PR target/35485
[official-gcc.git] / gcc / cse.c
blobed7d885643921b03cb5b30b88f1c92d28fa8ead6
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS. */
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "toplev.h"
39 #include "output.h"
40 #include "ggc.h"
41 #include "timevar.h"
42 #include "except.h"
43 #include "target.h"
44 #include "params.h"
45 #include "rtlhooks-def.h"
46 #include "tree-pass.h"
47 #include "df.h"
48 #include "dbgcnt.h"
50 /* The basic idea of common subexpression elimination is to go
51 through the code, keeping a record of expressions that would
52 have the same value at the current scan point, and replacing
53 expressions encountered with the cheapest equivalent expression.
55 It is too complicated to keep track of the different possibilities
56 when control paths merge in this code; so, at each label, we forget all
57 that is known and start fresh. This can be described as processing each
58 extended basic block separately. We have a separate pass to perform
59 global CSE.
61 Note CSE can turn a conditional or computed jump into a nop or
62 an unconditional jump. When this occurs we arrange to run the jump
63 optimizer after CSE to delete the unreachable code.
65 We use two data structures to record the equivalent expressions:
66 a hash table for most expressions, and a vector of "quantity
67 numbers" to record equivalent (pseudo) registers.
69 The use of the special data structure for registers is desirable
70 because it is faster. It is possible because registers references
71 contain a fairly small number, the register number, taken from
72 a contiguously allocated series, and two register references are
73 identical if they have the same number. General expressions
74 do not have any such thing, so the only way to retrieve the
75 information recorded on an expression other than a register
76 is to keep it in a hash table.
78 Registers and "quantity numbers":
80 At the start of each basic block, all of the (hardware and pseudo)
81 registers used in the function are given distinct quantity
82 numbers to indicate their contents. During scan, when the code
83 copies one register into another, we copy the quantity number.
84 When a register is loaded in any other way, we allocate a new
85 quantity number to describe the value generated by this operation.
86 `REG_QTY (N)' records what quantity register N is currently thought
87 of as containing.
89 All real quantity numbers are greater than or equal to zero.
90 If register N has not been assigned a quantity, `REG_QTY (N)' will
91 equal -N - 1, which is always negative.
93 Quantity numbers below zero do not exist and none of the `qty_table'
94 entries should be referenced with a negative index.
96 We also maintain a bidirectional chain of registers for each
97 quantity number. The `qty_table` members `first_reg' and `last_reg',
98 and `reg_eqv_table' members `next' and `prev' hold these chains.
100 The first register in a chain is the one whose lifespan is least local.
101 Among equals, it is the one that was seen first.
102 We replace any equivalent register with that one.
104 If two registers have the same quantity number, it must be true that
105 REG expressions with qty_table `mode' must be in the hash table for both
106 registers and must be in the same class.
108 The converse is not true. Since hard registers may be referenced in
109 any mode, two REG expressions might be equivalent in the hash table
110 but not have the same quantity number if the quantity number of one
111 of the registers is not the same mode as those expressions.
113 Constants and quantity numbers
115 When a quantity has a known constant value, that value is stored
116 in the appropriate qty_table `const_rtx'. This is in addition to
117 putting the constant in the hash table as is usual for non-regs.
119 Whether a reg or a constant is preferred is determined by the configuration
120 macro CONST_COSTS and will often depend on the constant value. In any
121 event, expressions containing constants can be simplified, by fold_rtx.
123 When a quantity has a known nearly constant value (such as an address
124 of a stack slot), that value is stored in the appropriate qty_table
125 `const_rtx'.
127 Integer constants don't have a machine mode. However, cse
128 determines the intended machine mode from the destination
129 of the instruction that moves the constant. The machine mode
130 is recorded in the hash table along with the actual RTL
131 constant expression so that different modes are kept separate.
133 Other expressions:
135 To record known equivalences among expressions in general
136 we use a hash table called `table'. It has a fixed number of buckets
137 that contain chains of `struct table_elt' elements for expressions.
138 These chains connect the elements whose expressions have the same
139 hash codes.
141 Other chains through the same elements connect the elements which
142 currently have equivalent values.
144 Register references in an expression are canonicalized before hashing
145 the expression. This is done using `reg_qty' and qty_table `first_reg'.
146 The hash code of a register reference is computed using the quantity
147 number, not the register number.
149 When the value of an expression changes, it is necessary to remove from the
150 hash table not just that expression but all expressions whose values
151 could be different as a result.
153 1. If the value changing is in memory, except in special cases
154 ANYTHING referring to memory could be changed. That is because
155 nobody knows where a pointer does not point.
156 The function `invalidate_memory' removes what is necessary.
158 The special cases are when the address is constant or is
159 a constant plus a fixed register such as the frame pointer
160 or a static chain pointer. When such addresses are stored in,
161 we can tell exactly which other such addresses must be invalidated
162 due to overlap. `invalidate' does this.
163 All expressions that refer to non-constant
164 memory addresses are also invalidated. `invalidate_memory' does this.
166 2. If the value changing is a register, all expressions
167 containing references to that register, and only those,
168 must be removed.
170 Because searching the entire hash table for expressions that contain
171 a register is very slow, we try to figure out when it isn't necessary.
172 Precisely, this is necessary only when expressions have been
173 entered in the hash table using this register, and then the value has
174 changed, and then another expression wants to be added to refer to
175 the register's new value. This sequence of circumstances is rare
176 within any one basic block.
178 `REG_TICK' and `REG_IN_TABLE', accessors for members of
179 cse_reg_info, are used to detect this case. REG_TICK (i) is
180 incremented whenever a value is stored in register i.
181 REG_IN_TABLE (i) holds -1 if no references to register i have been
182 entered in the table; otherwise, it contains the value REG_TICK (i)
183 had when the references were entered. If we want to enter a
184 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
185 remove old references. Until we want to enter a new entry, the
186 mere fact that the two vectors don't match makes the entries be
187 ignored if anyone tries to match them.
189 Registers themselves are entered in the hash table as well as in
190 the equivalent-register chains. However, `REG_TICK' and
191 `REG_IN_TABLE' do not apply to expressions which are simple
192 register references. These expressions are removed from the table
193 immediately when they become invalid, and this can be done even if
194 we do not immediately search for all the expressions that refer to
195 the register.
197 A CLOBBER rtx in an instruction invalidates its operand for further
198 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
199 invalidates everything that resides in memory.
201 Related expressions:
203 Constant expressions that differ only by an additive integer
204 are called related. When a constant expression is put in
205 the table, the related expression with no constant term
206 is also entered. These are made to point at each other
207 so that it is possible to find out if there exists any
208 register equivalent to an expression related to a given expression. */
210 /* Length of qty_table vector. We know in advance we will not need
211 a quantity number this big. */
213 static int max_qty;
215 /* Next quantity number to be allocated.
216 This is 1 + the largest number needed so far. */
218 static int next_qty;
220 /* Per-qty information tracking.
222 `first_reg' and `last_reg' track the head and tail of the
223 chain of registers which currently contain this quantity.
225 `mode' contains the machine mode of this quantity.
227 `const_rtx' holds the rtx of the constant value of this
228 quantity, if known. A summations of the frame/arg pointer
229 and a constant can also be entered here. When this holds
230 a known value, `const_insn' is the insn which stored the
231 constant value.
233 `comparison_{code,const,qty}' are used to track when a
234 comparison between a quantity and some constant or register has
235 been passed. In such a case, we know the results of the comparison
236 in case we see it again. These members record a comparison that
237 is known to be true. `comparison_code' holds the rtx code of such
238 a comparison, else it is set to UNKNOWN and the other two
239 comparison members are undefined. `comparison_const' holds
240 the constant being compared against, or zero if the comparison
241 is not against a constant. `comparison_qty' holds the quantity
242 being compared against when the result is known. If the comparison
243 is not with a register, `comparison_qty' is -1. */
245 struct qty_table_elem
247 rtx const_rtx;
248 rtx const_insn;
249 rtx comparison_const;
250 int comparison_qty;
251 unsigned int first_reg, last_reg;
252 /* The sizes of these fields should match the sizes of the
253 code and mode fields of struct rtx_def (see rtl.h). */
254 ENUM_BITFIELD(rtx_code) comparison_code : 16;
255 ENUM_BITFIELD(machine_mode) mode : 8;
258 /* The table of all qtys, indexed by qty number. */
259 static struct qty_table_elem *qty_table;
261 /* Structure used to pass arguments via for_each_rtx to function
262 cse_change_cc_mode. */
263 struct change_cc_mode_args
265 rtx insn;
266 rtx newreg;
269 #ifdef HAVE_cc0
270 /* For machines that have a CC0, we do not record its value in the hash
271 table since its use is guaranteed to be the insn immediately following
272 its definition and any other insn is presumed to invalidate it.
274 Instead, we store below the current and last value assigned to CC0.
275 If it should happen to be a constant, it is stored in preference
276 to the actual assigned value. In case it is a constant, we store
277 the mode in which the constant should be interpreted. */
279 static rtx this_insn_cc0, prev_insn_cc0;
280 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
281 #endif
283 /* Insn being scanned. */
285 static rtx this_insn;
286 static bool optimize_this_for_speed_p;
288 /* Index by register number, gives the number of the next (or
289 previous) register in the chain of registers sharing the same
290 value.
292 Or -1 if this register is at the end of the chain.
294 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
296 /* Per-register equivalence chain. */
297 struct reg_eqv_elem
299 int next, prev;
302 /* The table of all register equivalence chains. */
303 static struct reg_eqv_elem *reg_eqv_table;
305 struct cse_reg_info
307 /* The timestamp at which this register is initialized. */
308 unsigned int timestamp;
310 /* The quantity number of the register's current contents. */
311 int reg_qty;
313 /* The number of times the register has been altered in the current
314 basic block. */
315 int reg_tick;
317 /* The REG_TICK value at which rtx's containing this register are
318 valid in the hash table. If this does not equal the current
319 reg_tick value, such expressions existing in the hash table are
320 invalid. */
321 int reg_in_table;
323 /* The SUBREG that was set when REG_TICK was last incremented. Set
324 to -1 if the last store was to the whole register, not a subreg. */
325 unsigned int subreg_ticked;
328 /* A table of cse_reg_info indexed by register numbers. */
329 static struct cse_reg_info *cse_reg_info_table;
331 /* The size of the above table. */
332 static unsigned int cse_reg_info_table_size;
334 /* The index of the first entry that has not been initialized. */
335 static unsigned int cse_reg_info_table_first_uninitialized;
337 /* The timestamp at the beginning of the current run of
338 cse_extended_basic_block. We increment this variable at the beginning of
339 the current run of cse_extended_basic_block. The timestamp field of a
340 cse_reg_info entry matches the value of this variable if and only
341 if the entry has been initialized during the current run of
342 cse_extended_basic_block. */
343 static unsigned int cse_reg_info_timestamp;
345 /* A HARD_REG_SET containing all the hard registers for which there is
346 currently a REG expression in the hash table. Note the difference
347 from the above variables, which indicate if the REG is mentioned in some
348 expression in the table. */
350 static HARD_REG_SET hard_regs_in_table;
352 /* True if CSE has altered the CFG. */
353 static bool cse_cfg_altered;
355 /* True if CSE has altered conditional jump insns in such a way
356 that jump optimization should be redone. */
357 static bool cse_jumps_altered;
359 /* True if we put a LABEL_REF into the hash table for an INSN
360 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
361 to put in the note. */
362 static bool recorded_label_ref;
364 /* canon_hash stores 1 in do_not_record
365 if it notices a reference to CC0, PC, or some other volatile
366 subexpression. */
368 static int do_not_record;
370 /* canon_hash stores 1 in hash_arg_in_memory
371 if it notices a reference to memory within the expression being hashed. */
373 static int hash_arg_in_memory;
375 /* The hash table contains buckets which are chains of `struct table_elt's,
376 each recording one expression's information.
377 That expression is in the `exp' field.
379 The canon_exp field contains a canonical (from the point of view of
380 alias analysis) version of the `exp' field.
382 Those elements with the same hash code are chained in both directions
383 through the `next_same_hash' and `prev_same_hash' fields.
385 Each set of expressions with equivalent values
386 are on a two-way chain through the `next_same_value'
387 and `prev_same_value' fields, and all point with
388 the `first_same_value' field at the first element in
389 that chain. The chain is in order of increasing cost.
390 Each element's cost value is in its `cost' field.
392 The `in_memory' field is nonzero for elements that
393 involve any reference to memory. These elements are removed
394 whenever a write is done to an unidentified location in memory.
395 To be safe, we assume that a memory address is unidentified unless
396 the address is either a symbol constant or a constant plus
397 the frame pointer or argument pointer.
399 The `related_value' field is used to connect related expressions
400 (that differ by adding an integer).
401 The related expressions are chained in a circular fashion.
402 `related_value' is zero for expressions for which this
403 chain is not useful.
405 The `cost' field stores the cost of this element's expression.
406 The `regcost' field stores the value returned by approx_reg_cost for
407 this element's expression.
409 The `is_const' flag is set if the element is a constant (including
410 a fixed address).
412 The `flag' field is used as a temporary during some search routines.
414 The `mode' field is usually the same as GET_MODE (`exp'), but
415 if `exp' is a CONST_INT and has no machine mode then the `mode'
416 field is the mode it was being used as. Each constant is
417 recorded separately for each mode it is used with. */
419 struct table_elt
421 rtx exp;
422 rtx canon_exp;
423 struct table_elt *next_same_hash;
424 struct table_elt *prev_same_hash;
425 struct table_elt *next_same_value;
426 struct table_elt *prev_same_value;
427 struct table_elt *first_same_value;
428 struct table_elt *related_value;
429 int cost;
430 int regcost;
431 /* The size of this field should match the size
432 of the mode field of struct rtx_def (see rtl.h). */
433 ENUM_BITFIELD(machine_mode) mode : 8;
434 char in_memory;
435 char is_const;
436 char flag;
439 /* We don't want a lot of buckets, because we rarely have very many
440 things stored in the hash table, and a lot of buckets slows
441 down a lot of loops that happen frequently. */
442 #define HASH_SHIFT 5
443 #define HASH_SIZE (1 << HASH_SHIFT)
444 #define HASH_MASK (HASH_SIZE - 1)
446 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
447 register (hard registers may require `do_not_record' to be set). */
449 #define HASH(X, M) \
450 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
451 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
452 : canon_hash (X, M)) & HASH_MASK)
454 /* Like HASH, but without side-effects. */
455 #define SAFE_HASH(X, M) \
456 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
457 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
458 : safe_hash (X, M)) & HASH_MASK)
460 /* Determine whether register number N is considered a fixed register for the
461 purpose of approximating register costs.
462 It is desirable to replace other regs with fixed regs, to reduce need for
463 non-fixed hard regs.
464 A reg wins if it is either the frame pointer or designated as fixed. */
465 #define FIXED_REGNO_P(N) \
466 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
467 || fixed_regs[N] || global_regs[N])
469 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
470 hard registers and pointers into the frame are the cheapest with a cost
471 of 0. Next come pseudos with a cost of one and other hard registers with
472 a cost of 2. Aside from these special cases, call `rtx_cost'. */
474 #define CHEAP_REGNO(N) \
475 (REGNO_PTR_FRAME_P(N) \
476 || (HARD_REGISTER_NUM_P (N) \
477 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
479 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
480 #define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
482 /* Get the number of times this register has been updated in this
483 basic block. */
485 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
487 /* Get the point at which REG was recorded in the table. */
489 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
491 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
492 SUBREG). */
494 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
496 /* Get the quantity number for REG. */
498 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
500 /* Determine if the quantity number for register X represents a valid index
501 into the qty_table. */
503 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
505 static struct table_elt *table[HASH_SIZE];
507 /* Chain of `struct table_elt's made so far for this function
508 but currently removed from the table. */
510 static struct table_elt *free_element_chain;
512 /* Set to the cost of a constant pool reference if one was found for a
513 symbolic constant. If this was found, it means we should try to
514 convert constants into constant pool entries if they don't fit in
515 the insn. */
517 static int constant_pool_entries_cost;
518 static int constant_pool_entries_regcost;
520 /* This data describes a block that will be processed by
521 cse_extended_basic_block. */
523 struct cse_basic_block_data
525 /* Total number of SETs in block. */
526 int nsets;
527 /* Size of current branch path, if any. */
528 int path_size;
529 /* Current path, indicating which basic_blocks will be processed. */
530 struct branch_path
532 /* The basic block for this path entry. */
533 basic_block bb;
534 } *path;
538 /* Pointers to the live in/live out bitmaps for the boundaries of the
539 current EBB. */
540 static bitmap cse_ebb_live_in, cse_ebb_live_out;
542 /* A simple bitmap to track which basic blocks have been visited
543 already as part of an already processed extended basic block. */
544 static sbitmap cse_visited_basic_blocks;
546 static bool fixed_base_plus_p (rtx x);
547 static int notreg_cost (rtx, enum rtx_code);
548 static int approx_reg_cost_1 (rtx *, void *);
549 static int approx_reg_cost (rtx);
550 static int preferable (int, int, int, int);
551 static void new_basic_block (void);
552 static void make_new_qty (unsigned int, enum machine_mode);
553 static void make_regs_eqv (unsigned int, unsigned int);
554 static void delete_reg_equiv (unsigned int);
555 static int mention_regs (rtx);
556 static int insert_regs (rtx, struct table_elt *, int);
557 static void remove_from_table (struct table_elt *, unsigned);
558 static void remove_pseudo_from_table (rtx, unsigned);
559 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
560 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
561 static rtx lookup_as_function (rtx, enum rtx_code);
562 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
563 enum machine_mode);
564 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
565 static void invalidate (rtx, enum machine_mode);
566 static bool cse_rtx_varies_p (const_rtx, bool);
567 static void remove_invalid_refs (unsigned int);
568 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
569 enum machine_mode);
570 static void rehash_using_reg (rtx);
571 static void invalidate_memory (void);
572 static void invalidate_for_call (void);
573 static rtx use_related_value (rtx, struct table_elt *);
575 static inline unsigned canon_hash (rtx, enum machine_mode);
576 static inline unsigned safe_hash (rtx, enum machine_mode);
577 static inline unsigned hash_rtx_string (const char *);
579 static rtx canon_reg (rtx, rtx);
580 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
581 enum machine_mode *,
582 enum machine_mode *);
583 static rtx fold_rtx (rtx, rtx);
584 static rtx equiv_constant (rtx);
585 static void record_jump_equiv (rtx, bool);
586 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
587 int);
588 static void cse_insn (rtx);
589 static void cse_prescan_path (struct cse_basic_block_data *);
590 static void invalidate_from_clobbers (rtx);
591 static rtx cse_process_notes (rtx, rtx, bool *);
592 static void cse_extended_basic_block (struct cse_basic_block_data *);
593 static void count_reg_usage (rtx, int *, rtx, int);
594 static int check_for_label_ref (rtx *, void *);
595 extern void dump_class (struct table_elt*);
596 static void get_cse_reg_info_1 (unsigned int regno);
597 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
598 static int check_dependence (rtx *, void *);
600 static void flush_hash_table (void);
601 static bool insn_live_p (rtx, int *);
602 static bool set_live_p (rtx, rtx, int *);
603 static int cse_change_cc_mode (rtx *, void *);
604 static void cse_change_cc_mode_insn (rtx, rtx);
605 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
606 static enum machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
607 bool);
610 #undef RTL_HOOKS_GEN_LOWPART
611 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
613 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
615 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
616 virtual regs here because the simplify_*_operation routines are called
617 by integrate.c, which is called before virtual register instantiation. */
619 static bool
620 fixed_base_plus_p (rtx x)
622 switch (GET_CODE (x))
624 case REG:
625 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
626 return true;
627 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
628 return true;
629 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
630 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
631 return true;
632 return false;
634 case PLUS:
635 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
636 return false;
637 return fixed_base_plus_p (XEXP (x, 0));
639 default:
640 return false;
644 /* Dump the expressions in the equivalence class indicated by CLASSP.
645 This function is used only for debugging. */
646 void
647 dump_class (struct table_elt *classp)
649 struct table_elt *elt;
651 fprintf (stderr, "Equivalence chain for ");
652 print_rtl (stderr, classp->exp);
653 fprintf (stderr, ": \n");
655 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
657 print_rtl (stderr, elt->exp);
658 fprintf (stderr, "\n");
662 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
664 static int
665 approx_reg_cost_1 (rtx *xp, void *data)
667 rtx x = *xp;
668 int *cost_p = (int *) data;
670 if (x && REG_P (x))
672 unsigned int regno = REGNO (x);
674 if (! CHEAP_REGNO (regno))
676 if (regno < FIRST_PSEUDO_REGISTER)
678 if (SMALL_REGISTER_CLASSES)
679 return 1;
680 *cost_p += 2;
682 else
683 *cost_p += 1;
687 return 0;
690 /* Return an estimate of the cost of the registers used in an rtx.
691 This is mostly the number of different REG expressions in the rtx;
692 however for some exceptions like fixed registers we use a cost of
693 0. If any other hard register reference occurs, return MAX_COST. */
695 static int
696 approx_reg_cost (rtx x)
698 int cost = 0;
700 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
701 return MAX_COST;
703 return cost;
706 /* Return a negative value if an rtx A, whose costs are given by COST_A
707 and REGCOST_A, is more desirable than an rtx B.
708 Return a positive value if A is less desirable, or 0 if the two are
709 equally good. */
710 static int
711 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
713 /* First, get rid of cases involving expressions that are entirely
714 unwanted. */
715 if (cost_a != cost_b)
717 if (cost_a == MAX_COST)
718 return 1;
719 if (cost_b == MAX_COST)
720 return -1;
723 /* Avoid extending lifetimes of hardregs. */
724 if (regcost_a != regcost_b)
726 if (regcost_a == MAX_COST)
727 return 1;
728 if (regcost_b == MAX_COST)
729 return -1;
732 /* Normal operation costs take precedence. */
733 if (cost_a != cost_b)
734 return cost_a - cost_b;
735 /* Only if these are identical consider effects on register pressure. */
736 if (regcost_a != regcost_b)
737 return regcost_a - regcost_b;
738 return 0;
741 /* Internal function, to compute cost when X is not a register; called
742 from COST macro to keep it simple. */
744 static int
745 notreg_cost (rtx x, enum rtx_code outer)
747 return ((GET_CODE (x) == SUBREG
748 && REG_P (SUBREG_REG (x))
749 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
750 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
751 && (GET_MODE_SIZE (GET_MODE (x))
752 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
753 && subreg_lowpart_p (x)
754 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
755 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
757 : rtx_cost (x, outer, optimize_this_for_speed_p) * 2);
761 /* Initialize CSE_REG_INFO_TABLE. */
763 static void
764 init_cse_reg_info (unsigned int nregs)
766 /* Do we need to grow the table? */
767 if (nregs > cse_reg_info_table_size)
769 unsigned int new_size;
771 if (cse_reg_info_table_size < 2048)
773 /* Compute a new size that is a power of 2 and no smaller
774 than the large of NREGS and 64. */
775 new_size = (cse_reg_info_table_size
776 ? cse_reg_info_table_size : 64);
778 while (new_size < nregs)
779 new_size *= 2;
781 else
783 /* If we need a big table, allocate just enough to hold
784 NREGS registers. */
785 new_size = nregs;
788 /* Reallocate the table with NEW_SIZE entries. */
789 if (cse_reg_info_table)
790 free (cse_reg_info_table);
791 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
792 cse_reg_info_table_size = new_size;
793 cse_reg_info_table_first_uninitialized = 0;
796 /* Do we have all of the first NREGS entries initialized? */
797 if (cse_reg_info_table_first_uninitialized < nregs)
799 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
800 unsigned int i;
802 /* Put the old timestamp on newly allocated entries so that they
803 will all be considered out of date. We do not touch those
804 entries beyond the first NREGS entries to be nice to the
805 virtual memory. */
806 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
807 cse_reg_info_table[i].timestamp = old_timestamp;
809 cse_reg_info_table_first_uninitialized = nregs;
813 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
815 static void
816 get_cse_reg_info_1 (unsigned int regno)
818 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
819 entry will be considered to have been initialized. */
820 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
822 /* Initialize the rest of the entry. */
823 cse_reg_info_table[regno].reg_tick = 1;
824 cse_reg_info_table[regno].reg_in_table = -1;
825 cse_reg_info_table[regno].subreg_ticked = -1;
826 cse_reg_info_table[regno].reg_qty = -regno - 1;
829 /* Find a cse_reg_info entry for REGNO. */
831 static inline struct cse_reg_info *
832 get_cse_reg_info (unsigned int regno)
834 struct cse_reg_info *p = &cse_reg_info_table[regno];
836 /* If this entry has not been initialized, go ahead and initialize
837 it. */
838 if (p->timestamp != cse_reg_info_timestamp)
839 get_cse_reg_info_1 (regno);
841 return p;
844 /* Clear the hash table and initialize each register with its own quantity,
845 for a new basic block. */
847 static void
848 new_basic_block (void)
850 int i;
852 next_qty = 0;
854 /* Invalidate cse_reg_info_table. */
855 cse_reg_info_timestamp++;
857 /* Clear out hash table state for this pass. */
858 CLEAR_HARD_REG_SET (hard_regs_in_table);
860 /* The per-quantity values used to be initialized here, but it is
861 much faster to initialize each as it is made in `make_new_qty'. */
863 for (i = 0; i < HASH_SIZE; i++)
865 struct table_elt *first;
867 first = table[i];
868 if (first != NULL)
870 struct table_elt *last = first;
872 table[i] = NULL;
874 while (last->next_same_hash != NULL)
875 last = last->next_same_hash;
877 /* Now relink this hash entire chain into
878 the free element list. */
880 last->next_same_hash = free_element_chain;
881 free_element_chain = first;
885 #ifdef HAVE_cc0
886 prev_insn_cc0 = 0;
887 #endif
890 /* Say that register REG contains a quantity in mode MODE not in any
891 register before and initialize that quantity. */
893 static void
894 make_new_qty (unsigned int reg, enum machine_mode mode)
896 int q;
897 struct qty_table_elem *ent;
898 struct reg_eqv_elem *eqv;
900 gcc_assert (next_qty < max_qty);
902 q = REG_QTY (reg) = next_qty++;
903 ent = &qty_table[q];
904 ent->first_reg = reg;
905 ent->last_reg = reg;
906 ent->mode = mode;
907 ent->const_rtx = ent->const_insn = NULL_RTX;
908 ent->comparison_code = UNKNOWN;
910 eqv = &reg_eqv_table[reg];
911 eqv->next = eqv->prev = -1;
914 /* Make reg NEW equivalent to reg OLD.
