Simplify convert_modes, ignoring invalid old modes for CONST_INTs.
[official-gcc.git] / gcc / loop-unroll.c
blobf0864111842fd1974b568d60c7701d9fbfdbe8bb
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "hard-reg-set.h"
26 #include "obstack.h"
27 #include "basic-block.h"
28 #include "cfgloop.h"
29 #include "params.h"
30 #include "expr.h"
31 #include "hash-table.h"
32 #include "recog.h"
33 #include "target.h"
34 #include "dumpfile.h"
36 /* This pass performs loop unrolling and peeling. We only perform these
37 optimizations on innermost loops (with single exception) because
38 the impact on performance is greatest here, and we want to avoid
39 unnecessary code size growth. The gain is caused by greater sequentiality
40 of code, better code to optimize for further passes and in some cases
41 by fewer testings of exit conditions. The main problem is code growth,
42 that impacts performance negatively due to effect of caches.
44 What we do:
46 -- complete peeling of once-rolling loops; this is the above mentioned
47 exception, as this causes loop to be cancelled completely and
48 does not cause code growth
49 -- complete peeling of loops that roll (small) constant times.
50 -- simple peeling of first iterations of loops that do not roll much
51 (according to profile feedback)
52 -- unrolling of loops that roll constant times; this is almost always
53 win, as we get rid of exit condition tests.
54 -- unrolling of loops that roll number of times that we can compute
55 in runtime; we also get rid of exit condition tests here, but there
56 is the extra expense for calculating the number of iterations
57 -- simple unrolling of remaining loops; this is performed only if we
58 are asked to, as the gain is questionable in this case and often
59 it may even slow down the code
60 For more detailed descriptions of each of those, see comments at
61 appropriate function below.
63 There is a lot of parameters (defined and described in params.def) that
64 control how much we unroll/peel.
66 ??? A great problem is that we don't have a good way how to determine
67 how many times we should unroll the loop; the experiments I have made
68 showed that this choice may affect performance in order of several %.
71 /* Information about induction variables to split. */
73 struct iv_to_split
75 rtx insn; /* The insn in that the induction variable occurs. */
76 rtx orig_var; /* The variable (register) for the IV before split. */
77 rtx base_var; /* The variable on that the values in the further
78 iterations are based. */
79 rtx step; /* Step of the induction variable. */
80 struct iv_to_split *next; /* Next entry in walking order. */
81 unsigned n_loc;
82 unsigned loc[3]; /* Location where the definition of the induction
83 variable occurs in the insn. For example if
84 N_LOC is 2, the expression is located at
85 XEXP (XEXP (single_set, loc[0]), loc[1]). */
88 /* Information about accumulators to expand. */
90 struct var_to_expand
92 rtx insn; /* The insn in that the variable expansion occurs. */
93 rtx reg; /* The accumulator which is expanded. */
94 vec<rtx> var_expansions; /* The copies of the accumulator which is expanded. */
95 struct var_to_expand *next; /* Next entry in walking order. */
96 enum rtx_code op; /* The type of the accumulation - addition, subtraction
97 or multiplication. */
98 int expansion_count; /* Count the number of expansions generated so far. */
99 int reuse_expansion; /* The expansion we intend to reuse to expand
100 the accumulator. If REUSE_EXPANSION is 0 reuse
101 the original accumulator. Else use
102 var_expansions[REUSE_EXPANSION - 1]. */
105 /* Hashtable helper for iv_to_split. */
107 struct iv_split_hasher : typed_free_remove <iv_to_split>
109 typedef iv_to_split value_type;
110 typedef iv_to_split compare_type;
111 static inline hashval_t hash (const value_type *);
112 static inline bool equal (const value_type *, const compare_type *);
116 /* A hash function for information about insns to split. */
118 inline hashval_t
119 iv_split_hasher::hash (const value_type *ivts)
121 return (hashval_t) INSN_UID (ivts->insn);
124 /* An equality functions for information about insns to split. */
126 inline bool
127 iv_split_hasher::equal (const value_type *i1, const compare_type *i2)
129 return i1->insn == i2->insn;
132 /* Hashtable helper for iv_to_split. */
134 struct var_expand_hasher : typed_free_remove <var_to_expand>
136 typedef var_to_expand value_type;
137 typedef var_to_expand compare_type;
138 static inline hashval_t hash (const value_type *);
139 static inline bool equal (const value_type *, const compare_type *);
142 /* Return a hash for VES. */
144 inline hashval_t
145 var_expand_hasher::hash (const value_type *ves)
147 return (hashval_t) INSN_UID (ves->insn);
150 /* Return true if I1 and I2 refer to the same instruction. */
152 inline bool
153 var_expand_hasher::equal (const value_type *i1, const compare_type *i2)
155 return i1->insn == i2->insn;
158 /* Information about optimization applied in
159 the unrolled loop. */
161 struct opt_info
163 hash_table <iv_split_hasher> insns_to_split; /* A hashtable of insns to
164 split. */
165 struct iv_to_split *iv_to_split_head; /* The first iv to split. */
166 struct iv_to_split **iv_to_split_tail; /* Pointer to the tail of the list. */
167 hash_table <var_expand_hasher> insns_with_var_to_expand; /* A hashtable of
168 insns with accumulators to expand. */
169 struct var_to_expand *var_to_expand_head; /* The first var to expand. */
170 struct var_to_expand **var_to_expand_tail; /* Pointer to the tail of the list. */
171 unsigned first_new_block; /* The first basic block that was
172 duplicated. */
173 basic_block loop_exit; /* The loop exit basic block. */
174 basic_block loop_preheader; /* The loop preheader basic block. */
177 static void decide_unrolling_and_peeling (int);
178 static void peel_loops_completely (int);
179 static void decide_peel_simple (struct loop *, int);
180 static void decide_peel_once_rolling (struct loop *, int);
181 static void decide_peel_completely (struct loop *, int);
182 static void decide_unroll_stupid (struct loop *, int);
183 static void decide_unroll_constant_iterations (struct loop *, int);
184 static void decide_unroll_runtime_iterations (struct loop *, int);
185 static void peel_loop_simple (struct loop *);
186 static void peel_loop_completely (struct loop *);
187 static void unroll_loop_stupid (struct loop *);
188 static void unroll_loop_constant_iterations (struct loop *);
189 static void unroll_loop_runtime_iterations (struct loop *);
190 static struct opt_info *analyze_insns_in_loop (struct loop *);
191 static void opt_info_start_duplication (struct opt_info *);
192 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
193 static void free_opt_info (struct opt_info *);
194 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
195 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx, int *);
196 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
197 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
198 static void insert_var_expansion_initialization (struct var_to_expand *,
199 basic_block);
200 static void combine_var_copies_in_loop_exit (struct var_to_expand *,
201 basic_block);
202 static rtx get_expansion (struct var_to_expand *);
204 /* Emit a message summarizing the unroll or peel that will be
205 performed for LOOP, along with the loop's location LOCUS, if
206 appropriate given the dump or -fopt-info settings. */
208 static void
209 report_unroll_peel (struct loop *loop, location_t locus)
211 struct niter_desc *desc;
212 int niters = 0;
213 int report_flags = MSG_OPTIMIZED_LOCATIONS | TDF_RTL | TDF_DETAILS;
215 if (loop->lpt_decision.decision == LPT_NONE)
216 return;
218 if (!dump_enabled_p ())
219 return;
221 /* In the special case where the loop never iterated, emit
222 a different message so that we don't report an unroll by 0.
