* ChangeLog: Fix whitespace.
[official-gcc.git] / gcc / vec.h
blob4e8e3b877d47e7884fe1789abd12b719466f9ab2
1 /* Vector API for GNU compiler.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
4 Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef GCC_VEC_H
23 #define GCC_VEC_H
25 /* FIXME - When compiling some of the gen* binaries, we cannot enable GC
26 support because the headers generated by gengtype are still not
27 present. In particular, the header file gtype-desc.h is missing,
28 so compilation may fail if we try to include ggc.h.
30 Since we use some of those declarations, we need to provide them
31 (even if the GC-based templates are not used). This is not a
32 problem because the code that runs before gengtype is built will
33 never need to use GC vectors. But it does force us to declare
34 these functions more than once. */
35 #ifdef GENERATOR_FILE
36 #define VEC_GC_ENABLED 0
37 #else
38 #define VEC_GC_ENABLED 1
39 #endif // GENERATOR_FILE
41 #include "statistics.h" // For CXX_MEM_STAT_INFO.
43 #if VEC_GC_ENABLED
44 #include "ggc.h"
45 #else
46 # ifndef GCC_GGC_H
47 /* Even if we think that GC is not enabled, the test that sets it is
48 weak. There are files compiled with -DGENERATOR_FILE that already
49 include ggc.h. We only need to provide these definitions if ggc.h
50 has not been included. Sigh. */
51 extern void ggc_free (void *);
52 extern size_t ggc_round_alloc_size (size_t requested_size);
53 extern void *ggc_realloc_stat (void *, size_t MEM_STAT_DECL);
54 # endif // GCC_GGC_H
55 #endif // VEC_GC_ENABLED
57 /* Templated vector type and associated interfaces.
59 The interface functions are typesafe and use inline functions,
60 sometimes backed by out-of-line generic functions. The vectors are
61 designed to interoperate with the GTY machinery.
63 There are both 'index' and 'iterate' accessors. The index accessor
64 is implemented by operator[]. The iterator returns a boolean
65 iteration condition and updates the iteration variable passed by
66 reference. Because the iterator will be inlined, the address-of
67 can be optimized away.
69 Each operation that increases the number of active elements is
70 available in 'quick' and 'safe' variants. The former presumes that
71 there is sufficient allocated space for the operation to succeed
72 (it dies if there is not). The latter will reallocate the
73 vector, if needed. Reallocation causes an exponential increase in
74 vector size. If you know you will be adding N elements, it would
75 be more efficient to use the reserve operation before adding the
76 elements with the 'quick' operation. This will ensure there are at
77 least as many elements as you ask for, it will exponentially
78 increase if there are too few spare slots. If you want reserve a
79 specific number of slots, but do not want the exponential increase
80 (for instance, you know this is the last allocation), use the
81 reserve_exact operation. You can also create a vector of a
82 specific size from the get go.
84 You should prefer the push and pop operations, as they append and
85 remove from the end of the vector. If you need to remove several
86 items in one go, use the truncate operation. The insert and remove
87 operations allow you to change elements in the middle of the
88 vector. There are two remove operations, one which preserves the
89 element ordering 'ordered_remove', and one which does not
90 'unordered_remove'. The latter function copies the end element
91 into the removed slot, rather than invoke a memmove operation. The
92 'lower_bound' function will determine where to place an item in the
93 array using insert that will maintain sorted order.
95 Vectors are template types with three arguments: the type of the
96 elements in the vector, the allocation strategy, and the physical
97 layout to use
99 Four allocation strategies are supported:
101 - Heap: allocation is done using malloc/free. This is the
102 default allocation strategy.
104 - GC: allocation is done using ggc_alloc/ggc_free.
106 - GC atomic: same as GC with the exception that the elements
107 themselves are assumed to be of an atomic type that does
108 not need to be garbage collected. This means that marking
109 routines do not need to traverse the array marking the
110 individual elements. This increases the performance of
111 GC activities.
113 Two physical layouts are supported:
115 - Embedded: The vector is structured using the trailing array
116 idiom. The last member of the structure is an array of size
117 1. When the vector is initially allocated, a single memory
118 block is created to hold the vector's control data and the
119 array of elements. These vectors cannot grow without
120 reallocation (see discussion on embeddable vectors below).
122 - Space efficient: The vector is structured as a pointer to an
123 embedded vector. This is the default layout. It means that
124 vectors occupy a single word of storage before initial
125 allocation. Vectors are allowed to grow (the internal
126 pointer is reallocated but the main vector instance does not
127 need to relocate).
129 The type, allocation and layout are specified when the vector is
130 declared.
132 If you need to directly manipulate a vector, then the 'address'
133 accessor will return the address of the start of the vector. Also
134 the 'space' predicate will tell you whether there is spare capacity
135 in the vector. You will not normally need to use these two functions.
137 Notes on the different layout strategies
139 * Embeddable vectors (vec<T, A, vl_embed>)
141 These vectors are suitable to be embedded in other data
142 structures so that they can be pre-allocated in a contiguous
143 memory block.
145 Embeddable vectors are implemented using the trailing array
146 idiom, thus they are not resizeable without changing the address
147 of the vector object itself. This means you cannot have
148 variables or fields of embeddable vector type -- always use a
149 pointer to a vector. The one exception is the final field of a
150 structure, which could be a vector type.
152 You will have to use the embedded_size & embedded_init calls to
153 create such objects, and they will not be resizeable (so the
154 'safe' allocation variants are not available).
156 Properties of embeddable vectors:
158 - The whole vector and control data are allocated in a single
159 contiguous block. It uses the trailing-vector idiom, so
160 allocation must reserve enough space for all the elements
161 in the vector plus its control data.
162 - The vector cannot be re-allocated.
163 - The vector cannot grow nor shrink.
164 - No indirections needed for access/manipulation.
165 - It requires 2 words of storage (prior to vector allocation).
