2014-11-20 Robert Dewar <dewar@adacore.com>
[official-gcc.git] / gcc / ada / a-cimutr.adb
blob0d3f16455ee715cb7068ce22c31d4a338d85b6b9
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT LIBRARY COMPONENTS --
4 -- --
5 -- ADA.CONTAINERS.INDEFINITE_MULTIWAY_TREES --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2004-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- This unit was originally developed by Matthew J Heaney. --
28 ------------------------------------------------------------------------------
30 with Ada.Unchecked_Deallocation;
32 with System; use type System.Address;
34 package body Ada.Containers.Indefinite_Multiway_Trees is
36 --------------------
37 -- Root_Iterator --
38 --------------------
40 type Root_Iterator is abstract new Limited_Controlled and
41 Tree_Iterator_Interfaces.Forward_Iterator with
42 record
43 Container : Tree_Access;
44 Subtree : Tree_Node_Access;
45 end record;
47 overriding procedure Finalize (Object : in out Root_Iterator);
49 -----------------------
50 -- Subtree_Iterator --
51 -----------------------
53 type Subtree_Iterator is new Root_Iterator with null record;
55 overriding function First (Object : Subtree_Iterator) return Cursor;
57 overriding function Next
58 (Object : Subtree_Iterator;
59 Position : Cursor) return Cursor;
61 ---------------------
62 -- Child_Iterator --
63 ---------------------
65 type Child_Iterator is new Root_Iterator and
66 Tree_Iterator_Interfaces.Reversible_Iterator with null record;
68 overriding function First (Object : Child_Iterator) return Cursor;
70 overriding function Next
71 (Object : Child_Iterator;
72 Position : Cursor) return Cursor;
74 overriding function Last (Object : Child_Iterator) return Cursor;
76 overriding function Previous
77 (Object : Child_Iterator;
78 Position : Cursor) return Cursor;
80 -----------------------
81 -- Local Subprograms --
82 -----------------------
84 function Root_Node (Container : Tree) return Tree_Node_Access;
86 procedure Free_Element is
87 new Ada.Unchecked_Deallocation (Element_Type, Element_Access);
89 procedure Deallocate_Node (X : in out Tree_Node_Access);
91 procedure Deallocate_Children
92 (Subtree : Tree_Node_Access;
93 Count : in out Count_Type);
95 procedure Deallocate_Subtree
96 (Subtree : in out Tree_Node_Access;
97 Count : in out Count_Type);
99 function Equal_Children
100 (Left_Subtree, Right_Subtree : Tree_Node_Access) return Boolean;
102 function Equal_Subtree
103 (Left_Subtree, Right_Subtree : Tree_Node_Access) return Boolean;
105 procedure Iterate_Children
106 (Container : Tree_Access;
107 Subtree : Tree_Node_Access;
108 Process : not null access procedure (Position : Cursor));
110 procedure Iterate_Subtree
111 (Container : Tree_Access;
112 Subtree : Tree_Node_Access;
113 Process : not null access procedure (Position : Cursor));
115 procedure Copy_Children
116 (Source : Children_Type;
117 Parent : Tree_Node_Access;
118 Count : in out Count_Type);
120 procedure Copy_Subtree
121 (Source : Tree_Node_Access;
122 Parent : Tree_Node_Access;
123 Target : out Tree_Node_Access;
124 Count : in out Count_Type);
126 function Find_In_Children
127 (Subtree : Tree_Node_Access;
128 Item : Element_Type) return Tree_Node_Access;
130 function Find_In_Subtree
131 (Subtree : Tree_Node_Access;
132 Item : Element_Type) return Tree_Node_Access;
134 function Child_Count (Children : Children_Type) return Count_Type;
136 function Subtree_Node_Count
137 (Subtree : Tree_Node_Access) return Count_Type;
139 function Is_Reachable (From, To : Tree_Node_Access) return Boolean;
141 procedure Remove_Subtree (Subtree : Tree_Node_Access);
143 procedure Insert_Subtree_Node
144 (Subtree : Tree_Node_Access;
145 Parent : Tree_Node_Access;
146 Before : Tree_Node_Access);
148 procedure Insert_Subtree_List
149 (First : Tree_Node_Access;
150 Last : Tree_Node_Access;
151 Parent : Tree_Node_Access;
152 Before : Tree_Node_Access);
154 procedure Splice_Children
155 (Target_Parent : Tree_Node_Access;
156 Before : Tree_Node_Access;
157 Source_Parent : Tree_Node_Access);
159 ---------
160 -- "=" --
161 ---------
163 function "=" (Left, Right : Tree) return Boolean is
164 begin
165 if Left'Address = Right'Address then
166 return True;
167 end if;
169 return Equal_Children (Root_Node (Left), Root_Node (Right));
170 end "=";
172 ------------
173 -- Adjust --
174 ------------
176 procedure Adjust (Container : in out Tree) is
177 Source : constant Children_Type := Container.Root.Children;
178 Source_Count : constant Count_Type := Container.Count;
179 Target_Count : Count_Type;
181 begin
182 -- We first restore the target container to its default-initialized
183 -- state, before we attempt any allocation, to ensure that invariants
184 -- are preserved in the event that the allocation fails.
186 Container.Root.Children := Children_Type'(others => null);
187 Container.Busy := 0;
188 Container.Lock := 0;
189 Container.Count := 0;
191 -- Copy_Children returns a count of the number of nodes that it
192 -- allocates, but it works by incrementing the value that is passed in.
193 -- We must therefore initialize the count value before calling
194 -- Copy_Children.
196 Target_Count := 0;
198 -- Now we attempt the allocation of subtrees. The invariants are
199 -- satisfied even if the allocation fails.
201 Copy_Children (Source, Root_Node (Container), Target_Count);
202 pragma Assert (Target_Count = Source_Count);
204 Container.Count := Source_Count;
205 end Adjust;
207 procedure Adjust (Control : in out Reference_Control_Type) is
208 begin
209 if Control.Container /= null then
210 declare
211 C : Tree renames Control.Container.all;
212 B : Natural renames C.Busy;
213 L : Natural renames C.Lock;
214 begin
215 B := B + 1;
216 L := L + 1;
217 end;
218 end if;
219 end Adjust;
221 -------------------
222 -- Ancestor_Find --
223 -------------------
225 function Ancestor_Find
226 (Position : Cursor;
227 Item : Element_Type) return Cursor
229 R, N : Tree_Node_Access;
231 begin
232 if Position = No_Element then
233 raise Constraint_Error with "Position cursor has no element";
234 end if;
236 -- Commented-out pending ARG ruling. ???
238 -- if Position.Container /= Container'Unrestricted_Access then
239 -- raise Program_Error with "Position cursor not in container";
240 -- end if;
242 -- AI-0136 says to raise PE if Position equals the root node. This does
243 -- not seem correct, as this value is just the limiting condition of the
244 -- search. For now we omit this check pending a ruling from the ARG.???
246 -- if Is_Root (Position) then
247 -- raise Program_Error with "Position cursor designates root";
248 -- end if;
250 R := Root_Node (Position.Container.all);
251 N := Position.Node;
252 while N /= R loop
253 if N.Element.all = Item then
254 return Cursor'(Position.Container, N);
255 end if;
257 N := N.Parent;
258 end loop;
260 return No_Element;
261 end Ancestor_Find;
263 ------------------
264 -- Append_Child --
265 ------------------
267 procedure Append_Child
268 (Container : in out Tree;
269 Parent : Cursor;
270 New_Item : Element_Type;
271 Count : Count_Type := 1)
273 First, Last : Tree_Node_Access;
274 Element : Element_Access;
276 begin
277 if Parent = No_Element then
278 raise Constraint_Error with "Parent cursor has no element";
279 end if;
281 if Parent.Container /= Container'Unrestricted_Access then
282 raise Program_Error with "Parent cursor not in container";
283 end if;
285 if Count = 0 then
286 return;
287 end if;
289 if Container.Busy > 0 then
290 raise Program_Error
291 with "attempt to tamper with cursors (tree is busy)";
292 end if;
294 declare
295 -- The element allocator may need an accessibility check in the case
296 -- the actual type is class-wide or has access discriminants (see
297 -- RM 4.8(10.1) and AI12-0035). We don't unsuppress the check on the
298 -- allocator in the loop below, because the one in this block would
299 -- have failed already.
301 pragma Unsuppress (Accessibility_Check);
303 begin
304 Element := new Element_Type'(New_Item);
305 end;
307 First := new Tree_Node_Type'(Parent => Parent.Node,
308 Element => Element,
309 others => <>);
311 Last := First;
313 for J in Count_Type'(2) .. Count loop
315 -- Reclaim other nodes if Storage_Error. ???
317 Element := new Element_Type'(New_Item);
318 Last.Next := new Tree_Node_Type'(Parent => Parent.Node,
319 Prev => Last,
320 Element => Element,
321 others => <>);
323 Last := Last.Next;
324 end loop;
326 Insert_Subtree_List
327 (First => First,
328 Last => Last,
329 Parent => Parent.Node,
330 Before => null); -- null means "insert at end of list"
332 -- In order for operation Node_Count to complete in O(1) time, we cache
333 -- the count value. Here we increment the total count by the number of
334 -- nodes we just inserted.
336 Container.Count := Container.Count + Count;
337 end Append_Child;
339 ------------
340 -- Assign --
341 ------------
343 procedure Assign (Target : in out Tree; Source : Tree) is
344 Source_Count : constant Count_Type := Source.Count;
345 Target_Count : Count_Type;
347 begin
348 if Target'Address = Source'Address then
349 return;
350 end if;
352 Target.Clear; -- checks busy bit
354 -- Copy_Children returns the number of nodes that it allocates, but it
355 -- does this by incrementing the count value passed in, so we must
356 -- initialize the count before calling Copy_Children.
