 if (newpos2 == BB_HEAD (src2))
1903 /* Skip possible basic block header. */
1904 if (LABEL_P (newpos2))
1905 newpos2 = NEXT_INSN (newpos2);
1906 while (DEBUG_INSN_P (newpos2))
1907 newpos2 = NEXT_INSN (newpos2);
1908 if (NOTE_P (newpos2))
1909 newpos2 = NEXT_INSN (newpos2);
1910 while (DEBUG_INSN_P (newpos2))
1911 newpos2 = NEXT_INSN (newpos2);
1914 if (dump_file)
1915 fprintf (dump_file, "Splitting bb %i before %i insns\n",
1916 src2->index, nmatch);
1917 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1920 if (dump_file)
1921 fprintf (dump_file,
1922 "Cross jumping from bb %i to bb %i; %i common insns\n",
1923 src1->index, src2->index, nmatch);
1925 /* We may have some registers visible through the block. */
1926 df_set_bb_dirty (redirect_to);
1928 if (osrc2 == src2)
1929 redirect_edges_to = redirect_to;
1930 else
1931 redirect_edges_to = osrc2;
1933 /* Recompute the frequencies and counts of outgoing edges. */
1934 FOR_EACH_EDGE (s, ei, redirect_edges_to->succs)
1936 edge s2;
1937 edge_iterator ei;
1938 basic_block d = s->dest;
1940 if (FORWARDER_BLOCK_P (d))
1941 d = single_succ (d);
1943 FOR_EACH_EDGE (s2, ei, src1->succs)
1945 basic_block d2 = s2->dest;
1946 if (FORWARDER_BLOCK_P (d2))
1947 d2 = single_succ (d2);
1948 if (d == d2)
1949 break;
1952 s->count += s2->count;
1954 /* Take care to update possible forwarder blocks. We verified
1955 that there is no more than one in the chain, so we can't run
1956 into infinite loop. */
1957 if (FORWARDER_BLOCK_P (s->dest))
1959 single_succ_edge (s->dest)->count += s2->count;
1960 s->dest->count += s2->count;
1961 s->dest->frequency += EDGE_FREQUENCY (s);
1964 if (FORWARDER_BLOCK_P (s2->dest))
1966 single_succ_edge (s2->dest)->count -= s2->count;
1967 if (single_succ_edge (s2->dest)->count < 0)
1968 single_succ_edge (s2->dest)->count = 0;
1969 s2->dest->count -= s2->count;
1970 s2->dest->frequency -= EDGE_FREQUENCY (s);
1971 if (s2->dest->frequency < 0)
1972 s2->dest->frequency = 0;
1973 if (s2->dest->count < 0)
1974 s2->dest->count = 0;
1977 if (!redirect_edges_to->frequency && !src1->frequency)
1978 s->probability = (s->probability + s2->probability) / 2;
1979 else
1980 s->probability
1981 = ((s->probability * redirect_edges_to->frequency +
1982 s2->probability * src1->frequency)
1983 / (redirect_edges_to->frequency + src1->frequency));
1986 /* Adjust count and frequency for the block. An earlier jump
1987 threading pass may have left the profile in an inconsistent
1988 state (see update_bb_profile_for_threading) so we must be
1989 prepared for overflows. */
1990 tmp = redirect_to;
1993 tmp->count += src1->count;
1994 tmp->frequency += src1->frequency;
1995 if (tmp->frequency > BB_FREQ_MAX)
1996 tmp->frequency = BB_FREQ_MAX;
1997 if (tmp == redirect_edges_to)
1998 break;
1999 tmp = find_fallthru_edge (tmp->succs)->dest;
2001 while (true);
2002 update_br_prob_note (redirect_edges_to);
2004 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
2006 /* Skip possible basic block header. */
2007 if (LABEL_P (newpos1))
2008 newpos1 = NEXT_INSN (newpos1);
2010 while (DEBUG_INSN_P (newpos1))
2011 newpos1 = NEXT_INSN (newpos1);
2013 if (NOTE_INSN_BASIC_BLOCK_P (newpos1))
2014 newpos1 = NEXT_INSN (newpos1);
2016 while (DEBUG_INSN_P (newpos1))
2017 newpos1 = NEXT_INSN (newpos1);
2019 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
2020 to_remove = single_succ (redirect_from);
2022 redirect_edge_and_branch_force (single_succ_edge (redirect_from), redirect_to);
2023 delete_basic_block (to_remove);
2025 update_forwarder_flag (redirect_from);
2026 if (redirect_to != src2)
2027 update_forwarder_flag (src2);
2029 return true;
2032 /* Search the predecessors of BB for common insn sequences. When found,
2033 share code between them by redirecting control flow. Return true if
2034 any changes made. */
2036 static bool
2037 try_crossjump_bb (int mode, basic_block bb)
2039 edge e, e2, fallthru;
2040 bool changed;
2041 unsigned max, ix, ix2;
2043 /* Nothing to do if there is not at least two incoming edges. */
2044 if (EDGE_COUNT (bb->preds) < 2)
2045 return false;
2047 /* Don't crossjump if this block ends in a computed jump,
2048 unless we are optimizing for size. */
2049 if (optimize_bb_for_size_p (bb)
2050 && bb != EXIT_BLOCK_PTR
2051 && computed_jump_p (BB_END (bb)))
2052 return false;
2054 /* If we are partitioning hot/cold basic blocks, we don't want to
2055 mess up unconditional or indirect jumps that cross between hot
2056 and cold sections.