915 OLD is not changing; NEW is. */
917 static void
918 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
920 unsigned int lastr, firstr;
921 int q = REG_QTY (old_reg);
922 struct qty_table_elem *ent;
924 ent = &qty_table[q];
926 /* Nothing should become eqv until it has a "non-invalid" qty number. */
927 gcc_assert (REGNO_QTY_VALID_P (old_reg));
929 REG_QTY (new_reg) = q;
930 firstr = ent->first_reg;
931 lastr = ent->last_reg;
933 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
934 hard regs. Among pseudos, if NEW will live longer than any other reg
935 of the same qty, and that is beyond the current basic block,
936 make it the new canonical replacement for this qty. */
937 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
938 /* Certain fixed registers might be of the class NO_REGS. This means
939 that not only can they not be allocated by the compiler, but
940 they cannot be used in substitutions or canonicalizations
941 either. */
942 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
943 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
944 || (new_reg >= FIRST_PSEUDO_REGISTER
945 && (firstr < FIRST_PSEUDO_REGISTER
946 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
947 && !bitmap_bit_p (cse_ebb_live_out, firstr))
948 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
949 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
951 reg_eqv_table[firstr].prev = new_reg;
952 reg_eqv_table[new_reg].next = firstr;
953 reg_eqv_table[new_reg].prev = -1;
954 ent->first_reg = new_reg;
956 else
958 /* If NEW is a hard reg (known to be non-fixed), insert at end.
959 Otherwise, insert before any non-fixed hard regs that are at the
960 end. Registers of class NO_REGS cannot be used as an
961 equivalent for anything. */
962 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
963 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
964 && new_reg >= FIRST_PSEUDO_REGISTER)
965 lastr = reg_eqv_table[lastr].prev;
966 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
967 if (reg_eqv_table[lastr].next >= 0)
968 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
969 else
970 qty_table[q].last_reg = new_reg;
971 reg_eqv_table[lastr].next = new_reg;
972 reg_eqv_table[new_reg].prev = lastr;
976 /* Remove REG from its equivalence class. */
978 static void
979 delete_reg_equiv (unsigned int reg)
981 struct qty_table_elem *ent;
982 int q = REG_QTY (reg);
983 int p, n;
985 /* If invalid, do nothing. */
986 if (! REGNO_QTY_VALID_P (reg))
987 return;
989 ent = &qty_table[q];
991 p = reg_eqv_table[reg].prev;
992 n = reg_eqv_table[reg].next;
994 if (n != -1)
995 reg_eqv_table[n].prev = p;
996 else
997 ent->last_reg = p;
998 if (p != -1)
999 reg_eqv_table[p].next = n;
1000 else
1001 ent->first_reg = n;
1003 REG_QTY (reg) = -reg - 1;
1006 /* Remove any invalid expressions from the hash table
1007 that refer to any of the registers contained in expression X.
1009 Make sure that newly inserted references to those registers
1010 as subexpressions will be considered valid.
1012 mention_regs is not called when a register itself
1013 is being stored in the table.
1015 Return 1 if we have done something that may have changed the hash code
1016 of X. */
1018 static int
1019 mention_regs (rtx x)
1021 enum rtx_code code;
1022 int i, j;
1023 const char *fmt;
1024 int changed = 0;
1026 if (x == 0)
1027 return 0;
1029 code = GET_CODE (x);
1030 if (code == REG)
1032 unsigned int regno = REGNO (x);
1033 unsigned int endregno = END_REGNO (x);
1034 unsigned int i;
1036 for (i = regno; i < endregno; i++)
1038 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1039 remove_invalid_refs (i);
1041 REG_IN_TABLE (i) = REG_TICK (i);
1042 SUBREG_TICKED (i) = -1;
1045 return 0;
1048 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1049 pseudo if they don't use overlapping words. We handle only pseudos
1050 here for simplicity. */
1051 if (code == SUBREG && REG_P (SUBREG_REG (x))
1052 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1054 unsigned int i = REGNO (SUBREG_REG (x));
1056 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1058 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1059 the last store to this register really stored into this
1060 subreg, then remove the memory of this subreg.
1061 Otherwise, remove any memory of the entire register and
1062 all its subregs from the table. */
1063 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1064 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1065 remove_invalid_refs (i);
1066 else
1067 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1070 REG_IN_TABLE (i) = REG_TICK (i);
1071 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1072 return 0;
1075 /* If X is a comparison or a COMPARE and either operand is a register
1076 that does not have a quantity, give it one. This is so that a later
1077 call to record_jump_equiv won't cause X to be assigned a different
1078 hash code and not found in the table after that call.
1080 It is not necessary to do this here, since rehash_using_reg can
1081 fix up the table later, but doing this here eliminates the need to
1082 call that expensive function in the most common case where the only
1083 use of the register is in the comparison. */
1085 if (code == COMPARE || COMPARISON_P (x))
1087 if (REG_P (XEXP (x, 0))
1088 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1089 if (insert_regs (XEXP (x, 0), NULL, 0))
1091 rehash_using_reg (XEXP (x, 0));
1092 changed = 1;
1095 if (REG_P (XEXP (x, 1))
1096 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1097 if (insert_regs (XEXP (x, 1), NULL, 0))
1099 rehash_using_reg (XEXP (x, 1));
1100 changed = 1;
1104 fmt = GET_RTX_FORMAT (code);
1105 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1106 if (fmt[i] == 'e')
1107 changed |= mention_regs (XEXP (x, i));
1108 else if (fmt[i] == 'E')
1109 for (j = 0; j < XVECLEN (x, i); j++)
1110 changed |= mention_regs (XVECEXP (x, i, j));
1112 return changed;
1115 /* Update the register quantities for inserting X into the hash table
1116 with a value equivalent to CLASSP.
1117 (If the class does not contain a REG, it is irrelevant.)
1118 If MODIFIED is nonzero, X is a destination; it is being modified.
1119 Note that delete_reg_equiv should be called on a register
1120 before insert_regs is done on that register with MODIFIED != 0.
1122 Nonzero value means that elements of reg_qty have changed
1123 so X's hash code may be different. */
1125 static int
1126 insert_regs (rtx x, struct table_elt *classp, int modified)
1128 if (REG_P (x))
1130 unsigned int regno = REGNO (x);
1131 int qty_valid;
1133 /* If REGNO is in the equivalence table already but is of the
1134 wrong mode for that equivalence, don't do anything here. */
1136 qty_valid = REGNO_QTY_VALID_P (regno);
1137 if (qty_valid)
1139 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1141 if (ent->mode != GET_MODE (x))
1142 return 0;
1145 if (modified || ! qty_valid)
1147 if (classp)
1148 for (classp = classp->first_same_value;
1149 classp != 0;
1150 classp = classp->next_same_value)
1151 if (REG_P (classp->exp)
1152 && GET_MODE (classp->exp) == GET_MODE (x))
1154 unsigned c_regno = REGNO (classp->exp);
1156 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1158 /* Suppose that 5 is hard reg and 100 and 101 are
1159 pseudos. Consider
1161 (set (reg:si 100) (reg:si 5))
1162 (set (reg:si 5) (reg:si 100))
1163 (set (reg:di 101) (reg:di 5))
1165 We would now set REG_QTY (101) = REG_QTY (5), but the
1166 entry for 5 is in SImode. When we use this later in
1167 copy propagation, we get the register in wrong mode. */
1168 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1169 continue;
1171 make_regs_eqv (regno, c_regno);
1172 return 1;
1175 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1176 than REG_IN_TABLE to find out if there was only a single preceding
1177 invalidation - for the SUBREG - or another one, which would be
1178 for the full register. However, if we find here that REG_TICK
1179 indicates that the register is invalid, it means that it has
1180 been invalidated in a separate operation. The SUBREG might be used
1181 now (then this is a recursive call), or we might use the full REG
1182 now and a SUBREG of it later. So bump up REG_TICK so that
1183 mention_regs will do the right thing. */
1184 if (! modified
1185 && REG_IN_TABLE (regno) >= 0
1186 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1187 REG_TICK (regno)++;
1188 make_new_qty (regno, GET_MODE (x));
1189 return 1;
1192 return 0;
1195 /* If X is a SUBREG, we will likely be inserting the inner register in the
1196 table. If that register doesn't have an assigned quantity number at
1197 this point but does later, the insertion that we will be doing now will
1198 not be accessible because its hash code will have changed. So assign
1199 a quantity number now. */
1201 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1202 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1204 insert_regs (SUBREG_REG (x), NULL, 0);
1205 mention_regs (x);
1206 return 1;
1208 else
1209 return mention_regs (x);
1212 /* Look in or update the hash table. */
1214 /* Remove table element ELT from use in the table.
1215 HASH is its hash code, made using the HASH macro.
1216 It's an argument because often that is known in advance
1217 and we save much time not recomputing it. */
1219 static void
1220 remove_from_table (struct table_elt *elt, unsigned int hash)
1222 if (elt == 0)
1223 return;
1225 /* Mark this element as removed. See cse_insn. */
1226 elt->first_same_value = 0;
1228 /* Remove the table element from its equivalence class. */
1231 struct table_elt *prev = elt->prev_same_value;
1232 struct table_elt *next = elt->next_same_value;
1234 if (next)
1235 next->prev_same_value = prev;
1237 if (prev)
1238 prev->next_same_value = next;
1239 else
1241 struct table_elt *newfirst = next;
1242 while (next)
1244 next->first_same_value = newfirst;
1245 next = next->next_same_value;
1250 /* Remove the table element from its hash bucket. */
1253 struct table_elt *prev = elt->prev_same_hash;
1254 struct table_elt *next = elt->next_same_hash;
1256 if (next)
1257 next->prev_same_hash = prev;
1259 if (prev)
1260 prev->next_same_hash = next;
1261 else if (table[hash] == elt)
1262 table[hash] = next;
1263 else
1265 /* This entry is not in the proper hash bucket. This can happen
1266 when two classes were merged by `merge_equiv_classes'. Search
1267 for the hash bucket that it heads. This happens only very
1268 rarely, so the cost is acceptable. */
1269 for (hash = 0; hash < HASH_SIZE; hash++)
1270 if (table[hash] == elt)
1271 table[hash] = next;
1275 /* Remove the table element from its related-value circular chain. */
1277 if (elt->related_value != 0 && elt->related_value != elt)
1279 struct table_elt *p = elt->related_value;
1281 while (p->related_value != elt)
1282 p = p->related_value;
1283 p->related_value = elt->related_value;
1284 if (p->related_value == p)
1285 p->related_value = 0;
1288 /* Now add it to the free element chain. */
1289 elt->next_same_hash = free_element_chain;
1290 free_element_chain = elt;
1293 /* Same as above, but X is a pseudo-register. */
1295 static void
1296 remove_pseudo_from_table (rtx x, unsigned int hash)
1298 struct table_elt *elt;
1300 /* Because a pseudo-register can be referenced in more than one
1301 mode, we might have to remove more than one table entry. */
1302 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1303 remove_from_table (elt, hash);
1306 /* Look up X in the hash table and return its table element,
1307 or 0 if X is not in the table.
1309 MODE is the machine-mode of X, or if X is an integer constant
1310 with VOIDmode then MODE is the mode with which X will be used.
1312 Here we are satisfied to find an expression whose tree structure
1313 looks like X. */
1315 static struct table_elt *
1316 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1318 struct table_elt *p;
1320 for (p = table[hash]; p; p = p->next_same_hash)
1321 if (mode == p->mode && ((x == p->exp && REG_P (x))
1322 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1323 return p;
1325 return 0;
1328 /* Like `lookup' but don't care whether the table element uses invalid regs.
1329 Also ignore discrepancies in the machine mode of a register. */
1331 static struct table_elt *
1332 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1334 struct table_elt *p;
1336 if (REG_P (x))
1338 unsigned int regno = REGNO (x);
1340 /* Don't check the machine mode when comparing registers;
1341 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1342 for (p = table[hash]; p; p = p->next_same_hash)
1343 if (REG_P (p->exp)
1344 && REGNO (p->exp) == regno)
1345 return p;
1347 else
1349 for (p = table[hash]; p; p = p->next_same_hash)
1350 if (mode == p->mode
1351 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1352 return p;
1355 return 0;
1358 /* Look for an expression equivalent to X and with code CODE.
1359 If one is found, return that expression. */
1361 static rtx
1362 lookup_as_function (rtx x, enum rtx_code code)
1364 struct table_elt *p
1365 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1367 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1368 long as we are narrowing. So if we looked in vain for a mode narrower
1369 than word_mode before, look for word_mode now. */
1370 if (p == 0 && code == CONST_INT
1371 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1373 x = copy_rtx (x);
1374 PUT_MODE (x, word_mode);
1375 p = lookup (x, SAFE_HASH (x, VOIDmode), word_mode);
1378 if (p == 0)
1379 return 0;
1381 for (p = p->first_same_value; p; p = p->next_same_value)
1382 if (GET_CODE (p->exp) == code
1383 /* Make sure this is a valid entry in the table. */
1384 && exp_equiv_p (p->exp, p->exp, 1, false))
1385 return p->exp;
1387 return 0;
1390 /* Insert X in the hash table, assuming HASH is its hash code
1391 and CLASSP is an element of the class it should go in
1392 (or 0 if a new class should be made).
1393 It is inserted at the proper position to keep the class in
1394 the order cheapest first.
1396 MODE is the machine-mode of X, or if X is an integer constant
1397 with VOIDmode then MODE is the mode with which X will be used.
1399 For elements of equal cheapness, the most recent one
1400 goes in front, except that the first element in the list
1401 remains first unless a cheaper element is added. The order of
1402 pseudo-registers does not matter, as canon_reg will be called to
1403 find the cheapest when a register is retrieved from the table.
1405 The in_memory field in the hash table element is set to 0.
1406 The caller must set it nonzero if appropriate.
1408 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1409 and if insert_regs returns a nonzero value
1410 you must then recompute its hash code before calling here.
1412 If necessary, update table showing constant values of quantities. */
1414 #define CHEAPER(X, Y) \
1415 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1417 static struct table_elt *
1418 insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
1420 struct table_elt *elt;
1422 /* If X is a register and we haven't made a quantity for it,
1423 something is wrong. */
1424 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1426 /* If X is a hard register, show it is being put in the table. */
1427 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1428 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1430 /* Put an element for X into the right hash bucket. */
1432 elt = free_element_chain;
1433 if (elt)
1434 free_element_chain = elt->next_same_hash;
1435 else
1436 elt = XNEW (struct table_elt);
1438 elt->exp = x;
1439 elt->canon_exp = NULL_RTX;
1440 elt->cost = COST (x);
1441 elt->regcost = approx_reg_cost (x);
1442 elt->next_same_value = 0;
1443 elt->prev_same_value = 0;
1444 elt->next_same_hash = table[hash];
1445 elt->prev_same_hash = 0;
1446 elt->related_value = 0;
1447 elt->in_memory = 0;
1448 elt->mode = mode;
1449 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1451 if (table[hash])
1452 table[hash]->prev_same_hash = elt;
1453 table[hash] = elt;
1455 /* Put it into the proper value-class. */
1456 if (classp)
1458 classp = classp->first_same_value;
1459 if (CHEAPER (elt, classp))
1460 /* Insert at the head of the class. */
1462 struct table_elt *p;
1463 elt->next_same_value = classp;
1464 classp->prev_same_value = elt;
1465 elt->first_same_value = elt;
1467 for (p = classp; p; p = p->next_same_value)
1468 p->first_same_value = elt;
1470 else
1472 /* Insert not at head of the class. */
1473 /* Put it after the last element cheaper than X. */
1474 struct table_elt *p, *next;
1476 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1477 p = next);
1479 /* Put it after P and before NEXT. */
1480 elt->next_same_value = next;
1481 if (next)
1482 next->prev_same_value = elt;
1484 elt->prev_same_value = p;
1485 p->next_same_value = elt;
1486 elt->first_same_value = classp;
1489 else
1490 elt->first_same_value = elt;
1492 /* If this is a constant being set equivalent to a register or a register
1493 being set equivalent to a constant, note the constant equivalence.
1495 If this is a constant, it cannot be equivalent to a different constant,
1496 and a constant is the only thing that can be cheaper than a register. So
1497 we know the register is the head of the class (before the constant was
1498 inserted).
1500 If this is a register that is not already known equivalent to a
1501 constant, we must check the entire class.
1503 If this is a register that is already known equivalent to an insn,
1504 update the qtys `const_insn' to show that `this_insn' is the latest
1505 insn making that quantity equivalent to the constant. */
1507 if (elt->is_const && classp && REG_P (classp->exp)
1508 && !REG_P (x))
1510 int exp_q = REG_QTY (REGNO (classp->exp));
1511 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1513 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1514 exp_ent->const_insn = this_insn;
1517 else if (REG_P (x)
1518 && classp
1519 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1520 && ! elt->is_const)
1522 struct table_elt *p;
1524 for (p = classp; p != 0; p = p->next_same_value)
1526 if (p->is_const && !REG_P (p->exp))
1528 int x_q = REG_QTY (REGNO (x));
1529 struct qty_table_elem *x_ent = &qty_table[x_q];
1531 x_ent->const_rtx
1532 = gen_lowpart (GET_MODE (x), p->exp);
1533 x_ent->const_insn = this_insn;
1534 break;
1539 else if (REG_P (x)
1540 && qty_table[REG_QTY (REGNO (x))].const_rtx
1541 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1542 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1544 /* If this is a constant with symbolic value,
1545 and it has a term with an explicit integer value,
1546 link it up with related expressions. */
1547 if (GET_CODE (x) == CONST)
1549 rtx subexp = get_related_value (x);
1550 unsigned subhash;
1551 struct table_elt *subelt, *subelt_prev;
1553 if (subexp != 0)
1555 /* Get the integer-free subexpression in the hash table. */
1556 subhash = SAFE_HASH (subexp, mode);
1557 subelt = lookup (subexp, subhash, mode);
1558 if (subelt == 0)
1559 subelt = insert (subexp, NULL, subhash, mode);
1560 /* Initialize SUBELT's circular chain if it has none. */
1561 if (subelt->related_value == 0)
1562 subelt->related_value = subelt;
1563 /* Find the element in the circular chain that precedes SUBELT. */
1564 subelt_prev = subelt;
1565 while (subelt_prev->related_value != subelt)
1566 subelt_prev = subelt_prev->related_value;
1567 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1568 This way the element that follows SUBELT is the oldest one. */
1569 elt->related_value = subelt_prev->related_value;
1570 subelt_prev->related_value = elt;
1574 return elt;
1577 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1578 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1579 the two classes equivalent.
1581 CLASS1 will be the surviving class; CLASS2 should not be used after this
1582 call.
1584 Any invalid entries in CLASS2 will not be copied. */
1586 static void
1587 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1589 struct table_elt *elt, *next, *new_elt;
1591 /* Ensure we start with the head of the classes. */
1592 class1 = class1->first_same_value;
1593 class2 = class2->first_same_value;
1595 /* If they were already equal, forget it. */
1596 if (class1 == class2)
1597 return;
1599 for (elt = class2; elt; elt = next)
1601 unsigned int hash;
1602 rtx exp = elt->exp;
1603 enum machine_mode mode = elt->mode;
1605 next = elt->next_same_value;
1607 /* Remove old entry, make a new one in CLASS1's class.
1608 Don't do this for invalid entries as we cannot find their
1609 hash code (it also isn't necessary). */
1610 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1612 bool need_rehash = false;
1614 hash_arg_in_memory = 0;
1615 hash = HASH (exp, mode);
1617 if (REG_P (exp))
1619 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1620 delete_reg_equiv (REGNO (exp));
1623 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1624 remove_pseudo_from_table (exp, hash);
1625 else
1626 remove_from_table (elt, hash);
1628 if (insert_regs (exp, class1, 0) || need_rehash)
1630 rehash_using_reg (exp);
1631 hash = HASH (exp, mode);
1633 new_elt = insert (exp, class1, hash, mode);
1634 new_elt->in_memory = hash_arg_in_memory;
1639 /* Flush the entire hash table. */
1641 static void
1642 flush_hash_table (void)
1644 int i;
1645 struct table_elt *p;
1647 for (i = 0; i < HASH_SIZE; i++)
1648 for (p = table[i]; p; p = table[i])
1650 /* Note that invalidate can remove elements
1651 after P in the current hash chain. */
1652 if (REG_P (p->exp))
1653 invalidate (p->exp, VOIDmode);
1654 else
1655 remove_from_table (p, i);
1659 /* Function called for each rtx to check whether true dependence exist. */
1660 struct check_dependence_data
1662 enum machine_mode mode;
1663 rtx exp;
1664 rtx addr;
1667 static int
1668 check_dependence (rtx *x, void *data)
1670 struct check_dependence_data *d = (struct check_dependence_data *) data;
1671 if (*x && MEM_P (*x))
1672 return canon_true_dependence (d->exp, d->mode, d->addr, *x,
1673 cse_rtx_varies_p);
1674 else
1675 return 0;
1678 /* Remove from the hash table, or mark as invalid, all expressions whose
1679 values could be altered by storing in X. X is a register, a subreg, or
1680 a memory reference with nonvarying address (because, when a memory
1681 reference with a varying address is stored in, all memory references are
1682 removed by invalidate_memory so specific invalidation is superfluous).
1683 FULL_MODE, if not VOIDmode, indicates that this much should be
1684 invalidated instead of just the amount indicated by the mode of X. This
1685 is only used for bitfield stores into memory.
1687 A nonvarying address may be just a register or just a symbol reference,
1688 or it may be either of those plus a numeric offset. */
1690 static void
1691 invalidate (rtx x, enum machine_mode full_mode)
1693 int i;
1694 struct table_elt *p;
1695 rtx addr;
1697 switch (GET_CODE (x))
1699 case REG:
1701 /* If X is a register, dependencies on its contents are recorded
1702 through the qty number mechanism. Just change the qty number of
1703 the register, mark it as invalid for expressions that refer to it,
1704 and remove it itself. */
1705 unsigned int regno = REGNO (x);
1706 unsigned int hash = HASH (x, GET_MODE (x));
1708 /* Remove REGNO from any quantity list it might be on and indicate
1709 that its value might have changed. If it is a pseudo, remove its
1710 entry from the hash table.