358 Target_Count := 0;
360 -- Note that Copy_Children inserts the newly-allocated children into
361 -- their parent list only after the allocation of all the children has
362 -- succeeded. This preserves invariants even if the allocation fails.
364 Copy_Children (Source.Root.Children, Root_Node (Target), Target_Count);
365 pragma Assert (Target_Count = Source_Count);
367 Target.Count := Source_Count;
368 end Assign;
370 -----------------
371 -- Child_Count --
372 -----------------
374 function Child_Count (Parent : Cursor) return Count_Type is
375 begin
376 if Parent = No_Element then
377 return 0;
378 else
379 return Child_Count (Parent.Node.Children);
380 end if;
381 end Child_Count;
383 function Child_Count (Children : Children_Type) return Count_Type is
384 Result : Count_Type;
385 Node : Tree_Node_Access;
387 begin
388 Result := 0;
389 Node := Children.First;
390 while Node /= null loop
391 Result := Result + 1;
392 Node := Node.Next;
393 end loop;
395 return Result;
396 end Child_Count;
398 -----------------
399 -- Child_Depth --
400 -----------------
402 function Child_Depth (Parent, Child : Cursor) return Count_Type is
403 Result : Count_Type;
404 N : Tree_Node_Access;
406 begin
407 if Parent = No_Element then
408 raise Constraint_Error with "Parent cursor has no element";
409 end if;
411 if Child = No_Element then
412 raise Constraint_Error with "Child cursor has no element";
413 end if;
415 if Parent.Container /= Child.Container then
416 raise Program_Error with "Parent and Child in different containers";
417 end if;
419 Result := 0;
420 N := Child.Node;
421 while N /= Parent.Node loop
422 Result := Result + 1;
423 N := N.Parent;
425 if N = null then
426 raise Program_Error with "Parent is not ancestor of Child";
427 end if;
428 end loop;
430 return Result;
431 end Child_Depth;
433 -----------
434 -- Clear --
435 -----------
437 procedure Clear (Container : in out Tree) is
438 Container_Count : Count_Type;
439 Children_Count : Count_Type;
441 begin
442 if Container.Busy > 0 then
443 raise Program_Error
444 with "attempt to tamper with cursors (tree is busy)";
445 end if;
447 -- We first set the container count to 0, in order to preserve
448 -- invariants in case the deallocation fails. (This works because
449 -- Deallocate_Children immediately removes the children from their
450 -- parent, and then does the actual deallocation.)
452 Container_Count := Container.Count;
453 Container.Count := 0;
455 -- Deallocate_Children returns the number of nodes that it deallocates,
456 -- but it does this by incrementing the count value that is passed in,
457 -- so we must first initialize the count return value before calling it.
459 Children_Count := 0;
461 -- See comment above. Deallocate_Children immediately removes the
462 -- children list from their parent node (here, the root of the tree),
463 -- and only after that does it attempt the actual deallocation. So even
464 -- if the deallocation fails, the representation invariants
466 Deallocate_Children (Root_Node (Container), Children_Count);
467 pragma Assert (Children_Count = Container_Count);
468 end Clear;
470 ------------------------
471 -- Constant_Reference --
472 ------------------------
474 function Constant_Reference
475 (Container : aliased Tree;
476 Position : Cursor) return Constant_Reference_Type
478 begin
479 if Position.Container = null then
480 raise Constraint_Error with
481 "Position cursor has no element";
482 end if;
484 if Position.Container /= Container'Unrestricted_Access then
485 raise Program_Error with
486 "Position cursor designates wrong container";
487 end if;
489 if Position.Node = Root_Node (Container) then
490 raise Program_Error with "Position cursor designates root";
491 end if;
493 if Position.Node.Element = null then
494 raise Program_Error with "Node has no element";
495 end if;
497 -- Implement Vet for multiway tree???
498 -- pragma Assert (Vet (Position),
499 -- "Position cursor in Constant_Reference is bad");
501 declare
502 C : Tree renames Position.Container.all;
503 B : Natural renames C.Busy;
504 L : Natural renames C.Lock;
505 begin
506 return R : constant Constant_Reference_Type :=
507 (Element => Position.Node.Element.all'Access,
508 Control => (Controlled with Container'Unrestricted_Access))
510 B := B + 1;
511 L := L + 1;
512 end return;
513 end;
514 end Constant_Reference;
516 --------------
517 -- Contains --
518 --------------
520 function Contains
521 (Container : Tree;
522 Item : Element_Type) return Boolean
524 begin
525 return Find (Container, Item) /= No_Element;
526 end Contains;
528 ----------
529 -- Copy --
530 ----------
532 function Copy (Source : Tree) return Tree is
533 begin
534 return Target : Tree do
535 Copy_Children
536 (Source => Source.Root.Children,
537 Parent => Root_Node (Target),
538 Count => Target.Count);
540 pragma Assert (Target.Count = Source.Count);
541 end return;
542 end Copy;
544 -------------------
545 -- Copy_Children --
546 -------------------
548 procedure Copy_Children
549 (Source : Children_Type;
550 Parent : Tree_Node_Access;
551 Count : in out Count_Type)
553 pragma Assert (Parent /= null);
554 pragma Assert (Parent.Children.First = null);
555 pragma Assert (Parent.Children.Last = null);
557 CC : Children_Type;
558 C : Tree_Node_Access;
560 begin
561 -- We special-case the first allocation, in order to establish the
562 -- representation invariants for type Children_Type.
564 C := Source.First;
566 if C = null then
567 return;
568 end if;
570 Copy_Subtree
571 (Source => C,
572 Parent => Parent,
573 Target => CC.First,
574 Count => Count);
576 CC.Last := CC.First;
578 -- The representation invariants for the Children_Type list have been
579 -- established, so we can now copy the remaining children of Source.
581 C := C.Next;
582 while C /= null loop
583 Copy_Subtree
584 (Source => C,
585 Parent => Parent,
586 Target => CC.Last.Next,
587 Count => Count);
589 CC.Last.Next.Prev := CC.Last;
590 CC.Last := CC.Last.Next;
592 C := C.Next;
593 end loop;
595 -- We add the newly-allocated children to their parent list only after
596 -- the allocation has succeeded, in order to preserve invariants of the
597 -- parent.
599 Parent.Children := CC;
600 end Copy_Children;
602 ------------------
603 -- Copy_Subtree --
604 ------------------
606 procedure Copy_Subtree
607 (Target : in out Tree;
608 Parent : Cursor;
609 Before : Cursor;
610 Source : Cursor)
612 Target_Subtree : Tree_Node_Access;
613 Target_Count : Count_Type;
615 begin
616 if Parent = No_Element then
617 raise Constraint_Error with "Parent cursor has no element";
618 end if;
620 if Parent.Container /= Target'Unrestricted_Access then
621 raise Program_Error with "Parent cursor not in container";
622 end if;
624 if Before /= No_Element then
625 if Before.Container /= Target'Unrestricted_Access then
626 raise Program_Error with "Before cursor not in container";
627 end if;
629 if Before.Node.Parent /= Parent.Node then
630 raise Constraint_Error with "Before cursor not child of Parent";
631 end if;
632 end if;
634 if Source = No_Element then
635 return;
636 end if;
638 if Is_Root (Source) then
639 raise Constraint_Error with "Source cursor designates root";
640 end if;
642 -- Copy_Subtree returns a count of the number of nodes that it
643 -- allocates, but it works by incrementing the value that is passed in.
644 -- We must therefore initialize the count value before calling
645 -- Copy_Subtree.
647 Target_Count := 0;
649 Copy_Subtree
650 (Source => Source.Node,
651 Parent => Parent.Node,
652 Target => Target_Subtree,
653 Count => Target_Count);
655 pragma Assert (Target_Subtree /= null);
656 pragma Assert (Target_Subtree.Parent = Parent.Node);
657 pragma Assert (Target_Count >= 1);
659 Insert_Subtree_Node
660 (Subtree => Target_Subtree,
661 Parent => Parent.Node,
662 Before => Before.Node);
664 -- In order for operation Node_Count to complete in O(1) time, we cache
665 -- the count value. Here we increment the total count by the number of
666 -- nodes we just inserted.
668 Target.Count := Target.Count + Target_Count;
669 end Copy_Subtree;
671 procedure Copy_Subtree
672 (Source : Tree_Node_Access;
673 Parent : Tree_Node_Access;
674 Target : out Tree_Node_Access;
675 Count : in out Count_Type)
677 E : constant Element_Access := new Element_Type'(Source.Element.all);
679 begin
680 Target := new Tree_Node_Type'(Element => E,
681 Parent => Parent,
682 others => <>);
684 Count := Count + 1;
686 Copy_Children
687 (Source => Source.Children,
688 Parent => Target,
689 Count => Count);
690 end Copy_Subtree;
692 -------------------------
693 -- Deallocate_Children --
694 -------------------------
696 procedure Deallocate_Children
697 (Subtree : Tree_Node_Access;
698 Count : in out Count_Type)
700 pragma Assert (Subtree /= null);
702 CC : Children_Type := Subtree.Children;
703 C : Tree_Node_Access;
705 begin
706 -- We immediately remove the children from their parent, in order to
707 -- preserve invariants in case the deallocation fails.