2058 Basic block partitioning may result in some jumps that appear to
2059 be optimizable (or blocks that appear to be mergeable), but which really
2060 must be left untouched (they are required to make it safely across
2061 partition boundaries). See the comments at the top of
2062 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2064 if (BB_PARTITION (EDGE_PRED (bb, 0)->src) !=
2065 BB_PARTITION (EDGE_PRED (bb, 1)->src)
2066 || (EDGE_PRED (bb, 0)->flags & EDGE_CROSSING))
2067 return false;
2069 /* It is always cheapest to redirect a block that ends in a branch to
2070 a block that falls through into BB, as that adds no branches to the
2071 program. We'll try that combination first. */
2072 fallthru = NULL;
2073 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
2075 if (EDGE_COUNT (bb->preds) > max)
2076 return false;
2078 fallthru = find_fallthru_edge (bb->preds);
2080 changed = false;
2081 for (ix = 0; ix < EDGE_COUNT (bb->preds);)
2083 e = EDGE_PRED (bb, ix);
2084 ix++;
2086 /* As noted above, first try with the fallthru predecessor (or, a
2087 fallthru predecessor if we are in cfglayout mode). */
2088 if (fallthru)
2090 /* Don't combine the fallthru edge into anything else.
2091 If there is a match, we'll do it the other way around. */
2092 if (e == fallthru)
2093 continue;
2094 /* If nothing changed since the last attempt, there is nothing
2095 we can do. */
2096 if (!first_pass
2097 && !((e->src->flags & BB_MODIFIED)
2098 || (fallthru->src->flags & BB_MODIFIED)))
2099 continue;
2101 if (try_crossjump_to_edge (mode, e, fallthru, dir_forward))
2103 changed = true;
2104 ix = 0;
2105 continue;
2109 /* Non-obvious work limiting check: Recognize that we're going
2110 to call try_crossjump_bb on every basic block. So if we have
2111 two blocks with lots of outgoing edges (a switch) and they
2112 share lots of common destinations, then we would do the
2113 cross-jump check once for each common destination.
2115 Now, if the blocks actually are cross-jump candidates, then
2116 all of their destinations will be shared. Which means that
2117 we only need check them for cross-jump candidacy once. We
2118 can eliminate redundant checks of crossjump(A,B) by arbitrarily
2119 choosing to do the check from the block for which the edge
2120 in question is the first successor of A. */
2121 if (EDGE_SUCC (e->src, 0) != e)
2122 continue;
2124 for (ix2 = 0; ix2 < EDGE_COUNT (bb->preds); ix2++)
2126 e2 = EDGE_PRED (bb, ix2);
2128 if (e2 == e)
2129 continue;
2131 /* We've already checked the fallthru edge above. */
2132 if (e2 == fallthru)
2133 continue;
2135 /* The "first successor" check above only prevents multiple
2136 checks of crossjump(A,B). In order to prevent redundant
2137 checks of crossjump(B,A), require that A be the block
2138 with the lowest index. */
2139 if (e->src->index > e2->src->index)
2140 continue;
2142 /* If nothing changed since the last attempt, there is nothing
2143 we can do. */
2144 if (!first_pass
2145 && !((e->src->flags & BB_MODIFIED)
2146 || (e2->src->flags & BB_MODIFIED)))
2147 continue;
2149 /* Both e and e2 are not fallthru edges, so we can crossjump in either
2150 direction. */
2151 if (try_crossjump_to_edge (mode, e, e2, dir_both))
2153 changed = true;
2154 ix = 0;
2155 break;
2160 if (changed)
2161 crossjumps_occured = true;
2163 return changed;
2166 /* Search the successors of BB for common insn sequences. When found,
2167 share code between them by moving it across the basic block
2168 boundary. Return true if any changes made. */
2170 static bool
2171 try_head_merge_bb (basic_block bb)
2173 basic_block final_dest_bb = NULL;
2174 int max_match = INT_MAX;