168 * Space efficient vector (vec<T, A, vl_ptr>)
170 These vectors can grow dynamically and are allocated together
171 with their control data. They are suited to be included in data
172 structures. Prior to initial allocation, they only take a single
173 word of storage.
175 These vectors are implemented as a pointer to embeddable vectors.
176 The semantics allow for this pointer to be NULL to represent
177 empty vectors. This way, empty vectors occupy minimal space in
178 the structure containing them.
180 Properties:
182 - The whole vector and control data are allocated in a single
183 contiguous block.
184 - The whole vector may be re-allocated.
185 - Vector data may grow and shrink.
186 - Access and manipulation requires a pointer test and
187 indirection.
188 - It requires 1 word of storage (prior to vector allocation).
190 An example of their use would be,
192 struct my_struct {
193 // A space-efficient vector of tree pointers in GC memory.
194 vec<tree, va_gc, vl_ptr> v;
197 struct my_struct *s;
199 if (s->v.length ()) { we have some contents }
200 s->v.safe_push (decl); // append some decl onto the end
201 for (ix = 0; s->v.iterate (ix, &elt); ix++)
202 { do something with elt }
205 /* Support function for statistics. */
206 extern void dump_vec_loc_statistics (void);
209 /* Control data for vectors. This contains the number of allocated
210 and used slots inside a vector. */
212 struct vec_prefix
214 /* FIXME - These fields should be private, but we need to cater to
215 compilers that have stricter notions of PODness for types. */
217 /* Memory allocation support routines in vec.c. */
218 void register_overhead (size_t, const char *, int, const char *);
219 void release_overhead (void);
220 static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
222 /* Note that vec_prefix should be a base class for vec, but we use
223 offsetof() on vector fields of tree structures (e.g.,
224 tree_binfo::base_binfos), and offsetof only supports base types.
226 To compensate, we make vec_prefix a field inside vec and make
227 vec a friend class of vec_prefix so it can access its fields. */
228 template <typename, typename, typename> friend struct vec;
230 /* The allocator types also need access to our internals. */
231 friend struct va_gc;
232 friend struct va_gc_atomic;
233 friend struct va_heap;
235 unsigned m_alloc : 31;
236 unsigned m_has_auto_buf : 1;
237 unsigned m_num;
240 template<typename, typename, typename> struct vec;
242 /* Valid vector layouts
244 vl_embed - Embeddable vector that uses the trailing array idiom.
245 vl_ptr - Space efficient vector that uses a pointer to an
246 embeddable vector. */
247 struct vl_embed { };
248 struct vl_ptr { };
251 /* Types of supported allocations
253 va_heap - Allocation uses malloc/free.
254 va_gc - Allocation uses ggc_alloc.
255 va_gc_atomic - Same as GC, but individual elements of the array
256 do not need to be marked during collection. */
258 /* Allocator type for heap vectors. */
259 struct va_heap
261 /* Heap vectors are frequently regular instances, so use the vl_ptr
262 layout for them. */
263 typedef vl_ptr default_layout;
265 template<typename T>
266 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
267 CXX_MEM_STAT_INFO);
269 template<typename T>
270 static void release (vec<T, va_heap, vl_embed> *&);
274 /* Allocator for heap memory. Ensure there are at least RESERVE free
275 slots in V. If EXACT is true, grow exactly, else grow
276 exponentially. As a special case, if the vector had not been
277 allocated and and RESERVE is 0, no vector will be created. */
279 template<typename T>
280 inline void
281 va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
282 MEM_STAT_DECL)
284 unsigned alloc
285 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
286 gcc_assert (alloc);
288 if (GATHER_STATISTICS && v)
289 v->m_vecpfx.release_overhead ();
291 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
292 unsigned nelem = v ? v->length () : 0;
293 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
294 v->embedded_init (alloc, nelem);
296 if (GATHER_STATISTICS)
297 v->m_vecpfx.register_overhead (size FINAL_PASS_MEM_STAT);
301 /* Free the heap space allocated for vector V. */
303 template<typename T>
304 void
305 va_heap::release (vec<T, va_heap, vl_embed> *&v)
307 if (v == NULL)
308 return;
310 if (GATHER_STATISTICS)
311 v->m_vecpfx.release_overhead ();
312 ::free (v);
313 v = NULL;
317 /* Allocator type for GC vectors. Notice that we need the structure
318 declaration even if GC is not enabled. */
320 struct va_gc
322 /* Use vl_embed as the default layout for GC vectors. Due to GTY
323 limitations, GC vectors must always be pointers, so it is more
324 efficient to use a pointer to the vl_embed layout, rather than
325 using a pointer to a pointer as would be the case with vl_ptr. */
326 typedef vl_embed default_layout;
328 template<typename T, typename A>
329 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
330 CXX_MEM_STAT_INFO);
332 template<typename T, typename A>
333 static void release (vec<T, A, vl_embed> *&v);
337 /* Free GC memory used by V and reset V to NULL. */
339 template<typename T, typename A>
340 inline void
341 va_gc::release (vec<T, A, vl_embed> *&v)
343 if (v)
344 ::ggc_free (v);
345 v = NULL;
349 /* Allocator for GC memory. Ensure there are at least RESERVE free
350 slots in V. If EXACT is true, grow exactly, else grow
351 exponentially. As a special case, if the vector had not been
352 allocated and and RESERVE is 0, no vector will be created. */
354 template<typename T, typename A>
355 void
356 va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
357 MEM_STAT_DECL)
359 unsigned alloc
360 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
361 if (!alloc)
363 ::ggc_free (v);
364 v = NULL;
365 return;
368 /* Calculate the amount of space we want. */
369 size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
371 /* Ask the allocator how much space it will really give us. */
372 size = ::ggc_round_alloc_size (size);
374 /* Adjust the number of slots accordingly. */
375 size_t vec_offset = sizeof (vec_prefix);
376 size_t elt_size = sizeof (T);
377 alloc = (size - vec_offset) / elt_size;
379 /* And finally, recalculate the amount of space we ask for. */
380 size = vec_offset + alloc * elt_size;
382 unsigned nelem = v ? v->length () : 0;
383 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc_stat (v, size
384 PASS_MEM_STAT));
385 v->embedded_init (alloc, nelem);
389 /* Allocator type for GC vectors. This is for vectors of types
390 atomics w.r.t. collection, so allocation and deallocation is
391 completely inherited from va_gc. */
392 struct va_gc_atomic : va_gc
397 /* Generic vector template. Default values for A and L indicate the
398 most commonly used strategies.
