1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
29 #include "basic-block.h"
31 #include "tree-flow.h"
32 #include "tree-pass.h"
33 #include "tree-dump.h"
34 #include "langhooks.h"
35 #include "pointer-set.h"
38 #include "tree-data-ref.h"
40 static unsigned int tree_ssa_phiopt (void);
41 static unsigned int tree_ssa_phiopt_worker (bool);
42 static bool conditional_replacement (basic_block
, basic_block
,
43 edge
, edge
, gimple
, tree
, tree
);
44 static bool value_replacement (basic_block
, basic_block
,
45 edge
, edge
, gimple
, tree
, tree
);
46 static bool minmax_replacement (basic_block
, basic_block
,
47 edge
, edge
, gimple
, tree
, tree
);
48 static bool abs_replacement (basic_block
, basic_block
,
49 edge
, edge
, gimple
, tree
, tree
);
50 static bool cond_store_replacement (basic_block
, basic_block
, edge
, edge
,
51 struct pointer_set_t
*);
52 static bool cond_if_else_store_replacement (basic_block
, basic_block
, basic_block
);
53 static struct pointer_set_t
* get_non_trapping (void);
54 static void replace_phi_edge_with_variable (basic_block
, edge
, gimple
, tree
);
56 /* This pass tries to replaces an if-then-else block with an
57 assignment. We have four kinds of transformations. Some of these
58 transformations are also performed by the ifcvt RTL optimizer.
60 Conditional Replacement
61 -----------------------
63 This transformation, implemented in conditional_replacement,
67 if (cond) goto bb2; else goto bb1;
70 x = PHI <0 (bb1), 1 (bb0), ...>;
78 x = PHI <x' (bb0), ...>;
80 We remove bb1 as it becomes unreachable. This occurs often due to
81 gimplification of conditionals.
86 This transformation, implemented in value_replacement, replaces
89 if (a != b) goto bb2; else goto bb1;
92 x = PHI <a (bb1), b (bb0), ...>;
98 x = PHI <b (bb0), ...>;
100 This opportunity can sometimes occur as a result of other
106 This transformation, implemented in abs_replacement, replaces
109 if (a >= 0) goto bb2; else goto bb1;
113 x = PHI <x (bb1), a (bb0), ...>;
120 x = PHI <x' (bb0), ...>;
125 This transformation, minmax_replacement replaces
128 if (a <= b) goto bb2; else goto bb1;
131 x = PHI <b (bb1), a (bb0), ...>;
138 x = PHI <x' (bb0), ...>;
140 A similar transformation is done for MAX_EXPR. */
143 tree_ssa_phiopt (void)
145 return tree_ssa_phiopt_worker (false);
148 /* This pass tries to transform conditional stores into unconditional
149 ones, enabling further simplifications with the simpler then and else
150 blocks. In particular it replaces this:
153 if (cond) goto bb2; else goto bb1;
161 if (cond) goto bb1; else goto bb2;
165 condtmp = PHI <RHS, condtmp'>
168 This transformation can only be done under several constraints,
169 documented below. It also replaces:
172 if (cond) goto bb2; else goto bb1;
183 if (cond) goto bb3; else goto bb1;
186 condtmp = PHI <RHS1, RHS2>
190 tree_ssa_cs_elim (void)
192 return tree_ssa_phiopt_worker (true);
195 /* For conditional store replacement we need a temporary to
196 put the old contents of the memory in. */
197 static tree condstoretemp
;
199 /* The core routine of conditional store replacement and normal
200 phi optimizations. Both share much of the infrastructure in how
201 to match applicable basic block patterns. DO_STORE_ELIM is true
202 when we want to do conditional store replacement, false otherwise. */
204 tree_ssa_phiopt_worker (bool do_store_elim
)
207 basic_block
*bb_order
;
209 bool cfgchanged
= false;
210 struct pointer_set_t
*nontrap
= 0;
214 condstoretemp
= NULL_TREE
;
215 /* Calculate the set of non-trapping memory accesses. */
216 nontrap
= get_non_trapping ();
219 /* Search every basic block for COND_EXPR we may be able to optimize.
221 We walk the blocks in order that guarantees that a block with
222 a single predecessor is processed before the predecessor.