223 This matches the equivalent message emitted during tree unrolling. */
224 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY
225 && !loop->lpt_decision.times)
227 dump_printf_loc (report_flags, locus,
228 "loop turned into non-loop; it never loops.\n");
229 return;
232 desc = get_simple_loop_desc (loop);
234 if (desc->const_iter)
235 niters = desc->niter;
236 else if (loop->header->count)
237 niters = expected_loop_iterations (loop);
239 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
240 dump_printf_loc (report_flags, locus,
241 "loop with %d iterations completely unrolled",
242 loop->lpt_decision.times + 1);
243 else
244 dump_printf_loc (report_flags, locus,
245 "loop %s %d times",
246 (loop->lpt_decision.decision == LPT_PEEL_SIMPLE
247 ? "peeled" : "unrolled"),
248 loop->lpt_decision.times);
249 if (profile_info)
250 dump_printf (report_flags,
251 " (header execution count %d",
252 (int)loop->header->count);
253 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
254 dump_printf (report_flags,
255 "%s%s iterations %d)",
256 profile_info ? ", " : " (",
257 desc->const_iter ? "const" : "average",
258 niters);
259 else if (profile_info)
260 dump_printf (report_flags, ")");
262 dump_printf (report_flags, "\n");
265 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
266 void
267 unroll_and_peel_loops (int flags)
269 struct loop *loop;
270 bool changed = false;
271 loop_iterator li;
273 /* First perform complete loop peeling (it is almost surely a win,
274 and affects parameters for further decision a lot). */
275 peel_loops_completely (flags);
277 /* Now decide rest of unrolling and peeling. */
278 decide_unrolling_and_peeling (flags);
280 /* Scan the loops, inner ones first. */
281 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
283 /* And perform the appropriate transformations. */
284 switch (loop->lpt_decision.decision)
286 case LPT_PEEL_COMPLETELY:
287 /* Already done. */
288 gcc_unreachable ();
289 case LPT_PEEL_SIMPLE:
290 peel_loop_simple (loop);
291 changed = true;
292 break;
293 case LPT_UNROLL_CONSTANT:
294 unroll_loop_constant_iterations (loop);
295 changed = true;
296 break;
297 case LPT_UNROLL_RUNTIME:
298 unroll_loop_runtime_iterations (loop);
299 changed = true;
300 break;
301 case LPT_UNROLL_STUPID:
302 unroll_loop_stupid (loop);
303 changed = true;
304 break;
305 case LPT_NONE:
306 break;
307 default:
308 gcc_unreachable ();
312 if (changed)
314 calculate_dominance_info (CDI_DOMINATORS);
315 fix_loop_structure (NULL);
318 iv_analysis_done ();
321 /* Check whether exit of the LOOP is at the end of loop body. */
323 static bool
324 loop_exit_at_end_p (struct loop *loop)
326 struct niter_desc *desc = get_simple_loop_desc (loop);
327 rtx insn;
329 if (desc->in_edge->dest != loop->latch)
330 return false;
332 /* Check that the latch is empty. */
333 FOR_BB_INSNS (loop->latch, insn)
335 if (NONDEBUG_INSN_P (insn))
336 return false;
339 return true;
342 /* Depending on FLAGS, check whether to peel loops completely and do so. */
343 static void
344 peel_loops_completely (int flags)
346 struct loop *loop;
347 loop_iterator li;
348 bool changed = false;
350 /* Scan the loops, the inner ones first. */
351 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
353 loop->lpt_decision.decision = LPT_NONE;
354 location_t locus = get_loop_location (loop);
356 if (dump_enabled_p ())
357 dump_printf_loc (TDF_RTL, locus,
358 ";; *** Considering loop %d at BB %d for "
359 "complete peeling ***\n",
360 loop->num, loop->header->index);
362 loop->ninsns = num_loop_insns (loop);
364 decide_peel_once_rolling (loop, flags);
365 if (loop->lpt_decision.decision == LPT_NONE)
366 decide_peel_completely (loop, flags);
368 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
370 report_unroll_peel (loop, locus);
371 peel_loop_completely (loop);
372 changed = true;
376 if (changed)
378 calculate_dominance_info (CDI_DOMINATORS);
379 fix_loop_structure (NULL);
383 /* Decide whether unroll or peel loops (depending on FLAGS) and how much. */
384 static void
385 decide_unrolling_and_peeling (int flags)
387 struct loop *loop;
388 loop_iterator li;
390 /* Scan the loops, inner ones first. */
391 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
393 loop->lpt_decision.decision = LPT_NONE;
394 location_t locus = get_loop_location (loop);
396 if (dump_enabled_p ())
397 dump_printf_loc (TDF_RTL, locus,
398 ";; *** Considering loop %d at BB %d for "
399 "unrolling and peeling ***\n",
400 loop->num, loop->header->index);
402 /* Do not peel cold areas. */
403 if (optimize_loop_for_size_p (loop))
405 if (dump_file)
406 fprintf (dump_file, ";; Not considering loop, cold area\n");
407 continue;
410 /* Can the loop be manipulated? */
411 if (!can_duplicate_loop_p (loop))
413 if (dump_file)
414 fprintf (dump_file,
415 ";; Not considering loop, cannot duplicate\n");
416 continue;
419 /* Skip non-innermost loops. */
420 if (loop->inner)
422 if (dump_file)
423 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
424 continue;
427 loop->ninsns = num_loop_insns (loop);
428 loop->av_ninsns = average_num_loop_insns (loop);
430 /* Try transformations one by one in decreasing order of
431 priority. */
433 decide_unroll_constant_iterations (loop, flags);
434 if (loop->lpt_decision.decision == LPT_NONE)
435 decide_unroll_runtime_iterations (loop, flags);
436 if (loop->lpt_decision.decision == LPT_NONE)
437 decide_unroll_stupid (loop, flags);
438 if (loop->lpt_decision.decision == LPT_NONE)
439 decide_peel_simple (loop, flags);
441 report_unroll_peel (loop, locus);
445 /* Decide whether the LOOP is once rolling and suitable for complete
446 peeling. */
447 static void
448 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
450 struct niter_desc *desc;
452 if (dump_file)
453 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
455 /* Is the loop small enough? */
456 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
458 if (dump_file)
459 fprintf (dump_file, ";; Not considering loop, is too big\n");
460 return;
463 /* Check for simple loops. */
464 desc = get_simple_loop_desc (loop);
466 /* Check number of iterations. */
467 if (!desc->simple_p
468 || desc->assumptions
469 || desc->infinite
470 || !desc->const_iter
471 || (desc->niter != 0
472 && get_max_loop_iterations_int (loop) != 0))
474 if (dump_file)
475 fprintf (dump_file,
476 ";; Unable to prove that the loop rolls exactly once\n");
477 return;
480 /* Success. */
481 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
484 /* Decide whether the LOOP is suitable for complete peeling. */
485 static void
486 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
488 unsigned npeel;
489 struct niter_desc *desc;
491 if (dump_file)
492 fprintf (dump_file, "\n;; Considering peeling completely\n");
494 /* Skip non-innermost loops. */
495 if (loop->inner)
497 if (dump_file)
498 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
499 return;
502 /* Do not peel cold areas. */
503 if (optimize_loop_for_size_p (loop))
505 if (dump_file)
506 fprintf (dump_file, ";; Not considering loop, cold area\n");
507 return;
510 /* Can the loop be manipulated? */
511 if (!can_duplicate_loop_p (loop))
513 if (dump_file)
514 fprintf (dump_file,
515 ";; Not considering loop, cannot duplicate\n");
516 return;
519 /* npeel = number of iterations to peel. */
520 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
521 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
522 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
524 /* Is the loop small enough? */
525 if (!npeel)
527 if (dump_file)
528 fprintf (dump_file, ";; Not considering loop, is too big\n");
529 return;
532 /* Check for simple loops. */
533 desc = get_simple_loop_desc (loop);
535 /* Check number of iterations. */
536 if (!desc->simple_p
537 || desc->assumptions
538 || !desc->const_iter
539 || desc->infinite)
541 if (dump_file)
542 fprintf (dump_file,
543 ";; Unable to prove that the loop iterates constant times\n");
544 return;
547 if (desc->niter > npeel - 1)
549 if (dump_file)
551 fprintf (dump_file,
552 ";; Not peeling loop completely, rolls too much (");
553 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
554 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
556 return;
559 /* Success. */
560 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
563 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
564 completely. The transformation done:
566 for (i = 0; i < 4; i++)
567 body;
571 i = 0;
572 body; i++;
573 body; i++;
574 body; i++;
575 body; i++;
577 static void
578 peel_loop_completely (struct loop *loop)
580 sbitmap wont_exit;
581 unsigned HOST_WIDE_INT npeel;
582 unsigned i;
583 vec<edge> remove_edges;
584 edge ein;
585 struct niter_desc *desc = get_simple_loop_desc (loop);
586 struct opt_info *opt_info = NULL;
588 npeel = desc->niter;
590 if (npeel)
592 bool ok;
594 wont_exit = sbitmap_alloc (npeel + 1);
595 bitmap_ones (wont_exit);
596 bitmap_clear_bit (wont_exit, 0);
597 if (desc->noloop_assumptions)
598 bitmap_clear_bit (wont_exit, 1);
600 remove_edges.create (0);
602 if (flag_split_ivs_in_unroller)
603 opt_info = analyze_insns_in_loop (loop);
605 opt_info_start_duplication (opt_info);
606 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
607 npeel,
608 wont_exit, desc->out_edge,
609 &remove_edges,
610 DLTHE_FLAG_UPDATE_FREQ
611 | DLTHE_FLAG_COMPLETTE_PEEL
612 | (opt_info
613 ? DLTHE_RECORD_COPY_NUMBER : 0));
614 gcc_assert (ok);
616 free (wont_exit);
618 if (opt_info)
620 apply_opt_in_copies (opt_info, npeel, false, true);
621 free_opt_info (opt_info);
624 /* Remove the exit edges. */
625 FOR_EACH_VEC_ELT (remove_edges, i, ein)
626 remove_path (ein);
627 remove_edges.release ();
630 ein = desc->in_edge;
631 free_simple_loop_desc (loop);
633 /* Now remove the unreachable part of the last iteration and cancel
634 the loop. */
635 remove_path (ein);
637 if (dump_file)
638 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
641 /* Decide whether to unroll LOOP iterating constant number of times
642 and how much. */
644 static void
645 decide_unroll_constant_iterations (struct loop *loop, int flags)
647 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
648 struct niter_desc *desc;
649 widest_int iterations;
651 if (!(flags & UAP_UNROLL))
653 /* We were not asked to, just return back silently. */
654 return;
657 if (dump_file)
658 fprintf (dump_file,
659 "\n;; Considering unrolling loop with constant "
660 "number of iterations\n");
662 /* nunroll = total number of copies of the original loop body in
663 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
664 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
665 nunroll_by_av
666 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
667 if (nunroll > nunroll_by_av)
668 nunroll = nunroll_by_av;
669 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
670 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
672 /* Skip big loops. */
673 if (nunroll <= 1)
675 if (dump_file)
676 fprintf (dump_file, ";; Not considering loop, is too big\n");
677 return;
680 /* Check for simple loops. */
681 desc = get_simple_loop_desc (loop);
683 /* Check number of iterations. */
684 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
686 if (dump_file)
687 fprintf (dump_file,
688 ";; Unable to prove that the loop iterates constant times\n");
689 return;
692 /* Check whether the loop rolls enough to consider.