400 FIXME - Ideally, they would all be vl_ptr to encourage using regular
401 instances for vectors, but the existing GTY machinery is limited
402 in that it can only deal with GC objects that are pointers
403 themselves.
405 This means that vector operations that need to deal with
406 potentially NULL pointers, must be provided as free
407 functions (see the vec_safe_* functions above). */
408 template<typename T,
409 typename A = va_heap,
410 typename L = typename A::default_layout>
411 struct GTY((user)) vec
415 /* Type to provide NULL values for vec<T, A, L>. This is used to
416 provide nil initializers for vec instances. Since vec must be
417 a POD, we cannot have proper ctor/dtor for it. To initialize
418 a vec instance, you can assign it the value vNULL. */
419 struct vnull
421 template <typename T, typename A, typename L>
422 operator vec<T, A, L> () { return vec<T, A, L>(); }
424 extern vnull vNULL;
427 /* Embeddable vector. These vectors are suitable to be embedded
428 in other data structures so that they can be pre-allocated in a
429 contiguous memory block.
431 Embeddable vectors are implemented using the trailing array idiom,
432 thus they are not resizeable without changing the address of the
433 vector object itself. This means you cannot have variables or
434 fields of embeddable vector type -- always use a pointer to a
435 vector. The one exception is the final field of a structure, which
436 could be a vector type.
438 You will have to use the embedded_size & embedded_init calls to
439 create such objects, and they will not be resizeable (so the 'safe'
440 allocation variants are not available).
442 Properties:
444 - The whole vector and control data are allocated in a single
445 contiguous block. It uses the trailing-vector idiom, so
446 allocation must reserve enough space for all the elements
447 in the vector plus its control data.
448 - The vector cannot be re-allocated.
449 - The vector cannot grow nor shrink.
450 - No indirections needed for access/manipulation.
451 - It requires 2 words of storage (prior to vector allocation). */
453 template<typename T, typename A>
454 struct GTY((user)) vec<T, A, vl_embed>
456 public:
457 unsigned allocated (void) const { return m_vecpfx.m_alloc; }
458 unsigned length (void) const { return m_vecpfx.m_num; }
459 bool is_empty (void) const { return m_vecpfx.m_num == 0; }
460 T *address (void) { return m_vecdata; }
461 const T *address (void) const { return m_vecdata; }
462 const T &operator[] (unsigned) const;
463 T &operator[] (unsigned);
464 T &last (void);
465 bool space (unsigned) const;
466 bool iterate (unsigned, T *) const;
467 bool iterate (unsigned, T **) const;
468 vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
469 void splice (vec &);
470 void splice (vec *src);
471 T *quick_push (const T &);
472 T &pop (void);
473 void truncate (unsigned);
474 void quick_insert (unsigned, const T &);
475 void ordered_remove (unsigned);
476 void unordered_remove (unsigned);
477 void block_remove (unsigned, unsigned);
478 void qsort (int (*) (const void *, const void *));
479 T *bsearch (const void *key, int (*compar)(const void *, const void *));
480 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
481 static size_t embedded_size (unsigned);
482 void embedded_init (unsigned, unsigned = 0);
483 void quick_grow (unsigned len);
484 void quick_grow_cleared (unsigned len);
486 /* vec class can access our internal data and functions. */
487 template <typename, typename, typename> friend struct vec;
489 /* The allocator types also need access to our internals. */
490 friend struct va_gc;
491 friend struct va_gc_atomic;
492 friend struct va_heap;
494 /* FIXME - These fields should be private, but we need to cater to
495 compilers that have stricter notions of PODness for types. */
496 vec_prefix m_vecpfx;
497 T m_vecdata[1];
501 /* Convenience wrapper functions to use when dealing with pointers to
502 embedded vectors. Some functionality for these vectors must be
503 provided via free functions for these reasons:
505 1- The pointer may be NULL (e.g., before initial allocation).
507 2- When the vector needs to grow, it must be reallocated, so
508 the pointer will change its value.
