2014-11-20 Robert Dewar <dewar@adacore.com>
[official-gcc.git] / gcc / ada / sem_ch6.adb
blob11db3e4a6902c81119da446318957a28ef3a1f01
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Expander; use Expander;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Dbug; use Exp_Dbug;
38 with Exp_Disp; use Exp_Disp;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Fname; use Fname;
42 with Freeze; use Freeze;
43 with Inline; use Inline;
44 with Itypes; use Itypes;
45 with Lib.Xref; use Lib.Xref;
46 with Layout; use Layout;
47 with Namet; use Namet;
48 with Lib; use Lib;
49 with Nlists; use Nlists;
50 with Nmake; use Nmake;
51 with Opt; use Opt;
52 with Output; use Output;
53 with Restrict; use Restrict;
54 with Rident; use Rident;
55 with Rtsfind; use Rtsfind;
56 with Sem; use Sem;
57 with Sem_Aux; use Sem_Aux;
58 with Sem_Cat; use Sem_Cat;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch4; use Sem_Ch4;
61 with Sem_Ch5; use Sem_Ch5;
62 with Sem_Ch8; use Sem_Ch8;
63 with Sem_Ch10; use Sem_Ch10;
64 with Sem_Ch12; use Sem_Ch12;
65 with Sem_Ch13; use Sem_Ch13;
66 with Sem_Dim; use Sem_Dim;
67 with Sem_Disp; use Sem_Disp;
68 with Sem_Dist; use Sem_Dist;
69 with Sem_Elim; use Sem_Elim;
70 with Sem_Eval; use Sem_Eval;
71 with Sem_Mech; use Sem_Mech;
72 with Sem_Prag; use Sem_Prag;
73 with Sem_Res; use Sem_Res;
74 with Sem_Util; use Sem_Util;
75 with Sem_Type; use Sem_Type;
76 with Sem_Warn; use Sem_Warn;
77 with Sinput; use Sinput;
78 with Stand; use Stand;
79 with Sinfo; use Sinfo;
80 with Sinfo.CN; use Sinfo.CN;
81 with Snames; use Snames;
82 with Stringt; use Stringt;
83 with Style;
84 with Stylesw; use Stylesw;
85 with Targparm; use Targparm;
86 with Tbuild; use Tbuild;
87 with Uintp; use Uintp;
88 with Urealp; use Urealp;
89 with Validsw; use Validsw;
91 package body Sem_Ch6 is
93 May_Hide_Profile : Boolean := False;
94 -- This flag is used to indicate that two formals in two subprograms being
95 -- checked for conformance differ only in that one is an access parameter
96 -- while the other is of a general access type with the same designated
97 -- type. In this case, if the rest of the signatures match, a call to
98 -- either subprogram may be ambiguous, which is worth a warning. The flag
99 -- is set in Compatible_Types, and the warning emitted in
100 -- New_Overloaded_Entity.
102 -----------------------
103 -- Local Subprograms --
104 -----------------------
106 procedure Analyze_Null_Procedure
107 (N : Node_Id;
108 Is_Completion : out Boolean);
109 -- A null procedure can be a declaration or (Ada 2012) a completion
111 procedure Analyze_Return_Statement (N : Node_Id);
112 -- Common processing for simple and extended return statements
114 procedure Analyze_Function_Return (N : Node_Id);
115 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
116 -- applies to a [generic] function.
118 procedure Analyze_Return_Type (N : Node_Id);
119 -- Subsidiary to Process_Formals: analyze subtype mark in function
120 -- specification in a context where the formals are visible and hide
121 -- outer homographs.
123 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
124 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
125 -- that we can use RETURN but not skip the debug output at the end.
127 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
128 -- Analyze a generic subprogram body. N is the body to be analyzed, and
129 -- Gen_Id is the defining entity Id for the corresponding spec.
131 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
132 -- Returns true if Subp can override a predefined operator.
134 procedure Check_Conformance
135 (New_Id : Entity_Id;
136 Old_Id : Entity_Id;
137 Ctype : Conformance_Type;
138 Errmsg : Boolean;
139 Conforms : out Boolean;
140 Err_Loc : Node_Id := Empty;
141 Get_Inst : Boolean := False;
142 Skip_Controlling_Formals : Boolean := False);
143 -- Given two entities, this procedure checks that the profiles associated
144 -- with these entities meet the conformance criterion given by the third
145 -- parameter. If they conform, Conforms is set True and control returns
146 -- to the caller. If they do not conform, Conforms is set to False, and
147 -- in addition, if Errmsg is True on the call, proper messages are output
148 -- to complain about the conformance failure. If Err_Loc is non_Empty
149 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
150 -- error messages are placed on the appropriate part of the construct
151 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
152 -- against a formal access-to-subprogram type so Get_Instance_Of must
153 -- be called.
155 procedure Check_Subprogram_Order (N : Node_Id);
156 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
157 -- the alpha ordering rule for N if this ordering requirement applicable.
159 procedure Check_Returns
160 (HSS : Node_Id;
161 Mode : Character;
162 Err : out Boolean;
163 Proc : Entity_Id := Empty);
164 -- Called to check for missing return statements in a function body, or for
165 -- returns present in a procedure body which has No_Return set. HSS is the
166 -- handled statement sequence for the subprogram body. This procedure
167 -- checks all flow paths to make sure they either have return (Mode = 'F',
168 -- used for functions) or do not have a return (Mode = 'P', used for
169 -- No_Return procedures). The flag Err is set if there are any control
170 -- paths not explicitly terminated by a return in the function case, and is
171 -- True otherwise. Proc is the entity for the procedure case and is used
172 -- in posting the warning message.
174 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
175 -- In Ada 2012, a primitive equality operator on an untagged record type
176 -- must appear before the type is frozen, and have the same visibility as
177 -- that of the type. This procedure checks that this rule is met, and
178 -- otherwise emits an error on the subprogram declaration and a warning
179 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
180 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
181 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
182 -- is set, otherwise the call has no effect.
184 procedure Enter_Overloaded_Entity (S : Entity_Id);
185 -- This procedure makes S, a new overloaded entity, into the first visible
186 -- entity with that name.
188 function Is_Non_Overriding_Operation
189 (Prev_E : Entity_Id;
190 New_E : Entity_Id) return Boolean;
191 -- Enforce the rule given in 12.3(18): a private operation in an instance
192 -- overrides an inherited operation only if the corresponding operation
193 -- was overriding in the generic. This needs to be checked for primitive
194 -- operations of types derived (in the generic unit) from formal private
195 -- or formal derived types.
197 procedure Make_Inequality_Operator (S : Entity_Id);
198 -- Create the declaration for an inequality operator that is implicitly
199 -- created by a user-defined equality operator that yields a boolean.
201 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
202 -- Formal_Id is an formal parameter entity. This procedure deals with
203 -- setting the proper validity status for this entity, which depends on
204 -- the kind of parameter and the validity checking mode.
206 ---------------------------------------------
207 -- Analyze_Abstract_Subprogram_Declaration --
208 ---------------------------------------------
210 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
211 Designator : constant Entity_Id :=
212 Analyze_Subprogram_Specification (Specification (N));
213 Scop : constant Entity_Id := Current_Scope;
215 begin
216 Check_SPARK_05_Restriction ("abstract subprogram is not allowed", N);
218 Generate_Definition (Designator);
219 Set_Contract (Designator, Make_Contract (Sloc (Designator)));
220 Set_Is_Abstract_Subprogram (Designator);
221 New_Overloaded_Entity (Designator);
222 Check_Delayed_Subprogram (Designator);
224 Set_Categorization_From_Scope (Designator, Scop);
226 -- An abstract subprogram declared within a Ghost scope is automatically
227 -- Ghost (SPARK RM 6.9(2)).
229 if Comes_From_Source (Designator) and then Within_Ghost_Scope then
230 Set_Is_Ghost_Entity (Designator);
231 end if;
233 if Ekind (Scope (Designator)) = E_Protected_Type then
234 Error_Msg_N
235 ("abstract subprogram not allowed in protected type", N);
237 -- Issue a warning if the abstract subprogram is neither a dispatching
238 -- operation nor an operation that overrides an inherited subprogram or
239 -- predefined operator, since this most likely indicates a mistake.
241 elsif Warn_On_Redundant_Constructs
242 and then not Is_Dispatching_Operation (Designator)
243 and then not Present (Overridden_Operation (Designator))
244 and then (not Is_Operator_Symbol_Name (Chars (Designator))
245 or else Scop /= Scope (Etype (First_Formal (Designator))))
246 then
247 Error_Msg_N
248 ("abstract subprogram is not dispatching or overriding?r?", N);
249 end if;
251 Generate_Reference_To_Formals (Designator);
252 Check_Eliminated (Designator);
254 if Has_Aspects (N) then
255 Analyze_Aspect_Specifications (N, Designator);
256 end if;
257 end Analyze_Abstract_Subprogram_Declaration;
259 ---------------------------------
260 -- Analyze_Expression_Function --
261 ---------------------------------
263 procedure Analyze_Expression_Function (N : Node_Id) is
264 Loc : constant Source_Ptr := Sloc (N);
265 LocX : constant Source_Ptr := Sloc (Expression (N));
266 Expr : constant Node_Id := Expression (N);
267 Spec : constant Node_Id := Specification (N);
269 Def_Id : Entity_Id;
271 Prev : Entity_Id;
272 -- If the expression is a completion, Prev is the entity whose
273 -- declaration is completed. Def_Id is needed to analyze the spec.
275 New_Body : Node_Id;
276 New_Spec : Node_Id;
277 Ret : Node_Id;
279 begin
280 -- This is one of the occasions on which we transform the tree during
281 -- semantic analysis. If this is a completion, transform the expression
282 -- function into an equivalent subprogram body, and analyze it.
284 -- Expression functions are inlined unconditionally. The back-end will
285 -- determine whether this is possible.
287 Inline_Processing_Required := True;
289 -- Create a specification for the generated body. Types and defauts in
290 -- the profile are copies of the spec, but new entities must be created
291 -- for the unit name and the formals.
293 New_Spec := New_Copy_Tree (Spec);
294 Set_Defining_Unit_Name (New_Spec,
295 Make_Defining_Identifier (Sloc (Defining_Unit_Name (Spec)),
296 Chars (Defining_Unit_Name (Spec))));
298 if Present (Parameter_Specifications (New_Spec)) then
299 declare
300 Formal_Spec : Node_Id;
301 Def : Entity_Id;
303 begin
304 Formal_Spec := First (Parameter_Specifications (New_Spec));
306 -- Create a new formal parameter at the same source position
308 while Present (Formal_Spec) loop
309 Def := Defining_Identifier (Formal_Spec);
310 Set_Defining_Identifier (Formal_Spec,
311 Make_Defining_Identifier (Sloc (Def),
312 Chars => Chars (Def)));
313 Next (Formal_Spec);
314 end loop;
315 end;
316 end if;
318 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
320 -- If there are previous overloadable entities with the same name,
321 -- check whether any of them is completed by the expression function.
322 -- In a generic context a formal subprogram has no completion.
324 if Present (Prev) and then Is_Overloadable (Prev)
325 and then not Is_Formal_Subprogram (Prev)
326 then
327 Def_Id := Analyze_Subprogram_Specification (Spec);
328 Prev := Find_Corresponding_Spec (N);
329 end if;
331 Ret := Make_Simple_Return_Statement (LocX, Expression (N));
333 New_Body :=
334 Make_Subprogram_Body (Loc,
335 Specification => New_Spec,
336 Declarations => Empty_List,
337 Handled_Statement_Sequence =>
338 Make_Handled_Sequence_Of_Statements (LocX,
339 Statements => New_List (Ret)));
341 -- If the expression completes a generic subprogram, we must create a
342 -- separate node for the body, because at instantiation the original
343 -- node of the generic copy must be a generic subprogram body, and
344 -- cannot be a expression function. Otherwise we just rewrite the
345 -- expression with the non-generic body.
347 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
348 Insert_After (N, New_Body);
350 -- Propagate any aspects or pragmas that apply to the expression
351 -- function to the proper body when the expression function acts
352 -- as a completion.
354 if Has_Aspects (N) then
355 Move_Aspects (N, To => New_Body);
356 end if;
358 Relocate_Pragmas_To_Body (New_Body);
360 Rewrite (N, Make_Null_Statement (Loc));
361 Set_Has_Completion (Prev, False);
362 Analyze (N);
363 Analyze (New_Body);
364 Set_Is_Inlined (Prev);
366 -- If the expression function is a completion, the previous declaration
367 -- must come from source. We know already that appears in the current
368 -- scope. The entity itself may be internally created if within a body
369 -- to be inlined.
371 elsif Present (Prev) and then Comes_From_Source (Parent (Prev))
372 and then not Is_Formal_Subprogram (Prev)
373 then
374 Set_Has_Completion (Prev, False);
376 -- An expression function that is a completion freezes the
377 -- expression. This means freezing the return type, and if it is
378 -- an access type, freezing its designated type as well.
380 -- Note that we cannot defer this freezing to the analysis of the
381 -- expression itself, because a freeze node might appear in a nested
382 -- scope, leading to an elaboration order issue in gigi.
384 Freeze_Before (N, Etype (Prev));
386 if Is_Access_Type (Etype (Prev)) then
387 Freeze_Before (N, Designated_Type (Etype (Prev)));
388 end if;
390 -- For navigation purposes, indicate that the function is a body
392 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
393 Rewrite (N, New_Body);
395 -- Correct the parent pointer of the aspect specification list to
396 -- reference the rewritten node.
398 if Has_Aspects (N) then
399 Set_Parent (Aspect_Specifications (N), N);
400 end if;
402 -- Propagate any pragmas that apply to the expression function to the
403 -- proper body when the expression function acts as a completion.
404 -- Aspects are automatically transfered because of node rewriting.
406 Relocate_Pragmas_To_Body (N);
407 Analyze (N);
409 -- Prev is the previous entity with the same name, but it is can
410 -- be an unrelated spec that is not completed by the expression
411 -- function. In that case the relevant entity is the one in the body.
412 -- Not clear that the backend can inline it in this case ???
414 if Has_Completion (Prev) then
415 Set_Is_Inlined (Prev);
417 -- The formals of the expression function are body formals,
418 -- and do not appear in the ali file, which will only contain
419 -- references to the formals of the original subprogram spec.
421 declare
422 F1 : Entity_Id;
423 F2 : Entity_Id;
425 begin
426 F1 := First_Formal (Def_Id);
427 F2 := First_Formal (Prev);
429 while Present (F1) loop
430 Set_Spec_Entity (F1, F2);
431 Next_Formal (F1);
432 Next_Formal (F2);
433 end loop;
434 end;
436 else
437 Set_Is_Inlined (Defining_Entity (New_Body));
438 end if;
440 -- If this is not a completion, create both a declaration and a body, so
441 -- that the expression can be inlined whenever possible.
443 else
444 -- An expression function that is not a completion is not a
445 -- subprogram declaration, and thus cannot appear in a protected
446 -- definition.
448 if Nkind (Parent (N)) = N_Protected_Definition then
449 Error_Msg_N
450 ("an expression function is not a legal protected operation", N);
451 end if;
453 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
455 -- Correct the parent pointer of the aspect specification list to
456 -- reference the rewritten node.
458 if Has_Aspects (N) then
459 Set_Parent (Aspect_Specifications (N), N);
460 end if;
462 Analyze (N);
464 -- Within a generic pre-analyze the original expression for name
465 -- capture. The body is also generated but plays no role in
466 -- this because it is not part of the original source.
468 if Inside_A_Generic then
469 declare
470 Id : constant Entity_Id := Defining_Entity (N);
472 begin
473 Set_Has_Completion (Id);
474 Push_Scope (Id);
475 Install_Formals (Id);
476 Preanalyze_Spec_Expression (Expr, Etype (Id));
477 End_Scope;
478 end;
479 end if;
481 Set_Is_Inlined (Defining_Entity (N));
483 -- Establish the linkages between the spec and the body. These are
484 -- used when the expression function acts as the prefix of attribute
485 -- 'Access in order to freeze the original expression which has been
486 -- moved to the generated body.
488 Set_Corresponding_Body (N, Defining_Entity (New_Body));
489 Set_Corresponding_Spec (New_Body, Defining_Entity (N));
491 -- To prevent premature freeze action, insert the new body at the end
492 -- of the current declarations, or at the end of the package spec.
493 -- However, resolve usage names now, to prevent spurious visibility
494 -- on later entities. Note that the function can now be called in
495 -- the current declarative part, which will appear to be prior to
496 -- the presence of the body in the code. There are nevertheless no
497 -- order of elaboration issues because all name resolution has taken
498 -- place at the point of declaration.
500 declare
501 Decls : List_Id := List_Containing (N);
502 Par : constant Node_Id := Parent (Decls);
503 Id : constant Entity_Id := Defining_Entity (N);
505 begin
506 -- If this is a wrapper created for in an instance for a formal
507 -- subprogram, insert body after declaration, to be analyzed when
508 -- the enclosing instance is analyzed.
510 if GNATprove_Mode
511 and then Is_Generic_Actual_Subprogram (Defining_Entity (N))
512 then
513 Insert_After (N, New_Body);
515 else
516 if Nkind (Par) = N_Package_Specification
517 and then Decls = Visible_Declarations (Par)
518 and then Present (Private_Declarations (Par))
519 and then not Is_Empty_List (Private_Declarations (Par))
520 then
521 Decls := Private_Declarations (Par);
522 end if;
524 Insert_After (Last (Decls), New_Body);
525 Push_Scope (Id);
526 Install_Formals (Id);
528 -- Preanalyze the expression for name capture, except in an
529 -- instance, where this has been done during generic analysis,
530 -- and will be redone when analyzing the body.
532 declare
533 Expr : constant Node_Id := Expression (Ret);
535 begin
536 Set_Parent (Expr, Ret);
538 if not In_Instance then
539 Preanalyze_Spec_Expression (Expr, Etype (Id));
540 end if;
541 end;
543 End_Scope;
544 end if;
545 end;
546 end if;
548 -- If the return expression is a static constant, we suppress warning
549 -- messages on unused formals, which in most cases will be noise.
551 Set_Is_Trivial_Subprogram (Defining_Entity (New_Body),
552 Is_OK_Static_Expression (Expr));
553 end Analyze_Expression_Function;
555 ----------------------------------------
556 -- Analyze_Extended_Return_Statement --
557 ----------------------------------------
559 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
560 begin
561 Check_Compiler_Unit ("extended return statement", N);
562 Analyze_Return_Statement (N);
563 end Analyze_Extended_Return_Statement;
565 ----------------------------
566 -- Analyze_Function_Call --
567 ----------------------------
569 procedure Analyze_Function_Call (N : Node_Id) is
570 Actuals : constant List_Id := Parameter_Associations (N);
571 Func_Nam : constant Node_Id := Name (N);
572 Actual : Node_Id;
574 begin
575 Analyze (Func_Nam);
577 -- A call of the form A.B (X) may be an Ada 2005 call, which is
578 -- rewritten as B (A, X). If the rewriting is successful, the call
579 -- has been analyzed and we just return.
581 if Nkind (Func_Nam) = N_Selected_Component
582 and then Name (N) /= Func_Nam
583 and then Is_Rewrite_Substitution (N)
584 and then Present (Etype (N))
585 then
586 return;
587 end if;
589 -- If error analyzing name, then set Any_Type as result type and return
591 if Etype (Func_Nam) = Any_Type then
592 Set_Etype (N, Any_Type);
593 return;
594 end if;
596 -- Otherwise analyze the parameters
598 if Present (Actuals) then
599 Actual := First (Actuals);
600 while Present (Actual) loop
601 Analyze (Actual);
602 Check_Parameterless_Call (Actual);
603 Next (Actual);
604 end loop;
605 end if;
607 Analyze_Call (N);
608 end Analyze_Function_Call;
610 -----------------------------
611 -- Analyze_Function_Return --
612 -----------------------------
614 procedure Analyze_Function_Return (N : Node_Id) is
615 Loc : constant Source_Ptr := Sloc (N);
616 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
617 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
619 R_Type : constant Entity_Id := Etype (Scope_Id);
620 -- Function result subtype
622 procedure Check_Limited_Return (Expr : Node_Id);
623 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
624 -- limited types. Used only for simple return statements.
625 -- Expr is the expression returned.
627 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
628 -- Check that the return_subtype_indication properly matches the result
629 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
631 --------------------------
632 -- Check_Limited_Return --
633 --------------------------
635 procedure Check_Limited_Return (Expr : Node_Id) is
636 begin
637 -- Ada 2005 (AI-318-02): Return-by-reference types have been
638 -- removed and replaced by anonymous access results. This is an
639 -- incompatibility with Ada 95. Not clear whether this should be
640 -- enforced yet or perhaps controllable with special switch. ???
642 -- A limited interface that is not immutably limited is OK.
644 if Is_Limited_Interface (R_Type)
645 and then
646 not (Is_Task_Interface (R_Type)
647 or else Is_Protected_Interface (R_Type)
648 or else Is_Synchronized_Interface (R_Type))
649 then
650 null;
652 elsif Is_Limited_Type (R_Type)
653 and then not Is_Interface (R_Type)
654 and then Comes_From_Source (N)
655 and then not In_Instance_Body
656 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
657 then
658 -- Error in Ada 2005
660 if Ada_Version >= Ada_2005
661 and then not Debug_Flag_Dot_L
662 and then not GNAT_Mode
663 then
664 Error_Msg_N
665 ("(Ada 2005) cannot copy object of a limited type "
666 & "(RM-2005 6.5(5.5/2))", Expr);
668 if Is_Limited_View (R_Type) then
669 Error_Msg_N
670 ("\return by reference not permitted in Ada 2005", Expr);
671 end if;
673 -- Warn in Ada 95 mode, to give folks a heads up about this
674 -- incompatibility.
676 -- In GNAT mode, this is just a warning, to allow it to be
677 -- evilly turned off. Otherwise it is a real error.
679 -- In a generic context, simplify the warning because it makes
680 -- no sense to discuss pass-by-reference or copy.
682 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
683 if Inside_A_Generic then
684 Error_Msg_N
685 ("return of limited object not permitted in Ada 2005 "
686 & "(RM-2005 6.5(5.5/2))?y?", Expr);
688 elsif Is_Limited_View (R_Type) then
689 Error_Msg_N
690 ("return by reference not permitted in Ada 2005 "
691 & "(RM-2005 6.5(5.5/2))?y?", Expr);
692 else
693 Error_Msg_N
694 ("cannot copy object of a limited type in Ada 2005 "
695 & "(RM-2005 6.5(5.5/2))?y?", Expr);
696 end if;
698 -- Ada 95 mode, compatibility warnings disabled
700 else
701 return; -- skip continuation messages below
702 end if;
704 if not Inside_A_Generic then
705 Error_Msg_N
706 ("\consider switching to return of access type", Expr);
707 Explain_Limited_Type (R_Type, Expr);
708 end if;
709 end if;
710 end Check_Limited_Return;
712 -------------------------------------
713 -- Check_Return_Subtype_Indication --
714 -------------------------------------
716 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
717 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
719 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
720 -- Subtype given in the extended return statement (must match R_Type)
722 Subtype_Ind : constant Node_Id :=
723 Object_Definition (Original_Node (Obj_Decl));
725 R_Type_Is_Anon_Access : constant Boolean :=
726 Ekind_In (R_Type,
727 E_Anonymous_Access_Subprogram_Type,
728 E_Anonymous_Access_Protected_Subprogram_Type,
729 E_Anonymous_Access_Type);
730 -- True if return type of the function is an anonymous access type
731 -- Can't we make Is_Anonymous_Access_Type in einfo ???
733 R_Stm_Type_Is_Anon_Access : constant Boolean :=
734 Ekind_In (R_Stm_Type,
735 E_Anonymous_Access_Subprogram_Type,
736 E_Anonymous_Access_Protected_Subprogram_Type,
737 E_Anonymous_Access_Type);
738 -- True if type of the return object is an anonymous access type
740 procedure Error_No_Match (N : Node_Id);
741 -- Output error messages for case where types do not statically
742 -- match. N is the location for the messages.
744 --------------------
745 -- Error_No_Match --
746 --------------------
748 procedure Error_No_Match (N : Node_Id) is
749 begin
750 Error_Msg_N
751 ("subtype must statically match function result subtype", N);
753 if not Predicates_Match (R_Stm_Type, R_Type) then
754 Error_Msg_Node_2 := R_Type;
755 Error_Msg_NE
756 ("\predicate of& does not match predicate of&",
757 N, R_Stm_Type);
758 end if;
759 end Error_No_Match;
761 -- Start of processing for Check_Return_Subtype_Indication
763 begin
764 -- First, avoid cascaded errors
766 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
767 return;
768 end if;
770 -- "return access T" case; check that the return statement also has
771 -- "access T", and that the subtypes statically match:
772 -- if this is an access to subprogram the signatures must match.
774 if R_Type_Is_Anon_Access then
775 if R_Stm_Type_Is_Anon_Access then
777 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
778 then
779 if Base_Type (Designated_Type (R_Stm_Type)) /=
780 Base_Type (Designated_Type (R_Type))
781 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
782 then
783 Error_No_Match (Subtype_Mark (Subtype_Ind));
784 end if;
786 else
787 -- For two anonymous access to subprogram types, the
788 -- types themselves must be type conformant.
790 if not Conforming_Types
791 (R_Stm_Type, R_Type, Fully_Conformant)
792 then
793 Error_No_Match (Subtype_Ind);
794 end if;
795 end if;
797 else
798 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
799 end if;
801 -- If the return object is of an anonymous access type, then report
802 -- an error if the function's result type is not also anonymous.
804 elsif R_Stm_Type_Is_Anon_Access
805 and then not R_Type_Is_Anon_Access
806 then
807 Error_Msg_N ("anonymous access not allowed for function with "
808 & "named access result", Subtype_Ind);
810 -- Subtype indication case: check that the return object's type is
811 -- covered by the result type, and that the subtypes statically match
812 -- when the result subtype is constrained. Also handle record types
813 -- with unknown discriminants for which we have built the underlying
814 -- record view. Coverage is needed to allow specific-type return
815 -- objects when the result type is class-wide (see AI05-32).
817 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
818 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
819 and then
820 Covers
821 (Base_Type (R_Type),
822 Underlying_Record_View (Base_Type (R_Stm_Type))))
823 then
824 -- A null exclusion may be present on the return type, on the
825 -- function specification, on the object declaration or on the
826 -- subtype itself.
828 if Is_Access_Type (R_Type)
829 and then
830 (Can_Never_Be_Null (R_Type)
831 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
832 Can_Never_Be_Null (R_Stm_Type)
833 then
834 Error_No_Match (Subtype_Ind);
835 end if;
837 -- AI05-103: for elementary types, subtypes must statically match
839 if Is_Constrained (R_Type)
840 or else Is_Access_Type (R_Type)
841 then
842 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
843 Error_No_Match (Subtype_Ind);
844 end if;
845 end if;
847 -- All remaining cases are illegal
849 -- Note: previous versions of this subprogram allowed the return
850 -- value to be the ancestor of the return type if the return type
851 -- was a null extension. This was plainly incorrect.
853 else
854 Error_Msg_N
855 ("wrong type for return_subtype_indication", Subtype_Ind);
856 end if;
857 end Check_Return_Subtype_Indication;
859 ---------------------
860 -- Local Variables --
861 ---------------------
863 Expr : Node_Id;
865 -- Start of processing for Analyze_Function_Return
867 begin
868 Set_Return_Present (Scope_Id);
870 if Nkind (N) = N_Simple_Return_Statement then
871 Expr := Expression (N);
873 -- Guard against a malformed expression. The parser may have tried to
874 -- recover but the node is not analyzable.
876 if Nkind (Expr) = N_Error then
877 Set_Etype (Expr, Any_Type);
878 Expander_Mode_Save_And_Set (False);
879 return;
881 else
882 -- The resolution of a controlled [extension] aggregate associated
883 -- with a return statement creates a temporary which needs to be
884 -- finalized on function exit. Wrap the return statement inside a
885 -- block so that the finalization machinery can detect this case.
886 -- This early expansion is done only when the return statement is
887 -- not part of a handled sequence of statements.
889 if Nkind_In (Expr, N_Aggregate,
890 N_Extension_Aggregate)
891 and then Needs_Finalization (R_Type)
892 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
893 then
894 Rewrite (N,
895 Make_Block_Statement (Loc,
896 Handled_Statement_Sequence =>
897 Make_Handled_Sequence_Of_Statements (Loc,
898 Statements => New_List (Relocate_Node (N)))));
900 Analyze (N);
901 return;
902 end if;
904 Analyze_And_Resolve (Expr, R_Type);
905 Check_Limited_Return (Expr);
906 end if;
908 -- RETURN only allowed in SPARK as the last statement in function
910 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
911 and then
912 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
913 or else Present (Next (N)))
914 then
915 Check_SPARK_05_Restriction
916 ("RETURN should be the last statement in function", N);
917 end if;
919 else
920 Check_SPARK_05_Restriction ("extended RETURN is not allowed", N);
922 -- Analyze parts specific to extended_return_statement:
924 declare
925 Obj_Decl : constant Node_Id :=
926 Last (Return_Object_Declarations (N));
927 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
928 HSS : constant Node_Id := Handled_Statement_Sequence (N);
930 begin
931 Expr := Expression (Obj_Decl);
933 -- Note: The check for OK_For_Limited_Init will happen in
934 -- Analyze_Object_Declaration; we treat it as a normal
935 -- object declaration.
937 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
938 Analyze (Obj_Decl);
940 Check_Return_Subtype_Indication (Obj_Decl);
942 if Present (HSS) then
943 Analyze (HSS);
945 if Present (Exception_Handlers (HSS)) then
947 -- ???Has_Nested_Block_With_Handler needs to be set.
948 -- Probably by creating an actual N_Block_Statement.
949 -- Probably in Expand.
951 null;
952 end if;
953 end if;
955 -- Mark the return object as referenced, since the return is an
956 -- implicit reference of the object.
958 Set_Referenced (Defining_Identifier (Obj_Decl));
960 Check_References (Stm_Entity);
962 -- Check RM 6.5 (5.9/3)
964 if Has_Aliased then
965 if Ada_Version < Ada_2012 then
967 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
968 -- Can it really happen (extended return???)
970 Error_Msg_N
971 ("aliased only allowed for limited return objects "
972 & "in Ada 2012??", N);
974 elsif not Is_Limited_View (R_Type) then
975 Error_Msg_N
976 ("aliased only allowed for limited return objects", N);
977 end if;
978 end if;
979 end;
980 end if;
982 -- Case of Expr present
984 if Present (Expr)
986 -- Defend against previous errors
988 and then Nkind (Expr) /= N_Empty
989 and then Present (Etype (Expr))
990 then
991 -- Apply constraint check. Note that this is done before the implicit
992 -- conversion of the expression done for anonymous access types to
993 -- ensure correct generation of the null-excluding check associated
994 -- with null-excluding expressions found in return statements.
996 Apply_Constraint_Check (Expr, R_Type);
998 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
999 -- type, apply an implicit conversion of the expression to that type
1000 -- to force appropriate static and run-time accessibility checks.
1002 if Ada_Version >= Ada_2005
1003 and then Ekind (R_Type) = E_Anonymous_Access_Type
1004 then
1005 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1006 Analyze_And_Resolve (Expr, R_Type);
1008 -- If this is a local anonymous access to subprogram, the
1009 -- accessibility check can be applied statically. The return is
1010 -- illegal if the access type of the return expression is declared
1011 -- inside of the subprogram (except if it is the subtype indication
1012 -- of an extended return statement).
1014 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1015 if not Comes_From_Source (Current_Scope)
1016 or else Ekind (Current_Scope) = E_Return_Statement
1017 then
1018 null;
1020 elsif
1021 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1022 then
1023 Error_Msg_N ("cannot return local access to subprogram", N);
1024 end if;
1026 -- The expression cannot be of a formal incomplete type
1028 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1029 and then Is_Generic_Type (Etype (Expr))
1030 then
1031 Error_Msg_N
1032 ("cannot return expression of a formal incomplete type", N);
1033 end if;
1035 -- If the result type is class-wide, then check that the return
1036 -- expression's type is not declared at a deeper level than the
1037 -- function (RM05-6.5(5.6/2)).
1039 if Ada_Version >= Ada_2005
1040 and then Is_Class_Wide_Type (R_Type)
1041 then
1042 if Type_Access_Level (Etype (Expr)) >
1043 Subprogram_Access_Level (Scope_Id)
1044 then
1045 Error_Msg_N
1046 ("level of return expression type is deeper than "
1047 & "class-wide function!", Expr);
1048 end if;
1049 end if;
1051 -- Check incorrect use of dynamically tagged expression
1053 if Is_Tagged_Type (R_Type) then
1054 Check_Dynamically_Tagged_Expression
1055 (Expr => Expr,
1056 Typ => R_Type,
1057 Related_Nod => N);
1058 end if;
1060 -- ??? A real run-time accessibility check is needed in cases
1061 -- involving dereferences of access parameters. For now we just
1062 -- check the static cases.
1064 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1065 and then Is_Limited_View (Etype (Scope_Id))
1066 and then Object_Access_Level (Expr) >
1067 Subprogram_Access_Level (Scope_Id)
1068 then
1069 -- Suppress the message in a generic, where the rewriting
1070 -- is irrelevant.
1072 if Inside_A_Generic then
1073 null;
1075 else
1076 Rewrite (N,
1077 Make_Raise_Program_Error (Loc,
1078 Reason => PE_Accessibility_Check_Failed));
1079 Analyze (N);
1081 Error_Msg_Warn := SPARK_Mode /= On;
1082 Error_Msg_N ("cannot return a local value by reference<<", N);
1083 Error_Msg_NE ("\& [<<", N, Standard_Program_Error);
1084 end if;
1085 end if;
1087 if Known_Null (Expr)
1088 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1089 and then Null_Exclusion_Present (Parent (Scope_Id))
1090 then
1091 Apply_Compile_Time_Constraint_Error
1092 (N => Expr,
1093 Msg => "(Ada 2005) null not allowed for "
1094 & "null-excluding return??",
1095 Reason => CE_Null_Not_Allowed);
1096 end if;
1097 end if;
1098 end Analyze_Function_Return;
1100 -------------------------------------
1101 -- Analyze_Generic_Subprogram_Body --
1102 -------------------------------------
1104 procedure Analyze_Generic_Subprogram_Body
1105 (N : Node_Id;
1106 Gen_Id : Entity_Id)
1108 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1109 Kind : constant Entity_Kind := Ekind (Gen_Id);
1110 Body_Id : Entity_Id;
1111 New_N : Node_Id;
1112 Spec : Node_Id;
1114 begin
1115 -- Copy body and disable expansion while analyzing the generic For a
1116 -- stub, do not copy the stub (which would load the proper body), this
1117 -- will be done when the proper body is analyzed.
1119 if Nkind (N) /= N_Subprogram_Body_Stub then
1120 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1121 Rewrite (N, New_N);
1122 Start_Generic;
1123 end if;
1125 Spec := Specification (N);
1127 -- Within the body of the generic, the subprogram is callable, and
1128 -- behaves like the corresponding non-generic unit.
1130 Body_Id := Defining_Entity (Spec);
1132 if Kind = E_Generic_Procedure
1133 and then Nkind (Spec) /= N_Procedure_Specification
1134 then
1135 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1136 return;
1138 elsif Kind = E_Generic_Function
1139 and then Nkind (Spec) /= N_Function_Specification
1140 then
1141 Error_Msg_N ("invalid body for generic function ", Body_Id);
1142 return;
1143 end if;
1145 Set_Corresponding_Body (Gen_Decl, Body_Id);
1147 if Has_Completion (Gen_Id)
1148 and then Nkind (Parent (N)) /= N_Subunit
1149 then
1150 Error_Msg_N ("duplicate generic body", N);
1151 return;
1152 else
1153 Set_Has_Completion (Gen_Id);
1154 end if;
1156 if Nkind (N) = N_Subprogram_Body_Stub then
1157 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1158 else
1159 Set_Corresponding_Spec (N, Gen_Id);
1160 end if;
1162 if Nkind (Parent (N)) = N_Compilation_Unit then
1163 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1164 end if;
1166 -- Make generic parameters immediately visible in the body. They are
1167 -- needed to process the formals declarations. Then make the formals
1168 -- visible in a separate step.
1170 Push_Scope (Gen_Id);
1172 declare
1173 E : Entity_Id;
1174 First_Ent : Entity_Id;
1176 begin
1177 First_Ent := First_Entity (Gen_Id);
1179 E := First_Ent;
1180 while Present (E) and then not Is_Formal (E) loop
1181 Install_Entity (E);
1182 Next_Entity (E);
1183 end loop;
1185 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1187 -- Now generic formals are visible, and the specification can be
1188 -- analyzed, for subsequent conformance check.
1190 Body_Id := Analyze_Subprogram_Specification (Spec);
1192 -- Make formal parameters visible
1194 if Present (E) then
1196 -- E is the first formal parameter, we loop through the formals
1197 -- installing them so that they will be visible.
1199 Set_First_Entity (Gen_Id, E);
1200 while Present (E) loop
1201 Install_Entity (E);
1202 Next_Formal (E);
1203 end loop;
1204 end if;
1206 -- Visible generic entity is callable within its own body
1208 Set_Ekind (Gen_Id, Ekind (Body_Id));
1209 Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
1210 Set_Ekind (Body_Id, E_Subprogram_Body);
1211 Set_Convention (Body_Id, Convention (Gen_Id));
1212 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1213 Set_Scope (Body_Id, Scope (Gen_Id));
1215 -- Inherit the "ghostness" of the generic spec. Note that this
1216 -- property is not directly inherited as the body may be subject
1217 -- to a different Ghost assertion policy.
1219 if Is_Ghost_Entity (Gen_Id) or else Within_Ghost_Scope then
1220 Set_Is_Ghost_Entity (Body_Id);
1222 -- The Ghost policy in effect at the point of declaration and at
1223 -- the point of completion must match (SPARK RM 6.9(15)).
1225 Check_Ghost_Completion (Gen_Id, Body_Id);
1226 end if;
1228 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1230 if Nkind (N) = N_Subprogram_Body_Stub then
1232 -- No body to analyze, so restore state of generic unit
1234 Set_Ekind (Gen_Id, Kind);
1235 Set_Ekind (Body_Id, Kind);
1237 if Present (First_Ent) then
1238 Set_First_Entity (Gen_Id, First_Ent);
1239 end if;
1241 End_Scope;
1242 return;
1243 end if;
1245 -- If this is a compilation unit, it must be made visible explicitly,
1246 -- because the compilation of the declaration, unlike other library
1247 -- unit declarations, does not. If it is not a unit, the following
1248 -- is redundant but harmless.
1250 Set_Is_Immediately_Visible (Gen_Id);
1251 Reference_Body_Formals (Gen_Id, Body_Id);
1253 if Is_Child_Unit (Gen_Id) then
1254 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1255 end if;
1257 Set_Actual_Subtypes (N, Current_Scope);
1259 -- Deal with [refined] preconditions, postconditions, Contract_Cases,
1260 -- invariants and predicates associated with the body and its spec.
1261 -- Note that this is not pure expansion as Expand_Subprogram_Contract
1262 -- prepares the contract assertions for generic subprograms or for
1263 -- ASIS. Do not generate contract checks in SPARK mode.
1265 if not GNATprove_Mode then
1266 Expand_Subprogram_Contract (N, Gen_Id, Body_Id);
1267 end if;
1269 -- If the generic unit carries pre- or post-conditions, copy them
1270 -- to the original generic tree, so that they are properly added
1271 -- to any instantiation.
1273 declare
1274 Orig : constant Node_Id := Original_Node (N);
1275 Cond : Node_Id;
1277 begin
1278 Cond := First (Declarations (N));
1279 while Present (Cond) loop
1280 if Nkind (Cond) = N_Pragma
1281 and then Pragma_Name (Cond) = Name_Check
1282 then
1283 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
1285 elsif Nkind (Cond) = N_Pragma
1286 and then Pragma_Name (Cond) = Name_Postcondition
1287 then
1288 Set_Ekind (Defining_Entity (Orig), Ekind (Gen_Id));
1289 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
1290 else
1291 exit;
1292 end if;
1294 Next (Cond);
1295 end loop;
1296 end;
1298 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1299 Set_SPARK_Pragma_Inherited (Body_Id, True);
1301 Analyze_Declarations (Declarations (N));
1302 Check_Completion;
1303 Analyze (Handled_Statement_Sequence (N));
1305 Save_Global_References (Original_Node (N));
1307 -- Prior to exiting the scope, include generic formals again (if any
1308 -- are present) in the set of local entities.
1310 if Present (First_Ent) then
1311 Set_First_Entity (Gen_Id, First_Ent);
1312 end if;
1314 Check_References (Gen_Id);
1315 end;
1317 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1318 End_Scope;
1319 Check_Subprogram_Order (N);
1321 -- Outside of its body, unit is generic again
1323 Set_Ekind (Gen_Id, Kind);
1324 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1326 if Style_Check then
1327 Style.Check_Identifier (Body_Id, Gen_Id);
1328 end if;
1330 End_Generic;
1331 end Analyze_Generic_Subprogram_Body;
1333 ----------------------------
1334 -- Analyze_Null_Procedure --
1335 ----------------------------
1337 procedure Analyze_Null_Procedure
1338 (N : Node_Id;
1339 Is_Completion : out Boolean)
1341 Loc : constant Source_Ptr := Sloc (N);
1342 Spec : constant Node_Id := Specification (N);
1343 Designator : Entity_Id;
1344 Form : Node_Id;
1345 Null_Body : Node_Id := Empty;
1346 Prev : Entity_Id;
1348 begin
1349 -- Capture the profile of the null procedure before analysis, for
1350 -- expansion at the freeze point and at each point of call. The body is
1351 -- used if the procedure has preconditions, or if it is a completion. In
1352 -- the first case the body is analyzed at the freeze point, in the other
1353 -- it replaces the null procedure declaration.