2175 edge e0;
2176 rtx *headptr, *currptr, *nextptr;
2177 bool changed, moveall;
2178 unsigned ix;
2179 rtx e0_last_head, cond, move_before;
2180 unsigned nedges = EDGE_COUNT (bb->succs);
2181 rtx jump = BB_END (bb);
2182 regset live, live_union;
2184 /* Nothing to do if there is not at least two outgoing edges. */
2185 if (nedges < 2)
2186 return false;
2188 /* Don't crossjump if this block ends in a computed jump,
2189 unless we are optimizing for size. */
2190 if (optimize_bb_for_size_p (bb)
2191 && bb != EXIT_BLOCK_PTR
2192 && computed_jump_p (BB_END (bb)))
2193 return false;
2195 cond = get_condition (jump, &move_before, true, false);
2196 if (cond == NULL_RTX)
2197 move_before = jump;
2199 for (ix = 0; ix < nedges; ix++)
2200 if (EDGE_SUCC (bb, ix)->dest == EXIT_BLOCK_PTR)
2201 return false;
2203 for (ix = 0; ix < nedges; ix++)
2205 edge e = EDGE_SUCC (bb, ix);
2206 basic_block other_bb = e->dest;
2208 if (df_get_bb_dirty (other_bb))
2210 block_was_dirty = true;
2211 return false;
2214 if (e->flags & EDGE_ABNORMAL)
2215 return false;
2217 /* Normally, all destination blocks must only be reachable from this
2218 block, i.e. they must have one incoming edge.
2220 There is one special case we can handle, that of multiple consecutive
2221 jumps where the first jumps to one of the targets of the second jump.
2222 This happens frequently in switch statements for default labels.
2223 The structure is as follows:
2224 FINAL_DEST_BB
2225 ....
2226 if (cond) jump A;
2227 fall through
2229 jump with targets A, B, C, D...
2231 has two incoming edges, from FINAL_DEST_BB and BB
2233 In this case, we can try to move the insns through BB and into
2234 FINAL_DEST_BB. */
2235 if (EDGE_COUNT (other_bb->preds) != 1)
2237 edge incoming_edge, incoming_bb_other_edge;
2238 edge_iterator ei;
2240 if (final_dest_bb != NULL
2241 || EDGE_COUNT (other_bb->preds) != 2)
2242 return false;
2244 /* We must be able to move the insns across the whole block. */
2245 move_before = BB_HEAD (bb);
2246 while (!NONDEBUG_INSN_P (move_before))
2247 move_before = NEXT_INSN (move_before);
2249 if (EDGE_COUNT (bb->preds) != 1)
2250 return false;
2251 incoming_edge = EDGE_PRED (bb, 0);
2252 final_dest_bb = incoming_edge->src;
2253 if (EDGE_COUNT (final_dest_bb->succs) != 2)
2254 return false;
2255 FOR_EACH_EDGE (incoming_bb_other_edge, ei, final_dest_bb->succs)
2256 if (incoming_bb_other_edge != incoming_edge)
2257 break;
2258 if (incoming_bb_other_edge->dest != other_bb)
2259 return false;
2263 e0 = EDGE_SUCC (bb, 0);
2264 e0_last_head = NULL_RTX;
2265 changed = false;
2267 for (ix = 1; ix < nedges; ix++)
2269 edge e = EDGE_SUCC (bb, ix);
2270 rtx e0_last, e_last;
2271 int nmatch;
2273 nmatch = flow_find_head_matching_sequence (e0->dest, e->dest,
2274 &e0_last, &e_last, 0);
2275 if (nmatch == 0)
2276 return false;
2278 if (nmatch < max_match)
2280 max_match = nmatch;
2281 e0_last_head = e0_last;
2285 /* If we matched an entire block, we probably have to avoid moving the
2286 last insn. */
2287 if (max_match > 0
2288 && e0_last_head == BB_END (e0->dest)
2289 && (find_reg_note (e0_last_head, REG_EH_REGION, 0)
2290 || control_flow_insn_p (e0_last_head)))
2292 max_match--;
2293 if (max_match == 0)
2294 return false;
2296 e0_last_head = prev_real_insn (e0_last_head);
2297 while (DEBUG_INSN_P (e0_last_head));
2300 if (max_match == 0)
2301 return false;
2303 /* We must find a union of the live registers at each of the end points. */
2304 live = BITMAP_ALLOC (NULL);
2305 live_union = BITMAP_ALLOC (NULL);
2307 currptr = XNEWVEC (rtx, nedges);
2308 headptr = XNEWVEC (rtx, nedges);
2309 nextptr = XNEWVEC (rtx, nedges);