693 Consult also loop bounds and profile; in the case the loop has more
694 than one exit it may well loop less than determined maximal number
695 of iterations. */
696 if (desc->niter < 2 * nunroll
697 || ((get_estimated_loop_iterations (loop, &iterations)
698 || get_max_loop_iterations (loop, &iterations))
699 && wi::ltu_p (iterations, 2 * nunroll)))
701 if (dump_file)
702 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
703 return;
706 /* Success; now compute number of iterations to unroll. We alter
707 nunroll so that as few as possible copies of loop body are
708 necessary, while still not decreasing the number of unrollings
709 too much (at most by 1). */
710 best_copies = 2 * nunroll + 10;
712 i = 2 * nunroll + 2;
713 if (i - 1 >= desc->niter)
714 i = desc->niter - 2;
716 for (; i >= nunroll - 1; i--)
718 unsigned exit_mod = desc->niter % (i + 1);
720 if (!loop_exit_at_end_p (loop))
721 n_copies = exit_mod + i + 1;
722 else if (exit_mod != (unsigned) i
723 || desc->noloop_assumptions != NULL_RTX)
724 n_copies = exit_mod + i + 2;
725 else
726 n_copies = i + 1;
728 if (n_copies < best_copies)
730 best_copies = n_copies;
731 best_unroll = i;
735 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
736 loop->lpt_decision.times = best_unroll;
739 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES times.
740 The transformation does this:
742 for (i = 0; i < 102; i++)
743 body;
745 ==> (LOOP->LPT_DECISION.TIMES == 3)
747 i = 0;
748 body; i++;
749 body; i++;
750 while (i < 102)
752 body; i++;
753 body; i++;
754 body; i++;
755 body; i++;
758 static void
759 unroll_loop_constant_iterations (struct loop *loop)
761 unsigned HOST_WIDE_INT niter;
762 unsigned exit_mod;
763 sbitmap wont_exit;
764 unsigned i;
765 vec<edge> remove_edges;
766 edge e;
767 unsigned max_unroll = loop->lpt_decision.times;
768 struct niter_desc *desc = get_simple_loop_desc (loop);
769 bool exit_at_end = loop_exit_at_end_p (loop);
770 struct opt_info *opt_info = NULL;
771 bool ok;
773 niter = desc->niter;
775 /* Should not get here (such loop should be peeled instead). */
776 gcc_assert (niter > max_unroll + 1);
778 exit_mod = niter % (max_unroll + 1);
780 wont_exit = sbitmap_alloc (max_unroll + 1);
781 bitmap_ones (wont_exit);
783 remove_edges.create (0);
784 if (flag_split_ivs_in_unroller
785 || flag_variable_expansion_in_unroller)
786 opt_info = analyze_insns_in_loop (loop);
788 if (!exit_at_end)
790 /* The exit is not at the end of the loop; leave exit test
791 in the first copy, so that the loops that start with test
792 of exit condition have continuous body after unrolling. */
794 if (dump_file)
795 fprintf (dump_file, ";; Condition at beginning of loop.\n");
797 /* Peel exit_mod iterations. */
798 bitmap_clear_bit (wont_exit, 0);
799 if (desc->noloop_assumptions)
800 bitmap_clear_bit (wont_exit, 1);
802 if (exit_mod)
804 opt_info_start_duplication (opt_info);
805 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
806 exit_mod,
807 wont_exit, desc->out_edge,
808 &remove_edges,
809 DLTHE_FLAG_UPDATE_FREQ
810 | (opt_info && exit_mod > 1
811 ? DLTHE_RECORD_COPY_NUMBER
812 : 0));
813 gcc_assert (ok);
815 if (opt_info && exit_mod > 1)
816 apply_opt_in_copies (opt_info, exit_mod, false, false);
818 desc->noloop_assumptions = NULL_RTX;
819 desc->niter -= exit_mod;
820 loop->nb_iterations_upper_bound -= exit_mod;
821 if (loop->any_estimate
822 && wi::leu_p (exit_mod, loop->nb_iterations_estimate))
823 loop->nb_iterations_estimate -= exit_mod;
824 else
825 loop->any_estimate = false;
828 bitmap_set_bit (wont_exit, 1);
830 else
832 /* Leave exit test in last copy, for the same reason as above if
833 the loop tests the condition at the end of loop body. */
835 if (dump_file)
836 fprintf (dump_file, ";; Condition at end of loop.\n");
838 /* We know that niter >= max_unroll + 2; so we do not need to care of
839 case when we would exit before reaching the loop. So just peel
840 exit_mod + 1 iterations. */
841 if (exit_mod != max_unroll
842 || desc->noloop_assumptions)
844 bitmap_clear_bit (wont_exit, 0);
845 if (desc->noloop_assumptions)
846 bitmap_clear_bit (wont_exit, 1);
848 opt_info_start_duplication (opt_info);
849 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
850 exit_mod + 1,
851 wont_exit, desc->out_edge,
852 &remove_edges,
853 DLTHE_FLAG_UPDATE_FREQ
854 | (opt_info && exit_mod > 0
855 ? DLTHE_RECORD_COPY_NUMBER
856 : 0));
857 gcc_assert (ok);
859 if (opt_info && exit_mod > 0)
860 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
862 desc->niter -= exit_mod + 1;
863 loop->nb_iterations_upper_bound -= exit_mod + 1;
864 if (loop->any_estimate
865 && wi::leu_p (exit_mod + 1, loop->nb_iterations_estimate))
866 loop->nb_iterations_estimate -= exit_mod + 1;
867 else
868 loop->any_estimate = false;
869 desc->noloop_assumptions = NULL_RTX;
871 bitmap_set_bit (wont_exit, 0);
872 bitmap_set_bit (wont_exit, 1);
875 bitmap_clear_bit (wont_exit, max_unroll);
878 /* Now unroll the loop. */
880 opt_info_start_duplication (opt_info);
881 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
882 max_unroll,
883 wont_exit, desc->out_edge,
884 &remove_edges,
885 DLTHE_FLAG_UPDATE_FREQ
886 | (opt_info
887 ? DLTHE_RECORD_COPY_NUMBER
888 : 0));
889 gcc_assert (ok);
891 if (opt_info)
893 apply_opt_in_copies (opt_info, max_unroll, true, true);
894 free_opt_info (opt_info);
897 free (wont_exit);
899 if (exit_at_end)
901 basic_block exit_block = get_bb_copy (desc->in_edge->src);
902 /* Find a new in and out edge; they are in the last copy we have made. */
904 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
906 desc->out_edge = EDGE_SUCC (exit_block, 0);
907 desc->in_edge = EDGE_SUCC (exit_block, 1);
909 else
911 desc->out_edge = EDGE_SUCC (exit_block, 1);
912 desc->in_edge = EDGE_SUCC (exit_block, 0);
916 desc->niter /= max_unroll + 1;
917 loop->nb_iterations_upper_bound
918 = wi::udiv_trunc (loop->nb_iterations_upper_bound, max_unroll + 1);
919 if (loop->any_estimate)
920 loop->nb_iterations_estimate
921 = wi::udiv_trunc (loop->nb_iterations_estimate, max_unroll + 1);
922 desc->niter_expr = GEN_INT (desc->niter);
924 /* Remove the edges. */
925 FOR_EACH_VEC_ELT (remove_edges, i, e)
926 remove_path (e);
927 remove_edges.release ();
929 if (dump_file)
930 fprintf (dump_file,
931 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
932 max_unroll, num_loop_insns (loop));
935 /* Decide whether to unroll LOOP iterating runtime computable number of times
936 and how much. */
937 static void
938 decide_unroll_runtime_iterations (struct loop *loop, int flags)
940 unsigned nunroll, nunroll_by_av, i;
941 struct niter_desc *desc;
942 widest_int iterations;
944 if (!(flags & UAP_UNROLL))
946 /* We were not asked to, just return back silently. */
947 return;
950 if (dump_file)
951 fprintf (dump_file,
952 "\n;; Considering unrolling loop with runtime "
953 "computable number of iterations\n");
955 /* nunroll = total number of copies of the original loop body in
956 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
957 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
958 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
959 if (nunroll > nunroll_by_av)
960 nunroll = nunroll_by_av;
961 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
962 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
964 if (targetm.loop_unroll_adjust)
965 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
967 /* Skip big loops. */
968 if (nunroll <= 1)
970 if (dump_file)
971 fprintf (dump_file, ";; Not considering loop, is too big\n");
972 return;
975 /* Check for simple loops. */
976 desc = get_simple_loop_desc (loop);
978 /* Check simpleness. */
979 if (!desc->simple_p || desc->assumptions)
981 if (dump_file)
982 fprintf (dump_file,
983 ";; Unable to prove that the number of iterations "
984 "can be counted in runtime\n");
985 return;
988 if (desc->const_iter)
990 if (dump_file)
991 fprintf (dump_file, ";; Loop iterates constant times\n");
992 return;
995 /* Check whether the loop rolls. */
996 if ((get_estimated_loop_iterations (loop, &iterations)
997 || get_max_loop_iterations (loop, &iterations))
998 && wi::ltu_p (iterations, 2 * nunroll))
1000 if (dump_file)
1001 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1002 return;
1005 /* Success; now force nunroll to be power of 2, as we are unable to
1006 cope with overflows in computation of number of iterations. */
1007 for (i = 1; 2 * i <= nunroll; i *= 2)
1008 continue;
1010 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
1011 loop->lpt_decision.times = i - 1;
1014 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
1015 returns the newly created block. If INSNS is NULL_RTX, nothing is changed
1016 and NULL is returned instead. */
1018 basic_block
1019 split_edge_and_insert (edge e, rtx insns)
1021 basic_block bb;
1023 if (!insns)
1024 return NULL;
1025 bb = split_edge (e);
1026 emit_insn_after (insns, BB_END (bb));
1028 /* ??? We used to assume that INSNS can contain control flow insns, and
1029 that we had to try to find sub basic blocks in BB to maintain a valid
1030 CFG. For this purpose we used to set the BB_SUPERBLOCK flag on BB
1031 and call break_superblocks when going out of cfglayout mode. But it
1032 turns out that this never happens; and that if it does ever happen,
1033 the TODO_verify_flow at the end of the RTL loop passes would fail.