709 Subtree.Children := Children_Type'(others => null);
711 while CC.First /= null loop
712 C := CC.First;
713 CC.First := C.Next;
715 Deallocate_Subtree (C, Count);
716 end loop;
717 end Deallocate_Children;
719 ---------------------
720 -- Deallocate_Node --
721 ---------------------
723 procedure Deallocate_Node (X : in out Tree_Node_Access) is
724 procedure Free_Node is
725 new Ada.Unchecked_Deallocation (Tree_Node_Type, Tree_Node_Access);
727 -- Start of processing for Deallocate_Node
729 begin
730 if X /= null then
731 Free_Element (X.Element);
732 Free_Node (X);
733 end if;
734 end Deallocate_Node;
736 ------------------------
737 -- Deallocate_Subtree --
738 ------------------------
740 procedure Deallocate_Subtree
741 (Subtree : in out Tree_Node_Access;
742 Count : in out Count_Type)
744 begin
745 Deallocate_Children (Subtree, Count);
746 Deallocate_Node (Subtree);
747 Count := Count + 1;
748 end Deallocate_Subtree;
750 ---------------------
751 -- Delete_Children --
752 ---------------------
754 procedure Delete_Children
755 (Container : in out Tree;
756 Parent : Cursor)
758 Count : Count_Type;
760 begin
761 if Parent = No_Element then
762 raise Constraint_Error with "Parent cursor has no element";
763 end if;
765 if Parent.Container /= Container'Unrestricted_Access then
766 raise Program_Error with "Parent cursor not in container";
767 end if;
769 if Container.Busy > 0 then
770 raise Program_Error
771 with "attempt to tamper with cursors (tree is busy)";
772 end if;
774 -- Deallocate_Children returns a count of the number of nodes
775 -- that it deallocates, but it works by incrementing the
776 -- value that is passed in. We must therefore initialize
777 -- the count value before calling Deallocate_Children.
779 Count := 0;
781 Deallocate_Children (Parent.Node, Count);
782 pragma Assert (Count <= Container.Count);
784 Container.Count := Container.Count - Count;
785 end Delete_Children;
787 -----------------
788 -- Delete_Leaf --
789 -----------------
791 procedure Delete_Leaf
792 (Container : in out Tree;
793 Position : in out Cursor)
795 X : Tree_Node_Access;
797 begin
798 if Position = No_Element then
799 raise Constraint_Error with "Position cursor has no element";
800 end if;
802 if Position.Container /= Container'Unrestricted_Access then
803 raise Program_Error with "Position cursor not in container";
804 end if;
806 if Is_Root (Position) then
807 raise Program_Error with "Position cursor designates root";
808 end if;
810 if not Is_Leaf (Position) then
811 raise Constraint_Error with "Position cursor does not designate leaf";
812 end if;
814 if Container.Busy > 0 then
815 raise Program_Error
816 with "attempt to tamper with cursors (tree is busy)";
817 end if;
819 X := Position.Node;
820 Position := No_Element;
822 -- Restore represention invariants before attempting the actual
823 -- deallocation.
825 Remove_Subtree (X);
826 Container.Count := Container.Count - 1;
828 -- It is now safe to attempt the deallocation. This leaf node has been
829 -- disassociated from the tree, so even if the deallocation fails,
830 -- representation invariants will remain satisfied.
832 Deallocate_Node (X);
833 end Delete_Leaf;
835 --------------------
836 -- Delete_Subtree --
837 --------------------
839 procedure Delete_Subtree
840 (Container : in out Tree;
841 Position : in out Cursor)
843 X : Tree_Node_Access;
844 Count : Count_Type;
846 begin
847 if Position = No_Element then
848 raise Constraint_Error with "Position cursor has no element";
849 end if;
851 if Position.Container /= Container'Unrestricted_Access then
852 raise Program_Error with "Position cursor not in container";
853 end if;
855 if Is_Root (Position) then
856 raise Program_Error with "Position cursor designates root";
857 end if;
859 if Container.Busy > 0 then
860 raise Program_Error
861 with "attempt to tamper with cursors (tree is busy)";
862 end if;
864 X := Position.Node;
865 Position := No_Element;
867 -- Here is one case where a deallocation failure can result in the
868 -- violation of a representation invariant. We disassociate the subtree
869 -- from the tree now, but we only decrement the total node count after
870 -- we attempt the deallocation. However, if the deallocation fails, the
871 -- total node count will not get decremented.
873 -- One way around this dilemma is to count the nodes in the subtree
874 -- before attempt to delete the subtree, but that is an O(n) operation,
875 -- so it does not seem worth it.
877 -- Perhaps this is much ado about nothing, since the only way
878 -- deallocation can fail is if Controlled Finalization fails: this
879 -- propagates Program_Error so all bets are off anyway. ???
881 Remove_Subtree (X);
883 -- Deallocate_Subtree returns a count of the number of nodes that it
884 -- deallocates, but it works by incrementing the value that is passed
885 -- in. We must therefore initialize the count value before calling
886 -- Deallocate_Subtree.
888 Count := 0;
890 Deallocate_Subtree (X, Count);
891 pragma Assert (Count <= Container.Count);
893 -- See comments above. We would prefer to do this sooner, but there's no
894 -- way to satisfy that goal without an potentially severe execution
895 -- penalty.
897 Container.Count := Container.Count - Count;
898 end Delete_Subtree;
900 -----------
901 -- Depth --
902 -----------
904 function Depth (Position : Cursor) return Count_Type is
905 Result : Count_Type;
906 N : Tree_Node_Access;
908 begin
909 Result := 0;
910 N := Position.Node;
911 while N /= null loop
912 N := N.Parent;
913 Result := Result + 1;
914 end loop;
916 return Result;
917 end Depth;
919 -------------
920 -- Element --
921 -------------
923 function Element (Position : Cursor) return Element_Type is
924 begin
925 if Position.Container = null then
926 raise Constraint_Error with "Position cursor has no element";
927 end if;
929 if Position.Node = Root_Node (Position.Container.all) then
930 raise Program_Error with "Position cursor designates root";
931 end if;
933 return Position.Node.Element.all;
934 end Element;
936 --------------------
937 -- Equal_Children --
938 --------------------
940 function Equal_Children
941 (Left_Subtree : Tree_Node_Access;
942 Right_Subtree : Tree_Node_Access) return Boolean
944 Left_Children : Children_Type renames Left_Subtree.Children;
945 Right_Children : Children_Type renames Right_Subtree.Children;
947 L, R : Tree_Node_Access;
949 begin
950 if Child_Count (Left_Children) /= Child_Count (Right_Children) then
951 return False;
952 end if;
954 L := Left_Children.First;
955 R := Right_Children.First;
956 while L /= null loop
957 if not Equal_Subtree (L, R) then
958 return False;
959 end if;
961 L := L.Next;
962 R := R.Next;
963 end loop;
965 return True;
966 end Equal_Children;
968 -------------------
969 -- Equal_Subtree --
970 -------------------
972 function Equal_Subtree
973 (Left_Position : Cursor;
974 Right_Position : Cursor) return Boolean
976 begin
977 if Left_Position = No_Element then
978 raise Constraint_Error with "Left cursor has no element";
979 end if;
981 if Right_Position = No_Element then
982 raise Constraint_Error with "Right cursor has no element";
983 end if;
985 if Left_Position = Right_Position then
986 return True;
987 end if;
989 if Is_Root (Left_Position) then
990 if not Is_Root (Right_Position) then
991 return False;
992 end if;
994 return Equal_Children (Left_Position.Node, Right_Position.Node);
995 end if;
997 if Is_Root (Right_Position) then
998 return False;
999 end if;
1001 return Equal_Subtree (Left_Position.Node, Right_Position.Node);
1002 end Equal_Subtree;
1004 function Equal_Subtree
1005 (Left_Subtree : Tree_Node_Access;
1006 Right_Subtree : Tree_Node_Access) return Boolean
1008 begin
1009 if Left_Subtree.Element.all /= Right_Subtree.Element.all then
1010 return False;
1011 end if;
1013 return Equal_Children (Left_Subtree, Right_Subtree);
1014 end Equal_Subtree;
1016 --------------
1017 -- Finalize --
1018 --------------
1020 procedure Finalize (Object : in out Root_Iterator) is
1021 B : Natural renames Object.Container.Busy;
1022 begin
1023 B := B - 1;
1024 end Finalize;
1026 procedure Finalize (Control : in out Reference_Control_Type) is
1027 begin
1028 if Control.Container /= null then
1029 declare
1030 C : Tree renames Control.Container.all;
1031 B : Natural renames C.Busy;
1032 L : Natural renames C.Lock;
1033 begin
1034 B := B - 1;
1035 L := L - 1;
1036 end;
1038 Control.Container := null;
1039 end if;
1040 end Finalize;
1042 ----------
1043 -- Find --
1044 ----------
1046 function Find
1047 (Container : Tree;
1048 Item : Element_Type) return Cursor
1050 N : constant Tree_Node_Access :=
1051 Find_In_Children (Root_Node (Container), Item);
1053 begin
1054 if N = null then
1055 return No_Element;
1056 end if;
1058 return Cursor'(Container'Unrestricted_Access, N);
1059 end Find;
1061 -----------
1062 -- First --
1063 -----------
1065 overriding function First (Object : Subtree_Iterator) return Cursor is
1066 begin
1067 if Object.Subtree = Root_Node (Object.Container.all) then
1068 return First_Child (Root (Object.Container.all));
1069 else
1070 return Cursor'(Object.Container, Object.Subtree);
1071 end if;
1072 end First;
1074 overriding function First (Object : Child_Iterator) return Cursor is
1075 begin
1076 return First_Child (Cursor'(Object.Container, Object.Subtree));
1077 end First;
1079 -----------------
1080 -- First_Child --
1081 -----------------
1083 function First_Child (Parent : Cursor) return Cursor is
1084 Node : Tree_Node_Access;
1086 begin
1087 if Parent = No_Element then
1088 raise Constraint_Error with "Parent cursor has no element";
1089 end if;
1091 Node := Parent.Node.Children.First;
1093 if Node = null then
1094 return No_Element;
1095 end if;
1097 return Cursor'(Parent.Container, Node);
1098 end First_Child;
1100 -------------------------
1101 -- First_Child_Element --
1102 -------------------------
1104 function First_Child_Element (Parent : Cursor) return Element_Type is
1105 begin
1106 return Element (First_Child (Parent));
1107 end First_Child_Element;
1109 ----------------------
1110 -- Find_In_Children --
1111 ----------------------
1113 function Find_In_Children
1114 (Subtree : Tree_Node_Access;
1115 Item : Element_Type) return Tree_Node_Access
1117 N, Result : Tree_Node_Access;
1119 begin
1120 N := Subtree.Children.First;
1121 while N /= null loop
1122 Result := Find_In_Subtree (N, Item);
1124 if Result /= null then
1125 return Result;
1126 end if;
1128 N := N.Next;
1129 end loop;
1131 return null;
1132 end Find_In_Children;
1134 ---------------------
1135 -- Find_In_Subtree --
1136 ---------------------
1138 function Find_In_Subtree
1139 (Position : Cursor;
1140 Item : Element_Type) return Cursor
1142 Result : Tree_Node_Access;
1144 begin
1145 if Position = No_Element then
1146 raise Constraint_Error with "Position cursor has no element";
1147 end if;
1149 -- Commented-out pending ruling from ARG. ???