223 This ensures that we collapse inner ifs before visiting the
224 outer ones, and also that we do not try to visit a removed
226 bb_order
= blocks_in_phiopt_order ();
227 n
= n_basic_blocks
- NUM_FIXED_BLOCKS
;
229 for (i
= 0; i
< n
; i
++)
231 gimple cond_stmt
, phi
;
232 basic_block bb1
, bb2
;
238 cond_stmt
= last_stmt (bb
);
239 /* Check to see if the last statement is a GIMPLE_COND. */
241 || gimple_code (cond_stmt
) != GIMPLE_COND
)
244 e1
= EDGE_SUCC (bb
, 0);
246 e2
= EDGE_SUCC (bb
, 1);
249 /* We cannot do the optimization on abnormal edges. */
250 if ((e1
->flags
& EDGE_ABNORMAL
) != 0
251 || (e2
->flags
& EDGE_ABNORMAL
) != 0)
254 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
255 if (EDGE_COUNT (bb1
->succs
) == 0
257 || EDGE_COUNT (bb2
->succs
) == 0)
260 /* Find the bb which is the fall through to the other. */
261 if (EDGE_SUCC (bb1
, 0)->dest
== bb2
)
263 else if (EDGE_SUCC (bb2
, 0)->dest
== bb1
)
265 basic_block bb_tmp
= bb1
;
272 else if (do_store_elim
273 && EDGE_SUCC (bb1
, 0)->dest
== EDGE_SUCC (bb2
, 0)->dest
)
275 basic_block bb3
= EDGE_SUCC (bb1
, 0)->dest
;
277 if (!single_succ_p (bb1
)
278 || (EDGE_SUCC (bb1
, 0)->flags
& EDGE_FALLTHRU
) == 0
279 || !single_succ_p (bb2
)
280 || (EDGE_SUCC (bb2
, 0)->flags
& EDGE_FALLTHRU
) == 0
281 || EDGE_COUNT (bb3
->preds
) != 2)
283 if (cond_if_else_store_replacement (bb1
, bb2
, bb3
))
290 e1
= EDGE_SUCC (bb1
, 0);
292 /* Make sure that bb1 is just a fall through. */
293 if (!single_succ_p (bb1
)
294 || (e1
->flags
& EDGE_FALLTHRU
) == 0)
297 /* Also make sure that bb1 only have one predecessor and that it
299 if (!single_pred_p (bb1
)
300 || single_pred (bb1
) != bb
)
305 /* bb1 is the middle block, bb2 the join block, bb the split block,
306 e1 the fallthrough edge from bb1 to bb2. We can't do the
307 optimization if the join block has more than two predecessors. */
308 if (EDGE_COUNT (bb2
->preds
) > 2)
310 if (cond_store_replacement (bb1
, bb2
, e1
, e2
, nontrap
))
315 gimple_seq phis
= phi_nodes (bb2
);
316 gimple_stmt_iterator gsi
;
318 /* Check to make sure that there is only one non-virtual PHI node.
319 TODO: we could do it with more than one iff the other PHI nodes
320 have the same elements for these two edges. */
322 for (gsi
= gsi_start (phis
); !gsi_end_p (gsi
); gsi_next (&gsi
))
324 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi
))))
331 phi
= gsi_stmt (gsi
);
336 arg0
= gimple_phi_arg_def (phi
, e1
->dest_idx
);
337 arg1
= gimple_phi_arg_def (phi
, e2
->dest_idx
);
339 /* Something is wrong if we cannot find the arguments in the PHI
341 gcc_assert (arg0
!= NULL
&& arg1
!= NULL
);
343 /* Do the replacement of conditional if it can be done. */
344 if (conditional_replacement (bb
, bb1
, e1
, e2
, phi
, arg0
, arg1
))
346 else if (value_replacement (bb
, bb1
, e1
, e2
, phi
, arg0
, arg1
))
348 else if (abs_replacement (bb
, bb1
, e1
, e2
, phi
, arg0
, arg1
))
350 else if (minmax_replacement (bb
, bb1
, e1
, e2
, phi
, arg0
, arg1
))
358 pointer_set_destroy (nontrap
);
359 /* If the CFG has changed, we should cleanup the CFG. */
360 if (cfgchanged
&& do_store_elim
)
362 /* In cond-store replacement we have added some loads on edges
363 and new VOPS (as we moved the store, and created a load). */
364 gsi_commit_edge_inserts ();
365 return TODO_cleanup_cfg
| TODO_update_ssa_only_virtuals
;
368 return TODO_cleanup_cfg
;
372 /* Returns the list of basic blocks in the function in an order that guarantees
373 that if a block X has just a single predecessor Y, then Y is after X in the
377 blocks_in_phiopt_order (void)
380 basic_block
*order
= XNEWVEC (basic_block
, n_basic_blocks
);
381 unsigned n
= n_basic_blocks
- NUM_FIXED_BLOCKS
;
383 sbitmap visited
= sbitmap_alloc (last_basic_block
);
385 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
386 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
388 sbitmap_zero (visited
);
390 MARK_VISITED (ENTRY_BLOCK_PTR
);
396 /* Walk the predecessors of x as long as they have precisely one
397 predecessor and add them to the list, so that they get stored
400 single_pred_p (y
) && !VISITED_P (single_pred (y
));
403 for (y
= x
, i
= n
- np
;
404 single_pred_p (y
) && !VISITED_P (single_pred (y
));
405 y
= single_pred (y
), i
++)
413 gcc_assert (i
== n
- 1);
417 sbitmap_free (visited
);
426 /* Return TRUE if block BB has no executable statements, otherwise return
430 empty_block_p (basic_block bb
)
432 /* BB must have no executable statements. */
433 gimple_stmt_iterator gsi
= gsi_after_labels (bb
);
436 if (is_gimple_debug (gsi_stmt (gsi
)))
437 gsi_next_nondebug (&gsi
);
438 return gsi_end_p (gsi
);
441 /* Replace PHI node element whose edge is E in block BB with variable NEW.