1712 For a hard register, we do the first two actions above for any
1713 additional hard registers corresponding to X. Then, if any of these
1714 registers are in the table, we must remove any REG entries that
1715 overlap these registers. */
1717 delete_reg_equiv (regno);
1718 REG_TICK (regno)++;
1719 SUBREG_TICKED (regno) = -1;
1721 if (regno >= FIRST_PSEUDO_REGISTER)
1722 remove_pseudo_from_table (x, hash);
1723 else
1725 HOST_WIDE_INT in_table
1726 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1727 unsigned int endregno = END_HARD_REGNO (x);
1728 unsigned int tregno, tendregno, rn;
1729 struct table_elt *p, *next;
1731 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1733 for (rn = regno + 1; rn < endregno; rn++)
1735 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1736 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1737 delete_reg_equiv (rn);
1738 REG_TICK (rn)++;
1739 SUBREG_TICKED (rn) = -1;
1742 if (in_table)
1743 for (hash = 0; hash < HASH_SIZE; hash++)
1744 for (p = table[hash]; p; p = next)
1746 next = p->next_same_hash;
1748 if (!REG_P (p->exp)
1749 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1750 continue;
1752 tregno = REGNO (p->exp);
1753 tendregno = END_HARD_REGNO (p->exp);
1754 if (tendregno > regno && tregno < endregno)
1755 remove_from_table (p, hash);
1759 return;
1761 case SUBREG:
1762 invalidate (SUBREG_REG (x), VOIDmode);
1763 return;
1765 case PARALLEL:
1766 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1767 invalidate (XVECEXP (x, 0, i), VOIDmode);
1768 return;
1770 case EXPR_LIST:
1771 /* This is part of a disjoint return value; extract the location in
1772 question ignoring the offset. */
1773 invalidate (XEXP (x, 0), VOIDmode);
1774 return;
1776 case MEM:
1777 addr = canon_rtx (get_addr (XEXP (x, 0)));
1778 /* Calculate the canonical version of X here so that
1779 true_dependence doesn't generate new RTL for X on each call. */
1780 x = canon_rtx (x);
1782 /* Remove all hash table elements that refer to overlapping pieces of
1783 memory. */
1784 if (full_mode == VOIDmode)
1785 full_mode = GET_MODE (x);
1787 for (i = 0; i < HASH_SIZE; i++)
1789 struct table_elt *next;
1791 for (p = table[i]; p; p = next)
1793 next = p->next_same_hash;
1794 if (p->in_memory)
1796 struct check_dependence_data d;
1798 /* Just canonicalize the expression once;
1799 otherwise each time we call invalidate
1800 true_dependence will canonicalize the
1801 expression again. */
1802 if (!p->canon_exp)
1803 p->canon_exp = canon_rtx (p->exp);
1804 d.exp = x;
1805 d.addr = addr;
1806 d.mode = full_mode;
1807 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1808 remove_from_table (p, i);
1812 return;
1814 default:
1815 gcc_unreachable ();
1819 /* Remove all expressions that refer to register REGNO,
1820 since they are already invalid, and we are about to
1821 mark that register valid again and don't want the old
1822 expressions to reappear as valid. */
1824 static void
1825 remove_invalid_refs (unsigned int regno)
1827 unsigned int i;
1828 struct table_elt *p, *next;
1830 for (i = 0; i < HASH_SIZE; i++)
1831 for (p = table[i]; p; p = next)
1833 next = p->next_same_hash;
1834 if (!REG_P (p->exp)
1835 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1836 remove_from_table (p, i);
1840 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1841 and mode MODE. */
1842 static void
1843 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1844 enum machine_mode mode)
1846 unsigned int i;
1847 struct table_elt *p, *next;
1848 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
1850 for (i = 0; i < HASH_SIZE; i++)
1851 for (p = table[i]; p; p = next)
1853 rtx exp = p->exp;
1854 next = p->next_same_hash;
1856 if (!REG_P (exp)
1857 && (GET_CODE (exp) != SUBREG
1858 || !REG_P (SUBREG_REG (exp))
1859 || REGNO (SUBREG_REG (exp)) != regno
1860 || (((SUBREG_BYTE (exp)
1861 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1862 && SUBREG_BYTE (exp) <= end))
1863 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1864 remove_from_table (p, i);
1868 /* Recompute the hash codes of any valid entries in the hash table that
1869 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1871 This is called when we make a jump equivalence. */
1873 static void
1874 rehash_using_reg (rtx x)
1876 unsigned int i;
1877 struct table_elt *p, *next;
1878 unsigned hash;
1880 if (GET_CODE (x) == SUBREG)
1881 x = SUBREG_REG (x);
1883 /* If X is not a register or if the register is known not to be in any
1884 valid entries in the table, we have no work to do. */
1886 if (!REG_P (x)
1887 || REG_IN_TABLE (REGNO (x)) < 0
1888 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
1889 return;
1891 /* Scan all hash chains looking for valid entries that mention X.
1892 If we find one and it is in the wrong hash chain, move it. */
1894 for (i = 0; i < HASH_SIZE; i++)
1895 for (p = table[i]; p; p = next)
1897 next = p->next_same_hash;
1898 if (reg_mentioned_p (x, p->exp)
1899 && exp_equiv_p (p->exp, p->exp, 1, false)
1900 && i != (hash = SAFE_HASH (p->exp, p->mode)))
1902 if (p->next_same_hash)
1903 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1905 if (p->prev_same_hash)
1906 p->prev_same_hash->next_same_hash = p->next_same_hash;
1907 else
1908 table[i] = p->next_same_hash;
1910 p->next_same_hash = table[hash];
1911 p->prev_same_hash = 0;
1912 if (table[hash])
1913 table[hash]->prev_same_hash = p;
1914 table[hash] = p;
1919 /* Remove from the hash table any expression that is a call-clobbered
1920 register. Also update their TICK values. */
1922 static void
1923 invalidate_for_call (void)
1925 unsigned int regno, endregno;
1926 unsigned int i;
1927 unsigned hash;
1928 struct table_elt *p, *next;
1929 int in_table = 0;
1931 /* Go through all the hard registers. For each that is clobbered in
1932 a CALL_INSN, remove the register from quantity chains and update
1933 reg_tick if defined. Also see if any of these registers is currently
1934 in the table. */
1936 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1937 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1939 delete_reg_equiv (regno);
1940 if (REG_TICK (regno) >= 0)
1942 REG_TICK (regno)++;
1943 SUBREG_TICKED (regno) = -1;
1946 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
1949 /* In the case where we have no call-clobbered hard registers in the
1950 table, we are done. Otherwise, scan the table and remove any
1951 entry that overlaps a call-clobbered register. */
1953 if (in_table)
1954 for (hash = 0; hash < HASH_SIZE; hash++)
1955 for (p = table[hash]; p; p = next)
1957 next = p->next_same_hash;
1959 if (!REG_P (p->exp)
1960 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1961 continue;
1963 regno = REGNO (p->exp);
1964 endregno = END_HARD_REGNO (p->exp);
1966 for (i = regno; i < endregno; i++)
1967 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1969 remove_from_table (p, hash);
1970 break;
1975 /* Given an expression X of type CONST,
1976 and ELT which is its table entry (or 0 if it
1977 is not in the hash table),
1978 return an alternate expression for X as a register plus integer.
1979 If none can be found, return 0. */
1981 static rtx
1982 use_related_value (rtx x, struct table_elt *elt)
1984 struct table_elt *relt = 0;
1985 struct table_elt *p, *q;
1986 HOST_WIDE_INT offset;
1988 /* First, is there anything related known?
1989 If we have a table element, we can tell from that.
1990 Otherwise, must look it up. */
1992 if (elt != 0 && elt->related_value != 0)
1993 relt = elt;
1994 else if (elt == 0 && GET_CODE (x) == CONST)
1996 rtx subexp = get_related_value (x);
1997 if (subexp != 0)
1998 relt = lookup (subexp,
1999 SAFE_HASH (subexp, GET_MODE (subexp)),
2000 GET_MODE (subexp));
2003 if (relt == 0)
2004 return 0;
2006 /* Search all related table entries for one that has an
2007 equivalent register. */
2009 p = relt;
2010 while (1)
2012 /* This loop is strange in that it is executed in two different cases.
2013 The first is when X is already in the table. Then it is searching
2014 the RELATED_VALUE list of X's class (RELT). The second case is when
2015 X is not in the table. Then RELT points to a class for the related
2016 value.
2018 Ensure that, whatever case we are in, that we ignore classes that have
2019 the same value as X. */
2021 if (rtx_equal_p (x, p->exp))
2022 q = 0;
2023 else
2024 for (q = p->first_same_value; q; q = q->next_same_value)
2025 if (REG_P (q->exp))
2026 break;
2028 if (q)
2029 break;
2031 p = p->related_value;
2033 /* We went all the way around, so there is nothing to be found.
2034 Alternatively, perhaps RELT was in the table for some other reason
2035 and it has no related values recorded. */
2036 if (p == relt || p == 0)
2037 break;
2040 if (q == 0)
2041 return 0;
2043 offset = (get_integer_term (x) - get_integer_term (p->exp));
2044 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2045 return plus_constant (q->exp, offset);
2049 /* Hash a string. Just add its bytes up. */
2050 static inline unsigned
2051 hash_rtx_string (const char *ps)
2053 unsigned hash = 0;
2054 const unsigned char *p = (const unsigned char *) ps;
2056 if (p)
2057 while (*p)
2058 hash += *p++;
2060 return hash;
2063 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2064 When the callback returns true, we continue with the new rtx. */
2066 unsigned
2067 hash_rtx_cb (const_rtx x, enum machine_mode mode,
2068 int *do_not_record_p, int *hash_arg_in_memory_p,
2069 bool have_reg_qty, hash_rtx_callback_function cb)
2071 int i, j;
2072 unsigned hash = 0;
2073 enum rtx_code code;
2074 const char *fmt;
2075 enum machine_mode newmode;
2076 rtx newx;
2078 /* Used to turn recursion into iteration. We can't rely on GCC's
2079 tail-recursion elimination since we need to keep accumulating values
2080 in HASH. */
2081 repeat:
2082 if (x == 0)
2083 return hash;
2085 /* Invoke the callback first. */
2086 if (cb != NULL
2087 && ((*cb) (x, mode, &newx, &newmode)))
2089 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2090 hash_arg_in_memory_p, have_reg_qty, cb);
2091 return hash;
2094 code = GET_CODE (x);
2095 switch (code)
2097 case REG:
2099 unsigned int regno = REGNO (x);
2101 if (do_not_record_p && !reload_completed)
2103 /* On some machines, we can't record any non-fixed hard register,
2104 because extending its life will cause reload problems. We
2105 consider ap, fp, sp, gp to be fixed for this purpose.
2107 We also consider CCmode registers to be fixed for this purpose;
2108 failure to do so leads to failure to simplify 0<100 type of
2109 conditionals.
2111 On all machines, we can't record any global registers.
2112 Nor should we record any register that is in a small
2113 class, as defined by CLASS_LIKELY_SPILLED_P. */
2114 bool record;
2116 if (regno >= FIRST_PSEUDO_REGISTER)
2117 record = true;
2118 else if (x == frame_pointer_rtx
2119 || x == hard_frame_pointer_rtx
2120 || x == arg_pointer_rtx
2121 || x == stack_pointer_rtx
2122 || x == pic_offset_table_rtx)
2123 record = true;
2124 else if (global_regs[regno])
2125 record = false;
2126 else if (fixed_regs[regno])
2127 record = true;
2128 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2129 record = true;
2130 else if (SMALL_REGISTER_CLASSES)
2131 record = false;
2132 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2133 record = false;
2134 else
2135 record = true;
2137 if (!record)
2139 *do_not_record_p = 1;
2140 return 0;
2144 hash += ((unsigned int) REG << 7);
2145 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2146 return hash;
2149 /* We handle SUBREG of a REG specially because the underlying
2150 reg changes its hash value with every value change; we don't
2151 want to have to forget unrelated subregs when one subreg changes. */
2152 case SUBREG:
2154 if (REG_P (SUBREG_REG (x)))
2156 hash += (((unsigned int) SUBREG << 7)
2157 + REGNO (SUBREG_REG (x))
2158 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2159 return hash;
2161 break;
2164 case CONST_INT:
2165 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2166 + (unsigned int) INTVAL (x));
2167 return hash;
2169 case CONST_DOUBLE:
2170 /* This is like the general case, except that it only counts
2171 the integers representing the constant. */
2172 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2173 if (GET_MODE (x) != VOIDmode)
2174 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2175 else
2176 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2177 + (unsigned int) CONST_DOUBLE_HIGH (x));
2178 return hash;
2180 case CONST_FIXED:
2181 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2182 hash += fixed_hash (CONST_FIXED_VALUE (x));
2183 return hash;
2185 case CONST_VECTOR:
2187 int units;
2188 rtx elt;
2190 units = CONST_VECTOR_NUNITS (x);
2192 for (i = 0; i < units; ++i)
2194 elt = CONST_VECTOR_ELT (x, i);
2195 hash += hash_rtx_cb (elt, GET_MODE (elt),
2196 do_not_record_p, hash_arg_in_memory_p,
2197 have_reg_qty, cb);
2200 return hash;
2203 /* Assume there is only one rtx object for any given label. */
2204 case LABEL_REF:
2205 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2206 differences and differences between each stage's debugging dumps. */
2207 hash += (((unsigned int) LABEL_REF << 7)
2208 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2209 return hash;
2211 case SYMBOL_REF:
2213 /* Don't hash on the symbol's address to avoid bootstrap differences.
2214 Different hash values may cause expressions to be recorded in
2215 different orders and thus different registers to be used in the
2216 final assembler. This also avoids differences in the dump files
2217 between various stages. */
2218 unsigned int h = 0;
2219 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2221 while (*p)
2222 h += (h << 7) + *p++; /* ??? revisit */
2224 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2225 return hash;
2228 case MEM:
2229 /* We don't record if marked volatile or if BLKmode since we don't
2230 know the size of the move. */
2231 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2233 *do_not_record_p = 1;
2234 return 0;
2236 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2237 *hash_arg_in_memory_p = 1;
2239 /* Now that we have already found this special case,
2240 might as well speed it up as much as possible. */
2241 hash += (unsigned) MEM;
2242 x = XEXP (x, 0);
2243 goto repeat;
2245 case USE:
2246 /* A USE that mentions non-volatile memory needs special
2247 handling since the MEM may be BLKmode which normally
2248 prevents an entry from being made. Pure calls are
2249 marked by a USE which mentions BLKmode memory.
2250 See calls.c:emit_call_1. */
2251 if (MEM_P (XEXP (x, 0))
2252 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2254 hash += (unsigned) USE;
2255 x = XEXP (x, 0);
2257 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2258 *hash_arg_in_memory_p = 1;
2260 /* Now that we have already found this special case,
2261 might as well speed it up as much as possible. */
2262 hash += (unsigned) MEM;
2263 x = XEXP (x, 0);
2264 goto repeat;
2266 break;
2268 case PRE_DEC:
2269 case PRE_INC:
2270 case POST_DEC:
2271 case POST_INC:
2272 case PRE_MODIFY:
2273 case POST_MODIFY:
2274 case PC:
2275 case CC0:
2276 case CALL:
2277 case UNSPEC_VOLATILE:
2278 if (do_not_record_p) {
2279 *do_not_record_p = 1;
2280 return 0;
2282 else
2283 return hash;
2284 break;
2286 case ASM_OPERANDS:
2287 if (do_not_record_p && MEM_VOLATILE_P (x))
2289 *do_not_record_p = 1;
2290 return 0;
2292 else
2294 /* We don't want to take the filename and line into account. */
2295 hash += (unsigned) code + (unsigned) GET_MODE (x)
2296 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2297 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2298 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2300 if (ASM_OPERANDS_INPUT_LENGTH (x))
2302 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2304 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2305 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2306 do_not_record_p, hash_arg_in_memory_p,
2307 have_reg_qty, cb)
2308 + hash_rtx_string
2309 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2312 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2313 x = ASM_OPERANDS_INPUT (x, 0);
2314 mode = GET_MODE (x);
2315 goto repeat;
2318 return hash;
2320 break;
2322 default:
2323 break;
2326 i = GET_RTX_LENGTH (code) - 1;
2327 hash += (unsigned) code + (unsigned) GET_MODE (x);
2328 fmt = GET_RTX_FORMAT (code);
2329 for (; i >= 0; i--)
2331 switch (fmt[i])
2333 case 'e':
2334 /* If we are about to do the last recursive call
2335 needed at this level, change it into iteration.
2336 This function is called enough to be worth it. */
2337 if (i == 0)
2339 x = XEXP (x, i);
2340 goto repeat;
2343 hash += hash_rtx_cb (XEXP (x, i), 0, do_not_record_p,
2344 hash_arg_in_memory_p,
2345 have_reg_qty, cb);
2346 break;
2348 case 'E':
2349 for (j = 0; j < XVECLEN (x, i); j++)
2350 hash += hash_rtx_cb (XVECEXP (x, i, j), 0, do_not_record_p,
2351 hash_arg_in_memory_p,
2352 have_reg_qty, cb);
2353 break;
2355 case 's':
2356 hash += hash_rtx_string (XSTR (x, i));
2357 break;
2359 case 'i':
2360 hash += (unsigned int) XINT (x, i);
2361 break;
2363 case '0': case 't':
2364 /* Unused. */
2365 break;
2367 default:
2368 gcc_unreachable ();
2372 return hash;
2375 /* Hash an rtx. We are careful to make sure the value is never negative.
2376 Equivalent registers hash identically.
2377 MODE is used in hashing for CONST_INTs only;
2378 otherwise the mode of X is used.
2380 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2382 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2383 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2385 Note that cse_insn knows that the hash code of a MEM expression
2386 is just (int) MEM plus the hash code of the address. */
2388 unsigned
2389 hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
2390 int *hash_arg_in_memory_p, bool have_reg_qty)
2392 return hash_rtx_cb (x, mode, do_not_record_p,
2393 hash_arg_in_memory_p, have_reg_qty, NULL);
2396 /* Hash an rtx X for cse via hash_rtx.
2397 Stores 1 in do_not_record if any subexpression is volatile.
2398 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2399 does not have the RTX_UNCHANGING_P bit set. */
2401 static inline unsigned
2402 canon_hash (rtx x, enum machine_mode mode)
2404 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2407 /* Like canon_hash but with no side effects, i.e. do_not_record
2408 and hash_arg_in_memory are not changed. */
2410 static inline unsigned
2411 safe_hash (rtx x, enum machine_mode mode)
2413 int dummy_do_not_record;
2414 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2417 /* Return 1 iff X and Y would canonicalize into the same thing,
2418 without actually constructing the canonicalization of either one.
2419 If VALIDATE is nonzero,
2420 we assume X is an expression being processed from the rtl
2421 and Y was found in the hash table. We check register refs
2422 in Y for being marked as valid.
2424 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2427 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2429 int i, j;
2430 enum rtx_code code;
2431 const char *fmt;
2433 /* Note: it is incorrect to assume an expression is equivalent to itself
2434 if VALIDATE is nonzero. */
2435 if (x == y && !validate)
2436 return 1;
2438 if (x == 0 || y == 0)
2439 return x == y;
2441 code = GET_CODE (x);
2442 if (code != GET_CODE (y))
2443 return 0;
2445 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2446 if (GET_MODE (x) != GET_MODE (y))
2447 return 0;
2449 switch (code)
2451 case PC:
2452 case CC0:
2453 case CONST_INT:
2454 case CONST_DOUBLE:
2455 case CONST_FIXED:
2456 return x == y;
2458 case LABEL_REF:
2459 return XEXP (x, 0) == XEXP (y, 0);
2461 case SYMBOL_REF:
2462 return XSTR (x, 0) == XSTR (y, 0);
2464 case REG:
2465 if (for_gcse)
2466 return REGNO (x) == REGNO (y);
2467 else
2469 unsigned int regno = REGNO (y);
2470 unsigned int i;
2471 unsigned int endregno = END_REGNO (y);
2473 /* If the quantities are not the same, the expressions are not
2474 equivalent. If there are and we are not to validate, they
2475 are equivalent. Otherwise, ensure all regs are up-to-date. */
2477 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2478 return 0;
2480 if (! validate)
2481 return 1;
2483 for (i = regno; i < endregno; i++)
2484 if (REG_IN_TABLE (i) != REG_TICK (i))
2485 return 0;
2487 return 1;
2490 case MEM:
2491 if (for_gcse)
2493 /* A volatile mem should not be considered equivalent to any
2494 other. */
2495 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2496 return 0;
2498 /* Can't merge two expressions in different alias sets, since we
2499 can decide that the expression is transparent in a block when
2500 it isn't, due to it being set with the different alias set.
2502 Also, can't merge two expressions with different MEM_ATTRS.
2503 They could e.g. be two different entities allocated into the
2504 same space on the stack (see e.g. PR25130). In that case, the
2505 MEM addresses can be the same, even though the two MEMs are
2506 absolutely not equivalent.
2508 But because really all MEM attributes should be the same for
2509 equivalent MEMs, we just use the invariant that MEMs that have
2510 the same attributes share the same mem_attrs data structure. */
2511 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2512 return 0;
2514 break;
2516 /* For commutative operations, check both orders. */
2517 case PLUS:
2518 case MULT:
2519 case AND:
2520 case IOR:
2521 case XOR:
2522 case NE:
2523 case EQ:
2524 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2525 validate, for_gcse)
2526 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2527 validate, for_gcse))
2528 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2529 validate, for_gcse)
2530 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2531 validate, for_gcse)));
2533 case ASM_OPERANDS:
2534 /* We don't use the generic code below because we want to
2535 disregard filename and line numbers. */
2537 /* A volatile asm isn't equivalent to any other. */
2538 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2539 return 0;
2541 if (GET_MODE (x) != GET_MODE (y)
2542 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2543 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2544 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2545 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2546 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2547 return 0;
2549 if (ASM_OPERANDS_INPUT_LENGTH (x))
2551 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2552 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2553 ASM_OPERANDS_INPUT (y, i),
2554 validate, for_gcse)
2555 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2556 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2557 return 0;
2560 return 1;
2562 default:
2563 break;
2566 /* Compare the elements. If any pair of corresponding elements
2567 fail to match, return 0 for the whole thing. */
2569 fmt = GET_RTX_FORMAT (code);
2570 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2572 switch (fmt[i])
2574 case 'e':
2575 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2576 validate, for_gcse))
2577 return 0;
2578 break;
2580 case 'E':
2581 if (XVECLEN (x, i) != XVECLEN (y, i))
2582 return 0;
2583 for (j = 0; j < XVECLEN (x, i); j++)
2584 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2585 validate, for_gcse))
2586 return 0;
2587 break;
2589 case 's':
2590 if (strcmp (XSTR (x, i), XSTR (y, i)))
2591 return 0;
2592 break;
2594 case 'i':
2595 if (XINT (x, i) != XINT (y, i))
2596 return 0;
2597 break;
2599 case 'w':
2600 if (XWINT (x, i) != XWINT (y, i))
2601 return 0;
2602 break;
2604 case '0':
2605 case 't':
2606 break;
2608 default:
2609 gcc_unreachable ();
2613 return 1;
2616 /* Return 1 if X has a value that can vary even between two
2617 executions of the program. 0 means X can be compared reliably
2618 against certain constants or near-constants. */
2620 static bool
2621 cse_rtx_varies_p (const_rtx x, bool from_alias)
2623 /* We need not check for X and the equivalence class being of the same
2624 mode because if X is equivalent to a constant in some mode, it
2625 doesn't vary in any mode. */
2627 if (REG_P (x)
2628 && REGNO_QTY_VALID_P (REGNO (x)))
2630 int x_q = REG_QTY (REGNO (x));
2631 struct qty_table_elem *x_ent = &qty_table[x_q];
2633 if (GET_MODE (x) == x_ent->mode
2634 && x_ent->const_rtx != NULL_RTX)
2635 return 0;
2638 if (GET_CODE (x) == PLUS
2639 && GET_CODE (XEXP (x, 1)) == CONST_INT
2640 && REG_P (XEXP (x, 0))
2641 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2643 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2644 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2646 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2647 && x0_ent->const_rtx != NULL_RTX)
2648 return 0;
2651 /* This can happen as the result of virtual register instantiation, if
2652 the initial constant is too large to be a valid address. This gives
2653 us a three instruction sequence, load large offset into a register,
2654 load fp minus a constant into a register, then a MEM which is the
2655 sum of the two `constant' registers. */
2656 if (GET_CODE (x) == PLUS
2657 && REG_P (XEXP (x, 0))
2658 && REG_P (XEXP (x, 1))
2659 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2660 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2662 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2663 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2664 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2665 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2667 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2668 && x0_ent->const_rtx != NULL_RTX
2669 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2670 && x1_ent->const_rtx != NULL_RTX)
2671 return 0;
2674 return rtx_varies_p (x, from_alias);
2677 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2678 the result if necessary. INSN is as for canon_reg. */
2680 static void
2681 validate_canon_reg (rtx *xloc, rtx insn)
2683 if (*xloc)
2685 rtx new_rtx = canon_reg (*xloc, insn);
2687 /* If replacing pseudo with hard reg or vice versa, ensure the
2688 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2689 gcc_assert (insn && new_rtx);
2690 validate_change (insn, xloc, new_rtx, 1);
2694 /* Canonicalize an expression:
2695 replace each register reference inside it
2696 with the "oldest" equivalent register.
2698 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2699 after we make our substitution. The calls are made with IN_GROUP nonzero
2700 so apply_change_group must be called upon the outermost return from this
2701 function (unless INSN is zero). The result of apply_change_group can
2702 generally be discarded since the changes we are making are optional. */
2704 static rtx
2705 canon_reg (rtx x, rtx insn)
2707 int i;
2708 enum rtx_code code;
2709 const char *fmt;
2711 if (x == 0)
2712 return x;
2714 code = GET_CODE (x);
2715 switch (code)
2717 case PC:
2718 case CC0:
2719 case CONST:
2720 case CONST_INT:
2721 case CONST_DOUBLE:
2722 case CONST_FIXED:
2723 case CONST_VECTOR:
2724 case SYMBOL_REF:
2725 case LABEL_REF:
2726 case ADDR_VEC:
2727 case ADDR_DIFF_VEC:
2728 return x;
2730 case REG:
2732 int first;
2733 int q;
2734 struct qty_table_elem *ent;
2736 /* Never replace a hard reg, because hard regs can appear
2737 in more than one machine mode, and we must preserve the mode
2738 of each occurrence. Also, some hard regs appear in
2739 MEMs that are shared and mustn't be altered. Don't try to
2740 replace any reg that maps to a reg of class NO_REGS. */
2741 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2742 || ! REGNO_QTY_VALID_P (REGNO (x)))
2743 return x;
2745 q = REG_QTY (REGNO (x));
2746 ent = &qty_table[q];
2747 first = ent->first_reg;
2748 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2749 : REGNO_REG_CLASS (first) == NO_REGS ? x
2750 : gen_rtx_REG (ent->mode, first));
2753 default:
2754 break;
2757 fmt = GET_RTX_FORMAT (code);
2758 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2760 int j;
2762 if (fmt[i] == 'e')
2763 validate_canon_reg (&XEXP (x, i), insn);
2764 else if (fmt[i] == 'E')
2765 for (j = 0; j < XVECLEN (x, i); j++)
2766 validate_canon_reg (&XVECEXP (x, i, j), insn);
2769 return x;
2772 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2773 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2774 what values are being compared.