1151 -- if Position.Container /= Container'Unrestricted_Access then
1152 -- raise Program_Error with "Position cursor not in container";
1153 -- end if;
1155 if Is_Root (Position) then
1156 Result := Find_In_Children (Position.Node, Item);
1158 else
1159 Result := Find_In_Subtree (Position.Node, Item);
1160 end if;
1162 if Result = null then
1163 return No_Element;
1164 end if;
1166 return Cursor'(Position.Container, Result);
1167 end Find_In_Subtree;
1169 function Find_In_Subtree
1170 (Subtree : Tree_Node_Access;
1171 Item : Element_Type) return Tree_Node_Access
1173 begin
1174 if Subtree.Element.all = Item then
1175 return Subtree;
1176 end if;
1178 return Find_In_Children (Subtree, Item);
1179 end Find_In_Subtree;
1181 -----------------
1182 -- Has_Element --
1183 -----------------
1185 function Has_Element (Position : Cursor) return Boolean is
1186 begin
1187 if Position = No_Element then
1188 return False;
1189 end if;
1191 return Position.Node.Parent /= null;
1192 end Has_Element;
1194 ------------------
1195 -- Insert_Child --
1196 ------------------
1198 procedure Insert_Child
1199 (Container : in out Tree;
1200 Parent : Cursor;
1201 Before : Cursor;
1202 New_Item : Element_Type;
1203 Count : Count_Type := 1)
1205 Position : Cursor;
1206 pragma Unreferenced (Position);
1208 begin
1209 Insert_Child (Container, Parent, Before, New_Item, Position, Count);
1210 end Insert_Child;
1212 procedure Insert_Child
1213 (Container : in out Tree;
1214 Parent : Cursor;
1215 Before : Cursor;
1216 New_Item : Element_Type;
1217 Position : out Cursor;
1218 Count : Count_Type := 1)
1220 First : Tree_Node_Access;
1221 Last : Tree_Node_Access;
1222 Element : Element_Access;
1224 begin
1225 if Parent = No_Element then
1226 raise Constraint_Error with "Parent cursor has no element";
1227 end if;
1229 if Parent.Container /= Container'Unrestricted_Access then
1230 raise Program_Error with "Parent cursor not in container";
1231 end if;
1233 if Before /= No_Element then
1234 if Before.Container /= Container'Unrestricted_Access then
1235 raise Program_Error with "Before cursor not in container";
1236 end if;
1238 if Before.Node.Parent /= Parent.Node then
1239 raise Constraint_Error with "Parent cursor not parent of Before";
1240 end if;
1241 end if;
1243 if Count = 0 then
1244 Position := No_Element; -- Need ruling from ARG ???
1245 return;
1246 end if;
1248 if Container.Busy > 0 then
1249 raise Program_Error
1250 with "attempt to tamper with cursors (tree is busy)";
1251 end if;
1253 declare
1254 -- The element allocator may need an accessibility check in the case
1255 -- the actual type is class-wide or has access discriminants (see
1256 -- RM 4.8(10.1) and AI12-0035). We don't unsuppress the check on the
1257 -- allocator in the loop below, because the one in this block would
1258 -- have failed already.
1260 pragma Unsuppress (Accessibility_Check);
1262 begin
1263 Element := new Element_Type'(New_Item);
1264 end;
1266 First := new Tree_Node_Type'(Parent => Parent.Node,
1267 Element => Element,
1268 others => <>);
1270 Last := First;
1271 for J in Count_Type'(2) .. Count loop
1273 -- Reclaim other nodes if Storage_Error. ???
1275 Element := new Element_Type'(New_Item);
1276 Last.Next := new Tree_Node_Type'(Parent => Parent.Node,
1277 Prev => Last,
1278 Element => Element,
1279 others => <>);
1281 Last := Last.Next;
1282 end loop;
1284 Insert_Subtree_List
1285 (First => First,
1286 Last => Last,
1287 Parent => Parent.Node,
1288 Before => Before.Node);
1290 -- In order for operation Node_Count to complete in O(1) time, we cache
1291 -- the count value. Here we increment the total count by the number of
1292 -- nodes we just inserted.
1294 Container.Count := Container.Count + Count;
1296 Position := Cursor'(Parent.Container, First);
1297 end Insert_Child;
1299 -------------------------
1300 -- Insert_Subtree_List --
1301 -------------------------
1303 procedure Insert_Subtree_List
1304 (First : Tree_Node_Access;
1305 Last : Tree_Node_Access;
1306 Parent : Tree_Node_Access;
1307 Before : Tree_Node_Access)
1309 pragma Assert (Parent /= null);
1310 C : Children_Type renames Parent.Children;
1312 begin
1313 -- This is a simple utility operation to insert a list of nodes (from
1314 -- First..Last) as children of Parent. The Before node specifies where
1315 -- the new children should be inserted relative to the existing
1316 -- children.
1318 if First = null then
1319 pragma Assert (Last = null);
1320 return;
1321 end if;
1323 pragma Assert (Last /= null);
1324 pragma Assert (Before = null or else Before.Parent = Parent);
1326 if C.First = null then
1327 C.First := First;
1328 C.First.Prev := null;
1329 C.Last := Last;
1330 C.Last.Next := null;
1332 elsif Before = null then -- means "insert after existing nodes"
1333 C.Last.Next := First;
1334 First.Prev := C.Last;
1335 C.Last := Last;
1336 C.Last.Next := null;
1338 elsif Before = C.First then
1339 Last.Next := C.First;
1340 C.First.Prev := Last;
1341 C.First := First;
1342 C.First.Prev := null;
1344 else
1345 Before.Prev.Next := First;
1346 First.Prev := Before.Prev;
1347 Last.Next := Before;
1348 Before.Prev := Last;
1349 end if;
1350 end Insert_Subtree_List;
1352 -------------------------
1353 -- Insert_Subtree_Node --
1354 -------------------------
1356 procedure Insert_Subtree_Node
1357 (Subtree : Tree_Node_Access;
1358 Parent : Tree_Node_Access;
1359 Before : Tree_Node_Access)
1361 begin
1362 -- This is a simple wrapper operation to insert a single child into the
1363 -- Parent's children list.