1035 There are two reasons why we expected we could have control flow insns
1036 in INSNS. The first is when a comparison has to be done in parts, and
1037 the second is when the number of iterations is computed for loops with
1038 the number of iterations known at runtime. In both cases, test cases
1039 to get control flow in INSNS appear to be impossible to construct:
1041 * If do_compare_rtx_and_jump needs several branches to do comparison
1042 in a mode that needs comparison by parts, we cannot analyze the
1043 number of iterations of the loop, and we never get to unrolling it.
1045 * The code in expand_divmod that was suspected to cause creation of
1046 branching code seems to be only accessed for signed division. The
1047 divisions used by # of iterations analysis are always unsigned.
1048 Problems might arise on architectures that emits branching code
1049 for some operations that may appear in the unroller (especially
1050 for division), but we have no such architectures.
1052 Considering all this, it was decided that we should for now assume
1053 that INSNS can in theory contain control flow insns, but in practice
1054 it never does. So we don't handle the theoretical case, and should
1055 a real failure ever show up, we have a pretty good clue for how to
1056 fix it. */
1058 return bb;
1061 /* Unroll LOOP for which we are able to count number of iterations in runtime
1062 LOOP->LPT_DECISION.TIMES times. The transformation does this (with some
1063 extra care for case n < 0):
1065 for (i = 0; i < n; i++)
1066 body;
1068 ==> (LOOP->LPT_DECISION.TIMES == 3)
1070 i = 0;
1071 mod = n % 4;
1073 switch (mod)
1075 case 3:
1076 body; i++;
1077 case 2:
1078 body; i++;
1079 case 1:
1080 body; i++;
1081 case 0: ;
1084 while (i < n)
1086 body; i++;
1087 body; i++;
1088 body; i++;
1089 body; i++;
1092 static void
1093 unroll_loop_runtime_iterations (struct loop *loop)
1095 rtx old_niter, niter, init_code, branch_code, tmp;
1096 unsigned i, j, p;
1097 basic_block preheader, *body, swtch, ezc_swtch;
1098 vec<basic_block> dom_bbs;
1099 sbitmap wont_exit;
1100 int may_exit_copy;
1101 unsigned n_peel;
1102 vec<edge> remove_edges;
1103 edge e;
1104 bool extra_zero_check, last_may_exit;
1105 unsigned max_unroll = loop->lpt_decision.times;
1106 struct niter_desc *desc = get_simple_loop_desc (loop);
1107 bool exit_at_end = loop_exit_at_end_p (loop);
1108 struct opt_info *opt_info = NULL;
1109 bool ok;
1111 if (flag_split_ivs_in_unroller
1112 || flag_variable_expansion_in_unroller)
1113 opt_info = analyze_insns_in_loop (loop);
1115 /* Remember blocks whose dominators will have to be updated. */
1116 dom_bbs.create (0);
1118 body = get_loop_body (loop);
1119 for (i = 0; i < loop->num_nodes; i++)
1121 vec<basic_block> ldom;
1122 basic_block bb;
1124 ldom = get_dominated_by (CDI_DOMINATORS, body[i]);
1125 FOR_EACH_VEC_ELT (ldom, j, bb)
1126 if (!flow_bb_inside_loop_p (loop, bb))
1127 dom_bbs.safe_push (bb);
1129 ldom.release ();
1131 free (body);
1133 if (!exit_at_end)
1135 /* Leave exit in first copy (for explanation why see comment in
1136 unroll_loop_constant_iterations). */
1137 may_exit_copy = 0;
1138 n_peel = max_unroll - 1;
1139 extra_zero_check = true;
1140 last_may_exit = false;
1142 else
1144 /* Leave exit in last copy (for explanation why see comment in
1145 unroll_loop_constant_iterations). */
1146 may_exit_copy = max_unroll;
1147 n_peel = max_unroll;
1148 extra_zero_check = false;
1149 last_may_exit = true;
1152 /* Get expression for number of iterations. */
1153 start_sequence ();
1154 old_niter = niter = gen_reg_rtx (desc->mode);
1155 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
1156 if (tmp != niter)
1157 emit_move_insn (niter, tmp);
1159 /* Count modulo by ANDing it with max_unroll; we use the fact that
1160 the number of unrollings is a power of two, and thus this is correct
1161 even if there is overflow in the computation. */
1162 niter = expand_simple_binop (desc->mode, AND,
1163 niter, gen_int_mode (max_unroll, desc->mode),
1164 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1166 init_code = get_insns ();
1167 end_sequence ();
1168 unshare_all_rtl_in_chain (init_code);
1170 /* Precondition the loop. */
1171 split_edge_and_insert (loop_preheader_edge (loop), init_code);
1173 remove_edges.create (0);
1175 wont_exit = sbitmap_alloc (max_unroll + 2);
1177 /* Peel the first copy of loop body (almost always we must leave exit test
1178 here; the only exception is when we have extra zero check and the number
1179 of iterations is reliable. Also record the place of (possible) extra
1180 zero check. */
1181 bitmap_clear (wont_exit);
1182 if (extra_zero_check
1183 && !desc->noloop_assumptions)
1184 bitmap_set_bit (wont_exit, 1);
1185 ezc_swtch = loop_preheader_edge (loop)->src;
1186 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1187 1, wont_exit, desc->out_edge,
1188 &remove_edges,
1189 DLTHE_FLAG_UPDATE_FREQ);
1190 gcc_assert (ok);
1192 /* Record the place where switch will be built for preconditioning. */
1193 swtch = split_edge (loop_preheader_edge (loop));
1195 for (i = 0; i < n_peel; i++)
1197 /* Peel the copy. */
1198 bitmap_clear (wont_exit);
1199 if (i != n_peel - 1 || !last_may_exit)
1200 bitmap_set_bit (wont_exit, 1);
1201 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1202 1, wont_exit, desc->out_edge,
1203 &remove_edges,
1204 DLTHE_FLAG_UPDATE_FREQ);
1205 gcc_assert (ok);
1207 /* Create item for switch. */
1208 j = n_peel - i - (extra_zero_check ? 0 : 1);
1209 p = REG_BR_PROB_BASE / (i + 2);
1211 preheader = split_edge (loop_preheader_edge (loop));
1212 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1213 block_label (preheader), p,
1214 NULL_RTX);
1216 /* We rely on the fact that the compare and jump cannot be optimized out,
1217 and hence the cfg we create is correct. */
1218 gcc_assert (branch_code != NULL_RTX);
1220 swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
1221 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1222 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1223 e = make_edge (swtch, preheader,
1224 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1225 e->count = RDIV (preheader->count * REG_BR_PROB_BASE, p);
1226 e->probability = p;
1229 if (extra_zero_check)
1231 /* Add branch for zero iterations. */
1232 p = REG_BR_PROB_BASE / (max_unroll + 1);
1233 swtch = ezc_swtch;
1234 preheader = split_edge (loop_preheader_edge (loop));
1235 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1236 block_label (preheader), p,
1237 NULL_RTX);
1238 gcc_assert (branch_code != NULL_RTX);
1240 swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
1241 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1242 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1243 e = make_edge (swtch, preheader,
1244 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1245 e->count = RDIV (preheader->count * REG_BR_PROB_BASE, p);
1246 e->probability = p;
1249 /* Recount dominators for outer blocks. */
1250 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
1252 /* And unroll loop. */
1254 bitmap_ones (wont_exit);
1255 bitmap_clear_bit (wont_exit, may_exit_copy);
1256 opt_info_start_duplication (opt_info);
1258 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1259 max_unroll,
1260 wont_exit, desc->out_edge,
1261 &remove_edges,
1262 DLTHE_FLAG_UPDATE_FREQ
1263 | (opt_info
1264 ? DLTHE_RECORD_COPY_NUMBER
1265 : 0));
1266 gcc_assert (ok);
1268 if (opt_info)
1270 apply_opt_in_copies (opt_info, max_unroll, true, true);