1355 Null_Body :=
1356 Make_Subprogram_Body (Loc,
1357 Specification => New_Copy_Tree (Spec),
1358 Declarations => New_List,
1359 Handled_Statement_Sequence =>
1360 Make_Handled_Sequence_Of_Statements (Loc,
1361 Statements => New_List (Make_Null_Statement (Loc))));
1363 -- Create new entities for body and formals
1365 Set_Defining_Unit_Name (Specification (Null_Body),
1366 Make_Defining_Identifier
1367 (Sloc (Defining_Entity (N)),
1368 Chars (Defining_Entity (N))));
1370 Form := First (Parameter_Specifications (Specification (Null_Body)));
1371 while Present (Form) loop
1372 Set_Defining_Identifier (Form,
1373 Make_Defining_Identifier
1374 (Sloc (Defining_Identifier (Form)),
1375 Chars (Defining_Identifier (Form))));
1376 Next (Form);
1377 end loop;
1379 -- Determine whether the null procedure may be a completion of a generic
1380 -- suprogram, in which case we use the new null body as the completion
1381 -- and set minimal semantic information on the original declaration,
1382 -- which is rewritten as a null statement.
1384 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1386 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1387 Insert_Before (N, Null_Body);
1388 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1389 Set_Contract (Defining_Entity (N), Make_Contract (Loc));
1391 Rewrite (N, Make_Null_Statement (Loc));
1392 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1393 Is_Completion := True;
1394 return;
1396 else
1397 -- Resolve the types of the formals now, because the freeze point
1398 -- may appear in a different context, e.g. an instantiation.
1400 Form := First (Parameter_Specifications (Specification (Null_Body)));
1401 while Present (Form) loop
1402 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1403 Find_Type (Parameter_Type (Form));
1405 elsif
1406 No (Access_To_Subprogram_Definition (Parameter_Type (Form)))
1407 then
1408 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1410 else
1411 -- The case of a null procedure with a formal that is an
1412 -- access_to_subprogram type, and that is used as an actual
1413 -- in an instantiation is left to the enthusiastic reader.
1415 null;
1416 end if;
1418 Next (Form);
1419 end loop;
1420 end if;
1422 -- If there are previous overloadable entities with the same name,
1423 -- check whether any of them is completed by the null procedure.
1425 if Present (Prev) and then Is_Overloadable (Prev) then
1426 Designator := Analyze_Subprogram_Specification (Spec);
1427 Prev := Find_Corresponding_Spec (N);
1428 end if;
1430 if No (Prev) or else not Comes_From_Source (Prev) then
1431 Designator := Analyze_Subprogram_Specification (Spec);
1432 Set_Has_Completion (Designator);
1434 -- Signal to caller that this is a procedure declaration
1436 Is_Completion := False;
1438 -- Null procedures are always inlined, but generic formal subprograms
1439 -- which appear as such in the internal instance of formal packages,
1440 -- need no completion and are not marked Inline.
1442 if Expander_Active
1443 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1444 then
1445 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1446 Set_Body_To_Inline (N, Null_Body);
1447 Set_Is_Inlined (Designator);
1448 end if;
1450 else
1451 -- The null procedure is a completion. We unconditionally rewrite
1452 -- this as a null body (even if expansion is not active), because
1453 -- there are various error checks that are applied on this body
1454 -- when it is analyzed (e.g. correct aspect placement).
1456 if Has_Completion (Prev) then
1457 Error_Msg_Sloc := Sloc (Prev);
1458 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
1459 end if;
1461 Is_Completion := True;
1462 Rewrite (N, Null_Body);
1463 Analyze (N);
1464 end if;
1465 end Analyze_Null_Procedure;
1467 -----------------------------
1468 -- Analyze_Operator_Symbol --
1469 -----------------------------
1471 -- An operator symbol such as "+" or "and" may appear in context where the
1472 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1473 -- is just a string, as in (conjunction = "or"). In these cases the parser
1474 -- generates this node, and the semantics does the disambiguation. Other
1475 -- such case are actuals in an instantiation, the generic unit in an
1476 -- instantiation, and pragma arguments.
1478 procedure Analyze_Operator_Symbol (N : Node_Id) is
1479 Par : constant Node_Id := Parent (N);
1481 begin
1482 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
1483 or else Nkind (Par) = N_Function_Instantiation
1484 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
1485 or else (Nkind (Par) = N_Pragma_Argument_Association
1486 and then not Is_Pragma_String_Literal (Par))
1487 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1488 or else (Nkind (Par) = N_Attribute_Reference
1489 and then Attribute_Name (Par) /= Name_Value)
1490 then
1491 Find_Direct_Name (N);
1493 else
1494 Change_Operator_Symbol_To_String_Literal (N);
1495 Analyze (N);
1496 end if;
1497 end Analyze_Operator_Symbol;
1499 -----------------------------------
1500 -- Analyze_Parameter_Association --
1501 -----------------------------------
1503 procedure Analyze_Parameter_Association (N : Node_Id) is
1504 begin
1505 Analyze (Explicit_Actual_Parameter (N));
1506 end Analyze_Parameter_Association;
1508 ----------------------------
1509 -- Analyze_Procedure_Call --
1510 ----------------------------
1512 procedure Analyze_Procedure_Call (N : Node_Id) is
1513 Loc : constant Source_Ptr := Sloc (N);
1514 P : constant Node_Id := Name (N);
1515 Actuals : constant List_Id := Parameter_Associations (N);
1516 Actual : Node_Id;
1517 New_N : Node_Id;
1519 procedure Analyze_Call_And_Resolve;
1520 -- Do Analyze and Resolve calls for procedure call
1521 -- At end, check illegal order dependence.
1523 ------------------------------
1524 -- Analyze_Call_And_Resolve --
1525 ------------------------------
1527 procedure Analyze_Call_And_Resolve is
1528 begin
1529 if Nkind (N) = N_Procedure_Call_Statement then
1530 Analyze_Call (N);
1531 Resolve (N, Standard_Void_Type);
1532 else
1533 Analyze (N);
1534 end if;
1535 end Analyze_Call_And_Resolve;
1537 -- Start of processing for Analyze_Procedure_Call
1539 begin
1540 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1541 -- a procedure call or an entry call. The prefix may denote an access
1542 -- to subprogram type, in which case an implicit dereference applies.
1543 -- If the prefix is an indexed component (without implicit dereference)
1544 -- then the construct denotes a call to a member of an entire family.
1545 -- If the prefix is a simple name, it may still denote a call to a
1546 -- parameterless member of an entry family. Resolution of these various
1547 -- interpretations is delicate.
1549 Analyze (P);
1551 -- If this is a call of the form Obj.Op, the call may have been
1552 -- analyzed and possibly rewritten into a block, in which case
1553 -- we are done.
1555 if Analyzed (N) then
1556 return;
1557 end if;
1559 -- If there is an error analyzing the name (which may have been
1560 -- rewritten if the original call was in prefix notation) then error
1561 -- has been emitted already, mark node and return.
1563 if Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1564 Set_Etype (N, Any_Type);
1565 return;
1566 end if;
1568 -- Otherwise analyze the parameters
1570 if Present (Actuals) then
1571 Actual := First (Actuals);
1573 while Present (Actual) loop
1574 Analyze (Actual);
1575 Check_Parameterless_Call (Actual);
1576 Next (Actual);
1577 end loop;
1578 end if;
1580 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1582 if Nkind (P) = N_Attribute_Reference
1583 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1584 Name_Elab_Body,
1585 Name_Elab_Subp_Body)
1586 then
1587 if Present (Actuals) then
1588 Error_Msg_N
1589 ("no parameters allowed for this call", First (Actuals));
1590 return;
1591 end if;
1593 Set_Etype (N, Standard_Void_Type);
1594 Set_Analyzed (N);
1596 elsif Is_Entity_Name (P)
1597 and then Is_Record_Type (Etype (Entity (P)))
1598 and then Remote_AST_I_Dereference (P)
1599 then
1600 return;
1602 elsif Is_Entity_Name (P)
1603 and then Ekind (Entity (P)) /= E_Entry_Family
1604 then
1605 if Is_Access_Type (Etype (P))
1606 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1607 and then No (Actuals)
1608 and then Comes_From_Source (N)
1609 then
1610 Error_Msg_N ("missing explicit dereference in call", N);
1611 end if;
1613 Analyze_Call_And_Resolve;
1615 -- If the prefix is the simple name of an entry family, this is
1616 -- a parameterless call from within the task body itself.
1618 elsif Is_Entity_Name (P)
1619 and then Nkind (P) = N_Identifier
1620 and then Ekind (Entity (P)) = E_Entry_Family
1621 and then Present (Actuals)
1622 and then No (Next (First (Actuals)))
1623 then
1624 -- Can be call to parameterless entry family. What appears to be the
1625 -- sole argument is in fact the entry index. Rewrite prefix of node
1626 -- accordingly. Source representation is unchanged by this
1627 -- transformation.
1629 New_N :=
1630 Make_Indexed_Component (Loc,
1631 Prefix =>
1632 Make_Selected_Component (Loc,
1633 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1634 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1635 Expressions => Actuals);
1636 Set_Name (N, New_N);
1637 Set_Etype (New_N, Standard_Void_Type);
1638 Set_Parameter_Associations (N, No_List);
1639 Analyze_Call_And_Resolve;
1641 elsif Nkind (P) = N_Explicit_Dereference then
1642 if Ekind (Etype (P)) = E_Subprogram_Type then
1643 Analyze_Call_And_Resolve;
1644 else
1645 Error_Msg_N ("expect access to procedure in call", P);
1646 end if;
1648 -- The name can be a selected component or an indexed component that
1649 -- yields an access to subprogram. Such a prefix is legal if the call
1650 -- has parameter associations.
1652 elsif Is_Access_Type (Etype (P))
1653 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1654 then
1655 if Present (Actuals) then
1656 Analyze_Call_And_Resolve;
1657 else
1658 Error_Msg_N ("missing explicit dereference in call ", N);
1659 end if;
1661 -- If not an access to subprogram, then the prefix must resolve to the
1662 -- name of an entry, entry family, or protected operation.
1664 -- For the case of a simple entry call, P is a selected component where
1665 -- the prefix is the task and the selector name is the entry. A call to
1666 -- a protected procedure will have the same syntax. If the protected
1667 -- object contains overloaded operations, the entity may appear as a
1668 -- function, the context will select the operation whose type is Void.
1670 elsif Nkind (P) = N_Selected_Component
1671 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1672 E_Procedure,
1673 E_Function)
1674 then
1675 Analyze_Call_And_Resolve;
1677 elsif Nkind (P) = N_Selected_Component
1678 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1679 and then Present (Actuals)
1680 and then No (Next (First (Actuals)))
1681 then
1682 -- Can be call to parameterless entry family. What appears to be the
1683 -- sole argument is in fact the entry index. Rewrite prefix of node
1684 -- accordingly. Source representation is unchanged by this
1685 -- transformation.
1687 New_N :=
1688 Make_Indexed_Component (Loc,
1689 Prefix => New_Copy (P),
1690 Expressions => Actuals);
1691 Set_Name (N, New_N);
1692 Set_Etype (New_N, Standard_Void_Type);
1693 Set_Parameter_Associations (N, No_List);
1694 Analyze_Call_And_Resolve;
1696 -- For the case of a reference to an element of an entry family, P is
1697 -- an indexed component whose prefix is a selected component (task and
1698 -- entry family), and whose index is the entry family index.
1700 elsif Nkind (P) = N_Indexed_Component
1701 and then Nkind (Prefix (P)) = N_Selected_Component
1702 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1703 then
1704 Analyze_Call_And_Resolve;
1706 -- If the prefix is the name of an entry family, it is a call from
1707 -- within the task body itself.
1709 elsif Nkind (P) = N_Indexed_Component
1710 and then Nkind (Prefix (P)) = N_Identifier
1711 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1712 then
1713 New_N :=
1714 Make_Selected_Component (Loc,
1715 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1716 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1717 Rewrite (Prefix (P), New_N);
1718 Analyze (P);
1719 Analyze_Call_And_Resolve;
1721 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1722 -- procedure name, so the construct can only be a qualified expression.
1724 elsif Nkind (P) = N_Qualified_Expression
1725 and then Ada_Version >= Ada_2012
1726 then
1727 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1728 Analyze (N);
1730 -- Anything else is an error
1732 else
1733 Error_Msg_N ("invalid procedure or entry call", N);
1734 end if;
1735 end Analyze_Procedure_Call;
1737 ------------------------------
1738 -- Analyze_Return_Statement --
1739 ------------------------------
1741 procedure Analyze_Return_Statement (N : Node_Id) is
1743 pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
1744 N_Extended_Return_Statement));
1746 Returns_Object : constant Boolean :=
1747 Nkind (N) = N_Extended_Return_Statement
1748 or else
1749 (Nkind (N) = N_Simple_Return_Statement
1750 and then Present (Expression (N)));
1751 -- True if we're returning something; that is, "return <expression>;"
1752 -- or "return Result : T [:= ...]". False for "return;". Used for error
1753 -- checking: If Returns_Object is True, N should apply to a function
1754 -- body; otherwise N should apply to a procedure body, entry body,
1755 -- accept statement, or extended return statement.
1757 function Find_What_It_Applies_To return Entity_Id;
1758 -- Find the entity representing the innermost enclosing body, accept
1759 -- statement, or extended return statement. If the result is a callable
1760 -- construct or extended return statement, then this will be the value
1761 -- of the Return_Applies_To attribute. Otherwise, the program is
1762 -- illegal. See RM-6.5(4/2).
1764 -----------------------------
1765 -- Find_What_It_Applies_To --
1766 -----------------------------
1768 function Find_What_It_Applies_To return Entity_Id is
1769 Result : Entity_Id := Empty;
1771 begin
1772 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1773 -- and postconditions.
1775 for J in reverse 0 .. Scope_Stack.Last loop
1776 Result := Scope_Stack.Table (J).Entity;
1777 exit when not Ekind_In (Result, E_Block, E_Loop)
1778 and then Chars (Result) /= Name_uPostconditions;
1779 end loop;
1781 pragma Assert (Present (Result));
1782 return Result;
1783 end Find_What_It_Applies_To;
1785 -- Local declarations
1787 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
1788 Kind : constant Entity_Kind := Ekind (Scope_Id);
1789 Loc : constant Source_Ptr := Sloc (N);
1790 Stm_Entity : constant Entity_Id :=
1791 New_Internal_Entity
1792 (E_Return_Statement, Current_Scope, Loc, 'R');
1794 -- Start of processing for Analyze_Return_Statement
1796 begin
1797 Set_Return_Statement_Entity (N, Stm_Entity);
1799 Set_Etype (Stm_Entity, Standard_Void_Type);
1800 Set_Return_Applies_To (Stm_Entity, Scope_Id);
1802 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1803 -- (4/2): an inner return statement will apply to this extended return.
1805 if Nkind (N) = N_Extended_Return_Statement then
1806 Push_Scope (Stm_Entity);
1807 end if;
1809 -- Check that pragma No_Return is obeyed. Don't complain about the
1810 -- implicitly-generated return that is placed at the end.
1812 if No_Return (Scope_Id) and then Comes_From_Source (N) then
1813 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
1814 end if;
1816 -- Warn on any unassigned OUT parameters if in procedure
1818 if Ekind (Scope_Id) = E_Procedure then
1819 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1820 end if;
1822 -- Check that functions return objects, and other things do not
1824 if Kind = E_Function or else Kind = E_Generic_Function then
1825 if not Returns_Object then
1826 Error_Msg_N ("missing expression in return from function", N);
1827 end if;
1829 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
1830 if Returns_Object then
1831 Error_Msg_N ("procedure cannot return value (use function)", N);
1832 end if;
1834 elsif Kind = E_Entry or else Kind = E_Entry_Family then
1835 if Returns_Object then
1836 if Is_Protected_Type (Scope (Scope_Id)) then
1837 Error_Msg_N ("entry body cannot return value", N);
1838 else
1839 Error_Msg_N ("accept statement cannot return value", N);
1840 end if;
1841 end if;
1843 elsif Kind = E_Return_Statement then
1845 -- We are nested within another return statement, which must be an
1846 -- extended_return_statement.
1848 if Returns_Object then
1849 if Nkind (N) = N_Extended_Return_Statement then
1850 Error_Msg_N
1851 ("extended return statement cannot be nested (use `RETURN;`)",
1854 -- Case of a simple return statement with a value inside extended
1855 -- return statement.
1857 else
1858 Error_Msg_N
1859 ("return nested in extended return statement cannot return "
1860 & "value (use `RETURN;`)", N);
1861 end if;
1862 end if;
1864 else
1865 Error_Msg_N ("illegal context for return statement", N);
1866 end if;
1868 if Ekind_In (Kind, E_Function, E_Generic_Function) then
1869 Analyze_Function_Return (N);
1871 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
1872 Set_Return_Present (Scope_Id);
1873 end if;
1875 if Nkind (N) = N_Extended_Return_Statement then
1876 End_Scope;
1877 end if;
1879 Kill_Current_Values (Last_Assignment_Only => True);
1880 Check_Unreachable_Code (N);
1882 Analyze_Dimension (N);
1883 end Analyze_Return_Statement;
1885 -------------------------------------
1886 -- Analyze_Simple_Return_Statement --
1887 -------------------------------------
1889 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
1890 begin
1891 if Present (Expression (N)) then
1892 Mark_Coextensions (N, Expression (N));
1893 end if;
1895 Analyze_Return_Statement (N);
1896 end Analyze_Simple_Return_Statement;
1898 -------------------------
1899 -- Analyze_Return_Type --
1900 -------------------------
1902 procedure Analyze_Return_Type (N : Node_Id) is
1903 Designator : constant Entity_Id := Defining_Entity (N);
1904 Typ : Entity_Id := Empty;
1906 begin
1907 -- Normal case where result definition does not indicate an error
1909 if Result_Definition (N) /= Error then
1910 if Nkind (Result_Definition (N)) = N_Access_Definition then
1911 Check_SPARK_05_Restriction
1912 ("access result is not allowed", Result_Definition (N));
1914 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1916 declare
1917 AD : constant Node_Id :=
1918 Access_To_Subprogram_Definition (Result_Definition (N));
1919 begin
1920 if Present (AD) and then Protected_Present (AD) then
1921 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1922 else
1923 Typ := Access_Definition (N, Result_Definition (N));
1924 end if;
1925 end;
1927 Set_Parent (Typ, Result_Definition (N));
1928 Set_Is_Local_Anonymous_Access (Typ);
1929 Set_Etype (Designator, Typ);
1931 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1933 Null_Exclusion_Static_Checks (N);
1935 -- Subtype_Mark case
1937 else
1938 Find_Type (Result_Definition (N));
1939 Typ := Entity (Result_Definition (N));
1940 Set_Etype (Designator, Typ);
1942 -- Unconstrained array as result is not allowed in SPARK
1944 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
1945 Check_SPARK_05_Restriction
1946 ("returning an unconstrained array is not allowed",
1947 Result_Definition (N));
1948 end if;
1950 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1952 Null_Exclusion_Static_Checks (N);
1954 -- If a null exclusion is imposed on the result type, then create
1955 -- a null-excluding itype (an access subtype) and use it as the
1956 -- function's Etype. Note that the null exclusion checks are done
1957 -- right before this, because they don't get applied to types that
1958 -- do not come from source.
1960 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
1961 Set_Etype (Designator,
1962 Create_Null_Excluding_Itype
1963 (T => Typ,
1964 Related_Nod => N,
1965 Scope_Id => Scope (Current_Scope)));
1967 -- The new subtype must be elaborated before use because
1968 -- it is visible outside of the function. However its base
1969 -- type may not be frozen yet, so the reference that will
1970 -- force elaboration must be attached to the freezing of
1971 -- the base type.
1973 -- If the return specification appears on a proper body,
1974 -- the subtype will have been created already on the spec.
1976 if Is_Frozen (Typ) then
1977 if Nkind (Parent (N)) = N_Subprogram_Body
1978 and then Nkind (Parent (Parent (N))) = N_Subunit
1979 then
1980 null;
1981 else
1982 Build_Itype_Reference (Etype (Designator), Parent (N));
1983 end if;
1985 else
1986 Ensure_Freeze_Node (Typ);
1988 declare
1989 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
1990 begin
1991 Set_Itype (IR, Etype (Designator));
1992 Append_Freeze_Actions (Typ, New_List (IR));
1993 end;
1994 end if;
1996 else
1997 Set_Etype (Designator, Typ);
1998 end if;
2000 if Ekind (Typ) = E_Incomplete_Type
2001 and then Is_Value_Type (Typ)
2002 then
2003 null;
2005 elsif Ekind (Typ) = E_Incomplete_Type
2006 or else (Is_Class_Wide_Type (Typ)
2007 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2008 then
2009 -- AI05-0151: Tagged incomplete types are allowed in all formal
2010 -- parts. Untagged incomplete types are not allowed in bodies.
2011 -- As a consequence, limited views cannot appear in a basic
2012 -- declaration that is itself within a body, because there is
2013 -- no point at which the non-limited view will become visible.
2015 if Ada_Version >= Ada_2012 then
2016 if From_Limited_With (Typ) and then In_Package_Body then
2017 Error_Msg_NE
2018 ("invalid use of incomplete type&",
2019 Result_Definition (N), Typ);
2021 -- The return type of a subprogram body cannot be of a
2022 -- formal incomplete type.
2024 elsif Is_Generic_Type (Typ)
2025 and then Nkind (Parent (N)) = N_Subprogram_Body
2026 then
2027 Error_Msg_N
2028 ("return type cannot be a formal incomplete type",
2029 Result_Definition (N));
2031 elsif Is_Class_Wide_Type (Typ)
2032 and then Is_Generic_Type (Root_Type (Typ))
2033 and then Nkind (Parent (N)) = N_Subprogram_Body
2034 then
2035 Error_Msg_N
2036 ("return type cannot be a formal incomplete type",
2037 Result_Definition (N));
2039 elsif Is_Tagged_Type (Typ) then
2040 null;
2042 elsif Nkind (Parent (N)) = N_Subprogram_Body
2043 or else Nkind_In (Parent (Parent (N)), N_Accept_Statement,
2044 N_Entry_Body)
2045 then
2046 Error_Msg_NE
2047 ("invalid use of untagged incomplete type&",
2048 Designator, Typ);
2049 end if;
2051 -- The type must be completed in the current package. This
2052 -- is checked at the end of the package declaration when
2053 -- Taft-amendment types are identified. If the return type
2054 -- is class-wide, there is no required check, the type can
2055 -- be a bona fide TAT.
2057 if Ekind (Scope (Current_Scope)) = E_Package
2058 and then In_Private_Part (Scope (Current_Scope))
2059 and then not Is_Class_Wide_Type (Typ)
2060 then
2061 Append_Elmt (Designator, Private_Dependents (Typ));
2062 end if;
2064 else
2065 Error_Msg_NE
2066 ("invalid use of incomplete type&", Designator, Typ);
2067 end if;
2068 end if;
2069 end if;
2071 -- Case where result definition does indicate an error
2073 else
2074 Set_Etype (Designator, Any_Type);
2075 end if;
2076 end Analyze_Return_Type;
2078 -----------------------------
2079 -- Analyze_Subprogram_Body --
2080 -----------------------------
2082 procedure Analyze_Subprogram_Body (N : Node_Id) is
2083 Loc : constant Source_Ptr := Sloc (N);
2084 Body_Spec : constant Node_Id := Specification (N);
2085 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2087 begin
2088 if Debug_Flag_C then
2089 Write_Str ("==> subprogram body ");
2090 Write_Name (Chars (Body_Id));
2091 Write_Str (" from ");
2092 Write_Location (Loc);
2093 Write_Eol;
2094 Indent;
2095 end if;
2097 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2099 -- The real work is split out into the helper, so it can do "return;"
2100 -- without skipping the debug output:
2102 Analyze_Subprogram_Body_Helper (N);
2104 if Debug_Flag_C then
2105 Outdent;
2106 Write_Str ("<== subprogram body ");
2107 Write_Name (Chars (Body_Id));
2108 Write_Str (" from ");
2109 Write_Location (Loc);
2110 Write_Eol;
2111 end if;
2112 end Analyze_Subprogram_Body;
2114 --------------------------------------
2115 -- Analyze_Subprogram_Body_Contract --
2116 --------------------------------------
2118 procedure Analyze_Subprogram_Body_Contract (Body_Id : Entity_Id) is
2119 Body_Decl : constant Node_Id := Parent (Parent (Body_Id));
2120 Mode : SPARK_Mode_Type;
2121 Prag : Node_Id;
2122 Ref_Depends : Node_Id := Empty;
2123 Ref_Global : Node_Id := Empty;
2124 Spec_Id : Entity_Id;
2126 begin
2127 -- Due to the timing of contract analysis, delayed pragmas may be
2128 -- subject to the wrong SPARK_Mode, usually that of the enclosing
2129 -- context. To remedy this, restore the original SPARK_Mode of the
2130 -- related subprogram body.
2132 Save_SPARK_Mode_And_Set (Body_Id, Mode);
2134 -- When a subprogram body declaration is illegal, its defining entity is
2135 -- left unanalyzed. There is nothing left to do in this case because the
2136 -- body lacks a contract, or even a proper Ekind.
2138 if Ekind (Body_Id) = E_Void then
2139 return;
2140 end if;
2142 if Nkind (Body_Decl) = N_Subprogram_Body_Stub then
2143 Spec_Id := Corresponding_Spec_Of_Stub (Body_Decl);
2144 else
2145 Spec_Id := Corresponding_Spec (Body_Decl);
2146 end if;
2148 -- Locate and store pragmas Refined_Depends and Refined_Global since
2149 -- their order of analysis matters.
2151 Prag := Classifications (Contract (Body_Id));
2152 while Present (Prag) loop
2153 if Pragma_Name (Prag) = Name_Refined_Depends then
2154 Ref_Depends := Prag;
2155 elsif Pragma_Name (Prag) = Name_Refined_Global then
2156 Ref_Global := Prag;
2157 end if;
2159 Prag := Next_Pragma (Prag);
2160 end loop;
2162 -- Analyze Refined_Global first as Refined_Depends may mention items
2163 -- classified in the global refinement.
2165 if Present (Ref_Global) then
2166 Analyze_Refined_Global_In_Decl_Part (Ref_Global);
2168 -- When the corresponding Global aspect/pragma references a state with
2169 -- visible refinement, the body requires Refined_Global. Refinement is
2170 -- not required when SPARK checks are suppressed.
2172 elsif Present (Spec_Id) then
2173 Prag := Get_Pragma (Spec_Id, Pragma_Global);
2175 if SPARK_Mode /= Off
2176 and then Present (Prag)
2177 and then Contains_Refined_State (Prag)
2178 then
2179 Error_Msg_NE
2180 ("body of subprogram& requires global refinement",
2181 Body_Decl, Spec_Id);
2182 end if;
2183 end if;
2185 -- Refined_Depends must be analyzed after Refined_Global in order to see
2186 -- the modes of all global refinements.
2188 if Present (Ref_Depends) then
2189 Analyze_Refined_Depends_In_Decl_Part (Ref_Depends);
2191 -- When the corresponding Depends aspect/pragma references a state with
2192 -- visible refinement, the body requires Refined_Depends. Refinement is
2193 -- not required when SPARK checks are suppressed.
2195 elsif Present (Spec_Id) then
2196 Prag := Get_Pragma (Spec_Id, Pragma_Depends);
2198 if SPARK_Mode /= Off
2199 and then Present (Prag)
2200 and then Contains_Refined_State (Prag)
2201 then
2202 Error_Msg_NE
2203 ("body of subprogram& requires dependance refinement",
2204 Body_Decl, Spec_Id);
2205 end if;
2206 end if;
2208 -- Restore the SPARK_Mode of the enclosing context after all delayed
2209 -- pragmas have been analyzed.
2211 Restore_SPARK_Mode (Mode);
2212 end Analyze_Subprogram_Body_Contract;
2214 ------------------------------------
2215 -- Analyze_Subprogram_Body_Helper --
2216 ------------------------------------
2218 -- This procedure is called for regular subprogram bodies, generic bodies,
2219 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2220 -- specification matters, and is used to create a proper declaration for
2221 -- the subprogram, or to perform conformance checks.
2223 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2224 Loc : constant Source_Ptr := Sloc (N);
2225 Body_Spec : constant Node_Id := Specification (N);
2226 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2227 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2228 Conformant : Boolean;
2229 HSS : Node_Id;
2230 Prot_Typ : Entity_Id := Empty;
2231 Spec_Id : Entity_Id;
2232 Spec_Decl : Node_Id := Empty;
2234 Last_Real_Spec_Entity : Entity_Id := Empty;
2235 -- When we analyze a separate spec, the entity chain ends up containing
2236 -- the formals, as well as any itypes generated during analysis of the
2237 -- default expressions for parameters, or the arguments of associated
2238 -- precondition/postcondition pragmas (which are analyzed in the context
2239 -- of the spec since they have visibility on formals).
2241 -- These entities belong with the spec and not the body. However we do
2242 -- the analysis of the body in the context of the spec (again to obtain
2243 -- visibility to the formals), and all the entities generated during
2244 -- this analysis end up also chained to the entity chain of the spec.
2245 -- But they really belong to the body, and there is circuitry to move
2246 -- them from the spec to the body.
2248 -- However, when we do this move, we don't want to move the real spec
2249 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2250 -- variable points to the last real spec entity, so we only move those
2251 -- chained beyond that point. It is initialized to Empty to deal with
2252 -- the case where there is no separate spec.
2254 procedure Analyze_Aspects_On_Body_Or_Stub;
2255 -- Analyze the aspect specifications of a subprogram body [stub]. It is
2256 -- assumed that N has aspects.
2258 function Body_Has_Contract return Boolean;
2259 -- Check whether unanalyzed body has an aspect or pragma that may
2260 -- generate a SPARK contract.
2262 procedure Check_Anonymous_Return;
2263 -- Ada 2005: if a function returns an access type that denotes a task,
2264 -- or a type that contains tasks, we must create a master entity for
2265 -- the anonymous type, which typically will be used in an allocator
2266 -- in the body of the function.
2268 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2269 -- Look ahead to recognize a pragma that may appear after the body.
2270 -- If there is a previous spec, check that it appears in the same
2271 -- declarative part. If the pragma is Inline_Always, perform inlining
2272 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2273 -- If the body acts as a spec, and inlining is required, we create a
2274 -- subprogram declaration for it, in order to attach the body to inline.
2275 -- If pragma does not appear after the body, check whether there is
2276 -- an inline pragma before any local declarations.
2278 procedure Check_Missing_Return;
2279 -- Checks for a function with a no return statements, and also performs
2280 -- the warning checks implemented by Check_Returns. In formal mode, also
2281 -- verify that a function ends with a RETURN and that a procedure does
2282 -- not contain any RETURN.
2284 function Disambiguate_Spec return Entity_Id;
2285 -- When a primitive is declared between the private view and the full
2286 -- view of a concurrent type which implements an interface, a special
2287 -- mechanism is used to find the corresponding spec of the primitive
2288 -- body.
2290 procedure Exchange_Limited_Views (Subp_Id : Entity_Id);
2291 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2292 -- incomplete types coming from a limited context and swap their limited
2293 -- views with the non-limited ones.
2295 function Is_Private_Concurrent_Primitive
2296 (Subp_Id : Entity_Id) return Boolean;
2297 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2298 -- type that implements an interface and has a private view.
2300 procedure Set_Trivial_Subprogram (N : Node_Id);
2301 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2302 -- subprogram whose body is being analyzed. N is the statement node
2303 -- causing the flag to be set, if the following statement is a return
2304 -- of an entity, we mark the entity as set in source to suppress any
2305 -- warning on the stylized use of function stubs with a dummy return.
2307 procedure Verify_Overriding_Indicator;
2308 -- If there was a previous spec, the entity has been entered in the
2309 -- current scope previously. If the body itself carries an overriding
2310 -- indicator, check that it is consistent with the known status of the
2311 -- entity.
2313 -------------------------------------
2314 -- Analyze_Aspects_On_Body_Or_Stub --
2315 -------------------------------------
2317 procedure Analyze_Aspects_On_Body_Or_Stub is
2318 procedure Diagnose_Misplaced_Aspects;
2319 -- Subprogram body [stub] N has aspects, but they are not properly
2320 -- placed. Provide precise diagnostics depending on the aspects
2321 -- involved.
2323 --------------------------------
2324 -- Diagnose_Misplaced_Aspects --
2325 --------------------------------
2327 procedure Diagnose_Misplaced_Aspects is
2328 Asp : Node_Id;
2329 Asp_Nam : Name_Id;
2330 Asp_Id : Aspect_Id;
2331 -- The current aspect along with its name and id
2333 procedure SPARK_Aspect_Error (Ref_Nam : Name_Id);
2334 -- Emit an error message concerning SPARK aspect Asp. Ref_Nam is
2335 -- the name of the refined version of the aspect.
2337 ------------------------
2338 -- SPARK_Aspect_Error --
2339 ------------------------
2341 procedure SPARK_Aspect_Error (Ref_Nam : Name_Id) is
2342 begin
2343 -- The corresponding spec already contains the aspect in
2344 -- question and the one appearing on the body must be the
2345 -- refined form:
2347 -- procedure P with Global ...;
2348 -- procedure P with Global ... is ... end P;
2349 -- ^
2350 -- Refined_Global
2352 if Has_Aspect (Spec_Id, Asp_Id) then
2353 Error_Msg_Name_1 := Asp_Nam;
2355 -- Subunits cannot carry aspects that apply to a subprogram
2356 -- declaration.
2358 if Nkind (Parent (N)) = N_Subunit then
2359 Error_Msg_N ("aspect % cannot apply to a subunit", Asp);
2361 else
2362 Error_Msg_Name_2 := Ref_Nam;
2363 Error_Msg_N ("aspect % should be %", Asp);
2364 end if;
2366 -- Otherwise the aspect must appear in the spec, not in the
2367 -- body:
2369 -- procedure P;
2370 -- procedure P with Global ... is ... end P;
2372 else
2373 Error_Msg_N
2374 ("aspect specification must appear in subprogram "
2375 & "declaration", Asp);
2376 end if;
2377 end SPARK_Aspect_Error;
2379 -- Start of processing for Diagnose_Misplaced_Aspects
2381 begin
2382 -- Iterate over the aspect specifications and emit specific errors
2383 -- where applicable.
2385 Asp := First (Aspect_Specifications (N));
2386 while Present (Asp) loop
2387 Asp_Nam := Chars (Identifier (Asp));
2388 Asp_Id := Get_Aspect_Id (Asp_Nam);
2390 -- Do not emit errors on aspects that can appear on a
2391 -- subprogram body. This scenario occurs when the aspect
2392 -- specification list contains both misplaced and properly
2393 -- placed aspects.
2395 if Aspect_On_Body_Or_Stub_OK (Asp_Id) then
2396 null;
2398 -- Special diagnostics for SPARK aspects
2400 elsif Asp_Nam = Name_Depends then
2401 SPARK_Aspect_Error (Name_Refined_Depends);
2403 elsif Asp_Nam = Name_Global then
2404 SPARK_Aspect_Error (Name_Refined_Global);
2406 elsif Asp_Nam = Name_Post then
2407 SPARK_Aspect_Error (Name_Refined_Post);
2409 else
2410 Error_Msg_N
2411 ("aspect specification must appear in subprogram "
2412 & "declaration", Asp);
2413 end if;
2415 Next (Asp);
2416 end loop;
2417 end Diagnose_Misplaced_Aspects;
2419 -- Start of processing for Analyze_Aspects_On_Body_Or_Stub
2421 begin
2422 -- Language-defined aspects cannot be associated with a subprogram
2423 -- body [stub] if the subprogram has a spec. Certain implementation
2424 -- defined aspects are allowed to break this rule (for list, see
2425 -- table Aspect_On_Body_Or_Stub_OK).
2427 if Present (Spec_Id) and then not Aspects_On_Body_Or_Stub_OK (N) then
2428 Diagnose_Misplaced_Aspects;
2429 else
2430 Analyze_Aspect_Specifications (N, Body_Id);
2431 end if;
2432 end Analyze_Aspects_On_Body_Or_Stub;
2434 -----------------------
2435 -- Body_Has_Contract --
2436 -----------------------
2438 function Body_Has_Contract return Boolean is
2439 Decls : constant List_Id := Declarations (N);
2440 A_Spec : Node_Id;
2441 A : Aspect_Id;
2442 Decl : Node_Id;
2443 P_Id : Pragma_Id;
2445 begin
2446 -- Check for unanalyzed aspects in the body that will
2447 -- generate a contract.
2449 if Present (Aspect_Specifications (N)) then
2450 A_Spec := First (Aspect_Specifications (N));
2451 while Present (A_Spec) loop
2452 A := Get_Aspect_Id (Chars (Identifier (A_Spec)));
2454 if A = Aspect_Contract_Cases or else
2455 A = Aspect_Depends or else
2456 A = Aspect_Global or else
2457 A = Aspect_Pre or else
2458 A = Aspect_Precondition or else
2459 A = Aspect_Post or else
2460 A = Aspect_Postcondition
2461 then
2462 return True;
2463 end if;
2465 Next (A_Spec);
2466 end loop;
2467 end if;
2469 -- Check for pragmas that may generate a contract
2471 if Present (Decls) then
2472 Decl := First (Decls);
2473 while Present (Decl) loop
2474 if Nkind (Decl) = N_Pragma then
2475 P_Id := Get_Pragma_Id (Pragma_Name (Decl));
2477 if P_Id = Pragma_Contract_Cases or else
2478 P_Id = Pragma_Depends or else
2479 P_Id = Pragma_Global or else
2480 P_Id = Pragma_Pre or else
2481 P_Id = Pragma_Precondition or else
2482 P_Id = Pragma_Post or else
2483 P_Id = Pragma_Postcondition
2484 then
2485 return True;
2486 end if;
2487 end if;
2489 Next (Decl);
2490 end loop;
2491 end if;
2493 return False;
2494 end Body_Has_Contract;
2496 ----------------------------
2497 -- Check_Anonymous_Return --
2498 ----------------------------
2500 procedure Check_Anonymous_Return is
2501 Decl : Node_Id;
2502 Par : Node_Id;
2503 Scop : Entity_Id;
2505 begin
2506 if Present (Spec_Id) then
2507 Scop := Spec_Id;
2508 else
2509 Scop := Body_Id;
2510 end if;
2512 if Ekind (Scop) = E_Function
2513 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2514 and then not Is_Thunk (Scop)
2515 and then (Has_Task (Designated_Type (Etype (Scop)))
2516 or else
2517 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2518 and then
2519 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2520 and then Expander_Active
2522 -- Avoid cases with no tasking support
2524 and then RTE_Available (RE_Current_Master)
2525 and then not Restriction_Active (No_Task_Hierarchy)
2526 then
2527 Decl :=
2528 Make_Object_Declaration (Loc,
2529 Defining_Identifier =>
2530 Make_Defining_Identifier (Loc, Name_uMaster),
2531 Constant_Present => True,
2532 Object_Definition =>
2533 New_Occurrence_Of (RTE (RE_Master_Id), Loc),
2534 Expression =>
2535 Make_Explicit_Dereference (Loc,
2536 New_Occurrence_Of (RTE (RE_Current_Master), Loc)));
2538 if Present (Declarations (N)) then
2539 Prepend (Decl, Declarations (N));
2540 else
2541 Set_Declarations (N, New_List (Decl));
2542 end if;
2544 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2545 Set_Has_Master_Entity (Scop);
2547 -- Now mark the containing scope as a task master
2549 Par := N;
2550 while Nkind (Par) /= N_Compilation_Unit loop
2551 Par := Parent (Par);
2552 pragma Assert (Present (Par));
2554 -- If we fall off the top, we are at the outer level, and
2555 -- the environment task is our effective master, so nothing
2556 -- to mark.
2558 if Nkind_In
2559 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2560 then
2561 Set_Is_Task_Master (Par, True);
2562 exit;
2563 end if;
2564 end loop;
2565 end if;
2566 end Check_Anonymous_Return;
2568 -------------------------
2569 -- Check_Inline_Pragma --
2570 -------------------------
2572 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2573 Prag : Node_Id;
2574 Plist : List_Id;
2576 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2577 -- True when N is a pragma Inline or Inline_Always that applies
2578 -- to this subprogram.
2580 -----------------------
2581 -- Is_Inline_Pragma --
2582 -----------------------
2584 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2585 begin
2586 return
2587 Nkind (N) = N_Pragma
2588 and then
2589 (Pragma_Name (N) = Name_Inline_Always
2590 or else
2591 (Front_End_Inlining
2592 and then Pragma_Name (N) = Name_Inline))
2593 and then
2594 Chars
2595 (Expression (First (Pragma_Argument_Associations (N)))) =
2596 Chars (Body_Id);
2597 end Is_Inline_Pragma;
2599 -- Start of processing for Check_Inline_Pragma
2601 begin
2602 if not Expander_Active then
2603 return;
2604 end if;
2606 if Is_List_Member (N)
2607 and then Present (Next (N))
2608 and then Is_Inline_Pragma (Next (N))
2609 then
2610 Prag := Next (N);
2612 elsif Nkind (N) /= N_Subprogram_Body_Stub
2613 and then Present (Declarations (N))
2614 and then Is_Inline_Pragma (First (Declarations (N)))
2615 then
2616 Prag := First (Declarations (N));
2618 else
2619 Prag := Empty;
2620 end if;
2622 if Present (Prag) then
2623 if Present (Spec_Id) then
2624 if In_Same_List (N, Unit_Declaration_Node (Spec_Id)) then
2625 Analyze (Prag);
2626 end if;
2628 else
2629 -- Create a subprogram declaration, to make treatment uniform
2631 declare
2632 Subp : constant Entity_Id :=
2633 Make_Defining_Identifier (Loc, Chars (Body_Id));
2634 Decl : constant Node_Id :=
2635 Make_Subprogram_Declaration (Loc,
2636 Specification =>
2637 New_Copy_Tree (Specification (N)));
2639 begin
2640 Set_Defining_Unit_Name (Specification (Decl), Subp);
2642 if Present (First_Formal (Body_Id)) then
2643 Plist := Copy_Parameter_List (Body_Id);
2644 Set_Parameter_Specifications
2645 (Specification (Decl), Plist);
2646 end if;
2648 Insert_Before (N, Decl);
2649 Analyze (Decl);
2650 Analyze (Prag);
2651 Set_Has_Pragma_Inline (Subp);
2653 if Pragma_Name (Prag) = Name_Inline_Always then
2654 Set_Is_Inlined (Subp);
2655 Set_Has_Pragma_Inline_Always (Subp);
2656 end if;
2658 -- Prior to copying the subprogram body to create a template
2659 -- for it for subsequent inlining, remove the pragma from
2660 -- the current body so that the copy that will produce the
2661 -- new body will start from a completely unanalyzed tree.