2311 for (ix = 0; ix < nedges; ix++)
2313 int j;
2314 basic_block merge_bb = EDGE_SUCC (bb, ix)->dest;
2315 rtx head = BB_HEAD (merge_bb);
2317 while (!NONDEBUG_INSN_P (head))
2318 head = NEXT_INSN (head);
2319 headptr[ix] = head;
2320 currptr[ix] = head;
2322 /* Compute the end point and live information */
2323 for (j = 1; j < max_match; j++)
2325 head = NEXT_INSN (head);
2326 while (!NONDEBUG_INSN_P (head));
2327 simulate_backwards_to_point (merge_bb, live, head);
2328 IOR_REG_SET (live_union, live);
2331 /* If we're moving across two blocks, verify the validity of the
2332 first move, then adjust the target and let the loop below deal
2333 with the final move. */
2334 if (final_dest_bb != NULL)
2336 rtx move_upto;
2338 moveall = can_move_insns_across (currptr[0], e0_last_head, move_before,
2339 jump, e0->dest, live_union,
2340 NULL, &move_upto);
2341 if (!moveall)
2343 if (move_upto == NULL_RTX)
2344 goto out;
2346 while (e0_last_head != move_upto)
2348 df_simulate_one_insn_backwards (e0->dest, e0_last_head,
2349 live_union);
2350 e0_last_head = PREV_INSN (e0_last_head);
2353 if (e0_last_head == NULL_RTX)
2354 goto out;
2356 jump = BB_END (final_dest_bb);
2357 cond = get_condition (jump, &move_before, true, false);
2358 if (cond == NULL_RTX)
2359 move_before = jump;
2364 rtx move_upto;
2365 moveall = can_move_insns_across (currptr[0], e0_last_head,
2366 move_before, jump, e0->dest, live_union,
2367 NULL, &move_upto);
2368 if (!moveall && move_upto == NULL_RTX)
2370 if (jump == move_before)
2371 break;
2373 /* Try again, using a different insertion point. */
2374 move_before = jump;
2376 #ifdef HAVE_cc0
2377 /* Don't try moving before a cc0 user, as that may invalidate
2378 the cc0. */
2379 if (reg_mentioned_p (cc0_rtx, jump))
2380 break;
2381 #endif
2383 continue;
2386 if (final_dest_bb && !moveall)
2387 /* We haven't checked whether a partial move would be OK for the first
2388 move, so we have to fail this case. */
2389 break;
2391 changed = true;
2392 for (;;)
2394 if (currptr[0] == move_upto)
2395 break;
2396 for (ix = 0; ix < nedges; ix++)
2398 rtx curr = currptr[ix];
2400 curr = NEXT_INSN (curr);
2401 while (!NONDEBUG_INSN_P (curr));
2402 currptr[ix] = curr;
2406 /* If we can't currently move all of the identical insns, remember
2407 each insn after the range that we'll merge. */
2408 if (!moveall)
2409 for (ix = 0; ix < nedges; ix++)
2411 rtx curr = currptr[ix];
2413 curr = NEXT_INSN (curr);
2414 while (!NONDEBUG_INSN_P (curr));
2415 nextptr[ix] = curr;
2418 reorder_insns (headptr[0], currptr[0], PREV_INSN (move_before));
2419 df_set_bb_dirty (EDGE_SUCC (bb, 0)->dest);
2420 if (final_dest_bb != NULL)
2421 df_set_bb_dirty (final_dest_bb);
2422 df_set_bb_dirty (bb);
2423 for (ix = 1; ix < nedges; ix++)
2425 df_set_bb_dirty (EDGE_SUCC (bb, ix)->dest);
2426 delete_insn_chain (headptr[ix], currptr[ix], false);
2428 if (!moveall)
2430 if (jump == move_before)
2431 break;
2433 /* For the unmerged insns, try a different insertion point. */
2434 move_before = jump;
2436 #ifdef HAVE_cc0
2437 /* Don't try moving before a cc0 user, as that may invalidate
2438 the cc0. */
2439 if (reg_mentioned_p (cc0_rtx, jump))
2440 break;
2441 #endif
2443 for (ix = 0; ix < nedges; ix++)
2444 currptr[ix] = headptr[ix] = nextptr[ix];
2447 while (!moveall);
2449 out:
2450 free (currptr);
2451 free (headptr);
2452 free (nextptr);
2454 crossjumps_occured |= changed;
2456 return changed;
2459 /* Return true if BB contains just bb note, or bb note followed
2460 by only DEBUG_INSNs. */
2462 static bool
2463 trivially_empty_bb_p (basic_block bb)
2465 rtx insn = BB_END (bb);
2467 while (1)