1271 free_opt_info (opt_info);
1274 free (wont_exit);
1276 if (exit_at_end)
1278 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1279 /* Find a new in and out edge; they are in the last copy we have
1280 made. */
1282 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1284 desc->out_edge = EDGE_SUCC (exit_block, 0);
1285 desc->in_edge = EDGE_SUCC (exit_block, 1);
1287 else
1289 desc->out_edge = EDGE_SUCC (exit_block, 1);
1290 desc->in_edge = EDGE_SUCC (exit_block, 0);
1294 /* Remove the edges. */
1295 FOR_EACH_VEC_ELT (remove_edges, i, e)
1296 remove_path (e);
1297 remove_edges.release ();
1299 /* We must be careful when updating the number of iterations due to
1300 preconditioning and the fact that the value must be valid at entry
1301 of the loop. After passing through the above code, we see that
1302 the correct new number of iterations is this: */
1303 gcc_assert (!desc->const_iter);
1304 desc->niter_expr =
1305 simplify_gen_binary (UDIV, desc->mode, old_niter,
1306 gen_int_mode (max_unroll + 1, desc->mode));
1307 loop->nb_iterations_upper_bound
1308 = wi::udiv_trunc (loop->nb_iterations_upper_bound, max_unroll + 1);
1309 if (loop->any_estimate)
1310 loop->nb_iterations_estimate
1311 = wi::udiv_trunc (loop->nb_iterations_estimate, max_unroll + 1);
1312 if (exit_at_end)
1314 desc->niter_expr =
1315 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1316 desc->noloop_assumptions = NULL_RTX;
1317 --loop->nb_iterations_upper_bound;
1318 if (loop->any_estimate
1319 && loop->nb_iterations_estimate != 0)
1320 --loop->nb_iterations_estimate;
1321 else
1322 loop->any_estimate = false;
1325 if (dump_file)
1326 fprintf (dump_file,
1327 ";; Unrolled loop %d times, counting # of iterations "
1328 "in runtime, %i insns\n",
1329 max_unroll, num_loop_insns (loop));
1331 dom_bbs.release ();
1334 /* Decide whether to simply peel LOOP and how much. */
1335 static void
1336 decide_peel_simple (struct loop *loop, int flags)
1338 unsigned npeel;
1339 widest_int iterations;
1341 if (!(flags & UAP_PEEL))
1343 /* We were not asked to, just return back silently. */
1344 return;
1347 if (dump_file)
1348 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1350 /* npeel = number of iterations to peel. */
1351 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1352 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1353 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1355 /* Skip big loops. */
1356 if (!npeel)
1358 if (dump_file)
1359 fprintf (dump_file, ";; Not considering loop, is too big\n");
1360 return;
1363 /* Do not simply peel loops with branches inside -- it increases number
1364 of mispredicts.
1365 Exception is when we do have profile and we however have good chance
1366 to peel proper number of iterations loop will iterate in practice.
1367 TODO: this heuristic needs tunning; while for complette unrolling
1368 the branch inside loop mostly eliminates any improvements, for
1369 peeling it is not the case. Also a function call inside loop is
1370 also branch from branch prediction POV (and probably better reason
1371 to not unroll/peel). */
1372 if (num_loop_branches (loop) > 1
1373 && profile_status != PROFILE_READ)
1375 if (dump_file)
1376 fprintf (dump_file, ";; Not peeling, contains branches\n");
1377 return;
1380 /* If we have realistic estimate on number of iterations, use it. */
1381 if (get_estimated_loop_iterations (loop, &iterations))
1383 /* TODO: unsigned/signed confusion */
1384 if (wi::leu_p (npeel, iterations))
1386 if (dump_file)
1388 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1389 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1390 (HOST_WIDEST_INT) (iterations.to_shwi () + 1));
1391 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1392 npeel);
1394 return;
1396 npeel = iterations.to_shwi () + 1;
1398 /* If we have small enough bound on iterations, we can still peel (completely
1399 unroll). */
1400 else if (get_max_loop_iterations (loop, &iterations)
1401 && wi::ltu_p (iterations, npeel))
1402 npeel = iterations.to_shwi () + 1;
1403 else
1405 /* For now we have no good heuristics to decide whether loop peeling
1406 will be effective, so disable it. */
1407 if (dump_file)
1408 fprintf (dump_file,
1409 ";; Not peeling loop, no evidence it will be profitable\n");
1410 return;
1413 /* Success. */
1414 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1415 loop->lpt_decision.times = npeel;
1418 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation does this:
1420 while (cond)
1421 body;
1423 ==> (LOOP->LPT_DECISION.TIMES == 3)
1425 if (!cond) goto end;
1426 body;
1427 if (!cond) goto end;
1428 body;
1429 if (!cond) goto end;
1430 body;
1431 while (cond)
1432 body;
1433 end: ;
1435 static void
1436 peel_loop_simple (struct loop *loop)
1438 sbitmap wont_exit;
1439 unsigned npeel = loop->lpt_decision.times;
1440 struct niter_desc *desc = get_simple_loop_desc (loop);
1441 struct opt_info *opt_info = NULL;
1442 bool ok;
1444 if (flag_split_ivs_in_unroller && npeel > 1)
1445 opt_info = analyze_insns_in_loop (loop);
1447 wont_exit = sbitmap_alloc (npeel + 1);
1448 bitmap_clear (wont_exit);
1450 opt_info_start_duplication (opt_info);
1452 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1453 npeel, wont_exit, NULL,
1454 NULL, DLTHE_FLAG_UPDATE_FREQ
1455 | (opt_info
1456 ? DLTHE_RECORD_COPY_NUMBER
1457 : 0));
1458 gcc_assert (ok);
1460 free (wont_exit);
1462 if (opt_info)
1464 apply_opt_in_copies (opt_info, npeel, false, false);
1465 free_opt_info (opt_info);
1468 if (desc->simple_p)
1470 if (desc->const_iter)
1472 desc->niter -= npeel;
1473 desc->niter_expr = GEN_INT (desc->niter);
1474 desc->noloop_assumptions = NULL_RTX;
1476 else
1478 /* We cannot just update niter_expr, as its value might be clobbered
1479 inside loop. We could handle this by counting the number into
1480 temporary just like we do in runtime unrolling, but it does not
1481 seem worthwhile. */
1482 free_simple_loop_desc (loop);
1485 if (dump_file)
1486 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1489 /* Decide whether to unroll LOOP stupidly and how much. */
1490 static void
1491 decide_unroll_stupid (struct loop *loop, int flags)
1493 unsigned nunroll, nunroll_by_av, i;
1494 struct niter_desc *desc;
1495 widest_int iterations;
1497 if (!(flags & UAP_UNROLL_ALL))
1499 /* We were not asked to, just return back silently. */
1500 return;
1503 if (dump_file)
1504 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1506 /* nunroll = total number of copies of the original loop body in
1507 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1508 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1509 nunroll_by_av
1510 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1511 if (nunroll > nunroll_by_av)
1512 nunroll = nunroll_by_av;
1513 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1514 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1516 if (targetm.loop_unroll_adjust)
1517 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
1519 /* Skip big loops. */
1520 if (nunroll <= 1)
1522 if (dump_file)
1523 fprintf (dump_file, ";; Not considering loop, is too big\n");
1524 return;
1527 /* Check for simple loops. */
1528 desc = get_simple_loop_desc (loop);
1530 /* Check simpleness. */
1531 if (desc->simple_p && !desc->assumptions)
1533 if (dump_file)
1534 fprintf (dump_file, ";; The loop is simple\n");
1535 return;
1538 /* Do not unroll loops with branches inside -- it increases number
1539 of mispredicts.