442 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
443 is known to have two edges, one of which must reach BB). */
446 replace_phi_edge_with_variable (basic_block cond_block
,
447 edge e
, gimple phi
, tree new_tree
)
449 basic_block bb
= gimple_bb (phi
);
450 basic_block block_to_remove
;
451 gimple_stmt_iterator gsi
;
453 /* Change the PHI argument to new. */
454 SET_USE (PHI_ARG_DEF_PTR (phi
, e
->dest_idx
), new_tree
);
456 /* Remove the empty basic block. */
457 if (EDGE_SUCC (cond_block
, 0)->dest
== bb
)
459 EDGE_SUCC (cond_block
, 0)->flags
|= EDGE_FALLTHRU
;
460 EDGE_SUCC (cond_block
, 0)->flags
&= ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
461 EDGE_SUCC (cond_block
, 0)->probability
= REG_BR_PROB_BASE
;
462 EDGE_SUCC (cond_block
, 0)->count
+= EDGE_SUCC (cond_block
, 1)->count
;
464 block_to_remove
= EDGE_SUCC (cond_block
, 1)->dest
;
468 EDGE_SUCC (cond_block
, 1)->flags
|= EDGE_FALLTHRU
;
469 EDGE_SUCC (cond_block
, 1)->flags
470 &= ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
471 EDGE_SUCC (cond_block
, 1)->probability
= REG_BR_PROB_BASE
;
472 EDGE_SUCC (cond_block
, 1)->count
+= EDGE_SUCC (cond_block
, 0)->count
;
474 block_to_remove
= EDGE_SUCC (cond_block
, 0)->dest
;
476 delete_basic_block (block_to_remove
);
478 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
479 gsi
= gsi_last_bb (cond_block
);
480 gsi_remove (&gsi
, true);
482 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
484 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
489 /* The function conditional_replacement does the main work of doing the
490 conditional replacement. Return true if the replacement is done.
491 Otherwise return false.
492 BB is the basic block where the replacement is going to be done on. ARG0
493 is argument 0 from PHI. Likewise for ARG1. */
496 conditional_replacement (basic_block cond_bb
, basic_block middle_bb
,
497 edge e0
, edge e1
, gimple phi
,
498 tree arg0
, tree arg1
)
501 gimple stmt
, new_stmt
;
503 gimple_stmt_iterator gsi
;
504 edge true_edge
, false_edge
;
505 tree new_var
, new_var2
;
507 /* FIXME: Gimplification of complex type is too hard for now. */
508 if (TREE_CODE (TREE_TYPE (arg0
)) == COMPLEX_TYPE
509 || TREE_CODE (TREE_TYPE (arg1
)) == COMPLEX_TYPE
)
512 /* The PHI arguments have the constants 0 and 1, then convert
513 it to the conditional. */
514 if ((integer_zerop (arg0
) && integer_onep (arg1
))
515 || (integer_zerop (arg1
) && integer_onep (arg0
)))
520 if (!empty_block_p (middle_bb
))
523 /* At this point we know we have a GIMPLE_COND with two successors.
524 One successor is BB, the other successor is an empty block which
525 falls through into BB.
527 There is a single PHI node at the join point (BB) and its arguments
528 are constants (0, 1).
530 So, given the condition COND, and the two PHI arguments, we can
531 rewrite this PHI into non-branching code:
533 dest = (COND) or dest = COND'
535 We use the condition as-is if the argument associated with the
536 true edge has the value one or the argument associated with the
537 false edge as the value zero. Note that those conditions are not
538 the same since only one of the outgoing edges from the GIMPLE_COND
539 will directly reach BB and thus be associated with an argument. */
541 stmt
= last_stmt (cond_bb
);
542 result
= PHI_RESULT (phi
);
544 /* To handle special cases like floating point comparison, it is easier and
545 less error-prone to build a tree and gimplify it on the fly though it is
547 cond
= fold_build2 (gimple_cond_code (stmt
), boolean_type_node
,
548 gimple_cond_lhs (stmt
), gimple_cond_rhs (stmt
));
550 /* We need to know which is the true edge and which is the false
551 edge so that we know when to invert the condition below. */
552 extract_true_false_edges_from_block (cond_bb
, &true_edge
, &false_edge
);
553 if ((e0
== true_edge
&& integer_zerop (arg0
))
554 || (e0
== false_edge
&& integer_onep (arg0
))
555 || (e1
== true_edge
&& integer_zerop (arg1
))
556 || (e1
== false_edge
&& integer_onep (arg1
)))
557 cond
= fold_build1 (TRUTH_NOT_EXPR
, TREE_TYPE (cond
), cond
);
559 /* Insert our new statements at the end of conditional block before the
561 gsi
= gsi_for_stmt (stmt
);
562 new_var
= force_gimple_operand_gsi (&gsi
, cond
, true, NULL
, true,
565 if (!useless_type_conversion_p (TREE_TYPE (result
), TREE_TYPE (new_var
)))
567 source_location locus_0
, locus_1
;
569 new_var2
= create_tmp_var (TREE_TYPE (result
), NULL
);
570 add_referenced_var (new_var2
);
571 new_stmt
= gimple_build_assign_with_ops (CONVERT_EXPR