2776 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2777 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2778 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2779 compared to produce cc0.
2781 The return value is the comparison operator and is either the code of
2782 A or the code corresponding to the inverse of the comparison. */
2784 static enum rtx_code
2785 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2786 enum machine_mode *pmode1, enum machine_mode *pmode2)
2788 rtx arg1, arg2;
2790 arg1 = *parg1, arg2 = *parg2;
2792 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2794 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2796 /* Set nonzero when we find something of interest. */
2797 rtx x = 0;
2798 int reverse_code = 0;
2799 struct table_elt *p = 0;
2801 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2802 On machines with CC0, this is the only case that can occur, since
2803 fold_rtx will return the COMPARE or item being compared with zero
2804 when given CC0. */
2806 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2807 x = arg1;
2809 /* If ARG1 is a comparison operator and CODE is testing for
2810 STORE_FLAG_VALUE, get the inner arguments. */
2812 else if (COMPARISON_P (arg1))
2814 #ifdef FLOAT_STORE_FLAG_VALUE
2815 REAL_VALUE_TYPE fsfv;
2816 #endif
2818 if (code == NE
2819 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2820 && code == LT && STORE_FLAG_VALUE == -1)
2821 #ifdef FLOAT_STORE_FLAG_VALUE
2822 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2823 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2824 REAL_VALUE_NEGATIVE (fsfv)))
2825 #endif
2827 x = arg1;
2828 else if (code == EQ
2829 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2830 && code == GE && STORE_FLAG_VALUE == -1)
2831 #ifdef FLOAT_STORE_FLAG_VALUE
2832 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2833 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2834 REAL_VALUE_NEGATIVE (fsfv)))
2835 #endif
2837 x = arg1, reverse_code = 1;
2840 /* ??? We could also check for
2842 (ne (and (eq (...) (const_int 1))) (const_int 0))
2844 and related forms, but let's wait until we see them occurring. */
2846 if (x == 0)
2847 /* Look up ARG1 in the hash table and see if it has an equivalence
2848 that lets us see what is being compared. */
2849 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2850 if (p)
2852 p = p->first_same_value;
2854 /* If what we compare is already known to be constant, that is as
2855 good as it gets.
2856 We need to break the loop in this case, because otherwise we
2857 can have an infinite loop when looking at a reg that is known
2858 to be a constant which is the same as a comparison of a reg
2859 against zero which appears later in the insn stream, which in
2860 turn is constant and the same as the comparison of the first reg
2861 against zero... */
2862 if (p->is_const)
2863 break;
2866 for (; p; p = p->next_same_value)
2868 enum machine_mode inner_mode = GET_MODE (p->exp);
2869 #ifdef FLOAT_STORE_FLAG_VALUE
2870 REAL_VALUE_TYPE fsfv;
2871 #endif
2873 /* If the entry isn't valid, skip it. */
2874 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2875 continue;
2877 if (GET_CODE (p->exp) == COMPARE
2878 /* Another possibility is that this machine has a compare insn
2879 that includes the comparison code. In that case, ARG1 would
2880 be equivalent to a comparison operation that would set ARG1 to
2881 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2882 ORIG_CODE is the actual comparison being done; if it is an EQ,
2883 we must reverse ORIG_CODE. On machine with a negative value
2884 for STORE_FLAG_VALUE, also look at LT and GE operations. */
2885 || ((code == NE
2886 || (code == LT
2887 && GET_MODE_CLASS (inner_mode) == MODE_INT
2888 && (GET_MODE_BITSIZE (inner_mode)
2889 <= HOST_BITS_PER_WIDE_INT)
2890 && (STORE_FLAG_VALUE
2891 & ((HOST_WIDE_INT) 1
2892 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2893 #ifdef FLOAT_STORE_FLAG_VALUE
2894 || (code == LT
2895 && SCALAR_FLOAT_MODE_P (inner_mode)
2896 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2897 REAL_VALUE_NEGATIVE (fsfv)))
2898 #endif
2900 && COMPARISON_P (p->exp)))
2902 x = p->exp;
2903 break;
2905 else if ((code == EQ
2906 || (code == GE
2907 && GET_MODE_CLASS (inner_mode) == MODE_INT
2908 && (GET_MODE_BITSIZE (inner_mode)
2909 <= HOST_BITS_PER_WIDE_INT)
2910 && (STORE_FLAG_VALUE
2911 & ((HOST_WIDE_INT) 1
2912 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2913 #ifdef FLOAT_STORE_FLAG_VALUE
2914 || (code == GE
2915 && SCALAR_FLOAT_MODE_P (inner_mode)
2916 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2917 REAL_VALUE_NEGATIVE (fsfv)))
2918 #endif
2920 && COMPARISON_P (p->exp))
2922 reverse_code = 1;
2923 x = p->exp;
2924 break;
2927 /* If this non-trapping address, e.g. fp + constant, the
2928 equivalent is a better operand since it may let us predict
2929 the value of the comparison. */
2930 else if (!rtx_addr_can_trap_p (p->exp))
2932 arg1 = p->exp;
2933 continue;
2937 /* If we didn't find a useful equivalence for ARG1, we are done.
2938 Otherwise, set up for the next iteration. */
2939 if (x == 0)
2940 break;
2942 /* If we need to reverse the comparison, make sure that that is
2943 possible -- we can't necessarily infer the value of GE from LT
2944 with floating-point operands. */
2945 if (reverse_code)
2947 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
2948 if (reversed == UNKNOWN)
2949 break;
2950 else
2951 code = reversed;
2953 else if (COMPARISON_P (x))
2954 code = GET_CODE (x);
2955 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
2958 /* Return our results. Return the modes from before fold_rtx
2959 because fold_rtx might produce const_int, and then it's too late. */
2960 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
2961 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
2963 return code;
2966 /* If X is a nontrivial arithmetic operation on an argument for which
2967 a constant value can be determined, return the result of operating
2968 on that value, as a constant. Otherwise, return X, possibly with
2969 one or more operands changed to a forward-propagated constant.
2971 If X is a register whose contents are known, we do NOT return
2972 those contents here; equiv_constant is called to perform that task.
2973 For SUBREGs and MEMs, we do that both here and in equiv_constant.
2975 INSN is the insn that we may be modifying. If it is 0, make a copy
2976 of X before modifying it. */
2978 static rtx
2979 fold_rtx (rtx x, rtx insn)
2981 enum rtx_code code;
2982 enum machine_mode mode;
2983 const char *fmt;
2984 int i;
2985 rtx new_rtx = 0;
2986 int changed = 0;
2988 /* Operands of X. */
2989 rtx folded_arg0;
2990 rtx folded_arg1;
2992 /* Constant equivalents of first three operands of X;
2993 0 when no such equivalent is known. */
2994 rtx const_arg0;
2995 rtx const_arg1;
2996 rtx const_arg2;
2998 /* The mode of the first operand of X. We need this for sign and zero
2999 extends. */
3000 enum machine_mode mode_arg0;
3002 if (x == 0)
3003 return x;
3005 /* Try to perform some initial simplifications on X. */
3006 code = GET_CODE (x);
3007 switch (code)
3009 case MEM:
3010 case SUBREG:
3011 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3012 return new_rtx;
3013 return x;
3015 case CONST:
3016 case CONST_INT:
3017 case CONST_DOUBLE:
3018 case CONST_FIXED:
3019 case CONST_VECTOR:
3020 case SYMBOL_REF:
3021 case LABEL_REF:
3022 case REG:
3023 case PC:
3024 /* No use simplifying an EXPR_LIST
3025 since they are used only for lists of args
3026 in a function call's REG_EQUAL note. */
3027 case EXPR_LIST:
3028 return x;
3030 #ifdef HAVE_cc0
3031 case CC0:
3032 return prev_insn_cc0;
3033 #endif
3035 case ASM_OPERANDS:
3036 if (insn)
3038 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3039 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3040 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3042 return x;
3044 #ifdef NO_FUNCTION_CSE
3045 case CALL:
3046 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3047 return x;
3048 break;
3049 #endif
3051 /* Anything else goes through the loop below. */
3052 default:
3053 break;
3056 mode = GET_MODE (x);
3057 const_arg0 = 0;
3058 const_arg1 = 0;
3059 const_arg2 = 0;
3060 mode_arg0 = VOIDmode;
3062 /* Try folding our operands.
3063 Then see which ones have constant values known. */
3065 fmt = GET_RTX_FORMAT (code);
3066 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3067 if (fmt[i] == 'e')
3069 rtx folded_arg = XEXP (x, i), const_arg;
3070 enum machine_mode mode_arg = GET_MODE (folded_arg);
3072 switch (GET_CODE (folded_arg))
3074 case MEM:
3075 case REG:
3076 case SUBREG:
3077 const_arg = equiv_constant (folded_arg);
3078 break;
3080 case CONST:
3081 case CONST_INT:
3082 case SYMBOL_REF:
3083 case LABEL_REF:
3084 case CONST_DOUBLE:
3085 case CONST_FIXED:
3086 case CONST_VECTOR:
3087 const_arg = folded_arg;
3088 break;
3090 #ifdef HAVE_cc0
3091 case CC0:
3092 folded_arg = prev_insn_cc0;
3093 mode_arg = prev_insn_cc0_mode;
3094 const_arg = equiv_constant (folded_arg);
3095 break;
3096 #endif
3098 default:
3099 folded_arg = fold_rtx (folded_arg, insn);
3100 const_arg = equiv_constant (folded_arg);
3101 break;
3104 /* For the first three operands, see if the operand
3105 is constant or equivalent to a constant. */
3106 switch (i)
3108 case 0:
3109 folded_arg0 = folded_arg;
3110 const_arg0 = const_arg;
3111 mode_arg0 = mode_arg;
3112 break;
3113 case 1:
3114 folded_arg1 = folded_arg;
3115 const_arg1 = const_arg;
3116 break;
3117 case 2:
3118 const_arg2 = const_arg;
3119 break;
3122 /* Pick the least expensive of the argument and an equivalent constant
3123 argument. */
3124 if (const_arg != 0
3125 && const_arg != folded_arg
3126 && COST_IN (const_arg, code) <= COST_IN (folded_arg, code)
3128 /* It's not safe to substitute the operand of a conversion
3129 operator with a constant, as the conversion's identity
3130 depends upon the mode of its operand. This optimization
3131 is handled by the call to simplify_unary_operation. */
3132 && (GET_RTX_CLASS (code) != RTX_UNARY
3133 || GET_MODE (const_arg) == mode_arg0
3134 || (code != ZERO_EXTEND
3135 && code != SIGN_EXTEND
3136 && code != TRUNCATE
3137 && code != FLOAT_TRUNCATE
3138 && code != FLOAT_EXTEND
3139 && code != FLOAT
3140 && code != FIX
3141 && code != UNSIGNED_FLOAT
3142 && code != UNSIGNED_FIX)))
3143 folded_arg = const_arg;
3145 if (folded_arg == XEXP (x, i))
3146 continue;
3148 if (insn == NULL_RTX && !changed)
3149 x = copy_rtx (x);
3150 changed = 1;
3151 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3154 if (changed)
3156 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3157 consistent with the order in X. */
3158 if (canonicalize_change_group (insn, x))
3160 rtx tem;
3161 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3162 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3165 apply_change_group ();
3168 /* If X is an arithmetic operation, see if we can simplify it. */
3170 switch (GET_RTX_CLASS (code))
3172 case RTX_UNARY:
3174 int is_const = 0;
3176 /* We can't simplify extension ops unless we know the
3177 original mode. */
3178 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3179 && mode_arg0 == VOIDmode)
3180 break;
3182 /* If we had a CONST, strip it off and put it back later if we
3183 fold. */
3184 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3185 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3187 new_rtx = simplify_unary_operation (code, mode,
3188 const_arg0 ? const_arg0 : folded_arg0,
3189 mode_arg0);
3190 /* NEG of PLUS could be converted into MINUS, but that causes
3191 expressions of the form
3192 (CONST (MINUS (CONST_INT) (SYMBOL_REF)))
3193 which many ports mistakenly treat as LEGITIMATE_CONSTANT_P.
3194 FIXME: those ports should be fixed. */
3195 if (new_rtx != 0 && is_const
3196 && GET_CODE (new_rtx) == PLUS
3197 && (GET_CODE (XEXP (new_rtx, 0)) == SYMBOL_REF
3198 || GET_CODE (XEXP (new_rtx, 0)) == LABEL_REF)
3199 && GET_CODE (XEXP (new_rtx, 1)) == CONST_INT)
3200 new_rtx = gen_rtx_CONST (mode, new_rtx);
3202 break;
3204 case RTX_COMPARE:
3205 case RTX_COMM_COMPARE:
3206 /* See what items are actually being compared and set FOLDED_ARG[01]
3207 to those values and CODE to the actual comparison code. If any are
3208 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3209 do anything if both operands are already known to be constant. */
3211 /* ??? Vector mode comparisons are not supported yet. */
3212 if (VECTOR_MODE_P (mode))
3213 break;
3215 if (const_arg0 == 0 || const_arg1 == 0)
3217 struct table_elt *p0, *p1;
3218 rtx true_rtx, false_rtx;
3219 enum machine_mode mode_arg1;
3221 if (SCALAR_FLOAT_MODE_P (mode))
3223 #ifdef FLOAT_STORE_FLAG_VALUE
3224 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3225 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3226 #else
3227 true_rtx = NULL_RTX;
3228 #endif
3229 false_rtx = CONST0_RTX (mode);
3231 else
3233 true_rtx = const_true_rtx;
3234 false_rtx = const0_rtx;
3237 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3238 &mode_arg0, &mode_arg1);
3240 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3241 what kinds of things are being compared, so we can't do
3242 anything with this comparison. */
3244 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3245 break;
3247 const_arg0 = equiv_constant (folded_arg0);
3248 const_arg1 = equiv_constant (folded_arg1);
3250 /* If we do not now have two constants being compared, see
3251 if we can nevertheless deduce some things about the
3252 comparison. */
3253 if (const_arg0 == 0 || const_arg1 == 0)
3255 if (const_arg1 != NULL)
3257 rtx cheapest_simplification;
3258 int cheapest_cost;
3259 rtx simp_result;
3260 struct table_elt *p;
3262 /* See if we can find an equivalent of folded_arg0
3263 that gets us a cheaper expression, possibly a
3264 constant through simplifications. */
3265 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3266 mode_arg0);
3268 if (p != NULL)
3270 cheapest_simplification = x;
3271 cheapest_cost = COST (x);
3273 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3275 int cost;
3277 /* If the entry isn't valid, skip it. */
3278 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3279 continue;
3281 /* Try to simplify using this equivalence. */
3282 simp_result
3283 = simplify_relational_operation (code, mode,
3284 mode_arg0,
3285 p->exp,
3286 const_arg1);
3288 if (simp_result == NULL)
3289 continue;
3291 cost = COST (simp_result);
3292 if (cost < cheapest_cost)
3294 cheapest_cost = cost;
3295 cheapest_simplification = simp_result;
3299 /* If we have a cheaper expression now, use that
3300 and try folding it further, from the top. */
3301 if (cheapest_simplification != x)
3302 return fold_rtx (copy_rtx (cheapest_simplification),
3303 insn);
3307 /* See if the two operands are the same. */
3309 if ((REG_P (folded_arg0)
3310 && REG_P (folded_arg1)
3311 && (REG_QTY (REGNO (folded_arg0))
3312 == REG_QTY (REGNO (folded_arg1))))
3313 || ((p0 = lookup (folded_arg0,
3314 SAFE_HASH (folded_arg0, mode_arg0),
3315 mode_arg0))
3316 && (p1 = lookup (folded_arg1,
3317 SAFE_HASH (folded_arg1, mode_arg0),
3318 mode_arg0))
3319 && p0->first_same_value == p1->first_same_value))
3320 folded_arg1 = folded_arg0;
3322 /* If FOLDED_ARG0 is a register, see if the comparison we are
3323 doing now is either the same as we did before or the reverse
3324 (we only check the reverse if not floating-point). */
3325 else if (REG_P (folded_arg0))
3327 int qty = REG_QTY (REGNO (folded_arg0));
3329 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3331 struct qty_table_elem *ent = &qty_table[qty];
3333 if ((comparison_dominates_p (ent->comparison_code, code)
3334 || (! FLOAT_MODE_P (mode_arg0)
3335 && comparison_dominates_p (ent->comparison_code,
3336 reverse_condition (code))))
3337 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3338 || (const_arg1
3339 && rtx_equal_p (ent->comparison_const,
3340 const_arg1))
3341 || (REG_P (folded_arg1)
3342 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3344 if (comparison_dominates_p (ent->comparison_code, code))
3346 if (true_rtx)
3347 return true_rtx;
3348 else
3349 break;
3351 else
3352 return false_rtx;
3359 /* If we are comparing against zero, see if the first operand is
3360 equivalent to an IOR with a constant. If so, we may be able to
3361 determine the result of this comparison. */
3362 if (const_arg1 == const0_rtx && !const_arg0)
3364 rtx y = lookup_as_function (folded_arg0, IOR);
3365 rtx inner_const;
3367 if (y != 0
3368 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3369 && GET_CODE (inner_const) == CONST_INT
3370 && INTVAL (inner_const) != 0)
3371 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3375 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
3376 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
3377 new_rtx = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
3379 break;
3381 case RTX_BIN_ARITH:
3382 case RTX_COMM_ARITH:
3383 switch (code)
3385 case PLUS:
3386 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3387 with that LABEL_REF as its second operand. If so, the result is
3388 the first operand of that MINUS. This handles switches with an
3389 ADDR_DIFF_VEC table. */
3390 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3392 rtx y
3393 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3394 : lookup_as_function (folded_arg0, MINUS);
3396 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3397 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3398 return XEXP (y, 0);
3400 /* Now try for a CONST of a MINUS like the above. */
3401 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3402 : lookup_as_function (folded_arg0, CONST))) != 0
3403 && GET_CODE (XEXP (y, 0)) == MINUS
3404 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3405 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3406 return XEXP (XEXP (y, 0), 0);
3409 /* Likewise if the operands are in the other order. */
3410 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3412 rtx y
3413 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3414 : lookup_as_function (folded_arg1, MINUS);
3416 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3417 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3418 return XEXP (y, 0);
3420 /* Now try for a CONST of a MINUS like the above. */
3421 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3422 : lookup_as_function (folded_arg1, CONST))) != 0
3423 && GET_CODE (XEXP (y, 0)) == MINUS
3424 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3425 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3426 return XEXP (XEXP (y, 0), 0);
3429 /* If second operand is a register equivalent to a negative
3430 CONST_INT, see if we can find a register equivalent to the
3431 positive constant. Make a MINUS if so. Don't do this for
3432 a non-negative constant since we might then alternate between
3433 choosing positive and negative constants. Having the positive
3434 constant previously-used is the more common case. Be sure
3435 the resulting constant is non-negative; if const_arg1 were
3436 the smallest negative number this would overflow: depending
3437 on the mode, this would either just be the same value (and
3438 hence not save anything) or be incorrect. */
3439 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
3440 && INTVAL (const_arg1) < 0
3441 /* This used to test
3443 -INTVAL (const_arg1) >= 0
3445 But The Sun V5.0 compilers mis-compiled that test. So
3446 instead we test for the problematic value in a more direct
3447 manner and hope the Sun compilers get it correct. */
3448 && INTVAL (const_arg1) !=
3449 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3450 && REG_P (folded_arg1))
3452 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3453 struct table_elt *p
3454 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3456 if (p)
3457 for (p = p->first_same_value; p; p = p->next_same_value)
3458 if (REG_P (p->exp))
3459 return simplify_gen_binary (MINUS, mode, folded_arg0,
3460 canon_reg (p->exp, NULL_RTX));
3462 goto from_plus;
3464 case MINUS:
3465 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3466 If so, produce (PLUS Z C2-C). */
3467 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
3469 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3470 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
3471 return fold_rtx (plus_constant (copy_rtx (y),
3472 -INTVAL (const_arg1)),
3473 NULL_RTX);
3476 /* Fall through. */
3478 from_plus:
3479 case SMIN: case SMAX: case UMIN: case UMAX:
3480 case IOR: case AND: case XOR:
3481 case MULT:
3482 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3483 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3484 is known to be of similar form, we may be able to replace the
3485 operation with a combined operation. This may eliminate the
3486 intermediate operation if every use is simplified in this way.
3487 Note that the similar optimization done by combine.c only works
3488 if the intermediate operation's result has only one reference. */
3490 if (REG_P (folded_arg0)
3491 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
3493 int is_shift
3494 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3495 rtx y, inner_const, new_const;
3496 enum rtx_code associate_code;
3498 if (is_shift
3499 && (INTVAL (const_arg1) >= GET_MODE_BITSIZE (mode)
3500 || INTVAL (const_arg1) < 0))
3502 if (SHIFT_COUNT_TRUNCATED)
3503 const_arg1 = GEN_INT (INTVAL (const_arg1)
3504 & (GET_MODE_BITSIZE (mode) - 1));
3505 else
3506 break;
3509 y = lookup_as_function (folded_arg0, code);
3510 if (y == 0)
3511 break;
3513 /* If we have compiled a statement like
3514 "if (x == (x & mask1))", and now are looking at
3515 "x & mask2", we will have a case where the first operand
3516 of Y is the same as our first operand. Unless we detect
3517 this case, an infinite loop will result. */
3518 if (XEXP (y, 0) == folded_arg0)
3519 break;
3521 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3522 if (!inner_const || GET_CODE (inner_const) != CONST_INT)
3523 break;
3525 /* Don't associate these operations if they are a PLUS with the
3526 same constant and it is a power of two. These might be doable
3527 with a pre- or post-increment. Similarly for two subtracts of
3528 identical powers of two with post decrement. */
3530 if (code == PLUS && const_arg1 == inner_const
3531 && ((HAVE_PRE_INCREMENT
3532 && exact_log2 (INTVAL (const_arg1)) >= 0)
3533 || (HAVE_POST_INCREMENT
3534 && exact_log2 (INTVAL (const_arg1)) >= 0)
3535 || (HAVE_PRE_DECREMENT
3536 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3537 || (HAVE_POST_DECREMENT
3538 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3539 break;
3541 /* ??? Vector mode shifts by scalar
3542 shift operand are not supported yet. */
3543 if (is_shift && VECTOR_MODE_P (mode))
3544 break;
3546 if (is_shift
3547 && (INTVAL (inner_const) >= GET_MODE_BITSIZE (mode)
3548 || INTVAL (inner_const) < 0))
3550 if (SHIFT_COUNT_TRUNCATED)
3551 inner_const = GEN_INT (INTVAL (inner_const)
3552 & (GET_MODE_BITSIZE (mode) - 1));
3553 else
3554 break;
3557 /* Compute the code used to compose the constants. For example,
3558 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3560 associate_code = (is_shift || code == MINUS ? PLUS : code);
3562 new_const = simplify_binary_operation (associate_code, mode,
3563 const_arg1, inner_const);
3565 if (new_const == 0)
3566 break;
3568 /* If we are associating shift operations, don't let this
3569 produce a shift of the size of the object or larger.
3570 This could occur when we follow a sign-extend by a right
3571 shift on a machine that does a sign-extend as a pair
3572 of shifts. */
3574 if (is_shift
3575 && GET_CODE (new_const) == CONST_INT
3576 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
3578 /* As an exception, we can turn an ASHIFTRT of this
3579 form into a shift of the number of bits - 1. */
3580 if (code == ASHIFTRT)
3581 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3582 else if (!side_effects_p (XEXP (y, 0)))
3583 return CONST0_RTX (mode);
3584 else
3585 break;
3588 y = copy_rtx (XEXP (y, 0));
3590 /* If Y contains our first operand (the most common way this
3591 can happen is if Y is a MEM), we would do into an infinite
3592 loop if we tried to fold it. So don't in that case. */
3594 if (! reg_mentioned_p (folded_arg0, y))
3595 y = fold_rtx (y, insn);
3597 return simplify_gen_binary (code, mode, y, new_const);
3599 break;
3601 case DIV: case UDIV:
3602 /* ??? The associative optimization performed immediately above is
3603 also possible for DIV and UDIV using associate_code of MULT.