2663 if Nkind (Parent (Prag)) = N_Subprogram_Body then
2664 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
2665 end if;
2667 Spec := Subp;
2668 end;
2669 end if;
2670 end if;
2671 end Check_Inline_Pragma;
2673 --------------------------
2674 -- Check_Missing_Return --
2675 --------------------------
2677 procedure Check_Missing_Return is
2678 Id : Entity_Id;
2679 Missing_Ret : Boolean;
2681 begin
2682 if Nkind (Body_Spec) = N_Function_Specification then
2683 if Present (Spec_Id) then
2684 Id := Spec_Id;
2685 else
2686 Id := Body_Id;
2687 end if;
2689 if Return_Present (Id) then
2690 Check_Returns (HSS, 'F', Missing_Ret);
2692 if Missing_Ret then
2693 Set_Has_Missing_Return (Id);
2694 end if;
2696 elsif Is_Generic_Subprogram (Id)
2697 or else not Is_Machine_Code_Subprogram (Id)
2698 then
2699 Error_Msg_N ("missing RETURN statement in function body", N);
2700 end if;
2702 -- If procedure with No_Return, check returns
2704 elsif Nkind (Body_Spec) = N_Procedure_Specification
2705 and then Present (Spec_Id)
2706 and then No_Return (Spec_Id)
2707 then
2708 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2709 end if;
2711 -- Special checks in SPARK mode
2713 if Nkind (Body_Spec) = N_Function_Specification then
2715 -- In SPARK mode, last statement of a function should be a return
2717 declare
2718 Stat : constant Node_Id := Last_Source_Statement (HSS);
2719 begin
2720 if Present (Stat)
2721 and then not Nkind_In (Stat, N_Simple_Return_Statement,
2722 N_Extended_Return_Statement)
2723 then
2724 Check_SPARK_05_Restriction
2725 ("last statement in function should be RETURN", Stat);
2726 end if;
2727 end;
2729 -- In SPARK mode, verify that a procedure has no return
2731 elsif Nkind (Body_Spec) = N_Procedure_Specification then
2732 if Present (Spec_Id) then
2733 Id := Spec_Id;
2734 else
2735 Id := Body_Id;
2736 end if;
2738 -- Would be nice to point to return statement here, can we
2739 -- borrow the Check_Returns procedure here ???
2741 if Return_Present (Id) then
2742 Check_SPARK_05_Restriction
2743 ("procedure should not have RETURN", N);
2744 end if;
2745 end if;
2746 end Check_Missing_Return;
2748 -----------------------
2749 -- Disambiguate_Spec --
2750 -----------------------
2752 function Disambiguate_Spec return Entity_Id is
2753 Priv_Spec : Entity_Id;
2754 Spec_N : Entity_Id;
2756 procedure Replace_Types (To_Corresponding : Boolean);
2757 -- Depending on the flag, replace the type of formal parameters of
2758 -- Body_Id if it is a concurrent type implementing interfaces with
2759 -- the corresponding record type or the other way around.
2761 procedure Replace_Types (To_Corresponding : Boolean) is
2762 Formal : Entity_Id;
2763 Formal_Typ : Entity_Id;
2765 begin
2766 Formal := First_Formal (Body_Id);
2767 while Present (Formal) loop
2768 Formal_Typ := Etype (Formal);
2770 if Is_Class_Wide_Type (Formal_Typ) then
2771 Formal_Typ := Root_Type (Formal_Typ);
2772 end if;
2774 -- From concurrent type to corresponding record
2776 if To_Corresponding then
2777 if Is_Concurrent_Type (Formal_Typ)
2778 and then Present (Corresponding_Record_Type (Formal_Typ))
2779 and then Present (Interfaces (
2780 Corresponding_Record_Type (Formal_Typ)))
2781 then
2782 Set_Etype (Formal,
2783 Corresponding_Record_Type (Formal_Typ));
2784 end if;
2786 -- From corresponding record to concurrent type
2788 else
2789 if Is_Concurrent_Record_Type (Formal_Typ)
2790 and then Present (Interfaces (Formal_Typ))
2791 then
2792 Set_Etype (Formal,
2793 Corresponding_Concurrent_Type (Formal_Typ));
2794 end if;
2795 end if;
2797 Next_Formal (Formal);
2798 end loop;
2799 end Replace_Types;
2801 -- Start of processing for Disambiguate_Spec
2803 begin
2804 -- Try to retrieve the specification of the body as is. All error
2805 -- messages are suppressed because the body may not have a spec in
2806 -- its current state.
2808 Spec_N := Find_Corresponding_Spec (N, False);
2810 -- It is possible that this is the body of a primitive declared
2811 -- between a private and a full view of a concurrent type. The
2812 -- controlling parameter of the spec carries the concurrent type,
2813 -- not the corresponding record type as transformed by Analyze_
2814 -- Subprogram_Specification. In such cases, we undo the change
2815 -- made by the analysis of the specification and try to find the
2816 -- spec again.
2818 -- Note that wrappers already have their corresponding specs and
2819 -- bodies set during their creation, so if the candidate spec is
2820 -- a wrapper, then we definitely need to swap all types to their
2821 -- original concurrent status.
2823 if No (Spec_N)
2824 or else Is_Primitive_Wrapper (Spec_N)
2825 then
2826 -- Restore all references of corresponding record types to the
2827 -- original concurrent types.
2829 Replace_Types (To_Corresponding => False);
2830 Priv_Spec := Find_Corresponding_Spec (N, False);
2832 -- The current body truly belongs to a primitive declared between
2833 -- a private and a full view. We leave the modified body as is,
2834 -- and return the true spec.
2836 if Present (Priv_Spec)
2837 and then Is_Private_Primitive (Priv_Spec)
2838 then
2839 return Priv_Spec;
2840 end if;
2842 -- In case that this is some sort of error, restore the original
2843 -- state of the body.
2845 Replace_Types (To_Corresponding => True);
2846 end if;
2848 return Spec_N;
2849 end Disambiguate_Spec;
2851 ----------------------------
2852 -- Exchange_Limited_Views --
2853 ----------------------------
2855 procedure Exchange_Limited_Views (Subp_Id : Entity_Id) is
2856 procedure Detect_And_Exchange (Id : Entity_Id);
2857 -- Determine whether Id's type denotes an incomplete type associated
2858 -- with a limited with clause and exchange the limited view with the
2859 -- non-limited one.
2861 -------------------------
2862 -- Detect_And_Exchange --
2863 -------------------------
2865 procedure Detect_And_Exchange (Id : Entity_Id) is
2866 Typ : constant Entity_Id := Etype (Id);
2868 begin
2869 if Ekind (Typ) = E_Incomplete_Type
2870 and then From_Limited_With (Typ)
2871 and then Present (Non_Limited_View (Typ))
2872 then
2873 Set_Etype (Id, Non_Limited_View (Typ));
2874 end if;
2875 end Detect_And_Exchange;
2877 -- Local variables
2879 Formal : Entity_Id;
2881 -- Start of processing for Exchange_Limited_Views
2883 begin
2884 if No (Subp_Id) then
2885 return;
2887 -- Do not process subprogram bodies as they already use the non-
2888 -- limited view of types.
2890 elsif not Ekind_In (Subp_Id, E_Function, E_Procedure) then
2891 return;
2892 end if;
2894 -- Examine all formals and swap views when applicable
2896 Formal := First_Formal (Subp_Id);
2897 while Present (Formal) loop
2898 Detect_And_Exchange (Formal);
2900 Next_Formal (Formal);
2901 end loop;
2903 -- Process the return type of a function
2905 if Ekind (Subp_Id) = E_Function then
2906 Detect_And_Exchange (Subp_Id);
2907 end if;
2908 end Exchange_Limited_Views;
2910 -------------------------------------
2911 -- Is_Private_Concurrent_Primitive --
2912 -------------------------------------
2914 function Is_Private_Concurrent_Primitive
2915 (Subp_Id : Entity_Id) return Boolean
2917 Formal_Typ : Entity_Id;
2919 begin
2920 if Present (First_Formal (Subp_Id)) then
2921 Formal_Typ := Etype (First_Formal (Subp_Id));
2923 if Is_Concurrent_Record_Type (Formal_Typ) then
2924 if Is_Class_Wide_Type (Formal_Typ) then
2925 Formal_Typ := Root_Type (Formal_Typ);
2926 end if;
2928 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
2929 end if;
2931 -- The type of the first formal is a concurrent tagged type with
2932 -- a private view.
2934 return
2935 Is_Concurrent_Type (Formal_Typ)
2936 and then Is_Tagged_Type (Formal_Typ)
2937 and then Has_Private_Declaration (Formal_Typ);
2938 end if;
2940 return False;
2941 end Is_Private_Concurrent_Primitive;
2943 ----------------------------
2944 -- Set_Trivial_Subprogram --
2945 ----------------------------
2947 procedure Set_Trivial_Subprogram (N : Node_Id) is
2948 Nxt : constant Node_Id := Next (N);
2950 begin
2951 Set_Is_Trivial_Subprogram (Body_Id);
2953 if Present (Spec_Id) then
2954 Set_Is_Trivial_Subprogram (Spec_Id);
2955 end if;
2957 if Present (Nxt)
2958 and then Nkind (Nxt) = N_Simple_Return_Statement
2959 and then No (Next (Nxt))
2960 and then Present (Expression (Nxt))
2961 and then Is_Entity_Name (Expression (Nxt))
2962 then
2963 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
2964 end if;
2965 end Set_Trivial_Subprogram;
2967 ---------------------------------
2968 -- Verify_Overriding_Indicator --
2969 ---------------------------------
2971 procedure Verify_Overriding_Indicator is
2972 begin
2973 if Must_Override (Body_Spec) then
2974 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
2975 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
2976 then
2977 null;
2979 elsif not Present (Overridden_Operation (Spec_Id)) then
2980 Error_Msg_NE
2981 ("subprogram& is not overriding", Body_Spec, Spec_Id);
2983 -- Overriding indicators aren't allowed for protected subprogram
2984 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
2985 -- this to a warning if -gnatd.E is enabled.
2987 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
2988 Error_Msg_Warn := Error_To_Warning;
2989 Error_Msg_N
2990 ("<<overriding indicator not allowed for protected "
2991 & "subprogram body", Body_Spec);
2992 end if;
2994 elsif Must_Not_Override (Body_Spec) then
2995 if Present (Overridden_Operation (Spec_Id)) then
2996 Error_Msg_NE
2997 ("subprogram& overrides inherited operation",
2998 Body_Spec, Spec_Id);
3000 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
3001 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
3002 then
3003 Error_Msg_NE
3004 ("subprogram& overrides predefined operator ",
3005 Body_Spec, Spec_Id);
3007 -- Overriding indicators aren't allowed for protected subprogram
3008 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3009 -- this to a warning if -gnatd.E is enabled.
3011 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
3012 Error_Msg_Warn := Error_To_Warning;
3014 Error_Msg_N
3015 ("<<overriding indicator not allowed "
3016 & "for protected subprogram body", Body_Spec);
3018 -- If this is not a primitive operation, then the overriding
3019 -- indicator is altogether illegal.
3021 elsif not Is_Primitive (Spec_Id) then
3022 Error_Msg_N
3023 ("overriding indicator only allowed "
3024 & "if subprogram is primitive", Body_Spec);
3025 end if;
3027 -- If checking the style rule and the operation overrides, then
3028 -- issue a warning about a missing overriding_indicator. Protected
3029 -- subprogram bodies are excluded from this style checking, since
3030 -- they aren't primitives (even though their declarations can
3031 -- override) and aren't allowed to have an overriding_indicator.
3033 elsif Style_Check
3034 and then Present (Overridden_Operation (Spec_Id))
3035 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
3036 then
3037 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3038 Style.Missing_Overriding (N, Body_Id);
3040 elsif Style_Check
3041 and then Can_Override_Operator (Spec_Id)
3042 and then not Is_Predefined_File_Name
3043 (Unit_File_Name (Get_Source_Unit (Spec_Id)))
3044 then
3045 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
3046 Style.Missing_Overriding (N, Body_Id);
3047 end if;
3048 end Verify_Overriding_Indicator;
3050 -- Start of processing for Analyze_Subprogram_Body_Helper
3052 begin
3053 -- Generic subprograms are handled separately. They always have a
3054 -- generic specification. Determine whether current scope has a
3055 -- previous declaration.
3057 -- If the subprogram body is defined within an instance of the same
3058 -- name, the instance appears as a package renaming, and will be hidden
3059 -- within the subprogram.
3061 if Present (Prev_Id)
3062 and then not Is_Overloadable (Prev_Id)
3063 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
3064 or else Comes_From_Source (Prev_Id))
3065 then
3066 if Is_Generic_Subprogram (Prev_Id) then
3067 Spec_Id := Prev_Id;
3068 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3069 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3071 Analyze_Generic_Subprogram_Body (N, Spec_Id);
3073 if Nkind (N) = N_Subprogram_Body then
3074 HSS := Handled_Statement_Sequence (N);
3075 Check_Missing_Return;
3076 end if;
3078 return;
3080 else
3081 -- Previous entity conflicts with subprogram name. Attempting to
3082 -- enter name will post error.
3084 Enter_Name (Body_Id);
3085 return;
3086 end if;
3088 -- Non-generic case, find the subprogram declaration, if one was seen,
3089 -- or enter new overloaded entity in the current scope. If the
3090 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3091 -- part of the context of one of its subunits. No need to redo the
3092 -- analysis.
3094 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
3095 return;
3097 else
3098 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3100 if Nkind (N) = N_Subprogram_Body_Stub
3101 or else No (Corresponding_Spec (N))
3102 then
3103 if Is_Private_Concurrent_Primitive (Body_Id) then
3104 Spec_Id := Disambiguate_Spec;
3105 else
3106 Spec_Id := Find_Corresponding_Spec (N);
3108 -- In GNATprove mode, if the body has no previous spec, create
3109 -- one so that the inlining machinery can operate properly.
3110 -- Transfer aspects, if any, to the new spec, so that they
3111 -- are legal and can be processed ahead of the body.
3112 -- We make two copies of the given spec, one for the new
3113 -- declaration, and one for the body.
3115 if No (Spec_Id)
3116 and then GNATprove_Mode
3118 -- Inlining does not apply during pre-analysis of code
3120 and then Full_Analysis
3122 -- Inlining only applies to full bodies, not stubs
3124 and then Nkind (N) /= N_Subprogram_Body_Stub
3126 -- Inlining only applies to bodies in the source code, not to
3127 -- those generated by the compiler. In particular, expression
3128 -- functions, whose body is generated by the compiler, are
3129 -- treated specially by GNATprove.
3131 and then Comes_From_Source (Body_Id)
3133 -- This cannot be done for a compilation unit, which is not
3134 -- in a context where we can insert a new spec.
3136 and then Is_List_Member (N)
3138 -- Inlining only applies to subprograms without contracts,
3139 -- as a contract is a sign that GNATprove should perform a
3140 -- modular analysis of the subprogram instead of a contextual
3141 -- analysis at each call site. The same test is performed in
3142 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3143 -- here in another form (because the contract has not
3144 -- been attached to the body) to avoid frontend errors in
3145 -- case pragmas are used instead of aspects, because the
3146 -- corresponding pragmas in the body would not be transferred
3147 -- to the spec, leading to legality errors.
3149 and then not Body_Has_Contract
3150 then
3151 declare
3152 Body_Spec : constant Node_Id :=
3153 Copy_Separate_Tree (Specification (N));
3154 New_Decl : constant Node_Id :=
3155 Make_Subprogram_Declaration (Loc,
3156 Copy_Separate_Tree (Specification (N)));
3158 SPARK_Mode_Aspect : Node_Id;
3159 Aspects : List_Id;
3160 Prag, Aspect : Node_Id;
3162 begin
3163 Insert_Before (N, New_Decl);
3164 Move_Aspects (From => N, To => New_Decl);
3166 -- Mark the newly moved aspects as not analyzed, so that
3167 -- their effect on New_Decl is properly analyzed.
3169 Aspect := First (Aspect_Specifications (New_Decl));
3170 while Present (Aspect) loop
3171 Set_Analyzed (Aspect, False);
3172 Next (Aspect);
3173 end loop;
3175 Analyze (New_Decl);
3177 -- The analysis of the generated subprogram declaration
3178 -- may have introduced pragmas that need to be analyzed.
3180 Prag := Next (New_Decl);
3181 while Prag /= N loop
3182 Analyze (Prag);
3183 Next (Prag);
3184 end loop;
3186 Spec_Id := Defining_Entity (New_Decl);
3188 -- As Body_Id originally comes from source, mark the new
3189 -- Spec_Id as such, which is required so that calls to
3190 -- this subprogram are registered in the local effects
3191 -- stored in ALI files for GNATprove.
3193 Set_Comes_From_Source (Spec_Id, True);
3195 -- If aspect SPARK_Mode was specified on the body, it
3196 -- needs to be repeated on the generated decl and the
3197 -- body. Since the original aspect was moved to the
3198 -- generated decl, copy it for the body.
3200 if Has_Aspect (Spec_Id, Aspect_SPARK_Mode) then
3201 SPARK_Mode_Aspect :=
3202 New_Copy (Find_Aspect (Spec_Id, Aspect_SPARK_Mode));
3203 Set_Analyzed (SPARK_Mode_Aspect, False);
3204 Aspects := New_List (SPARK_Mode_Aspect);
3205 Set_Aspect_Specifications (N, Aspects);
3206 end if;
3208 Set_Specification (N, Body_Spec);
3209 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3210 Set_Corresponding_Spec (N, Spec_Id);
3211 end;
3212 end if;
3213 end if;
3215 -- If this is a duplicate body, no point in analyzing it
3217 if Error_Posted (N) then
3218 return;
3219 end if;
3221 -- A subprogram body should cause freezing of its own declaration,
3222 -- but if there was no previous explicit declaration, then the
3223 -- subprogram will get frozen too late (there may be code within
3224 -- the body that depends on the subprogram having been frozen,
3225 -- such as uses of extra formals), so we force it to be frozen
3226 -- here. Same holds if the body and spec are compilation units.
3227 -- Finally, if the return type is an anonymous access to protected
3228 -- subprogram, it must be frozen before the body because its
3229 -- expansion has generated an equivalent type that is used when
3230 -- elaborating the body.
3232 -- An exception in the case of Ada 2012, AI05-177: The bodies
3233 -- created for expression functions do not freeze.
3235 if No (Spec_Id)
3236 and then Nkind (Original_Node (N)) /= N_Expression_Function
3237 then
3238 Freeze_Before (N, Body_Id);
3240 elsif Nkind (Parent (N)) = N_Compilation_Unit then
3241 Freeze_Before (N, Spec_Id);
3243 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
3244 Freeze_Before (N, Etype (Body_Id));
3245 end if;
3247 else
3248 Spec_Id := Corresponding_Spec (N);
3249 end if;
3250 end if;
3252 -- Previously we scanned the body to look for nested subprograms, and
3253 -- rejected an inline directive if nested subprograms were present,
3254 -- because the back-end would generate conflicting symbols for the
3255 -- nested bodies. This is now unnecessary.
3257 -- Look ahead to recognize a pragma Inline that appears after the body
3259 Check_Inline_Pragma (Spec_Id);
3261 -- Deal with special case of a fully private operation in the body of
3262 -- the protected type. We must create a declaration for the subprogram,
3263 -- in order to attach the protected subprogram that will be used in
3264 -- internal calls. We exclude compiler generated bodies from the
3265 -- expander since the issue does not arise for those cases.
3267 if No (Spec_Id)
3268 and then Comes_From_Source (N)
3269 and then Is_Protected_Type (Current_Scope)
3270 then
3271 Spec_Id := Build_Private_Protected_Declaration (N);
3272 end if;
3274 -- If a separate spec is present, then deal with freezing issues
3276 if Present (Spec_Id) then
3277 Spec_Decl := Unit_Declaration_Node (Spec_Id);
3278 Verify_Overriding_Indicator;
3280 -- In general, the spec will be frozen when we start analyzing the
3281 -- body. However, for internally generated operations, such as
3282 -- wrapper functions for inherited operations with controlling
3283 -- results, the spec may not have been frozen by the time we expand
3284 -- the freeze actions that include the bodies. In particular, extra
3285 -- formals for accessibility or for return-in-place may need to be
3286 -- generated. Freeze nodes, if any, are inserted before the current
3287 -- body. These freeze actions are also needed in ASIS mode to enable
3288 -- the proper back-annotations.
3290 if not Is_Frozen (Spec_Id)
3291 and then (Expander_Active or ASIS_Mode)
3292 then
3293 -- Force the generation of its freezing node to ensure proper
3294 -- management of access types in the backend.
3296 -- This is definitely needed for some cases, but it is not clear
3297 -- why, to be investigated further???
3299 Set_Has_Delayed_Freeze (Spec_Id);
3300 Freeze_Before (N, Spec_Id);
3301 end if;
3302 end if;
3304 -- Mark presence of postcondition procedure in current scope and mark
3305 -- the procedure itself as needing debug info. The latter is important
3306 -- when analyzing decision coverage (for example, for MC/DC coverage).
3308 if Chars (Body_Id) = Name_uPostconditions then
3309 Set_Has_Postconditions (Current_Scope);
3310 Set_Debug_Info_Needed (Body_Id);
3311 end if;
3313 -- Place subprogram on scope stack, and make formals visible. If there
3314 -- is a spec, the visible entity remains that of the spec.
3316 if Present (Spec_Id) then
3317 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
3319 if Is_Child_Unit (Spec_Id) then
3320 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
3321 end if;
3323 if Style_Check then
3324 Style.Check_Identifier (Body_Id, Spec_Id);
3325 end if;
3327 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
3328 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
3330 if Is_Abstract_Subprogram (Spec_Id) then
3331 Error_Msg_N ("an abstract subprogram cannot have a body", N);
3332 return;
3334 else
3335 Set_Convention (Body_Id, Convention (Spec_Id));
3336 Set_Has_Completion (Spec_Id);
3338 -- Inherit the "ghostness" of the subprogram spec. Note that this
3339 -- property is not directly inherited as the body may be subject
3340 -- to a different Ghost assertion policy.
3342 if Is_Ghost_Entity (Spec_Id) or else Within_Ghost_Scope then
3343 Set_Is_Ghost_Entity (Body_Id);
3345 -- The Ghost policy in effect at the point of declaration and
3346 -- at the point of completion must match (SPARK RM 6.9(15)).
3348 Check_Ghost_Completion (Spec_Id, Body_Id);
3349 end if;
3351 if Is_Protected_Type (Scope (Spec_Id)) then
3352 Prot_Typ := Scope (Spec_Id);
3353 end if;
3355 -- If this is a body generated for a renaming, do not check for
3356 -- full conformance. The check is redundant, because the spec of
3357 -- the body is a copy of the spec in the renaming declaration,
3358 -- and the test can lead to spurious errors on nested defaults.
3360 if Present (Spec_Decl)
3361 and then not Comes_From_Source (N)
3362 and then
3363 (Nkind (Original_Node (Spec_Decl)) =
3364 N_Subprogram_Renaming_Declaration
3365 or else (Present (Corresponding_Body (Spec_Decl))
3366 and then
3367 Nkind (Unit_Declaration_Node
3368 (Corresponding_Body (Spec_Decl))) =
3369 N_Subprogram_Renaming_Declaration))
3370 then
3371 Conformant := True;
3373 -- Conversely, the spec may have been generated for specless body
3374 -- with an inline pragma.
3376 elsif Comes_From_Source (N)
3377 and then not Comes_From_Source (Spec_Id)
3378 and then Has_Pragma_Inline (Spec_Id)
3379 then
3380 Conformant := True;
3382 else
3383 Check_Conformance
3384 (Body_Id, Spec_Id,
3385 Fully_Conformant, True, Conformant, Body_Id);
3386 end if;
3388 -- If the body is not fully conformant, we have to decide if we
3389 -- should analyze it or not. If it has a really messed up profile
3390 -- then we probably should not analyze it, since we will get too
3391 -- many bogus messages.
3393 -- Our decision is to go ahead in the non-fully conformant case
3394 -- only if it is at least mode conformant with the spec. Note
3395 -- that the call to Check_Fully_Conformant has issued the proper
3396 -- error messages to complain about the lack of conformance.
3398 if not Conformant
3399 and then not Mode_Conformant (Body_Id, Spec_Id)
3400 then
3401 return;
3402 end if;
3403 end if;
3405 if Spec_Id /= Body_Id then
3406 Reference_Body_Formals (Spec_Id, Body_Id);
3407 end if;
3409 Set_Ekind (Body_Id, E_Subprogram_Body);
3411 if Nkind (N) = N_Subprogram_Body_Stub then
3412 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
3414 -- Regular body
3416 else
3417 Set_Corresponding_Spec (N, Spec_Id);
3419 -- Ada 2005 (AI-345): If the operation is a primitive operation
3420 -- of a concurrent type, the type of the first parameter has been
3421 -- replaced with the corresponding record, which is the proper
3422 -- run-time structure to use. However, within the body there may
3423 -- be uses of the formals that depend on primitive operations
3424 -- of the type (in particular calls in prefixed form) for which
3425 -- we need the original concurrent type. The operation may have
3426 -- several controlling formals, so the replacement must be done
3427 -- for all of them.
3429 if Comes_From_Source (Spec_Id)
3430 and then Present (First_Entity (Spec_Id))
3431 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
3432 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
3433 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
3434 and then Present (Corresponding_Concurrent_Type
3435 (Etype (First_Entity (Spec_Id))))
3436 then
3437 declare
3438 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
3439 Form : Entity_Id;
3441 begin
3442 Form := First_Formal (Spec_Id);
3443 while Present (Form) loop
3444 if Etype (Form) = Typ then
3445 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
3446 end if;
3448 Next_Formal (Form);
3449 end loop;
3450 end;
3451 end if;
3453 -- Make the formals visible, and place subprogram on scope stack.
3454 -- This is also the point at which we set Last_Real_Spec_Entity
3455 -- to mark the entities which will not be moved to the body.
3457 Install_Formals (Spec_Id);
3458 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
3460 -- Within an instance, add local renaming declarations so that
3461 -- gdb can retrieve the values of actuals more easily. This is
3462 -- only relevant if generating code (and indeed we definitely
3463 -- do not want these definitions -gnatc mode, because that would
3464 -- confuse ASIS).
3466 if Is_Generic_Instance (Spec_Id)
3467 and then Is_Wrapper_Package (Current_Scope)
3468 and then Expander_Active
3469 then
3470 Build_Subprogram_Instance_Renamings (N, Current_Scope);
3471 end if;
3473 Push_Scope (Spec_Id);
3475 -- Make sure that the subprogram is immediately visible. For
3476 -- child units that have no separate spec this is indispensable.
3477 -- Otherwise it is safe albeit redundant.
3479 Set_Is_Immediately_Visible (Spec_Id);
3480 end if;
3482 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
3483 Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
3484 Set_Scope (Body_Id, Scope (Spec_Id));
3485 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
3487 -- Case of subprogram body with no previous spec
3489 else
3490 -- Check for style warning required
3492 if Style_Check
3494 -- Only apply check for source level subprograms for which checks
3495 -- have not been suppressed.
3497 and then Comes_From_Source (Body_Id)
3498 and then not Suppress_Style_Checks (Body_Id)
3500 -- No warnings within an instance
3502 and then not In_Instance
3504 -- No warnings for expression functions
3506 and then Nkind (Original_Node (N)) /= N_Expression_Function
3507 then
3508 Style.Body_With_No_Spec (N);
3509 end if;
3511 New_Overloaded_Entity (Body_Id);
3513 if Nkind (N) /= N_Subprogram_Body_Stub then
3514 Set_Acts_As_Spec (N);
3515 Generate_Definition (Body_Id);
3516 Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
3517 Generate_Reference
3518 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
3519 Install_Formals (Body_Id);
3521 Push_Scope (Body_Id);
3522 end if;
3524 -- For stubs and bodies with no previous spec, generate references to
3525 -- formals.
3527 Generate_Reference_To_Formals (Body_Id);
3528 end if;
3530 -- Set SPARK_Mode from context
3532 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
3533 Set_SPARK_Pragma_Inherited (Body_Id, True);
3535 -- If the return type is an anonymous access type whose designated type
3536 -- is the limited view of a class-wide type and the non-limited view is
3537 -- available, update the return type accordingly.
3539 if Ada_Version >= Ada_2005 and then Comes_From_Source (N) then
3540 declare
3541 Etyp : Entity_Id;
3542 Rtyp : Entity_Id;
3544 begin
3545 Rtyp := Etype (Current_Scope);
3547 if Ekind (Rtyp) = E_Anonymous_Access_Type then
3548 Etyp := Directly_Designated_Type (Rtyp);
3550 if Is_Class_Wide_Type (Etyp)
3551 and then From_Limited_With (Etyp)
3552 then
3553 Set_Directly_Designated_Type
3554 (Etype (Current_Scope), Available_View (Etyp));
3555 end if;
3556 end if;
3557 end;
3558 end if;
3560 -- If this is the proper body of a stub, we must verify that the stub
3561 -- conforms to the body, and to the previous spec if one was present.
3562 -- We know already that the body conforms to that spec. This test is
3563 -- only required for subprograms that come from source.
3565 if Nkind (Parent (N)) = N_Subunit
3566 and then Comes_From_Source (N)
3567 and then not Error_Posted (Body_Id)
3568 and then Nkind (Corresponding_Stub (Parent (N))) =
3569 N_Subprogram_Body_Stub
3570 then
3571 declare
3572 Old_Id : constant Entity_Id :=
3573 Defining_Entity
3574 (Specification (Corresponding_Stub (Parent (N))));
3576 Conformant : Boolean := False;
3578 begin
3579 if No (Spec_Id) then
3580 Check_Fully_Conformant (Body_Id, Old_Id);
3582 else
3583 Check_Conformance
3584 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
3586 if not Conformant then
3588 -- The stub was taken to be a new declaration. Indicate that
3589 -- it lacks a body.
3591 Set_Has_Completion (Old_Id, False);
3592 end if;
3593 end if;
3594 end;
3595 end if;
3597 Set_Has_Completion (Body_Id);
3598 Check_Eliminated (Body_Id);
3600 if Nkind (N) = N_Subprogram_Body_Stub then
3602 -- Analyze any aspect specifications that appear on the subprogram
3603 -- body stub.
3605 if Has_Aspects (N) then
3606 Analyze_Aspects_On_Body_Or_Stub;
3607 end if;
3609 -- Stop the analysis now as the stub cannot be inlined, plus it does
3610 -- not have declarative or statement lists.
3612 return;
3613 end if;
3615 -- Handle frontend inlining
3617 -- Note: Normally we don't do any inlining if expansion is off, since
3618 -- we won't generate code in any case. An exception arises in GNATprove
3619 -- mode where we want to expand some calls in place, even with expansion
3620 -- disabled, since the inlining eases formal verification.
3622 if not GNATprove_Mode
3623 and then Expander_Active
3624 and then Serious_Errors_Detected = 0
3625 and then Present (Spec_Id)
3626 and then Has_Pragma_Inline (Spec_Id)
3627 then
3628 -- Legacy implementation (relying on frontend inlining)
3630 if not Back_End_Inlining then
3631 if Has_Pragma_Inline_Always (Spec_Id)
3632 or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining)
3633 then
3634 Build_Body_To_Inline (N, Spec_Id);
3635 end if;
3637 -- New implementation (relying on backend inlining)
3639 else
3640 if Has_Pragma_Inline_Always (Spec_Id)
3641 or else Optimization_Level > 0
3642 then
3643 -- Handle function returning an unconstrained type
3645 if Comes_From_Source (Body_Id)
3646 and then Ekind (Spec_Id) = E_Function
3647 and then Returns_Unconstrained_Type (Spec_Id)
3648 then
3649 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
3651 else
3652 declare
3653 Subp_Body : constant Node_Id :=
3654 Unit_Declaration_Node (Body_Id);
3655 Subp_Decl : constant List_Id := Declarations (Subp_Body);
3657 begin
3658 -- Do not pass inlining to the backend if the subprogram
3659 -- has declarations or statements which cannot be inlined
3660 -- by the backend. This check is done here to emit an
3661 -- error instead of the generic warning message reported
3662 -- by the GCC backend (ie. "function might not be
3663 -- inlinable").
3665 if Present (Subp_Decl)
3666 and then Has_Excluded_Declaration (Spec_Id, Subp_Decl)
3667 then
3668 null;
3670 elsif Has_Excluded_Statement
3671 (Spec_Id,
3672 Statements
3673 (Handled_Statement_Sequence (Subp_Body)))
3674 then
3675 null;
3677 -- If the backend inlining is available then at this
3678 -- stage we only have to mark the subprogram as inlined.
3679 -- The expander will take care of registering it in the
3680 -- table of subprograms inlined by the backend a part of
3681 -- processing calls to it (cf. Expand_Call)
3683 else
3684 Set_Is_Inlined (Spec_Id);
3685 end if;
3686 end;
3687 end if;
3688 end if;
3689 end if;
3691 -- In GNATprove mode, inline only when there is a separate subprogram
3692 -- declaration for now, as inlining of subprogram bodies acting as
3693 -- declarations, or subprogram stubs, are not supported by frontend
3694 -- inlining. This inlining should occur after analysis of the body, so
3695 -- that it is known whether the value of SPARK_Mode applicable to the
3696 -- body, which can be defined by a pragma inside the body.
3698 elsif GNATprove_Mode
3699 and then Full_Analysis
3700 and then not Inside_A_Generic
3701 and then Present (Spec_Id)
3702 and then Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Declaration
3703 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
3704 and then not Body_Has_Contract
3705 then
3706 Build_Body_To_Inline (N, Spec_Id);
3707 end if;
3709 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
3710 -- of the specification we have to install the private withed units.
3711 -- This holds for child units as well.
3713 if Is_Compilation_Unit (Body_Id)
3714 or else Nkind (Parent (N)) = N_Compilation_Unit
3715 then
3716 Install_Private_With_Clauses (Body_Id);
3717 end if;
3719 Check_Anonymous_Return;
3721 -- Set the Protected_Formal field of each extra formal of the protected
3722 -- subprogram to reference the corresponding extra formal of the
3723 -- subprogram that implements it. For regular formals this occurs when
3724 -- the protected subprogram's declaration is expanded, but the extra
3725 -- formals don't get created until the subprogram is frozen. We need to
3726 -- do this before analyzing the protected subprogram's body so that any
3727 -- references to the original subprogram's extra formals will be changed
3728 -- refer to the implementing subprogram's formals (see Expand_Formal).
3730 if Present (Spec_Id)
3731 and then Is_Protected_Type (Scope (Spec_Id))
3732 and then Present (Protected_Body_Subprogram (Spec_Id))
3733 then
3734 declare
3735 Impl_Subp : constant Entity_Id :=
3736 Protected_Body_Subprogram (Spec_Id);
3737 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
3738 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
3739 begin
3740 while Present (Prot_Ext_Formal) loop
3741 pragma Assert (Present (Impl_Ext_Formal));
3742 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
3743 Next_Formal_With_Extras (Prot_Ext_Formal);
3744 Next_Formal_With_Extras (Impl_Ext_Formal);
3745 end loop;
3746 end;
3747 end if;
3749 -- Now we can go on to analyze the body
3751 HSS := Handled_Statement_Sequence (N);
3752 Set_Actual_Subtypes (N, Current_Scope);
3754 -- Add a declaration for the Protection object, renaming declarations
3755 -- for discriminals and privals and finally a declaration for the entry
3756 -- family index (if applicable). This form of early expansion is done
3757 -- when the Expander is active because Install_Private_Data_Declarations
3758 -- references entities which were created during regular expansion. The
3759 -- subprogram entity must come from source, and not be an internally
3760 -- generated subprogram.
3762 if Expander_Active
3763 and then Present (Prot_Typ)
3764 and then Present (Spec_Id)
3765 and then Comes_From_Source (Spec_Id)
3766 and then not Is_Eliminated (Spec_Id)
3767 then
3768 Install_Private_Data_Declarations
3769 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
3770 end if;
3772 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
3773 -- may now appear in parameter and result profiles. Since the analysis
3774 -- of a subprogram body may use the parameter and result profile of the
3775 -- spec, swap any limited views with their non-limited counterpart.
3777 if Ada_Version >= Ada_2012 then
3778 Exchange_Limited_Views (Spec_Id);
3779 end if;
3781 -- Analyze any aspect specifications that appear on the subprogram body
3783 if Has_Aspects (N) then
3784 Analyze_Aspects_On_Body_Or_Stub;
3785 end if;
3787 -- Deal with [refined] preconditions, postconditions, Contract_Cases,
3788 -- invariants and predicates associated with the body and its spec.
3789 -- Note that this is not pure expansion as Expand_Subprogram_Contract
3790 -- prepares the contract assertions for generic subprograms or for ASIS.
3791 -- Do not generate contract checks in SPARK mode.
3793 if not GNATprove_Mode then
3794 Expand_Subprogram_Contract (N, Spec_Id, Body_Id);
3795 end if;
3797 -- Analyze the declarations (this call will analyze the precondition
3798 -- Check pragmas we prepended to the list, as well as the declaration
3799 -- of the _Postconditions procedure).
3801 Analyze_Declarations (Declarations (N));
3803 -- Verify that the SPARK_Mode of the body agrees with that of its spec
3805 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
3806 if Present (SPARK_Pragma (Spec_Id)) then
3807 if Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Spec_Id)) = Off
3808 and then
3809 Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Body_Id)) = On
3810 then
3811 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
3812 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
3813 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
3814 Error_Msg_NE
3815 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
3816 end if;
3818 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
3819 null;
3821 else
3822 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
3823 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
3824 Error_Msg_Sloc := Sloc (Spec_Id);
3825 Error_Msg_NE
3826 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
3827 end if;
3828 end if;
3830 -- If SPARK_Mode for body is not On, disable frontend inlining for this
3831 -- subprogram in GNATprove mode, as its body should not be analyzed.
3833 if SPARK_Mode /= On
3834 and then GNATprove_Mode
3835 and then Present (Spec_Id)
3836 and then Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Declaration
3837 then
3838 Set_Body_To_Inline (Parent (Parent (Spec_Id)), Empty);
3839 Set_Is_Inlined_Always (Spec_Id, False);
3840 end if;
3842 -- Check completion, and analyze the statements
3844 Check_Completion;
3845 Inspect_Deferred_Constant_Completion (Declarations (N));
3846 Analyze (HSS);
3848 -- Deal with end of scope processing for the body
3850 Process_End_Label (HSS, 't', Current_Scope);
3851 End_Scope;
3852 Check_Subprogram_Order (N);
3853 Set_Analyzed (Body_Id);
3855 -- If we have a separate spec, then the analysis of the declarations
3856 -- caused the entities in the body to be chained to the spec id, but
3857 -- we want them chained to the body id. Only the formal parameters
3858 -- end up chained to the spec id in this case.
3860 if Present (Spec_Id) then
3862 -- We must conform to the categorization of our spec
3864 Validate_Categorization_Dependency (N, Spec_Id);
3866 -- And if this is a child unit, the parent units must conform
3868 if Is_Child_Unit (Spec_Id) then
3869 Validate_Categorization_Dependency
3870 (Unit_Declaration_Node (Spec_Id), Spec_Id);
3871 end if;
3873 -- Here is where we move entities from the spec to the body
3875 -- Case where there are entities that stay with the spec
3877 if Present (Last_Real_Spec_Entity) then
3879 -- No body entities (happens when the only real spec entities come
3880 -- from precondition and postcondition pragmas).
3882 if No (Last_Entity (Body_Id)) then
3883 Set_First_Entity
3884 (Body_Id, Next_Entity (Last_Real_Spec_Entity));
3886 -- Body entities present (formals), so chain stuff past them
3888 else
3889 Set_Next_Entity
3890 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
3891 end if;
3893 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
3894 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
3895 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
3897 -- Case where there are no spec entities, in this case there can be
3898 -- no body entities either, so just move everything.
3900 else
3901 pragma Assert (No (Last_Entity (Body_Id)));
3902 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
3903 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
3904 Set_First_Entity (Spec_Id, Empty);
3905 Set_Last_Entity (Spec_Id, Empty);
3906 end if;
3907 end if;
3909 Check_Missing_Return;
3911 -- Now we are going to check for variables that are never modified in
3912 -- the body of the procedure. But first we deal with a special case
3913 -- where we want to modify this check. If the body of the subprogram
3914 -- starts with a raise statement or its equivalent, or if the body
3915 -- consists entirely of a null statement, then it is pretty obvious that
3916 -- it is OK to not reference the parameters. For example, this might be
3917 -- the following common idiom for a stubbed function: statement of the
3918 -- procedure raises an exception. In particular this deals with the
3919 -- common idiom of a stubbed function, which appears something like:
3921 -- function F (A : Integer) return Some_Type;
3922 -- X : Some_Type;
3923 -- begin
3924 -- raise Program_Error;
3925 -- return X;
3926 -- end F;
3928 -- Here the purpose of X is simply to satisfy the annoying requirement
3929 -- in Ada that there be at least one return, and we certainly do not
3930 -- want to go posting warnings on X that it is not initialized. On
3931 -- the other hand, if X is entirely unreferenced that should still
3932 -- get a warning.
3934 -- What we do is to detect these cases, and if we find them, flag the
3935 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
3936 -- suppress unwanted warnings. For the case of the function stub above
3937 -- we have a special test to set X as apparently assigned to suppress
3938 -- the warning.
3940 declare
3941 Stm : Node_Id;
3943 begin
3944 -- Skip initial labels (for one thing this occurs when we are in
3945 -- front end ZCX mode, but in any case it is irrelevant), and also
3946 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
3948 Stm := First (Statements (HSS));
3949 while Nkind (Stm) = N_Label
3950 or else Nkind (Stm) in N_Push_xxx_Label
3951 loop
3952 Next (Stm);
3953 end loop;
3955 -- Do the test on the original statement before expansion
3957 declare
3958 Ostm : constant Node_Id := Original_Node (Stm);
3960 begin
3961 -- If explicit raise statement, turn on flag
3963 if Nkind (Ostm) = N_Raise_Statement then
3964 Set_Trivial_Subprogram (Stm);
3966 -- If null statement, and no following statements, turn on flag
3968 elsif Nkind (Stm) = N_Null_Statement
3969 and then Comes_From_Source (Stm)
3970 and then No (Next (Stm))
3971 then
3972 Set_Trivial_Subprogram (Stm);
3974 -- Check for explicit call cases which likely raise an exception
3976 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
3977 if Is_Entity_Name (Name (Ostm)) then
3978 declare
3979 Ent : constant Entity_Id := Entity (Name (Ostm));
3981 begin
3982 -- If the procedure is marked No_Return, then likely it
3983 -- raises an exception, but in any case it is not coming
3984 -- back here, so turn on the flag.