1365 Insert_Subtree_List
1366 (First => Subtree,
1367 Last => Subtree,
1368 Parent => Parent,
1369 Before => Before);
1370 end Insert_Subtree_Node;
1372 --------------
1373 -- Is_Empty --
1374 --------------
1376 function Is_Empty (Container : Tree) return Boolean is
1377 begin
1378 return Container.Root.Children.First = null;
1379 end Is_Empty;
1381 -------------
1382 -- Is_Leaf --
1383 -------------
1385 function Is_Leaf (Position : Cursor) return Boolean is
1386 begin
1387 if Position = No_Element then
1388 return False;
1389 end if;
1391 return Position.Node.Children.First = null;
1392 end Is_Leaf;
1394 ------------------
1395 -- Is_Reachable --
1396 ------------------
1398 function Is_Reachable (From, To : Tree_Node_Access) return Boolean is
1399 pragma Assert (From /= null);
1400 pragma Assert (To /= null);
1402 N : Tree_Node_Access;
1404 begin
1405 N := From;
1406 while N /= null loop
1407 if N = To then
1408 return True;
1409 end if;
1411 N := N.Parent;
1412 end loop;
1414 return False;
1415 end Is_Reachable;
1417 -------------
1418 -- Is_Root --
1419 -------------
1421 function Is_Root (Position : Cursor) return Boolean is
1422 begin
1423 if Position.Container = null then
1424 return False;
1425 end if;
1427 return Position = Root (Position.Container.all);
1428 end Is_Root;
1430 -------------
1431 -- Iterate --
1432 -------------
1434 procedure Iterate
1435 (Container : Tree;
1436 Process : not null access procedure (Position : Cursor))
1438 B : Natural renames Container'Unrestricted_Access.all.Busy;
1440 begin
1441 B := B + 1;
1443 Iterate_Children
1444 (Container => Container'Unrestricted_Access,
1445 Subtree => Root_Node (Container),
1446 Process => Process);
1448 B := B - 1;
1450 exception
1451 when others =>
1452 B := B - 1;
1453 raise;
1454 end Iterate;
1456 function Iterate (Container : Tree)
1457 return Tree_Iterator_Interfaces.Forward_Iterator'Class
1459 begin
1460 return Iterate_Subtree (Root (Container));
1461 end Iterate;
1463 ----------------------
1464 -- Iterate_Children --
1465 ----------------------
1467 procedure Iterate_Children
1468 (Parent : Cursor;
1469 Process : not null access procedure (Position : Cursor))
1471 begin
1472 if Parent = No_Element then
1473 raise Constraint_Error with "Parent cursor has no element";
1474 end if;
1476 declare
1477 B : Natural renames Parent.Container.Busy;
1478 C : Tree_Node_Access;
1480 begin
1481 B := B + 1;
1483 C := Parent.Node.Children.First;
1484 while C /= null loop
1485 Process (Position => Cursor'(Parent.Container, Node => C));
1486 C := C.Next;
1487 end loop;
1489 B := B - 1;
1491 exception
1492 when others =>
1493 B := B - 1;
1494 raise;
1495 end;
1496 end Iterate_Children;
1498 procedure Iterate_Children
1499 (Container : Tree_Access;
1500 Subtree : Tree_Node_Access;
1501 Process : not null access procedure (Position : Cursor))
1503 Node : Tree_Node_Access;
1505 begin
1506 -- This is a helper function to recursively iterate over all the nodes
1507 -- in a subtree, in depth-first fashion. This particular helper just
1508 -- visits the children of this subtree, not the root of the subtree node
1509 -- itself. This is useful when starting from the ultimate root of the
1510 -- entire tree (see Iterate), as that root does not have an element.
1512 Node := Subtree.Children.First;
1513 while Node /= null loop
1514 Iterate_Subtree (Container, Node, Process);
1515 Node := Node.Next;
1516 end loop;
1517 end Iterate_Children;
1519 function Iterate_Children
1520 (Container : Tree;
1521 Parent : Cursor)
1522 return Tree_Iterator_Interfaces.Reversible_Iterator'Class
1524 C : constant Tree_Access := Container'Unrestricted_Access;
1525 B : Natural renames C.Busy;
1527 begin
1528 if Parent = No_Element then
1529 raise Constraint_Error with "Parent cursor has no element";
1530 end if;
1532 if Parent.Container /= C then
1533 raise Program_Error with "Parent cursor not in container";
1534 end if;
1536 return It : constant Child_Iterator :=
1537 Child_Iterator'(Limited_Controlled with
1538 Container => C,
1539 Subtree => Parent.Node)
1541 B := B + 1;
1542 end return;
1543 end Iterate_Children;
1545 ---------------------
1546 -- Iterate_Subtree --
1547 ---------------------
1549 function Iterate_Subtree
1550 (Position : Cursor)
1551 return Tree_Iterator_Interfaces.Forward_Iterator'Class
1553 begin
1554 if Position = No_Element then
1555 raise Constraint_Error with "Position cursor has no element";
1556 end if;
1558 -- Implement Vet for multiway trees???
1559 -- pragma Assert (Vet (Position), "bad subtree cursor");
1561 declare
1562 B : Natural renames Position.Container.Busy;
1563 begin
1564 return It : constant Subtree_Iterator :=
1565 (Limited_Controlled with
1566 Container => Position.Container,
1567 Subtree => Position.Node)
1569 B := B + 1;
1570 end return;
1571 end;
1572 end Iterate_Subtree;
1574 procedure Iterate_Subtree
1575 (Position : Cursor;
1576 Process : not null access procedure (Position : Cursor))
1578 begin
1579 if Position = No_Element then
1580 raise Constraint_Error with "Position cursor has no element";
1581 end if;
1583 declare
1584 B : Natural renames Position.Container.Busy;
1586 begin
1587 B := B + 1;
1589 if Is_Root (Position) then
1590 Iterate_Children (Position.Container, Position.Node, Process);
1591 else
1592 Iterate_Subtree (Position.Container, Position.Node, Process);
1593 end if;
1595 B := B - 1;
1597 exception
1598 when others =>
1599 B := B - 1;
1600 raise;
1601 end;
1602 end Iterate_Subtree;
1604 procedure Iterate_Subtree
1605 (Container : Tree_Access;
1606 Subtree : Tree_Node_Access;
1607 Process : not null access procedure (Position : Cursor))
1609 begin
1610 -- This is a helper function to recursively iterate over all the nodes
1611 -- in a subtree, in depth-first fashion. It first visits the root of the
1612 -- subtree, then visits its children.
1614 Process (Cursor'(Container, Subtree));
1615 Iterate_Children (Container, Subtree, Process);
1616 end Iterate_Subtree;
1618 ----------
1619 -- Last --
1620 ----------
1622 overriding function Last (Object : Child_Iterator) return Cursor is
1623 begin
1624 return Last_Child (Cursor'(Object.Container, Object.Subtree));
1625 end Last;
1627 ----------------
1628 -- Last_Child --
1629 ----------------
1631 function Last_Child (Parent : Cursor) return Cursor is
1632 Node : Tree_Node_Access;
1634 begin
1635 if Parent = No_Element then
1636 raise Constraint_Error with "Parent cursor has no element";
1637 end if;
1639 Node := Parent.Node.Children.Last;
1641 if Node = null then
1642 return No_Element;
1643 end if;
1645 return (Parent.Container, Node);
1646 end Last_Child;
1648 ------------------------
1649 -- Last_Child_Element --
1650 ------------------------
1652 function Last_Child_Element (Parent : Cursor) return Element_Type is
1653 begin
1654 return Element (Last_Child (Parent));
1655 end Last_Child_Element;
1657 ----------
1658 -- Move --
1659 ----------
1661 procedure Move (Target : in out Tree; Source : in out Tree) is
1662 Node : Tree_Node_Access;
1664 begin
1665 if Target'Address = Source'Address then
1666 return;
1667 end if;
1669 if Source.Busy > 0 then
1670 raise Program_Error
1671 with "attempt to tamper with cursors of Source (tree is busy)";
1672 end if;
1674 Target.Clear; -- checks busy bit
1676 Target.Root.Children := Source.Root.Children;
1677 Source.Root.Children := Children_Type'(others => null);
1679 Node := Target.Root.Children.First;
1680 while Node /= null loop
1681 Node.Parent := Root_Node (Target);
1682 Node := Node.Next;
1683 end loop;
1685 Target.Count := Source.Count;
1686 Source.Count := 0;
1687 end Move;
1689 ----------
1690 -- Next --
1691 ----------
1693 function Next
1694 (Object : Subtree_Iterator;
1695 Position : Cursor) return Cursor
1697 Node : Tree_Node_Access;
1699 begin
1700 if Position.Container = null then
1701 return No_Element;
1702 end if;
1704 if Position.Container /= Object.Container then
1705 raise Program_Error with
1706 "Position cursor of Next designates wrong tree";
1707 end if;
1709 Node := Position.Node;
1711 if Node.Children.First /= null then
1712 return Cursor'(Object.Container, Node.Children.First);
1713 end if;
1715 while Node /= Object.Subtree loop
1716 if Node.Next /= null then
1717 return Cursor'(Object.Container, Node.Next);
1718 end if;
1720 Node := Node.Parent;
1721 end loop;
1723 return No_Element;
1724 end Next;
1726 function Next
1727 (Object : Child_Iterator;
1728 Position : Cursor) return Cursor
1730 begin
1731 if Position.Container = null then
1732 return No_Element;
1733 end if;
1735 if Position.Container /= Object.Container then
1736 raise Program_Error with
1737 "Position cursor of Next designates wrong tree";
1738 end if;
1740 return Next_Sibling (Position);
1741 end Next;
1743 ------------------
1744 -- Next_Sibling --
1745 ------------------
1747 function Next_Sibling (Position : Cursor) return Cursor is
1748 begin
1749 if Position = No_Element then
1750 return No_Element;
1751 end if;
1753 if Position.Node.Next = null then
1754 return No_Element;
1755 end if;
1757 return Cursor'(Position.Container, Position.Node.Next);
1758 end Next_Sibling;
1760 procedure Next_Sibling (Position : in out Cursor) is
1761 begin
1762 Position := Next_Sibling (Position);
1763 end Next_Sibling;
1765 ----------------
1766 -- Node_Count --
1767 ----------------
1769 function Node_Count (Container : Tree) return Count_Type is
1770 begin
1771 -- Container.Count is the number of nodes we have actually allocated. We
1772 -- cache the value specifically so this Node_Count operation can execute
1773 -- in O(1) time, which makes it behave similarly to how the Length
1774 -- selector function behaves for other containers.
1776 -- The cached node count value only describes the nodes we have
1777 -- allocated; the root node itself is not included in that count. The
1778 -- Node_Count operation returns a value that includes the root node
1779 -- (because the RM says so), so we must add 1 to our cached value.