3604 However, we would need extra code to verify that the
3605 multiplication does not overflow, that is, there is no overflow
3606 in the calculation of new_const. */
3607 break;
3609 default:
3610 break;
3613 new_rtx = simplify_binary_operation (code, mode,
3614 const_arg0 ? const_arg0 : folded_arg0,
3615 const_arg1 ? const_arg1 : folded_arg1);
3616 break;
3618 case RTX_OBJ:
3619 /* (lo_sum (high X) X) is simply X. */
3620 if (code == LO_SUM && const_arg0 != 0
3621 && GET_CODE (const_arg0) == HIGH
3622 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3623 return const_arg1;
3624 break;
3626 case RTX_TERNARY:
3627 case RTX_BITFIELD_OPS:
3628 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3629 const_arg0 ? const_arg0 : folded_arg0,
3630 const_arg1 ? const_arg1 : folded_arg1,
3631 const_arg2 ? const_arg2 : XEXP (x, 2));
3632 break;
3634 default:
3635 break;
3638 return new_rtx ? new_rtx : x;
3641 /* Return a constant value currently equivalent to X.
3642 Return 0 if we don't know one. */
3644 static rtx
3645 equiv_constant (rtx x)
3647 if (REG_P (x)
3648 && REGNO_QTY_VALID_P (REGNO (x)))
3650 int x_q = REG_QTY (REGNO (x));
3651 struct qty_table_elem *x_ent = &qty_table[x_q];
3653 if (x_ent->const_rtx)
3654 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3657 if (x == 0 || CONSTANT_P (x))
3658 return x;
3660 if (GET_CODE (x) == SUBREG)
3662 rtx new_rtx;
3664 /* See if we previously assigned a constant value to this SUBREG. */
3665 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3666 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3667 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3668 return new_rtx;
3670 if (REG_P (SUBREG_REG (x))
3671 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3672 return simplify_subreg (GET_MODE (x), SUBREG_REG (x),
3673 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
3675 return 0;
3678 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3679 the hash table in case its value was seen before. */
3681 if (MEM_P (x))
3683 struct table_elt *elt;
3685 x = avoid_constant_pool_reference (x);
3686 if (CONSTANT_P (x))
3687 return x;
3689 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3690 if (elt == 0)
3691 return 0;
3693 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3694 if (elt->is_const && CONSTANT_P (elt->exp))
3695 return elt->exp;
3698 return 0;
3701 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3702 "taken" branch.
3704 In certain cases, this can cause us to add an equivalence. For example,
3705 if we are following the taken case of
3706 if (i == 2)
3707 we can add the fact that `i' and '2' are now equivalent.
3709 In any case, we can record that this comparison was passed. If the same
3710 comparison is seen later, we will know its value. */
3712 static void
3713 record_jump_equiv (rtx insn, bool taken)
3715 int cond_known_true;
3716 rtx op0, op1;
3717 rtx set;
3718 enum machine_mode mode, mode0, mode1;
3719 int reversed_nonequality = 0;
3720 enum rtx_code code;
3722 /* Ensure this is the right kind of insn. */
3723 gcc_assert (any_condjump_p (insn));
3725 set = pc_set (insn);
3727 /* See if this jump condition is known true or false. */
3728 if (taken)
3729 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3730 else
3731 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3733 /* Get the type of comparison being done and the operands being compared.
3734 If we had to reverse a non-equality condition, record that fact so we
3735 know that it isn't valid for floating-point. */
3736 code = GET_CODE (XEXP (SET_SRC (set), 0));
3737 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3738 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3740 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3741 if (! cond_known_true)
3743 code = reversed_comparison_code_parts (code, op0, op1, insn);
3745 /* Don't remember if we can't find the inverse. */
3746 if (code == UNKNOWN)
3747 return;
3750 /* The mode is the mode of the non-constant. */
3751 mode = mode0;
3752 if (mode1 != VOIDmode)
3753 mode = mode1;
3755 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3758 /* Yet another form of subreg creation. In this case, we want something in
3759 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3761 static rtx
3762 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3764 enum machine_mode op_mode = GET_MODE (op);
3765 if (op_mode == mode || op_mode == VOIDmode)
3766 return op;
3767 return lowpart_subreg (mode, op, op_mode);
3770 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3771 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3772 Make any useful entries we can with that information. Called from
3773 above function and called recursively. */
3775 static void
3776 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3777 rtx op1, int reversed_nonequality)
3779 unsigned op0_hash, op1_hash;
3780 int op0_in_memory, op1_in_memory;
3781 struct table_elt *op0_elt, *op1_elt;
3783 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3784 we know that they are also equal in the smaller mode (this is also
3785 true for all smaller modes whether or not there is a SUBREG, but
3786 is not worth testing for with no SUBREG). */
3788 /* Note that GET_MODE (op0) may not equal MODE. */
3789 if (code == EQ && GET_CODE (op0) == SUBREG
3790 && (GET_MODE_SIZE (GET_MODE (op0))
3791 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3793 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3794 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3795 if (tem)
3796 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3797 reversed_nonequality);
3800 if (code == EQ && GET_CODE (op1) == SUBREG
3801 && (GET_MODE_SIZE (GET_MODE (op1))
3802 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3804 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3805 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3806 if (tem)
3807 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3808 reversed_nonequality);
3811 /* Similarly, if this is an NE comparison, and either is a SUBREG
3812 making a smaller mode, we know the whole thing is also NE. */
3814 /* Note that GET_MODE (op0) may not equal MODE;
3815 if we test MODE instead, we can get an infinite recursion
3816 alternating between two modes each wider than MODE. */
3818 if (code == NE && GET_CODE (op0) == SUBREG
3819 && subreg_lowpart_p (op0)
3820 && (GET_MODE_SIZE (GET_MODE (op0))
3821 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3823 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3824 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3825 if (tem)
3826 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3827 reversed_nonequality);
3830 if (code == NE && GET_CODE (op1) == SUBREG
3831 && subreg_lowpart_p (op1)
3832 && (GET_MODE_SIZE (GET_MODE (op1))
3833 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3835 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3836 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3837 if (tem)
3838 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3839 reversed_nonequality);
3842 /* Hash both operands. */
3844 do_not_record = 0;
3845 hash_arg_in_memory = 0;
3846 op0_hash = HASH (op0, mode);
3847 op0_in_memory = hash_arg_in_memory;
3849 if (do_not_record)
3850 return;
3852 do_not_record = 0;
3853 hash_arg_in_memory = 0;
3854 op1_hash = HASH (op1, mode);
3855 op1_in_memory = hash_arg_in_memory;
3857 if (do_not_record)
3858 return;
3860 /* Look up both operands. */
3861 op0_elt = lookup (op0, op0_hash, mode);
3862 op1_elt = lookup (op1, op1_hash, mode);
3864 /* If both operands are already equivalent or if they are not in the
3865 table but are identical, do nothing. */
3866 if ((op0_elt != 0 && op1_elt != 0
3867 && op0_elt->first_same_value == op1_elt->first_same_value)
3868 || op0 == op1 || rtx_equal_p (op0, op1))
3869 return;
3871 /* If we aren't setting two things equal all we can do is save this
3872 comparison. Similarly if this is floating-point. In the latter
3873 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
3874 If we record the equality, we might inadvertently delete code
3875 whose intent was to change -0 to +0. */
3877 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
3879 struct qty_table_elem *ent;
3880 int qty;
3882 /* If we reversed a floating-point comparison, if OP0 is not a
3883 register, or if OP1 is neither a register or constant, we can't
3884 do anything. */
3886 if (!REG_P (op1))
3887 op1 = equiv_constant (op1);
3889 if ((reversed_nonequality && FLOAT_MODE_P (mode))
3890 || !REG_P (op0) || op1 == 0)
3891 return;
3893 /* Put OP0 in the hash table if it isn't already. This gives it a
3894 new quantity number. */
3895 if (op0_elt == 0)
3897 if (insert_regs (op0, NULL, 0))
3899 rehash_using_reg (op0);
3900 op0_hash = HASH (op0, mode);
3902 /* If OP0 is contained in OP1, this changes its hash code
3903 as well. Faster to rehash than to check, except
3904 for the simple case of a constant. */
3905 if (! CONSTANT_P (op1))
3906 op1_hash = HASH (op1,mode);
3909 op0_elt = insert (op0, NULL, op0_hash, mode);
3910 op0_elt->in_memory = op0_in_memory;
3913 qty = REG_QTY (REGNO (op0));
3914 ent = &qty_table[qty];
3916 ent->comparison_code = code;
3917 if (REG_P (op1))
3919 /* Look it up again--in case op0 and op1 are the same. */
3920 op1_elt = lookup (op1, op1_hash, mode);
3922 /* Put OP1 in the hash table so it gets a new quantity number. */
3923 if (op1_elt == 0)
3925 if (insert_regs (op1, NULL, 0))
3927 rehash_using_reg (op1);
3928 op1_hash = HASH (op1, mode);
3931 op1_elt = insert (op1, NULL, op1_hash, mode);
3932 op1_elt->in_memory = op1_in_memory;
3935 ent->comparison_const = NULL_RTX;
3936 ent->comparison_qty = REG_QTY (REGNO (op1));
3938 else
3940 ent->comparison_const = op1;
3941 ent->comparison_qty = -1;
3944 return;
3947 /* If either side is still missing an equivalence, make it now,
3948 then merge the equivalences. */
3950 if (op0_elt == 0)
3952 if (insert_regs (op0, NULL, 0))
3954 rehash_using_reg (op0);
3955 op0_hash = HASH (op0, mode);
3958 op0_elt = insert (op0, NULL, op0_hash, mode);
3959 op0_elt->in_memory = op0_in_memory;
3962 if (op1_elt == 0)
3964 if (insert_regs (op1, NULL, 0))
3966 rehash_using_reg (op1);
3967 op1_hash = HASH (op1, mode);
3970 op1_elt = insert (op1, NULL, op1_hash, mode);
3971 op1_elt->in_memory = op1_in_memory;
3974 merge_equiv_classes (op0_elt, op1_elt);
3977 /* CSE processing for one instruction.
3978 First simplify sources and addresses of all assignments
3979 in the instruction, using previously-computed equivalents values.
3980 Then install the new sources and destinations in the table
3981 of available values. */
3983 /* Data on one SET contained in the instruction. */
3985 struct set
3987 /* The SET rtx itself. */
3988 rtx rtl;
3989 /* The SET_SRC of the rtx (the original value, if it is changing). */
3990 rtx src;
3991 /* The hash-table element for the SET_SRC of the SET. */
3992 struct table_elt *src_elt;
3993 /* Hash value for the SET_SRC. */
3994 unsigned src_hash;
3995 /* Hash value for the SET_DEST. */
3996 unsigned dest_hash;
3997 /* The SET_DEST, with SUBREG, etc., stripped. */
3998 rtx inner_dest;
3999 /* Nonzero if the SET_SRC is in memory. */
4000 char src_in_memory;
4001 /* Nonzero if the SET_SRC contains something
4002 whose value cannot be predicted and understood. */
4003 char src_volatile;
4004 /* Original machine mode, in case it becomes a CONST_INT.
4005 The size of this field should match the size of the mode
4006 field of struct rtx_def (see rtl.h). */
4007 ENUM_BITFIELD(machine_mode) mode : 8;
4008 /* A constant equivalent for SET_SRC, if any. */
4009 rtx src_const;
4010 /* Hash value of constant equivalent for SET_SRC. */
4011 unsigned src_const_hash;
4012 /* Table entry for constant equivalent for SET_SRC, if any. */
4013 struct table_elt *src_const_elt;
4014 /* Table entry for the destination address. */
4015 struct table_elt *dest_addr_elt;
4018 static void
4019 cse_insn (rtx insn)
4021 rtx x = PATTERN (insn);
4022 int i;
4023 rtx tem;
4024 int n_sets = 0;
4026 rtx src_eqv = 0;
4027 struct table_elt *src_eqv_elt = 0;
4028 int src_eqv_volatile = 0;
4029 int src_eqv_in_memory = 0;
4030 unsigned src_eqv_hash = 0;
4032 struct set *sets = (struct set *) 0;
4034 this_insn = insn;
4035 #ifdef HAVE_cc0
4036 /* Records what this insn does to set CC0. */
4037 this_insn_cc0 = 0;
4038 this_insn_cc0_mode = VOIDmode;
4039 #endif
4041 /* Find all the SETs and CLOBBERs in this instruction.
4042 Record all the SETs in the array `set' and count them.
4043 Also determine whether there is a CLOBBER that invalidates
4044 all memory references, or all references at varying addresses. */
4046 if (CALL_P (insn))
4048 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4050 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4051 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4052 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4056 if (GET_CODE (x) == SET)
4058 sets = XALLOCA (struct set);
4059 sets[0].rtl = x;
4061 /* Ignore SETs that are unconditional jumps.
4062 They never need cse processing, so this does not hurt.
4063 The reason is not efficiency but rather
4064 so that we can test at the end for instructions
4065 that have been simplified to unconditional jumps
4066 and not be misled by unchanged instructions
4067 that were unconditional jumps to begin with. */
4068 if (SET_DEST (x) == pc_rtx
4069 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4072 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4073 The hard function value register is used only once, to copy to
4074 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4075 Ensure we invalidate the destination register. On the 80386 no
4076 other code would invalidate it since it is a fixed_reg.
4077 We need not check the return of apply_change_group; see canon_reg. */
4079 else if (GET_CODE (SET_SRC (x)) == CALL)
4081 canon_reg (SET_SRC (x), insn);
4082 apply_change_group ();
4083 fold_rtx (SET_SRC (x), insn);
4084 invalidate (SET_DEST (x), VOIDmode);
4086 else
4087 n_sets = 1;
4089 else if (GET_CODE (x) == PARALLEL)
4091 int lim = XVECLEN (x, 0);
4093 sets = XALLOCAVEC (struct set, lim);
4095 /* Find all regs explicitly clobbered in this insn,
4096 and ensure they are not replaced with any other regs
4097 elsewhere in this insn.
4098 When a reg that is clobbered is also used for input,
4099 we should presume that that is for a reason,
4100 and we should not substitute some other register
4101 which is not supposed to be clobbered.
4102 Therefore, this loop cannot be merged into the one below
4103 because a CALL may precede a CLOBBER and refer to the
4104 value clobbered. We must not let a canonicalization do
4105 anything in that case. */
4106 for (i = 0; i < lim; i++)
4108 rtx y = XVECEXP (x, 0, i);
4109 if (GET_CODE (y) == CLOBBER)
4111 rtx clobbered = XEXP (y, 0);
4113 if (REG_P (clobbered)
4114 || GET_CODE (clobbered) == SUBREG)
4115 invalidate (clobbered, VOIDmode);
4116 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4117 || GET_CODE (clobbered) == ZERO_EXTRACT)
4118 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4122 for (i = 0; i < lim; i++)
4124 rtx y = XVECEXP (x, 0, i);
4125 if (GET_CODE (y) == SET)
4127 /* As above, we ignore unconditional jumps and call-insns and
4128 ignore the result of apply_change_group. */
4129 if (GET_CODE (SET_SRC (y)) == CALL)
4131 canon_reg (SET_SRC (y), insn);
4132 apply_change_group ();
4133 fold_rtx (SET_SRC (y), insn);
4134 invalidate (SET_DEST (y), VOIDmode);
4136 else if (SET_DEST (y) == pc_rtx
4137 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4139 else
4140 sets[n_sets++].rtl = y;
4142 else if (GET_CODE (y) == CLOBBER)
4144 /* If we clobber memory, canon the address.
4145 This does nothing when a register is clobbered
4146 because we have already invalidated the reg. */
4147 if (MEM_P (XEXP (y, 0)))
4148 canon_reg (XEXP (y, 0), insn);
4150 else if (GET_CODE (y) == USE
4151 && ! (REG_P (XEXP (y, 0))
4152 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4153 canon_reg (y, insn);
4154 else if (GET_CODE (y) == CALL)
4156 /* The result of apply_change_group can be ignored; see
4157 canon_reg. */
4158 canon_reg (y, insn);
4159 apply_change_group ();
4160 fold_rtx (y, insn);
4164 else if (GET_CODE (x) == CLOBBER)
4166 if (MEM_P (XEXP (x, 0)))
4167 canon_reg (XEXP (x, 0), insn);
4170 /* Canonicalize a USE of a pseudo register or memory location. */
4171 else if (GET_CODE (x) == USE
4172 && ! (REG_P (XEXP (x, 0))
4173 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4174 canon_reg (XEXP (x, 0), insn);
4175 else if (GET_CODE (x) == CALL)
4177 /* The result of apply_change_group can be ignored; see canon_reg. */
4178 canon_reg (x, insn);
4179 apply_change_group ();
4180 fold_rtx (x, insn);
4183 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4184 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4185 is handled specially for this case, and if it isn't set, then there will
4186 be no equivalence for the destination. */
4187 if (n_sets == 1 && REG_NOTES (insn) != 0
4188 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4189 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4190 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4192 /* The result of apply_change_group can be ignored; see canon_reg. */
4193 canon_reg (XEXP (tem, 0), insn);
4194 apply_change_group ();
4195 src_eqv = fold_rtx (XEXP (tem, 0), insn);
4196 XEXP (tem, 0) = copy_rtx (src_eqv);
4197 df_notes_rescan (insn);
4200 /* Canonicalize sources and addresses of destinations.
4201 We do this in a separate pass to avoid problems when a MATCH_DUP is
4202 present in the insn pattern. In that case, we want to ensure that
4203 we don't break the duplicate nature of the pattern. So we will replace
4204 both operands at the same time. Otherwise, we would fail to find an
4205 equivalent substitution in the loop calling validate_change below.
4207 We used to suppress canonicalization of DEST if it appears in SRC,
4208 but we don't do this any more. */
4210 for (i = 0; i < n_sets; i++)
4212 rtx dest = SET_DEST (sets[i].rtl);
4213 rtx src = SET_SRC (sets[i].rtl);
4214 rtx new_rtx = canon_reg (src, insn);
4216 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4218 if (GET_CODE (dest) == ZERO_EXTRACT)
4220 validate_change (insn, &XEXP (dest, 1),
4221 canon_reg (XEXP (dest, 1), insn), 1);
4222 validate_change (insn, &XEXP (dest, 2),
4223 canon_reg (XEXP (dest, 2), insn), 1);
4226 while (GET_CODE (dest) == SUBREG
4227 || GET_CODE (dest) == ZERO_EXTRACT
4228 || GET_CODE (dest) == STRICT_LOW_PART)
4229 dest = XEXP (dest, 0);
4231 if (MEM_P (dest))
4232 canon_reg (dest, insn);
4235 /* Now that we have done all the replacements, we can apply the change
4236 group and see if they all work. Note that this will cause some
4237 canonicalizations that would have worked individually not to be applied
4238 because some other canonicalization didn't work, but this should not
4239 occur often.
4241 The result of apply_change_group can be ignored; see canon_reg. */
4243 apply_change_group ();
4245 /* Set sets[i].src_elt to the class each source belongs to.
4246 Detect assignments from or to volatile things
4247 and set set[i] to zero so they will be ignored
4248 in the rest of this function.
4250 Nothing in this loop changes the hash table or the register chains. */
4252 for (i = 0; i < n_sets; i++)
4254 rtx src, dest;
4255 rtx src_folded;
4256 struct table_elt *elt = 0, *p;
4257 enum machine_mode mode;
4258 rtx src_eqv_here;
4259 rtx src_const = 0;
4260 rtx src_related = 0;
4261 struct table_elt *src_const_elt = 0;
4262 int src_cost = MAX_COST;
4263 int src_eqv_cost = MAX_COST;
4264 int src_folded_cost = MAX_COST;
4265 int src_related_cost = MAX_COST;
4266 int src_elt_cost = MAX_COST;
4267 int src_regcost = MAX_COST;
4268 int src_eqv_regcost = MAX_COST;
4269 int src_folded_regcost = MAX_COST;
4270 int src_related_regcost = MAX_COST;
4271 int src_elt_regcost = MAX_COST;
4272 /* Set nonzero if we need to call force_const_mem on with the
4273 contents of src_folded before using it. */
4274 int src_folded_force_flag = 0;
4276 dest = SET_DEST (sets[i].rtl);
4277 src = SET_SRC (sets[i].rtl);
4279 /* If SRC is a constant that has no machine mode,
4280 hash it with the destination's machine mode.
4281 This way we can keep different modes separate. */
4283 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4284 sets[i].mode = mode;
4286 if (src_eqv)
4288 enum machine_mode eqvmode = mode;
4289 if (GET_CODE (dest) == STRICT_LOW_PART)
4290 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4291 do_not_record = 0;
4292 hash_arg_in_memory = 0;
4293 src_eqv_hash = HASH (src_eqv, eqvmode);
4295 /* Find the equivalence class for the equivalent expression. */
4297 if (!do_not_record)
4298 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4300 src_eqv_volatile = do_not_record;
4301 src_eqv_in_memory = hash_arg_in_memory;
4304 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4305 value of the INNER register, not the destination. So it is not
4306 a valid substitution for the source. But save it for later. */
4307 if (GET_CODE (dest) == STRICT_LOW_PART)
4308 src_eqv_here = 0;
4309 else
4310 src_eqv_here = src_eqv;
4312 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4313 simplified result, which may not necessarily be valid. */
4314 src_folded = fold_rtx (src, insn);
4316 #if 0
4317 /* ??? This caused bad code to be generated for the m68k port with -O2.
4318 Suppose src is (CONST_INT -1), and that after truncation src_folded
4319 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4320 At the end we will add src and src_const to the same equivalence
4321 class. We now have 3 and -1 on the same equivalence class. This
4322 causes later instructions to be mis-optimized. */
4323 /* If storing a constant in a bitfield, pre-truncate the constant
4324 so we will be able to record it later. */
4325 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4327 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4329 if (GET_CODE (src) == CONST_INT
4330 && GET_CODE (width) == CONST_INT
4331 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4332 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4333 src_folded
4334 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4335 << INTVAL (width)) - 1));
4337 #endif
4339 /* Compute SRC's hash code, and also notice if it
4340 should not be recorded at all. In that case,
4341 prevent any further processing of this assignment. */
4342 do_not_record = 0;
4343 hash_arg_in_memory = 0;
4345 sets[i].src = src;
4346 sets[i].src_hash = HASH (src, mode);
4347 sets[i].src_volatile = do_not_record;
4348 sets[i].src_in_memory = hash_arg_in_memory;
4350 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4351 a pseudo, do not record SRC. Using SRC as a replacement for
4352 anything else will be incorrect in that situation. Note that
4353 this usually occurs only for stack slots, in which case all the
4354 RTL would be referring to SRC, so we don't lose any optimization
4355 opportunities by not having SRC in the hash table. */
4357 if (MEM_P (src)
4358 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4359 && REG_P (dest)
4360 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4361 sets[i].src_volatile = 1;
4363 #if 0
4364 /* It is no longer clear why we used to do this, but it doesn't
4365 appear to still be needed. So let's try without it since this
4366 code hurts cse'ing widened ops. */
4367 /* If source is a paradoxical subreg (such as QI treated as an SI),
4368 treat it as volatile. It may do the work of an SI in one context
4369 where the extra bits are not being used, but cannot replace an SI
4370 in general. */
4371 if (GET_CODE (src) == SUBREG
4372 && (GET_MODE_SIZE (GET_MODE (src))
4373 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4374 sets[i].src_volatile = 1;
4375 #endif
4377 /* Locate all possible equivalent forms for SRC. Try to replace
4378 SRC in the insn with each cheaper equivalent.
4380 We have the following types of equivalents: SRC itself, a folded
4381 version, a value given in a REG_EQUAL note, or a value related
4382 to a constant.
4384 Each of these equivalents may be part of an additional class
4385 of equivalents (if more than one is in the table, they must be in
4386 the same class; we check for this).
4388 If the source is volatile, we don't do any table lookups.
4390 We note any constant equivalent for possible later use in a
4391 REG_NOTE. */
4393 if (!sets[i].src_volatile)
4394 elt = lookup (src, sets[i].src_hash, mode);
4396 sets[i].src_elt = elt;
4398 if (elt && src_eqv_here && src_eqv_elt)
4400 if (elt->first_same_value != src_eqv_elt->first_same_value)
4402 /* The REG_EQUAL is indicating that two formerly distinct
4403 classes are now equivalent. So merge them. */
4404 merge_equiv_classes (elt, src_eqv_elt);
4405 src_eqv_hash = HASH (src_eqv, elt->mode);
4406 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4409 src_eqv_here = 0;
4412 else if (src_eqv_elt)
4413 elt = src_eqv_elt;
4415 /* Try to find a constant somewhere and record it in `src_const'.