510 Because of limitations with the current GC machinery, all vectors
511 in GC memory *must* be pointers. */
514 /* If V contains no room for NELEMS elements, return false. Otherwise,
515 return true. */
516 template<typename T, typename A>
517 inline bool
518 vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
520 return v ? v->space (nelems) : nelems == 0;
524 /* If V is NULL, return 0. Otherwise, return V->length(). */
525 template<typename T, typename A>
526 inline unsigned
527 vec_safe_length (const vec<T, A, vl_embed> *v)
529 return v ? v->length () : 0;
533 /* If V is NULL, return NULL. Otherwise, return V->address(). */
534 template<typename T, typename A>
535 inline T *
536 vec_safe_address (vec<T, A, vl_embed> *v)
538 return v ? v->address () : NULL;
542 /* If V is NULL, return true. Otherwise, return V->is_empty(). */
543 template<typename T, typename A>
544 inline bool
545 vec_safe_is_empty (vec<T, A, vl_embed> *v)
547 return v ? v->is_empty () : true;
551 /* If V does not have space for NELEMS elements, call
552 V->reserve(NELEMS, EXACT). */
553 template<typename T, typename A>
554 inline bool
555 vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
556 CXX_MEM_STAT_INFO)
558 bool extend = nelems ? !vec_safe_space (v, nelems) : false;
559 if (extend)
560 A::reserve (v, nelems, exact PASS_MEM_STAT);
561 return extend;
564 template<typename T, typename A>
565 inline bool
566 vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
567 CXX_MEM_STAT_INFO)
569 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
573 /* Allocate GC memory for V with space for NELEMS slots. If NELEMS
574 is 0, V is initialized to NULL. */
576 template<typename T, typename A>
577 inline void
578 vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
580 v = NULL;
581 vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
585 /* Free the GC memory allocated by vector V and set it to NULL. */
587 template<typename T, typename A>
588 inline void
589 vec_free (vec<T, A, vl_embed> *&v)
591 A::release (v);
595 /* Grow V to length LEN. Allocate it, if necessary. */
596 template<typename T, typename A>
597 inline void
598 vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
600 unsigned oldlen = vec_safe_length (v);
601 gcc_checking_assert (len >= oldlen);
602 vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
603 v->quick_grow (len);
607 /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
608 template<typename T, typename A>
609 inline void
610 vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
612 unsigned oldlen = vec_safe_length (v);
613 vec_safe_grow (v, len PASS_MEM_STAT);
614 memset (&(v->address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
618 /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
619 template<typename T, typename A>
620 inline bool
621 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
623 if (v)
624 return v->iterate (ix, ptr);
625 else
627 *ptr = 0;
628 return false;
632 template<typename T, typename A>
633 inline bool
634 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
636 if (v)
637 return v->iterate (ix, ptr);
638 else
640 *ptr = 0;
641 return false;
646 /* If V has no room for one more element, reallocate it. Then call
647 V->quick_push(OBJ). */
648 template<typename T, typename A>
649 inline T *
650 vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
652 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
653 return v->quick_push (obj);
657 /* if V has no room for one more element, reallocate it. Then call
658 V->quick_insert(IX, OBJ). */
659 template<typename T, typename A>
660 inline void
661 vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
662 CXX_MEM_STAT_INFO)
664 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
665 v->quick_insert (ix, obj);
669 /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
670 template<typename T, typename A>
671 inline void
672 vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
674 if (v)
675 v->truncate (size);
679 /* If SRC is not NULL, return a pointer to a copy of it. */
680 template<typename T, typename A>
681 inline vec<T, A, vl_embed> *
682 vec_safe_copy (vec<T, A, vl_embed> *src)
684 return src ? src->copy () : NULL;
687 /* Copy the elements from SRC to the end of DST as if by memcpy.
688 Reallocate DST, if necessary. */
689 template<typename T, typename A>
690 inline void
691 vec_safe_splice (vec<T, A, vl_embed> *&dst, vec<T, A, vl_embed> *src
692 CXX_MEM_STAT_INFO)
694 unsigned src_len = vec_safe_length (src);
695 if (src_len)
697 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
698 PASS_MEM_STAT);
699 dst->splice (*src);
704 /* Index into vector. Return the IX'th element. IX must be in the
705 domain of the vector. */
707 template<typename T, typename A>
708 inline const T &
709 vec<T, A, vl_embed>::operator[] (unsigned ix) const
711 gcc_checking_assert (ix < m_vecpfx.m_num);
712 return m_vecdata[ix];
715 template<typename T, typename A>
716 inline T &
717 vec<T, A, vl_embed>::operator[] (unsigned ix)
719 gcc_checking_assert (ix < m_vecpfx.m_num);
720 return m_vecdata[ix];
724 /* Get the final element of the vector, which must not be empty. */
726 template<typename T, typename A>
727 inline T &
728 vec<T, A, vl_embed>::last (void)
730 gcc_checking_assert (m_vecpfx.m_num > 0);
731 return (*this)[m_vecpfx.m_num - 1];
735 /* If this vector has space for NELEMS additional entries, return
736 true. You usually only need to use this if you are doing your
737 own vector reallocation, for instance on an embedded vector. This
738 returns true in exactly the same circumstances that vec::reserve
739 will. */
741 template<typename T, typename A>
742 inline bool
743 vec<T, A, vl_embed>::space (unsigned nelems) const
745 return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
749 /* Return iteration condition and update PTR to point to the IX'th
750 element of this vector. Use this to iterate over the elements of a
751 vector as follows,
753 for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
754 continue; */
756 template<typename T, typename A>
757 inline bool
758 vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
760 if (ix < m_vecpfx.m_num)
762 *ptr = m_vecdata[ix];
763 return true;
765 else
767 *ptr = 0;
768 return false;
773 /* Return iteration condition and update *PTR to point to the
774 IX'th element of this vector. Use this to iterate over the
775 elements of a vector as follows,
777 for (ix = 0; v->iterate (ix, &ptr); ix++)
778 continue;
780 This variant is for vectors of objects. */
782 template<typename T, typename A>
783 inline bool
784 vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
786 if (ix < m_vecpfx.m_num)
788 *ptr = CONST_CAST (T *, &m_vecdata[ix]);
789 return true;
791 else
793 *ptr = 0;
794 return false;
799 /* Return a pointer to a copy of this vector. */
801 template<typename T, typename A>
802 inline vec<T, A, vl_embed> *
803 vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
805 vec<T, A, vl_embed> *new_vec = NULL;
806 unsigned len = length ();
807 if (len)
809 vec_alloc (new_vec, len PASS_MEM_STAT);
810 new_vec->embedded_init (len, len);
811 memcpy (new_vec->address (), m_vecdata, sizeof (T) * len);
813 return new_vec;
817 /* Copy the elements from SRC to the end of this vector as if by memcpy.