1781 return 1 + Container.Count;
1782 end Node_Count;
1784 ------------
1785 -- Parent --
1786 ------------
1788 function Parent (Position : Cursor) return Cursor is
1789 begin
1790 if Position = No_Element then
1791 return No_Element;
1792 end if;
1794 if Position.Node.Parent = null then
1795 return No_Element;
1796 end if;
1798 return Cursor'(Position.Container, Position.Node.Parent);
1799 end Parent;
1801 -------------------
1802 -- Prepent_Child --
1803 -------------------
1805 procedure Prepend_Child
1806 (Container : in out Tree;
1807 Parent : Cursor;
1808 New_Item : Element_Type;
1809 Count : Count_Type := 1)
1811 First, Last : Tree_Node_Access;
1812 Element : Element_Access;
1814 begin
1815 if Parent = No_Element then
1816 raise Constraint_Error with "Parent cursor has no element";
1817 end if;
1819 if Parent.Container /= Container'Unrestricted_Access then
1820 raise Program_Error with "Parent cursor not in container";
1821 end if;
1823 if Count = 0 then
1824 return;
1825 end if;
1827 if Container.Busy > 0 then
1828 raise Program_Error
1829 with "attempt to tamper with cursors (tree is busy)";
1830 end if;
1832 declare
1833 -- The element allocator may need an accessibility check in the case
1834 -- the actual type is class-wide or has access discriminants (see
1835 -- RM 4.8(10.1) and AI12-0035). We don't unsuppress the check on the
1836 -- allocator in the loop below, because the one in this block would
1837 -- have failed already.
1839 pragma Unsuppress (Accessibility_Check);
1841 begin
1842 Element := new Element_Type'(New_Item);
1843 end;
1845 First := new Tree_Node_Type'(Parent => Parent.Node,
1846 Element => Element,
1847 others => <>);
1849 Last := First;
1851 for J in Count_Type'(2) .. Count loop
1853 -- Reclaim other nodes if Storage_Error. ???
1855 Element := new Element_Type'(New_Item);
1856 Last.Next := new Tree_Node_Type'(Parent => Parent.Node,
1857 Prev => Last,
1858 Element => Element,
1859 others => <>);
1861 Last := Last.Next;
1862 end loop;
1864 Insert_Subtree_List
1865 (First => First,
1866 Last => Last,
1867 Parent => Parent.Node,
1868 Before => Parent.Node.Children.First);
1870 -- In order for operation Node_Count to complete in O(1) time, we cache
1871 -- the count value. Here we increment the total count by the number of
1872 -- nodes we just inserted.
1874 Container.Count := Container.Count + Count;
1875 end Prepend_Child;
1877 --------------
1878 -- Previous --
1879 --------------
1881 overriding function Previous
1882 (Object : Child_Iterator;
1883 Position : Cursor) return Cursor
1885 begin
1886 if Position.Container = null then
1887 return No_Element;
1888 end if;
1890 if Position.Container /= Object.Container then
1891 raise Program_Error with
1892 "Position cursor of Previous designates wrong tree";
1893 end if;
1895 return Previous_Sibling (Position);
1896 end Previous;
1898 ----------------------
1899 -- Previous_Sibling --
1900 ----------------------
1902 function Previous_Sibling (Position : Cursor) return Cursor is
1903 begin
1904 if Position = No_Element then
1905 return No_Element;
1906 end if;
1908 if Position.Node.Prev = null then
1909 return No_Element;
1910 end if;
1912 return Cursor'(Position.Container, Position.Node.Prev);
1913 end Previous_Sibling;
1915 procedure Previous_Sibling (Position : in out Cursor) is
1916 begin
1917 Position := Previous_Sibling (Position);
1918 end Previous_Sibling;
1920 -------------------
1921 -- Query_Element --
1922 -------------------
1924 procedure Query_Element
1925 (Position : Cursor;
1926 Process : not null access procedure (Element : Element_Type))
1928 begin
1929 if Position = No_Element then
1930 raise Constraint_Error with "Position cursor has no element";
1931 end if;
1933 if Is_Root (Position) then
1934 raise Program_Error with "Position cursor designates root";
1935 end if;
1937 declare
1938 T : Tree renames Position.Container.all'Unrestricted_Access.all;
1939 B : Natural renames T.Busy;
1940 L : Natural renames T.Lock;
1942 begin
1943 B := B + 1;
1944 L := L + 1;
1946 Process (Position.Node.Element.all);
1948 L := L - 1;
1949 B := B - 1;
1951 exception
1952 when others =>
1953 L := L - 1;
1954 B := B - 1;
1955 raise;
1956 end;
1957 end Query_Element;
1959 ----------
1960 -- Read --
1961 ----------
1963 procedure Read
1964 (Stream : not null access Root_Stream_Type'Class;
1965 Container : out Tree)
1967 procedure Read_Children (Subtree : Tree_Node_Access);
1969 function Read_Subtree
1970 (Parent : Tree_Node_Access) return Tree_Node_Access;
1972 Total_Count : Count_Type'Base;
1973 -- Value read from the stream that says how many elements follow
1975 Read_Count : Count_Type'Base;
1976 -- Actual number of elements read from the stream
1978 -------------------
1979 -- Read_Children --
1980 -------------------
1982 procedure Read_Children (Subtree : Tree_Node_Access) is
1983 pragma Assert (Subtree /= null);
1984 pragma Assert (Subtree.Children.First = null);
1985 pragma Assert (Subtree.Children.Last = null);
1987 Count : Count_Type'Base;
1988 -- Number of child subtrees
1990 C : Children_Type;
1992 begin
1993 Count_Type'Read (Stream, Count);
1995 if Count < 0 then
1996 raise Program_Error with "attempt to read from corrupt stream";
1997 end if;
1999 if Count = 0 then
2000 return;
2001 end if;
2003 C.First := Read_Subtree (Parent => Subtree);
2004 C.Last := C.First;
2006 for J in Count_Type'(2) .. Count loop
2007 C.Last.Next := Read_Subtree (Parent => Subtree);
2008 C.Last.Next.Prev := C.Last;
2009 C.Last := C.Last.Next;
2010 end loop;
2012 -- Now that the allocation and reads have completed successfully, it
2013 -- is safe to link the children to their parent.
2015 Subtree.Children := C;
2016 end Read_Children;
2018 ------------------
2019 -- Read_Subtree --
2020 ------------------
2022 function Read_Subtree
2023 (Parent : Tree_Node_Access) return Tree_Node_Access
2025 Element : constant Element_Access :=
2026 new Element_Type'(Element_Type'Input (Stream));
2028 Subtree : constant Tree_Node_Access :=
2029 new Tree_Node_Type'
2030 (Parent => Parent, Element => Element, others => <>);
2032 begin
2033 Read_Count := Read_Count + 1;
2035 Read_Children (Subtree);
2037 return Subtree;
2038 end Read_Subtree;
2040 -- Start of processing for Read
2042 begin
2043 Container.Clear; -- checks busy bit
2045 Count_Type'Read (Stream, Total_Count);
2047 if Total_Count < 0 then
2048 raise Program_Error with "attempt to read from corrupt stream";
2049 end if;
2051 if Total_Count = 0 then
2052 return;
2053 end if;
2055 Read_Count := 0;
2057 Read_Children (Root_Node (Container));
2059 if Read_Count /= Total_Count then
2060 raise Program_Error with "attempt to read from corrupt stream";
2061 end if;
2063 Container.Count := Total_Count;
2064 end Read;
2066 procedure Read
2067 (Stream : not null access Root_Stream_Type'Class;
2068 Position : out Cursor)
2070 begin
2071 raise Program_Error with "attempt to read tree cursor from stream";
2072 end Read;
2074 procedure Read
2075 (Stream : not null access Root_Stream_Type'Class;
2076 Item : out Reference_Type)
2078 begin
2079 raise Program_Error with "attempt to stream reference";
2080 end Read;
2082 procedure Read
2083 (Stream : not null access Root_Stream_Type'Class;
2084 Item : out Constant_Reference_Type)
2086 begin
2087 raise Program_Error with "attempt to stream reference";
2088 end Read;
2090 ---------------
2091 -- Reference --
2092 ---------------
2094 function Reference
2095 (Container : aliased in out Tree;
2096 Position : Cursor) return Reference_Type
2098 begin
2099 if Position.Container = null then
2100 raise Constraint_Error with
2101 "Position cursor has no element";
2102 end if;
2104 if Position.Container /= Container'Unrestricted_Access then
2105 raise Program_Error with
2106 "Position cursor designates wrong container";
2107 end if;
2109 if Position.Node = Root_Node (Container) then
2110 raise Program_Error with "Position cursor designates root";
2111 end if;
2113 if Position.Node.Element = null then
2114 raise Program_Error with "Node has no element";
2115 end if;
2117 -- Implement Vet for multiway tree???
2118 -- pragma Assert (Vet (Position),
2119 -- "Position cursor in Constant_Reference is bad");
2121 declare
2122 C : Tree renames Position.Container.all;
2123 B : Natural renames C.Busy;
2124 L : Natural renames C.Lock;
2125 begin
2126 return R : constant Reference_Type :=
2127 (Element => Position.Node.Element.all'Access,
2128 Control => (Controlled with Position.Container))
2130 B := B + 1;
2131 L := L + 1;
2132 end return;
2133 end;
2134 end Reference;
2136 --------------------
2137 -- Remove_Subtree --
2138 --------------------
2140 procedure Remove_Subtree (Subtree : Tree_Node_Access) is
2141 C : Children_Type renames Subtree.Parent.Children;
2143 begin
2144 -- This is a utility operation to remove a subtree node from its
2145 -- parent's list of children.