, new_var2
,
573 new_var2
= make_ssa_name (new_var2
, new_stmt
);
574 gimple_assign_set_lhs (new_stmt
, new_var2
);
575 gsi_insert_before (&gsi
, new_stmt
, GSI_SAME_STMT
);
578 /* Set the locus to the first argument, unless is doesn't have one. */
579 locus_0
= gimple_phi_arg_location (phi
, 0);
580 locus_1
= gimple_phi_arg_location (phi
, 1);
581 if (locus_0
== UNKNOWN_LOCATION
)
583 gimple_set_location (new_stmt
, locus_0
);
586 replace_phi_edge_with_variable (cond_bb
, e1
, phi
, new_var
);
588 /* Note that we optimized this PHI. */
592 /* The function value_replacement does the main work of doing the value
593 replacement. Return true if the replacement is done. Otherwise return
595 BB is the basic block where the replacement is going to be done on. ARG0
596 is argument 0 from the PHI. Likewise for ARG1. */
599 value_replacement (basic_block cond_bb
, basic_block middle_bb
,
600 edge e0
, edge e1
, gimple phi
,
601 tree arg0
, tree arg1
)
604 edge true_edge
, false_edge
;
607 /* If the type says honor signed zeros we cannot do this
609 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1
))))
612 if (!empty_block_p (middle_bb
))
615 cond
= last_stmt (cond_bb
);
616 code
= gimple_cond_code (cond
);
618 /* This transformation is only valid for equality comparisons. */
619 if (code
!= NE_EXPR
&& code
!= EQ_EXPR
)
622 /* We need to know which is the true edge and which is the false
623 edge so that we know if have abs or negative abs. */
624 extract_true_false_edges_from_block (cond_bb
, &true_edge
, &false_edge
);
626 /* At this point we know we have a COND_EXPR with two successors.
627 One successor is BB, the other successor is an empty block which
628 falls through into BB.
630 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
632 There is a single PHI node at the join point (BB) with two arguments.
634 We now need to verify that the two arguments in the PHI node match
635 the two arguments to the equality comparison. */
637 if ((operand_equal_for_phi_arg_p (arg0
, gimple_cond_lhs (cond
))
638 && operand_equal_for_phi_arg_p (arg1
, gimple_cond_rhs (cond
)))
639 || (operand_equal_for_phi_arg_p (arg1
, gimple_cond_lhs (cond
))
640 && operand_equal_for_phi_arg_p (arg0
, gimple_cond_rhs (cond
))))
645 /* For NE_EXPR, we want to build an assignment result = arg where
646 arg is the PHI argument associated with the true edge. For
647 EQ_EXPR we want the PHI argument associated with the false edge. */
648 e
= (code
== NE_EXPR
? true_edge
: false_edge
);
650 /* Unfortunately, E may not reach BB (it may instead have gone to
651 OTHER_BLOCK). If that is the case, then we want the single outgoing
652 edge from OTHER_BLOCK which reaches BB and represents the desired
653 path from COND_BLOCK. */
654 if (e
->dest
== middle_bb
)
655 e
= single_succ_edge (e
->dest
);
657 /* Now we know the incoming edge to BB that has the argument for the
658 RHS of our new assignment statement. */
664 replace_phi_edge_with_variable (cond_bb
, e1
, phi
, arg
);
666 /* Note that we optimized this PHI. */
672 /* The function minmax_replacement does the main work of doing the minmax
673 replacement. Return true if the replacement is done. Otherwise return
675 BB is the basic block where the replacement is going to be done on. ARG0
676 is argument 0 from the PHI. Likewise for ARG1. */
679 minmax_replacement (basic_block cond_bb
, basic_block middle_bb
,
680 edge e0
, edge e1
, gimple phi
,
681 tree arg0
, tree arg1
)
684 gimple cond
, new_stmt
;
685 edge true_edge
, false_edge
;
686 enum tree_code cmp
, minmax
, ass_code
;
687 tree smaller
, larger
, arg_true
, arg_false
;
688 gimple_stmt_iterator gsi
, gsi_from
;
690 type
= TREE_TYPE (PHI_RESULT (phi
));
692 /* The optimization may be unsafe due to NaNs. */
693 if (HONOR_NANS (TYPE_MODE (type
)))
696 cond
= last_stmt (cond_bb
);
697 cmp
= gimple_cond_code (cond
);
698 result
= PHI_RESULT (phi
);
700 /* This transformation is only valid for order comparisons. Record which
701 operand is smaller/larger if the result of the comparison is true. */
702 if (cmp
== LT_EXPR
|| cmp
== LE_EXPR
)
704 smaller
= gimple_cond_lhs (cond
);
705 larger
= gimple_cond_rhs (cond
);
707 else if (cmp
== GT_EXPR
|| cmp
== GE_EXPR
)
709 smaller
= gimple_cond_rhs (cond
);
710 larger
= gimple_cond_lhs (cond
);
715 /* We need to know which is the true edge and which is the false
716 edge so that we know if have abs or negative abs. */
717 extract_true_false_edges_from_block (cond_bb
, &true_edge
, &false_edge
);
719 /* Forward the edges over the middle basic block. */