1540 TODO: this heuristic needs tunning; call inside the loop body
1541 is also relatively good reason to not unroll. */
1542 if (num_loop_branches (loop) > 1)
1544 if (dump_file)
1545 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1546 return;
1549 /* Check whether the loop rolls. */
1550 if ((get_estimated_loop_iterations (loop, &iterations)
1551 || get_max_loop_iterations (loop, &iterations))
1552 && wi::ltu_p (iterations, 2 * nunroll))
1554 if (dump_file)
1555 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1556 return;
1559 /* Success. Now force nunroll to be power of 2, as it seems that this
1560 improves results (partially because of better alignments, partially
1561 because of some dark magic). */
1562 for (i = 1; 2 * i <= nunroll; i *= 2)
1563 continue;
1565 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1566 loop->lpt_decision.times = i - 1;
1569 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation does this:
1571 while (cond)
1572 body;
1574 ==> (LOOP->LPT_DECISION.TIMES == 3)
1576 while (cond)
1578 body;
1579 if (!cond) break;
1580 body;
1581 if (!cond) break;
1582 body;
1583 if (!cond) break;
1584 body;
1587 static void
1588 unroll_loop_stupid (struct loop *loop)
1590 sbitmap wont_exit;
1591 unsigned nunroll = loop->lpt_decision.times;
1592 struct niter_desc *desc = get_simple_loop_desc (loop);
1593 struct opt_info *opt_info = NULL;
1594 bool ok;
1596 if (flag_split_ivs_in_unroller
1597 || flag_variable_expansion_in_unroller)
1598 opt_info = analyze_insns_in_loop (loop);
1601 wont_exit = sbitmap_alloc (nunroll + 1);
1602 bitmap_clear (wont_exit);
1603 opt_info_start_duplication (opt_info);
1605 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1606 nunroll, wont_exit,
1607 NULL, NULL,
1608 DLTHE_FLAG_UPDATE_FREQ
1609 | (opt_info
1610 ? DLTHE_RECORD_COPY_NUMBER
1611 : 0));
1612 gcc_assert (ok);
1614 if (opt_info)
1616 apply_opt_in_copies (opt_info, nunroll, true, true);
1617 free_opt_info (opt_info);
1620 free (wont_exit);
1622 if (desc->simple_p)
1624 /* We indeed may get here provided that there are nontrivial assumptions
1625 for a loop to be really simple. We could update the counts, but the
1626 problem is that we are unable to decide which exit will be taken
1627 (not really true in case the number of iterations is constant,
1628 but no one will do anything with this information, so we do not
1629 worry about it). */
1630 desc->simple_p = false;
1633 if (dump_file)
1634 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1635 nunroll, num_loop_insns (loop));
1638 /* Returns true if REG is referenced in one nondebug insn in LOOP.
1639 Set *DEBUG_USES to the number of debug insns that reference the
1640 variable. */
1642 bool
1643 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg,
1644 int *debug_uses)
1646 basic_block *body, bb;
1647 unsigned i;
1648 int count_ref = 0;
1649 rtx insn;
1651 body = get_loop_body (loop);
1652 for (i = 0; i < loop->num_nodes; i++)
1654 bb = body[i];
1656 FOR_BB_INSNS (bb, insn)
1657 if (!rtx_referenced_p (reg, insn))
1658 continue;
1659 else if (DEBUG_INSN_P (insn))
1660 ++*debug_uses;
1661 else if (++count_ref > 1)
1662 break;
1664 free (body);
1665 return (count_ref == 1);
1668 /* Reset the DEBUG_USES debug insns in LOOP that reference REG. */
1670 static void
1671 reset_debug_uses_in_loop (struct loop *loop, rtx reg, int debug_uses)
1673 basic_block *body, bb;
1674 unsigned i;
1675 rtx insn;
1677 body = get_loop_body (loop);
1678 for (i = 0; debug_uses && i < loop->num_nodes; i++)
1680 bb = body[i];
1682 FOR_BB_INSNS (bb, insn)
1683 if (!DEBUG_INSN_P (insn) || !rtx_referenced_p (reg, insn))
1684 continue;
1685 else
1687 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn),
1688 gen_rtx_UNKNOWN_VAR_LOC (), 0);
1689 if (!--debug_uses)
1690 break;
1693 free (body);
1696 /* Determine whether INSN contains an accumulator
1697 which can be expanded into separate copies,
1698 one for each copy of the LOOP body.
1700 for (i = 0 ; i < n; i++)
1701 sum += a[i];
1705 sum += a[i]
1706 ....
1707 i = i+1;
1708 sum1 += a[i]
1709 ....
1710 i = i+1
1711 sum2 += a[i];
1712 ....
1714 Return NULL if INSN contains no opportunity for expansion of accumulator.
1715 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1716 information and return a pointer to it.
1719 static struct var_to_expand *
1720 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1722 rtx set, dest, src;
1723 struct var_to_expand *ves;
1724 unsigned accum_pos;
1725 enum rtx_code code;
1726 int debug_uses = 0;
1728 set = single_set (insn);
1729 if (!set)
1730 return NULL;
1732 dest = SET_DEST (set);
1733 src = SET_SRC (set);
1734 code = GET_CODE (src);
1736 if (code != PLUS && code != MINUS && code != MULT && code != FMA)
1737 return NULL;
1739 if (FLOAT_MODE_P (GET_MODE (dest)))
1741 if (!flag_associative_math)
1742 return NULL;
1743 /* In the case of FMA, we're also changing the rounding. */
1744 if (code == FMA && !flag_unsafe_math_optimizations)
1745 return NULL;
1748 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1749 in MD. But if there is no optab to generate the insn, we can not
1750 perform the variable expansion. This can happen if an MD provides
1751 an insn but not a named pattern to generate it, for example to avoid
1752 producing code that needs additional mode switches like for x87/mmx.
1754 So we check have_insn_for which looks for an optab for the operation
1755 in SRC. If it doesn't exist, we can't perform the expansion even
1756 though INSN is valid. */
1757 if (!have_insn_for (code, GET_MODE (src)))
1758 return NULL;
1760 if (!REG_P (dest)
1761 && !(GET_CODE (dest) == SUBREG
1762 && REG_P (SUBREG_REG (dest))))
1763 return NULL;
1765 /* Find the accumulator use within the operation. */
1766 if (code == FMA)
1768 /* We only support accumulation via FMA in the ADD position. */
1769 if (!rtx_equal_p (dest, XEXP (src, 2)))
1770 return NULL;
1771 accum_pos = 2;
1773 else if (rtx_equal_p (dest, XEXP (src, 0)))
1774 accum_pos = 0;
1775 else if (rtx_equal_p (dest, XEXP (src, 1)))
1777 /* The method of expansion that we are using; which includes the
1778 initialization of the expansions with zero and the summation of
1779 the expansions at the end of the computation will yield wrong
1780 results for (x = something - x) thus avoid using it in that case. */
1781 if (code == MINUS)
1782 return NULL;
1783 accum_pos = 1;
1785 else
1786 return NULL;
1788 /* It must not otherwise be used. */
1789 if (code == FMA)
1791 if (rtx_referenced_p (dest, XEXP (src, 0))
1792 || rtx_referenced_p (dest, XEXP (src, 1)))
1793 return NULL;
1795 else if (rtx_referenced_p (dest, XEXP (src, 1 - accum_pos)))
1796 return NULL;
1798 /* It must be used in exactly one insn. */
1799 if (!referenced_in_one_insn_in_loop_p (loop, dest, &debug_uses))
1800 return NULL;
1802 if (dump_file)
1804 fprintf (dump_file, "\n;; Expanding Accumulator ");
1805 print_rtl (dump_file, dest);
1806 fprintf (dump_file, "\n");
1809 if (debug_uses)
1810 /* Instead of resetting the debug insns, we could replace each
1811 debug use in the loop with the sum or product of all expanded
1812 accummulators. Since we'll only know of all expansions at the
1813 end, we'd have to keep track of which vars_to_expand a debug
1814 insn in the loop references, take note of each copy of the
1815 debug insn during unrolling, and when it's all done, compute
1816 the sum or product of each variable and adjust the original
1817 debug insn and each copy thereof. What a pain! */
1818 reset_debug_uses_in_loop (loop, dest, debug_uses);
1820 /* Record the accumulator to expand. */
1821 ves = XNEW (struct var_to_expand);
1822 ves->insn = insn;
1823 ves->reg = copy_rtx (dest);
1824 ves->var_expansions.create (1);
1825 ves->next = NULL;
1826 ves->op = GET_CODE (src);
1827 ves->expansion_count = 0;
1828 ves->reuse_expansion = 0;
1829 return ves;
1832 /* Determine whether there is an induction variable in INSN that
1833 we would like to split during unrolling.
1835 I.e. replace
1837 i = i + 1;
1839 i = i + 1;
1841 i = i + 1;
1844 type chains by
1846 i0 = i + 1
1848 i = i0 + 1
1850 i = i0 + 2
1853 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1854 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1855 pointer to it. */
1857 static struct iv_to_split *
1858 analyze_iv_to_split_insn (rtx insn)
1860 rtx set, dest;
1861 struct rtx_iv iv;
1862 struct iv_to_split *ivts;
1863 bool ok;
1865 /* For now we just split the basic induction variables. Later this may be
1866 extended for example by selecting also addresses of memory references. */
1867 set = single_set (insn);
1868 if (!set)
1869 return NULL;
1871 dest = SET_DEST (set);
1872 if (!REG_P (dest))
1873 return NULL;
1875 if (!biv_p (insn, dest))
1876 return NULL;
1878 ok = iv_analyze_result (insn, dest, &iv);
1880 /* This used to be an assert under the assumption that if biv_p returns
1881 true that iv_analyze_result must also return true. However, that
1882 assumption is not strictly correct as evidenced by pr25569.