3986 if Present (Ent)
3987 and then Ekind (Ent) = E_Procedure
3988 and then No_Return (Ent)
3989 then
3990 Set_Trivial_Subprogram (Stm);
3991 end if;
3992 end;
3993 end if;
3994 end if;
3995 end;
3996 end;
3998 -- Check for variables that are never modified
4000 declare
4001 E1, E2 : Entity_Id;
4003 begin
4004 -- If there is a separate spec, then transfer Never_Set_In_Source
4005 -- flags from out parameters to the corresponding entities in the
4006 -- body. The reason we do that is we want to post error flags on
4007 -- the body entities, not the spec entities.
4009 if Present (Spec_Id) then
4010 E1 := First_Entity (Spec_Id);
4011 while Present (E1) loop
4012 if Ekind (E1) = E_Out_Parameter then
4013 E2 := First_Entity (Body_Id);
4014 while Present (E2) loop
4015 exit when Chars (E1) = Chars (E2);
4016 Next_Entity (E2);
4017 end loop;
4019 if Present (E2) then
4020 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
4021 end if;
4022 end if;
4024 Next_Entity (E1);
4025 end loop;
4026 end if;
4028 -- Check references in body
4030 Check_References (Body_Id);
4031 end;
4032 end Analyze_Subprogram_Body_Helper;
4034 ---------------------------------
4035 -- Analyze_Subprogram_Contract --
4036 ---------------------------------
4038 procedure Analyze_Subprogram_Contract (Subp : Entity_Id) is
4039 Items : constant Node_Id := Contract (Subp);
4040 Case_Prag : Node_Id := Empty;
4041 Depends : Node_Id := Empty;
4042 Global : Node_Id := Empty;
4043 Mode : SPARK_Mode_Type;
4044 Nam : Name_Id;
4045 Post_Prag : Node_Id := Empty;
4046 Prag : Node_Id;
4047 Seen_In_Case : Boolean := False;
4048 Seen_In_Post : Boolean := False;
4050 begin
4051 -- Due to the timing of contract analysis, delayed pragmas may be
4052 -- subject to the wrong SPARK_Mode, usually that of the enclosing
4053 -- context. To remedy this, restore the original SPARK_Mode of the
4054 -- related subprogram body.
4056 Save_SPARK_Mode_And_Set (Subp, Mode);
4058 if Present (Items) then
4060 -- Analyze pre- and postconditions
4062 Prag := Pre_Post_Conditions (Items);
4063 while Present (Prag) loop
4064 Analyze_Pre_Post_Condition_In_Decl_Part (Prag, Subp);
4066 -- Verify whether a postcondition mentions attribute 'Result and
4067 -- its expression introduces a post-state.
4069 if Warn_On_Suspicious_Contract
4070 and then Pragma_Name (Prag) = Name_Postcondition
4071 then
4072 Post_Prag := Prag;
4073 Check_Result_And_Post_State (Prag, Seen_In_Post);
4074 end if;
4076 Prag := Next_Pragma (Prag);
4077 end loop;
4079 -- Analyze contract-cases and test-cases
4081 Prag := Contract_Test_Cases (Items);
4082 while Present (Prag) loop
4083 Nam := Pragma_Name (Prag);
4085 if Nam = Name_Contract_Cases then
4086 Analyze_Contract_Cases_In_Decl_Part (Prag);
4088 -- Verify whether contract-cases mention attribute 'Result and
4089 -- its expression introduces a post-state. Perform the check
4090 -- only when the pragma is legal.
4092 if Warn_On_Suspicious_Contract
4093 and then not Error_Posted (Prag)
4094 then
4095 Case_Prag := Prag;
4096 Check_Result_And_Post_State (Prag, Seen_In_Case);
4097 end if;
4099 else
4100 pragma Assert (Nam = Name_Test_Case);
4101 Analyze_Test_Case_In_Decl_Part (Prag, Subp);
4102 end if;
4104 Prag := Next_Pragma (Prag);
4105 end loop;
4107 -- Analyze classification pragmas
4109 Prag := Classifications (Items);
4110 while Present (Prag) loop
4111 Nam := Pragma_Name (Prag);
4113 if Nam = Name_Depends then
4114 Depends := Prag;
4116 elsif Nam = Name_Global then
4117 Global := Prag;
4119 -- Note that pragma Extensions_Visible has already been analyzed
4121 end if;
4123 Prag := Next_Pragma (Prag);
4124 end loop;
4126 -- Analyze Global first as Depends may mention items classified in
4127 -- the global categorization.
4129 if Present (Global) then
4130 Analyze_Global_In_Decl_Part (Global);
4131 end if;
4133 -- Depends must be analyzed after Global in order to see the modes of
4134 -- all global items.
4136 if Present (Depends) then
4137 Analyze_Depends_In_Decl_Part (Depends);
4138 end if;
4139 end if;
4141 -- Emit an error when neither the postconditions nor the contract-cases
4142 -- mention attribute 'Result in the context of a function.
4144 if Warn_On_Suspicious_Contract
4145 and then Ekind_In (Subp, E_Function, E_Generic_Function)
4146 then
4147 if Present (Case_Prag)
4148 and then not Seen_In_Case
4149 and then Present (Post_Prag)
4150 and then not Seen_In_Post
4151 then
4152 Error_Msg_N
4153 ("neither function postcondition nor contract cases mention "
4154 & "result?T?", Post_Prag);
4156 elsif Present (Case_Prag) and then not Seen_In_Case then
4157 Error_Msg_N
4158 ("contract cases do not mention result?T?", Case_Prag);
4160 -- OK if we have at least one IN OUT parameter
4162 elsif Present (Post_Prag) and then not Seen_In_Post then
4163 declare
4164 F : Entity_Id;
4165 begin
4166 F := First_Formal (Subp);
4167 while Present (F) loop
4168 if Ekind (F) = E_In_Out_Parameter then
4169 return;
4170 else
4171 Next_Formal (F);
4172 end if;
4173 end loop;
4174 end;
4176 -- If no in-out parameters and no mention of Result, the contract
4177 -- is certainly suspicious.
4179 Error_Msg_N
4180 ("function postcondition does not mention result?T?", Post_Prag);
4181 end if;
4182 end if;
4184 -- Restore the SPARK_Mode of the enclosing context after all delayed
4185 -- pragmas have been analyzed.
4187 Restore_SPARK_Mode (Mode);
4188 end Analyze_Subprogram_Contract;
4190 ------------------------------------
4191 -- Analyze_Subprogram_Declaration --
4192 ------------------------------------
4194 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
4195 Scop : constant Entity_Id := Current_Scope;
4196 Designator : Entity_Id;
4198 Is_Completion : Boolean;
4199 -- Indicates whether a null procedure declaration is a completion
4201 begin
4202 -- Null procedures are not allowed in SPARK
4204 if Nkind (Specification (N)) = N_Procedure_Specification
4205 and then Null_Present (Specification (N))
4206 then
4207 Check_SPARK_05_Restriction ("null procedure is not allowed", N);
4209 if Is_Protected_Type (Current_Scope) then
4210 Error_Msg_N ("protected operation cannot be a null procedure", N);
4211 end if;
4213 Analyze_Null_Procedure (N, Is_Completion);
4215 if Is_Completion then
4217 -- The null procedure acts as a body, nothing further is needed.
4219 return;
4220 end if;
4221 end if;
4223 Designator := Analyze_Subprogram_Specification (Specification (N));
4225 -- A reference may already have been generated for the unit name, in
4226 -- which case the following call is redundant. However it is needed for
4227 -- declarations that are the rewriting of an expression function.
4229 Generate_Definition (Designator);
4231 -- Set SPARK mode from current context (may be overwritten later with
4232 -- explicit pragma).
4234 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
4235 Set_SPARK_Pragma_Inherited (Designator, True);
4237 -- A subprogram declared within a Ghost scope is automatically Ghost
4238 -- (SPARK RM 6.9(2)).
4240 if Comes_From_Source (Designator) and then Within_Ghost_Scope then
4241 Set_Is_Ghost_Entity (Designator);
4242 end if;
4244 if Debug_Flag_C then
4245 Write_Str ("==> subprogram spec ");
4246 Write_Name (Chars (Designator));
4247 Write_Str (" from ");
4248 Write_Location (Sloc (N));
4249 Write_Eol;
4250 Indent;
4251 end if;
4253 Validate_RCI_Subprogram_Declaration (N);
4254 New_Overloaded_Entity (Designator);
4255 Check_Delayed_Subprogram (Designator);
4257 -- If the type of the first formal of the current subprogram is a non-
4258 -- generic tagged private type, mark the subprogram as being a private
4259 -- primitive. Ditto if this is a function with controlling result, and
4260 -- the return type is currently private. In both cases, the type of the
4261 -- controlling argument or result must be in the current scope for the
4262 -- operation to be primitive.
4264 if Has_Controlling_Result (Designator)
4265 and then Is_Private_Type (Etype (Designator))
4266 and then Scope (Etype (Designator)) = Current_Scope
4267 and then not Is_Generic_Actual_Type (Etype (Designator))
4268 then
4269 Set_Is_Private_Primitive (Designator);
4271 elsif Present (First_Formal (Designator)) then
4272 declare
4273 Formal_Typ : constant Entity_Id :=
4274 Etype (First_Formal (Designator));
4275 begin
4276 Set_Is_Private_Primitive (Designator,
4277 Is_Tagged_Type (Formal_Typ)
4278 and then Scope (Formal_Typ) = Current_Scope
4279 and then Is_Private_Type (Formal_Typ)
4280 and then not Is_Generic_Actual_Type (Formal_Typ));
4281 end;
4282 end if;
4284 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4285 -- or null.
4287 if Ada_Version >= Ada_2005
4288 and then Comes_From_Source (N)
4289 and then Is_Dispatching_Operation (Designator)
4290 then
4291 declare
4292 E : Entity_Id;
4293 Etyp : Entity_Id;
4295 begin
4296 if Has_Controlling_Result (Designator) then
4297 Etyp := Etype (Designator);
4299 else
4300 E := First_Entity (Designator);
4301 while Present (E)
4302 and then Is_Formal (E)
4303 and then not Is_Controlling_Formal (E)
4304 loop
4305 Next_Entity (E);
4306 end loop;
4308 Etyp := Etype (E);
4309 end if;
4311 if Is_Access_Type (Etyp) then
4312 Etyp := Directly_Designated_Type (Etyp);
4313 end if;
4315 if Is_Interface (Etyp)
4316 and then not Is_Abstract_Subprogram (Designator)
4317 and then not (Ekind (Designator) = E_Procedure
4318 and then Null_Present (Specification (N)))
4319 then
4320 Error_Msg_Name_1 := Chars (Defining_Entity (N));
4322 -- Specialize error message based on procedures vs. functions,
4323 -- since functions can't be null subprograms.
4325 if Ekind (Designator) = E_Procedure then
4326 Error_Msg_N
4327 ("interface procedure % must be abstract or null", N);
4328 else
4329 Error_Msg_N
4330 ("interface function % must be abstract", N);
4331 end if;
4332 end if;
4333 end;
4334 end if;
4336 -- What is the following code for, it used to be
4338 -- ??? Set_Suppress_Elaboration_Checks
4339 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4341 -- The following seems equivalent, but a bit dubious
4343 if Elaboration_Checks_Suppressed (Designator) then
4344 Set_Kill_Elaboration_Checks (Designator);
4345 end if;
4347 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
4348 Set_Categorization_From_Scope (Designator, Scop);
4350 else
4351 -- For a compilation unit, check for library-unit pragmas
4353 Push_Scope (Designator);
4354 Set_Categorization_From_Pragmas (N);
4355 Validate_Categorization_Dependency (N, Designator);
4356 Pop_Scope;
4357 end if;
4359 -- For a compilation unit, set body required. This flag will only be
4360 -- reset if a valid Import or Interface pragma is processed later on.
4362 if Nkind (Parent (N)) = N_Compilation_Unit then
4363 Set_Body_Required (Parent (N), True);
4365 if Ada_Version >= Ada_2005
4366 and then Nkind (Specification (N)) = N_Procedure_Specification
4367 and then Null_Present (Specification (N))
4368 then
4369 Error_Msg_N
4370 ("null procedure cannot be declared at library level", N);
4371 end if;
4372 end if;
4374 Generate_Reference_To_Formals (Designator);
4375 Check_Eliminated (Designator);
4377 if Debug_Flag_C then
4378 Outdent;
4379 Write_Str ("<== subprogram spec ");
4380 Write_Name (Chars (Designator));
4381 Write_Str (" from ");
4382 Write_Location (Sloc (N));
4383 Write_Eol;
4384 end if;
4386 if Is_Protected_Type (Current_Scope) then
4388 -- Indicate that this is a protected operation, because it may be
4389 -- used in subsequent declarations within the protected type.
4391 Set_Convention (Designator, Convention_Protected);
4392 end if;
4394 List_Inherited_Pre_Post_Aspects (Designator);
4396 if Has_Aspects (N) then
4397 Analyze_Aspect_Specifications (N, Designator);
4398 end if;
4399 end Analyze_Subprogram_Declaration;
4401 --------------------------------------
4402 -- Analyze_Subprogram_Specification --
4403 --------------------------------------
4405 -- Reminder: N here really is a subprogram specification (not a subprogram
4406 -- declaration). This procedure is called to analyze the specification in
4407 -- both subprogram bodies and subprogram declarations (specs).
4409 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
4410 Designator : constant Entity_Id := Defining_Entity (N);
4411 Formals : constant List_Id := Parameter_Specifications (N);
4413 -- Start of processing for Analyze_Subprogram_Specification
4415 begin
4416 -- User-defined operator is not allowed in SPARK, except as a renaming
4418 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
4419 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
4420 then
4421 Check_SPARK_05_Restriction
4422 ("user-defined operator is not allowed", N);
4423 end if;
4425 -- Proceed with analysis. Do not emit a cross-reference entry if the
4426 -- specification comes from an expression function, because it may be
4427 -- the completion of a previous declaration. It is is not, the cross-
4428 -- reference entry will be emitted for the new subprogram declaration.
4430 if Nkind (Parent (N)) /= N_Expression_Function then
4431 Generate_Definition (Designator);
4432 end if;
4434 Set_Contract (Designator, Make_Contract (Sloc (Designator)));
4436 if Nkind (N) = N_Function_Specification then
4437 Set_Ekind (Designator, E_Function);
4438 Set_Mechanism (Designator, Default_Mechanism);
4439 else
4440 Set_Ekind (Designator, E_Procedure);
4441 Set_Etype (Designator, Standard_Void_Type);
4442 end if;
4444 -- Flag Is_Inlined_Always is True by default, and reversed to False for
4445 -- those subprograms which could be inlined in GNATprove mode (because
4446 -- Body_To_Inline is non-Empty) but cannot be inlined.
4448 if GNATprove_Mode then
4449 Set_Is_Inlined_Always (Designator);
4450 end if;
4452 -- Introduce new scope for analysis of the formals and the return type
4454 Set_Scope (Designator, Current_Scope);
4456 if Present (Formals) then
4457 Push_Scope (Designator);
4458 Process_Formals (Formals, N);
4460 -- Check dimensions in N for formals with default expression
4462 Analyze_Dimension_Formals (N, Formals);
4464 -- Ada 2005 (AI-345): If this is an overriding operation of an
4465 -- inherited interface operation, and the controlling type is
4466 -- a synchronized type, replace the type with its corresponding
4467 -- record, to match the proper signature of an overriding operation.
4468 -- Same processing for an access parameter whose designated type is
4469 -- derived from a synchronized interface.
4471 if Ada_Version >= Ada_2005 then
4472 declare
4473 Formal : Entity_Id;
4474 Formal_Typ : Entity_Id;
4475 Rec_Typ : Entity_Id;
4476 Desig_Typ : Entity_Id;
4478 begin
4479 Formal := First_Formal (Designator);
4480 while Present (Formal) loop
4481 Formal_Typ := Etype (Formal);
4483 if Is_Concurrent_Type (Formal_Typ)
4484 and then Present (Corresponding_Record_Type (Formal_Typ))
4485 then
4486 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
4488 if Present (Interfaces (Rec_Typ)) then
4489 Set_Etype (Formal, Rec_Typ);
4490 end if;
4492 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
4493 Desig_Typ := Designated_Type (Formal_Typ);
4495 if Is_Concurrent_Type (Desig_Typ)
4496 and then Present (Corresponding_Record_Type (Desig_Typ))
4497 then
4498 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
4500 if Present (Interfaces (Rec_Typ)) then
4501 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
4502 end if;
4503 end if;
4504 end if;
4506 Next_Formal (Formal);
4507 end loop;
4508 end;
4509 end if;
4511 End_Scope;
4513 -- The subprogram scope is pushed and popped around the processing of
4514 -- the return type for consistency with call above to Process_Formals
4515 -- (which itself can call Analyze_Return_Type), and to ensure that any
4516 -- itype created for the return type will be associated with the proper
4517 -- scope.
4519 elsif Nkind (N) = N_Function_Specification then
4520 Push_Scope (Designator);
4521 Analyze_Return_Type (N);
4522 End_Scope;
4523 end if;
4525 -- Function case
4527 if Nkind (N) = N_Function_Specification then
4529 -- Deal with operator symbol case
4531 if Nkind (Designator) = N_Defining_Operator_Symbol then
4532 Valid_Operator_Definition (Designator);
4533 end if;
4535 May_Need_Actuals (Designator);
4537 -- Ada 2005 (AI-251): If the return type is abstract, verify that
4538 -- the subprogram is abstract also. This does not apply to renaming
4539 -- declarations, where abstractness is inherited, and to subprogram
4540 -- bodies generated for stream operations, which become renamings as
4541 -- bodies.
4543 -- In case of primitives associated with abstract interface types
4544 -- the check is applied later (see Analyze_Subprogram_Declaration).
4546 if not Nkind_In (Original_Node (Parent (N)),
4547 N_Subprogram_Renaming_Declaration,
4548 N_Abstract_Subprogram_Declaration,
4549 N_Formal_Abstract_Subprogram_Declaration)
4550 then
4551 if Is_Abstract_Type (Etype (Designator))
4552 and then not Is_Interface (Etype (Designator))
4553 then
4554 Error_Msg_N
4555 ("function that returns abstract type must be abstract", N);
4557 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
4558 -- access result whose designated type is abstract.
4560 elsif Nkind (Result_Definition (N)) = N_Access_Definition
4561 and then
4562 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
4563 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
4564 and then Ada_Version >= Ada_2012
4565 then
4566 Error_Msg_N ("function whose access result designates "
4567 & "abstract type must be abstract", N);
4568 end if;
4569 end if;
4570 end if;
4572 return Designator;
4573 end Analyze_Subprogram_Specification;
4575 -----------------------
4576 -- Check_Conformance --
4577 -----------------------
4579 procedure Check_Conformance
4580 (New_Id : Entity_Id;
4581 Old_Id : Entity_Id;
4582 Ctype : Conformance_Type;
4583 Errmsg : Boolean;
4584 Conforms : out Boolean;
4585 Err_Loc : Node_Id := Empty;
4586 Get_Inst : Boolean := False;
4587 Skip_Controlling_Formals : Boolean := False)
4589 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
4590 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
4591 -- If Errmsg is True, then processing continues to post an error message
4592 -- for conformance error on given node. Two messages are output. The
4593 -- first message points to the previous declaration with a general "no
4594 -- conformance" message. The second is the detailed reason, supplied as
4595 -- Msg. The parameter N provide information for a possible & insertion
4596 -- in the message, and also provides the location for posting the
4597 -- message in the absence of a specified Err_Loc location.
4599 -----------------------
4600 -- Conformance_Error --
4601 -----------------------
4603 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
4604 Enode : Node_Id;
4606 begin
4607 Conforms := False;
4609 if Errmsg then
4610 if No (Err_Loc) then
4611 Enode := N;
4612 else
4613 Enode := Err_Loc;
4614 end if;
4616 Error_Msg_Sloc := Sloc (Old_Id);
4618 case Ctype is
4619 when Type_Conformant =>
4620 Error_Msg_N -- CODEFIX
4621 ("not type conformant with declaration#!", Enode);
4623 when Mode_Conformant =>
4624 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4625 Error_Msg_N
4626 ("not mode conformant with operation inherited#!",
4627 Enode);
4628 else
4629 Error_Msg_N
4630 ("not mode conformant with declaration#!", Enode);
4631 end if;
4633 when Subtype_Conformant =>
4634 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4635 Error_Msg_N
4636 ("not subtype conformant with operation inherited#!",
4637 Enode);
4638 else
4639 Error_Msg_N
4640 ("not subtype conformant with declaration#!", Enode);
4641 end if;
4643 when Fully_Conformant =>
4644 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
4645 Error_Msg_N -- CODEFIX
4646 ("not fully conformant with operation inherited#!",
4647 Enode);
4648 else
4649 Error_Msg_N -- CODEFIX
4650 ("not fully conformant with declaration#!", Enode);
4651 end if;
4652 end case;
4654 Error_Msg_NE (Msg, Enode, N);
4655 end if;
4656 end Conformance_Error;
4658 -- Local Variables
4660 Old_Type : constant Entity_Id := Etype (Old_Id);
4661 New_Type : constant Entity_Id := Etype (New_Id);
4662 Old_Formal : Entity_Id;
4663 New_Formal : Entity_Id;
4664 Access_Types_Match : Boolean;
4665 Old_Formal_Base : Entity_Id;
4666 New_Formal_Base : Entity_Id;
4668 -- Start of processing for Check_Conformance
4670 begin
4671 Conforms := True;
4673 -- We need a special case for operators, since they don't appear
4674 -- explicitly.
4676 if Ctype = Type_Conformant then
4677 if Ekind (New_Id) = E_Operator
4678 and then Operator_Matches_Spec (New_Id, Old_Id)
4679 then
4680 return;
4681 end if;
4682 end if;
4684 -- If both are functions/operators, check return types conform
4686 if Old_Type /= Standard_Void_Type
4687 and then
4688 New_Type /= Standard_Void_Type
4689 then
4690 -- If we are checking interface conformance we omit controlling
4691 -- arguments and result, because we are only checking the conformance
4692 -- of the remaining parameters.
4694 if Has_Controlling_Result (Old_Id)
4695 and then Has_Controlling_Result (New_Id)
4696 and then Skip_Controlling_Formals
4697 then
4698 null;
4700 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
4701 if Ctype >= Subtype_Conformant
4702 and then not Predicates_Match (Old_Type, New_Type)
4703 then
4704 Conformance_Error
4705 ("\predicate of return type does not match!", New_Id);
4706 else
4707 Conformance_Error
4708 ("\return type does not match!", New_Id);
4709 end if;
4711 return;
4712 end if;
4714 -- Ada 2005 (AI-231): In case of anonymous access types check the
4715 -- null-exclusion and access-to-constant attributes match.
4717 if Ada_Version >= Ada_2005
4718 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
4719 and then
4720 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
4721 or else Is_Access_Constant (Etype (Old_Type)) /=
4722 Is_Access_Constant (Etype (New_Type)))
4723 then
4724 Conformance_Error ("\return type does not match!", New_Id);
4725 return;
4726 end if;
4728 -- If either is a function/operator and the other isn't, error
4730 elsif Old_Type /= Standard_Void_Type
4731 or else New_Type /= Standard_Void_Type
4732 then
4733 Conformance_Error ("\functions can only match functions!", New_Id);
4734 return;
4735 end if;
4737 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
4738 -- If this is a renaming as body, refine error message to indicate that
4739 -- the conflict is with the original declaration. If the entity is not
4740 -- frozen, the conventions don't have to match, the one of the renamed
4741 -- entity is inherited.
4743 if Ctype >= Subtype_Conformant then
4744 if Convention (Old_Id) /= Convention (New_Id) then
4745 if not Is_Frozen (New_Id) then
4746 null;
4748 elsif Present (Err_Loc)
4749 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
4750 and then Present (Corresponding_Spec (Err_Loc))
4751 then
4752 Error_Msg_Name_1 := Chars (New_Id);
4753 Error_Msg_Name_2 :=
4754 Name_Ada + Convention_Id'Pos (Convention (New_Id));
4755 Conformance_Error ("\prior declaration for% has convention %!");
4757 else
4758 Conformance_Error ("\calling conventions do not match!");
4759 end if;
4761 return;
4763 elsif Is_Formal_Subprogram (Old_Id)
4764 or else Is_Formal_Subprogram (New_Id)
4765 then
4766 Conformance_Error ("\formal subprograms not allowed!");
4767 return;
4769 -- Pragma Ghost behaves as a convention in the context of subtype
4770 -- conformance (SPARK RM 6.9(5)). Do not check internally generated
4771 -- subprograms as their spec may reside in a Ghost region and their
4772 -- body not, or vice versa.
4774 elsif Comes_From_Source (Old_Id)
4775 and then Comes_From_Source (New_Id)
4776 and then Is_Ghost_Entity (Old_Id) /= Is_Ghost_Entity (New_Id)
4777 then
4778 Conformance_Error ("\ghost modes do not match!");
4779 return;
4780 end if;
4781 end if;
4783 -- Deal with parameters
4785 -- Note: we use the entity information, rather than going directly
4786 -- to the specification in the tree. This is not only simpler, but
4787 -- absolutely necessary for some cases of conformance tests between
4788 -- operators, where the declaration tree simply does not exist.
4790 Old_Formal := First_Formal (Old_Id);
4791 New_Formal := First_Formal (New_Id);
4792 while Present (Old_Formal) and then Present (New_Formal) loop
4793 if Is_Controlling_Formal (Old_Formal)
4794 and then Is_Controlling_Formal (New_Formal)
4795 and then Skip_Controlling_Formals
4796 then
4797 -- The controlling formals will have different types when
4798 -- comparing an interface operation with its match, but both
4799 -- or neither must be access parameters.
4801 if Is_Access_Type (Etype (Old_Formal))
4803 Is_Access_Type (Etype (New_Formal))
4804 then
4805 goto Skip_Controlling_Formal;
4806 else
4807 Conformance_Error
4808 ("\access parameter does not match!", New_Formal);
4809 end if;
4810 end if;
4812 -- Ada 2012: Mode conformance also requires that formal parameters
4813 -- be both aliased, or neither.
4815 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
4816 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
4817 Conformance_Error
4818 ("\aliased parameter mismatch!", New_Formal);
4819 end if;
4820 end if;
4822 if Ctype = Fully_Conformant then
4824 -- Names must match. Error message is more accurate if we do
4825 -- this before checking that the types of the formals match.
4827 if Chars (Old_Formal) /= Chars (New_Formal) then
4828 Conformance_Error ("\name& does not match!", New_Formal);
4830 -- Set error posted flag on new formal as well to stop
4831 -- junk cascaded messages in some cases.
4833 Set_Error_Posted (New_Formal);
4834 return;
4835 end if;
4837 -- Null exclusion must match
4839 if Null_Exclusion_Present (Parent (Old_Formal))
4841 Null_Exclusion_Present (Parent (New_Formal))
4842 then
4843 -- Only give error if both come from source. This should be
4844 -- investigated some time, since it should not be needed ???
4846 if Comes_From_Source (Old_Formal)
4847 and then
4848 Comes_From_Source (New_Formal)
4849 then
4850 Conformance_Error
4851 ("\null exclusion for& does not match", New_Formal);
4853 -- Mark error posted on the new formal to avoid duplicated
4854 -- complaint about types not matching.
4856 Set_Error_Posted (New_Formal);
4857 end if;
4858 end if;
4859 end if;
4861 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
4862 -- case occurs whenever a subprogram is being renamed and one of its
4863 -- parameters imposes a null exclusion. For example:
4865 -- type T is null record;
4866 -- type Acc_T is access T;
4867 -- subtype Acc_T_Sub is Acc_T;
4869 -- procedure P (Obj : not null Acc_T_Sub); -- itype
4870 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
4871 -- renames P;
4873 Old_Formal_Base := Etype (Old_Formal);
4874 New_Formal_Base := Etype (New_Formal);
4876 if Get_Inst then
4877 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
4878 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
4879 end if;
4881 Access_Types_Match := Ada_Version >= Ada_2005
4883 -- Ensure that this rule is only applied when New_Id is a
4884 -- renaming of Old_Id.
4886 and then Nkind (Parent (Parent (New_Id))) =
4887 N_Subprogram_Renaming_Declaration
4888 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
4889 and then Present (Entity (Name (Parent (Parent (New_Id)))))
4890 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
4892 -- Now handle the allowed access-type case
4894 and then Is_Access_Type (Old_Formal_Base)
4895 and then Is_Access_Type (New_Formal_Base)
4897 -- The type kinds must match. The only exception occurs with
4898 -- multiple generics of the form:
4900 -- generic generic
4901 -- type F is private; type A is private;
4902 -- type F_Ptr is access F; type A_Ptr is access A;
4903 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
4904 -- package F_Pack is ... package A_Pack is
4905 -- package F_Inst is
4906 -- new F_Pack (A, A_Ptr, A_P);
4908 -- When checking for conformance between the parameters of A_P
4909 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
4910 -- because the compiler has transformed A_Ptr into a subtype of
4911 -- F_Ptr. We catch this case in the code below.
4913 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
4914 or else
4915 (Is_Generic_Type (Old_Formal_Base)
4916 and then Is_Generic_Type (New_Formal_Base)
4917 and then Is_Internal (New_Formal_Base)
4918 and then Etype (Etype (New_Formal_Base)) =
4919 Old_Formal_Base))
4920 and then Directly_Designated_Type (Old_Formal_Base) =
4921 Directly_Designated_Type (New_Formal_Base)
4922 and then ((Is_Itype (Old_Formal_Base)
4923 and then Can_Never_Be_Null (Old_Formal_Base))
4924 or else
4925 (Is_Itype (New_Formal_Base)
4926 and then Can_Never_Be_Null (New_Formal_Base)));
4928 -- Types must always match. In the visible part of an instance,
4929 -- usual overloading rules for dispatching operations apply, and
4930 -- we check base types (not the actual subtypes).
4932 if In_Instance_Visible_Part
4933 and then Is_Dispatching_Operation (New_Id)
4934 then
4935 if not Conforming_Types
4936 (T1 => Base_Type (Etype (Old_Formal)),
4937 T2 => Base_Type (Etype (New_Formal)),
4938 Ctype => Ctype,
4939 Get_Inst => Get_Inst)
4940 and then not Access_Types_Match
4941 then
4942 Conformance_Error ("\type of & does not match!", New_Formal);
4943 return;
4944 end if;
4946 elsif not Conforming_Types
4947 (T1 => Old_Formal_Base,
4948 T2 => New_Formal_Base,
4949 Ctype => Ctype,
4950 Get_Inst => Get_Inst)
4951 and then not Access_Types_Match
4952 then
4953 -- Don't give error message if old type is Any_Type. This test
4954 -- avoids some cascaded errors, e.g. in case of a bad spec.
4956 if Errmsg and then Old_Formal_Base = Any_Type then
4957 Conforms := False;
4958 else
4959 if Ctype >= Subtype_Conformant
4960 and then
4961 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
4962 then
4963 Conformance_Error
4964 ("\predicate of & does not match!", New_Formal);
4965 else
4966 Conformance_Error
4967 ("\type of & does not match!", New_Formal);
4968 end if;
4969 end if;
4971 return;
4972 end if;
4974 -- For mode conformance, mode must match
4976 if Ctype >= Mode_Conformant then
4977 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
4978 if not Ekind_In (New_Id, E_Function, E_Procedure)
4979 or else not Is_Primitive_Wrapper (New_Id)
4980 then
4981 Conformance_Error ("\mode of & does not match!", New_Formal);
4983 else
4984 declare
4985 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
4986 begin
4987 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
4988 then
4989 Error_Msg_PT (T, New_Id);
4990 else
4991 Conformance_Error
4992 ("\mode of & does not match!", New_Formal);
4993 end if;
4994 end;
4995 end if;
4997 return;
4999 -- Part of mode conformance for access types is having the same
5000 -- constant modifier.
5002 elsif Access_Types_Match
5003 and then Is_Access_Constant (Old_Formal_Base) /=
5004 Is_Access_Constant (New_Formal_Base)
5005 then
5006 Conformance_Error
5007 ("\constant modifier does not match!", New_Formal);
5008 return;
5009 end if;
5010 end if;
5012 if Ctype >= Subtype_Conformant then
5014 -- Ada 2005 (AI-231): In case of anonymous access types check
5015 -- the null-exclusion and access-to-constant attributes must
5016 -- match. For null exclusion, we test the types rather than the
5017 -- formals themselves, since the attribute is only set reliably
5018 -- on the formals in the Ada 95 case, and we exclude the case
5019 -- where Old_Formal is marked as controlling, to avoid errors
5020 -- when matching completing bodies with dispatching declarations
5021 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
5023 if Ada_Version >= Ada_2005
5024 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
5025 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
5026 and then
5027 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
5028 Can_Never_Be_Null (Etype (New_Formal))
5029 and then
5030 not Is_Controlling_Formal (Old_Formal))
5031 or else
5032 Is_Access_Constant (Etype (Old_Formal)) /=
5033 Is_Access_Constant (Etype (New_Formal)))
5035 -- Do not complain if error already posted on New_Formal. This
5036 -- avoids some redundant error messages.
5038 and then not Error_Posted (New_Formal)
5039 then
5040 -- It is allowed to omit the null-exclusion in case of stream
5041 -- attribute subprograms. We recognize stream subprograms
5042 -- through their TSS-generated suffix.
5044 declare
5045 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
5047 begin
5048 if TSS_Name /= TSS_Stream_Read
5049 and then TSS_Name /= TSS_Stream_Write
5050 and then TSS_Name /= TSS_Stream_Input
5051 and then TSS_Name /= TSS_Stream_Output
5052 then
5053 -- Here we have a definite conformance error. It is worth
5054 -- special casing the error message for the case of a
5055 -- controlling formal (which excludes null).
5057 if Is_Controlling_Formal (New_Formal) then
5058 Error_Msg_Node_2 := Scope (New_Formal);
5059 Conformance_Error
5060 ("\controlling formal & of & excludes null, "
5061 & "declaration must exclude null as well",
5062 New_Formal);
5064 -- Normal case (couldn't we give more detail here???)
5066 else
5067 Conformance_Error
5068 ("\type of & does not match!", New_Formal);
5069 end if;
5071 return;
5072 end if;
5073 end;
5074 end if;
5075 end if;
5077 -- Full conformance checks
5079 if Ctype = Fully_Conformant then
5081 -- We have checked already that names match
5083 if Parameter_Mode (Old_Formal) = E_In_Parameter then
5085 -- Check default expressions for in parameters
5087 declare
5088 NewD : constant Boolean :=
5089 Present (Default_Value (New_Formal));
5090 OldD : constant Boolean :=
5091 Present (Default_Value (Old_Formal));
5092 begin
5093 if NewD or OldD then
5095 -- The old default value has been analyzed because the
5096 -- current full declaration will have frozen everything
5097 -- before. The new default value has not been analyzed,
5098 -- so analyze it now before we check for conformance.
5100 if NewD then
5101 Push_Scope (New_Id);
5102 Preanalyze_Spec_Expression
5103 (Default_Value (New_Formal), Etype (New_Formal));
5104 End_Scope;
5105 end if;
5107 if not (NewD and OldD)
5108 or else not Fully_Conformant_Expressions
5109 (Default_Value (Old_Formal),
5110 Default_Value (New_Formal))
5111 then
5112 Conformance_Error
5113 ("\default expression for & does not match!",
5114 New_Formal);
5115 return;
5116 end if;
5117 end if;
5118 end;
5119 end if;
5120 end if;
5122 -- A couple of special checks for Ada 83 mode. These checks are
5123 -- skipped if either entity is an operator in package Standard,
5124 -- or if either old or new instance is not from the source program.
5126 if Ada_Version = Ada_83
5127 and then Sloc (Old_Id) > Standard_Location
5128 and then Sloc (New_Id) > Standard_Location
5129 and then Comes_From_Source (Old_Id)
5130 and then Comes_From_Source (New_Id)
5131 then
5132 declare
5133 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
5134 New_Param : constant Node_Id := Declaration_Node (New_Formal);
5136 begin
5137 -- Explicit IN must be present or absent in both cases. This
5138 -- test is required only in the full conformance case.
5140 if In_Present (Old_Param) /= In_Present (New_Param)
5141 and then Ctype = Fully_Conformant
5142 then
5143 Conformance_Error
5144 ("\(Ada 83) IN must appear in both declarations",
5145 New_Formal);
5146 return;
5147 end if;
5149 -- Grouping (use of comma in param lists) must be the same
5150 -- This is where we catch a misconformance like:
5152 -- A, B : Integer
5153 -- A : Integer; B : Integer
5155 -- which are represented identically in the tree except
5156 -- for the setting of the flags More_Ids and Prev_Ids.
5158 if More_Ids (Old_Param) /= More_Ids (New_Param)
5159 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
5160 then
5161 Conformance_Error
5162 ("\grouping of & does not match!", New_Formal);
5163 return;
5164 end if;
5165 end;
5166 end if;
5168 -- This label is required when skipping controlling formals
5170 <<Skip_Controlling_Formal>>
5172 Next_Formal (Old_Formal);
5173 Next_Formal (New_Formal);
5174 end loop;
5176 if Present (Old_Formal) then
5177 Conformance_Error ("\too few parameters!");
5178 return;
5180 elsif Present (New_Formal) then
5181 Conformance_Error ("\too many parameters!", New_Formal);
5182 return;
5183 end if;
5184 end Check_Conformance;
5186 -----------------------
5187 -- Check_Conventions --
5188 -----------------------
5190 procedure Check_Conventions (Typ : Entity_Id) is
5191 Ifaces_List : Elist_Id;
5193 procedure Check_Convention (Op : Entity_Id);
5194 -- Verify that the convention of inherited dispatching operation Op is
5195 -- consistent among all subprograms it overrides. In order to minimize
5196 -- the search, Search_From is utilized to designate a specific point in
5197 -- the list rather than iterating over the whole list once more.
5199 ----------------------
5200 -- Check_Convention --
5201 ----------------------
5203 procedure Check_Convention (Op : Entity_Id) is
5204 Op_Conv : constant Convention_Id := Convention (Op);
5205 Iface_Conv : Convention_Id;
5206 Iface_Elmt : Elmt_Id;
5207 Iface_Prim_Elmt : Elmt_Id;
5208 Iface_Prim : Entity_Id;
5210 begin
5211 Iface_Elmt := First_Elmt (Ifaces_List);
5212 while Present (Iface_Elmt) loop
5213 Iface_Prim_Elmt :=
5214 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
5215 while Present (Iface_Prim_Elmt) loop
5216 Iface_Prim := Node (Iface_Prim_Elmt);
5217 Iface_Conv := Convention (Iface_Prim);
5219 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
5220 and then Iface_Conv /= Op_Conv
5221 then
5222 Error_Msg_N
5223 ("inconsistent conventions in primitive operations", Typ);
5225 Error_Msg_Name_1 := Chars (Op);
5226 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
5227 Error_Msg_Sloc := Sloc (Op);
5229 if Comes_From_Source (Op) or else No (Alias (Op)) then
5230 if not Present (Overridden_Operation (Op)) then
5231 Error_Msg_N ("\\primitive % defined #", Typ);
5232 else
5233 Error_Msg_N
5234 ("\\overriding operation % with "
5235 & "convention % defined #", Typ);
5236 end if;
5238 else pragma Assert (Present (Alias (Op)));
5239 Error_Msg_Sloc := Sloc (Alias (Op));
5240 Error_Msg_N ("\\inherited operation % with "
5241 & "convention % defined #", Typ);
5242 end if;
5244 Error_Msg_Name_1 := Chars (Op);
5245 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
5246 Error_Msg_Sloc := Sloc (Iface_Prim);
5247 Error_Msg_N ("\\overridden operation % with "
5248 & "convention % defined #", Typ);
5250 -- Avoid cascading errors
5252 return;
5253 end if;
5255 Next_Elmt (Iface_Prim_Elmt);
5256 end loop;
5258 Next_Elmt (Iface_Elmt);
5259 end loop;
5260 end Check_Convention;
5262 -- Local variables
5264 Prim_Op : Entity_Id;
5265 Prim_Op_Elmt : Elmt_Id;
5267 -- Start of processing for Check_Conventions
5269 begin
5270 if not Has_Interfaces (Typ) then
5271 return;
5272 end if;
5274 Collect_Interfaces (Typ, Ifaces_List);
5276 -- The algorithm checks every overriding dispatching operation against
5277 -- all the corresponding overridden dispatching operations, detecting
5278 -- differences in conventions.
5280 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
5281 while Present (Prim_Op_Elmt) loop
5282 Prim_Op := Node (Prim_Op_Elmt);
5284 -- A small optimization: skip the predefined dispatching operations
5285 -- since they always have the same convention.
5287 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
5288 Check_Convention (Prim_Op);
5289 end if;
5291 Next_Elmt (Prim_Op_Elmt);
5292 end loop;
5293 end Check_Conventions;
5295 ------------------------------
5296 -- Check_Delayed_Subprogram --
5297 ------------------------------
5299 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
5300 F : Entity_Id;
5302 procedure Possible_Freeze (T : Entity_Id);
5303 -- T is the type of either a formal parameter or of the return type.
5304 -- If T is not yet frozen and needs a delayed freeze, then the
5305 -- subprogram itself must be delayed. If T is the limited view of an
5306 -- incomplete type the subprogram must be frozen as well, because
5307 -- T may depend on local types that have not been frozen yet.
5309 ---------------------
5310 -- Possible_Freeze --
5311 ---------------------
5313 procedure Possible_Freeze (T : Entity_Id) is
5314 begin
5315 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
5316 Set_Has_Delayed_Freeze (Designator);
5318 elsif Is_Access_Type (T)
5319 and then Has_Delayed_Freeze (Designated_Type (T))
5320 and then not Is_Frozen (Designated_Type (T))
5321 then
5322 Set_Has_Delayed_Freeze (Designator);
5324 elsif Ekind (T) = E_Incomplete_Type
5325 and then From_Limited_With (T)
5326 then
5327 Set_Has_Delayed_Freeze (Designator);
5329 -- AI05-0151: In Ada 2012, Incomplete types can appear in the profile
5330 -- of a subprogram or entry declaration.