4416 Record its table element, if any, in `src_const_elt'. Look in
4417 any known equivalences first. (If the constant is not in the
4418 table, also set `sets[i].src_const_hash'). */
4419 if (elt)
4420 for (p = elt->first_same_value; p; p = p->next_same_value)
4421 if (p->is_const)
4423 src_const = p->exp;
4424 src_const_elt = elt;
4425 break;
4428 if (src_const == 0
4429 && (CONSTANT_P (src_folded)
4430 /* Consider (minus (label_ref L1) (label_ref L2)) as
4431 "constant" here so we will record it. This allows us
4432 to fold switch statements when an ADDR_DIFF_VEC is used. */
4433 || (GET_CODE (src_folded) == MINUS
4434 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4435 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4436 src_const = src_folded, src_const_elt = elt;
4437 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4438 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4440 /* If we don't know if the constant is in the table, get its
4441 hash code and look it up. */
4442 if (src_const && src_const_elt == 0)
4444 sets[i].src_const_hash = HASH (src_const, mode);
4445 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4448 sets[i].src_const = src_const;
4449 sets[i].src_const_elt = src_const_elt;
4451 /* If the constant and our source are both in the table, mark them as
4452 equivalent. Otherwise, if a constant is in the table but the source
4453 isn't, set ELT to it. */
4454 if (src_const_elt && elt
4455 && src_const_elt->first_same_value != elt->first_same_value)
4456 merge_equiv_classes (elt, src_const_elt);
4457 else if (src_const_elt && elt == 0)
4458 elt = src_const_elt;
4460 /* See if there is a register linearly related to a constant
4461 equivalent of SRC. */
4462 if (src_const
4463 && (GET_CODE (src_const) == CONST
4464 || (src_const_elt && src_const_elt->related_value != 0)))
4466 src_related = use_related_value (src_const, src_const_elt);
4467 if (src_related)
4469 struct table_elt *src_related_elt
4470 = lookup (src_related, HASH (src_related, mode), mode);
4471 if (src_related_elt && elt)
4473 if (elt->first_same_value
4474 != src_related_elt->first_same_value)
4475 /* This can occur when we previously saw a CONST
4476 involving a SYMBOL_REF and then see the SYMBOL_REF
4477 twice. Merge the involved classes. */
4478 merge_equiv_classes (elt, src_related_elt);
4480 src_related = 0;
4481 src_related_elt = 0;
4483 else if (src_related_elt && elt == 0)
4484 elt = src_related_elt;
4488 /* See if we have a CONST_INT that is already in a register in a
4489 wider mode. */
4491 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
4492 && GET_MODE_CLASS (mode) == MODE_INT
4493 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
4495 enum machine_mode wider_mode;
4497 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4498 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
4499 && src_related == 0;
4500 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4502 struct table_elt *const_elt
4503 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4505 if (const_elt == 0)
4506 continue;
4508 for (const_elt = const_elt->first_same_value;
4509 const_elt; const_elt = const_elt->next_same_value)
4510 if (REG_P (const_elt->exp))
4512 src_related = gen_lowpart (mode, const_elt->exp);
4513 break;
4518 /* Another possibility is that we have an AND with a constant in
4519 a mode narrower than a word. If so, it might have been generated
4520 as part of an "if" which would narrow the AND. If we already
4521 have done the AND in a wider mode, we can use a SUBREG of that
4522 value. */
4524 if (flag_expensive_optimizations && ! src_related
4525 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
4526 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4528 enum machine_mode tmode;
4529 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4531 for (tmode = GET_MODE_WIDER_MODE (mode);
4532 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4533 tmode = GET_MODE_WIDER_MODE (tmode))
4535 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4536 struct table_elt *larger_elt;
4538 if (inner)
4540 PUT_MODE (new_and, tmode);
4541 XEXP (new_and, 0) = inner;
4542 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4543 if (larger_elt == 0)
4544 continue;
4546 for (larger_elt = larger_elt->first_same_value;
4547 larger_elt; larger_elt = larger_elt->next_same_value)
4548 if (REG_P (larger_elt->exp))
4550 src_related
4551 = gen_lowpart (mode, larger_elt->exp);
4552 break;
4555 if (src_related)
4556 break;
4561 #ifdef LOAD_EXTEND_OP
4562 /* See if a MEM has already been loaded with a widening operation;
4563 if it has, we can use a subreg of that. Many CISC machines
4564 also have such operations, but this is only likely to be
4565 beneficial on these machines. */
4567 if (flag_expensive_optimizations && src_related == 0
4568 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4569 && GET_MODE_CLASS (mode) == MODE_INT
4570 && MEM_P (src) && ! do_not_record
4571 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4573 struct rtx_def memory_extend_buf;
4574 rtx memory_extend_rtx = &memory_extend_buf;
4575 enum machine_mode tmode;
4577 /* Set what we are trying to extend and the operation it might
4578 have been extended with. */
4579 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
4580 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4581 XEXP (memory_extend_rtx, 0) = src;
4583 for (tmode = GET_MODE_WIDER_MODE (mode);
4584 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4585 tmode = GET_MODE_WIDER_MODE (tmode))
4587 struct table_elt *larger_elt;
4589 PUT_MODE (memory_extend_rtx, tmode);
4590 larger_elt = lookup (memory_extend_rtx,
4591 HASH (memory_extend_rtx, tmode), tmode);
4592 if (larger_elt == 0)
4593 continue;
4595 for (larger_elt = larger_elt->first_same_value;
4596 larger_elt; larger_elt = larger_elt->next_same_value)
4597 if (REG_P (larger_elt->exp))
4599 src_related = gen_lowpart (mode, larger_elt->exp);
4600 break;
4603 if (src_related)
4604 break;
4607 #endif /* LOAD_EXTEND_OP */
4609 if (src == src_folded)
4610 src_folded = 0;
4612 /* At this point, ELT, if nonzero, points to a class of expressions
4613 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4614 and SRC_RELATED, if nonzero, each contain additional equivalent
4615 expressions. Prune these latter expressions by deleting expressions
4616 already in the equivalence class.
4618 Check for an equivalent identical to the destination. If found,
4619 this is the preferred equivalent since it will likely lead to
4620 elimination of the insn. Indicate this by placing it in
4621 `src_related'. */
4623 if (elt)
4624 elt = elt->first_same_value;
4625 for (p = elt; p; p = p->next_same_value)
4627 enum rtx_code code = GET_CODE (p->exp);
4629 /* If the expression is not valid, ignore it. Then we do not
4630 have to check for validity below. In most cases, we can use
4631 `rtx_equal_p', since canonicalization has already been done. */
4632 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4633 continue;
4635 /* Also skip paradoxical subregs, unless that's what we're
4636 looking for. */
4637 if (code == SUBREG
4638 && (GET_MODE_SIZE (GET_MODE (p->exp))
4639 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
4640 && ! (src != 0
4641 && GET_CODE (src) == SUBREG
4642 && GET_MODE (src) == GET_MODE (p->exp)
4643 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4644 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4645 continue;
4647 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4648 src = 0;
4649 else if (src_folded && GET_CODE (src_folded) == code
4650 && rtx_equal_p (src_folded, p->exp))
4651 src_folded = 0;
4652 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4653 && rtx_equal_p (src_eqv_here, p->exp))
4654 src_eqv_here = 0;
4655 else if (src_related && GET_CODE (src_related) == code
4656 && rtx_equal_p (src_related, p->exp))
4657 src_related = 0;
4659 /* This is the same as the destination of the insns, we want
4660 to prefer it. Copy it to src_related. The code below will
4661 then give it a negative cost. */
4662 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4663 src_related = dest;
4666 /* Find the cheapest valid equivalent, trying all the available
4667 possibilities. Prefer items not in the hash table to ones
4668 that are when they are equal cost. Note that we can never
4669 worsen an insn as the current contents will also succeed.
4670 If we find an equivalent identical to the destination, use it as best,
4671 since this insn will probably be eliminated in that case. */
4672 if (src)
4674 if (rtx_equal_p (src, dest))
4675 src_cost = src_regcost = -1;
4676 else
4678 src_cost = COST (src);
4679 src_regcost = approx_reg_cost (src);
4683 if (src_eqv_here)
4685 if (rtx_equal_p (src_eqv_here, dest))
4686 src_eqv_cost = src_eqv_regcost = -1;
4687 else
4689 src_eqv_cost = COST (src_eqv_here);
4690 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4694 if (src_folded)
4696 if (rtx_equal_p (src_folded, dest))
4697 src_folded_cost = src_folded_regcost = -1;
4698 else
4700 src_folded_cost = COST (src_folded);
4701 src_folded_regcost = approx_reg_cost (src_folded);
4705 if (src_related)
4707 if (rtx_equal_p (src_related, dest))
4708 src_related_cost = src_related_regcost = -1;
4709 else
4711 src_related_cost = COST (src_related);
4712 src_related_regcost = approx_reg_cost (src_related);
4716 /* If this was an indirect jump insn, a known label will really be
4717 cheaper even though it looks more expensive. */
4718 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
4719 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
4721 /* Terminate loop when replacement made. This must terminate since
4722 the current contents will be tested and will always be valid. */
4723 while (1)
4725 rtx trial;
4727 /* Skip invalid entries. */
4728 while (elt && !REG_P (elt->exp)
4729 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
4730 elt = elt->next_same_value;
4732 /* A paradoxical subreg would be bad here: it'll be the right
4733 size, but later may be adjusted so that the upper bits aren't
4734 what we want. So reject it. */
4735 if (elt != 0
4736 && GET_CODE (elt->exp) == SUBREG
4737 && (GET_MODE_SIZE (GET_MODE (elt->exp))
4738 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
4739 /* It is okay, though, if the rtx we're trying to match
4740 will ignore any of the bits we can't predict. */
4741 && ! (src != 0
4742 && GET_CODE (src) == SUBREG
4743 && GET_MODE (src) == GET_MODE (elt->exp)
4744 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4745 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
4747 elt = elt->next_same_value;
4748 continue;
4751 if (elt)
4753 src_elt_cost = elt->cost;
4754 src_elt_regcost = elt->regcost;
4757 /* Find cheapest and skip it for the next time. For items
4758 of equal cost, use this order:
4759 src_folded, src, src_eqv, src_related and hash table entry. */
4760 if (src_folded
4761 && preferable (src_folded_cost, src_folded_regcost,
4762 src_cost, src_regcost) <= 0
4763 && preferable (src_folded_cost, src_folded_regcost,
4764 src_eqv_cost, src_eqv_regcost) <= 0
4765 && preferable (src_folded_cost, src_folded_regcost,
4766 src_related_cost, src_related_regcost) <= 0
4767 && preferable (src_folded_cost, src_folded_regcost,
4768 src_elt_cost, src_elt_regcost) <= 0)
4770 trial = src_folded, src_folded_cost = MAX_COST;
4771 if (src_folded_force_flag)
4773 rtx forced = force_const_mem (mode, trial);
4774 if (forced)
4775 trial = forced;
4778 else if (src
4779 && preferable (src_cost, src_regcost,
4780 src_eqv_cost, src_eqv_regcost) <= 0
4781 && preferable (src_cost, src_regcost,
4782 src_related_cost, src_related_regcost) <= 0
4783 && preferable (src_cost, src_regcost,
4784 src_elt_cost, src_elt_regcost) <= 0)
4785 trial = src, src_cost = MAX_COST;
4786 else if (src_eqv_here
4787 && preferable (src_eqv_cost, src_eqv_regcost,
4788 src_related_cost, src_related_regcost) <= 0
4789 && preferable (src_eqv_cost, src_eqv_regcost,
4790 src_elt_cost, src_elt_regcost) <= 0)
4791 trial = src_eqv_here, src_eqv_cost = MAX_COST;
4792 else if (src_related
4793 && preferable (src_related_cost, src_related_regcost,
4794 src_elt_cost, src_elt_regcost) <= 0)
4795 trial = src_related, src_related_cost = MAX_COST;
4796 else
4798 trial = elt->exp;
4799 elt = elt->next_same_value;
4800 src_elt_cost = MAX_COST;
4803 /* Avoid creation of overlapping memory moves. */
4804 if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
4806 rtx src, dest;
4808 /* BLKmode moves are not handled by cse anyway. */
4809 if (GET_MODE (trial) == BLKmode)
4810 break;
4812 src = canon_rtx (trial);
4813 dest = canon_rtx (SET_DEST (sets[i].rtl));
4815 if (!MEM_P (src) || !MEM_P (dest)
4816 || !nonoverlapping_memrefs_p (src, dest))
4817 break;
4820 /* We don't normally have an insn matching (set (pc) (pc)), so
4821 check for this separately here. We will delete such an
4822 insn below.
4824 For other cases such as a table jump or conditional jump
4825 where we know the ultimate target, go ahead and replace the
4826 operand. While that may not make a valid insn, we will
4827 reemit the jump below (and also insert any necessary
4828 barriers). */
4829 if (n_sets == 1 && dest == pc_rtx
4830 && (trial == pc_rtx
4831 || (GET_CODE (trial) == LABEL_REF
4832 && ! condjump_p (insn))))
4834 /* Don't substitute non-local labels, this confuses CFG. */
4835 if (GET_CODE (trial) == LABEL_REF
4836 && LABEL_REF_NONLOCAL_P (trial))
4837 continue;
4839 SET_SRC (sets[i].rtl) = trial;
4840 cse_jumps_altered = true;
4841 break;
4844 /* Reject certain invalid forms of CONST that we create. */
4845 else if (CONSTANT_P (trial)
4846 && GET_CODE (trial) == CONST
4847 /* Reject cases that will cause decode_rtx_const to
4848 die. On the alpha when simplifying a switch, we
4849 get (const (truncate (minus (label_ref)
4850 (label_ref)))). */
4851 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
4852 /* Likewise on IA-64, except without the
4853 truncate. */
4854 || (GET_CODE (XEXP (trial, 0)) == MINUS
4855 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
4856 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
4857 /* Do nothing for this case. */
4860 /* Look for a substitution that makes a valid insn. */
4861 else if (validate_unshare_change
4862 (insn, &SET_SRC (sets[i].rtl), trial, 0))
4864 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
4866 /* The result of apply_change_group can be ignored; see
4867 canon_reg. */
4869 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4870 apply_change_group ();
4872 break;
4875 /* If we previously found constant pool entries for
4876 constants and this is a constant, try making a
4877 pool entry. Put it in src_folded unless we already have done
4878 this since that is where it likely came from. */
4880 else if (constant_pool_entries_cost
4881 && CONSTANT_P (trial)
4882 && (src_folded == 0
4883 || (!MEM_P (src_folded)
4884 && ! src_folded_force_flag))
4885 && GET_MODE_CLASS (mode) != MODE_CC
4886 && mode != VOIDmode)
4888 src_folded_force_flag = 1;
4889 src_folded = trial;
4890 src_folded_cost = constant_pool_entries_cost;
4891 src_folded_regcost = constant_pool_entries_regcost;
4895 src = SET_SRC (sets[i].rtl);
4897 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
4898 However, there is an important exception: If both are registers
4899 that are not the head of their equivalence class, replace SET_SRC
4900 with the head of the class. If we do not do this, we will have
4901 both registers live over a portion of the basic block. This way,
4902 their lifetimes will likely abut instead of overlapping. */
4903 if (REG_P (dest)
4904 && REGNO_QTY_VALID_P (REGNO (dest)))
4906 int dest_q = REG_QTY (REGNO (dest));
4907 struct qty_table_elem *dest_ent = &qty_table[dest_q];
4909 if (dest_ent->mode == GET_MODE (dest)
4910 && dest_ent->first_reg != REGNO (dest)
4911 && REG_P (src) && REGNO (src) == REGNO (dest)
4912 /* Don't do this if the original insn had a hard reg as
4913 SET_SRC or SET_DEST. */
4914 && (!REG_P (sets[i].src)
4915 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
4916 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
4917 /* We can't call canon_reg here because it won't do anything if
4918 SRC is a hard register. */
4920 int src_q = REG_QTY (REGNO (src));
4921 struct qty_table_elem *src_ent = &qty_table[src_q];
4922 int first = src_ent->first_reg;
4923 rtx new_src
4924 = (first >= FIRST_PSEUDO_REGISTER
4925 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
4927 /* We must use validate-change even for this, because this
4928 might be a special no-op instruction, suitable only to
4929 tag notes onto. */
4930 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
4932 src = new_src;
4933 /* If we had a constant that is cheaper than what we are now
4934 setting SRC to, use that constant. We ignored it when we
4935 thought we could make this into a no-op. */
4936 if (src_const && COST (src_const) < COST (src)
4937 && validate_change (insn, &SET_SRC (sets[i].rtl),
4938 src_const, 0))
4939 src = src_const;
4944 /* If we made a change, recompute SRC values. */
4945 if (src != sets[i].src)
4947 do_not_record = 0;
4948 hash_arg_in_memory = 0;
4949 sets[i].src = src;
4950 sets[i].src_hash = HASH (src, mode);
4951 sets[i].src_volatile = do_not_record;
4952 sets[i].src_in_memory = hash_arg_in_memory;
4953 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
4956 /* If this is a single SET, we are setting a register, and we have an
4957 equivalent constant, we want to add a REG_NOTE. We don't want
4958 to write a REG_EQUAL note for a constant pseudo since verifying that
4959 that pseudo hasn't been eliminated is a pain. Such a note also
4960 won't help anything.
4962 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
4963 which can be created for a reference to a compile time computable
4964 entry in a jump table. */
4966 if (n_sets == 1 && src_const && REG_P (dest)
4967 && !REG_P (src_const)
4968 && ! (GET_CODE (src_const) == CONST
4969 && GET_CODE (XEXP (src_const, 0)) == MINUS
4970 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
4971 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
4973 /* We only want a REG_EQUAL note if src_const != src. */
4974 if (! rtx_equal_p (src, src_const))
4976 /* Make sure that the rtx is not shared. */
4977 src_const = copy_rtx (src_const);
4979 /* Record the actual constant value in a REG_EQUAL note,
4980 making a new one if one does not already exist. */
4981 set_unique_reg_note (insn, REG_EQUAL, src_const);
4982 df_notes_rescan (insn);
4986 /* Now deal with the destination. */
4987 do_not_record = 0;
4989 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
4990 while (GET_CODE (dest) == SUBREG
4991 || GET_CODE (dest) == ZERO_EXTRACT
4992 || GET_CODE (dest) == STRICT_LOW_PART)
4993 dest = XEXP (dest, 0);
4995 sets[i].inner_dest = dest;
4997 if (MEM_P (dest))
4999 #ifdef PUSH_ROUNDING
5000 /* Stack pushes invalidate the stack pointer. */
5001 rtx addr = XEXP (dest, 0);
5002 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5003 && XEXP (addr, 0) == stack_pointer_rtx)
5004 invalidate (stack_pointer_rtx, VOIDmode);
5005 #endif
5006 dest = fold_rtx (dest, insn);
5009 /* Compute the hash code of the destination now,
5010 before the effects of this instruction are recorded,
5011 since the register values used in the address computation
5012 are those before this instruction. */
5013 sets[i].dest_hash = HASH (dest, mode);
5015 /* Don't enter a bit-field in the hash table
5016 because the value in it after the store
5017 may not equal what was stored, due to truncation. */
5019 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5021 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5023 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5024 && GET_CODE (width) == CONST_INT
5025 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5026 && ! (INTVAL (src_const)
5027 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5028 /* Exception: if the value is constant,
5029 and it won't be truncated, record it. */
5031 else
5033 /* This is chosen so that the destination will be invalidated
5034 but no new value will be recorded.
5035 We must invalidate because sometimes constant
5036 values can be recorded for bitfields. */
5037 sets[i].src_elt = 0;
5038 sets[i].src_volatile = 1;
5039 src_eqv = 0;
5040 src_eqv_elt = 0;
5044 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5045 the insn. */
5046 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5048 /* One less use of the label this insn used to jump to. */
5049 delete_insn_and_edges (insn);
5050 cse_jumps_altered = true;
5051 /* No more processing for this set. */
5052 sets[i].rtl = 0;
5055 /* If this SET is now setting PC to a label, we know it used to
5056 be a conditional or computed branch. */
5057 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5058 && !LABEL_REF_NONLOCAL_P (src))
5060 /* We reemit the jump in as many cases as possible just in
5061 case the form of an unconditional jump is significantly
5062 different than a computed jump or conditional jump.
5064 If this insn has multiple sets, then reemitting the
5065 jump is nontrivial. So instead we just force rerecognition
5066 and hope for the best. */
5067 if (n_sets == 1)
5069 rtx new_rtx, note;
5071 new_rtx = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5072 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5073 LABEL_NUSES (XEXP (src, 0))++;
5075 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5076 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5077 if (note)
5079 XEXP (note, 1) = NULL_RTX;
5080 REG_NOTES (new_rtx) = note;
5083 delete_insn_and_edges (insn);
5084 insn = new_rtx;
5086 else
5087 INSN_CODE (insn) = -1;
5089 /* Do not bother deleting any unreachable code, let jump do it. */
5090 cse_jumps_altered = true;
5091 sets[i].rtl = 0;
5094 /* If destination is volatile, invalidate it and then do no further
5095 processing for this assignment. */
5097 else if (do_not_record)
5099 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5100 invalidate (dest, VOIDmode);
5101 else if (MEM_P (dest))
5102 invalidate (dest, VOIDmode);
5103 else if (GET_CODE (dest) == STRICT_LOW_PART
5104 || GET_CODE (dest) == ZERO_EXTRACT)
5105 invalidate (XEXP (dest, 0), GET_MODE (dest));
5106 sets[i].rtl = 0;
5109 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5110 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5112 #ifdef HAVE_cc0
5113 /* If setting CC0, record what it was set to, or a constant, if it
5114 is equivalent to a constant. If it is being set to a floating-point
5115 value, make a COMPARE with the appropriate constant of 0. If we
5116 don't do this, later code can interpret this as a test against
5117 const0_rtx, which can cause problems if we try to put it into an
5118 insn as a floating-point operand. */
5119 if (dest == cc0_rtx)
5121 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5122 this_insn_cc0_mode = mode;
5123 if (FLOAT_MODE_P (mode))
5124 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5125 CONST0_RTX (mode));
5127 #endif
5130 /* Now enter all non-volatile source expressions in the hash table
5131 if they are not already present.
5132 Record their equivalence classes in src_elt.
5133 This way we can insert the corresponding destinations into
5134 the same classes even if the actual sources are no longer in them
5135 (having been invalidated). */
5137 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5138 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5140 struct table_elt *elt;
5141 struct table_elt *classp = sets[0].src_elt;
5142 rtx dest = SET_DEST (sets[0].rtl);
5143 enum machine_mode eqvmode = GET_MODE (dest);
5145 if (GET_CODE (dest) == STRICT_LOW_PART)
5147 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5148 classp = 0;
5150 if (insert_regs (src_eqv, classp, 0))
5152 rehash_using_reg (src_eqv);
5153 src_eqv_hash = HASH (src_eqv, eqvmode);
5155 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5156 elt->in_memory = src_eqv_in_memory;
5157 src_eqv_elt = elt;
5159 /* Check to see if src_eqv_elt is the same as a set source which
5160 does not yet have an elt, and if so set the elt of the set source
5161 to src_eqv_elt. */
5162 for (i = 0; i < n_sets; i++)
5163 if (sets[i].rtl && sets[i].src_elt == 0
5164 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5165 sets[i].src_elt = src_eqv_elt;
5168 for (i = 0; i < n_sets; i++)
5169 if (sets[i].rtl && ! sets[i].src_volatile
5170 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5172 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5174 /* REG_EQUAL in setting a STRICT_LOW_PART
5175 gives an equivalent for the entire destination register,
5176 not just for the subreg being stored in now.
5177 This is a more interesting equivalence, so we arrange later
5178 to treat the entire reg as the destination. */
5179 sets[i].src_elt = src_eqv_elt;
5180 sets[i].src_hash = src_eqv_hash;
5182 else
5184 /* Insert source and constant equivalent into hash table, if not
5185 already present. */
5186 struct table_elt *classp = src_eqv_elt;
5187 rtx src = sets[i].src;
5188 rtx dest = SET_DEST (sets[i].rtl);
5189 enum machine_mode mode
5190 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5192 /* It's possible that we have a source value known to be
5193 constant but don't have a REG_EQUAL note on the insn.
5194 Lack of a note will mean src_eqv_elt will be NULL. This
5195 can happen where we've generated a SUBREG to access a
5196 CONST_INT that is already in a register in a wider mode.
5197 Ensure that the source expression is put in the proper
5198 constant class. */
5199 if (!classp)
5200 classp = sets[i].src_const_elt;
5202 if (sets[i].src_elt == 0)
5204 struct table_elt *elt;
5206 /* Note that these insert_regs calls cannot remove
5207 any of the src_elt's, because they would have failed to
5208 match if not still valid. */
5209 if (insert_regs (src, classp, 0))
5211 rehash_using_reg (src);
5212 sets[i].src_hash = HASH (src, mode);
5214 elt = insert (src, classp, sets[i].src_hash, mode);
5215 elt->in_memory = sets[i].src_in_memory;
5216 sets[i].src_elt = classp = elt;
5218 if (sets[i].src_const && sets[i].src_const_elt == 0
5219 && src != sets[i].src_const
5220 && ! rtx_equal_p (sets[i].src_const, src))
5221 sets[i].src_elt = insert (sets[i].src_const, classp,
5222 sets[i].src_const_hash, mode);
5225 else if (sets[i].src_elt == 0)
5226 /* If we did not insert the source into the hash table (e.g., it was
5227 volatile), note the equivalence class for the REG_EQUAL value, if any,
5228 so that the destination goes into that class. */
5229 sets[i].src_elt = src_eqv_elt;
5231 /* Record destination addresses in the hash table. This allows us to
5232 check if they are invalidated by other sets. */
5233 for (i = 0; i < n_sets; i++)
5235 if (sets[i].rtl)
5237 rtx x = sets[i].inner_dest;
5238 struct table_elt *elt;
5239 enum machine_mode mode;
5240 unsigned hash;
5242 if (MEM_P (x))
5244 x = XEXP (x, 0);
5245 mode = GET_MODE (x);
5246 hash = HASH (x, mode);
5247 elt = lookup (x, hash, mode);
5248 if (!elt)
5250 if (insert_regs (x, NULL, 0))
5252 rtx dest = SET_DEST (sets[i].rtl);
5254 rehash_using_reg (x);
5255 hash = HASH (x, mode);
5256 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5258 elt = insert (x, NULL, hash, mode);
5261 sets[i].dest_addr_elt = elt;
5263 else
5264 sets[i].dest_addr_elt = NULL;
5268 invalidate_from_clobbers (x);
5270 /* Some registers are invalidated by subroutine calls. Memory is
5271 invalidated by non-constant calls. */
5273 if (CALL_P (insn))
5275 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5276 invalidate_memory ();
5277 invalidate_for_call ();
5280 /* Now invalidate everything set by this instruction.