1884 Returning NULL when iv_analyze_result returns false is safe and
1885 avoids the problems in pr25569 until the iv_analyze_* routines
1886 can be fixed, which is apparently hard and time consuming
1887 according to their author. */
1888 if (! ok)
1889 return NULL;
1891 if (iv.step == const0_rtx
1892 || iv.mode != iv.extend_mode)
1893 return NULL;
1895 /* Record the insn to split. */
1896 ivts = XNEW (struct iv_to_split);
1897 ivts->insn = insn;
1898 ivts->orig_var = dest;
1899 ivts->base_var = NULL_RTX;
1900 ivts->step = iv.step;
1901 ivts->next = NULL;
1902 ivts->n_loc = 1;
1903 ivts->loc[0] = 1;
1905 return ivts;
1908 /* Determines which of insns in LOOP can be optimized.
1909 Return a OPT_INFO struct with the relevant hash tables filled
1910 with all insns to be optimized. The FIRST_NEW_BLOCK field
1911 is undefined for the return value. */
1913 static struct opt_info *
1914 analyze_insns_in_loop (struct loop *loop)
1916 basic_block *body, bb;
1917 unsigned i;
1918 struct opt_info *opt_info = XCNEW (struct opt_info);
1919 rtx insn;
1920 struct iv_to_split *ivts = NULL;
1921 struct var_to_expand *ves = NULL;
1922 iv_to_split **slot1;
1923 var_to_expand **slot2;
1924 vec<edge> edges = get_loop_exit_edges (loop);
1925 edge exit;
1926 bool can_apply = false;
1928 iv_analysis_loop_init (loop);
1930 body = get_loop_body (loop);
1932 if (flag_split_ivs_in_unroller)
1934 opt_info->insns_to_split.create (5 * loop->num_nodes);
1935 opt_info->iv_to_split_head = NULL;
1936 opt_info->iv_to_split_tail = &opt_info->iv_to_split_head;
1939 /* Record the loop exit bb and loop preheader before the unrolling. */
1940 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1942 if (edges.length () == 1)
1944 exit = edges[0];
1945 if (!(exit->flags & EDGE_COMPLEX))
1947 opt_info->loop_exit = split_edge (exit);
1948 can_apply = true;
1952 if (flag_variable_expansion_in_unroller
1953 && can_apply)
1955 opt_info->insns_with_var_to_expand.create (5 * loop->num_nodes);
1956 opt_info->var_to_expand_head = NULL;
1957 opt_info->var_to_expand_tail = &opt_info->var_to_expand_head;
1960 for (i = 0; i < loop->num_nodes; i++)
1962 bb = body[i];
1963 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1964 continue;
1966 FOR_BB_INSNS (bb, insn)
1968 if (!INSN_P (insn))
1969 continue;
1971 if (opt_info->insns_to_split.is_created ())
1972 ivts = analyze_iv_to_split_insn (insn);
1974 if (ivts)
1976 slot1 = opt_info->insns_to_split.find_slot (ivts, INSERT);
1977 gcc_assert (*slot1 == NULL);
1978 *slot1 = ivts;
1979 *opt_info->iv_to_split_tail = ivts;
1980 opt_info->iv_to_split_tail = &ivts->next;
1981 continue;
1984 if (opt_info->insns_with_var_to_expand.is_created ())
1985 ves = analyze_insn_to_expand_var (loop, insn);
1987 if (ves)
1989 slot2 = opt_info->insns_with_var_to_expand.find_slot (ves, INSERT);
1990 gcc_assert (*slot2 == NULL);
1991 *slot2 = ves;
1992 *opt_info->var_to_expand_tail = ves;
1993 opt_info->var_to_expand_tail = &ves->next;
1998 edges.release ();
1999 free (body);
2000 return opt_info;
2003 /* Called just before loop duplication. Records start of duplicated area
2004 to OPT_INFO. */
2006 static void
2007 opt_info_start_duplication (struct opt_info *opt_info)
2009 if (opt_info)
2010 opt_info->first_new_block = last_basic_block;
2013 /* Determine the number of iterations between initialization of the base
2014 variable and the current copy (N_COPY). N_COPIES is the total number
2015 of newly created copies. UNROLLING is true if we are unrolling
2016 (not peeling) the loop. */
2018 static unsigned
2019 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
2021 if (unrolling)
2023 /* If we are unrolling, initialization is done in the original loop
2024 body (number 0). */
2025 return n_copy;
2027 else
2029 /* If we are peeling, the copy in that the initialization occurs has
2030 number 1. The original loop (number 0) is the last. */
2031 if (n_copy)
2032 return n_copy - 1;
2033 else
2034 return n_copies;
2038 /* Locate in EXPR the expression corresponding to the location recorded
2039 in IVTS, and return a pointer to the RTX for this location. */
2041 static rtx *
2042 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
2044 unsigned i;
2045 rtx *ret = &expr;
2047 for (i = 0; i < ivts->n_loc; i++)
2048 ret = &XEXP (*ret, ivts->loc[i]);
2050 return ret;
2053 /* Allocate basic variable for the induction variable chain. */
2055 static void
2056 allocate_basic_variable (struct iv_to_split *ivts)
2058 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
2060 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
2063 /* Insert initialization of basic variable of IVTS before INSN, taking
2064 the initial value from INSN. */
2066 static void
2067 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
2069 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
2070 rtx seq;
2072 start_sequence ();
2073 expr = force_operand (expr, ivts->base_var);
2074 if (expr != ivts->base_var)
2075 emit_move_insn (ivts->base_var, expr);
2076 seq = get_insns ();
2077 end_sequence ();
2079 emit_insn_before (seq, insn);
2082 /* Replace the use of induction variable described in IVTS in INSN
2083 by base variable + DELTA * step. */
2085 static void
2086 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
2088 rtx expr, *loc, seq, incr, var;
2089 enum machine_mode mode = GET_MODE (ivts->base_var);
2090 rtx src, dest, set;
2092 /* Construct base + DELTA * step. */
2093 if (!delta)
2094 expr = ivts->base_var;
2095 else
2097 incr = simplify_gen_binary (MULT, mode,
2098 ivts->step, gen_int_mode (delta, mode));
2099 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
2100 ivts->base_var, incr);
2103 /* Figure out where to do the replacement. */
2104 loc = get_ivts_expr (single_set (insn), ivts);
2106 /* If we can make the replacement right away, we're done. */
2107 if (validate_change (insn, loc, expr, 0))
2108 return;
2110 /* Otherwise, force EXPR into a register and try again. */
2111 start_sequence ();
2112 var = gen_reg_rtx (mode);
2113 expr = force_operand (expr, var);
2114 if (expr != var)
2115 emit_move_insn (var, expr);
2116 seq = get_insns ();
2117 end_sequence ();
2118 emit_insn_before (seq, insn);
2120 if (validate_change (insn, loc, var, 0))
2121 return;
2123 /* The last chance. Try recreating the assignment in insn
2124 completely from scratch. */
2125 set = single_set (insn);
2126 gcc_assert (set);
2128 start_sequence ();
2129 *loc = var;
2130 src = copy_rtx (SET_SRC (set));
2131 dest = copy_rtx (SET_DEST (set));
2132 src = force_operand (src, dest);
2133 if (src != dest)
2134 emit_move_insn (dest, src);
2135 seq = get_insns ();
2136 end_sequence ();
2138 emit_insn_before (seq, insn);
2139 delete_insn (insn);
2143 /* Return one expansion of the accumulator recorded in struct VE. */
2145 static rtx
2146 get_expansion (struct var_to_expand *ve)
2148 rtx reg;
2150 if (ve->reuse_expansion == 0)
2151 reg = ve->reg;
2152 else
2153 reg = ve->var_expansions[ve->reuse_expansion - 1];
2155 if (ve->var_expansions.length () == (unsigned) ve->reuse_expansion)
2156 ve->reuse_expansion = 0;
2157 else
2158 ve->reuse_expansion++;
2160 return reg;
2164 /* Given INSN replace the uses of the accumulator recorded in VE
2165 with a new register. */
2167 static void
2168 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
2170 rtx new_reg, set;
2171 bool really_new_expansion = false;
2173 set = single_set (insn);
2174 gcc_assert (set);
2176 /* Generate a new register only if the expansion limit has not been
2177 reached. Else reuse an already existing expansion. */
2178 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
2180 really_new_expansion = true;
2181 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
2183 else
2184 new_reg = get_expansion (ve);
2186 validate_replace_rtx_group (SET_DEST (set), new_reg, insn);
2187 if (apply_change_group ())
2188 if (really_new_expansion)
2190 ve->var_expansions.safe_push (new_reg);
2191 ve->expansion_count++;
2195 /* Initialize the variable expansions in loop preheader. PLACE is the
2196 loop-preheader basic block where the initialization of the
2197 expansions should take place. The expansions are initialized with
2198 (-0) when the operation is plus or minus to honor sign zero. This
2199 way we can prevent cases where the sign of the final result is
2200 effected by the sign of the expansion. Here is an example to
2201 demonstrate this:
2203 for (i = 0 ; i < n; i++)
2204 sum += something;
2208 sum += something
2209 ....