720 if (true_edge
->dest
== middle_bb
)
721 true_edge
= EDGE_SUCC (true_edge
->dest
, 0);
722 if (false_edge
->dest
== middle_bb
)
723 false_edge
= EDGE_SUCC (false_edge
->dest
, 0);
727 gcc_assert (false_edge
== e1
);
733 gcc_assert (false_edge
== e0
);
734 gcc_assert (true_edge
== e1
);
739 if (empty_block_p (middle_bb
))
741 if (operand_equal_for_phi_arg_p (arg_true
, smaller
)
742 && operand_equal_for_phi_arg_p (arg_false
, larger
))
746 if (smaller < larger)
752 else if (operand_equal_for_phi_arg_p (arg_false
, smaller
)
753 && operand_equal_for_phi_arg_p (arg_true
, larger
))
760 /* Recognize the following case, assuming d <= u:
766 This is equivalent to
771 gimple assign
= last_and_only_stmt (middle_bb
);
772 tree lhs
, op0
, op1
, bound
;
775 || gimple_code (assign
) != GIMPLE_ASSIGN
)
778 lhs
= gimple_assign_lhs (assign
);
779 ass_code
= gimple_assign_rhs_code (assign
);
780 if (ass_code
!= MAX_EXPR
&& ass_code
!= MIN_EXPR
)
782 op0
= gimple_assign_rhs1 (assign
);
783 op1
= gimple_assign_rhs2 (assign
);
785 if (true_edge
->src
== middle_bb
)
787 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
788 if (!operand_equal_for_phi_arg_p (lhs
, arg_true
))
791 if (operand_equal_for_phi_arg_p (arg_false
, larger
))
795 if (smaller < larger)
797 r' = MAX_EXPR (smaller, bound)
799 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
800 if (ass_code
!= MAX_EXPR
)
804 if (operand_equal_for_phi_arg_p (op0
, smaller
))
806 else if (operand_equal_for_phi_arg_p (op1
, smaller
))
811 /* We need BOUND <= LARGER. */
812 if (!integer_nonzerop (fold_build2 (LE_EXPR
, boolean_type_node
,
816 else if (operand_equal_for_phi_arg_p (arg_false
, smaller
))
820 if (smaller < larger)
822 r' = MIN_EXPR (larger, bound)
824 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
825 if (ass_code
!= MIN_EXPR
)
829 if (operand_equal_for_phi_arg_p (op0
, larger
))
831 else if (operand_equal_for_phi_arg_p (op1
, larger
))
836 /* We need BOUND >= SMALLER. */
837 if (!integer_nonzerop (fold_build2 (GE_EXPR
, boolean_type_node
,
846 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
847 if (!operand_equal_for_phi_arg_p (lhs
, arg_false
))
850 if (operand_equal_for_phi_arg_p (arg_true
, larger
))
854 if (smaller > larger)
856 r' = MIN_EXPR (smaller, bound)
858 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
859 if (ass_code
!= MIN_EXPR
)
863 if (operand_equal_for_phi_arg_p (op0
, smaller
))
865 else if (operand_equal_for_phi_arg_p (op1
, smaller
))
870 /* We need BOUND >= LARGER. */
871 if (!integer_nonzerop (fold_build2 (GE_EXPR
, boolean_type_node
,
875 else if (operand_equal_for_phi_arg_p (arg_true
, smaller
))
879 if (smaller > larger)
881 r' = MAX_EXPR (larger, bound)
883 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
884 if (ass_code
!= MAX_EXPR
)
888 if (operand_equal_for_phi_arg_p (op0
, larger
))
890 else if (operand_equal_for_phi_arg_p (op1
, larger
))
895 /* We need BOUND <= SMALLER. */
896 if (!integer_nonzerop (fold_build2 (LE_EXPR
, boolean_type_node
,
904 /* Move the statement from the middle block. */
905 gsi
= gsi_last_bb (cond_bb
);
906 gsi_from
= gsi_last_nondebug_bb (middle_bb
);
907 gsi_move_before (&gsi_from
, &gsi
);
910 /* Emit the statement to compute min/max. */
911 result
= duplicate_ssa_name (PHI_RESULT (phi
), NULL
);
912 new_stmt
= gimple_build_assign_with_ops (minmax
, result
, arg0
, arg1
);
913 gsi
= gsi_last_bb (cond_bb
);
914 gsi_insert_before (&gsi
, new_stmt
, GSI_NEW_STMT
);
916 replace_phi_edge_with_variable (cond_bb
, e1
, phi
, result
);
920 /* The function absolute_replacement does the main work of doing the absolute
921 replacement. Return true if the replacement is done. Otherwise return
923 bb is the basic block where the replacement is going to be done on. arg0
924 is argument 0 from the phi. Likewise for arg1. */
927 abs_replacement (basic_block cond_bb
, basic_block middle_bb
,
928 edge e0 ATTRIBUTE_UNUSED
, edge e1
,
929 gimple phi
, tree arg0
, tree arg1
)
932 gimple new_stmt
, cond
;
933 gimple_stmt_iterator gsi
;
934 edge true_edge
, false_edge
;
939 enum tree_code cond_code
;
941 /* If the type says honor signed zeros we cannot do this
943 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1
))))
946 /* OTHER_BLOCK must have only one executable statement which must have the
947 form arg0 = -arg1 or arg1 = -arg0. */
949 assign
= last_and_only_stmt (middle_bb
);
950 /* If we did not find the proper negation assignment, then we can not
955 /* If we got here, then we have found the only executable statement