2147 if C.First = Subtree then
2148 pragma Assert (Subtree.Prev = null);
2150 if C.Last = Subtree then
2151 pragma Assert (Subtree.Next = null);
2152 C.First := null;
2153 C.Last := null;
2155 else
2156 C.First := Subtree.Next;
2157 C.First.Prev := null;
2158 end if;
2160 elsif C.Last = Subtree then
2161 pragma Assert (Subtree.Next = null);
2162 C.Last := Subtree.Prev;
2163 C.Last.Next := null;
2165 else
2166 Subtree.Prev.Next := Subtree.Next;
2167 Subtree.Next.Prev := Subtree.Prev;
2168 end if;
2169 end Remove_Subtree;
2171 ----------------------
2172 -- Replace_Element --
2173 ----------------------
2175 procedure Replace_Element
2176 (Container : in out Tree;
2177 Position : Cursor;
2178 New_Item : Element_Type)
2180 E, X : Element_Access;
2182 begin
2183 if Position = No_Element then
2184 raise Constraint_Error with "Position cursor has no element";
2185 end if;
2187 if Position.Container /= Container'Unrestricted_Access then
2188 raise Program_Error with "Position cursor not in container";
2189 end if;
2191 if Is_Root (Position) then
2192 raise Program_Error with "Position cursor designates root";
2193 end if;
2195 if Container.Lock > 0 then
2196 raise Program_Error
2197 with "attempt to tamper with elements (tree is locked)";
2198 end if;
2200 declare
2201 -- The element allocator may need an accessibility check in the case
2202 -- the actual type is class-wide or has access discriminants (see
2203 -- RM 4.8(10.1) and AI12-0035).
2205 pragma Unsuppress (Accessibility_Check);
2207 begin
2208 E := new Element_Type'(New_Item);
2209 end;
2211 X := Position.Node.Element;
2212 Position.Node.Element := E;
2214 Free_Element (X);
2215 end Replace_Element;
2217 ------------------------------
2218 -- Reverse_Iterate_Children --
2219 ------------------------------
2221 procedure Reverse_Iterate_Children
2222 (Parent : Cursor;
2223 Process : not null access procedure (Position : Cursor))
2225 begin
2226 if Parent = No_Element then
2227 raise Constraint_Error with "Parent cursor has no element";
2228 end if;
2230 declare
2231 B : Natural renames Parent.Container.Busy;
2232 C : Tree_Node_Access;
2234 begin
2235 B := B + 1;
2237 C := Parent.Node.Children.Last;
2238 while C /= null loop
2239 Process (Position => Cursor'(Parent.Container, Node => C));
2240 C := C.Prev;
2241 end loop;
2243 B := B - 1;
2245 exception
2246 when others =>
2247 B := B - 1;
2248 raise;
2249 end;
2250 end Reverse_Iterate_Children;
2252 ----------
2253 -- Root --
2254 ----------
2256 function Root (Container : Tree) return Cursor is
2257 begin
2258 return (Container'Unrestricted_Access, Root_Node (Container));
2259 end Root;
2261 ---------------
2262 -- Root_Node --
2263 ---------------
2265 function Root_Node (Container : Tree) return Tree_Node_Access is
2266 begin
2267 return Container.Root'Unrestricted_Access;
2268 end Root_Node;
2270 ---------------------
2271 -- Splice_Children --
2272 ---------------------
2274 procedure Splice_Children
2275 (Target : in out Tree;
2276 Target_Parent : Cursor;
2277 Before : Cursor;
2278 Source : in out Tree;
2279 Source_Parent : Cursor)
2281 Count : Count_Type;
2283 begin
2284 if Target_Parent = No_Element then
2285 raise Constraint_Error with "Target_Parent cursor has no element";
2286 end if;
2288 if Target_Parent.Container /= Target'Unrestricted_Access then
2289 raise Program_Error
2290 with "Target_Parent cursor not in Target container";
2291 end if;
2293 if Before /= No_Element then
2294 if Before.Container /= Target'Unrestricted_Access then
2295 raise Program_Error
2296 with "Before cursor not in Target container";
2297 end if;
2299 if Before.Node.Parent /= Target_Parent.Node then
2300 raise Constraint_Error
2301 with "Before cursor not child of Target_Parent";
2302 end if;
2303 end if;
2305 if Source_Parent = No_Element then
2306 raise Constraint_Error with "Source_Parent cursor has no element";
2307 end if;
2309 if Source_Parent.Container /= Source'Unrestricted_Access then
2310 raise Program_Error
2311 with "Source_Parent cursor not in Source container";
2312 end if;
2314 if Target'Address = Source'Address then
2315 if Target_Parent = Source_Parent then
2316 return;
2317 end if;
2319 if Target.Busy > 0 then
2320 raise Program_Error
2321 with "attempt to tamper with cursors (Target tree is busy)";
2322 end if;
2324 if Is_Reachable (From => Target_Parent.Node,
2325 To => Source_Parent.Node)
2326 then
2327 raise Constraint_Error
2328 with "Source_Parent is ancestor of Target_Parent";
2329 end if;
2331 Splice_Children
2332 (Target_Parent => Target_Parent.Node,
2333 Before => Before.Node,
2334 Source_Parent => Source_Parent.Node);
2336 return;
2337 end if;
2339 if Target.Busy > 0 then
2340 raise Program_Error
2341 with "attempt to tamper with cursors (Target tree is busy)";
2342 end if;
2344 if Source.Busy > 0 then
2345 raise Program_Error
2346 with "attempt to tamper with cursors (Source tree is busy)";
2347 end if;
2349 -- We cache the count of the nodes we have allocated, so that operation
2350 -- Node_Count can execute in O(1) time. But that means we must count the
2351 -- nodes in the subtree we remove from Source and insert into Target, in
2352 -- order to keep the count accurate.
2354 Count := Subtree_Node_Count (Source_Parent.Node);
2355 pragma Assert (Count >= 1);
2357 Count := Count - 1; -- because Source_Parent node does not move
2359 Splice_Children
2360 (Target_Parent => Target_Parent.Node,
2361 Before => Before.Node,
2362 Source_Parent => Source_Parent.Node);
2364 Source.Count := Source.Count - Count;
2365 Target.Count := Target.Count + Count;
2366 end Splice_Children;
2368 procedure Splice_Children
2369 (Container : in out Tree;
2370 Target_Parent : Cursor;
2371 Before : Cursor;
2372 Source_Parent : Cursor)
2374 begin
2375 if Target_Parent = No_Element then
2376 raise Constraint_Error with "Target_Parent cursor has no element";
2377 end if;
2379 if Target_Parent.Container /= Container'Unrestricted_Access then
2380 raise Program_Error
2381 with "Target_Parent cursor not in container";
2382 end if;
2384 if Before /= No_Element then
2385 if Before.Container /= Container'Unrestricted_Access then
2386 raise Program_Error
2387 with "Before cursor not in container";
2388 end if;
2390 if Before.Node.Parent /= Target_Parent.Node then
2391 raise Constraint_Error
2392 with "Before cursor not child of Target_Parent";
2393 end if;
2394 end if;
2396 if Source_Parent = No_Element then
2397 raise Constraint_Error with "Source_Parent cursor has no element";
2398 end if;
2400 if Source_Parent.Container /= Container'Unrestricted_Access then
2401 raise Program_Error
2402 with "Source_Parent cursor not in container";
2403 end if;
2405 if Target_Parent = Source_Parent then
2406 return;
2407 end if;
2409 if Container.Busy > 0 then
2410 raise Program_Error
2411 with "attempt to tamper with cursors (tree is busy)";
2412 end if;
2414 if Is_Reachable (From => Target_Parent.Node,
2415 To => Source_Parent.Node)
2416 then
2417 raise Constraint_Error
2418 with "Source_Parent is ancestor of Target_Parent";
2419 end if;
2421 Splice_Children
2422 (Target_Parent => Target_Parent.Node,
2423 Before => Before.Node,
2424 Source_Parent => Source_Parent.Node);
2425 end Splice_Children;
2427 procedure Splice_Children
2428 (Target_Parent : Tree_Node_Access;
2429 Before : Tree_Node_Access;
2430 Source_Parent : Tree_Node_Access)
2432 CC : constant Children_Type := Source_Parent.Children;
2433 C : Tree_Node_Access;
2435 begin
2436 -- This is a utility operation to remove the children from Source parent
2437 -- and insert them into Target parent.
2439 Source_Parent.Children := Children_Type'(others => null);
2441 -- Fix up the Parent pointers of each child to designate its new Target
2442 -- parent.