2469 if (insn == BB_HEAD (bb))
2470 return true;
2471 if (!DEBUG_INSN_P (insn))
2472 return false;
2473 insn = PREV_INSN (insn);
2477 /* Do simple CFG optimizations - basic block merging, simplifying of jump
2478 instructions etc. Return nonzero if changes were made. */
2480 static bool
2481 try_optimize_cfg (int mode)
2483 bool changed_overall = false;
2484 bool changed;
2485 int iterations = 0;
2486 basic_block bb, b, next;
2488 if (mode & (CLEANUP_CROSSJUMP | CLEANUP_THREADING))
2489 clear_bb_flags ();
2491 crossjumps_occured = false;
2493 FOR_EACH_BB (bb)
2494 update_forwarder_flag (bb);
2496 if (! targetm.cannot_modify_jumps_p ())
2498 first_pass = true;
2499 /* Attempt to merge blocks as made possible by edge removal. If
2500 a block has only one successor, and the successor has only
2501 one predecessor, they may be combined. */
2504 block_was_dirty = false;
2505 changed = false;
2506 iterations++;
2508 if (dump_file)
2509 fprintf (dump_file,
2510 "\n\ntry_optimize_cfg iteration %i\n\n",
2511 iterations);
2513 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
2515 basic_block c;
2516 edge s;
2517 bool changed_here = false;
2519 /* Delete trivially dead basic blocks. This is either
2520 blocks with no predecessors, or empty blocks with no
2521 successors. However if the empty block with no
2522 successors is the successor of the ENTRY_BLOCK, it is
2523 kept. This ensures that the ENTRY_BLOCK will have a
2524 successor which is a precondition for many RTL
2525 passes. Empty blocks may result from expanding
2526 __builtin_unreachable (). */
2527 if (EDGE_COUNT (b->preds) == 0
2528 || (EDGE_COUNT (b->succs) == 0
2529 && trivially_empty_bb_p (b)
2530 && single_succ_edge (ENTRY_BLOCK_PTR)->dest != b))
2532 c = b->prev_bb;
2533 if (EDGE_COUNT (b->preds) > 0)
2535 edge e;
2536 edge_iterator ei;
2538 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2540 if (b->il.rtl->footer
2541 && BARRIER_P (b->il.rtl->footer))
2542 FOR_EACH_EDGE (e, ei, b->preds)
2543 if ((e->flags & EDGE_FALLTHRU)
2544 && e->src->il.rtl->footer == NULL)
2546 if (b->il.rtl->footer)
2548 e->src->il.rtl->footer = b->il.rtl->footer;
2549 b->il.rtl->footer = NULL;
2551 else
2553 start_sequence ();
2554 e->src->il.rtl->footer = emit_barrier ();
2555 end_sequence ();
2559 else
2561 rtx last = get_last_bb_insn (b);
2562 if (last && BARRIER_P (last))
2563 FOR_EACH_EDGE (e, ei, b->preds)
2564 if ((e->flags & EDGE_FALLTHRU))
2565 emit_barrier_after (BB_END (e->src));
2568 delete_basic_block (b);
2569 changed = true;
2570 /* Avoid trying to remove ENTRY_BLOCK_PTR. */
2571 b = (c == ENTRY_BLOCK_PTR ? c->next_bb : c);
2572 continue;
2575 /* Remove code labels no longer used. */
2576 if (single_pred_p (b)
2577 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2578 && !(single_pred_edge (b)->flags & EDGE_COMPLEX)
2579 && LABEL_P (BB_HEAD (b))
2580 /* If the previous block ends with a branch to this
2581 block, we can't delete the label. Normally this
2582 is a condjump that is yet to be simplified, but
2583 if CASE_DROPS_THRU, this can be a tablejump with
2584 some element going to the same place as the
2585 default (fallthru). */
2586 && (single_pred (b) == ENTRY_BLOCK_PTR
2587 || !JUMP_P (BB_END (single_pred (b)))
2588 || ! label_is_jump_target_p (BB_HEAD (b),
2589 BB_END (single_pred (b)))))
2591 rtx label = BB_HEAD (b);
2593 delete_insn_chain (label, label, false);
2594 /* If the case label is undeletable, move it after the
2595 BASIC_BLOCK note. */
2596 if (NOTE_KIND (BB_HEAD (b)) == NOTE_INSN_DELETED_LABEL)
2598 rtx bb_note = NEXT_INSN (BB_HEAD (b));
2600 reorder_insns_nobb (label, label, bb_note);
2601 BB_HEAD (b) = bb_note;