956 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
957 arg1 = -arg0, then we can not optimize. */
958 if (gimple_code (assign
) != GIMPLE_ASSIGN
)
961 lhs
= gimple_assign_lhs (assign
);
963 if (gimple_assign_rhs_code (assign
) != NEGATE_EXPR
)
966 rhs
= gimple_assign_rhs1 (assign
);
968 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
969 if (!(lhs
== arg0
&& rhs
== arg1
)
970 && !(lhs
== arg1
&& rhs
== arg0
))
973 cond
= last_stmt (cond_bb
);
974 result
= PHI_RESULT (phi
);
976 /* Only relationals comparing arg[01] against zero are interesting. */
977 cond_code
= gimple_cond_code (cond
);
978 if (cond_code
!= GT_EXPR
&& cond_code
!= GE_EXPR
979 && cond_code
!= LT_EXPR
&& cond_code
!= LE_EXPR
)
982 /* Make sure the conditional is arg[01] OP y. */
983 if (gimple_cond_lhs (cond
) != rhs
)
986 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond
)))
987 ? real_zerop (gimple_cond_rhs (cond
))
988 : integer_zerop (gimple_cond_rhs (cond
)))
993 /* We need to know which is the true edge and which is the false
994 edge so that we know if have abs or negative abs. */
995 extract_true_false_edges_from_block (cond_bb
, &true_edge
, &false_edge
);
997 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
998 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
999 the false edge goes to OTHER_BLOCK. */
1000 if (cond_code
== GT_EXPR
|| cond_code
== GE_EXPR
)
1005 if (e
->dest
== middle_bb
)
1010 result
= duplicate_ssa_name (result
, NULL
);
1014 tree tmp
= create_tmp_var (TREE_TYPE (result
), NULL
);
1015 add_referenced_var (tmp
);
1016 lhs
= make_ssa_name (tmp
, NULL
);
1021 /* Build the modify expression with abs expression. */
1022 new_stmt
= gimple_build_assign_with_ops (ABS_EXPR
, lhs
, rhs
, NULL
);
1024 gsi
= gsi_last_bb (cond_bb
);
1025 gsi_insert_before (&gsi
, new_stmt
, GSI_NEW_STMT
);
1029 /* Get the right GSI. We want to insert after the recently
1030 added ABS_EXPR statement (which we know is the first statement
1032 new_stmt
= gimple_build_assign_with_ops (NEGATE_EXPR
, result
, lhs
, NULL
);
1034 gsi_insert_after (&gsi
, new_stmt
, GSI_NEW_STMT
);
1037 replace_phi_edge_with_variable (cond_bb
, e1
, phi
, result
);
1039 /* Note that we optimized this PHI. */
1043 /* Auxiliary functions to determine the set of memory accesses which
1044 can't trap because they are preceded by accesses to the same memory
1045 portion. We do that for MEM_REFs, so we only need to track
1046 the SSA_NAME of the pointer indirectly referenced. The algorithm
1047 simply is a walk over all instructions in dominator order. When
1048 we see an MEM_REF we determine if we've already seen a same
1049 ref anywhere up to the root of the dominator tree. If we do the
1050 current access can't trap. If we don't see any dominating access
1051 the current access might trap, but might also make later accesses
1052 non-trapping, so we remember it. We need to be careful with loads
1053 or stores, for instance a load might not trap, while a store would,
1054 so if we see a dominating read access this doesn't mean that a later
1055 write access would not trap. Hence we also need to differentiate the
1056 type of access(es) seen.
1058 ??? We currently are very conservative and assume that a load might
1059 trap even if a store doesn't (write-only memory). This probably is
1060 overly conservative. */
1062 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1063 through it was seen, which would constitute a no-trap region for
1072 /* The hash table for remembering what we've seen. */
1073 static htab_t seen_ssa_names
;
1075 /* The set of MEM_REFs which can't trap. */
1076 static struct pointer_set_t
*nontrap_set
;
1078 /* The hash function, based on the pointer to the pointer SSA_NAME. */
1080 name_to_bb_hash (const void *p
)
1082 const_tree n
= ((const struct name_to_bb
*)p
)->ssa_name
;
1083 return htab_hash_pointer (n
) ^ ((const struct name_to_bb
*)p
)->store
;
1086 /* The equality function of *P1 and *P2. SSA_NAMEs are shared, so
1087 it's enough to simply compare them for equality. */
1089 name_to_bb_eq (const void *p1
, const void *p2
)
1091 const struct name_to_bb
*n1
= (const struct name_to_bb
*)p1
;
1092 const struct name_to_bb
*n2
= (const struct name_to_bb
*)p2
;
1094 return n1
->ssa_name
== n2
->ssa_name
&& n1
->store
== n2
->store
;
1097 /* We see the expression EXP in basic block BB. If it's an interesting
1098 expression (an MEM_REF through an SSA_NAME) possibly insert the
1099 expression into the set NONTRAP or the hash table of seen expressions.