818 The vector must have sufficient headroom available. */
820 template<typename T, typename A>
821 inline void
822 vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> &src)
824 unsigned len = src.length ();
825 if (len)
827 gcc_checking_assert (space (len));
828 memcpy (address () + length (), src.address (), len * sizeof (T));
829 m_vecpfx.m_num += len;
833 template<typename T, typename A>
834 inline void
835 vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> *src)
837 if (src)
838 splice (*src);
842 /* Push OBJ (a new element) onto the end of the vector. There must be
843 sufficient space in the vector. Return a pointer to the slot
844 where OBJ was inserted. */
846 template<typename T, typename A>
847 inline T *
848 vec<T, A, vl_embed>::quick_push (const T &obj)
850 gcc_checking_assert (space (1));
851 T *slot = &m_vecdata[m_vecpfx.m_num++];
852 *slot = obj;
853 return slot;
857 /* Pop and return the last element off the end of the vector. */
859 template<typename T, typename A>
860 inline T &
861 vec<T, A, vl_embed>::pop (void)
863 gcc_checking_assert (length () > 0);
864 return m_vecdata[--m_vecpfx.m_num];
868 /* Set the length of the vector to SIZE. The new length must be less
869 than or equal to the current length. This is an O(1) operation. */
871 template<typename T, typename A>
872 inline void
873 vec<T, A, vl_embed>::truncate (unsigned size)
875 gcc_checking_assert (length () >= size);
876 m_vecpfx.m_num = size;
880 /* Insert an element, OBJ, at the IXth position of this vector. There
881 must be sufficient space. */
883 template<typename T, typename A>
884 inline void
885 vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
887 gcc_checking_assert (length () < allocated ());
888 gcc_checking_assert (ix <= length ());
889 T *slot = &m_vecdata[ix];
890 memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
891 *slot = obj;
895 /* Remove an element from the IXth position of this vector. Ordering of
896 remaining elements is preserved. This is an O(N) operation due to
897 memmove. */
899 template<typename T, typename A>
900 inline void
901 vec<T, A, vl_embed>::ordered_remove (unsigned ix)
903 gcc_checking_assert (ix < length ());
904 T *slot = &m_vecdata[ix];
905 memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
909 /* Remove an element from the IXth position of this vector. Ordering of
910 remaining elements is destroyed. This is an O(1) operation. */
912 template<typename T, typename A>
913 inline void
914 vec<T, A, vl_embed>::unordered_remove (unsigned ix)
916 gcc_checking_assert (ix < length ());
917 m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
921 /* Remove LEN elements starting at the IXth. Ordering is retained.
922 This is an O(N) operation due to memmove. */
924 template<typename T, typename A>
925 inline void
926 vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
928 gcc_checking_assert (ix + len <= length ());
929 T *slot = &m_vecdata[ix];
930 m_vecpfx.m_num -= len;
931 memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
935 /* Sort the contents of this vector with qsort. CMP is the comparison
936 function to pass to qsort. */
938 template<typename T, typename A>
939 inline void
940 vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
942 if (length () > 1)
943 ::qsort (address (), length (), sizeof (T), cmp);
947 /* Search the contents of the sorted vector with a binary search.
948 CMP is the comparison function to pass to bsearch. */
950 template<typename T, typename A>
951 inline T *
952 vec<T, A, vl_embed>::bsearch (const void *key,
953 int (*compar) (const void *, const void *))
955 const void *base = this->address ();
956 size_t nmemb = this->length ();
957 size_t size = sizeof (T);
958 /* The following is a copy of glibc stdlib-bsearch.h. */
959 size_t l, u, idx;
960 const void *p;
961 int comparison;
963 l = 0;
964 u = nmemb;
965 while (l < u)
967 idx = (l + u) / 2;
968 p = (const void *) (((const char *) base) + (idx * size));
969 comparison = (*compar) (key, p);
970 if (comparison < 0)
971 u = idx;
972 else if (comparison > 0)
973 l = idx + 1;
974 else
975 return (T *)const_cast<void *>(p);
978 return NULL;
982 /* Find and return the first position in which OBJ could be inserted
983 without changing the ordering of this vector. LESSTHAN is a
984 function that returns true if the first argument is strictly less
985 than the second. */
987 template<typename T, typename A>
988 unsigned
989 vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
990 const
992 unsigned int len = length ();
993 unsigned int half, middle;
994 unsigned int first = 0;
995 while (len > 0)
997 half = len / 2;
998 middle = first;
999 middle += half;
1000 T middle_elem = (*this)[middle];
1001 if (lessthan (middle_elem, obj))
1003 first = middle;
1004 ++first;
1005 len = len - half - 1;
1007 else
1008 len = half;
1010 return first;
1014 /* Return the number of bytes needed to embed an instance of an
1015 embeddable vec inside another data structure.