2602 if (BB_END (b) == bb_note)
2603 BB_END (b) = label;
2605 if (dump_file)
2606 fprintf (dump_file, "Deleted label in block %i.\n",
2607 b->index);
2610 /* If we fall through an empty block, we can remove it. */
2611 if (!(mode & CLEANUP_CFGLAYOUT)
2612 && single_pred_p (b)
2613 && (single_pred_edge (b)->flags & EDGE_FALLTHRU)
2614 && !LABEL_P (BB_HEAD (b))
2615 && FORWARDER_BLOCK_P (b)
2616 /* Note that forwarder_block_p true ensures that
2617 there is a successor for this block. */
2618 && (single_succ_edge (b)->flags & EDGE_FALLTHRU)
2619 && n_basic_blocks > NUM_FIXED_BLOCKS + 1)
2621 if (dump_file)
2622 fprintf (dump_file,
2623 "Deleting fallthru block %i.\n",
2624 b->index);
2626 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
2627 redirect_edge_succ_nodup (single_pred_edge (b),
2628 single_succ (b));
2629 delete_basic_block (b);
2630 changed = true;
2631 b = c;
2632 continue;
2635 /* Merge B with its single successor, if any. */
2636 if (single_succ_p (b)
2637 && (s = single_succ_edge (b))
2638 && !(s->flags & EDGE_COMPLEX)
2639 && (c = s->dest) != EXIT_BLOCK_PTR
2640 && single_pred_p (c)
2641 && b != c)
2643 /* When not in cfg_layout mode use code aware of reordering
2644 INSN. This code possibly creates new basic blocks so it
2645 does not fit merge_blocks interface and is kept here in
2646 hope that it will become useless once more of compiler
2647 is transformed to use cfg_layout mode. */
2649 if ((mode & CLEANUP_CFGLAYOUT)
2650 && can_merge_blocks_p (b, c))
2652 merge_blocks (b, c);
2653 update_forwarder_flag (b);
2654 changed_here = true;
2656 else if (!(mode & CLEANUP_CFGLAYOUT)
2657 /* If the jump insn has side effects,
2658 we can't kill the edge. */
2659 && (!JUMP_P (BB_END (b))
2660 || (reload_completed
2661 ? simplejump_p (BB_END (b))
2662 : (onlyjump_p (BB_END (b))
2663 && !tablejump_p (BB_END (b),
2664 NULL, NULL))))
2665 && (next = merge_blocks_move (s, b, c, mode)))
2667 b = next;
2668 changed_here = true;
2672 /* Simplify branch over branch. */
2673 if ((mode & CLEANUP_EXPENSIVE)
2674 && !(mode & CLEANUP_CFGLAYOUT)
2675 && try_simplify_condjump (b))
2676 changed_here = true;
2678 /* If B has a single outgoing edge, but uses a
2679 non-trivial jump instruction without side-effects, we
2680 can either delete the jump entirely, or replace it
2681 with a simple unconditional jump. */
2682 if (single_succ_p (b)
2683 && single_succ (b) != EXIT_BLOCK_PTR
2684 && onlyjump_p (BB_END (b))
2685 && !find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
2686 && try_redirect_by_replacing_jump (single_succ_edge (b),
2687 single_succ (b),
2688 (mode & CLEANUP_CFGLAYOUT) != 0))
2690 update_forwarder_flag (b);
2691 changed_here = true;
2694 /* Simplify branch to branch. */
2695 if (try_forward_edges (mode, b))
2696 changed_here = true;
2698 /* Look for shared code between blocks. */
2699 if ((mode & CLEANUP_CROSSJUMP)
2700 && try_crossjump_bb (mode, b))
2701 changed_here = true;
2703 if ((mode & CLEANUP_CROSSJUMP)
2704 /* This can lengthen register lifetimes. Do it only after
2705 reload. */
2706 && reload_completed
2707 && try_head_merge_bb (b))
2708 changed_here = true;
2710 /* Don't get confused by the index shift caused by
2711 deleting blocks. */
2712 if (!changed_here)
2713 b = b->next_bb;
2714 else
2715 changed = true;
2718 if ((mode & CLEANUP_CROSSJUMP)
2719 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
2720 changed = true;
2722 if (block_was_dirty)
2724 /* This should only be set by head-merging. */
2725 gcc_assert (mode & CLEANUP_CROSSJUMP);
2726 df_analyze ();
2729 #ifdef ENABLE_CHECKING
2730 if (changed)
2731 verify_flow_info ();
2732 #endif