1100 STORE is true if this expression is on the LHS, otherwise it's on
1103 add_or_mark_expr (basic_block bb
, tree exp
,
1104 struct pointer_set_t
*nontrap
, bool store
)
1106 if (TREE_CODE (exp
) == MEM_REF
1107 && TREE_CODE (TREE_OPERAND (exp
, 0)) == SSA_NAME
)
1109 tree name
= TREE_OPERAND (exp
, 0);
1110 struct name_to_bb map
;
1112 struct name_to_bb
*n2bb
;
1113 basic_block found_bb
= 0;
1115 /* Try to find the last seen MEM_REF through the same
1116 SSA_NAME, which can trap. */
1117 map
.ssa_name
= name
;
1120 slot
= htab_find_slot (seen_ssa_names
, &map
, INSERT
);
1121 n2bb
= (struct name_to_bb
*) *slot
;
1123 found_bb
= n2bb
->bb
;
1125 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
1126 (it's in a basic block on the path from us to the dominator root)
1127 then we can't trap. */
1128 if (found_bb
&& found_bb
->aux
== (void *)1)
1130 pointer_set_insert (nontrap
, exp
);
1134 /* EXP might trap, so insert it into the hash table. */
1141 n2bb
= XNEW (struct name_to_bb
);
1142 n2bb
->ssa_name
= name
;
1144 n2bb
->store
= store
;
1151 /* Called by walk_dominator_tree, when entering the block BB. */
1153 nt_init_block (struct dom_walk_data
*data ATTRIBUTE_UNUSED
, basic_block bb
)
1155 gimple_stmt_iterator gsi
;
1156 /* Mark this BB as being on the path to dominator root. */
1159 /* And walk the statements in order. */
1160 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1162 gimple stmt
= gsi_stmt (gsi
);
1164 if (is_gimple_assign (stmt
))
1166 add_or_mark_expr (bb
, gimple_assign_lhs (stmt
), nontrap_set
, true);
1167 add_or_mark_expr (bb
, gimple_assign_rhs1 (stmt
), nontrap_set
, false);
1168 if (get_gimple_rhs_num_ops (gimple_assign_rhs_code (stmt
)) > 1)
1169 add_or_mark_expr (bb
, gimple_assign_rhs2 (stmt
), nontrap_set
,
1175 /* Called by walk_dominator_tree, when basic block BB is exited. */
1177 nt_fini_block (struct dom_walk_data
*data ATTRIBUTE_UNUSED
, basic_block bb
)
1179 /* This BB isn't on the path to dominator root anymore. */
1183 /* This is the entry point of gathering non trapping memory accesses.
1184 It will do a dominator walk over the whole function, and it will
1185 make use of the bb->aux pointers. It returns a set of trees
1186 (the MEM_REFs itself) which can't trap. */
1187 static struct pointer_set_t
*
1188 get_non_trapping (void)
1190 struct pointer_set_t
*nontrap
;
1191 struct dom_walk_data walk_data
;
1193 nontrap
= pointer_set_create ();
1194 seen_ssa_names
= htab_create (128, name_to_bb_hash
, name_to_bb_eq
,
1196 /* We're going to do a dominator walk, so ensure that we have
1197 dominance information. */
1198 calculate_dominance_info (CDI_DOMINATORS
);
1200 /* Setup callbacks for the generic dominator tree walker. */
1201 nontrap_set
= nontrap
;
1202 walk_data
.dom_direction
= CDI_DOMINATORS
;
1203 walk_data
.initialize_block_local_data
= NULL
;
1204 walk_data
.before_dom_children
= nt_init_block
;
1205 walk_data
.after_dom_children
= nt_fini_block
;
1206 walk_data
.global_data
= NULL
;
1207 walk_data
.block_local_data_size
= 0;
1209 init_walk_dominator_tree (&walk_data
);
1210 walk_dominator_tree (&walk_data
, ENTRY_BLOCK_PTR
);
1211 fini_walk_dominator_tree (&walk_data
);
1212 htab_delete (seen_ssa_names
);
1217 /* Do the main work of conditional store replacement. We already know
1218 that the recognized pattern looks like so:
1221 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1224 fallthrough (edge E0)
1228 We check that MIDDLE_BB contains only one store, that that store
1229 doesn't trap (not via NOTRAP, but via checking if an access to the same
1230 memory location dominates us) and that the store has a "simple" RHS. */
1233 cond_store_replacement (basic_block middle_bb
, basic_block join_bb
,
1234 edge e0
, edge e1
, struct pointer_set_t
*nontrap
)
1236 gimple assign
= last_and_only_stmt (middle_bb
);
1237 tree lhs
, rhs
, name
;
1238 gimple newphi
, new_stmt
;
1239 gimple_stmt_iterator gsi
;
1240 source_location locus
;
1242 /* Check if middle_bb contains of only one store. */
1244 || !gimple_assign_single_p (assign