5281 If a SUBREG or other funny destination is being set,
5282 sets[i].rtl is still nonzero, so here we invalidate the reg
5283 a part of which is being set. */
5285 for (i = 0; i < n_sets; i++)
5286 if (sets[i].rtl)
5288 /* We can't use the inner dest, because the mode associated with
5289 a ZERO_EXTRACT is significant. */
5290 rtx dest = SET_DEST (sets[i].rtl);
5292 /* Needed for registers to remove the register from its
5293 previous quantity's chain.
5294 Needed for memory if this is a nonvarying address, unless
5295 we have just done an invalidate_memory that covers even those. */
5296 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5297 invalidate (dest, VOIDmode);
5298 else if (MEM_P (dest))
5299 invalidate (dest, VOIDmode);
5300 else if (GET_CODE (dest) == STRICT_LOW_PART
5301 || GET_CODE (dest) == ZERO_EXTRACT)
5302 invalidate (XEXP (dest, 0), GET_MODE (dest));
5305 /* A volatile ASM invalidates everything. */
5306 if (NONJUMP_INSN_P (insn)
5307 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5308 && MEM_VOLATILE_P (PATTERN (insn)))
5309 flush_hash_table ();
5311 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5312 the regs restored by the longjmp come from a later time
5313 than the setjmp. */
5314 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5316 flush_hash_table ();
5317 goto done;
5320 /* Make sure registers mentioned in destinations
5321 are safe for use in an expression to be inserted.
5322 This removes from the hash table
5323 any invalid entry that refers to one of these registers.
5325 We don't care about the return value from mention_regs because
5326 we are going to hash the SET_DEST values unconditionally. */
5328 for (i = 0; i < n_sets; i++)
5330 if (sets[i].rtl)
5332 rtx x = SET_DEST (sets[i].rtl);
5334 if (!REG_P (x))
5335 mention_regs (x);
5336 else
5338 /* We used to rely on all references to a register becoming
5339 inaccessible when a register changes to a new quantity,
5340 since that changes the hash code. However, that is not
5341 safe, since after HASH_SIZE new quantities we get a
5342 hash 'collision' of a register with its own invalid
5343 entries. And since SUBREGs have been changed not to
5344 change their hash code with the hash code of the register,
5345 it wouldn't work any longer at all. So we have to check
5346 for any invalid references lying around now.
5347 This code is similar to the REG case in mention_regs,
5348 but it knows that reg_tick has been incremented, and
5349 it leaves reg_in_table as -1 . */
5350 unsigned int regno = REGNO (x);
5351 unsigned int endregno = END_REGNO (x);
5352 unsigned int i;
5354 for (i = regno; i < endregno; i++)
5356 if (REG_IN_TABLE (i) >= 0)
5358 remove_invalid_refs (i);
5359 REG_IN_TABLE (i) = -1;
5366 /* We may have just removed some of the src_elt's from the hash table.
5367 So replace each one with the current head of the same class.
5368 Also check if destination addresses have been removed. */
5370 for (i = 0; i < n_sets; i++)
5371 if (sets[i].rtl)
5373 if (sets[i].dest_addr_elt
5374 && sets[i].dest_addr_elt->first_same_value == 0)
5376 /* The elt was removed, which means this destination is not
5377 valid after this instruction. */
5378 sets[i].rtl = NULL_RTX;
5380 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5381 /* If elt was removed, find current head of same class,
5382 or 0 if nothing remains of that class. */
5384 struct table_elt *elt = sets[i].src_elt;
5386 while (elt && elt->prev_same_value)
5387 elt = elt->prev_same_value;
5389 while (elt && elt->first_same_value == 0)
5390 elt = elt->next_same_value;
5391 sets[i].src_elt = elt ? elt->first_same_value : 0;
5395 /* Now insert the destinations into their equivalence classes. */
5397 for (i = 0; i < n_sets; i++)
5398 if (sets[i].rtl)
5400 rtx dest = SET_DEST (sets[i].rtl);
5401 struct table_elt *elt;
5403 /* Don't record value if we are not supposed to risk allocating
5404 floating-point values in registers that might be wider than
5405 memory. */
5406 if ((flag_float_store
5407 && MEM_P (dest)
5408 && FLOAT_MODE_P (GET_MODE (dest)))
5409 /* Don't record BLKmode values, because we don't know the
5410 size of it, and can't be sure that other BLKmode values
5411 have the same or smaller size. */
5412 || GET_MODE (dest) == BLKmode
5413 /* If we didn't put a REG_EQUAL value or a source into the hash
5414 table, there is no point is recording DEST. */
5415 || sets[i].src_elt == 0
5416 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5417 or SIGN_EXTEND, don't record DEST since it can cause
5418 some tracking to be wrong.
5420 ??? Think about this more later. */
5421 || (GET_CODE (dest) == SUBREG
5422 && (GET_MODE_SIZE (GET_MODE (dest))
5423 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5424 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5425 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5426 continue;
5428 /* STRICT_LOW_PART isn't part of the value BEING set,
5429 and neither is the SUBREG inside it.
5430 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5431 if (GET_CODE (dest) == STRICT_LOW_PART)
5432 dest = SUBREG_REG (XEXP (dest, 0));
5434 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5435 /* Registers must also be inserted into chains for quantities. */
5436 if (insert_regs (dest, sets[i].src_elt, 1))
5438 /* If `insert_regs' changes something, the hash code must be
5439 recalculated. */
5440 rehash_using_reg (dest);
5441 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5444 elt = insert (dest, sets[i].src_elt,
5445 sets[i].dest_hash, GET_MODE (dest));
5447 elt->in_memory = (MEM_P (sets[i].inner_dest)
5448 && !MEM_READONLY_P (sets[i].inner_dest));
5450 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5451 narrower than M2, and both M1 and M2 are the same number of words,
5452 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5453 make that equivalence as well.
5455 However, BAR may have equivalences for which gen_lowpart
5456 will produce a simpler value than gen_lowpart applied to
5457 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5458 BAR's equivalences. If we don't get a simplified form, make
5459 the SUBREG. It will not be used in an equivalence, but will
5460 cause two similar assignments to be detected.
5462 Note the loop below will find SUBREG_REG (DEST) since we have
5463 already entered SRC and DEST of the SET in the table. */
5465 if (GET_CODE (dest) == SUBREG
5466 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5467 / UNITS_PER_WORD)
5468 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5469 && (GET_MODE_SIZE (GET_MODE (dest))
5470 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5471 && sets[i].src_elt != 0)
5473 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5474 struct table_elt *elt, *classp = 0;
5476 for (elt = sets[i].src_elt->first_same_value; elt;
5477 elt = elt->next_same_value)
5479 rtx new_src = 0;
5480 unsigned src_hash;
5481 struct table_elt *src_elt;
5482 int byte = 0;
5484 /* Ignore invalid entries. */
5485 if (!REG_P (elt->exp)
5486 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5487 continue;
5489 /* We may have already been playing subreg games. If the
5490 mode is already correct for the destination, use it. */
5491 if (GET_MODE (elt->exp) == new_mode)
5492 new_src = elt->exp;
5493 else
5495 /* Calculate big endian correction for the SUBREG_BYTE.
5496 We have already checked that M1 (GET_MODE (dest))
5497 is not narrower than M2 (new_mode). */
5498 if (BYTES_BIG_ENDIAN)
5499 byte = (GET_MODE_SIZE (GET_MODE (dest))
5500 - GET_MODE_SIZE (new_mode));
5502 new_src = simplify_gen_subreg (new_mode, elt->exp,
5503 GET_MODE (dest), byte);
5506 /* The call to simplify_gen_subreg fails if the value
5507 is VOIDmode, yet we can't do any simplification, e.g.
5508 for EXPR_LISTs denoting function call results.
5509 It is invalid to construct a SUBREG with a VOIDmode
5510 SUBREG_REG, hence a zero new_src means we can't do
5511 this substitution. */
5512 if (! new_src)
5513 continue;
5515 src_hash = HASH (new_src, new_mode);
5516 src_elt = lookup (new_src, src_hash, new_mode);
5518 /* Put the new source in the hash table is if isn't
5519 already. */
5520 if (src_elt == 0)
5522 if (insert_regs (new_src, classp, 0))
5524 rehash_using_reg (new_src);
5525 src_hash = HASH (new_src, new_mode);
5527 src_elt = insert (new_src, classp, src_hash, new_mode);
5528 src_elt->in_memory = elt->in_memory;
5530 else if (classp && classp != src_elt->first_same_value)
5531 /* Show that two things that we've seen before are
5532 actually the same. */
5533 merge_equiv_classes (src_elt, classp);
5535 classp = src_elt->first_same_value;
5536 /* Ignore invalid entries. */
5537 while (classp
5538 && !REG_P (classp->exp)
5539 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5540 classp = classp->next_same_value;
5545 /* Special handling for (set REG0 REG1) where REG0 is the
5546 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5547 be used in the sequel, so (if easily done) change this insn to
5548 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5549 that computed their value. Then REG1 will become a dead store
5550 and won't cloud the situation for later optimizations.
5552 Do not make this change if REG1 is a hard register, because it will
5553 then be used in the sequel and we may be changing a two-operand insn
5554 into a three-operand insn.
5556 Also do not do this if we are operating on a copy of INSN. */
5558 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
5559 && NEXT_INSN (PREV_INSN (insn)) == insn
5560 && REG_P (SET_SRC (sets[0].rtl))
5561 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
5562 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
5564 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
5565 struct qty_table_elem *src_ent = &qty_table[src_q];
5567 if (src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
5569 /* Scan for the previous nonnote insn, but stop at a basic
5570 block boundary. */
5571 rtx prev = insn;
5572 rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
5575 prev = PREV_INSN (prev);
5577 while (prev != bb_head && NOTE_P (prev));
5579 /* Do not swap the registers around if the previous instruction
5580 attaches a REG_EQUIV note to REG1.
5582 ??? It's not entirely clear whether we can transfer a REG_EQUIV
5583 from the pseudo that originally shadowed an incoming argument
5584 to another register. Some uses of REG_EQUIV might rely on it
5585 being attached to REG1 rather than REG2.
5587 This section previously turned the REG_EQUIV into a REG_EQUAL
5588 note. We cannot do that because REG_EQUIV may provide an
5589 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
5590 if (NONJUMP_INSN_P (prev)
5591 && GET_CODE (PATTERN (prev)) == SET
5592 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
5593 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
5595 rtx dest = SET_DEST (sets[0].rtl);
5596 rtx src = SET_SRC (sets[0].rtl);
5597 rtx note;
5599 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
5600 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
5601 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
5602 apply_change_group ();
5604 /* If INSN has a REG_EQUAL note, and this note mentions
5605 REG0, then we must delete it, because the value in
5606 REG0 has changed. If the note's value is REG1, we must
5607 also delete it because that is now this insn's dest. */
5608 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5609 if (note != 0
5610 && (reg_mentioned_p (dest, XEXP (note, 0))
5611 || rtx_equal_p (src, XEXP (note, 0))))
5612 remove_note (insn, note);
5617 done:;
5620 /* Remove from the hash table all expressions that reference memory. */
5622 static void
5623 invalidate_memory (void)
5625 int i;
5626 struct table_elt *p, *next;
5628 for (i = 0; i < HASH_SIZE; i++)
5629 for (p = table[i]; p; p = next)
5631 next = p->next_same_hash;
5632 if (p->in_memory)
5633 remove_from_table (p, i);
5637 /* Perform invalidation on the basis of everything about an insn
5638 except for invalidating the actual places that are SET in it.
5639 This includes the places CLOBBERed, and anything that might
5640 alias with something that is SET or CLOBBERed.
5642 X is the pattern of the insn. */
5644 static void
5645 invalidate_from_clobbers (rtx x)
5647 if (GET_CODE (x) == CLOBBER)
5649 rtx ref = XEXP (x, 0);
5650 if (ref)
5652 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5653 || MEM_P (ref))
5654 invalidate (ref, VOIDmode);
5655 else if (GET_CODE (ref) == STRICT_LOW_PART
5656 || GET_CODE (ref) == ZERO_EXTRACT)
5657 invalidate (XEXP (ref, 0), GET_MODE (ref));
5660 else if (GET_CODE (x) == PARALLEL)
5662 int i;
5663 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5665 rtx y = XVECEXP (x, 0, i);
5666 if (GET_CODE (y) == CLOBBER)
5668 rtx ref = XEXP (y, 0);
5669 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5670 || MEM_P (ref))
5671 invalidate (ref, VOIDmode);
5672 else if (GET_CODE (ref) == STRICT_LOW_PART
5673 || GET_CODE (ref) == ZERO_EXTRACT)
5674 invalidate (XEXP (ref, 0), GET_MODE (ref));
5680 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
5681 and replace any registers in them with either an equivalent constant
5682 or the canonical form of the register. If we are inside an address,
5683 only do this if the address remains valid.
5685 OBJECT is 0 except when within a MEM in which case it is the MEM.
5687 Return the replacement for X. */
5689 static rtx
5690 cse_process_notes_1 (rtx x, rtx object, bool *changed)
5692 enum rtx_code code = GET_CODE (x);
5693 const char *fmt = GET_RTX_FORMAT (code);
5694 int i;
5696 switch (code)
5698 case CONST_INT:
5699 case CONST:
5700 case SYMBOL_REF:
5701 case LABEL_REF:
5702 case CONST_DOUBLE:
5703 case CONST_FIXED:
5704 case CONST_VECTOR:
5705 case PC:
5706 case CC0:
5707 case LO_SUM:
5708 return x;
5710 case MEM:
5711 validate_change (x, &XEXP (x, 0),
5712 cse_process_notes (XEXP (x, 0), x, changed), 0);
5713 return x;
5715 case EXPR_LIST:
5716 case INSN_LIST:
5717 if (REG_NOTE_KIND (x) == REG_EQUAL)
5718 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
5719 if (XEXP (x, 1))
5720 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
5721 return x;
5723 case SIGN_EXTEND:
5724 case ZERO_EXTEND:
5725 case SUBREG:
5727 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
5728 /* We don't substitute VOIDmode constants into these rtx,
5729 since they would impede folding. */
5730 if (GET_MODE (new_rtx) != VOIDmode)
5731 validate_change (object, &XEXP (x, 0), new_rtx, 0);
5732 return x;
5735 case REG:
5736 i = REG_QTY (REGNO (x));
5738 /* Return a constant or a constant register. */
5739 if (REGNO_QTY_VALID_P (REGNO (x)))
5741 struct qty_table_elem *ent = &qty_table[i];
5743 if (ent->const_rtx != NULL_RTX
5744 && (CONSTANT_P (ent->const_rtx)
5745 || REG_P (ent->const_rtx)))
5747 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
5748 if (new_rtx)
5749 return copy_rtx (new_rtx);
5753 /* Otherwise, canonicalize this register. */
5754 return canon_reg (x, NULL_RTX);
5756 default:
5757 break;
5760 for (i = 0; i < GET_RTX_LENGTH (code); i++)
5761 if (fmt[i] == 'e')
5762 validate_change (object, &XEXP (x, i),
5763 cse_process_notes (XEXP (x, i), object, changed), 0);
5765 return x;
5768 static rtx
5769 cse_process_notes (rtx x, rtx object, bool *changed)
5771 rtx new_rtx = cse_process_notes_1 (x, object, changed);
5772 if (new_rtx != x)
5773 *changed = true;
5774 return new_rtx;
5778 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
5780 DATA is a pointer to a struct cse_basic_block_data, that is used to
5781 describe the path.
5782 It is filled with a queue of basic blocks, starting with FIRST_BB
5783 and following a trace through the CFG.
5785 If all paths starting at FIRST_BB have been followed, or no new path
5786 starting at FIRST_BB can be constructed, this function returns FALSE.
5787 Otherwise, DATA->path is filled and the function returns TRUE indicating
5788 that a path to follow was found.
5790 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
5791 block in the path will be FIRST_BB. */
5793 static bool
5794 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
5795 int follow_jumps)
5797 basic_block bb;
5798 edge e;
5799 int path_size;
5801 SET_BIT (cse_visited_basic_blocks, first_bb->index);
5803 /* See if there is a previous path. */
5804 path_size = data->path_size;
5806 /* There is a previous path. Make sure it started with FIRST_BB. */
5807 if (path_size)
5808 gcc_assert (data->path[0].bb == first_bb);
5810 /* There was only one basic block in the last path. Clear the path and
5811 return, so that paths starting at another basic block can be tried. */
5812 if (path_size == 1)
5814 path_size = 0;
5815 goto done;
5818 /* If the path was empty from the beginning, construct a new path. */
5819 if (path_size == 0)
5820 data->path[path_size++].bb = first_bb;
5821 else
5823 /* Otherwise, path_size must be equal to or greater than 2, because
5824 a previous path exists that is at least two basic blocks long.
5826 Update the previous branch path, if any. If the last branch was
5827 previously along the branch edge, take the fallthrough edge now. */
5828 while (path_size >= 2)
5830 basic_block last_bb_in_path, previous_bb_in_path;
5831 edge e;
5833 --path_size;
5834 last_bb_in_path = data->path[path_size].bb;
5835 previous_bb_in_path = data->path[path_size - 1].bb;
5837 /* If we previously followed a path along the branch edge, try
5838 the fallthru edge now. */
5839 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
5840 && any_condjump_p (BB_END (previous_bb_in_path))
5841 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
5842 && e == BRANCH_EDGE (previous_bb_in_path))
5844 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
5845 if (bb != EXIT_BLOCK_PTR
5846 && single_pred_p (bb)
5847 /* We used to assert here that we would only see blocks
5848 that we have not visited yet. But we may end up
5849 visiting basic blocks twice if the CFG has changed
5850 in this run of cse_main, because when the CFG changes
5851 the topological sort of the CFG also changes. A basic
5852 blocks that previously had more than two predecessors
5853 may now have a single predecessor, and become part of
5854 a path that starts at another basic block.
5856 We still want to visit each basic block only once, so
5857 halt the path here if we have already visited BB. */
5858 && !TEST_BIT (cse_visited_basic_blocks, bb->index))
5860 SET_BIT (cse_visited_basic_blocks, bb->index);
5861 data->path[path_size++].bb = bb;
5862 break;
5866 data->path[path_size].bb = NULL;
5869 /* If only one block remains in the path, bail. */
5870 if (path_size == 1)
5872 path_size = 0;
5873 goto done;
5877 /* Extend the path if possible. */
5878 if (follow_jumps)
5880 bb = data->path[path_size - 1].bb;
5881 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
5883 if (single_succ_p (bb))
5884 e = single_succ_edge (bb);
5885 else if (EDGE_COUNT (bb->succs) == 2
5886 && any_condjump_p (BB_END (bb)))
5888 /* First try to follow the branch. If that doesn't lead
5889 to a useful path, follow the fallthru edge. */
5890 e = BRANCH_EDGE (bb);
5891 if (!single_pred_p (e->dest))
5892 e = FALLTHRU_EDGE (bb);
5894 else
5895 e = NULL;
5897 if (e && e->dest != EXIT_BLOCK_PTR
5898 && single_pred_p (e->dest)
5899 /* Avoid visiting basic blocks twice. The large comment
5900 above explains why this can happen. */
5901 && !TEST_BIT (cse_visited_basic_blocks, e->dest->index))
5903 basic_block bb2 = e->dest;
5904 SET_BIT (cse_visited_basic_blocks, bb2->index);
5905 data->path[path_size++].bb = bb2;
5906 bb = bb2;
5908 else
5909 bb = NULL;
5913 done:
5914 data->path_size = path_size;
5915 return path_size != 0;
5918 /* Dump the path in DATA to file F. NSETS is the number of sets
5919 in the path. */
5921 static void
5922 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
5924 int path_entry;
5926 fprintf (f, ";; Following path with %d sets: ", nsets);
5927 for (path_entry = 0; path_entry < data->path_size; path_entry++)
5928 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
5929 fputc ('\n', dump_file);
5930 fflush (f);
5934 /* Return true if BB has exception handling successor edges. */
5936 static bool
5937 have_eh_succ_edges (basic_block bb)
5939 edge e;
5940 edge_iterator ei;
5942 FOR_EACH_EDGE (e, ei, bb->succs)
5943 if (e->flags & EDGE_EH)
5944 return true;
5946 return false;
5950 /* Scan to the end of the path described by DATA. Return an estimate of
5951 the total number of SETs of all insns in the path. */
5953 static void
5954 cse_prescan_path (struct cse_basic_block_data *data)
5956 int nsets = 0;
5957 int path_size = data->path_size;
5958 int path_entry;
5960 /* Scan to end of each basic block in the path. */
5961 for (path_entry = 0; path_entry < path_size; path_entry++)
5963 basic_block bb;
5964 rtx insn;
5966 bb = data->path[path_entry].bb;
5968 FOR_BB_INSNS (bb, insn)
5970 if (!INSN_P (insn))
5971 continue;
5973 /* A PARALLEL can have lots of SETs in it,
5974 especially if it is really an ASM_OPERANDS. */
5975 if (GET_CODE (PATTERN (insn)) == PARALLEL)
5976 nsets += XVECLEN (PATTERN (insn), 0);
5977 else
5978 nsets += 1;
5982 data->nsets = nsets;
5985 /* Process a single extended basic block described by EBB_DATA. */
5987 static void
5988 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
5990 int path_size = ebb_data->path_size;
5991 int path_entry;
5992 int num_insns = 0;
5994 /* Allocate the space needed by qty_table. */
5995 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
5997 new_basic_block ();
5998 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
5999 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6000 for (path_entry = 0; path_entry < path_size; path_entry++)
6002 basic_block bb;
6003 rtx insn;
6005 bb = ebb_data->path[path_entry].bb;
6007 /* Invalidate recorded information for eh regs if there is an EH
6008 edge pointing to that bb. */
6009 if (bb_has_eh_pred (bb))
6011 df_ref *def_rec;
6013 for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
6015 df_ref def = *def_rec;
6016 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6017 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6021 FOR_BB_INSNS (bb, insn)
6023 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6024 /* If we have processed 1,000 insns, flush the hash table to
6025 avoid extreme quadratic behavior. We must not include NOTEs
6026 in the count since there may be more of them when generating
6027 debugging information. If we clear the table at different
6028 times, code generated with -g -O might be different than code
6029 generated with -O but not -g.
6031 FIXME: This is a real kludge and needs to be done some other
6032 way. */
6033 if (INSN_P (insn)
6034 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6036 flush_hash_table ();
6037 num_insns = 0;
6040 if (INSN_P (insn))
6042 /* Process notes first so we have all notes in canonical forms
6043 when looking for duplicate operations. */
6044 if (REG_NOTES (insn))
6046 bool changed = false;
6047 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6048 NULL_RTX, &changed);
6049 if (changed)
6050 df_notes_rescan (insn);
6053 cse_insn (insn);
6055 /* If we haven't already found an insn where we added a LABEL_REF,
6056 check this one. */
6057 if (INSN_P (insn) && !recorded_label_ref
6058 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6059 (void *) insn))
6060 recorded_label_ref = true;
6062 #ifdef HAVE_cc0
6063 /* If the previous insn set CC0 and this insn no longer
6064 references CC0, delete the previous insn. Here we use
6065 fact that nothing expects CC0 to be valid over an insn,
6066 which is true until the final pass. */
6068 rtx prev_insn, tem;
6070 prev_insn = PREV_INSN (insn);
6071 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6072 && (tem = single_set (prev_insn)) != 0
6073 && SET_DEST (tem) == cc0_rtx
6074 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6075 delete_insn (prev_insn);
6078 /* If this insn is not the last insn in the basic block,
6079 it will be PREV_INSN(insn) in the next iteration. If
6080 we recorded any CC0-related information for this insn,
6081 remember it. */
6082 if (insn != BB_END (bb))
6084 prev_insn_cc0 = this_insn_cc0;
6085 prev_insn_cc0_mode = this_insn_cc0_mode;
6087 #endif
6091 /* With non-call exceptions, we are not always able to update
6092 the CFG properly inside cse_insn. So clean up possibly
6093 redundant EH edges here. */
6094 if (flag_non_call_exceptions && have_eh_succ_edges (bb))
6095 cse_cfg_altered |= purge_dead_edges (bb);
6097 /* If we changed a conditional jump, we may have terminated
6098 the path we are following. Check that by verifying that
6099 the edge we would take still exists. If the edge does
6100 not exist anymore, purge the remainder of the path.