5332 elsif Ekind (T) = E_Incomplete_Type
5333 and then Ada_Version >= Ada_2012
5334 then
5335 Set_Has_Delayed_Freeze (Designator);
5336 end if;
5338 end Possible_Freeze;
5340 -- Start of processing for Check_Delayed_Subprogram
5342 begin
5343 -- All subprograms, including abstract subprograms, may need a freeze
5344 -- node if some formal type or the return type needs one.
5346 Possible_Freeze (Etype (Designator));
5347 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
5349 -- Need delayed freeze if any of the formal types themselves need
5350 -- a delayed freeze and are not yet frozen.
5352 F := First_Formal (Designator);
5353 while Present (F) loop
5354 Possible_Freeze (Etype (F));
5355 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
5356 Next_Formal (F);
5357 end loop;
5359 -- Mark functions that return by reference. Note that it cannot be
5360 -- done for delayed_freeze subprograms because the underlying
5361 -- returned type may not be known yet (for private types)
5363 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
5364 declare
5365 Typ : constant Entity_Id := Etype (Designator);
5366 Utyp : constant Entity_Id := Underlying_Type (Typ);
5367 begin
5368 if Is_Limited_View (Typ) then
5369 Set_Returns_By_Ref (Designator);
5370 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
5371 Set_Returns_By_Ref (Designator);
5372 end if;
5373 end;
5374 end if;
5375 end Check_Delayed_Subprogram;
5377 ------------------------------------
5378 -- Check_Discriminant_Conformance --
5379 ------------------------------------
5381 procedure Check_Discriminant_Conformance
5382 (N : Node_Id;
5383 Prev : Entity_Id;
5384 Prev_Loc : Node_Id)
5386 Old_Discr : Entity_Id := First_Discriminant (Prev);
5387 New_Discr : Node_Id := First (Discriminant_Specifications (N));
5388 New_Discr_Id : Entity_Id;
5389 New_Discr_Type : Entity_Id;
5391 procedure Conformance_Error (Msg : String; N : Node_Id);
5392 -- Post error message for conformance error on given node. Two messages
5393 -- are output. The first points to the previous declaration with a
5394 -- general "no conformance" message. The second is the detailed reason,
5395 -- supplied as Msg. The parameter N provide information for a possible
5396 -- & insertion in the message.
5398 -----------------------
5399 -- Conformance_Error --
5400 -----------------------
5402 procedure Conformance_Error (Msg : String; N : Node_Id) is
5403 begin
5404 Error_Msg_Sloc := Sloc (Prev_Loc);
5405 Error_Msg_N -- CODEFIX
5406 ("not fully conformant with declaration#!", N);
5407 Error_Msg_NE (Msg, N, N);
5408 end Conformance_Error;
5410 -- Start of processing for Check_Discriminant_Conformance
5412 begin
5413 while Present (Old_Discr) and then Present (New_Discr) loop
5414 New_Discr_Id := Defining_Identifier (New_Discr);
5416 -- The subtype mark of the discriminant on the full type has not
5417 -- been analyzed so we do it here. For an access discriminant a new
5418 -- type is created.
5420 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
5421 New_Discr_Type :=
5422 Access_Definition (N, Discriminant_Type (New_Discr));
5424 else
5425 Analyze (Discriminant_Type (New_Discr));
5426 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
5428 -- Ada 2005: if the discriminant definition carries a null
5429 -- exclusion, create an itype to check properly for consistency
5430 -- with partial declaration.
5432 if Is_Access_Type (New_Discr_Type)
5433 and then Null_Exclusion_Present (New_Discr)
5434 then
5435 New_Discr_Type :=
5436 Create_Null_Excluding_Itype
5437 (T => New_Discr_Type,
5438 Related_Nod => New_Discr,
5439 Scope_Id => Current_Scope);
5440 end if;
5441 end if;
5443 if not Conforming_Types
5444 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
5445 then
5446 Conformance_Error ("type of & does not match!", New_Discr_Id);
5447 return;
5448 else
5449 -- Treat the new discriminant as an occurrence of the old one,
5450 -- for navigation purposes, and fill in some semantic
5451 -- information, for completeness.
5453 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
5454 Set_Etype (New_Discr_Id, Etype (Old_Discr));
5455 Set_Scope (New_Discr_Id, Scope (Old_Discr));
5456 end if;
5458 -- Names must match
5460 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
5461 Conformance_Error ("name & does not match!", New_Discr_Id);
5462 return;
5463 end if;
5465 -- Default expressions must match
5467 declare
5468 NewD : constant Boolean :=
5469 Present (Expression (New_Discr));
5470 OldD : constant Boolean :=
5471 Present (Expression (Parent (Old_Discr)));
5473 begin
5474 if NewD or OldD then
5476 -- The old default value has been analyzed and expanded,
5477 -- because the current full declaration will have frozen
5478 -- everything before. The new default values have not been
5479 -- expanded, so expand now to check conformance.
5481 if NewD then
5482 Preanalyze_Spec_Expression
5483 (Expression (New_Discr), New_Discr_Type);
5484 end if;
5486 if not (NewD and OldD)
5487 or else not Fully_Conformant_Expressions
5488 (Expression (Parent (Old_Discr)),
5489 Expression (New_Discr))
5491 then
5492 Conformance_Error
5493 ("default expression for & does not match!",
5494 New_Discr_Id);
5495 return;
5496 end if;
5497 end if;
5498 end;
5500 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
5502 if Ada_Version = Ada_83 then
5503 declare
5504 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
5506 begin
5507 -- Grouping (use of comma in param lists) must be the same
5508 -- This is where we catch a misconformance like:
5510 -- A, B : Integer
5511 -- A : Integer; B : Integer
5513 -- which are represented identically in the tree except
5514 -- for the setting of the flags More_Ids and Prev_Ids.
5516 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
5517 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
5518 then
5519 Conformance_Error
5520 ("grouping of & does not match!", New_Discr_Id);
5521 return;
5522 end if;
5523 end;
5524 end if;
5526 Next_Discriminant (Old_Discr);
5527 Next (New_Discr);
5528 end loop;
5530 if Present (Old_Discr) then
5531 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
5532 return;
5534 elsif Present (New_Discr) then
5535 Conformance_Error
5536 ("too many discriminants!", Defining_Identifier (New_Discr));
5537 return;
5538 end if;
5539 end Check_Discriminant_Conformance;
5541 ----------------------------
5542 -- Check_Fully_Conformant --
5543 ----------------------------
5545 procedure Check_Fully_Conformant
5546 (New_Id : Entity_Id;
5547 Old_Id : Entity_Id;
5548 Err_Loc : Node_Id := Empty)
5550 Result : Boolean;
5551 pragma Warnings (Off, Result);
5552 begin
5553 Check_Conformance
5554 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
5555 end Check_Fully_Conformant;
5557 ---------------------------
5558 -- Check_Mode_Conformant --
5559 ---------------------------
5561 procedure Check_Mode_Conformant
5562 (New_Id : Entity_Id;
5563 Old_Id : Entity_Id;
5564 Err_Loc : Node_Id := Empty;
5565 Get_Inst : Boolean := False)
5567 Result : Boolean;
5568 pragma Warnings (Off, Result);
5569 begin
5570 Check_Conformance
5571 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
5572 end Check_Mode_Conformant;
5574 --------------------------------
5575 -- Check_Overriding_Indicator --
5576 --------------------------------
5578 procedure Check_Overriding_Indicator
5579 (Subp : Entity_Id;
5580 Overridden_Subp : Entity_Id;
5581 Is_Primitive : Boolean)
5583 Decl : Node_Id;
5584 Spec : Node_Id;
5586 begin
5587 -- No overriding indicator for literals
5589 if Ekind (Subp) = E_Enumeration_Literal then
5590 return;
5592 elsif Ekind (Subp) = E_Entry then
5593 Decl := Parent (Subp);
5595 -- No point in analyzing a malformed operator
5597 elsif Nkind (Subp) = N_Defining_Operator_Symbol
5598 and then Error_Posted (Subp)
5599 then
5600 return;
5602 else
5603 Decl := Unit_Declaration_Node (Subp);
5604 end if;
5606 if Nkind_In (Decl, N_Subprogram_Body,
5607 N_Subprogram_Body_Stub,
5608 N_Subprogram_Declaration,
5609 N_Abstract_Subprogram_Declaration,
5610 N_Subprogram_Renaming_Declaration)
5611 then
5612 Spec := Specification (Decl);
5614 elsif Nkind (Decl) = N_Entry_Declaration then
5615 Spec := Decl;
5617 else
5618 return;
5619 end if;
5621 -- The overriding operation is type conformant with the overridden one,
5622 -- but the names of the formals are not required to match. If the names
5623 -- appear permuted in the overriding operation, this is a possible
5624 -- source of confusion that is worth diagnosing. Controlling formals
5625 -- often carry names that reflect the type, and it is not worthwhile
5626 -- requiring that their names match.
5628 if Present (Overridden_Subp)
5629 and then Nkind (Subp) /= N_Defining_Operator_Symbol
5630 then
5631 declare
5632 Form1 : Entity_Id;
5633 Form2 : Entity_Id;
5635 begin
5636 Form1 := First_Formal (Subp);
5637 Form2 := First_Formal (Overridden_Subp);
5639 -- If the overriding operation is a synchronized operation, skip
5640 -- the first parameter of the overridden operation, which is
5641 -- implicit in the new one. If the operation is declared in the
5642 -- body it is not primitive and all formals must match.
5644 if Is_Concurrent_Type (Scope (Subp))
5645 and then Is_Tagged_Type (Scope (Subp))
5646 and then not Has_Completion (Scope (Subp))
5647 then
5648 Form2 := Next_Formal (Form2);
5649 end if;
5651 if Present (Form1) then
5652 Form1 := Next_Formal (Form1);
5653 Form2 := Next_Formal (Form2);
5654 end if;
5656 while Present (Form1) loop
5657 if not Is_Controlling_Formal (Form1)
5658 and then Present (Next_Formal (Form2))
5659 and then Chars (Form1) = Chars (Next_Formal (Form2))
5660 then
5661 Error_Msg_Node_2 := Alias (Overridden_Subp);
5662 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
5663 Error_Msg_NE
5664 ("& does not match corresponding formal of&#",
5665 Form1, Form1);
5666 exit;
5667 end if;
5669 Next_Formal (Form1);
5670 Next_Formal (Form2);
5671 end loop;
5672 end;
5673 end if;
5675 -- If there is an overridden subprogram, then check that there is no
5676 -- "not overriding" indicator, and mark the subprogram as overriding.
5677 -- This is not done if the overridden subprogram is marked as hidden,
5678 -- which can occur for the case of inherited controlled operations
5679 -- (see Derive_Subprogram), unless the inherited subprogram's parent
5680 -- subprogram is not itself hidden. (Note: This condition could probably
5681 -- be simplified, leaving out the testing for the specific controlled
5682 -- cases, but it seems safer and clearer this way, and echoes similar
5683 -- special-case tests of this kind in other places.)
5685 if Present (Overridden_Subp)
5686 and then (not Is_Hidden (Overridden_Subp)
5687 or else
5688 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
5689 Name_Adjust,
5690 Name_Finalize)
5691 and then Present (Alias (Overridden_Subp))
5692 and then not Is_Hidden (Alias (Overridden_Subp))))
5693 then
5694 if Must_Not_Override (Spec) then
5695 Error_Msg_Sloc := Sloc (Overridden_Subp);
5697 if Ekind (Subp) = E_Entry then
5698 Error_Msg_NE
5699 ("entry & overrides inherited operation #", Spec, Subp);
5700 else
5701 Error_Msg_NE
5702 ("subprogram & overrides inherited operation #", Spec, Subp);
5703 end if;
5705 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
5706 -- as an extension of Root_Controlled, and thus has a useless Adjust
5707 -- operation. This operation should not be inherited by other limited
5708 -- controlled types. An explicit Adjust for them is not overriding.
5710 elsif Must_Override (Spec)
5711 and then Chars (Overridden_Subp) = Name_Adjust
5712 and then Is_Limited_Type (Etype (First_Formal (Subp)))
5713 and then Present (Alias (Overridden_Subp))
5714 and then
5715 Is_Predefined_File_Name
5716 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))))
5717 then
5718 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5720 elsif Is_Subprogram (Subp) then
5721 if Is_Init_Proc (Subp) then
5722 null;
5724 elsif No (Overridden_Operation (Subp)) then
5726 -- For entities generated by Derive_Subprograms the overridden
5727 -- operation is the inherited primitive (which is available
5728 -- through the attribute alias)
5730 if (Is_Dispatching_Operation (Subp)
5731 or else Is_Dispatching_Operation (Overridden_Subp))
5732 and then not Comes_From_Source (Overridden_Subp)
5733 and then Find_Dispatching_Type (Overridden_Subp) =
5734 Find_Dispatching_Type (Subp)
5735 and then Present (Alias (Overridden_Subp))
5736 and then Comes_From_Source (Alias (Overridden_Subp))
5737 then
5738 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
5739 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
5741 else
5742 Set_Overridden_Operation (Subp, Overridden_Subp);
5743 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
5744 end if;
5745 end if;
5746 end if;
5748 -- If primitive flag is set or this is a protected operation, then
5749 -- the operation is overriding at the point of its declaration, so
5750 -- warn if necessary. Otherwise it may have been declared before the
5751 -- operation it overrides and no check is required.
5753 if Style_Check
5754 and then not Must_Override (Spec)
5755 and then (Is_Primitive
5756 or else Ekind (Scope (Subp)) = E_Protected_Type)
5757 then
5758 Style.Missing_Overriding (Decl, Subp);
5759 end if;
5761 -- If Subp is an operator, it may override a predefined operation, if
5762 -- it is defined in the same scope as the type to which it applies.
5763 -- In that case Overridden_Subp is empty because of our implicit
5764 -- representation for predefined operators. We have to check whether the
5765 -- signature of Subp matches that of a predefined operator. Note that
5766 -- first argument provides the name of the operator, and the second
5767 -- argument the signature that may match that of a standard operation.
5768 -- If the indicator is overriding, then the operator must match a
5769 -- predefined signature, because we know already that there is no
5770 -- explicit overridden operation.
5772 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
5773 if Must_Not_Override (Spec) then
5775 -- If this is not a primitive or a protected subprogram, then
5776 -- "not overriding" is illegal.
5778 if not Is_Primitive
5779 and then Ekind (Scope (Subp)) /= E_Protected_Type
5780 then
5781 Error_Msg_N ("overriding indicator only allowed "
5782 & "if subprogram is primitive", Subp);
5784 elsif Can_Override_Operator (Subp) then
5785 Error_Msg_NE
5786 ("subprogram& overrides predefined operator ", Spec, Subp);
5787 end if;
5789 elsif Must_Override (Spec) then
5790 if No (Overridden_Operation (Subp))
5791 and then not Can_Override_Operator (Subp)
5792 then
5793 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5794 end if;
5796 elsif not Error_Posted (Subp)
5797 and then Style_Check
5798 and then Can_Override_Operator (Subp)
5799 and then
5800 not Is_Predefined_File_Name
5801 (Unit_File_Name (Get_Source_Unit (Subp)))
5802 then
5803 -- If style checks are enabled, indicate that the indicator is
5804 -- missing. However, at the point of declaration, the type of
5805 -- which this is a primitive operation may be private, in which
5806 -- case the indicator would be premature.
5808 if Has_Private_Declaration (Etype (Subp))
5809 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
5810 then
5811 null;
5812 else
5813 Style.Missing_Overriding (Decl, Subp);
5814 end if;
5815 end if;
5817 elsif Must_Override (Spec) then
5818 if Ekind (Subp) = E_Entry then
5819 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
5820 else
5821 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
5822 end if;
5824 -- If the operation is marked "not overriding" and it's not primitive
5825 -- then an error is issued, unless this is an operation of a task or
5826 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
5827 -- has been specified have already been checked above.
5829 elsif Must_Not_Override (Spec)
5830 and then not Is_Primitive
5831 and then Ekind (Subp) /= E_Entry
5832 and then Ekind (Scope (Subp)) /= E_Protected_Type
5833 then
5834 Error_Msg_N
5835 ("overriding indicator only allowed if subprogram is primitive",
5836 Subp);
5837 return;
5838 end if;
5839 end Check_Overriding_Indicator;
5841 -------------------
5842 -- Check_Returns --
5843 -------------------
5845 -- Note: this procedure needs to know far too much about how the expander
5846 -- messes with exceptions. The use of the flag Exception_Junk and the
5847 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
5848 -- works, but is not very clean. It would be better if the expansion
5849 -- routines would leave Original_Node working nicely, and we could use
5850 -- Original_Node here to ignore all the peculiar expander messing ???
5852 procedure Check_Returns
5853 (HSS : Node_Id;
5854 Mode : Character;
5855 Err : out Boolean;
5856 Proc : Entity_Id := Empty)
5858 Handler : Node_Id;
5860 procedure Check_Statement_Sequence (L : List_Id);
5861 -- Internal recursive procedure to check a list of statements for proper
5862 -- termination by a return statement (or a transfer of control or a
5863 -- compound statement that is itself internally properly terminated).
5865 ------------------------------
5866 -- Check_Statement_Sequence --
5867 ------------------------------
5869 procedure Check_Statement_Sequence (L : List_Id) is
5870 Last_Stm : Node_Id;
5871 Stm : Node_Id;
5872 Kind : Node_Kind;
5874 function Assert_False return Boolean;
5875 -- Returns True if Last_Stm is a pragma Assert (False) that has been
5876 -- rewritten as a null statement when assertions are off. The assert
5877 -- is not active, but it is still enough to kill the warning.
5879 ------------------
5880 -- Assert_False --
5881 ------------------
5883 function Assert_False return Boolean is
5884 Orig : constant Node_Id := Original_Node (Last_Stm);
5886 begin
5887 if Nkind (Orig) = N_Pragma
5888 and then Pragma_Name (Orig) = Name_Assert
5889 and then not Error_Posted (Orig)
5890 then
5891 declare
5892 Arg : constant Node_Id :=
5893 First (Pragma_Argument_Associations (Orig));
5894 Exp : constant Node_Id := Expression (Arg);
5895 begin
5896 return Nkind (Exp) = N_Identifier
5897 and then Chars (Exp) = Name_False;
5898 end;
5900 else
5901 return False;
5902 end if;
5903 end Assert_False;
5905 -- Local variables
5907 Raise_Exception_Call : Boolean;
5908 -- Set True if statement sequence terminated by Raise_Exception call
5909 -- or a Reraise_Occurrence call.
5911 -- Start of processing for Check_Statement_Sequence
5913 begin
5914 Raise_Exception_Call := False;
5916 -- Get last real statement
5918 Last_Stm := Last (L);
5920 -- Deal with digging out exception handler statement sequences that
5921 -- have been transformed by the local raise to goto optimization.
5922 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
5923 -- optimization has occurred, we are looking at something like:
5925 -- begin
5926 -- original stmts in block
5928 -- exception \
5929 -- when excep1 => |
5930 -- goto L1; | omitted if No_Exception_Propagation
5931 -- when excep2 => |
5932 -- goto L2; /
5933 -- end;
5935 -- goto L3; -- skip handler when exception not raised
5937 -- <<L1>> -- target label for local exception
5938 -- begin
5939 -- estmts1
5940 -- end;
5942 -- goto L3;
5944 -- <<L2>>
5945 -- begin
5946 -- estmts2
5947 -- end;
5949 -- <<L3>>
5951 -- and what we have to do is to dig out the estmts1 and estmts2
5952 -- sequences (which were the original sequences of statements in
5953 -- the exception handlers) and check them.
5955 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
5956 Stm := Last_Stm;
5957 loop
5958 Prev (Stm);
5959 exit when No (Stm);
5960 exit when Nkind (Stm) /= N_Block_Statement;
5961 exit when not Exception_Junk (Stm);
5962 Prev (Stm);
5963 exit when No (Stm);
5964 exit when Nkind (Stm) /= N_Label;
5965 exit when not Exception_Junk (Stm);
5966 Check_Statement_Sequence
5967 (Statements (Handled_Statement_Sequence (Next (Stm))));
5969 Prev (Stm);
5970 Last_Stm := Stm;
5971 exit when No (Stm);
5972 exit when Nkind (Stm) /= N_Goto_Statement;
5973 exit when not Exception_Junk (Stm);
5974 end loop;
5975 end if;
5977 -- Don't count pragmas
5979 while Nkind (Last_Stm) = N_Pragma
5981 -- Don't count call to SS_Release (can happen after Raise_Exception)
5983 or else
5984 (Nkind (Last_Stm) = N_Procedure_Call_Statement
5985 and then
5986 Nkind (Name (Last_Stm)) = N_Identifier
5987 and then
5988 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
5990 -- Don't count exception junk
5992 or else
5993 (Nkind_In (Last_Stm, N_Goto_Statement,
5994 N_Label,
5995 N_Object_Declaration)
5996 and then Exception_Junk (Last_Stm))
5997 or else Nkind (Last_Stm) in N_Push_xxx_Label
5998 or else Nkind (Last_Stm) in N_Pop_xxx_Label
6000 -- Inserted code, such as finalization calls, is irrelevant: we only
6001 -- need to check original source.
6003 or else Is_Rewrite_Insertion (Last_Stm)
6004 loop
6005 Prev (Last_Stm);
6006 end loop;
6008 -- Here we have the "real" last statement
6010 Kind := Nkind (Last_Stm);
6012 -- Transfer of control, OK. Note that in the No_Return procedure
6013 -- case, we already diagnosed any explicit return statements, so
6014 -- we can treat them as OK in this context.
6016 if Is_Transfer (Last_Stm) then
6017 return;
6019 -- Check cases of explicit non-indirect procedure calls
6021 elsif Kind = N_Procedure_Call_Statement
6022 and then Is_Entity_Name (Name (Last_Stm))
6023 then
6024 -- Check call to Raise_Exception procedure which is treated
6025 -- specially, as is a call to Reraise_Occurrence.
6027 -- We suppress the warning in these cases since it is likely that
6028 -- the programmer really does not expect to deal with the case
6029 -- of Null_Occurrence, and thus would find a warning about a
6030 -- missing return curious, and raising Program_Error does not
6031 -- seem such a bad behavior if this does occur.
6033 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6034 -- behavior will be to raise Constraint_Error (see AI-329).
6036 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
6037 or else
6038 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
6039 then
6040 Raise_Exception_Call := True;
6042 -- For Raise_Exception call, test first argument, if it is
6043 -- an attribute reference for a 'Identity call, then we know
6044 -- that the call cannot possibly return.
6046 declare
6047 Arg : constant Node_Id :=
6048 Original_Node (First_Actual (Last_Stm));
6049 begin
6050 if Nkind (Arg) = N_Attribute_Reference
6051 and then Attribute_Name (Arg) = Name_Identity
6052 then
6053 return;
6054 end if;
6055 end;
6056 end if;
6058 -- If statement, need to look inside if there is an else and check
6059 -- each constituent statement sequence for proper termination.
6061 elsif Kind = N_If_Statement
6062 and then Present (Else_Statements (Last_Stm))
6063 then
6064 Check_Statement_Sequence (Then_Statements (Last_Stm));
6065 Check_Statement_Sequence (Else_Statements (Last_Stm));
6067 if Present (Elsif_Parts (Last_Stm)) then
6068 declare
6069 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
6071 begin
6072 while Present (Elsif_Part) loop
6073 Check_Statement_Sequence (Then_Statements (Elsif_Part));
6074 Next (Elsif_Part);
6075 end loop;
6076 end;
6077 end if;
6079 return;
6081 -- Case statement, check each case for proper termination
6083 elsif Kind = N_Case_Statement then
6084 declare
6085 Case_Alt : Node_Id;
6086 begin
6087 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
6088 while Present (Case_Alt) loop
6089 Check_Statement_Sequence (Statements (Case_Alt));
6090 Next_Non_Pragma (Case_Alt);
6091 end loop;
6092 end;
6094 return;
6096 -- Block statement, check its handled sequence of statements
6098 elsif Kind = N_Block_Statement then
6099 declare
6100 Err1 : Boolean;
6102 begin
6103 Check_Returns
6104 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
6106 if Err1 then
6107 Err := True;
6108 end if;
6110 return;
6111 end;
6113 -- Loop statement. If there is an iteration scheme, we can definitely
6114 -- fall out of the loop. Similarly if there is an exit statement, we
6115 -- can fall out. In either case we need a following return.
6117 elsif Kind = N_Loop_Statement then
6118 if Present (Iteration_Scheme (Last_Stm))
6119 or else Has_Exit (Entity (Identifier (Last_Stm)))
6120 then
6121 null;
6123 -- A loop with no exit statement or iteration scheme is either
6124 -- an infinite loop, or it has some other exit (raise/return).
6125 -- In either case, no warning is required.
6127 else
6128 return;
6129 end if;
6131 -- Timed entry call, check entry call and delay alternatives
6133 -- Note: in expanded code, the timed entry call has been converted
6134 -- to a set of expanded statements on which the check will work
6135 -- correctly in any case.
6137 elsif Kind = N_Timed_Entry_Call then
6138 declare
6139 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6140 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
6142 begin
6143 -- If statement sequence of entry call alternative is missing,
6144 -- then we can definitely fall through, and we post the error
6145 -- message on the entry call alternative itself.
6147 if No (Statements (ECA)) then
6148 Last_Stm := ECA;
6150 -- If statement sequence of delay alternative is missing, then
6151 -- we can definitely fall through, and we post the error
6152 -- message on the delay alternative itself.
6154 -- Note: if both ECA and DCA are missing the return, then we
6155 -- post only one message, should be enough to fix the bugs.
6156 -- If not we will get a message next time on the DCA when the
6157 -- ECA is fixed.
6159 elsif No (Statements (DCA)) then
6160 Last_Stm := DCA;
6162 -- Else check both statement sequences
6164 else
6165 Check_Statement_Sequence (Statements (ECA));
6166 Check_Statement_Sequence (Statements (DCA));
6167 return;
6168 end if;
6169 end;
6171 -- Conditional entry call, check entry call and else part
6173 -- Note: in expanded code, the conditional entry call has been
6174 -- converted to a set of expanded statements on which the check
6175 -- will work correctly in any case.
6177 elsif Kind = N_Conditional_Entry_Call then
6178 declare
6179 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
6181 begin
6182 -- If statement sequence of entry call alternative is missing,
6183 -- then we can definitely fall through, and we post the error
6184 -- message on the entry call alternative itself.
6186 if No (Statements (ECA)) then
6187 Last_Stm := ECA;
6189 -- Else check statement sequence and else part
6191 else
6192 Check_Statement_Sequence (Statements (ECA));
6193 Check_Statement_Sequence (Else_Statements (Last_Stm));
6194 return;
6195 end if;
6196 end;
6197 end if;
6199 -- If we fall through, issue appropriate message
6201 if Mode = 'F' then
6203 -- Kill warning if last statement is a raise exception call,
6204 -- or a pragma Assert (False). Note that with assertions enabled,
6205 -- such a pragma has been converted into a raise exception call
6206 -- already, so the Assert_False is for the assertions off case.
6208 if not Raise_Exception_Call and then not Assert_False then
6210 -- In GNATprove mode, it is an error to have a missing return
6212 Error_Msg_Warn := SPARK_Mode /= On;
6214 -- Issue error message or warning
6216 Error_Msg_N
6217 ("RETURN statement missing following this statement<<!",
6218 Last_Stm);
6219 Error_Msg_N
6220 ("\Program_Error ]<<!", Last_Stm);
6221 end if;
6223 -- Note: we set Err even though we have not issued a warning
6224 -- because we still have a case of a missing return. This is
6225 -- an extremely marginal case, probably will never be noticed
6226 -- but we might as well get it right.
6228 Err := True;
6230 -- Otherwise we have the case of a procedure marked No_Return
6232 else
6233 if not Raise_Exception_Call then
6234 if GNATprove_Mode then
6235 Error_Msg_N
6236 ("implied return after this statement "
6237 & "would have raised Program_Error", Last_Stm);
6238 else
6239 Error_Msg_N
6240 ("implied return after this statement "
6241 & "will raise Program_Error??", Last_Stm);
6242 end if;
6244 Error_Msg_Warn := SPARK_Mode /= On;
6245 Error_Msg_NE
6246 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
6247 end if;
6249 declare
6250 RE : constant Node_Id :=
6251 Make_Raise_Program_Error (Sloc (Last_Stm),
6252 Reason => PE_Implicit_Return);
6253 begin
6254 Insert_After (Last_Stm, RE);
6255 Analyze (RE);
6256 end;
6257 end if;
6258 end Check_Statement_Sequence;
6260 -- Start of processing for Check_Returns
6262 begin
6263 Err := False;
6264 Check_Statement_Sequence (Statements (HSS));
6266 if Present (Exception_Handlers (HSS)) then
6267 Handler := First_Non_Pragma (Exception_Handlers (HSS));
6268 while Present (Handler) loop
6269 Check_Statement_Sequence (Statements (Handler));
6270 Next_Non_Pragma (Handler);
6271 end loop;
6272 end if;
6273 end Check_Returns;
6275 ----------------------------
6276 -- Check_Subprogram_Order --
6277 ----------------------------
6279 procedure Check_Subprogram_Order (N : Node_Id) is
6281 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
6282 -- This is used to check if S1 > S2 in the sense required by this test,
6283 -- for example nameab < namec, but name2 < name10.
6285 -----------------------------
6286 -- Subprogram_Name_Greater --
6287 -----------------------------
6289 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
6290 L1, L2 : Positive;
6291 N1, N2 : Natural;
6293 begin
6294 -- Deal with special case where names are identical except for a
6295 -- numerical suffix. These are handled specially, taking the numeric
6296 -- ordering from the suffix into account.
6298 L1 := S1'Last;
6299 while S1 (L1) in '0' .. '9' loop
6300 L1 := L1 - 1;
6301 end loop;
6303 L2 := S2'Last;
6304 while S2 (L2) in '0' .. '9' loop
6305 L2 := L2 - 1;
6306 end loop;
6308 -- If non-numeric parts non-equal, do straight compare
6310 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
6311 return S1 > S2;
6313 -- If non-numeric parts equal, compare suffixed numeric parts. Note
6314 -- that a missing suffix is treated as numeric zero in this test.
6316 else
6317 N1 := 0;
6318 while L1 < S1'Last loop
6319 L1 := L1 + 1;
6320 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
6321 end loop;
6323 N2 := 0;
6324 while L2 < S2'Last loop
6325 L2 := L2 + 1;
6326 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
6327 end loop;
6329 return N1 > N2;
6330 end if;
6331 end Subprogram_Name_Greater;
6333 -- Start of processing for Check_Subprogram_Order
6335 begin
6336 -- Check body in alpha order if this is option
6338 if Style_Check
6339 and then Style_Check_Order_Subprograms
6340 and then Nkind (N) = N_Subprogram_Body
6341 and then Comes_From_Source (N)
6342 and then In_Extended_Main_Source_Unit (N)
6343 then
6344 declare
6345 LSN : String_Ptr
6346 renames Scope_Stack.Table
6347 (Scope_Stack.Last).Last_Subprogram_Name;
6349 Body_Id : constant Entity_Id :=
6350 Defining_Entity (Specification (N));
6352 begin
6353 Get_Decoded_Name_String (Chars (Body_Id));
6355 if LSN /= null then
6356 if Subprogram_Name_Greater
6357 (LSN.all, Name_Buffer (1 .. Name_Len))
6358 then
6359 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
6360 end if;
6362 Free (LSN);
6363 end if;
6365 LSN := new String'(Name_Buffer (1 .. Name_Len));
6366 end;
6367 end if;
6368 end Check_Subprogram_Order;
6370 ------------------------------
6371 -- Check_Subtype_Conformant --
6372 ------------------------------
6374 procedure Check_Subtype_Conformant
6375 (New_Id : Entity_Id;
6376 Old_Id : Entity_Id;
6377 Err_Loc : Node_Id := Empty;
6378 Skip_Controlling_Formals : Boolean := False;
6379 Get_Inst : Boolean := False)
6381 Result : Boolean;
6382 pragma Warnings (Off, Result);
6383 begin
6384 Check_Conformance
6385 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
6386 Skip_Controlling_Formals => Skip_Controlling_Formals,
6387 Get_Inst => Get_Inst);
6388 end Check_Subtype_Conformant;
6390 ---------------------------
6391 -- Check_Type_Conformant --
6392 ---------------------------
6394 procedure Check_Type_Conformant
6395 (New_Id : Entity_Id;
6396 Old_Id : Entity_Id;
6397 Err_Loc : Node_Id := Empty)
6399 Result : Boolean;
6400 pragma Warnings (Off, Result);
6401 begin
6402 Check_Conformance
6403 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
6404 end Check_Type_Conformant;
6406 ---------------------------
6407 -- Can_Override_Operator --
6408 ---------------------------
6410 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
6411 Typ : Entity_Id;
6413 begin
6414 if Nkind (Subp) /= N_Defining_Operator_Symbol then
6415 return False;
6417 else
6418 Typ := Base_Type (Etype (First_Formal (Subp)));
6420 -- Check explicitly that the operation is a primitive of the type
6422 return Operator_Matches_Spec (Subp, Subp)
6423 and then not Is_Generic_Type (Typ)
6424 and then Scope (Subp) = Scope (Typ)
6425 and then not Is_Class_Wide_Type (Typ);
6426 end if;
6427 end Can_Override_Operator;
6429 ----------------------
6430 -- Conforming_Types --
6431 ----------------------
6433 function Conforming_Types
6434 (T1 : Entity_Id;
6435 T2 : Entity_Id;
6436 Ctype : Conformance_Type;
6437 Get_Inst : Boolean := False) return Boolean
6439 Type_1 : Entity_Id := T1;
6440 Type_2 : Entity_Id := T2;
6441 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
6443 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
6444 -- If neither T1 nor T2 are generic actual types, or if they are in
6445 -- different scopes (e.g. parent and child instances), then verify that
6446 -- the base types are equal. Otherwise T1 and T2 must be on the same
6447 -- subtype chain. The whole purpose of this procedure is to prevent
6448 -- spurious ambiguities in an instantiation that may arise if two
6449 -- distinct generic types are instantiated with the same actual.
6451 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
6452 -- An access parameter can designate an incomplete type. If the
6453 -- incomplete type is the limited view of a type from a limited_
6454 -- with_clause, check whether the non-limited view is available. If
6455 -- it is a (non-limited) incomplete type, get the full view.
6457 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
6458 -- Returns True if and only if either T1 denotes a limited view of T2
6459 -- or T2 denotes a limited view of T1. This can arise when the limited
6460 -- with view of a type is used in a subprogram declaration and the
6461 -- subprogram body is in the scope of a regular with clause for the
6462 -- same unit. In such a case, the two type entities can be considered
6463 -- identical for purposes of conformance checking.
6465 ----------------------
6466 -- Base_Types_Match --
6467 ----------------------
6469 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
6470 BT1 : constant Entity_Id := Base_Type (T1);
6471 BT2 : constant Entity_Id := Base_Type (T2);
6473 begin
6474 if T1 = T2 then
6475 return True;
6477 elsif BT1 = BT2 then
6479 -- The following is too permissive. A more precise test should
6480 -- check that the generic actual is an ancestor subtype of the
6481 -- other ???.
6483 -- See code in Find_Corresponding_Spec that applies an additional
6484 -- filter to handle accidental amiguities in instances.
6486 return not Is_Generic_Actual_Type (T1)
6487 or else not Is_Generic_Actual_Type (T2)
6488 or else Scope (T1) /= Scope (T2);
6490 -- If T2 is a generic actual type it is declared as the subtype of
6491 -- the actual. If that actual is itself a subtype we need to use its
6492 -- own base type to check for compatibility.
6494 elsif Ekind (BT2) = Ekind (T2) and then BT1 = Base_Type (BT2) then
6495 return True;
6497 elsif Ekind (BT1) = Ekind (T1) and then BT2 = Base_Type (BT1) then
6498 return True;
6500 else
6501 return False;
6502 end if;
6503 end Base_Types_Match;
6505 --------------------------
6506 -- Find_Designated_Type --
6507 --------------------------
6509 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
6510 Desig : Entity_Id;
6512 begin
6513 Desig := Directly_Designated_Type (T);
6515 if Ekind (Desig) = E_Incomplete_Type then
6517 -- If regular incomplete type, get full view if available
6519 if Present (Full_View (Desig)) then
6520 Desig := Full_View (Desig);
6522 -- If limited view of a type, get non-limited view if available,
6523 -- and check again for a regular incomplete type.
6525 elsif Present (Non_Limited_View (Desig)) then
6526 Desig := Get_Full_View (Non_Limited_View (Desig));
6527 end if;
6528 end if;
6530 return Desig;
6531 end Find_Designated_Type;
6533 -------------------------------
6534 -- Matches_Limited_With_View --
6535 -------------------------------
6537 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
6538 begin
6539 -- In some cases a type imported through a limited_with clause, and
6540 -- its nonlimited view are both visible, for example in an anonymous
6541 -- access-to-class-wide type in a formal. Both entities designate the
6542 -- same type.
6544 if From_Limited_With (T1) and then T2 = Available_View (T1) then
6545 return True;
6547 elsif From_Limited_With (T2) and then T1 = Available_View (T2) then
6548 return True;
6550 elsif From_Limited_With (T1)
6551 and then From_Limited_With (T2)
6552 and then Available_View (T1) = Available_View (T2)
6553 then
6554 return True;
6556 else
6557 return False;
6558 end if;
6559 end Matches_Limited_With_View;
6561 -- Start of processing for Conforming_Types
6563 begin
6564 -- The context is an instance association for a formal access-to-
6565 -- subprogram type; the formal parameter types require mapping because
6566 -- they may denote other formal parameters of the generic unit.
6568 if Get_Inst then
6569 Type_1 := Get_Instance_Of (T1);
6570 Type_2 := Get_Instance_Of (T2);
6571 end if;
6573 -- If one of the types is a view of the other introduced by a limited
6574 -- with clause, treat these as conforming for all purposes.
6576 if Matches_Limited_With_View (T1, T2) then
6577 return True;
6579 elsif Base_Types_Match (Type_1, Type_2) then
6580 return Ctype <= Mode_Conformant
6581 or else Subtypes_Statically_Match (Type_1, Type_2);
6583 elsif Is_Incomplete_Or_Private_Type (Type_1)
6584 and then Present (Full_View (Type_1))
6585 and then Base_Types_Match (Full_View (Type_1), Type_2)
6586 then
6587 return Ctype <= Mode_Conformant
6588 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
6590 elsif Ekind (Type_2) = E_Incomplete_Type
6591 and then Present (Full_View (Type_2))
6592 and then Base_Types_Match (Type_1, Full_View (Type_2))
6593 then
6594 return Ctype <= Mode_Conformant
6595 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6597 elsif Is_Private_Type (Type_2)
6598 and then In_Instance
6599 and then Present (Full_View (Type_2))
6600 and then Base_Types_Match (Type_1, Full_View (Type_2))
6601 then
6602 return Ctype <= Mode_Conformant
6603 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6604 end if;
6606 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
6607 -- treated recursively because they carry a signature. As far as
6608 -- conformance is concerned, convention plays no role, and either
6609 -- or both could be access to protected subprograms.
6611 Are_Anonymous_Access_To_Subprogram_Types :=
6612 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
6613 E_Anonymous_Access_Protected_Subprogram_Type)
6614 and then
6615 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
6616 E_Anonymous_Access_Protected_Subprogram_Type);
6618 -- Test anonymous access type case. For this case, static subtype
6619 -- matching is required for mode conformance (RM 6.3.1(15)). We check
6620 -- the base types because we may have built internal subtype entities
6621 -- to handle null-excluding types (see Process_Formals).
6623 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
6624 and then
6625 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
6627 -- Ada 2005 (AI-254)
6629 or else Are_Anonymous_Access_To_Subprogram_Types
6630 then
6631 declare
6632 Desig_1 : Entity_Id;
6633 Desig_2 : Entity_Id;
6635 begin
6636 -- In Ada 2005, access constant indicators must match for
6637 -- subtype conformance.
6639 if Ada_Version >= Ada_2005
6640 and then Ctype >= Subtype_Conformant
6641 and then
6642 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
6643 then
6644 return False;
6645 end if;
6647 Desig_1 := Find_Designated_Type (Type_1);
6648 Desig_2 := Find_Designated_Type (Type_2);
6650 -- If the context is an instance association for a formal
6651 -- access-to-subprogram type; formal access parameter designated
6652 -- types require mapping because they may denote other formal
6653 -- parameters of the generic unit.
6655 if Get_Inst then
6656 Desig_1 := Get_Instance_Of (Desig_1);
6657 Desig_2 := Get_Instance_Of (Desig_2);
6658 end if;
6660 -- It is possible for a Class_Wide_Type to be introduced for an
6661 -- incomplete type, in which case there is a separate class_ wide
6662 -- type for the full view. The types conform if their Etypes
6663 -- conform, i.e. one may be the full view of the other. This can
6664 -- only happen in the context of an access parameter, other uses
6665 -- of an incomplete Class_Wide_Type are illegal.
6667 if Is_Class_Wide_Type (Desig_1)
6668 and then
6669 Is_Class_Wide_Type (Desig_2)
6670 then
6671 return
6672 Conforming_Types
6673 (Etype (Base_Type (Desig_1)),
6674 Etype (Base_Type (Desig_2)), Ctype);
6676 elsif Are_Anonymous_Access_To_Subprogram_Types then
6677 if Ada_Version < Ada_2005 then
6678 return Ctype = Type_Conformant
6679 or else
6680 Subtypes_Statically_Match (Desig_1, Desig_2);
6682 -- We must check the conformance of the signatures themselves
6684 else
6685 declare
6686 Conformant : Boolean;
6687 begin
6688 Check_Conformance
6689 (Desig_1, Desig_2, Ctype, False, Conformant);
6690 return Conformant;
6691 end;
6692 end if;
6694 else
6695 return Base_Type (Desig_1) = Base_Type (Desig_2)
6696 and then (Ctype = Type_Conformant
6697 or else
6698 Subtypes_Statically_Match (Desig_1, Desig_2));
6699 end if;
6700 end;
6702 -- Otherwise definitely no match
6704 else
6705 if ((Ekind (Type_1) = E_Anonymous_Access_Type
6706 and then Is_Access_Type (Type_2))
6707 or else (Ekind (Type_2) = E_Anonymous_Access_Type
6708 and then Is_Access_Type (Type_1)))
6709 and then
6710 Conforming_Types
6711 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
6712 then
6713 May_Hide_Profile := True;
6714 end if;
6716 return False;
6717 end if;
6718 end Conforming_Types;
6720 --------------------------
6721 -- Create_Extra_Formals --
6722 --------------------------
6724 procedure Create_Extra_Formals (E : Entity_Id) is
6725 Formal : Entity_Id;
6726 First_Extra : Entity_Id := Empty;
6727 Last_Extra : Entity_Id;
6728 Formal_Type : Entity_Id;
6729 P_Formal : Entity_Id := Empty;
6731 function Add_Extra_Formal
6732 (Assoc_Entity : Entity_Id;
6733 Typ : Entity_Id;
6734 Scope : Entity_Id;
6735 Suffix : String) return Entity_Id;
6736 -- Add an extra formal to the current list of formals and extra formals.