2444 C := CC.First;
2445 while C /= null loop
2446 C.Parent := Target_Parent;
2447 C := C.Next;
2448 end loop;
2450 Insert_Subtree_List
2451 (First => CC.First,
2452 Last => CC.Last,
2453 Parent => Target_Parent,
2454 Before => Before);
2455 end Splice_Children;
2457 --------------------
2458 -- Splice_Subtree --
2459 --------------------
2461 procedure Splice_Subtree
2462 (Target : in out Tree;
2463 Parent : Cursor;
2464 Before : Cursor;
2465 Source : in out Tree;
2466 Position : in out Cursor)
2468 Subtree_Count : Count_Type;
2470 begin
2471 if Parent = No_Element then
2472 raise Constraint_Error with "Parent cursor has no element";
2473 end if;
2475 if Parent.Container /= Target'Unrestricted_Access then
2476 raise Program_Error with "Parent cursor not in Target container";
2477 end if;
2479 if Before /= No_Element then
2480 if Before.Container /= Target'Unrestricted_Access then
2481 raise Program_Error with "Before cursor not in Target container";
2482 end if;
2484 if Before.Node.Parent /= Parent.Node then
2485 raise Constraint_Error with "Before cursor not child of Parent";
2486 end if;
2487 end if;
2489 if Position = No_Element then
2490 raise Constraint_Error with "Position cursor has no element";
2491 end if;
2493 if Position.Container /= Source'Unrestricted_Access then
2494 raise Program_Error with "Position cursor not in Source container";
2495 end if;
2497 if Is_Root (Position) then
2498 raise Program_Error with "Position cursor designates root";
2499 end if;
2501 if Target'Address = Source'Address then
2502 if Position.Node.Parent = Parent.Node then
2503 if Position.Node = Before.Node then
2504 return;
2505 end if;
2507 if Position.Node.Next = Before.Node then
2508 return;
2509 end if;
2510 end if;
2512 if Target.Busy > 0 then
2513 raise Program_Error
2514 with "attempt to tamper with cursors (Target tree is busy)";
2515 end if;
2517 if Is_Reachable (From => Parent.Node, To => Position.Node) then
2518 raise Constraint_Error with "Position is ancestor of Parent";
2519 end if;
2521 Remove_Subtree (Position.Node);
2523 Position.Node.Parent := Parent.Node;
2524 Insert_Subtree_Node (Position.Node, Parent.Node, Before.Node);
2526 return;
2527 end if;
2529 if Target.Busy > 0 then
2530 raise Program_Error
2531 with "attempt to tamper with cursors (Target tree is busy)";
2532 end if;
2534 if Source.Busy > 0 then
2535 raise Program_Error
2536 with "attempt to tamper with cursors (Source tree is busy)";
2537 end if;
2539 -- This is an unfortunate feature of this API: we must count the nodes
2540 -- in the subtree that we remove from the source tree, which is an O(n)
2541 -- operation. It would have been better if the Tree container did not
2542 -- have a Node_Count selector; a user that wants the number of nodes in
2543 -- the tree could simply call Subtree_Node_Count, with the understanding
2544 -- that such an operation is O(n).
2546 -- Of course, we could choose to implement the Node_Count selector as an
2547 -- O(n) operation, which would turn this splice operation into an O(1)
2548 -- operation. ???
2550 Subtree_Count := Subtree_Node_Count (Position.Node);
2551 pragma Assert (Subtree_Count <= Source.Count);
2553 Remove_Subtree (Position.Node);
2554 Source.Count := Source.Count - Subtree_Count;
2556 Position.Node.Parent := Parent.Node;
2557 Insert_Subtree_Node (Position.Node, Parent.Node, Before.Node);
2559 Target.Count := Target.Count + Subtree_Count;
2561 Position.Container := Target'Unrestricted_Access;
2562 end Splice_Subtree;
2564 procedure Splice_Subtree
2565 (Container : in out Tree;
2566 Parent : Cursor;
2567 Before : Cursor;
2568 Position : Cursor)
2570 begin
2571 if Parent = No_Element then
2572 raise Constraint_Error with "Parent cursor has no element";
2573 end if;
2575 if Parent.Container /= Container'Unrestricted_Access then
2576 raise Program_Error with "Parent cursor not in container";
2577 end if;
2579 if Before /= No_Element then
2580 if Before.Container /= Container'Unrestricted_Access then
2581 raise Program_Error with "Before cursor not in container";
2582 end if;
2584 if Before.Node.Parent /= Parent.Node then
2585 raise Constraint_Error with "Before cursor not child of Parent";
2586 end if;
2587 end if;
2589 if Position = No_Element then
2590 raise Constraint_Error with "Position cursor has no element";
2591 end if;
2593 if Position.Container /= Container'Unrestricted_Access then
2594 raise Program_Error with "Position cursor not in container";
2595 end if;
2597 if Is_Root (Position) then
2599 -- Should this be PE instead? Need ARG confirmation. ???
2601 raise Constraint_Error with "Position cursor designates root";
2602 end if;
2604 if Position.Node.Parent = Parent.Node then
2605 if Position.Node = Before.Node then
2606 return;
2607 end if;
2609 if Position.Node.Next = Before.Node then
2610 return;
2611 end if;
2612 end if;
2614 if Container.Busy > 0 then
2615 raise Program_Error
2616 with "attempt to tamper with cursors (tree is busy)";
2617 end if;
2619 if Is_Reachable (From => Parent.Node, To => Position.Node) then
2620 raise Constraint_Error with "Position is ancestor of Parent";
2621 end if;
2623 Remove_Subtree (Position.Node);
2625 Position.Node.Parent := Parent.Node;
2626 Insert_Subtree_Node (Position.Node, Parent.Node, Before.Node);
2627 end Splice_Subtree;
2629 ------------------------
2630 -- Subtree_Node_Count --
2631 ------------------------
2633 function Subtree_Node_Count (Position : Cursor) return Count_Type is
2634 begin
2635 if Position = No_Element then
2636 return 0;
2637 end if;
2639 return Subtree_Node_Count (Position.Node);
2640 end Subtree_Node_Count;
2642 function Subtree_Node_Count
2643 (Subtree : Tree_Node_Access) return Count_Type
2645 Result : Count_Type;
2646 Node : Tree_Node_Access;
2648 begin
2649 Result := 1;
2650 Node := Subtree.Children.First;
2651 while Node /= null loop
2652 Result := Result + Subtree_Node_Count (Node);
2653 Node := Node.Next;
2654 end loop;
2656 return Result;
2657 end Subtree_Node_Count;
2659 ----------
2660 -- Swap --
2661 ----------
2663 procedure Swap
2664 (Container : in out Tree;
2665 I, J : Cursor)
2667 begin
2668 if I = No_Element then
2669 raise Constraint_Error with "I cursor has no element";
2670 end if;
2672 if I.Container /= Container'Unrestricted_Access then
2673 raise Program_Error with "I cursor not in container";
2674 end if;
2676 if Is_Root (I) then
2677 raise Program_Error with "I cursor designates root";
2678 end if;
2680 if I = J then -- make this test sooner???
2681 return;
2682 end if;
2684 if J = No_Element then
2685 raise Constraint_Error with "J cursor has no element";
2686 end if;
2688 if J.Container /= Container'Unrestricted_Access then
2689 raise Program_Error with "J cursor not in container";
2690 end if;
2692 if Is_Root (J) then
2693 raise Program_Error with "J cursor designates root";
2694 end if;
2696 if Container.Lock > 0 then
2697 raise Program_Error
2698 with "attempt to tamper with elements (tree is locked)";
2699 end if;
2701 declare
2702 EI : constant Element_Access := I.Node.Element;
2704 begin
2705 I.Node.Element := J.Node.Element;
2706 J.Node.Element := EI;
2707 end;
2708 end Swap;
2710 --------------------
2711 -- Update_Element --
2712 --------------------
2714 procedure Update_Element
2715 (Container : in out Tree;
2716 Position : Cursor;
2717 Process : not null access procedure (Element : in out Element_Type))
2719 begin
2720 if Position = No_Element then
2721 raise Constraint_Error with "Position cursor has no element";
2722 end if;
2724 if Position.Container /= Container'Unrestricted_Access then
2725 raise Program_Error with "Position cursor not in container";
2726 end if;
2728 if Is_Root (Position) then
2729 raise Program_Error with "Position cursor designates root";
2730 end if;
2732 declare
2733 T : Tree renames Position.Container.all'Unrestricted_Access.all;
2734 B : Natural renames T.Busy;
2735 L : Natural renames T.Lock;
2737 begin
2738 B := B + 1;
2739 L := L + 1;
2741 Process (Position.Node.Element.all);
2743 L := L - 1;
2744 B := B - 1;
2746 exception
2747 when others =>
2748 L := L - 1;
2749 B := B - 1;
2751 raise;
2752 end;
2753 end Update_Element;
2755 -----------
2756 -- Write --
2757 -----------
2759 procedure Write
2760 (Stream : not null access Root_Stream_Type'Class;
2761 Container : Tree)
2763 procedure Write_Children (Subtree : Tree_Node_Access);
2764 procedure Write_Subtree (Subtree : Tree_Node_Access);
2766 --------------------
2767 -- Write_Children --
2768 --------------------
2770 procedure Write_Children (Subtree : Tree_Node_Access) is
2771 CC : Children_Type renames Subtree.Children;
2772 C : Tree_Node_Access;
2774 begin
2775 Count_Type'Write (Stream, Child_Count (CC));
2777 C := CC.First;
2778 while C /= null loop
2779 Write_Subtree (C);
2780 C := C.Next;
2781 end loop;
2782 end Write_Children;
2784 -------------------
2785 -- Write_Subtree --
2786 -------------------
2788 procedure Write_Subtree (Subtree : Tree_Node_Access) is
2789 begin
2790 Element_Type'Output (Stream, Subtree.Element.all);
2791 Write_Children (Subtree);
2792 end Write_Subtree;
2794 -- Start of processing for Write
2796 begin
2797 Count_Type'Write (Stream, Container.Count);
2799 if Container.Count = 0 then
2800 return;
2801 end if;
2803 Write_Children (Root_Node (Container));
2804 end Write;
2806 procedure Write
2807 (Stream : not null access Root_Stream_Type'Class;
2808 Position : Cursor)
2810 begin
2811 raise Program_Error with "attempt to write tree cursor to stream";
2812 end Write;
2814 procedure Write
2815 (Stream : not null access Root_Stream_Type'Class;
2816 Item : Reference_Type)
2818 begin
2819 raise Program_Error with "attempt to stream reference";
2820 end Write;
2822 procedure Write
2823 (Stream : not null access Root_Stream_Type'Class;
2824 Item : Constant_Reference_Type)
2826 begin
2827 raise Program_Error with "attempt to stream reference";
2828 end Write;
2830 end Ada.Containers.Indefinite_Multiway_Trees;