6101 Note that this will cause us to return to the caller. */
6102 if (path_entry < path_size - 1)
6104 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6105 if (!find_edge (bb, next_bb))
6109 path_size--;
6111 /* If we truncate the path, we must also reset the
6112 visited bit on the remaining blocks in the path,
6113 or we will never visit them at all. */
6114 RESET_BIT (cse_visited_basic_blocks,
6115 ebb_data->path[path_size].bb->index);
6116 ebb_data->path[path_size].bb = NULL;
6118 while (path_size - 1 != path_entry);
6119 ebb_data->path_size = path_size;
6123 /* If this is a conditional jump insn, record any known
6124 equivalences due to the condition being tested. */
6125 insn = BB_END (bb);
6126 if (path_entry < path_size - 1
6127 && JUMP_P (insn)
6128 && single_set (insn)
6129 && any_condjump_p (insn))
6131 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6132 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6133 record_jump_equiv (insn, taken);
6136 #ifdef HAVE_cc0
6137 /* Clear the CC0-tracking related insns, they can't provide
6138 useful information across basic block boundaries. */
6139 prev_insn_cc0 = 0;
6140 #endif
6143 gcc_assert (next_qty <= max_qty);
6145 free (qty_table);
6149 /* Perform cse on the instructions of a function.
6150 F is the first instruction.
6151 NREGS is one plus the highest pseudo-reg number used in the instruction.
6153 Return 2 if jump optimizations should be redone due to simplifications
6154 in conditional jump instructions.
6155 Return 1 if the CFG should be cleaned up because it has been modified.
6156 Return 0 otherwise. */
6159 cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
6161 struct cse_basic_block_data ebb_data;
6162 basic_block bb;
6163 int *rc_order = XNEWVEC (int, last_basic_block);
6164 int i, n_blocks;
6166 df_set_flags (DF_LR_RUN_DCE);
6167 df_analyze ();
6168 df_set_flags (DF_DEFER_INSN_RESCAN);
6170 reg_scan (get_insns (), max_reg_num ());
6171 init_cse_reg_info (nregs);
6173 ebb_data.path = XNEWVEC (struct branch_path,
6174 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6176 cse_cfg_altered = false;
6177 cse_jumps_altered = false;
6178 recorded_label_ref = false;
6179 constant_pool_entries_cost = 0;
6180 constant_pool_entries_regcost = 0;
6181 ebb_data.path_size = 0;
6182 ebb_data.nsets = 0;
6183 rtl_hooks = cse_rtl_hooks;
6185 init_recog ();
6186 init_alias_analysis ();
6188 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6190 /* Set up the table of already visited basic blocks. */
6191 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
6192 sbitmap_zero (cse_visited_basic_blocks);
6194 /* Loop over basic blocks in reverse completion order (RPO),
6195 excluding the ENTRY and EXIT blocks. */
6196 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6197 i = 0;
6198 while (i < n_blocks)
6200 /* Find the first block in the RPO queue that we have not yet
6201 processed before. */
6204 bb = BASIC_BLOCK (rc_order[i++]);
6206 while (TEST_BIT (cse_visited_basic_blocks, bb->index)
6207 && i < n_blocks);
6209 /* Find all paths starting with BB, and process them. */
6210 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6212 /* Pre-scan the path. */
6213 cse_prescan_path (&ebb_data);
6215 /* If this basic block has no sets, skip it. */
6216 if (ebb_data.nsets == 0)
6217 continue;
6219 /* Get a reasonable estimate for the maximum number of qty's
6220 needed for this path. For this, we take the number of sets
6221 and multiply that by MAX_RECOG_OPERANDS. */
6222 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6224 /* Dump the path we're about to process. */
6225 if (dump_file)
6226 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6228 cse_extended_basic_block (&ebb_data);
6232 /* Clean up. */
6233 end_alias_analysis ();
6234 free (reg_eqv_table);
6235 free (ebb_data.path);
6236 sbitmap_free (cse_visited_basic_blocks);
6237 free (rc_order);
6238 rtl_hooks = general_rtl_hooks;
6240 if (cse_jumps_altered || recorded_label_ref)
6241 return 2;
6242 else if (cse_cfg_altered)
6243 return 1;
6244 else
6245 return 0;
6248 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for
6249 which there isn't a REG_LABEL_OPERAND note.
6250 Return one if so. DATA is the insn. */
6252 static int
6253 check_for_label_ref (rtx *rtl, void *data)
6255 rtx insn = (rtx) data;
6257 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6258 note for it, we must rerun jump since it needs to place the note. If
6259 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6260 don't do this since no REG_LABEL_OPERAND will be added. */
6261 return (GET_CODE (*rtl) == LABEL_REF
6262 && ! LABEL_REF_NONLOCAL_P (*rtl)
6263 && (!JUMP_P (insn)
6264 || !label_is_jump_target_p (XEXP (*rtl, 0), insn))
6265 && LABEL_P (XEXP (*rtl, 0))
6266 && INSN_UID (XEXP (*rtl, 0)) != 0
6267 && ! find_reg_note (insn, REG_LABEL_OPERAND, XEXP (*rtl, 0)));
6270 /* Count the number of times registers are used (not set) in X.
6271 COUNTS is an array in which we accumulate the count, INCR is how much
6272 we count each register usage.
6274 Don't count a usage of DEST, which is the SET_DEST of a SET which
6275 contains X in its SET_SRC. This is because such a SET does not
6276 modify the liveness of DEST.
6277 DEST is set to pc_rtx for a trapping insn, which means that we must count
6278 uses of a SET_DEST regardless because the insn can't be deleted here. */
6280 static void
6281 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6283 enum rtx_code code;
6284 rtx note;
6285 const char *fmt;
6286 int i, j;
6288 if (x == 0)
6289 return;
6291 switch (code = GET_CODE (x))
6293 case REG:
6294 if (x != dest)
6295 counts[REGNO (x)] += incr;
6296 return;
6298 case PC:
6299 case CC0:
6300 case CONST:
6301 case CONST_INT:
6302 case CONST_DOUBLE:
6303 case CONST_FIXED:
6304 case CONST_VECTOR:
6305 case SYMBOL_REF:
6306 case LABEL_REF:
6307 return;
6309 case CLOBBER:
6310 /* If we are clobbering a MEM, mark any registers inside the address
6311 as being used. */
6312 if (MEM_P (XEXP (x, 0)))
6313 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6314 return;
6316 case SET:
6317 /* Unless we are setting a REG, count everything in SET_DEST. */
6318 if (!REG_P (SET_DEST (x)))
6319 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6320 count_reg_usage (SET_SRC (x), counts,
6321 dest ? dest : SET_DEST (x),
6322 incr);
6323 return;
6325 case CALL_INSN:
6326 case INSN:
6327 case JUMP_INSN:
6328 /* We expect dest to be NULL_RTX here. If the insn may trap, mark
6329 this fact by setting DEST to pc_rtx. */
6330 if (flag_non_call_exceptions && may_trap_p (PATTERN (x)))
6331 dest = pc_rtx;
6332 if (code == CALL_INSN)
6333 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6334 count_reg_usage (PATTERN (x), counts, dest, incr);
6336 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6337 use them. */
6339 note = find_reg_equal_equiv_note (x);
6340 if (note)
6342 rtx eqv = XEXP (note, 0);
6344 if (GET_CODE (eqv) == EXPR_LIST)
6345 /* This REG_EQUAL note describes the result of a function call.
6346 Process all the arguments. */
6349 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6350 eqv = XEXP (eqv, 1);
6352 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6353 else
6354 count_reg_usage (eqv, counts, dest, incr);
6356 return;
6358 case EXPR_LIST:
6359 if (REG_NOTE_KIND (x) == REG_EQUAL
6360 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6361 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6362 involving registers in the address. */
6363 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6364 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6366 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6367 return;
6369 case ASM_OPERANDS:
6370 /* If the asm is volatile, then this insn cannot be deleted,
6371 and so the inputs *must* be live. */
6372 if (MEM_VOLATILE_P (x))
6373 dest = NULL_RTX;
6374 /* Iterate over just the inputs, not the constraints as well. */
6375 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6376 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6377 return;
6379 case INSN_LIST:
6380 gcc_unreachable ();
6382 default:
6383 break;
6386 fmt = GET_RTX_FORMAT (code);
6387 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6389 if (fmt[i] == 'e')
6390 count_reg_usage (XEXP (x, i), counts, dest, incr);
6391 else if (fmt[i] == 'E')
6392 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6393 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6397 /* Return true if set is live. */
6398 static bool
6399 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6400 int *counts)
6402 #ifdef HAVE_cc0
6403 rtx tem;
6404 #endif
6406 if (set_noop_p (set))
6409 #ifdef HAVE_cc0
6410 else if (GET_CODE (SET_DEST (set)) == CC0
6411 && !side_effects_p (SET_SRC (set))
6412 && ((tem = next_nonnote_insn (insn)) == 0
6413 || !INSN_P (tem)
6414 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6415 return false;
6416 #endif
6417 else if (!REG_P (SET_DEST (set))
6418 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
6419 || counts[REGNO (SET_DEST (set))] != 0
6420 || side_effects_p (SET_SRC (set)))
6421 return true;
6422 return false;
6425 /* Return true if insn is live. */
6427 static bool
6428 insn_live_p (rtx insn, int *counts)
6430 int i;
6431 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
6432 return true;
6433 else if (GET_CODE (PATTERN (insn)) == SET)
6434 return set_live_p (PATTERN (insn), insn, counts);
6435 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6437 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6439 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6441 if (GET_CODE (elt) == SET)
6443 if (set_live_p (elt, insn, counts))
6444 return true;
6446 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6447 return true;
6449 return false;
6451 else
6452 return true;
6455 /* Scan all the insns and delete any that are dead; i.e., they store a register
6456 that is never used or they copy a register to itself.
6458 This is used to remove insns made obviously dead by cse, loop or other
6459 optimizations. It improves the heuristics in loop since it won't try to
6460 move dead invariants out of loops or make givs for dead quantities. The
6461 remaining passes of the compilation are also sped up. */
6464 delete_trivially_dead_insns (rtx insns, int nreg)
6466 int *counts;
6467 rtx insn, prev;
6468 int ndead = 0;
6470 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6471 /* First count the number of times each register is used. */
6472 counts = XCNEWVEC (int, nreg);
6473 for (insn = insns; insn; insn = NEXT_INSN (insn))
6474 if (INSN_P (insn))
6475 count_reg_usage (insn, counts, NULL_RTX, 1);
6477 /* Go from the last insn to the first and delete insns that only set unused
6478 registers or copy a register to itself. As we delete an insn, remove
6479 usage counts for registers it uses.
6481 The first jump optimization pass may leave a real insn as the last
6482 insn in the function. We must not skip that insn or we may end
6483 up deleting code that is not really dead. */
6484 for (insn = get_last_insn (); insn; insn = prev)
6486 int live_insn = 0;
6488 prev = PREV_INSN (insn);
6489 if (!INSN_P (insn))
6490 continue;
6492 live_insn = insn_live_p (insn, counts);
6494 /* If this is a dead insn, delete it and show registers in it aren't
6495 being used. */
6497 if (! live_insn && dbg_cnt (delete_trivial_dead))
6499 count_reg_usage (insn, counts, NULL_RTX, -1);
6500 delete_insn_and_edges (insn);
6501 ndead++;
6505 if (dump_file && ndead)
6506 fprintf (dump_file, "Deleted %i trivially dead insns\n",
6507 ndead);
6508 /* Clean up. */
6509 free (counts);
6510 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
6511 return ndead;
6514 /* This function is called via for_each_rtx. The argument, NEWREG, is
6515 a condition code register with the desired mode. If we are looking
6516 at the same register in a different mode, replace it with
6517 NEWREG. */
6519 static int
6520 cse_change_cc_mode (rtx *loc, void *data)
6522 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
6524 if (*loc
6525 && REG_P (*loc)
6526 && REGNO (*loc) == REGNO (args->newreg)
6527 && GET_MODE (*loc) != GET_MODE (args->newreg))
6529 validate_change (args->insn, loc, args->newreg, 1);
6531 return -1;
6533 return 0;
6536 /* Change the mode of any reference to the register REGNO (NEWREG) to
6537 GET_MODE (NEWREG) in INSN. */
6539 static void
6540 cse_change_cc_mode_insn (rtx insn, rtx newreg)
6542 struct change_cc_mode_args args;
6543 int success;
6545 if (!INSN_P (insn))
6546 return;
6548 args.insn = insn;
6549 args.newreg = newreg;
6551 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
6552 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
6554 /* If the following assertion was triggered, there is most probably
6555 something wrong with the cc_modes_compatible back end function.
6556 CC modes only can be considered compatible if the insn - with the mode
6557 replaced by any of the compatible modes - can still be recognized. */
6558 success = apply_change_group ();
6559 gcc_assert (success);
6562 /* Change the mode of any reference to the register REGNO (NEWREG) to
6563 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
6564 any instruction which modifies NEWREG. */
6566 static void
6567 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
6569 rtx insn;
6571 for (insn = start; insn != end; insn = NEXT_INSN (insn))
6573 if (! INSN_P (insn))
6574 continue;
6576 if (reg_set_p (newreg, insn))
6577 return;
6579 cse_change_cc_mode_insn (insn, newreg);
6583 /* BB is a basic block which finishes with CC_REG as a condition code
6584 register which is set to CC_SRC. Look through the successors of BB
6585 to find blocks which have a single predecessor (i.e., this one),
6586 and look through those blocks for an assignment to CC_REG which is
6587 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
6588 permitted to change the mode of CC_SRC to a compatible mode. This
6589 returns VOIDmode if no equivalent assignments were found.
6590 Otherwise it returns the mode which CC_SRC should wind up with.
6591 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
6592 but is passed unmodified down to recursive calls in order to prevent
6593 endless recursion.
6595 The main complexity in this function is handling the mode issues.
6596 We may have more than one duplicate which we can eliminate, and we
6597 try to find a mode which will work for multiple duplicates. */
6599 static enum machine_mode
6600 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
6601 bool can_change_mode)
6603 bool found_equiv;
6604 enum machine_mode mode;
6605 unsigned int insn_count;
6606 edge e;
6607 rtx insns[2];
6608 enum machine_mode modes[2];
6609 rtx last_insns[2];
6610 unsigned int i;
6611 rtx newreg;
6612 edge_iterator ei;
6614 /* We expect to have two successors. Look at both before picking
6615 the final mode for the comparison. If we have more successors
6616 (i.e., some sort of table jump, although that seems unlikely),
6617 then we require all beyond the first two to use the same
6618 mode. */
6620 found_equiv = false;
6621 mode = GET_MODE (cc_src);
6622 insn_count = 0;
6623 FOR_EACH_EDGE (e, ei, bb->succs)
6625 rtx insn;
6626 rtx end;
6628 if (e->flags & EDGE_COMPLEX)
6629 continue;
6631 if (EDGE_COUNT (e->dest->preds) != 1
6632 || e->dest == EXIT_BLOCK_PTR
6633 /* Avoid endless recursion on unreachable blocks. */
6634 || e->dest == orig_bb)
6635 continue;
6637 end = NEXT_INSN (BB_END (e->dest));
6638 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
6640 rtx set;
6642 if (! INSN_P (insn))
6643 continue;
6645 /* If CC_SRC is modified, we have to stop looking for
6646 something which uses it. */
6647 if (modified_in_p (cc_src, insn))
6648 break;
6650 /* Check whether INSN sets CC_REG to CC_SRC. */
6651 set = single_set (insn);
6652 if (set
6653 && REG_P (SET_DEST (set))
6654 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6656 bool found;
6657 enum machine_mode set_mode;
6658 enum machine_mode comp_mode;
6660 found = false;
6661 set_mode = GET_MODE (SET_SRC (set));
6662 comp_mode = set_mode;
6663 if (rtx_equal_p (cc_src, SET_SRC (set)))
6664 found = true;
6665 else if (GET_CODE (cc_src) == COMPARE
6666 && GET_CODE (SET_SRC (set)) == COMPARE
6667 && mode != set_mode
6668 && rtx_equal_p (XEXP (cc_src, 0),
6669 XEXP (SET_SRC (set), 0))
6670 && rtx_equal_p (XEXP (cc_src, 1),
6671 XEXP (SET_SRC (set), 1)))
6674 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
6675 if (comp_mode != VOIDmode
6676 && (can_change_mode || comp_mode == mode))
6677 found = true;
6680 if (found)
6682 found_equiv = true;
6683 if (insn_count < ARRAY_SIZE (insns))
6685 insns[insn_count] = insn;
6686 modes[insn_count] = set_mode;
6687 last_insns[insn_count] = end;
6688 ++insn_count;
6690 if (mode != comp_mode)
6692 gcc_assert (can_change_mode);
6693 mode = comp_mode;
6695 /* The modified insn will be re-recognized later. */
6696 PUT_MODE (cc_src, mode);
6699 else
6701 if (set_mode != mode)
6703 /* We found a matching expression in the
6704 wrong mode, but we don't have room to
6705 store it in the array. Punt. This case
6706 should be rare. */
6707 break;
6709 /* INSN sets CC_REG to a value equal to CC_SRC
6710 with the right mode. We can simply delete
6711 it. */
6712 delete_insn (insn);
6715 /* We found an instruction to delete. Keep looking,
6716 in the hopes of finding a three-way jump. */
6717 continue;
6720 /* We found an instruction which sets the condition
6721 code, so don't look any farther. */
6722 break;
6725 /* If INSN sets CC_REG in some other way, don't look any
6726 farther. */
6727 if (reg_set_p (cc_reg, insn))
6728 break;
6731 /* If we fell off the bottom of the block, we can keep looking
6732 through successors. We pass CAN_CHANGE_MODE as false because
6733 we aren't prepared to handle compatibility between the
6734 further blocks and this block. */
6735 if (insn == end)
6737 enum machine_mode submode;
6739 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
6740 if (submode != VOIDmode)
6742 gcc_assert (submode == mode);
6743 found_equiv = true;
6744 can_change_mode = false;
6749 if (! found_equiv)
6750 return VOIDmode;
6752 /* Now INSN_COUNT is the number of instructions we found which set
6753 CC_REG to a value equivalent to CC_SRC. The instructions are in
6754 INSNS. The modes used by those instructions are in MODES. */
6756 newreg = NULL_RTX;
6757 for (i = 0; i < insn_count; ++i)
6759 if (modes[i] != mode)
6761 /* We need to change the mode of CC_REG in INSNS[i] and
6762 subsequent instructions. */
6763 if (! newreg)
6765 if (GET_MODE (cc_reg) == mode)
6766 newreg = cc_reg;
6767 else
6768 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6770 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
6771 newreg);
6774 delete_insn_and_edges (insns[i]);
6777 return mode;
6780 /* If we have a fixed condition code register (or two), walk through
6781 the instructions and try to eliminate duplicate assignments. */
6783 static void
6784 cse_condition_code_reg (void)
6786 unsigned int cc_regno_1;
6787 unsigned int cc_regno_2;
6788 rtx cc_reg_1;
6789 rtx cc_reg_2;
6790 basic_block bb;
6792 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
6793 return;
6795 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
6796 if (cc_regno_2 != INVALID_REGNUM)
6797 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
6798 else
6799 cc_reg_2 = NULL_RTX;
6801 FOR_EACH_BB (bb)
6803 rtx last_insn;
6804 rtx cc_reg;
6805 rtx insn;
6806 rtx cc_src_insn;
6807 rtx cc_src;
6808 enum machine_mode mode;
6809 enum machine_mode orig_mode;
6811 /* Look for blocks which end with a conditional jump based on a
6812 condition code register. Then look for the instruction which
6813 sets the condition code register. Then look through the
6814 successor blocks for instructions which set the condition
6815 code register to the same value. There are other possible
6816 uses of the condition code register, but these are by far the
6817 most common and the ones which we are most likely to be able
6818 to optimize. */
6820 last_insn = BB_END (bb);
6821 if (!JUMP_P (last_insn))
6822 continue;
6824 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
6825 cc_reg = cc_reg_1;
6826 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
6827 cc_reg = cc_reg_2;
6828 else
6829 continue;
6831 cc_src_insn = NULL_RTX;
6832 cc_src = NULL_RTX;
6833 for (insn = PREV_INSN (last_insn);
6834 insn && insn != PREV_INSN (BB_HEAD (bb));
6835 insn = PREV_INSN (insn))
6837 rtx set;
6839 if (! INSN_P (insn))
6840 continue;
6841 set = single_set (insn);
6842 if (set
6843 && REG_P (SET_DEST (set))
6844 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6846 cc_src_insn = insn;
6847 cc_src = SET_SRC (set);
6848 break;
6850 else if (reg_set_p (cc_reg, insn))
6851 break;
6854 if (! cc_src_insn)
6855 continue;
6857 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
6858 continue;
6860 /* Now CC_REG is a condition code register used for a
6861 conditional jump at the end of the block, and CC_SRC, in
6862 CC_SRC_INSN, is the value to which that condition code
6863 register is set, and CC_SRC is still meaningful at the end of
6864 the basic block. */
6866 orig_mode = GET_MODE (cc_src);
6867 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
6868 if (mode != VOIDmode)
6870 gcc_assert (mode == GET_MODE (cc_src));
6871 if (mode != orig_mode)
6873 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6875 cse_change_cc_mode_insn (cc_src_insn, newreg);
6877 /* Do the same in the following insns that use the
6878 current value of CC_REG within BB. */
6879 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
6880 NEXT_INSN (last_insn),
6881 newreg);
6888 /* Perform common subexpression elimination. Nonzero value from
6889 `cse_main' means that jumps were simplified and some code may now
6890 be unreachable, so do jump optimization again. */
6891 static bool
6892 gate_handle_cse (void)
6894 return optimize > 0;
6897 static unsigned int
6898 rest_of_handle_cse (void)
6900 int tem;
6902 if (dump_file)
6903 dump_flow_info (dump_file, dump_flags);
6905 tem = cse_main (get_insns (), max_reg_num ());
6907 /* If we are not running more CSE passes, then we are no longer
6908 expecting CSE to be run. But always rerun it in a cheap mode. */
6909 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
6911 if (tem == 2)
6913 timevar_push (TV_JUMP);
6914 rebuild_jump_labels (get_insns ());
6915 cleanup_cfg (0);
6916 timevar_pop (TV_JUMP);
6918 else if (tem == 1 || optimize > 1)
6919 cleanup_cfg (0);
6921 return 0;
6924 struct rtl_opt_pass pass_cse =
6927 RTL_PASS,
6928 "cse1", /* name */
6929 gate_handle_cse, /* gate */
6930 rest_of_handle_cse, /* execute */
6931 NULL, /* sub */
6932 NULL, /* next */
6933 0, /* static_pass_number */
6934 TV_CSE, /* tv_id */
6935 0, /* properties_required */
6936 0, /* properties_provided */
6937 0, /* properties_destroyed */
6938 0, /* todo_flags_start */
6939 TODO_df_finish | TODO_verify_rtl_sharing |
6940 TODO_dump_func |
6941 TODO_ggc_collect |
6942 TODO_verify_flow, /* todo_flags_finish */
6947 static bool
6948 gate_handle_cse2 (void)
6950 return optimize > 0 && flag_rerun_cse_after_loop;
6953 /* Run second CSE pass after loop optimizations. */
6954 static unsigned int
6955 rest_of_handle_cse2 (void)
6957 int tem;
6959 if (dump_file)
6960 dump_flow_info (dump_file, dump_flags);
6962 tem = cse_main (get_insns (), max_reg_num ());
6964 /* Run a pass to eliminate duplicated assignments to condition code
6965 registers. We have to run this after bypass_jumps, because it
6966 makes it harder for that pass to determine whether a jump can be
6967 bypassed safely. */
6968 cse_condition_code_reg ();
6970 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6972 if (tem == 2)
6974 timevar_push (TV_JUMP);
6975 rebuild_jump_labels (get_insns ());
6976 cleanup_cfg (0);
6977 timevar_pop (TV_JUMP);
6979 else if (tem == 1)
6980 cleanup_cfg (0);
6982 cse_not_expected = 1;
6983 return 0;
6987 struct rtl_opt_pass pass_cse2 =
6990 RTL_PASS,
6991 "cse2", /* name */
6992 gate_handle_cse2, /* gate */
6993 rest_of_handle_cse2, /* execute */
6994 NULL, /* sub */
6995 NULL, /* next */
6996 0, /* static_pass_number */
6997 TV_CSE2, /* tv_id */
6998 0, /* properties_required */
6999 0, /* properties_provided */
7000 0, /* properties_destroyed */
7001 0, /* todo_flags_start */
7002 TODO_df_finish | TODO_verify_rtl_sharing |
7003 TODO_dump_func |
7004 TODO_ggc_collect |
7005 TODO_verify_flow /* todo_flags_finish */