6737 -- The extra formal is added to the end of the list of extra formals,
6738 -- and also returned as the result. These formals are always of mode IN.
6739 -- The new formal has the type Typ, is declared in Scope, and its name
6740 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
6741 -- The following suffixes are currently used. They should not be changed
6742 -- without coordinating with CodePeer, which makes use of these to
6743 -- provide better messages.
6745 -- O denotes the Constrained bit.
6746 -- L denotes the accessibility level.
6747 -- BIP_xxx denotes an extra formal for a build-in-place function. See
6748 -- the full list in exp_ch6.BIP_Formal_Kind.
6750 ----------------------
6751 -- Add_Extra_Formal --
6752 ----------------------
6754 function Add_Extra_Formal
6755 (Assoc_Entity : Entity_Id;
6756 Typ : Entity_Id;
6757 Scope : Entity_Id;
6758 Suffix : String) return Entity_Id
6760 EF : constant Entity_Id :=
6761 Make_Defining_Identifier (Sloc (Assoc_Entity),
6762 Chars => New_External_Name (Chars (Assoc_Entity),
6763 Suffix => Suffix));
6765 begin
6766 -- A little optimization. Never generate an extra formal for the
6767 -- _init operand of an initialization procedure, since it could
6768 -- never be used.
6770 if Chars (Formal) = Name_uInit then
6771 return Empty;
6772 end if;
6774 Set_Ekind (EF, E_In_Parameter);
6775 Set_Actual_Subtype (EF, Typ);
6776 Set_Etype (EF, Typ);
6777 Set_Scope (EF, Scope);
6778 Set_Mechanism (EF, Default_Mechanism);
6779 Set_Formal_Validity (EF);
6781 if No (First_Extra) then
6782 First_Extra := EF;
6783 Set_Extra_Formals (Scope, First_Extra);
6784 end if;
6786 if Present (Last_Extra) then
6787 Set_Extra_Formal (Last_Extra, EF);
6788 end if;
6790 Last_Extra := EF;
6792 return EF;
6793 end Add_Extra_Formal;
6795 -- Start of processing for Create_Extra_Formals
6797 begin
6798 -- We never generate extra formals if expansion is not active because we
6799 -- don't need them unless we are generating code.
6801 if not Expander_Active then
6802 return;
6803 end if;
6805 -- No need to generate extra formals in interface thunks whose target
6806 -- primitive has no extra formals.
6808 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
6809 return;
6810 end if;
6812 -- If this is a derived subprogram then the subtypes of the parent
6813 -- subprogram's formal parameters will be used to determine the need
6814 -- for extra formals.
6816 if Is_Overloadable (E) and then Present (Alias (E)) then
6817 P_Formal := First_Formal (Alias (E));
6818 end if;
6820 Last_Extra := Empty;
6821 Formal := First_Formal (E);
6822 while Present (Formal) loop
6823 Last_Extra := Formal;
6824 Next_Formal (Formal);
6825 end loop;
6827 -- If Extra_formals were already created, don't do it again. This
6828 -- situation may arise for subprogram types created as part of
6829 -- dispatching calls (see Expand_Dispatching_Call)
6831 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
6832 return;
6833 end if;
6835 -- If the subprogram is a predefined dispatching subprogram then don't
6836 -- generate any extra constrained or accessibility level formals. In
6837 -- general we suppress these for internal subprograms (by not calling
6838 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
6839 -- generated stream attributes do get passed through because extra
6840 -- build-in-place formals are needed in some cases (limited 'Input).
6842 if Is_Predefined_Internal_Operation (E) then
6843 goto Test_For_Func_Result_Extras;
6844 end if;
6846 Formal := First_Formal (E);
6847 while Present (Formal) loop
6849 -- Create extra formal for supporting the attribute 'Constrained.
6850 -- The case of a private type view without discriminants also
6851 -- requires the extra formal if the underlying type has defaulted
6852 -- discriminants.
6854 if Ekind (Formal) /= E_In_Parameter then
6855 if Present (P_Formal) then
6856 Formal_Type := Etype (P_Formal);
6857 else
6858 Formal_Type := Etype (Formal);
6859 end if;
6861 -- Do not produce extra formals for Unchecked_Union parameters.
6862 -- Jump directly to the end of the loop.
6864 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
6865 goto Skip_Extra_Formal_Generation;
6866 end if;
6868 if not Has_Discriminants (Formal_Type)
6869 and then Ekind (Formal_Type) in Private_Kind
6870 and then Present (Underlying_Type (Formal_Type))
6871 then
6872 Formal_Type := Underlying_Type (Formal_Type);
6873 end if;
6875 -- Suppress the extra formal if formal's subtype is constrained or
6876 -- indefinite, or we're compiling for Ada 2012 and the underlying
6877 -- type is tagged and limited. In Ada 2012, a limited tagged type
6878 -- can have defaulted discriminants, but 'Constrained is required
6879 -- to return True, so the formal is never needed (see AI05-0214).
6880 -- Note that this ensures consistency of calling sequences for
6881 -- dispatching operations when some types in a class have defaults
6882 -- on discriminants and others do not (and requiring the extra
6883 -- formal would introduce distributed overhead).
6885 -- If the type does not have a completion yet, treat as prior to
6886 -- Ada 2012 for consistency.
6888 if Has_Discriminants (Formal_Type)
6889 and then not Is_Constrained (Formal_Type)
6890 and then not Is_Indefinite_Subtype (Formal_Type)
6891 and then (Ada_Version < Ada_2012
6892 or else No (Underlying_Type (Formal_Type))
6893 or else not
6894 (Is_Limited_Type (Formal_Type)
6895 and then
6896 (Is_Tagged_Type
6897 (Underlying_Type (Formal_Type)))))
6898 then
6899 Set_Extra_Constrained
6900 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
6901 end if;
6902 end if;
6904 -- Create extra formal for supporting accessibility checking. This
6905 -- is done for both anonymous access formals and formals of named
6906 -- access types that are marked as controlling formals. The latter
6907 -- case can occur when Expand_Dispatching_Call creates a subprogram
6908 -- type and substitutes the types of access-to-class-wide actuals
6909 -- for the anonymous access-to-specific-type of controlling formals.
6910 -- Base_Type is applied because in cases where there is a null
6911 -- exclusion the formal may have an access subtype.
6913 -- This is suppressed if we specifically suppress accessibility
6914 -- checks at the package level for either the subprogram, or the
6915 -- package in which it resides. However, we do not suppress it
6916 -- simply if the scope has accessibility checks suppressed, since
6917 -- this could cause trouble when clients are compiled with a
6918 -- different suppression setting. The explicit checks at the
6919 -- package level are safe from this point of view.
6921 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
6922 or else (Is_Controlling_Formal (Formal)
6923 and then Is_Access_Type (Base_Type (Etype (Formal)))))
6924 and then not
6925 (Explicit_Suppress (E, Accessibility_Check)
6926 or else
6927 Explicit_Suppress (Scope (E), Accessibility_Check))
6928 and then
6929 (No (P_Formal)
6930 or else Present (Extra_Accessibility (P_Formal)))
6931 then
6932 Set_Extra_Accessibility
6933 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
6934 end if;
6936 -- This label is required when skipping extra formal generation for
6937 -- Unchecked_Union parameters.
6939 <<Skip_Extra_Formal_Generation>>
6941 if Present (P_Formal) then
6942 Next_Formal (P_Formal);
6943 end if;
6945 Next_Formal (Formal);
6946 end loop;
6948 <<Test_For_Func_Result_Extras>>
6950 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
6951 -- function call is ... determined by the point of call ...".
6953 if Needs_Result_Accessibility_Level (E) then
6954 Set_Extra_Accessibility_Of_Result
6955 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
6956 end if;
6958 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
6959 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
6961 if Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function (E) then
6962 declare
6963 Result_Subt : constant Entity_Id := Etype (E);
6964 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
6965 Formal_Typ : Entity_Id;
6967 Discard : Entity_Id;
6968 pragma Warnings (Off, Discard);
6970 begin
6971 -- In the case of functions with unconstrained result subtypes,
6972 -- add a 4-state formal indicating whether the return object is
6973 -- allocated by the caller (1), or should be allocated by the
6974 -- callee on the secondary stack (2), in the global heap (3), or
6975 -- in a user-defined storage pool (4). For the moment we just use
6976 -- Natural for the type of this formal. Note that this formal
6977 -- isn't usually needed in the case where the result subtype is
6978 -- constrained, but it is needed when the function has a tagged
6979 -- result, because generally such functions can be called in a
6980 -- dispatching context and such calls must be handled like calls
6981 -- to a class-wide function.
6983 if Needs_BIP_Alloc_Form (E) then
6984 Discard :=
6985 Add_Extra_Formal
6986 (E, Standard_Natural,
6987 E, BIP_Formal_Suffix (BIP_Alloc_Form));
6989 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
6990 -- use a user-defined pool. This formal is not added on
6991 -- .NET/JVM/ZFP as those targets do not support pools.
6993 if VM_Target = No_VM
6994 and then RTE_Available (RE_Root_Storage_Pool_Ptr)
6995 then
6996 Discard :=
6997 Add_Extra_Formal
6998 (E, RTE (RE_Root_Storage_Pool_Ptr),
6999 E, BIP_Formal_Suffix (BIP_Storage_Pool));
7000 end if;
7001 end if;
7003 -- In the case of functions whose result type needs finalization,
7004 -- add an extra formal which represents the finalization master.
7006 if Needs_BIP_Finalization_Master (E) then
7007 Discard :=
7008 Add_Extra_Formal
7009 (E, RTE (RE_Finalization_Master_Ptr),
7010 E, BIP_Formal_Suffix (BIP_Finalization_Master));
7011 end if;
7013 -- When the result type contains tasks, add two extra formals: the
7014 -- master of the tasks to be created, and the caller's activation
7015 -- chain.
7017 if Has_Task (Full_Subt) then
7018 Discard :=
7019 Add_Extra_Formal
7020 (E, RTE (RE_Master_Id),
7021 E, BIP_Formal_Suffix (BIP_Task_Master));
7022 Discard :=
7023 Add_Extra_Formal
7024 (E, RTE (RE_Activation_Chain_Access),
7025 E, BIP_Formal_Suffix (BIP_Activation_Chain));
7026 end if;
7028 -- All build-in-place functions get an extra formal that will be
7029 -- passed the address of the return object within the caller.
7031 Formal_Typ :=
7032 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
7034 Set_Directly_Designated_Type (Formal_Typ, Result_Subt);
7035 Set_Etype (Formal_Typ, Formal_Typ);
7036 Set_Depends_On_Private
7037 (Formal_Typ, Has_Private_Component (Formal_Typ));
7038 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
7039 Set_Is_Access_Constant (Formal_Typ, False);
7041 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
7042 -- the designated type comes from the limited view (for back-end
7043 -- purposes).
7045 Set_From_Limited_With
7046 (Formal_Typ, From_Limited_With (Result_Subt));
7048 Layout_Type (Formal_Typ);
7050 Discard :=
7051 Add_Extra_Formal
7052 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
7053 end;
7054 end if;
7055 end Create_Extra_Formals;
7057 -----------------------------
7058 -- Enter_Overloaded_Entity --
7059 -----------------------------
7061 procedure Enter_Overloaded_Entity (S : Entity_Id) is
7062 E : Entity_Id := Current_Entity_In_Scope (S);
7063 C_E : Entity_Id := Current_Entity (S);
7065 begin
7066 if Present (E) then
7067 Set_Has_Homonym (E);
7068 Set_Has_Homonym (S);
7069 end if;
7071 Set_Is_Immediately_Visible (S);
7072 Set_Scope (S, Current_Scope);
7074 -- Chain new entity if front of homonym in current scope, so that
7075 -- homonyms are contiguous.
7077 if Present (E) and then E /= C_E then
7078 while Homonym (C_E) /= E loop
7079 C_E := Homonym (C_E);
7080 end loop;
7082 Set_Homonym (C_E, S);
7084 else
7085 E := C_E;
7086 Set_Current_Entity (S);
7087 end if;
7089 Set_Homonym (S, E);
7091 if Is_Inherited_Operation (S) then
7092 Append_Inherited_Subprogram (S);
7093 else
7094 Append_Entity (S, Current_Scope);
7095 end if;
7097 Set_Public_Status (S);
7099 if Debug_Flag_E then
7100 Write_Str ("New overloaded entity chain: ");
7101 Write_Name (Chars (S));
7103 E := S;
7104 while Present (E) loop
7105 Write_Str (" "); Write_Int (Int (E));
7106 E := Homonym (E);
7107 end loop;
7109 Write_Eol;
7110 end if;
7112 -- Generate warning for hiding
7114 if Warn_On_Hiding
7115 and then Comes_From_Source (S)
7116 and then In_Extended_Main_Source_Unit (S)
7117 then
7118 E := S;
7119 loop
7120 E := Homonym (E);
7121 exit when No (E);
7123 -- Warn unless genuine overloading. Do not emit warning on
7124 -- hiding predefined operators in Standard (these are either an
7125 -- (artifact of our implicit declarations, or simple noise) but
7126 -- keep warning on a operator defined on a local subtype, because
7127 -- of the real danger that different operators may be applied in
7128 -- various parts of the program.
7130 -- Note that if E and S have the same scope, there is never any
7131 -- hiding. Either the two conflict, and the program is illegal,
7132 -- or S is overriding an implicit inherited subprogram.
7134 if Scope (E) /= Scope (S)
7135 and then (not Is_Overloadable (E)
7136 or else Subtype_Conformant (E, S))
7137 and then (Is_Immediately_Visible (E)
7138 or else
7139 Is_Potentially_Use_Visible (S))
7140 then
7141 if Scope (E) /= Standard_Standard then
7142 Error_Msg_Sloc := Sloc (E);
7143 Error_Msg_N ("declaration of & hides one #?h?", S);
7145 elsif Nkind (S) = N_Defining_Operator_Symbol
7146 and then
7147 Scope (Base_Type (Etype (First_Formal (S)))) /= Scope (S)
7148 then
7149 Error_Msg_N
7150 ("declaration of & hides predefined operator?h?", S);
7151 end if;
7152 end if;
7153 end loop;
7154 end if;
7155 end Enter_Overloaded_Entity;
7157 -----------------------------
7158 -- Check_Untagged_Equality --
7159 -----------------------------
7161 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
7162 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
7163 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
7164 Obj_Decl : Node_Id;
7166 begin
7167 -- This check applies only if we have a subprogram declaration with an
7168 -- untagged record type.
7170 if Nkind (Decl) /= N_Subprogram_Declaration
7171 or else not Is_Record_Type (Typ)
7172 or else Is_Tagged_Type (Typ)
7173 then
7174 return;
7175 end if;
7177 -- In Ada 2012 case, we will output errors or warnings depending on
7178 -- the setting of debug flag -gnatd.E.
7180 if Ada_Version >= Ada_2012 then
7181 Error_Msg_Warn := Debug_Flag_Dot_EE;
7183 -- In earlier versions of Ada, nothing to do unless we are warning on
7184 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
7186 else
7187 if not Warn_On_Ada_2012_Compatibility then
7188 return;
7189 end if;
7190 end if;
7192 -- Cases where the type has already been frozen
7194 if Is_Frozen (Typ) then
7196 -- If the type is not declared in a package, or if we are in the body
7197 -- of the package or in some other scope, the new operation is not
7198 -- primitive, and therefore legal, though suspicious. Should we
7199 -- generate a warning in this case ???
7201 if Ekind (Scope (Typ)) /= E_Package
7202 or else Scope (Typ) /= Current_Scope
7203 then
7204 return;
7206 -- If the type is a generic actual (sub)type, the operation is not
7207 -- primitive either because the base type is declared elsewhere.
7209 elsif Is_Generic_Actual_Type (Typ) then
7210 return;
7212 -- Here we have a definite error of declaration after freezing
7214 else
7215 if Ada_Version >= Ada_2012 then
7216 Error_Msg_NE
7217 ("equality operator must be declared before type & is "
7218 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
7220 -- In Ada 2012 mode with error turned to warning, output one
7221 -- more warning to warn that the equality operation may not
7222 -- compose. This is the consequence of ignoring the error.
7224 if Error_Msg_Warn then
7225 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
7226 end if;
7228 else
7229 Error_Msg_NE
7230 ("equality operator must be declared before type& is "
7231 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
7232 end if;
7234 -- If we are in the package body, we could just move the
7235 -- declaration to the package spec, so add a message saying that.
7237 if In_Package_Body (Scope (Typ)) then
7238 if Ada_Version >= Ada_2012 then
7239 Error_Msg_N
7240 ("\move declaration to package spec<<", Eq_Op);
7241 else
7242 Error_Msg_N
7243 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op);
7244 end if;
7246 -- Otherwise try to find the freezing point
7248 else
7249 Obj_Decl := Next (Parent (Typ));
7250 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
7251 if Nkind (Obj_Decl) = N_Object_Declaration
7252 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
7253 then
7254 -- Freezing point, output warnings
7256 if Ada_Version >= Ada_2012 then
7257 Error_Msg_NE
7258 ("type& is frozen by declaration??", Obj_Decl, Typ);
7259 Error_Msg_N
7260 ("\an equality operator cannot be declared after "
7261 & "this point??",
7262 Obj_Decl);
7263 else
7264 Error_Msg_NE
7265 ("type& is frozen by declaration (Ada 2012)?y?",
7266 Obj_Decl, Typ);
7267 Error_Msg_N
7268 ("\an equality operator cannot be declared after "
7269 & "this point (Ada 2012)?y?",
7270 Obj_Decl);
7271 end if;
7273 exit;
7274 end if;
7276 Next (Obj_Decl);
7277 end loop;
7278 end if;
7279 end if;
7281 -- Here if type is not frozen yet. It is illegal to have a primitive
7282 -- equality declared in the private part if the type is visible.
7284 elsif not In_Same_List (Parent (Typ), Decl)
7285 and then not Is_Limited_Type (Typ)
7286 then
7287 -- Shouldn't we give an RM reference here???
7289 if Ada_Version >= Ada_2012 then
7290 Error_Msg_N
7291 ("equality operator appears too late<<", Eq_Op);
7292 else
7293 Error_Msg_N
7294 ("equality operator appears too late (Ada 2012)?y?", Eq_Op);
7295 end if;
7297 -- No error detected
7299 else
7300 return;
7301 end if;
7302 end Check_Untagged_Equality;
7304 -----------------------------
7305 -- Find_Corresponding_Spec --
7306 -----------------------------
7308 function Find_Corresponding_Spec
7309 (N : Node_Id;
7310 Post_Error : Boolean := True) return Entity_Id
7312 Spec : constant Node_Id := Specification (N);
7313 Designator : constant Entity_Id := Defining_Entity (Spec);
7315 E : Entity_Id;
7317 function Different_Generic_Profile (E : Entity_Id) return Boolean;
7318 -- Even if fully conformant, a body may depend on a generic actual when
7319 -- the spec does not, or vice versa, in which case they were distinct
7320 -- entities in the generic.
7322 -------------------------------
7323 -- Different_Generic_Profile --
7324 -------------------------------
7326 function Different_Generic_Profile (E : Entity_Id) return Boolean is
7327 F1, F2 : Entity_Id;
7329 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
7330 -- Check that the types of corresponding formals have the same
7331 -- generic actual if any. We have to account for subtypes of a
7332 -- generic formal, declared between a spec and a body, which may
7333 -- appear distinct in an instance but matched in the generic, and
7334 -- the subtype may be used either in the spec or the body of the
7335 -- subprogram being checked.
7337 -------------------------
7338 -- Same_Generic_Actual --
7339 -------------------------
7341 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
7343 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
7344 -- Predicate to check whether S1 is a subtype of S2 in the source
7345 -- of the instance.
7347 -------------------------
7348 -- Is_Declared_Subtype --
7349 -------------------------
7351 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
7352 begin
7353 return Comes_From_Source (Parent (S1))
7354 and then Nkind (Parent (S1)) = N_Subtype_Declaration
7355 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
7356 and then Entity (Subtype_Indication (Parent (S1))) = S2;
7357 end Is_Declared_Subtype;
7359 -- Start of processing for Same_Generic_Actual
7361 begin
7362 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
7363 or else Is_Declared_Subtype (T1, T2)
7364 or else Is_Declared_Subtype (T2, T1);
7365 end Same_Generic_Actual;
7367 -- Start of processing for Different_Generic_Profile
7369 begin
7370 if not In_Instance then
7371 return False;
7373 elsif Ekind (E) = E_Function
7374 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
7375 then
7376 return True;
7377 end if;
7379 F1 := First_Formal (Designator);
7380 F2 := First_Formal (E);
7381 while Present (F1) loop
7382 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
7383 return True;
7384 end if;
7386 Next_Formal (F1);
7387 Next_Formal (F2);
7388 end loop;
7390 return False;
7391 end Different_Generic_Profile;
7393 -- Start of processing for Find_Corresponding_Spec
7395 begin
7396 E := Current_Entity (Designator);
7397 while Present (E) loop
7399 -- We are looking for a matching spec. It must have the same scope,
7400 -- and the same name, and either be type conformant, or be the case
7401 -- of a library procedure spec and its body (which belong to one
7402 -- another regardless of whether they are type conformant or not).
7404 if Scope (E) = Current_Scope then
7405 if Current_Scope = Standard_Standard
7406 or else (Ekind (E) = Ekind (Designator)
7407 and then Type_Conformant (E, Designator))
7408 then
7409 -- Within an instantiation, we know that spec and body are
7410 -- subtype conformant, because they were subtype conformant in
7411 -- the generic. We choose the subtype-conformant entity here as
7412 -- well, to resolve spurious ambiguities in the instance that
7413 -- were not present in the generic (i.e. when two different
7414 -- types are given the same actual). If we are looking for a
7415 -- spec to match a body, full conformance is expected.
7417 if In_Instance then
7418 Set_Convention (Designator, Convention (E));
7420 -- Skip past subprogram bodies and subprogram renamings that
7421 -- may appear to have a matching spec, but that aren't fully
7422 -- conformant with it. That can occur in cases where an
7423 -- actual type causes unrelated homographs in the instance.
7425 if Nkind_In (N, N_Subprogram_Body,
7426 N_Subprogram_Renaming_Declaration)
7427 and then Present (Homonym (E))
7428 and then not Fully_Conformant (Designator, E)
7429 then
7430 goto Next_Entity;
7432 elsif not Subtype_Conformant (Designator, E) then
7433 goto Next_Entity;
7435 elsif Different_Generic_Profile (E) then
7436 goto Next_Entity;
7437 end if;
7438 end if;
7440 -- Ada 2012 (AI05-0165): For internally generated bodies of
7441 -- null procedures locate the internally generated spec. We
7442 -- enforce mode conformance since a tagged type may inherit
7443 -- from interfaces several null primitives which differ only
7444 -- in the mode of the formals.
7446 if not (Comes_From_Source (E))
7447 and then Is_Null_Procedure (E)
7448 and then not Mode_Conformant (Designator, E)
7449 then
7450 null;
7452 -- For null procedures coming from source that are completions,
7453 -- analysis of the generated body will establish the link.
7455 elsif Comes_From_Source (E)
7456 and then Nkind (Spec) = N_Procedure_Specification
7457 and then Null_Present (Spec)
7458 then
7459 return E;
7461 elsif not Has_Completion (E) then
7462 if Nkind (N) /= N_Subprogram_Body_Stub then
7463 Set_Corresponding_Spec (N, E);
7464 end if;
7466 Set_Has_Completion (E);
7467 return E;
7469 elsif Nkind (Parent (N)) = N_Subunit then
7471 -- If this is the proper body of a subunit, the completion
7472 -- flag is set when analyzing the stub.
7474 return E;
7476 -- If E is an internal function with a controlling result that
7477 -- was created for an operation inherited by a null extension,
7478 -- it may be overridden by a body without a previous spec (one
7479 -- more reason why these should be shunned). In that case we
7480 -- remove the generated body if present, because the current
7481 -- one is the explicit overriding.
7483 elsif Ekind (E) = E_Function
7484 and then Ada_Version >= Ada_2005
7485 and then not Comes_From_Source (E)
7486 and then Has_Controlling_Result (E)
7487 and then Is_Null_Extension (Etype (E))
7488 and then Comes_From_Source (Spec)
7489 then
7490 Set_Has_Completion (E, False);
7492 if Expander_Active
7493 and then Nkind (Parent (E)) = N_Function_Specification
7494 then
7495 Remove
7496 (Unit_Declaration_Node
7497 (Corresponding_Body (Unit_Declaration_Node (E))));
7499 return E;
7501 -- If expansion is disabled, or if the wrapper function has
7502 -- not been generated yet, this a late body overriding an
7503 -- inherited operation, or it is an overriding by some other
7504 -- declaration before the controlling result is frozen. In
7505 -- either case this is a declaration of a new entity.
7507 else
7508 return Empty;
7509 end if;
7511 -- If the body already exists, then this is an error unless
7512 -- the previous declaration is the implicit declaration of a
7513 -- derived subprogram. It is also legal for an instance to
7514 -- contain type conformant overloadable declarations (but the
7515 -- generic declaration may not), per 8.3(26/2).
7517 elsif No (Alias (E))
7518 and then not Is_Intrinsic_Subprogram (E)
7519 and then not In_Instance
7520 and then Post_Error
7521 then
7522 Error_Msg_Sloc := Sloc (E);
7524 if Is_Imported (E) then
7525 Error_Msg_NE
7526 ("body not allowed for imported subprogram & declared#",
7527 N, E);
7528 else
7529 Error_Msg_NE ("duplicate body for & declared#", N, E);
7530 end if;
7531 end if;
7533 -- Child units cannot be overloaded, so a conformance mismatch
7534 -- between body and a previous spec is an error.
7536 elsif Is_Child_Unit (E)
7537 and then
7538 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
7539 and then
7540 Nkind (Parent (Unit_Declaration_Node (Designator))) =
7541 N_Compilation_Unit
7542 and then Post_Error
7543 then
7544 Error_Msg_N
7545 ("body of child unit does not match previous declaration", N);
7546 end if;
7547 end if;
7549 <<Next_Entity>>
7550 E := Homonym (E);
7551 end loop;
7553 -- On exit, we know that no previous declaration of subprogram exists
7555 return Empty;
7556 end Find_Corresponding_Spec;
7558 ----------------------
7559 -- Fully_Conformant --
7560 ----------------------
7562 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
7563 Result : Boolean;
7564 begin
7565 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
7566 return Result;
7567 end Fully_Conformant;
7569 ----------------------------------
7570 -- Fully_Conformant_Expressions --
7571 ----------------------------------
7573 function Fully_Conformant_Expressions
7574 (Given_E1 : Node_Id;
7575 Given_E2 : Node_Id) return Boolean
7577 E1 : constant Node_Id := Original_Node (Given_E1);
7578 E2 : constant Node_Id := Original_Node (Given_E2);
7579 -- We always test conformance on original nodes, since it is possible
7580 -- for analysis and/or expansion to make things look as though they
7581 -- conform when they do not, e.g. by converting 1+2 into 3.
7583 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
7584 renames Fully_Conformant_Expressions;
7586 function FCL (L1, L2 : List_Id) return Boolean;
7587 -- Compare elements of two lists for conformance. Elements have to be
7588 -- conformant, and actuals inserted as default parameters do not match
7589 -- explicit actuals with the same value.
7591 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
7592 -- Compare an operator node with a function call
7594 ---------
7595 -- FCL --
7596 ---------
7598 function FCL (L1, L2 : List_Id) return Boolean is
7599 N1, N2 : Node_Id;
7601 begin
7602 if L1 = No_List then
7603 N1 := Empty;
7604 else
7605 N1 := First (L1);
7606 end if;
7608 if L2 = No_List then
7609 N2 := Empty;
7610 else
7611 N2 := First (L2);
7612 end if;
7614 -- Compare two lists, skipping rewrite insertions (we want to compare
7615 -- the original trees, not the expanded versions).
7617 loop
7618 if Is_Rewrite_Insertion (N1) then
7619 Next (N1);
7620 elsif Is_Rewrite_Insertion (N2) then
7621 Next (N2);
7622 elsif No (N1) then
7623 return No (N2);
7624 elsif No (N2) then
7625 return False;
7626 elsif not FCE (N1, N2) then
7627 return False;
7628 else
7629 Next (N1);
7630 Next (N2);
7631 end if;
7632 end loop;
7633 end FCL;
7635 ---------
7636 -- FCO --
7637 ---------
7639 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
7640 Actuals : constant List_Id := Parameter_Associations (Call_Node);
7641 Act : Node_Id;
7643 begin
7644 if No (Actuals)
7645 or else Entity (Op_Node) /= Entity (Name (Call_Node))
7646 then
7647 return False;
7649 else
7650 Act := First (Actuals);
7652 if Nkind (Op_Node) in N_Binary_Op then
7653 if not FCE (Left_Opnd (Op_Node), Act) then
7654 return False;
7655 end if;
7657 Next (Act);
7658 end if;
7660 return Present (Act)
7661 and then FCE (Right_Opnd (Op_Node), Act)
7662 and then No (Next (Act));
7663 end if;
7664 end FCO;
7666 -- Start of processing for Fully_Conformant_Expressions
7668 begin
7669 -- Non-conformant if paren count does not match. Note: if some idiot
7670 -- complains that we don't do this right for more than 3 levels of
7671 -- parentheses, they will be treated with the respect they deserve.
7673 if Paren_Count (E1) /= Paren_Count (E2) then
7674 return False;
7676 -- If same entities are referenced, then they are conformant even if
7677 -- they have different forms (RM 8.3.1(19-20)).
7679 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
7680 if Present (Entity (E1)) then
7681 return Entity (E1) = Entity (E2)
7682 or else (Chars (Entity (E1)) = Chars (Entity (E2))
7683 and then Ekind (Entity (E1)) = E_Discriminant
7684 and then Ekind (Entity (E2)) = E_In_Parameter);
7686 elsif Nkind (E1) = N_Expanded_Name
7687 and then Nkind (E2) = N_Expanded_Name
7688 and then Nkind (Selector_Name (E1)) = N_Character_Literal
7689 and then Nkind (Selector_Name (E2)) = N_Character_Literal
7690 then
7691 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
7693 else
7694 -- Identifiers in component associations don't always have
7695 -- entities, but their names must conform.
7697 return Nkind (E1) = N_Identifier
7698 and then Nkind (E2) = N_Identifier
7699 and then Chars (E1) = Chars (E2);
7700 end if;
7702 elsif Nkind (E1) = N_Character_Literal
7703 and then Nkind (E2) = N_Expanded_Name
7704 then
7705 return Nkind (Selector_Name (E2)) = N_Character_Literal
7706 and then Chars (E1) = Chars (Selector_Name (E2));
7708 elsif Nkind (E2) = N_Character_Literal
7709 and then Nkind (E1) = N_Expanded_Name
7710 then
7711 return Nkind (Selector_Name (E1)) = N_Character_Literal
7712 and then Chars (E2) = Chars (Selector_Name (E1));
7714 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
7715 return FCO (E1, E2);
7717 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
7718 return FCO (E2, E1);
7720 -- Otherwise we must have the same syntactic entity
7722 elsif Nkind (E1) /= Nkind (E2) then
7723 return False;
7725 -- At this point, we specialize by node type
7727 else
7728 case Nkind (E1) is
7730 when N_Aggregate =>
7731 return
7732 FCL (Expressions (E1), Expressions (E2))
7733 and then
7734 FCL (Component_Associations (E1),
7735 Component_Associations (E2));
7737 when N_Allocator =>
7738 if Nkind (Expression (E1)) = N_Qualified_Expression
7739 or else
7740 Nkind (Expression (E2)) = N_Qualified_Expression
7741 then
7742 return FCE (Expression (E1), Expression (E2));
7744 -- Check that the subtype marks and any constraints
7745 -- are conformant
7747 else
7748 declare
7749 Indic1 : constant Node_Id := Expression (E1);
7750 Indic2 : constant Node_Id := Expression (E2);
7751 Elt1 : Node_Id;
7752 Elt2 : Node_Id;
7754 begin
7755 if Nkind (Indic1) /= N_Subtype_Indication then
7756 return
7757 Nkind (Indic2) /= N_Subtype_Indication
7758 and then Entity (Indic1) = Entity (Indic2);
7760 elsif Nkind (Indic2) /= N_Subtype_Indication then
7761 return
7762 Nkind (Indic1) /= N_Subtype_Indication
7763 and then Entity (Indic1) = Entity (Indic2);
7765 else
7766 if Entity (Subtype_Mark (Indic1)) /=
7767 Entity (Subtype_Mark (Indic2))
7768 then
7769 return False;
7770 end if;
7772 Elt1 := First (Constraints (Constraint (Indic1)));
7773 Elt2 := First (Constraints (Constraint (Indic2)));
7774 while Present (Elt1) and then Present (Elt2) loop
7775 if not FCE (Elt1, Elt2) then
7776 return False;
7777 end if;
7779 Next (Elt1);
7780 Next (Elt2);
7781 end loop;
7783 return True;
7784 end if;
7785 end;
7786 end if;
7788 when N_Attribute_Reference =>
7789 return
7790 Attribute_Name (E1) = Attribute_Name (E2)
7791 and then FCL (Expressions (E1), Expressions (E2));
7793 when N_Binary_Op =>
7794 return
7795 Entity (E1) = Entity (E2)
7796 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
7797 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
7799 when N_Short_Circuit | N_Membership_Test =>
7800 return
7801 FCE (Left_Opnd (E1), Left_Opnd (E2))
7802 and then
7803 FCE (Right_Opnd (E1), Right_Opnd (E2));
7805 when N_Case_Expression =>
7806 declare
7807 Alt1 : Node_Id;
7808 Alt2 : Node_Id;
7810 begin
7811 if not FCE (Expression (E1), Expression (E2)) then
7812 return False;
7814 else
7815 Alt1 := First (Alternatives (E1));
7816 Alt2 := First (Alternatives (E2));
7817 loop
7818 if Present (Alt1) /= Present (Alt2) then
7819 return False;
7820 elsif No (Alt1) then
7821 return True;
7822 end if;
7824 if not FCE (Expression (Alt1), Expression (Alt2))
7825 or else not FCL (Discrete_Choices (Alt1),
7826 Discrete_Choices (Alt2))
7827 then
7828 return False;
7829 end if;
7831 Next (Alt1);
7832 Next (Alt2);
7833 end loop;
7834 end if;
7835 end;
7837 when N_Character_Literal =>
7838 return
7839 Char_Literal_Value (E1) = Char_Literal_Value (E2);
7841 when N_Component_Association =>
7842 return
7843 FCL (Choices (E1), Choices (E2))
7844 and then
7845 FCE (Expression (E1), Expression (E2));
7847 when N_Explicit_Dereference =>
7848 return
7849 FCE (Prefix (E1), Prefix (E2));
7851 when N_Extension_Aggregate =>
7852 return
7853 FCL (Expressions (E1), Expressions (E2))
7854 and then Null_Record_Present (E1) =
7855 Null_Record_Present (E2)
7856 and then FCL (Component_Associations (E1),
7857 Component_Associations (E2));
7859 when N_Function_Call =>
7860 return
7861 FCE (Name (E1), Name (E2))
7862 and then
7863 FCL (Parameter_Associations (E1),
7864 Parameter_Associations (E2));
7866 when N_If_Expression =>
7867 return
7868 FCL (Expressions (E1), Expressions (E2));
7870 when N_Indexed_Component =>
7871 return
7872 FCE (Prefix (E1), Prefix (E2))
7873 and then
7874 FCL (Expressions (E1), Expressions (E2));
7876 when N_Integer_Literal =>
7877 return (Intval (E1) = Intval (E2));
7879 when N_Null =>
7880 return True;
7882 when N_Operator_Symbol =>
7883 return
7884 Chars (E1) = Chars (E2);
7886 when N_Others_Choice =>
7887 return True;
7889 when N_Parameter_Association =>
7890 return
7891 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
7892 and then FCE (Explicit_Actual_Parameter (E1),
7893 Explicit_Actual_Parameter (E2));
7895 when N_Qualified_Expression =>
7896 return
7897 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
7898 and then
7899 FCE (Expression (E1), Expression (E2));
7901 when N_Quantified_Expression =>
7902 if not FCE (Condition (E1), Condition (E2)) then
7903 return False;
7904 end if;
7906 if Present (Loop_Parameter_Specification (E1))
7907 and then Present (Loop_Parameter_Specification (E2))
7908 then
7909 declare
7910 L1 : constant Node_Id :=
7911 Loop_Parameter_Specification (E1);
7912 L2 : constant Node_Id :=
7913 Loop_Parameter_Specification (E2);
7915 begin
7916 return
7917 Reverse_Present (L1) = Reverse_Present (L2)
7918 and then
7919 FCE (Defining_Identifier (L1),
7920 Defining_Identifier (L2))
7921 and then
7922 FCE (Discrete_Subtype_Definition (L1),
7923 Discrete_Subtype_Definition (L2));
7924 end;
7926 elsif Present (Iterator_Specification (E1))
7927 and then Present (Iterator_Specification (E2))
7928 then
7929 declare
7930 I1 : constant Node_Id := Iterator_Specification (E1);
7931 I2 : constant Node_Id := Iterator_Specification (E2);
7933 begin
7934 return
7935 FCE (Defining_Identifier (I1),
7936 Defining_Identifier (I2))
7937 and then
7938 Of_Present (I1) = Of_Present (I2)
7939 and then
7940 Reverse_Present (I1) = Reverse_Present (I2)
7941 and then FCE (Name (I1), Name (I2))
7942 and then FCE (Subtype_Indication (I1),
7943 Subtype_Indication (I2));
7944 end;
7946 -- The quantified expressions used different specifications to
7947 -- walk their respective ranges.
7949 else
7950 return False;
7951 end if;
7953 when N_Range =>
7954 return
7955 FCE (Low_Bound (E1), Low_Bound (E2))
7956 and then
7957 FCE (High_Bound (E1), High_Bound (E2));
7959 when N_Real_Literal =>
7960 return (Realval (E1) = Realval (E2));
7962 when N_Selected_Component =>
7963 return
7964 FCE (Prefix (E1), Prefix (E2))
7965 and then
7966 FCE (Selector_Name (E1), Selector_Name (E2));
7968 when N_Slice =>
7969 return
7970 FCE (Prefix (E1), Prefix (E2))
7971 and then
7972 FCE (Discrete_Range (E1), Discrete_Range (E2));
7974 when N_String_Literal =>
7975 declare
7976 S1 : constant String_Id := Strval (E1);
7977 S2 : constant String_Id := Strval (E2);
7978 L1 : constant Nat := String_Length (S1);
7979 L2 : constant Nat := String_Length (S2);
7981 begin
7982 if L1 /= L2 then
7983 return False;
7985 else
7986 for J in 1 .. L1 loop
7987 if Get_String_Char (S1, J) /=
7988 Get_String_Char (S2, J)
7989 then
7990 return False;
7991 end if;
7992 end loop;
7994 return True;
7995 end if;
7996 end;
7998 when N_Type_Conversion =>
7999 return
8000 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
8001 and then
8002 FCE (Expression (E1), Expression (E2));
8004 when N_Unary_Op =>
8005 return
8006 Entity (E1) = Entity (E2)
8007 and then
8008 FCE (Right_Opnd (E1), Right_Opnd (E2));
8010 when N_Unchecked_Type_Conversion =>
8011 return
8012 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
8013 and then
8014 FCE (Expression (E1), Expression (E2));
8016 -- All other node types cannot appear in this context. Strictly
8017 -- we should raise a fatal internal error. Instead we just ignore
8018 -- the nodes. This means that if anyone makes a mistake in the
8019 -- expander and mucks an expression tree irretrievably, the result
8020 -- will be a failure to detect a (probably very obscure) case
8021 -- of non-conformance, which is better than bombing on some
8022 -- case where two expressions do in fact conform.
8024 when others =>
8025 return True;
8027 end case;
8028 end if;
8029 end Fully_Conformant_Expressions;
8031 ----------------------------------------
8032 -- Fully_Conformant_Discrete_Subtypes --
8033 ----------------------------------------
8035 function Fully_Conformant_Discrete_Subtypes
8036 (Given_S1 : Node_Id;
8037 Given_S2 : Node_Id) return Boolean
8039 S1 : constant Node_Id := Original_Node (Given_S1);
8040 S2 : constant Node_Id := Original_Node (Given_S2);
8042 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
8043 -- Special-case for a bound given by a discriminant, which in the body
8044 -- is replaced with the discriminal of the enclosing type.