2734 changed_overall |= changed;
2735 first_pass = false;
2737 while (changed);
2740 FOR_ALL_BB (b)
2741 b->flags &= ~(BB_FORWARDER_BLOCK | BB_NONTHREADABLE_BLOCK);
2743 return changed_overall;
2746 /* Delete all unreachable basic blocks. */
2748 bool
2749 delete_unreachable_blocks (void)
2751 bool changed = false;
2752 basic_block b, prev_bb;
2754 find_unreachable_blocks ();
2756 /* When we're in GIMPLE mode and there may be debug insns, we should
2757 delete blocks in reverse dominator order, so as to get a chance
2758 to substitute all released DEFs into debug stmts. If we don't
2759 have dominators information, walking blocks backward gets us a
2760 better chance of retaining most debug information than
2761 otherwise. */
2762 if (MAY_HAVE_DEBUG_STMTS && current_ir_type () == IR_GIMPLE
2763 && dom_info_available_p (CDI_DOMINATORS))
2765 for (b = EXIT_BLOCK_PTR->prev_bb; b != ENTRY_BLOCK_PTR; b = prev_bb)
2767 prev_bb = b->prev_bb;
2769 if (!(b->flags & BB_REACHABLE))
2771 /* Speed up the removal of blocks that don't dominate
2772 others. Walking backwards, this should be the common
2773 case. */
2774 if (!first_dom_son (CDI_DOMINATORS, b))
2775 delete_basic_block (b);
2776 else
2778 VEC (basic_block, heap) *h
2779 = get_all_dominated_blocks (CDI_DOMINATORS, b);
2781 while (VEC_length (basic_block, h))
2783 b = VEC_pop (basic_block, h);
2785 prev_bb = b->prev_bb;
2787 gcc_assert (!(b->flags & BB_REACHABLE));
2789 delete_basic_block (b);
2792 VEC_free (basic_block, heap, h);
2795 changed = true;
2799 else
2801 for (b = EXIT_BLOCK_PTR->prev_bb; b != ENTRY_BLOCK_PTR; b = prev_bb)
2803 prev_bb = b->prev_bb;
2805 if (!(b->flags & BB_REACHABLE))
2807 delete_basic_block (b);
2808 changed = true;
2813 if (changed)
2814 tidy_fallthru_edges ();
2815 return changed;
2818 /* Delete any jump tables never referenced. We can't delete them at the
2819 time of removing tablejump insn as they are referenced by the preceding
2820 insns computing the destination, so we delay deleting and garbagecollect
2821 them once life information is computed. */
2822 void
2823 delete_dead_jumptables (void)
2825 basic_block bb;
2827 /* A dead jump table does not belong to any basic block. Scan insns
2828 between two adjacent basic blocks. */
2829 FOR_EACH_BB (bb)
2831 rtx insn, next;
2833 for (insn = NEXT_INSN (BB_END (bb));
2834 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
2835 insn = next)
2837 next = NEXT_INSN (insn);
2838 if (LABEL_P (insn)
2839 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
2840 && JUMP_TABLE_DATA_P (next))
2842 rtx label = insn, jump = next;
2844 if (dump_file)
2845 fprintf (dump_file, "Dead jumptable %i removed\n",
2846 INSN_UID (insn));
2848 next = NEXT_INSN (next);
2849 delete_insn (jump);
2850 delete_insn (label);
2857 /* Tidy the CFG by deleting unreachable code and whatnot. */
2859 bool
2860 cleanup_cfg (int mode)
2862 bool changed = false;
2864 /* Set the cfglayout mode flag here. We could update all the callers
2865 but that is just inconvenient, especially given that we eventually
2866 want to have cfglayout mode as the default. */
2867 if (current_ir_type () == IR_RTL_CFGLAYOUT)
2868 mode |= CLEANUP_CFGLAYOUT;
2870 timevar_push (TV_CLEANUP_CFG);
2871 if (delete_unreachable_blocks ())
2873 changed = true;
2874 /* We've possibly created trivially dead code. Cleanup it right
2875 now to introduce more opportunities for try_optimize_cfg. */
2876 if (!(mode & (CLEANUP_NO_INSN_DEL))
2877 && !reload_completed)
2878 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2881 compact_blocks ();
2883 /* To tail-merge blocks ending in the same noreturn function (e.g.