1017 Use these methods to determine the required size and initialization
1018 of a vector V of type T embedded within another structure (as the
1019 final member):
1021 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
1022 void v->embedded_init (unsigned alloc, unsigned num);
1024 These allow the caller to perform the memory allocation. */
1026 template<typename T, typename A>
1027 inline size_t
1028 vec<T, A, vl_embed>::embedded_size (unsigned alloc)
1030 typedef vec<T, A, vl_embed> vec_embedded;
1031 return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
1035 /* Initialize the vector to contain room for ALLOC elements and
1036 NUM active elements. */
1038 template<typename T, typename A>
1039 inline void
1040 vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num)
1042 m_vecpfx.m_alloc = alloc;
1043 m_vecpfx.m_has_auto_buf = 0;
1044 m_vecpfx.m_num = num;
1048 /* Grow the vector to a specific length. LEN must be as long or longer than
1049 the current length. The new elements are uninitialized. */
1051 template<typename T, typename A>
1052 inline void
1053 vec<T, A, vl_embed>::quick_grow (unsigned len)
1055 gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
1056 m_vecpfx.m_num = len;
1060 /* Grow the vector to a specific length. LEN must be as long or longer than
1061 the current length. The new elements are initialized to zero. */
1063 template<typename T, typename A>
1064 inline void
1065 vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
1067 unsigned oldlen = length ();
1068 quick_grow (len);
1069 memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
1073 /* Garbage collection support for vec<T, A, vl_embed>. */
1075 template<typename T>
1076 void
1077 gt_ggc_mx (vec<T, va_gc> *v)
1079 extern void gt_ggc_mx (T &);
1080 for (unsigned i = 0; i < v->length (); i++)
1081 gt_ggc_mx ((*v)[i]);
1084 template<typename T>
1085 void
1086 gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
1088 /* Nothing to do. Vectors of atomic types wrt GC do not need to
1089 be traversed. */
1093 /* PCH support for vec<T, A, vl_embed>. */
1095 template<typename T, typename A>
1096 void
1097 gt_pch_nx (vec<T, A, vl_embed> *v)
1099 extern void gt_pch_nx (T &);
1100 for (unsigned i = 0; i < v->length (); i++)
1101 gt_pch_nx ((*v)[i]);
1104 template<typename T, typename A>
1105 void
1106 gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1108 for (unsigned i = 0; i < v->length (); i++)
1109 op (&((*v)[i]), cookie);
1112 template<typename T, typename A>
1113 void
1114 gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1116 extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1117 for (unsigned i = 0; i < v->length (); i++)
1118 gt_pch_nx (&((*v)[i]), op, cookie);
1122 /* Space efficient vector. These vectors can grow dynamically and are
1123 allocated together with their control data. They are suited to be
1124 included in data structures. Prior to initial allocation, they
1125 only take a single word of storage.
1127 These vectors are implemented as a pointer to an embeddable vector.
1128 The semantics allow for this pointer to be NULL to represent empty
1129 vectors. This way, empty vectors occupy minimal space in the
1130 structure containing them.
1132 Properties:
1134 - The whole vector and control data are allocated in a single
1135 contiguous block.
1136 - The whole vector may be re-allocated.
1137 - Vector data may grow and shrink.
1138 - Access and manipulation requires a pointer test and
1139 indirection.
1140 - It requires 1 word of storage (prior to vector allocation).
1143 Limitations:
1145 These vectors must be PODs because they are stored in unions.
1146 (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1147 As long as we use C++03, we cannot have constructors nor
1148 destructors in classes that are stored in unions. */
1150 template<typename T>
1151 struct vec<T, va_heap, vl_ptr>
1153 public:
1154 /* Memory allocation and deallocation for the embedded vector.
1155 Needed because we cannot have proper ctors/dtors defined. */
1156 void create (unsigned nelems CXX_MEM_STAT_INFO);
1157 void release (void);
1159 /* Vector operations. */
1160 bool exists (void) const
1161 { return m_vec != NULL; }
1163 bool is_empty (void) const
1164 { return m_vec ? m_vec->is_empty () : true; }
1166 unsigned length (void) const
1167 { return m_vec ? m_vec->length () : 0; }
1169 T *address (void)
1170 { return m_vec ? m_vec->m_vecdata : NULL; }
1172 const T *address (void) const
1173 { return m_vec ? m_vec->m_vecdata : NULL; }
1175 const T &operator[] (unsigned ix) const
1176 { return (*m_vec)[ix]; }
1178 bool operator!=(const vec &other) const
1179 { return !(*this == other); }
1181 bool operator==(const vec &other) const
1182 { return address () == other.address (); }
1184 T &operator[] (unsigned ix)
1185 { return (*m_vec)[ix]; }
1187 T &last (void)
1188 { return m_vec->last (); }
1190 bool space (int nelems) const
1191 { return m_vec ? m_vec->space (nelems) : nelems == 0; }
1193 bool iterate (unsigned ix, T *p) const;
1194 bool iterate (unsigned ix, T **p) const;
1195 vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1196 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1197 bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
1198 void splice (vec &);
1199 void safe_splice (vec & CXX_MEM_STAT_INFO);
1200 T *quick_push (const T &);
1201 T *safe_push (const T &CXX_MEM_STAT_INFO);
1202 T &pop (void);
1203 void truncate (unsigned);
1204 void safe_grow (unsigned CXX_MEM_STAT_INFO);
1205 void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
1206 void quick_grow (unsigned);
1207 void quick_grow_cleared (unsigned);
1208 void quick_insert (unsigned, const T &);
1209 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1210 void ordered_remove (unsigned);
1211 void unordered_remove (unsigned);
1212 void block_remove (unsigned, unsigned);
1213 void qsort (int (*) (const void *, const void *));
1214 T *bsearch (const void *key, int (*compar)(const void *, const void *));
1215 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
1217 bool using_auto_storage () const;
1219 /* FIXME - This field should be private, but we need to cater to
1220 compilers that have stricter notions of PODness for types. */
1221 vec<T, va_heap, vl_embed> *m_vec;
1225 /* auto_vec is a subclass of vec that automatically manages creating and
1226 releasing the internal vector. If N is non zero then it has N elements of
1227 internal storage. The default is no internal storage, and you probably only
1228 want to ask for internal storage for vectors on the stack because if the
1229 size of the vector is larger than the internal storage that space is wasted.