8046 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
8047 -- Check both bounds
8049 -----------------------
8050 -- Conforming_Bounds --
8051 -----------------------
8053 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
8054 begin
8055 if Is_Entity_Name (B1)
8056 and then Is_Entity_Name (B2)
8057 and then Ekind (Entity (B1)) = E_Discriminant
8058 then
8059 return Chars (B1) = Chars (B2);
8061 else
8062 return Fully_Conformant_Expressions (B1, B2);
8063 end if;
8064 end Conforming_Bounds;
8066 -----------------------
8067 -- Conforming_Ranges --
8068 -----------------------
8070 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
8071 begin
8072 return
8073 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
8074 and then
8075 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
8076 end Conforming_Ranges;
8078 -- Start of processing for Fully_Conformant_Discrete_Subtypes
8080 begin
8081 if Nkind (S1) /= Nkind (S2) then
8082 return False;
8084 elsif Is_Entity_Name (S1) then
8085 return Entity (S1) = Entity (S2);
8087 elsif Nkind (S1) = N_Range then
8088 return Conforming_Ranges (S1, S2);
8090 elsif Nkind (S1) = N_Subtype_Indication then
8091 return
8092 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
8093 and then
8094 Conforming_Ranges
8095 (Range_Expression (Constraint (S1)),
8096 Range_Expression (Constraint (S2)));
8097 else
8098 return True;
8099 end if;
8100 end Fully_Conformant_Discrete_Subtypes;
8102 --------------------
8103 -- Install_Entity --
8104 --------------------
8106 procedure Install_Entity (E : Entity_Id) is
8107 Prev : constant Entity_Id := Current_Entity (E);
8108 begin
8109 Set_Is_Immediately_Visible (E);
8110 Set_Current_Entity (E);
8111 Set_Homonym (E, Prev);
8112 end Install_Entity;
8114 ---------------------
8115 -- Install_Formals --
8116 ---------------------
8118 procedure Install_Formals (Id : Entity_Id) is
8119 F : Entity_Id;
8120 begin
8121 F := First_Formal (Id);
8122 while Present (F) loop
8123 Install_Entity (F);
8124 Next_Formal (F);
8125 end loop;
8126 end Install_Formals;
8128 -----------------------------
8129 -- Is_Interface_Conformant --
8130 -----------------------------
8132 function Is_Interface_Conformant
8133 (Tagged_Type : Entity_Id;
8134 Iface_Prim : Entity_Id;
8135 Prim : Entity_Id) return Boolean
8137 -- The operation may in fact be an inherited (implicit) operation
8138 -- rather than the original interface primitive, so retrieve the
8139 -- ultimate ancestor.
8141 Iface : constant Entity_Id :=
8142 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
8143 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
8145 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
8146 -- Return the controlling formal of Prim
8148 ------------------------
8149 -- Controlling_Formal --
8150 ------------------------
8152 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
8153 E : Entity_Id;
8155 begin
8156 E := First_Entity (Prim);
8157 while Present (E) loop
8158 if Is_Formal (E) and then Is_Controlling_Formal (E) then
8159 return E;
8160 end if;
8162 Next_Entity (E);
8163 end loop;
8165 return Empty;
8166 end Controlling_Formal;
8168 -- Local variables
8170 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
8171 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
8173 -- Start of processing for Is_Interface_Conformant
8175 begin
8176 pragma Assert (Is_Subprogram (Iface_Prim)
8177 and then Is_Subprogram (Prim)
8178 and then Is_Dispatching_Operation (Iface_Prim)
8179 and then Is_Dispatching_Operation (Prim));
8181 pragma Assert (Is_Interface (Iface)
8182 or else (Present (Alias (Iface_Prim))
8183 and then
8184 Is_Interface
8185 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
8187 if Prim = Iface_Prim
8188 or else not Is_Subprogram (Prim)
8189 or else Ekind (Prim) /= Ekind (Iface_Prim)
8190 or else not Is_Dispatching_Operation (Prim)
8191 or else Scope (Prim) /= Scope (Tagged_Type)
8192 or else No (Typ)
8193 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
8194 or else not Primitive_Names_Match (Iface_Prim, Prim)
8195 then
8196 return False;
8198 -- The mode of the controlling formals must match
8200 elsif Present (Iface_Ctrl_F)
8201 and then Present (Prim_Ctrl_F)
8202 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
8203 then
8204 return False;
8206 -- Case of a procedure, or a function whose result type matches the
8207 -- result type of the interface primitive, or a function that has no
8208 -- controlling result (I or access I).
8210 elsif Ekind (Iface_Prim) = E_Procedure
8211 or else Etype (Prim) = Etype (Iface_Prim)
8212 or else not Has_Controlling_Result (Prim)
8213 then
8214 return Type_Conformant
8215 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
8217 -- Case of a function returning an interface, or an access to one. Check
8218 -- that the return types correspond.
8220 elsif Implements_Interface (Typ, Iface) then
8221 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
8223 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
8224 then
8225 return False;
8226 else
8227 return
8228 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
8229 Skip_Controlling_Formals => True);
8230 end if;
8232 else
8233 return False;
8234 end if;
8235 end Is_Interface_Conformant;
8237 ---------------------------------
8238 -- Is_Non_Overriding_Operation --
8239 ---------------------------------
8241 function Is_Non_Overriding_Operation
8242 (Prev_E : Entity_Id;
8243 New_E : Entity_Id) return Boolean
8245 Formal : Entity_Id;
8246 F_Typ : Entity_Id;
8247 G_Typ : Entity_Id := Empty;
8249 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
8250 -- If F_Type is a derived type associated with a generic actual subtype,
8251 -- then return its Generic_Parent_Type attribute, else return Empty.
8253 function Types_Correspond
8254 (P_Type : Entity_Id;
8255 N_Type : Entity_Id) return Boolean;
8256 -- Returns true if and only if the types (or designated types in the
8257 -- case of anonymous access types) are the same or N_Type is derived
8258 -- directly or indirectly from P_Type.
8260 -----------------------------
8261 -- Get_Generic_Parent_Type --
8262 -----------------------------
8264 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
8265 G_Typ : Entity_Id;
8266 Defn : Node_Id;
8267 Indic : Node_Id;
8269 begin
8270 if Is_Derived_Type (F_Typ)
8271 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
8272 then
8273 -- The tree must be traversed to determine the parent subtype in
8274 -- the generic unit, which unfortunately isn't always available
8275 -- via semantic attributes. ??? (Note: The use of Original_Node
8276 -- is needed for cases where a full derived type has been
8277 -- rewritten.)
8279 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
8280 if Nkind (Defn) = N_Derived_Type_Definition then
8281 Indic := Subtype_Indication (Defn);
8283 if Nkind (Indic) = N_Subtype_Indication then
8284 G_Typ := Entity (Subtype_Mark (Indic));
8285 else
8286 G_Typ := Entity (Indic);
8287 end if;
8289 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
8290 and then Present (Generic_Parent_Type (Parent (G_Typ)))
8291 then
8292 return Generic_Parent_Type (Parent (G_Typ));
8293 end if;
8294 end if;
8295 end if;
8297 return Empty;
8298 end Get_Generic_Parent_Type;
8300 ----------------------
8301 -- Types_Correspond --
8302 ----------------------
8304 function Types_Correspond
8305 (P_Type : Entity_Id;
8306 N_Type : Entity_Id) return Boolean
8308 Prev_Type : Entity_Id := Base_Type (P_Type);
8309 New_Type : Entity_Id := Base_Type (N_Type);
8311 begin
8312 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
8313 Prev_Type := Designated_Type (Prev_Type);
8314 end if;
8316 if Ekind (New_Type) = E_Anonymous_Access_Type then
8317 New_Type := Designated_Type (New_Type);
8318 end if;
8320 if Prev_Type = New_Type then
8321 return True;
8323 elsif not Is_Class_Wide_Type (New_Type) then
8324 while Etype (New_Type) /= New_Type loop
8325 New_Type := Etype (New_Type);
8326 if New_Type = Prev_Type then
8327 return True;
8328 end if;
8329 end loop;
8330 end if;
8331 return False;
8332 end Types_Correspond;
8334 -- Start of processing for Is_Non_Overriding_Operation
8336 begin
8337 -- In the case where both operations are implicit derived subprograms
8338 -- then neither overrides the other. This can only occur in certain
8339 -- obscure cases (e.g., derivation from homographs created in a generic
8340 -- instantiation).
8342 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
8343 return True;
8345 elsif Ekind (Current_Scope) = E_Package
8346 and then Is_Generic_Instance (Current_Scope)
8347 and then In_Private_Part (Current_Scope)
8348 and then Comes_From_Source (New_E)
8349 then
8350 -- We examine the formals and result type of the inherited operation,
8351 -- to determine whether their type is derived from (the instance of)
8352 -- a generic type. The first such formal or result type is the one
8353 -- tested.
8355 Formal := First_Formal (Prev_E);
8356 while Present (Formal) loop
8357 F_Typ := Base_Type (Etype (Formal));
8359 if Ekind (F_Typ) = E_Anonymous_Access_Type then
8360 F_Typ := Designated_Type (F_Typ);
8361 end if;
8363 G_Typ := Get_Generic_Parent_Type (F_Typ);
8364 exit when Present (G_Typ);
8366 Next_Formal (Formal);
8367 end loop;
8369 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
8370 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
8371 end if;
8373 if No (G_Typ) then
8374 return False;
8375 end if;
8377 -- If the generic type is a private type, then the original operation
8378 -- was not overriding in the generic, because there was no primitive
8379 -- operation to override.
8381 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
8382 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
8383 N_Formal_Private_Type_Definition
8384 then
8385 return True;
8387 -- The generic parent type is the ancestor of a formal derived
8388 -- type declaration. We need to check whether it has a primitive
8389 -- operation that should be overridden by New_E in the generic.
8391 else
8392 declare
8393 P_Formal : Entity_Id;
8394 N_Formal : Entity_Id;
8395 P_Typ : Entity_Id;
8396 N_Typ : Entity_Id;
8397 P_Prim : Entity_Id;
8398 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
8400 begin
8401 while Present (Prim_Elt) loop
8402 P_Prim := Node (Prim_Elt);
8404 if Chars (P_Prim) = Chars (New_E)
8405 and then Ekind (P_Prim) = Ekind (New_E)
8406 then
8407 P_Formal := First_Formal (P_Prim);
8408 N_Formal := First_Formal (New_E);
8409 while Present (P_Formal) and then Present (N_Formal) loop
8410 P_Typ := Etype (P_Formal);
8411 N_Typ := Etype (N_Formal);
8413 if not Types_Correspond (P_Typ, N_Typ) then
8414 exit;
8415 end if;
8417 Next_Entity (P_Formal);
8418 Next_Entity (N_Formal);
8419 end loop;
8421 -- Found a matching primitive operation belonging to the
8422 -- formal ancestor type, so the new subprogram is
8423 -- overriding.
8425 if No (P_Formal)
8426 and then No (N_Formal)
8427 and then (Ekind (New_E) /= E_Function
8428 or else
8429 Types_Correspond
8430 (Etype (P_Prim), Etype (New_E)))
8431 then
8432 return False;
8433 end if;
8434 end if;
8436 Next_Elmt (Prim_Elt);
8437 end loop;
8439 -- If no match found, then the new subprogram does not override
8440 -- in the generic (nor in the instance).
8442 -- If the type in question is not abstract, and the subprogram
8443 -- is, this will be an error if the new operation is in the
8444 -- private part of the instance. Emit a warning now, which will
8445 -- make the subsequent error message easier to understand.
8447 if not Is_Abstract_Type (F_Typ)
8448 and then Is_Abstract_Subprogram (Prev_E)
8449 and then In_Private_Part (Current_Scope)
8450 then
8451 Error_Msg_Node_2 := F_Typ;
8452 Error_Msg_NE
8453 ("private operation& in generic unit does not override "
8454 & "any primitive operation of& (RM 12.3 (18))??",
8455 New_E, New_E);
8456 end if;
8458 return True;
8459 end;
8460 end if;
8461 else
8462 return False;
8463 end if;
8464 end Is_Non_Overriding_Operation;
8466 -------------------------------------
8467 -- List_Inherited_Pre_Post_Aspects --
8468 -------------------------------------
8470 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
8471 begin
8472 if Opt.List_Inherited_Aspects
8473 and then Is_Subprogram_Or_Generic_Subprogram (E)
8474 then
8475 declare
8476 Inherited : constant Subprogram_List := Inherited_Subprograms (E);
8477 P : Node_Id;
8479 begin
8480 for J in Inherited'Range loop
8481 P := Pre_Post_Conditions (Contract (Inherited (J)));
8482 while Present (P) loop
8483 Error_Msg_Sloc := Sloc (P);
8485 if Class_Present (P) and then not Split_PPC (P) then
8486 if Pragma_Name (P) = Name_Precondition then
8487 Error_Msg_N ("info: & inherits `Pre''Class` aspect "
8488 & "from #?L?", E);
8489 else
8490 Error_Msg_N ("info: & inherits `Post''Class` aspect "
8491 & "from #?L?", E);
8492 end if;
8493 end if;
8495 P := Next_Pragma (P);
8496 end loop;
8497 end loop;
8498 end;
8499 end if;
8500 end List_Inherited_Pre_Post_Aspects;
8502 ------------------------------
8503 -- Make_Inequality_Operator --
8504 ------------------------------
8506 -- S is the defining identifier of an equality operator. We build a
8507 -- subprogram declaration with the right signature. This operation is
8508 -- intrinsic, because it is always expanded as the negation of the
8509 -- call to the equality function.
8511 procedure Make_Inequality_Operator (S : Entity_Id) is
8512 Loc : constant Source_Ptr := Sloc (S);
8513 Decl : Node_Id;
8514 Formals : List_Id;
8515 Op_Name : Entity_Id;
8517 FF : constant Entity_Id := First_Formal (S);
8518 NF : constant Entity_Id := Next_Formal (FF);
8520 begin
8521 -- Check that equality was properly defined, ignore call if not
8523 if No (NF) then
8524 return;
8525 end if;
8527 declare
8528 A : constant Entity_Id :=
8529 Make_Defining_Identifier (Sloc (FF),
8530 Chars => Chars (FF));
8532 B : constant Entity_Id :=
8533 Make_Defining_Identifier (Sloc (NF),
8534 Chars => Chars (NF));
8536 begin
8537 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
8539 Formals := New_List (
8540 Make_Parameter_Specification (Loc,
8541 Defining_Identifier => A,
8542 Parameter_Type =>
8543 New_Occurrence_Of (Etype (First_Formal (S)),
8544 Sloc (Etype (First_Formal (S))))),
8546 Make_Parameter_Specification (Loc,
8547 Defining_Identifier => B,
8548 Parameter_Type =>
8549 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
8550 Sloc (Etype (Next_Formal (First_Formal (S)))))));
8552 Decl :=
8553 Make_Subprogram_Declaration (Loc,
8554 Specification =>
8555 Make_Function_Specification (Loc,
8556 Defining_Unit_Name => Op_Name,
8557 Parameter_Specifications => Formals,
8558 Result_Definition =>
8559 New_Occurrence_Of (Standard_Boolean, Loc)));
8561 -- Insert inequality right after equality if it is explicit or after
8562 -- the derived type when implicit. These entities are created only
8563 -- for visibility purposes, and eventually replaced in the course
8564 -- of expansion, so they do not need to be attached to the tree and
8565 -- seen by the back-end. Keeping them internal also avoids spurious
8566 -- freezing problems. The declaration is inserted in the tree for
8567 -- analysis, and removed afterwards. If the equality operator comes
8568 -- from an explicit declaration, attach the inequality immediately
8569 -- after. Else the equality is inherited from a derived type
8570 -- declaration, so insert inequality after that declaration.
8572 if No (Alias (S)) then
8573 Insert_After (Unit_Declaration_Node (S), Decl);
8574 elsif Is_List_Member (Parent (S)) then
8575 Insert_After (Parent (S), Decl);
8576 else
8577 Insert_After (Parent (Etype (First_Formal (S))), Decl);
8578 end if;
8580 Mark_Rewrite_Insertion (Decl);
8581 Set_Is_Intrinsic_Subprogram (Op_Name);
8582 Analyze (Decl);
8583 Remove (Decl);
8584 Set_Has_Completion (Op_Name);
8585 Set_Corresponding_Equality (Op_Name, S);
8586 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
8587 end;
8588 end Make_Inequality_Operator;
8590 ----------------------
8591 -- May_Need_Actuals --
8592 ----------------------
8594 procedure May_Need_Actuals (Fun : Entity_Id) is
8595 F : Entity_Id;
8596 B : Boolean;
8598 begin
8599 F := First_Formal (Fun);
8600 B := True;
8601 while Present (F) loop
8602 if No (Default_Value (F)) then
8603 B := False;
8604 exit;
8605 end if;
8607 Next_Formal (F);
8608 end loop;
8610 Set_Needs_No_Actuals (Fun, B);
8611 end May_Need_Actuals;
8613 ---------------------
8614 -- Mode_Conformant --
8615 ---------------------
8617 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8618 Result : Boolean;
8619 begin
8620 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
8621 return Result;
8622 end Mode_Conformant;
8624 ---------------------------
8625 -- New_Overloaded_Entity --
8626 ---------------------------
8628 procedure New_Overloaded_Entity
8629 (S : Entity_Id;
8630 Derived_Type : Entity_Id := Empty)
8632 Overridden_Subp : Entity_Id := Empty;
8633 -- Set if the current scope has an operation that is type-conformant
8634 -- with S, and becomes hidden by S.
8636 Is_Primitive_Subp : Boolean;
8637 -- Set to True if the new subprogram is primitive
8639 E : Entity_Id;
8640 -- Entity that S overrides
8642 Prev_Vis : Entity_Id := Empty;
8643 -- Predecessor of E in Homonym chain
8645 procedure Check_For_Primitive_Subprogram
8646 (Is_Primitive : out Boolean;
8647 Is_Overriding : Boolean := False);
8648 -- If the subprogram being analyzed is a primitive operation of the type
8649 -- of a formal or result, set the Has_Primitive_Operations flag on the
8650 -- type, and set Is_Primitive to True (otherwise set to False). Set the
8651 -- corresponding flag on the entity itself for later use.
8653 procedure Check_Synchronized_Overriding
8654 (Def_Id : Entity_Id;
8655 Overridden_Subp : out Entity_Id);
8656 -- First determine if Def_Id is an entry or a subprogram either defined
8657 -- in the scope of a task or protected type, or is a primitive of such
8658 -- a type. Check whether Def_Id overrides a subprogram of an interface
8659 -- implemented by the synchronized type, return the overridden entity
8660 -- or Empty.
8662 function Is_Private_Declaration (E : Entity_Id) return Boolean;
8663 -- Check that E is declared in the private part of the current package,
8664 -- or in the package body, where it may hide a previous declaration.
8665 -- We can't use In_Private_Part by itself because this flag is also
8666 -- set when freezing entities, so we must examine the place of the
8667 -- declaration in the tree, and recognize wrapper packages as well.
8669 function Is_Overriding_Alias
8670 (Old_E : Entity_Id;
8671 New_E : Entity_Id) return Boolean;
8672 -- Check whether new subprogram and old subprogram are both inherited
8673 -- from subprograms that have distinct dispatch table entries. This can
8674 -- occur with derivations from instances with accidental homonyms. The
8675 -- function is conservative given that the converse is only true within
8676 -- instances that contain accidental overloadings.
8678 ------------------------------------
8679 -- Check_For_Primitive_Subprogram --
8680 ------------------------------------
8682 procedure Check_For_Primitive_Subprogram
8683 (Is_Primitive : out Boolean;
8684 Is_Overriding : Boolean := False)
8686 Formal : Entity_Id;
8687 F_Typ : Entity_Id;
8688 B_Typ : Entity_Id;
8690 function Visible_Part_Type (T : Entity_Id) return Boolean;
8691 -- Returns true if T is declared in the visible part of the current
8692 -- package scope; otherwise returns false. Assumes that T is declared
8693 -- in a package.
8695 procedure Check_Private_Overriding (T : Entity_Id);
8696 -- Checks that if a primitive abstract subprogram of a visible
8697 -- abstract type is declared in a private part, then it must override
8698 -- an abstract subprogram declared in the visible part. Also checks
8699 -- that if a primitive function with a controlling result is declared
8700 -- in a private part, then it must override a function declared in
8701 -- the visible part.
8703 ------------------------------
8704 -- Check_Private_Overriding --
8705 ------------------------------
8707 procedure Check_Private_Overriding (T : Entity_Id) is
8708 begin
8709 if Is_Package_Or_Generic_Package (Current_Scope)
8710 and then In_Private_Part (Current_Scope)
8711 and then Visible_Part_Type (T)
8712 and then not In_Instance
8713 then
8714 if Is_Abstract_Type (T)
8715 and then Is_Abstract_Subprogram (S)
8716 and then (not Is_Overriding
8717 or else not Is_Abstract_Subprogram (E))
8718 then
8719 Error_Msg_N ("abstract subprograms must be visible "
8720 & "(RM 3.9.3(10))!", S);
8722 elsif Ekind (S) = E_Function and then not Is_Overriding then
8723 if Is_Tagged_Type (T) and then T = Base_Type (Etype (S)) then
8724 Error_Msg_N ("private function with tagged result must"
8725 & " override visible-part function", S);
8726 Error_Msg_N ("\move subprogram to the visible part"
8727 & " (RM 3.9.3(10))", S);
8729 -- AI05-0073: extend this test to the case of a function
8730 -- with a controlling access result.
8732 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
8733 and then Is_Tagged_Type (Designated_Type (Etype (S)))
8734 and then
8735 not Is_Class_Wide_Type (Designated_Type (Etype (S)))
8736 and then Ada_Version >= Ada_2012
8737 then
8738 Error_Msg_N
8739 ("private function with controlling access result "
8740 & "must override visible-part function", S);
8741 Error_Msg_N
8742 ("\move subprogram to the visible part"
8743 & " (RM 3.9.3(10))", S);
8744 end if;
8745 end if;
8746 end if;
8747 end Check_Private_Overriding;
8749 -----------------------
8750 -- Visible_Part_Type --
8751 -----------------------
8753 function Visible_Part_Type (T : Entity_Id) return Boolean is
8754 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
8755 N : Node_Id;
8757 begin
8758 -- If the entity is a private type, then it must be declared in a
8759 -- visible part.
8761 if Ekind (T) in Private_Kind then
8762 return True;
8763 end if;
8765 -- Otherwise, we traverse the visible part looking for its
8766 -- corresponding declaration. We cannot use the declaration
8767 -- node directly because in the private part the entity of a
8768 -- private type is the one in the full view, which does not
8769 -- indicate that it is the completion of something visible.
8771 N := First (Visible_Declarations (Specification (P)));
8772 while Present (N) loop
8773 if Nkind (N) = N_Full_Type_Declaration
8774 and then Present (Defining_Identifier (N))
8775 and then T = Defining_Identifier (N)
8776 then
8777 return True;
8779 elsif Nkind_In (N, N_Private_Type_Declaration,
8780 N_Private_Extension_Declaration)
8781 and then Present (Defining_Identifier (N))
8782 and then T = Full_View (Defining_Identifier (N))
8783 then
8784 return True;
8785 end if;
8787 Next (N);
8788 end loop;
8790 return False;
8791 end Visible_Part_Type;
8793 -- Start of processing for Check_For_Primitive_Subprogram
8795 begin
8796 Is_Primitive := False;
8798 if not Comes_From_Source (S) then
8799 null;
8801 -- If subprogram is at library level, it is not primitive operation
8803 elsif Current_Scope = Standard_Standard then
8804 null;
8806 elsif (Is_Package_Or_Generic_Package (Current_Scope)
8807 and then not In_Package_Body (Current_Scope))
8808 or else Is_Overriding
8809 then
8810 -- For function, check return type
8812 if Ekind (S) = E_Function then
8813 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
8814 F_Typ := Designated_Type (Etype (S));
8815 else
8816 F_Typ := Etype (S);
8817 end if;
8819 B_Typ := Base_Type (F_Typ);
8821 if Scope (B_Typ) = Current_Scope
8822 and then not Is_Class_Wide_Type (B_Typ)
8823 and then not Is_Generic_Type (B_Typ)
8824 then
8825 Is_Primitive := True;
8826 Set_Has_Primitive_Operations (B_Typ);
8827 Set_Is_Primitive (S);
8828 Check_Private_Overriding (B_Typ);
8829 end if;
8830 end if;
8832 -- For all subprograms, check formals
8834 Formal := First_Formal (S);
8835 while Present (Formal) loop
8836 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
8837 F_Typ := Designated_Type (Etype (Formal));
8838 else
8839 F_Typ := Etype (Formal);
8840 end if;
8842 B_Typ := Base_Type (F_Typ);
8844 if Ekind (B_Typ) = E_Access_Subtype then
8845 B_Typ := Base_Type (B_Typ);
8846 end if;
8848 if Scope (B_Typ) = Current_Scope
8849 and then not Is_Class_Wide_Type (B_Typ)
8850 and then not Is_Generic_Type (B_Typ)
8851 then
8852 Is_Primitive := True;
8853 Set_Is_Primitive (S);
8854 Set_Has_Primitive_Operations (B_Typ);
8855 Check_Private_Overriding (B_Typ);
8856 end if;
8858 Next_Formal (Formal);
8859 end loop;
8861 -- Special case: An equality function can be redefined for a type
8862 -- occurring in a declarative part, and won't otherwise be treated as
8863 -- a primitive because it doesn't occur in a package spec and doesn't
8864 -- override an inherited subprogram. It's important that we mark it
8865 -- primitive so it can be returned by Collect_Primitive_Operations
8866 -- and be used in composing the equality operation of later types
8867 -- that have a component of the type.
8869 elsif Chars (S) = Name_Op_Eq
8870 and then Etype (S) = Standard_Boolean
8871 then
8872 B_Typ := Base_Type (Etype (First_Formal (S)));
8874 if Scope (B_Typ) = Current_Scope
8875 and then
8876 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
8877 and then not Is_Limited_Type (B_Typ)
8878 then
8879 Is_Primitive := True;
8880 Set_Is_Primitive (S);
8881 Set_Has_Primitive_Operations (B_Typ);
8882 Check_Private_Overriding (B_Typ);
8883 end if;
8884 end if;
8885 end Check_For_Primitive_Subprogram;
8887 -----------------------------------
8888 -- Check_Synchronized_Overriding --
8889 -----------------------------------
8891 procedure Check_Synchronized_Overriding
8892 (Def_Id : Entity_Id;
8893 Overridden_Subp : out Entity_Id)
8895 Ifaces_List : Elist_Id;
8896 In_Scope : Boolean;
8897 Typ : Entity_Id;
8899 function Matches_Prefixed_View_Profile
8900 (Prim_Params : List_Id;
8901 Iface_Params : List_Id) return Boolean;
8902 -- Determine whether a subprogram's parameter profile Prim_Params
8903 -- matches that of a potentially overridden interface subprogram
8904 -- Iface_Params. Also determine if the type of first parameter of
8905 -- Iface_Params is an implemented interface.
8907 -----------------------------------
8908 -- Matches_Prefixed_View_Profile --
8909 -----------------------------------
8911 function Matches_Prefixed_View_Profile
8912 (Prim_Params : List_Id;
8913 Iface_Params : List_Id) return Boolean
8915 Iface_Id : Entity_Id;
8916 Iface_Param : Node_Id;
8917 Iface_Typ : Entity_Id;
8918 Prim_Id : Entity_Id;
8919 Prim_Param : Node_Id;
8920 Prim_Typ : Entity_Id;
8922 function Is_Implemented
8923 (Ifaces_List : Elist_Id;
8924 Iface : Entity_Id) return Boolean;
8925 -- Determine if Iface is implemented by the current task or
8926 -- protected type.
8928 --------------------
8929 -- Is_Implemented --
8930 --------------------
8932 function Is_Implemented
8933 (Ifaces_List : Elist_Id;
8934 Iface : Entity_Id) return Boolean
8936 Iface_Elmt : Elmt_Id;
8938 begin
8939 Iface_Elmt := First_Elmt (Ifaces_List);
8940 while Present (Iface_Elmt) loop
8941 if Node (Iface_Elmt) = Iface then
8942 return True;
8943 end if;
8945 Next_Elmt (Iface_Elmt);
8946 end loop;
8948 return False;
8949 end Is_Implemented;
8951 -- Start of processing for Matches_Prefixed_View_Profile
8953 begin
8954 Iface_Param := First (Iface_Params);
8955 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
8957 if Is_Access_Type (Iface_Typ) then
8958 Iface_Typ := Designated_Type (Iface_Typ);
8959 end if;
8961 Prim_Param := First (Prim_Params);
8963 -- The first parameter of the potentially overridden subprogram
8964 -- must be an interface implemented by Prim.
8966 if not Is_Interface (Iface_Typ)
8967 or else not Is_Implemented (Ifaces_List, Iface_Typ)
8968 then
8969 return False;
8970 end if;
8972 -- The checks on the object parameters are done, move onto the
8973 -- rest of the parameters.
8975 if not In_Scope then
8976 Prim_Param := Next (Prim_Param);
8977 end if;
8979 Iface_Param := Next (Iface_Param);
8980 while Present (Iface_Param) and then Present (Prim_Param) loop
8981 Iface_Id := Defining_Identifier (Iface_Param);
8982 Iface_Typ := Find_Parameter_Type (Iface_Param);
8984 Prim_Id := Defining_Identifier (Prim_Param);
8985 Prim_Typ := Find_Parameter_Type (Prim_Param);
8987 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
8988 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
8989 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
8990 then
8991 Iface_Typ := Designated_Type (Iface_Typ);
8992 Prim_Typ := Designated_Type (Prim_Typ);
8993 end if;
8995 -- Case of multiple interface types inside a parameter profile
8997 -- (Obj_Param : in out Iface; ...; Param : Iface)
8999 -- If the interface type is implemented, then the matching type
9000 -- in the primitive should be the implementing record type.
9002 if Ekind (Iface_Typ) = E_Record_Type
9003 and then Is_Interface (Iface_Typ)
9004 and then Is_Implemented (Ifaces_List, Iface_Typ)
9005 then
9006 if Prim_Typ /= Typ then
9007 return False;
9008 end if;
9010 -- The two parameters must be both mode and subtype conformant
9012 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
9013 or else not
9014 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
9015 then
9016 return False;
9017 end if;
9019 Next (Iface_Param);
9020 Next (Prim_Param);
9021 end loop;
9023 -- One of the two lists contains more parameters than the other
9025 if Present (Iface_Param) or else Present (Prim_Param) then
9026 return False;
9027 end if;
9029 return True;
9030 end Matches_Prefixed_View_Profile;
9032 -- Start of processing for Check_Synchronized_Overriding
9034 begin
9035 Overridden_Subp := Empty;
9037 -- Def_Id must be an entry or a subprogram. We should skip predefined
9038 -- primitives internally generated by the frontend; however at this
9039 -- stage predefined primitives are still not fully decorated. As a
9040 -- minor optimization we skip here internally generated subprograms.
9042 if (Ekind (Def_Id) /= E_Entry
9043 and then Ekind (Def_Id) /= E_Function
9044 and then Ekind (Def_Id) /= E_Procedure)
9045 or else not Comes_From_Source (Def_Id)
9046 then
9047 return;
9048 end if;
9050 -- Search for the concurrent declaration since it contains the list
9051 -- of all implemented interfaces. In this case, the subprogram is
9052 -- declared within the scope of a protected or a task type.
9054 if Present (Scope (Def_Id))
9055 and then Is_Concurrent_Type (Scope (Def_Id))
9056 and then not Is_Generic_Actual_Type (Scope (Def_Id))
9057 then
9058 Typ := Scope (Def_Id);
9059 In_Scope := True;
9061 -- The enclosing scope is not a synchronized type and the subprogram
9062 -- has no formals.
9064 elsif No (First_Formal (Def_Id)) then
9065 return;
9067 -- The subprogram has formals and hence it may be a primitive of a
9068 -- concurrent type.
9070 else
9071 Typ := Etype (First_Formal (Def_Id));
9073 if Is_Access_Type (Typ) then
9074 Typ := Directly_Designated_Type (Typ);
9075 end if;
9077 if Is_Concurrent_Type (Typ)
9078 and then not Is_Generic_Actual_Type (Typ)
9079 then
9080 In_Scope := False;
9082 -- This case occurs when the concurrent type is declared within
9083 -- a generic unit. As a result the corresponding record has been
9084 -- built and used as the type of the first formal, we just have
9085 -- to retrieve the corresponding concurrent type.
9087 elsif Is_Concurrent_Record_Type (Typ)
9088 and then not Is_Class_Wide_Type (Typ)
9089 and then Present (Corresponding_Concurrent_Type (Typ))
9090 then
9091 Typ := Corresponding_Concurrent_Type (Typ);
9092 In_Scope := False;
9094 else
9095 return;
9096 end if;
9097 end if;
9099 -- There is no overriding to check if is an inherited operation in a
9100 -- type derivation on for a generic actual.
9102 Collect_Interfaces (Typ, Ifaces_List);
9104 if Is_Empty_Elmt_List (Ifaces_List) then
9105 return;
9106 end if;
9108 -- Determine whether entry or subprogram Def_Id overrides a primitive
9109 -- operation that belongs to one of the interfaces in Ifaces_List.
9111 declare
9112 Candidate : Entity_Id := Empty;
9113 Hom : Entity_Id := Empty;
9114 Iface_Typ : Entity_Id;
9115 Subp : Entity_Id := Empty;
9117 begin
9118 -- Traverse the homonym chain, looking for a potentially
9119 -- overridden subprogram that belongs to an implemented
9120 -- interface.
9122 Hom := Current_Entity_In_Scope (Def_Id);
9123 while Present (Hom) loop
9124 Subp := Hom;
9126 if Subp = Def_Id
9127 or else not Is_Overloadable (Subp)
9128 or else not Is_Primitive (Subp)
9129 or else not Is_Dispatching_Operation (Subp)
9130 or else not Present (Find_Dispatching_Type (Subp))
9131 or else not Is_Interface (Find_Dispatching_Type (Subp))
9132 then
9133 null;
9135 -- Entries and procedures can override abstract or null
9136 -- interface procedures.
9138 elsif (Ekind (Def_Id) = E_Procedure
9139 or else Ekind (Def_Id) = E_Entry)
9140 and then Ekind (Subp) = E_Procedure
9141 and then Matches_Prefixed_View_Profile
9142 (Parameter_Specifications (Parent (Def_Id)),
9143 Parameter_Specifications (Parent (Subp)))
9144 then
9145 Candidate := Subp;
9147 -- For an overridden subprogram Subp, check whether the mode
9148 -- of its first parameter is correct depending on the kind
9149 -- of synchronized type.
9151 declare
9152 Formal : constant Node_Id := First_Formal (Candidate);
9154 begin
9155 -- In order for an entry or a protected procedure to
9156 -- override, the first parameter of the overridden
9157 -- routine must be of mode "out", "in out" or
9158 -- access-to-variable.
9160 if Ekind_In (Candidate, E_Entry, E_Procedure)
9161 and then Is_Protected_Type (Typ)
9162 and then Ekind (Formal) /= E_In_Out_Parameter
9163 and then Ekind (Formal) /= E_Out_Parameter
9164 and then Nkind (Parameter_Type (Parent (Formal))) /=
9165 N_Access_Definition
9166 then
9167 null;
9169 -- All other cases are OK since a task entry or routine
9170 -- does not have a restriction on the mode of the first
9171 -- parameter of the overridden interface routine.
9173 else
9174 Overridden_Subp := Candidate;
9175 return;
9176 end if;
9177 end;
9179 -- Functions can override abstract interface functions
9181 elsif Ekind (Def_Id) = E_Function
9182 and then Ekind (Subp) = E_Function
9183 and then Matches_Prefixed_View_Profile
9184 (Parameter_Specifications (Parent (Def_Id)),
9185 Parameter_Specifications (Parent (Subp)))
9186 and then Etype (Result_Definition (Parent (Def_Id))) =
9187 Etype (Result_Definition (Parent (Subp)))
9188 then
9189 Overridden_Subp := Subp;
9190 return;
9191 end if;
9193 Hom := Homonym (Hom);
9194 end loop;
9196 -- After examining all candidates for overriding, we are left with
9197 -- the best match which is a mode incompatible interface routine.
9198 -- Do not emit an error if the Expander is active since this error
9199 -- will be detected later on after all concurrent types are
9200 -- expanded and all wrappers are built. This check is meant for
9201 -- spec-only compilations.
9203 if Present (Candidate) and then not Expander_Active then
9204 Iface_Typ :=
9205 Find_Parameter_Type (Parent (First_Formal (Candidate)));
9207 -- Def_Id is primitive of a protected type, declared inside the
9208 -- type, and the candidate is primitive of a limited or
9209 -- synchronized interface.
9211 if In_Scope
9212 and then Is_Protected_Type (Typ)
9213 and then
9214 (Is_Limited_Interface (Iface_Typ)
9215 or else Is_Protected_Interface (Iface_Typ)
9216 or else Is_Synchronized_Interface (Iface_Typ)
9217 or else Is_Task_Interface (Iface_Typ))
9218 then
9219 Error_Msg_PT (Parent (Typ), Candidate);
9220 end if;
9221 end if;
9223 Overridden_Subp := Candidate;
9224 return;
9225 end;
9226 end Check_Synchronized_Overriding;
9228 ----------------------------
9229 -- Is_Private_Declaration --
9230 ----------------------------
9232 function Is_Private_Declaration (E : Entity_Id) return Boolean is
9233 Priv_Decls : List_Id;
9234 Decl : constant Node_Id := Unit_Declaration_Node (E);
9236 begin
9237 if Is_Package_Or_Generic_Package (Current_Scope)
9238 and then In_Private_Part (Current_Scope)
9239 then
9240 Priv_Decls :=
9241 Private_Declarations (Package_Specification (Current_Scope));
9243 return In_Package_Body (Current_Scope)
9244 or else
9245 (Is_List_Member (Decl)
9246 and then List_Containing (Decl) = Priv_Decls)
9247 or else (Nkind (Parent (Decl)) = N_Package_Specification
9248 and then not
9249 Is_Compilation_Unit
9250 (Defining_Entity (Parent (Decl)))
9251 and then List_Containing (Parent (Parent (Decl))) =
9252 Priv_Decls);
9253 else
9254 return False;
9255 end if;
9256 end Is_Private_Declaration;
9258 --------------------------
9259 -- Is_Overriding_Alias --
9260 --------------------------
9262 function Is_Overriding_Alias
9263 (Old_E : Entity_Id;
9264 New_E : Entity_Id) return Boolean
9266 AO : constant Entity_Id := Alias (Old_E);
9267 AN : constant Entity_Id := Alias (New_E);
9268 begin
9269 return Scope (AO) /= Scope (AN)
9270 or else No (DTC_Entity (AO))
9271 or else No (DTC_Entity (AN))
9272 or else DT_Position (AO) = DT_Position (AN);
9273 end Is_Overriding_Alias;
9275 -- Start of processing for New_Overloaded_Entity
9277 begin
9278 -- We need to look for an entity that S may override. This must be a
9279 -- homonym in the current scope, so we look for the first homonym of
9280 -- S in the current scope as the starting point for the search.
9282 E := Current_Entity_In_Scope (S);
9284 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
9285 -- They are directly added to the list of primitive operations of
9286 -- Derived_Type, unless this is a rederivation in the private part
9287 -- of an operation that was already derived in the visible part of
9288 -- the current package.
9290 if Ada_Version >= Ada_2005
9291 and then Present (Derived_Type)
9292 and then Present (Alias (S))
9293 and then Is_Dispatching_Operation (Alias (S))
9294 and then Present (Find_Dispatching_Type (Alias (S)))
9295 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
9296 then
9297 -- For private types, when the full-view is processed we propagate to
9298 -- the full view the non-overridden entities whose attribute "alias"
9299 -- references an interface primitive. These entities were added by
9300 -- Derive_Subprograms to ensure that interface primitives are
9301 -- covered.
9303 -- Inside_Freeze_Actions is non zero when S corresponds with an
9304 -- internal entity that links an interface primitive with its
9305 -- covering primitive through attribute Interface_Alias (see
9306 -- Add_Internal_Interface_Entities).
9308 if Inside_Freezing_Actions = 0
9309 and then Is_Package_Or_Generic_Package (Current_Scope)
9310 and then In_Private_Part (Current_Scope)
9311 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
9312 and then Nkind (Parent (S)) = N_Full_Type_Declaration
9313 and then Full_View (Defining_Identifier (Parent (E)))
9314 = Defining_Identifier (Parent (S))
9315 and then Alias (E) = Alias (S)
9316 then
9317 Check_Operation_From_Private_View (S, E);
9318 Set_Is_Dispatching_Operation (S);
9320 -- Common case
9322 else
9323 Enter_Overloaded_Entity (S);
9324 Check_Dispatching_Operation (S, Empty);
9325 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9326 end if;
9328 return;
9329 end if;
9331 -- If there is no homonym then this is definitely not overriding
9333 if No (E) then
9334 Enter_Overloaded_Entity (S);
9335 Check_Dispatching_Operation (S, Empty);
9336 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9338 -- If subprogram has an explicit declaration, check whether it has an
9339 -- overriding indicator.
9341 if Comes_From_Source (S) then
9342 Check_Synchronized_Overriding (S, Overridden_Subp);
9344 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
9345 -- it may have overridden some hidden inherited primitive. Update
9346 -- Overridden_Subp to avoid spurious errors when checking the
9347 -- overriding indicator.
9349 if Ada_Version >= Ada_2012
9350 and then No (Overridden_Subp)
9351 and then Is_Dispatching_Operation (S)
9352 and then Present (Overridden_Operation (S))
9353 then
9354 Overridden_Subp := Overridden_Operation (S);
9355 end if;
9357 Check_Overriding_Indicator
9358 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
9359 end if;
9361 -- If there is a homonym that is not overloadable, then we have an
9362 -- error, except for the special cases checked explicitly below.
9364 elsif not Is_Overloadable (E) then
9366 -- Check for spurious conflict produced by a subprogram that has the
9367 -- same name as that of the enclosing generic package. The conflict
9368 -- occurs within an instance, between the subprogram and the renaming
9369 -- declaration for the package. After the subprogram, the package
9370 -- renaming declaration becomes hidden.
9372 if Ekind (E) = E_Package
9373 and then Present (Renamed_Object (E))
9374 and then Renamed_Object (E) = Current_Scope
9375 and then Nkind (Parent (Renamed_Object (E))) =
9376 N_Package_Specification
9377 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
9378 then
9379 Set_Is_Hidden (E);
9380 Set_Is_Immediately_Visible (E, False);
9381 Enter_Overloaded_Entity (S);
9382 Set_Homonym (S, Homonym (E));
9383 Check_Dispatching_Operation (S, Empty);
9384 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
9386 -- If the subprogram is implicit it is hidden by the previous
9387 -- declaration. However if it is dispatching, it must appear in the
9388 -- dispatch table anyway, because it can be dispatched to even if it
9389 -- cannot be called directly.