2884 a call to abort) we have to insert fake edges to exit. Do this
2885 here once. The fake edges do not interfere with any other CFG
2886 cleanups. */
2887 if (mode & CLEANUP_CROSSJUMP)
2888 add_noreturn_fake_exit_edges ();
2890 if (!dbg_cnt (cfg_cleanup))
2891 return changed;
2893 while (try_optimize_cfg (mode))
2895 delete_unreachable_blocks (), changed = true;
2896 if (!(mode & CLEANUP_NO_INSN_DEL))
2898 /* Try to remove some trivially dead insns when doing an expensive
2899 cleanup. But delete_trivially_dead_insns doesn't work after
2900 reload (it only handles pseudos) and run_fast_dce is too costly
2901 to run in every iteration.
2903 For effective cross jumping, we really want to run a fast DCE to
2904 clean up any dead conditions, or they get in the way of performing
2905 useful tail merges.
2907 Other transformations in cleanup_cfg are not so sensitive to dead
2908 code, so delete_trivially_dead_insns or even doing nothing at all
2909 is good enough. */
2910 if ((mode & CLEANUP_EXPENSIVE) && !reload_completed
2911 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
2912 break;
2913 if ((mode & CLEANUP_CROSSJUMP) && crossjumps_occured)
2914 run_fast_dce ();
2916 else
2917 break;
2920 if (mode & CLEANUP_CROSSJUMP)
2921 remove_fake_exit_edges ();
2923 /* Don't call delete_dead_jumptables in cfglayout mode, because
2924 that function assumes that jump tables are in the insns stream.
2925 But we also don't _have_ to delete dead jumptables in cfglayout
2926 mode because we shouldn't even be looking at things that are
2927 not in a basic block. Dead jumptables are cleaned up when
2928 going out of cfglayout mode. */
2929 if (!(mode & CLEANUP_CFGLAYOUT))
2930 delete_dead_jumptables ();
2932 timevar_pop (TV_CLEANUP_CFG);
2934 return changed;
2937 static unsigned int
2938 rest_of_handle_jump (void)
2940 if (crtl->tail_call_emit)
2941 fixup_tail_calls ();
2942 return 0;
2945 struct rtl_opt_pass pass_jump =
2948 RTL_PASS,
2949 "sibling", /* name */
2950 NULL, /* gate */
2951 rest_of_handle_jump, /* execute */
2952 NULL, /* sub */
2953 NULL, /* next */
2954 0, /* static_pass_number */
2955 TV_JUMP, /* tv_id */
2956 0, /* properties_required */
2957 0, /* properties_provided */
2958 0, /* properties_destroyed */
2959 TODO_ggc_collect, /* todo_flags_start */
2960 TODO_verify_flow, /* todo_flags_finish */
2965 static unsigned int
2966 rest_of_handle_jump2 (void)
2968 delete_trivially_dead_insns (get_insns (), max_reg_num ());
2969 if (dump_file)
2970 dump_flow_info (dump_file, dump_flags);
2971 cleanup_cfg ((optimize ? CLEANUP_EXPENSIVE : 0)
2972 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
2973 return 0;
2977 struct rtl_opt_pass pass_jump2 =
2980 RTL_PASS,
2981 "jump", /* name */
2982 NULL, /* gate */
2983 rest_of_handle_jump2, /* execute */
2984 NULL, /* sub */
2985 NULL, /* next */
2986 0, /* static_pass_number */
2987 TV_JUMP, /* tv_id */
2988 0, /* properties_required */
2989 0, /* properties_provided */
2990 0, /* properties_destroyed */
2991 TODO_ggc_collect, /* todo_flags_start */
2992 TODO_dump_func | TODO_verify_rtl_sharing,/* todo_flags_finish */