1231 template<typename T, size_t N = 0>
1232 class auto_vec : public vec<T, va_heap>
1234 public:
1235 auto_vec ()
1237 m_header.m_alloc = N;
1238 m_header.m_has_auto_buf = 1;
1239 m_header.m_num = 0;
1240 this->m_vec = reinterpret_cast<vec<T, va_heap, vl_embed> *> (&m_header);
1243 ~auto_vec ()
1245 this->release ();
1248 private:
1249 friend class vec<T, va_heap, vl_ptr>;
1251 vec_prefix m_header;
1252 T m_data[N];
1255 /* auto_vec is a sub class of vec whose storage is released when it is
1256 destroyed. */
1257 template<typename T>
1258 class auto_vec<T, 0> : public vec<T, va_heap>
1260 public:
1261 auto_vec () { this->m_vec = NULL; }
1262 auto_vec (size_t n) { this->create (n); }
1263 ~auto_vec () { this->release (); }
1267 /* Allocate heap memory for pointer V and create the internal vector
1268 with space for NELEMS elements. If NELEMS is 0, the internal
1269 vector is initialized to empty. */
1271 template<typename T>
1272 inline void
1273 vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
1275 v = new vec<T>;
1276 v->create (nelems PASS_MEM_STAT);
1280 /* Conditionally allocate heap memory for VEC and its internal vector. */
1282 template<typename T>
1283 inline void
1284 vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
1286 if (!vec)
1287 vec_alloc (vec, nelems PASS_MEM_STAT);
1291 /* Free the heap memory allocated by vector V and set it to NULL. */
1293 template<typename T>
1294 inline void
1295 vec_free (vec<T> *&v)
1297 if (v == NULL)
1298 return;
1300 v->release ();
1301 delete v;
1302 v = NULL;
1306 /* Return iteration condition and update PTR to point to the IX'th
1307 element of this vector. Use this to iterate over the elements of a
1308 vector as follows,
1310 for (ix = 0; v.iterate (ix, &ptr); ix++)
1311 continue; */
1313 template<typename T>
1314 inline bool
1315 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
1317 if (m_vec)
1318 return m_vec->iterate (ix, ptr);
1319 else
1321 *ptr = 0;
1322 return false;
1327 /* Return iteration condition and update *PTR to point to the
1328 IX'th element of this vector. Use this to iterate over the
1329 elements of a vector as follows,
1331 for (ix = 0; v->iterate (ix, &ptr); ix++)
1332 continue;
1334 This variant is for vectors of objects. */
1336 template<typename T>
1337 inline bool
1338 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
1340 if (m_vec)
1341 return m_vec->iterate (ix, ptr);
1342 else
1344 *ptr = 0;
1345 return false;
1350 /* Convenience macro for forward iteration. */
1351 #define FOR_EACH_VEC_ELT(V, I, P) \
1352 for (I = 0; (V).iterate ((I), &(P)); ++(I))
1354 #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
1355 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1357 /* Likewise, but start from FROM rather than 0. */
1358 #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
1359 for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1361 /* Convenience macro for reverse iteration. */
1362 #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
1363 for (I = (V).length () - 1; \
1364 (V).iterate ((I), &(P)); \
1365 (I)--)
1367 #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
1368 for (I = vec_safe_length (V) - 1; \
1369 vec_safe_iterate ((V), (I), &(P)); \
1370 (I)--)
1373 /* Return a copy of this vector. */
1375 template<typename T>
1376 inline vec<T, va_heap, vl_ptr>
1377 vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
1379 vec<T, va_heap, vl_ptr> new_vec = vNULL;
1380 if (length ())
1381 new_vec.m_vec = m_vec->copy ();
1382 return new_vec;
1386 /* Ensure that the vector has at least RESERVE slots available (if
1387 EXACT is false), or exactly RESERVE slots available (if EXACT is
1388 true).
1390 This may create additional headroom if EXACT is false.
1392 Note that this can cause the embedded vector to be reallocated.
1393 Returns true iff reallocation actually occurred. */
1395 template<typename T>
1396 inline bool
1397 vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
1399 if (!nelems || space (nelems))
1400 return false;
1402 /* For now play a game with va_heap::reserve to hide our auto storage if any,
1403 this is necessary because it doesn't have enough information to know the
1404 embedded vector is in auto storage, and so should not be freed. */
1405 vec<T, va_heap, vl_embed> *oldvec = m_vec;
1406 unsigned int oldsize = 0;
1407 bool handle_auto_vec = m_vec && using_auto_storage ();
1408 if (handle_auto_vec)
1410 m_vec = NULL;
1411 oldsize = oldvec->length ();
1412 nelems += oldsize;
1415 va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
1416 if (handle_auto_vec)
1418 memcpy (m_vec->address (), oldvec->address (), sizeof (T) * oldsize);
1419 m_vec->m_vecpfx.m_num = oldsize;
1422 return true;
1426 /* Ensure that this vector has exactly NELEMS slots available. This
1427 will not create additional headroom. Note this can cause the
1428 embedded vector to be reallocated. Returns true iff reallocation
1429 actually occurred. */
1431 template<typename T>
1432 inline bool
1433 vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1435 return reserve (nelems, true PASS_MEM_STAT);
1439 /* Create the internal vector and reserve NELEMS for it. This is
1440 exactly like vec::reserve, but the internal vector is
1441 unconditionally allocated from scratch. The old one, if it
1442 existed, is lost. */
1444 template<typename T>
1445 inline void
1446 vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1448 m_vec = NULL;
1449 if (nelems > 0)
1450 reserve_exact (nelems PASS_MEM_STAT);
1454 /* Free the memory occupied by the embedded vector. */
1456 template<typename T>
1457 inline void
1458 vec<T, va_heap, vl_ptr>::release (void)
1460 if (!m_vec)
1461 return;
1463 if (using_auto_storage ())
1465 static_cast<auto_vec<T, 1> *> (this)->m_header.m_num = 0;
1466 return;
1469 va_heap::release (m_vec);
1472 /* Copy the elements from SRC to the end of this vector as if by memcpy.
1473 SRC and this vector must be allocated with the same memory
1474 allocation mechanism. This vector is assumed to have sufficient
1475 headroom available. */
1477 template<typename T>
1478 inline void
1479 vec<T, va_heap, vl_ptr>::splice (vec<T, va_heap, vl_ptr> &src)
1481 if (src.m_vec)
1482 m_vec->splice (*(src.m_vec));
1486 /* Copy the elements in SRC to the end of this vector as if by memcpy.