9391 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
9392 Set_Scope (S, Current_Scope);
9394 if Is_Dispatching_Operation (Alias (S)) then
9395 Check_Dispatching_Operation (S, Empty);
9396 end if;
9398 return;
9400 else
9401 Error_Msg_Sloc := Sloc (E);
9403 -- Generate message, with useful additional warning if in generic
9405 if Is_Generic_Unit (E) then
9406 Error_Msg_N ("previous generic unit cannot be overloaded", S);
9407 Error_Msg_N ("\& conflicts with declaration#", S);
9408 else
9409 Error_Msg_N ("& conflicts with declaration#", S);
9410 end if;
9412 return;
9413 end if;
9415 -- E exists and is overloadable
9417 else
9418 Check_Synchronized_Overriding (S, Overridden_Subp);
9420 -- Loop through E and its homonyms to determine if any of them is
9421 -- the candidate for overriding by S.
9423 while Present (E) loop
9425 -- Definitely not interesting if not in the current scope
9427 if Scope (E) /= Current_Scope then
9428 null;
9430 -- A function can overload the name of an abstract state. The
9431 -- state can be viewed as a function with a profile that cannot
9432 -- be matched by anything.
9434 elsif Ekind (S) = E_Function
9435 and then Ekind (E) = E_Abstract_State
9436 then
9437 Enter_Overloaded_Entity (S);
9438 return;
9440 -- Ada 2012 (AI05-0165): For internally generated bodies of null
9441 -- procedures locate the internally generated spec. We enforce
9442 -- mode conformance since a tagged type may inherit from
9443 -- interfaces several null primitives which differ only in
9444 -- the mode of the formals.
9446 elsif not Comes_From_Source (S)
9447 and then Is_Null_Procedure (S)
9448 and then not Mode_Conformant (E, S)
9449 then
9450 null;
9452 -- Check if we have type conformance
9454 elsif Type_Conformant (E, S) then
9456 -- If the old and new entities have the same profile and one
9457 -- is not the body of the other, then this is an error, unless
9458 -- one of them is implicitly declared.
9460 -- There are some cases when both can be implicit, for example
9461 -- when both a literal and a function that overrides it are
9462 -- inherited in a derivation, or when an inherited operation
9463 -- of a tagged full type overrides the inherited operation of
9464 -- a private extension. Ada 83 had a special rule for the
9465 -- literal case. In Ada 95, the later implicit operation hides
9466 -- the former, and the literal is always the former. In the
9467 -- odd case where both are derived operations declared at the
9468 -- same point, both operations should be declared, and in that
9469 -- case we bypass the following test and proceed to the next
9470 -- part. This can only occur for certain obscure cases in
9471 -- instances, when an operation on a type derived from a formal
9472 -- private type does not override a homograph inherited from
9473 -- the actual. In subsequent derivations of such a type, the
9474 -- DT positions of these operations remain distinct, if they
9475 -- have been set.
9477 if Present (Alias (S))
9478 and then (No (Alias (E))
9479 or else Comes_From_Source (E)
9480 or else Is_Abstract_Subprogram (S)
9481 or else
9482 (Is_Dispatching_Operation (E)
9483 and then Is_Overriding_Alias (E, S)))
9484 and then Ekind (E) /= E_Enumeration_Literal
9485 then
9486 -- When an derived operation is overloaded it may be due to
9487 -- the fact that the full view of a private extension
9488 -- re-inherits. It has to be dealt with.
9490 if Is_Package_Or_Generic_Package (Current_Scope)
9491 and then In_Private_Part (Current_Scope)
9492 then
9493 Check_Operation_From_Private_View (S, E);
9494 end if;
9496 -- In any case the implicit operation remains hidden by the
9497 -- existing declaration, which is overriding. Indicate that
9498 -- E overrides the operation from which S is inherited.
9500 if Present (Alias (S)) then
9501 Set_Overridden_Operation (E, Alias (S));
9502 Inherit_Subprogram_Contract (E, Alias (S));
9504 else
9505 Set_Overridden_Operation (E, S);
9506 Inherit_Subprogram_Contract (E, S);
9507 end if;
9509 if Comes_From_Source (E) then
9510 Check_Overriding_Indicator (E, S, Is_Primitive => False);
9511 end if;
9513 return;
9515 -- Within an instance, the renaming declarations for actual
9516 -- subprograms may become ambiguous, but they do not hide each
9517 -- other.
9519 elsif Ekind (E) /= E_Entry
9520 and then not Comes_From_Source (E)
9521 and then not Is_Generic_Instance (E)
9522 and then (Present (Alias (E))
9523 or else Is_Intrinsic_Subprogram (E))
9524 and then (not In_Instance
9525 or else No (Parent (E))
9526 or else Nkind (Unit_Declaration_Node (E)) /=
9527 N_Subprogram_Renaming_Declaration)
9528 then
9529 -- A subprogram child unit is not allowed to override an
9530 -- inherited subprogram (10.1.1(20)).
9532 if Is_Child_Unit (S) then
9533 Error_Msg_N
9534 ("child unit overrides inherited subprogram in parent",
9536 return;
9537 end if;
9539 if Is_Non_Overriding_Operation (E, S) then
9540 Enter_Overloaded_Entity (S);
9542 if No (Derived_Type)
9543 or else Is_Tagged_Type (Derived_Type)
9544 then
9545 Check_Dispatching_Operation (S, Empty);
9546 end if;
9548 return;
9549 end if;
9551 -- E is a derived operation or an internal operator which
9552 -- is being overridden. Remove E from further visibility.
9553 -- Furthermore, if E is a dispatching operation, it must be
9554 -- replaced in the list of primitive operations of its type
9555 -- (see Override_Dispatching_Operation).
9557 Overridden_Subp := E;
9559 declare
9560 Prev : Entity_Id;
9562 begin
9563 Prev := First_Entity (Current_Scope);
9564 while Present (Prev) and then Next_Entity (Prev) /= E loop
9565 Next_Entity (Prev);
9566 end loop;
9568 -- It is possible for E to be in the current scope and
9569 -- yet not in the entity chain. This can only occur in a
9570 -- generic context where E is an implicit concatenation
9571 -- in the formal part, because in a generic body the
9572 -- entity chain starts with the formals.
9574 pragma Assert
9575 (Present (Prev) or else Chars (E) = Name_Op_Concat);
9577 -- E must be removed both from the entity_list of the
9578 -- current scope, and from the visibility chain
9580 if Debug_Flag_E then
9581 Write_Str ("Override implicit operation ");
9582 Write_Int (Int (E));
9583 Write_Eol;
9584 end if;
9586 -- If E is a predefined concatenation, it stands for four
9587 -- different operations. As a result, a single explicit
9588 -- declaration does not hide it. In a possible ambiguous
9589 -- situation, Disambiguate chooses the user-defined op,
9590 -- so it is correct to retain the previous internal one.
9592 if Chars (E) /= Name_Op_Concat
9593 or else Ekind (E) /= E_Operator
9594 then
9595 -- For nondispatching derived operations that are
9596 -- overridden by a subprogram declared in the private
9597 -- part of a package, we retain the derived subprogram
9598 -- but mark it as not immediately visible. If the
9599 -- derived operation was declared in the visible part
9600 -- then this ensures that it will still be visible
9601 -- outside the package with the proper signature
9602 -- (calls from outside must also be directed to this
9603 -- version rather than the overriding one, unlike the
9604 -- dispatching case). Calls from inside the package
9605 -- will still resolve to the overriding subprogram
9606 -- since the derived one is marked as not visible
9607 -- within the package.
9609 -- If the private operation is dispatching, we achieve
9610 -- the overriding by keeping the implicit operation
9611 -- but setting its alias to be the overriding one. In
9612 -- this fashion the proper body is executed in all
9613 -- cases, but the original signature is used outside
9614 -- of the package.
9616 -- If the overriding is not in the private part, we
9617 -- remove the implicit operation altogether.
9619 if Is_Private_Declaration (S) then
9620 if not Is_Dispatching_Operation (E) then
9621 Set_Is_Immediately_Visible (E, False);
9622 else
9623 -- Work done in Override_Dispatching_Operation,
9624 -- so nothing else needs to be done here.
9626 null;
9627 end if;
9629 else
9630 -- Find predecessor of E in Homonym chain
9632 if E = Current_Entity (E) then
9633 Prev_Vis := Empty;
9634 else
9635 Prev_Vis := Current_Entity (E);
9636 while Homonym (Prev_Vis) /= E loop
9637 Prev_Vis := Homonym (Prev_Vis);
9638 end loop;
9639 end if;
9641 if Prev_Vis /= Empty then
9643 -- Skip E in the visibility chain
9645 Set_Homonym (Prev_Vis, Homonym (E));
9647 else
9648 Set_Name_Entity_Id (Chars (E), Homonym (E));
9649 end if;
9651 Set_Next_Entity (Prev, Next_Entity (E));
9653 if No (Next_Entity (Prev)) then
9654 Set_Last_Entity (Current_Scope, Prev);
9655 end if;
9656 end if;
9657 end if;
9659 Enter_Overloaded_Entity (S);
9661 -- For entities generated by Derive_Subprograms the
9662 -- overridden operation is the inherited primitive
9663 -- (which is available through the attribute alias).
9665 if not (Comes_From_Source (E))
9666 and then Is_Dispatching_Operation (E)
9667 and then Find_Dispatching_Type (E) =
9668 Find_Dispatching_Type (S)
9669 and then Present (Alias (E))
9670 and then Comes_From_Source (Alias (E))
9671 then
9672 Set_Overridden_Operation (S, Alias (E));
9673 Inherit_Subprogram_Contract (S, Alias (E));
9675 -- Normal case of setting entity as overridden
9677 -- Note: Static_Initialization and Overridden_Operation
9678 -- attributes use the same field in subprogram entities.
9679 -- Static_Initialization is only defined for internal
9680 -- initialization procedures, where Overridden_Operation
9681 -- is irrelevant. Therefore the setting of this attribute
9682 -- must check whether the target is an init_proc.
9684 elsif not Is_Init_Proc (S) then
9685 Set_Overridden_Operation (S, E);
9686 Inherit_Subprogram_Contract (S, E);
9687 end if;
9689 Check_Overriding_Indicator (S, E, Is_Primitive => True);
9691 -- If S is a user-defined subprogram or a null procedure
9692 -- expanded to override an inherited null procedure, or a
9693 -- predefined dispatching primitive then indicate that E
9694 -- overrides the operation from which S is inherited.
9696 if Comes_From_Source (S)
9697 or else
9698 (Present (Parent (S))
9699 and then
9700 Nkind (Parent (S)) = N_Procedure_Specification
9701 and then
9702 Null_Present (Parent (S)))
9703 or else
9704 (Present (Alias (E))
9705 and then
9706 Is_Predefined_Dispatching_Operation (Alias (E)))
9707 then
9708 if Present (Alias (E)) then
9709 Set_Overridden_Operation (S, Alias (E));
9710 Inherit_Subprogram_Contract (S, Alias (E));
9711 end if;
9712 end if;
9714 if Is_Dispatching_Operation (E) then
9716 -- An overriding dispatching subprogram inherits the
9717 -- convention of the overridden subprogram (AI-117).
9719 Set_Convention (S, Convention (E));
9720 Check_Dispatching_Operation (S, E);
9722 else
9723 Check_Dispatching_Operation (S, Empty);
9724 end if;
9726 Check_For_Primitive_Subprogram
9727 (Is_Primitive_Subp, Is_Overriding => True);
9728 goto Check_Inequality;
9729 end;
9731 -- Apparent redeclarations in instances can occur when two
9732 -- formal types get the same actual type. The subprograms in
9733 -- in the instance are legal, even if not callable from the
9734 -- outside. Calls from within are disambiguated elsewhere.
9735 -- For dispatching operations in the visible part, the usual
9736 -- rules apply, and operations with the same profile are not
9737 -- legal (B830001).
9739 elsif (In_Instance_Visible_Part
9740 and then not Is_Dispatching_Operation (E))
9741 or else In_Instance_Not_Visible
9742 then
9743 null;
9745 -- Here we have a real error (identical profile)
9747 else
9748 Error_Msg_Sloc := Sloc (E);
9750 -- Avoid cascaded errors if the entity appears in
9751 -- subsequent calls.
9753 Set_Scope (S, Current_Scope);
9755 -- Generate error, with extra useful warning for the case
9756 -- of a generic instance with no completion.
9758 if Is_Generic_Instance (S)
9759 and then not Has_Completion (E)
9760 then
9761 Error_Msg_N
9762 ("instantiation cannot provide body for&", S);
9763 Error_Msg_N ("\& conflicts with declaration#", S);
9764 else
9765 Error_Msg_N ("& conflicts with declaration#", S);
9766 end if;
9768 return;
9769 end if;
9771 else
9772 -- If one subprogram has an access parameter and the other
9773 -- a parameter of an access type, calls to either might be
9774 -- ambiguous. Verify that parameters match except for the
9775 -- access parameter.
9777 if May_Hide_Profile then
9778 declare
9779 F1 : Entity_Id;
9780 F2 : Entity_Id;
9782 begin
9783 F1 := First_Formal (S);
9784 F2 := First_Formal (E);
9785 while Present (F1) and then Present (F2) loop
9786 if Is_Access_Type (Etype (F1)) then
9787 if not Is_Access_Type (Etype (F2))
9788 or else not Conforming_Types
9789 (Designated_Type (Etype (F1)),
9790 Designated_Type (Etype (F2)),
9791 Type_Conformant)
9792 then
9793 May_Hide_Profile := False;
9794 end if;
9796 elsif
9797 not Conforming_Types
9798 (Etype (F1), Etype (F2), Type_Conformant)
9799 then
9800 May_Hide_Profile := False;
9801 end if;
9803 Next_Formal (F1);
9804 Next_Formal (F2);
9805 end loop;
9807 if May_Hide_Profile
9808 and then No (F1)
9809 and then No (F2)
9810 then
9811 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
9812 end if;
9813 end;
9814 end if;
9815 end if;
9817 E := Homonym (E);
9818 end loop;
9820 -- On exit, we know that S is a new entity
9822 Enter_Overloaded_Entity (S);
9823 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
9824 Check_Overriding_Indicator
9825 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
9827 -- Overloading is not allowed in SPARK, except for operators
9829 if Nkind (S) /= N_Defining_Operator_Symbol then
9830 Error_Msg_Sloc := Sloc (Homonym (S));
9831 Check_SPARK_05_Restriction
9832 ("overloading not allowed with entity#", S);
9833 end if;
9835 -- If S is a derived operation for an untagged type then by
9836 -- definition it's not a dispatching operation (even if the parent
9837 -- operation was dispatching), so Check_Dispatching_Operation is not
9838 -- called in that case.
9840 if No (Derived_Type)
9841 or else Is_Tagged_Type (Derived_Type)
9842 then
9843 Check_Dispatching_Operation (S, Empty);
9844 end if;
9845 end if;
9847 -- If this is a user-defined equality operator that is not a derived
9848 -- subprogram, create the corresponding inequality. If the operation is
9849 -- dispatching, the expansion is done elsewhere, and we do not create
9850 -- an explicit inequality operation.
9852 <<Check_Inequality>>
9853 if Chars (S) = Name_Op_Eq
9854 and then Etype (S) = Standard_Boolean
9855 and then Present (Parent (S))
9856 and then not Is_Dispatching_Operation (S)
9857 then
9858 Make_Inequality_Operator (S);
9859 Check_Untagged_Equality (S);
9860 end if;
9861 end New_Overloaded_Entity;
9863 ---------------------
9864 -- Process_Formals --
9865 ---------------------
9867 procedure Process_Formals
9868 (T : List_Id;
9869 Related_Nod : Node_Id)
9871 Param_Spec : Node_Id;
9872 Formal : Entity_Id;
9873 Formal_Type : Entity_Id;
9874 Default : Node_Id;
9875 Ptype : Entity_Id;
9877 Num_Out_Params : Nat := 0;
9878 First_Out_Param : Entity_Id := Empty;
9879 -- Used for setting Is_Only_Out_Parameter
9881 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
9882 -- Determine whether an access type designates a type coming from a
9883 -- limited view.
9885 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
9886 -- Check whether the default has a class-wide type. After analysis the
9887 -- default has the type of the formal, so we must also check explicitly
9888 -- for an access attribute.
9890 ----------------------------------
9891 -- Designates_From_Limited_With --
9892 ----------------------------------
9894 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
9895 Desig : Entity_Id := Typ;
9897 begin
9898 if Is_Access_Type (Desig) then
9899 Desig := Directly_Designated_Type (Desig);
9900 end if;
9902 if Is_Class_Wide_Type (Desig) then
9903 Desig := Root_Type (Desig);
9904 end if;
9906 return
9907 Ekind (Desig) = E_Incomplete_Type
9908 and then From_Limited_With (Desig);
9909 end Designates_From_Limited_With;
9911 ---------------------------
9912 -- Is_Class_Wide_Default --
9913 ---------------------------
9915 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
9916 begin
9917 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
9918 or else (Nkind (D) = N_Attribute_Reference
9919 and then Attribute_Name (D) = Name_Access
9920 and then Is_Class_Wide_Type (Etype (Prefix (D))));
9921 end Is_Class_Wide_Default;
9923 -- Start of processing for Process_Formals
9925 begin
9926 -- In order to prevent premature use of the formals in the same formal
9927 -- part, the Ekind is left undefined until all default expressions are
9928 -- analyzed. The Ekind is established in a separate loop at the end.
9930 Param_Spec := First (T);
9931 while Present (Param_Spec) loop
9932 Formal := Defining_Identifier (Param_Spec);
9933 Set_Never_Set_In_Source (Formal, True);
9934 Enter_Name (Formal);
9936 -- Case of ordinary parameters
9938 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
9939 Find_Type (Parameter_Type (Param_Spec));
9940 Ptype := Parameter_Type (Param_Spec);
9942 if Ptype = Error then
9943 goto Continue;
9944 end if;
9946 Formal_Type := Entity (Ptype);
9948 if Is_Incomplete_Type (Formal_Type)
9949 or else
9950 (Is_Class_Wide_Type (Formal_Type)
9951 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
9952 then
9953 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
9954 -- primitive operations, as long as their completion is
9955 -- in the same declarative part. If in the private part
9956 -- this means that the type cannot be a Taft-amendment type.
9957 -- Check is done on package exit. For access to subprograms,
9958 -- the use is legal for Taft-amendment types.
9960 -- Ada 2012: tagged incomplete types are allowed as generic
9961 -- formal types. They do not introduce dependencies and the
9962 -- corresponding generic subprogram does not have a delayed
9963 -- freeze, because it does not need a freeze node. However,
9964 -- it is still the case that untagged incomplete types cannot
9965 -- be Taft-amendment types and must be completed in private
9966 -- part, so the subprogram must appear in the list of private
9967 -- dependents of the type.
9969 if Is_Tagged_Type (Formal_Type)
9970 or else (Ada_Version >= Ada_2012
9971 and then not From_Limited_With (Formal_Type)
9972 and then not Is_Generic_Type (Formal_Type))
9973 then
9974 if Ekind (Scope (Current_Scope)) = E_Package
9975 and then not Is_Generic_Type (Formal_Type)
9976 and then not Is_Class_Wide_Type (Formal_Type)
9977 then
9978 if not Nkind_In
9979 (Parent (T), N_Access_Function_Definition,
9980 N_Access_Procedure_Definition)
9981 then
9982 Append_Elmt
9983 (Current_Scope,
9984 To => Private_Dependents (Base_Type (Formal_Type)));
9986 -- Freezing is delayed to ensure that Register_Prim
9987 -- will get called for this operation, which is needed
9988 -- in cases where static dispatch tables aren't built.
9989 -- (Note that the same is done for controlling access
9990 -- parameter cases in function Access_Definition.)
9992 if not Is_Thunk (Current_Scope) then
9993 Set_Has_Delayed_Freeze (Current_Scope);
9994 end if;
9995 end if;
9996 end if;
9998 -- Special handling of Value_Type for CIL case
10000 elsif Is_Value_Type (Formal_Type) then
10001 null;
10003 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
10004 N_Access_Procedure_Definition)
10005 then
10006 -- AI05-0151: Tagged incomplete types are allowed in all
10007 -- formal parts. Untagged incomplete types are not allowed
10008 -- in bodies. Limited views of either kind are not allowed
10009 -- if there is no place at which the non-limited view can
10010 -- become available.
10012 -- Incomplete formal untagged types are not allowed in
10013 -- subprogram bodies (but are legal in their declarations).
10015 if Is_Generic_Type (Formal_Type)
10016 and then not Is_Tagged_Type (Formal_Type)
10017 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
10018 then
10019 Error_Msg_N
10020 ("invalid use of formal incomplete type", Param_Spec);
10022 elsif Ada_Version >= Ada_2012 then
10023 if Is_Tagged_Type (Formal_Type)
10024 and then (not From_Limited_With (Formal_Type)
10025 or else not In_Package_Body)
10026 then
10027 null;
10029 elsif Nkind_In (Parent (Parent (T)), N_Accept_Statement,
10030 N_Accept_Alternative,
10031 N_Entry_Body,
10032 N_Subprogram_Body)
10033 then
10034 Error_Msg_NE
10035 ("invalid use of untagged incomplete type&",
10036 Ptype, Formal_Type);
10037 end if;
10039 else
10040 Error_Msg_NE
10041 ("invalid use of incomplete type&",
10042 Param_Spec, Formal_Type);
10044 -- Further checks on the legality of incomplete types
10045 -- in formal parts are delayed until the freeze point
10046 -- of the enclosing subprogram or access to subprogram.
10047 end if;
10048 end if;
10050 elsif Ekind (Formal_Type) = E_Void then
10051 Error_Msg_NE
10052 ("premature use of&",
10053 Parameter_Type (Param_Spec), Formal_Type);
10054 end if;
10056 -- Ada 2012 (AI-142): Handle aliased parameters
10058 if Ada_Version >= Ada_2012
10059 and then Aliased_Present (Param_Spec)
10060 then
10061 Set_Is_Aliased (Formal);
10062 end if;
10064 -- Ada 2005 (AI-231): Create and decorate an internal subtype
10065 -- declaration corresponding to the null-excluding type of the
10066 -- formal in the enclosing scope. Finally, replace the parameter
10067 -- type of the formal with the internal subtype.
10069 if Ada_Version >= Ada_2005
10070 and then Null_Exclusion_Present (Param_Spec)
10071 then
10072 if not Is_Access_Type (Formal_Type) then
10073 Error_Msg_N
10074 ("`NOT NULL` allowed only for an access type", Param_Spec);
10076 else
10077 if Can_Never_Be_Null (Formal_Type)
10078 and then Comes_From_Source (Related_Nod)
10079 then
10080 Error_Msg_NE
10081 ("`NOT NULL` not allowed (& already excludes null)",
10082 Param_Spec, Formal_Type);
10083 end if;
10085 Formal_Type :=
10086 Create_Null_Excluding_Itype
10087 (T => Formal_Type,
10088 Related_Nod => Related_Nod,
10089 Scope_Id => Scope (Current_Scope));
10091 -- If the designated type of the itype is an itype that is
10092 -- not frozen yet, we set the Has_Delayed_Freeze attribute
10093 -- on the access subtype, to prevent order-of-elaboration
10094 -- issues in the backend.
10096 -- Example:
10097 -- type T is access procedure;
10098 -- procedure Op (O : not null T);
10100 if Is_Itype (Directly_Designated_Type (Formal_Type))
10101 and then
10102 not Is_Frozen (Directly_Designated_Type (Formal_Type))
10103 then
10104 Set_Has_Delayed_Freeze (Formal_Type);
10105 end if;
10106 end if;
10107 end if;
10109 -- An access formal type
10111 else
10112 Formal_Type :=
10113 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
10115 -- No need to continue if we already notified errors
10117 if not Present (Formal_Type) then
10118 return;
10119 end if;
10121 -- Ada 2005 (AI-254)
10123 declare
10124 AD : constant Node_Id :=
10125 Access_To_Subprogram_Definition
10126 (Parameter_Type (Param_Spec));
10127 begin
10128 if Present (AD) and then Protected_Present (AD) then
10129 Formal_Type :=
10130 Replace_Anonymous_Access_To_Protected_Subprogram
10131 (Param_Spec);
10132 end if;
10133 end;
10134 end if;
10136 Set_Etype (Formal, Formal_Type);
10138 -- Deal with default expression if present
10140 Default := Expression (Param_Spec);
10142 if Present (Default) then
10143 Check_SPARK_05_Restriction
10144 ("default expression is not allowed", Default);
10146 if Out_Present (Param_Spec) then
10147 Error_Msg_N
10148 ("default initialization only allowed for IN parameters",
10149 Param_Spec);
10150 end if;
10152 -- Do the special preanalysis of the expression (see section on
10153 -- "Handling of Default Expressions" in the spec of package Sem).
10155 Preanalyze_Spec_Expression (Default, Formal_Type);
10157 -- An access to constant cannot be the default for
10158 -- an access parameter that is an access to variable.
10160 if Ekind (Formal_Type) = E_Anonymous_Access_Type
10161 and then not Is_Access_Constant (Formal_Type)
10162 and then Is_Access_Type (Etype (Default))
10163 and then Is_Access_Constant (Etype (Default))
10164 then
10165 Error_Msg_N
10166 ("formal that is access to variable cannot be initialized "
10167 & "with an access-to-constant expression", Default);
10168 end if;
10170 -- Check that the designated type of an access parameter's default
10171 -- is not a class-wide type unless the parameter's designated type
10172 -- is also class-wide.
10174 if Ekind (Formal_Type) = E_Anonymous_Access_Type
10175 and then not Designates_From_Limited_With (Formal_Type)
10176 and then Is_Class_Wide_Default (Default)
10177 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
10178 then
10179 Error_Msg_N
10180 ("access to class-wide expression not allowed here", Default);
10181 end if;
10183 -- Check incorrect use of dynamically tagged expressions
10185 if Is_Tagged_Type (Formal_Type) then
10186 Check_Dynamically_Tagged_Expression
10187 (Expr => Default,
10188 Typ => Formal_Type,
10189 Related_Nod => Default);
10190 end if;
10191 end if;
10193 -- Ada 2005 (AI-231): Static checks
10195 if Ada_Version >= Ada_2005
10196 and then Is_Access_Type (Etype (Formal))
10197 and then Can_Never_Be_Null (Etype (Formal))
10198 then
10199 Null_Exclusion_Static_Checks (Param_Spec);
10200 end if;
10202 -- The following checks are relevant when SPARK_Mode is on as these
10203 -- are not standard Ada legality rules.
10205 if SPARK_Mode = On then
10206 if Ekind_In (Scope (Formal), E_Function, E_Generic_Function) then
10208 -- A function cannot have a parameter of mode IN OUT or OUT
10209 -- (SPARK RM 6.1).
10211 if Ekind_In (Formal, E_In_Out_Parameter, E_Out_Parameter) then
10212 Error_Msg_N
10213 ("function cannot have parameter of mode `OUT` or "
10214 & "`IN OUT`", Formal);
10216 -- A function cannot have an effectively volatile formal
10217 -- parameter (SPARK RM 7.1.3(10)).
10219 elsif Is_Effectively_Volatile (Formal) then
10220 Error_Msg_N
10221 ("function cannot have a volatile formal parameter",
10222 Formal);
10223 end if;
10225 -- A procedure cannot have an effectively volatile formal
10226 -- parameter of mode IN because it behaves as a constant
10227 -- (SPARK RM 7.1.3(6)).
10229 elsif Ekind (Scope (Formal)) = E_Procedure
10230 and then Ekind (Formal) = E_In_Parameter
10231 and then Is_Effectively_Volatile (Formal)
10232 then
10233 Error_Msg_N
10234 ("formal parameter of mode `IN` cannot be volatile", Formal);
10235 end if;
10236 end if;
10238 <<Continue>>
10239 Next (Param_Spec);
10240 end loop;
10242 -- If this is the formal part of a function specification, analyze the
10243 -- subtype mark in the context where the formals are visible but not
10244 -- yet usable, and may hide outer homographs.
10246 if Nkind (Related_Nod) = N_Function_Specification then
10247 Analyze_Return_Type (Related_Nod);
10248 end if;
10250 -- Now set the kind (mode) of each formal
10252 Param_Spec := First (T);
10253 while Present (Param_Spec) loop
10254 Formal := Defining_Identifier (Param_Spec);
10255 Set_Formal_Mode (Formal);
10257 if Ekind (Formal) = E_In_Parameter then
10258 Set_Default_Value (Formal, Expression (Param_Spec));
10260 if Present (Expression (Param_Spec)) then
10261 Default := Expression (Param_Spec);
10263 if Is_Scalar_Type (Etype (Default)) then
10264 if Nkind (Parameter_Type (Param_Spec)) /=
10265 N_Access_Definition
10266 then
10267 Formal_Type := Entity (Parameter_Type (Param_Spec));
10268 else
10269 Formal_Type :=
10270 Access_Definition
10271 (Related_Nod, Parameter_Type (Param_Spec));
10272 end if;
10274 Apply_Scalar_Range_Check (Default, Formal_Type);
10275 end if;
10276 end if;
10278 elsif Ekind (Formal) = E_Out_Parameter then
10279 Num_Out_Params := Num_Out_Params + 1;
10281 if Num_Out_Params = 1 then
10282 First_Out_Param := Formal;
10283 end if;
10285 elsif Ekind (Formal) = E_In_Out_Parameter then
10286 Num_Out_Params := Num_Out_Params + 1;
10287 end if;
10289 -- Skip remaining processing if formal type was in error
10291 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
10292 goto Next_Parameter;
10293 end if;
10295 -- Force call by reference if aliased
10297 if Is_Aliased (Formal) then
10298 Set_Mechanism (Formal, By_Reference);
10300 -- Warn if user asked this to be passed by copy
10302 if Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
10303 Error_Msg_N
10304 ("cannot pass aliased parameter & by copy??", Formal);
10305 end if;
10307 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
10309 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
10310 Set_Mechanism (Formal, By_Copy);
10312 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Reference then
10313 Set_Mechanism (Formal, By_Reference);
10314 end if;
10316 <<Next_Parameter>>
10317 Next (Param_Spec);
10318 end loop;
10320 if Present (First_Out_Param) and then Num_Out_Params = 1 then
10321 Set_Is_Only_Out_Parameter (First_Out_Param);
10322 end if;
10323 end Process_Formals;
10325 ----------------------------
10326 -- Reference_Body_Formals --
10327 ----------------------------
10329 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
10330 Fs : Entity_Id;
10331 Fb : Entity_Id;
10333 begin
10334 if Error_Posted (Spec) then
10335 return;
10336 end if;
10338 -- Iterate over both lists. They may be of different lengths if the two
10339 -- specs are not conformant.
10341 Fs := First_Formal (Spec);
10342 Fb := First_Formal (Bod);
10343 while Present (Fs) and then Present (Fb) loop
10344 Generate_Reference (Fs, Fb, 'b');
10346 if Style_Check then
10347 Style.Check_Identifier (Fb, Fs);
10348 end if;
10350 Set_Spec_Entity (Fb, Fs);
10351 Set_Referenced (Fs, False);
10352 Next_Formal (Fs);
10353 Next_Formal (Fb);
10354 end loop;
10355 end Reference_Body_Formals;
10357 -------------------------
10358 -- Set_Actual_Subtypes --
10359 -------------------------
10361 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
10362 Decl : Node_Id;
10363 Formal : Entity_Id;
10364 T : Entity_Id;
10365 First_Stmt : Node_Id := Empty;
10366 AS_Needed : Boolean;
10368 begin
10369 -- If this is an empty initialization procedure, no need to create
10370 -- actual subtypes (small optimization).
10372 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
10373 return;
10374 end if;
10376 Formal := First_Formal (Subp);
10377 while Present (Formal) loop
10378 T := Etype (Formal);
10380 -- We never need an actual subtype for a constrained formal
10382 if Is_Constrained (T) then
10383 AS_Needed := False;
10385 -- If we have unknown discriminants, then we do not need an actual
10386 -- subtype, or more accurately we cannot figure it out. Note that
10387 -- all class-wide types have unknown discriminants.
10389 elsif Has_Unknown_Discriminants (T) then
10390 AS_Needed := False;
10392 -- At this stage we have an unconstrained type that may need an
10393 -- actual subtype. For sure the actual subtype is needed if we have
10394 -- an unconstrained array type.
10396 elsif Is_Array_Type (T) then
10397 AS_Needed := True;
10399 -- The only other case needing an actual subtype is an unconstrained
10400 -- record type which is an IN parameter (we cannot generate actual
10401 -- subtypes for the OUT or IN OUT case, since an assignment can
10402 -- change the discriminant values. However we exclude the case of
10403 -- initialization procedures, since discriminants are handled very
10404 -- specially in this context, see the section entitled "Handling of
10405 -- Discriminants" in Einfo.
10407 -- We also exclude the case of Discrim_SO_Functions (functions used
10408 -- in front end layout mode for size/offset values), since in such
10409 -- functions only discriminants are referenced, and not only are such
10410 -- subtypes not needed, but they cannot always be generated, because
10411 -- of order of elaboration issues.
10413 elsif Is_Record_Type (T)
10414 and then Ekind (Formal) = E_In_Parameter
10415 and then Chars (Formal) /= Name_uInit
10416 and then not Is_Unchecked_Union (T)
10417 and then not Is_Discrim_SO_Function (Subp)
10418 then
10419 AS_Needed := True;
10421 -- All other cases do not need an actual subtype
10423 else
10424 AS_Needed := False;
10425 end if;
10427 -- Generate actual subtypes for unconstrained arrays and
10428 -- unconstrained discriminated records.
10430 if AS_Needed then
10431 if Nkind (N) = N_Accept_Statement then
10433 -- If expansion is active, the formal is replaced by a local
10434 -- variable that renames the corresponding entry of the
10435 -- parameter block, and it is this local variable that may
10436 -- require an actual subtype.
10438 if Expander_Active then
10439 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
10440 else
10441 Decl := Build_Actual_Subtype (T, Formal);
10442 end if;
10444 if Present (Handled_Statement_Sequence (N)) then
10445 First_Stmt :=
10446 First (Statements (Handled_Statement_Sequence (N)));
10447 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
10448 Mark_Rewrite_Insertion (Decl);
10449 else
10450 -- If the accept statement has no body, there will be no
10451 -- reference to the actuals, so no need to compute actual
10452 -- subtypes.
10454 return;
10455 end if;
10457 else
10458 Decl := Build_Actual_Subtype (T, Formal);
10459 Prepend (Decl, Declarations (N));
10460 Mark_Rewrite_Insertion (Decl);
10461 end if;
10463 -- The declaration uses the bounds of an existing object, and
10464 -- therefore needs no constraint checks.
10466 Analyze (Decl, Suppress => All_Checks);
10468 -- We need to freeze manually the generated type when it is
10469 -- inserted anywhere else than in a declarative part.
10471 if Present (First_Stmt) then
10472 Insert_List_Before_And_Analyze (First_Stmt,
10473 Freeze_Entity (Defining_Identifier (Decl), N));
10475 -- Ditto if the type has a dynamic predicate, because the
10476 -- generated function will mention the actual subtype.
10478 elsif Has_Dynamic_Predicate_Aspect (T) then
10479 Insert_List_Before_And_Analyze (Decl,
10480 Freeze_Entity (Defining_Identifier (Decl), N));
10481 end if;
10483 if Nkind (N) = N_Accept_Statement
10484 and then Expander_Active
10485 then
10486 Set_Actual_Subtype (Renamed_Object (Formal),
10487 Defining_Identifier (Decl));
10488 else
10489 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
10490 end if;
10491 end if;
10493 Next_Formal (Formal);
10494 end loop;
10495 end Set_Actual_Subtypes;
10497 ---------------------
10498 -- Set_Formal_Mode --
10499 ---------------------
10501 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
10502 Spec : constant Node_Id := Parent (Formal_Id);
10504 begin
10505 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
10506 -- since we ensure that corresponding actuals are always valid at the
10507 -- point of the call.
10509 if Out_Present (Spec) then
10510 if Ekind_In (Scope (Formal_Id), E_Function, E_Generic_Function) then
10512 -- [IN] OUT parameters allowed for functions in Ada 2012
10514 if Ada_Version >= Ada_2012 then
10516 -- Even in Ada 2012 operators can only have IN parameters
10518 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
10519 Error_Msg_N ("operators can only have IN parameters", Spec);
10520 end if;
10522 if In_Present (Spec) then
10523 Set_Ekind (Formal_Id, E_In_Out_Parameter);
10524 else
10525 Set_Ekind (Formal_Id, E_Out_Parameter);
10526 end if;
10528 Set_Has_Out_Or_In_Out_Parameter (Scope (Formal_Id), True);
10530 -- But not in earlier versions of Ada
10532 else
10533 Error_Msg_N ("functions can only have IN parameters", Spec);
10534 Set_Ekind (Formal_Id, E_In_Parameter);
10535 end if;
10537 elsif In_Present (Spec) then
10538 Set_Ekind (Formal_Id, E_In_Out_Parameter);
10540 else
10541 Set_Ekind (Formal_Id, E_Out_Parameter);
10542 Set_Never_Set_In_Source (Formal_Id, True);
10543 Set_Is_True_Constant (Formal_Id, False);
10544 Set_Current_Value (Formal_Id, Empty);
10545 end if;
10547 else
10548 Set_Ekind (Formal_Id, E_In_Parameter);
10549 end if;
10551 -- Set Is_Known_Non_Null for access parameters since the language
10552 -- guarantees that access parameters are always non-null. We also set
10553 -- Can_Never_Be_Null, since there is no way to change the value.
10555 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
10557 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
10558 -- null; In Ada 2005, only if then null_exclusion is explicit.
10560 if Ada_Version < Ada_2005
10561 or else Can_Never_Be_Null (Etype (Formal_Id))
10562 then
10563 Set_Is_Known_Non_Null (Formal_Id);
10564 Set_Can_Never_Be_Null (Formal_Id);
10565 end if;
10567 -- Ada 2005 (AI-231): Null-exclusion access subtype
10569 elsif Is_Access_Type (Etype (Formal_Id))
10570 and then Can_Never_Be_Null (Etype (Formal_Id))
10571 then
10572 Set_Is_Known_Non_Null (Formal_Id);
10574 -- We can also set Can_Never_Be_Null (thus preventing some junk
10575 -- access checks) for the case of an IN parameter, which cannot
10576 -- be changed, or for an IN OUT parameter, which can be changed but
10577 -- not to a null value. But for an OUT parameter, the initial value
10578 -- passed in can be null, so we can't set this flag in that case.
10580 if Ekind (Formal_Id) /= E_Out_Parameter then
10581 Set_Can_Never_Be_Null (Formal_Id);
10582 end if;
10583 end if;
10585 Set_Mechanism (Formal_Id, Default_Mechanism);
10586 Set_Formal_Validity (Formal_Id);
10587 end Set_Formal_Mode;
10589 -------------------------
10590 -- Set_Formal_Validity --
10591 -------------------------
10593 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
10594 begin
10595 -- If no validity checking, then we cannot assume anything about the
10596 -- validity of parameters, since we do not know there is any checking
10597 -- of the validity on the call side.
10599 if not Validity_Checks_On then
10600 return;
10602 -- If validity checking for parameters is enabled, this means we are
10603 -- not supposed to make any assumptions about argument values.
10605 elsif Validity_Check_Parameters then
10606 return;
10608 -- If we are checking in parameters, we will assume that the caller is
10609 -- also checking parameters, so we can assume the parameter is valid.
10611 elsif Ekind (Formal_Id) = E_In_Parameter
10612 and then Validity_Check_In_Params
10613 then
10614 Set_Is_Known_Valid (Formal_Id, True);
10616 -- Similar treatment for IN OUT parameters
10618 elsif Ekind (Formal_Id) = E_In_Out_Parameter
10619 and then Validity_Check_In_Out_Params
10620 then
10621 Set_Is_Known_Valid (Formal_Id, True);
10622 end if;
10623 end Set_Formal_Validity;
10625 ------------------------
10626 -- Subtype_Conformant --
10627 ------------------------
10629 function Subtype_Conformant
10630 (New_Id : Entity_Id;
10631 Old_Id : Entity_Id;
10632 Skip_Controlling_Formals : Boolean := False) return Boolean
10634 Result : Boolean;
10635 begin
10636 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
10637 Skip_Controlling_Formals => Skip_Controlling_Formals);
10638 return Result;
10639 end Subtype_Conformant;
10641 ---------------------
10642 -- Type_Conformant --
10643 ---------------------
10645 function Type_Conformant
10646 (New_Id : Entity_Id;
10647 Old_Id : Entity_Id;
10648 Skip_Controlling_Formals : Boolean := False) return Boolean
10650 Result : Boolean;
10651 begin
10652 May_Hide_Profile := False;
10653 Check_Conformance
10654 (New_Id, Old_Id, Type_Conformant, False, Result,
10655 Skip_Controlling_Formals => Skip_Controlling_Formals);
10656 return Result;
10657 end Type_Conformant;
10659 -------------------------------
10660 -- Valid_Operator_Definition --
10661 -------------------------------
10663 procedure Valid_Operator_Definition (Designator : Entity_Id) is
10664 N : Integer := 0;
10665 F : Entity_Id;
10666 Id : constant Name_Id := Chars (Designator);
10667 N_OK : Boolean;
10669 begin
10670 F := First_Formal (Designator);
10671 while Present (F) loop
10672 N := N + 1;
10674 if Present (Default_Value (F)) then
10675 Error_Msg_N
10676 ("default values not allowed for operator parameters",
10677 Parent (F));
10679 -- For function instantiations that are operators, we must check
10680 -- separately that the corresponding generic only has in-parameters.
10681 -- For subprogram declarations this is done in Set_Formal_Mode. Such
10682 -- an error could not arise in earlier versions of the language.
10684 elsif Ekind (F) /= E_In_Parameter then
10685 Error_Msg_N ("operators can only have IN parameters", F);
10686 end if;
10688 Next_Formal (F);
10689 end loop;
10691 -- Verify that user-defined operators have proper number of arguments
10692 -- First case of operators which can only be unary
10694 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
10695 N_OK := (N = 1);
10697 -- Case of operators which can be unary or binary
10699 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
10700 N_OK := (N in 1 .. 2);
10702 -- All other operators can only be binary
10704 else
10705 N_OK := (N = 2);
10706 end if;
10708 if not N_OK then
10709 Error_Msg_N
10710 ("incorrect number of arguments for operator", Designator);
10711 end if;
10713 if Id = Name_Op_Ne
10714 and then Base_Type (Etype (Designator)) = Standard_Boolean
10715 and then not Is_Intrinsic_Subprogram (Designator)
10716 then
10717 Error_Msg_N
10718 ("explicit definition of inequality not allowed", Designator);
10719 end if;
10720 end Valid_Operator_Definition;
10722 end Sem_Ch6;