2210 i = i+1;
2211 sum1 += something
2212 ....
2213 i = i+1
2214 sum2 += something;
2215 ....
2217 When SUM is initialized with -zero and SOMETHING is also -zero; the
2218 final result of sum should be -zero thus the expansions sum1 and sum2
2219 should be initialized with -zero as well (otherwise we will get +zero
2220 as the final result). */
2222 static void
2223 insert_var_expansion_initialization (struct var_to_expand *ve,
2224 basic_block place)
2226 rtx seq, var, zero_init;
2227 unsigned i;
2228 enum machine_mode mode = GET_MODE (ve->reg);
2229 bool honor_signed_zero_p = HONOR_SIGNED_ZEROS (mode);
2231 if (ve->var_expansions.length () == 0)
2232 return;
2234 start_sequence ();
2235 switch (ve->op)
2237 case FMA:
2238 /* Note that we only accumulate FMA via the ADD operand. */
2239 case PLUS:
2240 case MINUS:
2241 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2243 if (honor_signed_zero_p)
2244 zero_init = simplify_gen_unary (NEG, mode, CONST0_RTX (mode), mode);
2245 else
2246 zero_init = CONST0_RTX (mode);
2247 emit_move_insn (var, zero_init);
2249 break;
2251 case MULT:
2252 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2254 zero_init = CONST1_RTX (GET_MODE (var));
2255 emit_move_insn (var, zero_init);
2257 break;
2259 default:
2260 gcc_unreachable ();
2263 seq = get_insns ();
2264 end_sequence ();
2266 emit_insn_after (seq, BB_END (place));
2269 /* Combine the variable expansions at the loop exit. PLACE is the
2270 loop exit basic block where the summation of the expansions should
2271 take place. */
2273 static void
2274 combine_var_copies_in_loop_exit (struct var_to_expand *ve, basic_block place)
2276 rtx sum = ve->reg;
2277 rtx expr, seq, var, insn;
2278 unsigned i;
2280 if (ve->var_expansions.length () == 0)
2281 return;
2283 start_sequence ();
2284 switch (ve->op)
2286 case FMA:
2287 /* Note that we only accumulate FMA via the ADD operand. */
2288 case PLUS:
2289 case MINUS:
2290 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2291 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg), var, sum);
2292 break;
2294 case MULT:
2295 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
2296 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg), var, sum);
2297 break;
2299 default:
2300 gcc_unreachable ();
2303 expr = force_operand (sum, ve->reg);
2304 if (expr != ve->reg)
2305 emit_move_insn (ve->reg, expr);
2306 seq = get_insns ();
2307 end_sequence ();
2309 insn = BB_HEAD (place);
2310 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2311 insn = NEXT_INSN (insn);
2313 emit_insn_after (seq, insn);
2316 /* Strip away REG_EQUAL notes for IVs we're splitting.
2318 Updating REG_EQUAL notes for IVs we split is tricky: We
2319 cannot tell until after unrolling, DF-rescanning, and liveness
2320 updating, whether an EQ_USE is reached by the split IV while
2321 the IV reg is still live. See PR55006.
2323 ??? We cannot use remove_reg_equal_equiv_notes_for_regno,
2324 because RTL loop-iv requires us to defer rescanning insns and
2325 any notes attached to them. So resort to old techniques... */
2327 static void
2328 maybe_strip_eq_note_for_split_iv (struct opt_info *opt_info, rtx insn)
2330 struct iv_to_split *ivts;
2331 rtx note = find_reg_equal_equiv_note (insn);
2332 if (! note)
2333 return;
2334 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
2335 if (reg_mentioned_p (ivts->orig_var, note))
2337 remove_note (insn, note);
2338 return;
2342 /* Apply loop optimizations in loop copies using the
2343 data which gathered during the unrolling. Structure
2344 OPT_INFO record that data.
2346 UNROLLING is true if we unrolled (not peeled) the loop.
2347 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2348 the loop (as it should happen in complete unrolling, but not in ordinary
2349 peeling of the loop). */
2351 static void
2352 apply_opt_in_copies (struct opt_info *opt_info,
2353 unsigned n_copies, bool unrolling,
2354 bool rewrite_original_loop)
2356 unsigned i, delta;
2357 basic_block bb, orig_bb;
2358 rtx insn, orig_insn, next;
2359 struct iv_to_split ivts_templ, *ivts;
2360 struct var_to_expand ve_templ, *ves;
2362 /* Sanity check -- we need to put initialization in the original loop
2363 body. */
2364 gcc_assert (!unrolling || rewrite_original_loop);
2366 /* Allocate the basic variables (i0). */
2367 if (opt_info->insns_to_split.is_created ())
2368 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
2369 allocate_basic_variable (ivts);
2371 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2373 bb = BASIC_BLOCK (i);
2374 orig_bb = get_bb_original (bb);
2376 /* bb->aux holds position in copy sequence initialized by
2377 duplicate_loop_to_header_edge. */
2378 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2379 unrolling);
2380 bb->aux = 0;
2381 orig_insn = BB_HEAD (orig_bb);
2382 FOR_BB_INSNS_SAFE (bb, insn, next)
2384 if (!INSN_P (insn)
2385 || (DEBUG_INSN_P (insn)
2386 && TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL))
2387 continue;
2389 while (!INSN_P (orig_insn)
2390 || (DEBUG_INSN_P (orig_insn)
2391 && (TREE_CODE (INSN_VAR_LOCATION_DECL (orig_insn))
2392 == LABEL_DECL)))
2393 orig_insn = NEXT_INSN (orig_insn);
2395 ivts_templ.insn = orig_insn;
2396 ve_templ.insn = orig_insn;
2398 /* Apply splitting iv optimization. */
2399 if (opt_info->insns_to_split.is_created ())
2401 maybe_strip_eq_note_for_split_iv (opt_info, insn);
2403 ivts = opt_info->insns_to_split.find (&ivts_templ);
2405 if (ivts)
2407 gcc_assert (GET_CODE (PATTERN (insn))
2408 == GET_CODE (PATTERN (orig_insn)));
2410 if (!delta)
2411 insert_base_initialization (ivts, insn);
2412 split_iv (ivts, insn, delta);
2415 /* Apply variable expansion optimization. */
2416 if (unrolling && opt_info->insns_with_var_to_expand.is_created ())
2418 ves = (struct var_to_expand *)
2419 opt_info->insns_with_var_to_expand.find (&ve_templ);
2420 if (ves)
2422 gcc_assert (GET_CODE (PATTERN (insn))
2423 == GET_CODE (PATTERN (orig_insn)));
2424 expand_var_during_unrolling (ves, insn);
2427 orig_insn = NEXT_INSN (orig_insn);
2431 if (!rewrite_original_loop)
2432 return;
2434 /* Initialize the variable expansions in the loop preheader
2435 and take care of combining them at the loop exit. */
2436 if (opt_info->insns_with_var_to_expand.is_created ())
2438 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2439 insert_var_expansion_initialization (ves, opt_info->loop_preheader);
2440 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2441 combine_var_copies_in_loop_exit (ves, opt_info->loop_exit);
2444 /* Rewrite also the original loop body. Find them as originals of the blocks
2445 in the last copied iteration, i.e. those that have
2446 get_bb_copy (get_bb_original (bb)) == bb. */
2447 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2449 bb = BASIC_BLOCK (i);
2450 orig_bb = get_bb_original (bb);
2451 if (get_bb_copy (orig_bb) != bb)
2452 continue;
2454 delta = determine_split_iv_delta (0, n_copies, unrolling);
2455 for (orig_insn = BB_HEAD (orig_bb);
2456 orig_insn != NEXT_INSN (BB_END (bb));
2457 orig_insn = next)
2459 next = NEXT_INSN (orig_insn);
2461 if (!INSN_P (orig_insn))
2462 continue;
2464 ivts_templ.insn = orig_insn;
2465 if (opt_info->insns_to_split.is_created ())
2467 maybe_strip_eq_note_for_split_iv (opt_info, orig_insn);
2469 ivts = (struct iv_to_split *)
2470 opt_info->insns_to_split.find (&ivts_templ);
2471 if (ivts)
2473 if (!delta)
2474 insert_base_initialization (ivts, orig_insn);
2475 split_iv (ivts, orig_insn, delta);
2476 continue;
2484 /* Release OPT_INFO. */
2486 static void
2487 free_opt_info (struct opt_info *opt_info)
2489 if (opt_info->insns_to_split.is_created ())
2490 opt_info->insns_to_split.dispose ();
2491 if (opt_info->insns_with_var_to_expand.is_created ())
2493 struct var_to_expand *ves;
2495 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2496 ves->var_expansions.release ();
2497 opt_info->insns_with_var_to_expand.dispose ();
2499 free (opt_info);