1487 SRC and this vector must be allocated with the same mechanism.
1488 If there is not enough headroom in this vector, it will be reallocated
1489 as needed. */
1491 template<typename T>
1492 inline void
1493 vec<T, va_heap, vl_ptr>::safe_splice (vec<T, va_heap, vl_ptr> &src
1494 MEM_STAT_DECL)
1496 if (src.length ())
1498 reserve_exact (src.length ());
1499 splice (src);
1504 /* Push OBJ (a new element) onto the end of the vector. There must be
1505 sufficient space in the vector. Return a pointer to the slot
1506 where OBJ was inserted. */
1508 template<typename T>
1509 inline T *
1510 vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
1512 return m_vec->quick_push (obj);
1516 /* Push a new element OBJ onto the end of this vector. Reallocates
1517 the embedded vector, if needed. Return a pointer to the slot where
1518 OBJ was inserted. */
1520 template<typename T>
1521 inline T *
1522 vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1524 reserve (1, false PASS_MEM_STAT);
1525 return quick_push (obj);
1529 /* Pop and return the last element off the end of the vector. */
1531 template<typename T>
1532 inline T &
1533 vec<T, va_heap, vl_ptr>::pop (void)
1535 return m_vec->pop ();
1539 /* Set the length of the vector to LEN. The new length must be less
1540 than or equal to the current length. This is an O(1) operation. */
1542 template<typename T>
1543 inline void
1544 vec<T, va_heap, vl_ptr>::truncate (unsigned size)
1546 if (m_vec)
1547 m_vec->truncate (size);
1548 else
1549 gcc_checking_assert (size == 0);
1553 /* Grow the vector to a specific length. LEN must be as long or
1554 longer than the current length. The new elements are
1555 uninitialized. Reallocate the internal vector, if needed. */
1557 template<typename T>
1558 inline void
1559 vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
1561 unsigned oldlen = length ();
1562 gcc_checking_assert (oldlen <= len);
1563 reserve_exact (len - oldlen PASS_MEM_STAT);
1564 m_vec->quick_grow (len);
1568 /* Grow the embedded vector to a specific length. LEN must be as
1569 long or longer than the current length. The new elements are
1570 initialized to zero. Reallocate the internal vector, if needed. */
1572 template<typename T>
1573 inline void
1574 vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
1576 unsigned oldlen = length ();
1577 safe_grow (len PASS_MEM_STAT);
1578 memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
1582 /* Same as vec::safe_grow but without reallocation of the internal vector.
1583 If the vector cannot be extended, a runtime assertion will be triggered. */
1585 template<typename T>
1586 inline void
1587 vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
1589 gcc_checking_assert (m_vec);
1590 m_vec->quick_grow (len);
1594 /* Same as vec::quick_grow_cleared but without reallocation of the
1595 internal vector. If the vector cannot be extended, a runtime
1596 assertion will be triggered. */
1598 template<typename T>
1599 inline void
1600 vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
1602 gcc_checking_assert (m_vec);
1603 m_vec->quick_grow_cleared (len);
1607 /* Insert an element, OBJ, at the IXth position of this vector. There
1608 must be sufficient space. */
1610 template<typename T>
1611 inline void
1612 vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
1614 m_vec->quick_insert (ix, obj);
1618 /* Insert an element, OBJ, at the IXth position of the vector.
1619 Reallocate the embedded vector, if necessary. */
1621 template<typename T>
1622 inline void
1623 vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
1625 reserve (1, false PASS_MEM_STAT);
1626 quick_insert (ix, obj);
1630 /* Remove an element from the IXth position of this vector. Ordering of
1631 remaining elements is preserved. This is an O(N) operation due to
1632 a memmove. */
1634 template<typename T>
1635 inline void
1636 vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
1638 m_vec->ordered_remove (ix);
1642 /* Remove an element from the IXth position of this vector. Ordering
1643 of remaining elements is destroyed. This is an O(1) operation. */
1645 template<typename T>
1646 inline void
1647 vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
1649 m_vec->unordered_remove (ix);
1653 /* Remove LEN elements starting at the IXth. Ordering is retained.
1654 This is an O(N) operation due to memmove. */
1656 template<typename T>
1657 inline void
1658 vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
1660 m_vec->block_remove (ix, len);
1664 /* Sort the contents of this vector with qsort. CMP is the comparison
1665 function to pass to qsort. */
1667 template<typename T>
1668 inline void
1669 vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
1671 if (m_vec)
1672 m_vec->qsort (cmp);
1676 /* Search the contents of the sorted vector with a binary search.
1677 CMP is the comparison function to pass to bsearch. */
1679 template<typename T>
1680 inline T *
1681 vec<T, va_heap, vl_ptr>::bsearch (const void *key,
1682 int (*cmp) (const void *, const void *))
1684 if (m_vec)
1685 return m_vec->bsearch (key, cmp);
1686 return NULL;
1690 /* Find and return the first position in which OBJ could be inserted
1691 without changing the ordering of this vector. LESSTHAN is a
1692 function that returns true if the first argument is strictly less
1693 than the second. */
1695 template<typename T>
1696 inline unsigned
1697 vec<T, va_heap, vl_ptr>::lower_bound (T obj,
1698 bool (*lessthan)(const T &, const T &))
1699 const
1701 return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
1704 template<typename T>
1705 inline bool
1706 vec<T, va_heap, vl_ptr>::using_auto_storage () const
1708 if (!m_vec->m_vecpfx.m_has_auto_buf)
1709 return false;
1711 const vec_prefix *auto_header
1712 = &static_cast<const auto_vec<T, 1> *> (this)->m_header;
1713 return reinterpret_cast<vec_prefix *> (m_vec) == auto_header;
1716 #if (GCC_VERSION >= 3000)
1717 # pragma GCC poison m_vec m_vecpfx m_vecdata
1718 #endif
1720 #endif // GCC_VEC_H