))
1247 locus
= gimple_location (assign
);
1248 lhs
= gimple_assign_lhs (assign
);
1249 rhs
= gimple_assign_rhs1 (assign
);
1250 if (TREE_CODE (lhs
) != MEM_REF
1251 || TREE_CODE (TREE_OPERAND (lhs
, 0)) != SSA_NAME
1252 || !is_gimple_reg_type (TREE_TYPE (lhs
)))
1255 /* Prove that we can move the store down. We could also check
1256 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1257 whose value is not available readily, which we want to avoid. */
1258 if (!pointer_set_contains (nontrap
, lhs
))
1261 /* Now we've checked the constraints, so do the transformation:
1262 1) Remove the single store. */
1263 gsi
= gsi_for_stmt (assign
);
1264 unlink_stmt_vdef (assign
);
1265 gsi_remove (&gsi
, true);
1266 release_defs (assign
);
1268 /* 2) Create a temporary where we can store the old content
1269 of the memory touched by the store, if we need to. */
1270 if (!condstoretemp
|| TREE_TYPE (lhs
) != TREE_TYPE (condstoretemp
))
1272 condstoretemp
= create_tmp_reg (TREE_TYPE (lhs
), "cstore");
1273 get_var_ann (condstoretemp
);
1275 add_referenced_var (condstoretemp
);
1277 /* 3) Insert a load from the memory of the store to the temporary
1278 on the edge which did not contain the store. */
1279 lhs
= unshare_expr (lhs
);
1280 new_stmt
= gimple_build_assign (condstoretemp
, lhs
);
1281 name
= make_ssa_name (condstoretemp
, new_stmt
);
1282 gimple_assign_set_lhs (new_stmt
, name
);
1283 gimple_set_location (new_stmt
, locus
);
1284 gsi_insert_on_edge (e1
, new_stmt
);
1286 /* 4) Create a PHI node at the join block, with one argument
1287 holding the old RHS, and the other holding the temporary
1288 where we stored the old memory contents. */
1289 newphi
= create_phi_node (condstoretemp
, join_bb
);
1290 add_phi_arg (newphi
, rhs
, e0
, locus
);
1291 add_phi_arg (newphi
, name
, e1
, locus
);
1293 lhs
= unshare_expr (lhs
);
1294 new_stmt
= gimple_build_assign (lhs
, PHI_RESULT (newphi
));
1296 /* 5) Insert that PHI node. */
1297 gsi
= gsi_after_labels (join_bb
);
1298 if (gsi_end_p (gsi
))
1300 gsi
= gsi_last_bb (join_bb
);
1301 gsi_insert_after (&gsi
, new_stmt
, GSI_NEW_STMT
);
1304 gsi_insert_before (&gsi
, new_stmt
, GSI_NEW_STMT
);
1309 /* Do the main work of conditional store replacement. */
1312 cond_if_else_store_replacement_1 (basic_block then_bb
, basic_block else_bb
,
1313 basic_block join_bb
, gimple then_assign
,
1316 tree lhs_base
, lhs
, then_rhs
, else_rhs
;
1317 source_location then_locus
, else_locus
;
1318 gimple_stmt_iterator gsi
;
1319 gimple newphi
, new_stmt
;
1321 if (then_assign
== NULL
1322 || !gimple_assign_single_p (then_assign
)
1323 || else_assign
== NULL
1324 || !gimple_assign_single_p (else_assign
))
1327 lhs
= gimple_assign_lhs (then_assign
);
1328 if (!is_gimple_reg_type (TREE_TYPE (lhs
))
1329 || !operand_equal_p (lhs
, gimple_assign_lhs (else_assign
), 0))
1332 lhs_base
= get_base_address (lhs
);
1333 if (lhs_base
== NULL_TREE
1334 || (!DECL_P (lhs_base
) && TREE_CODE (lhs_base
) != MEM_REF
))
1337 then_rhs
= gimple_assign_rhs1 (then_assign
);
1338 else_rhs
= gimple_assign_rhs1 (else_assign
);
1339 then_locus
= gimple_location (then_assign
);
1340 else_locus
= gimple_location (else_assign
);
1342 /* Now we've checked the constraints, so do the transformation:
1343 1) Remove the stores. */
1344 gsi
= gsi_for_stmt (then_assign
);
1345 unlink_stmt_vdef (then_assign
);
1346 gsi_remove (&gsi
, true);
1347 release_defs (then_assign
);
1349 gsi
= gsi_for_stmt (else_assign
);
1350 unlink_stmt_vdef (else_assign
);
1351 gsi_remove (&gsi
, true);
1352 release_defs (else_assign
);
1354 /* 2) Create a temporary where we can store the old content
1355 of the memory touched by the store, if we need to. */
1356 if (!condstoretemp
|| TREE_TYPE (lhs
) != TREE_TYPE (condstoretemp
))
1358 condstoretemp
= create_tmp_reg (TREE_TYPE (lhs
), "cstore");
1359 get_var_ann (condstoretemp
);
1361 add_referenced_var (condstoretemp
);
1363 /* 3) Create a PHI node at the join block, with one argument
1364 holding the old RHS, and the other holding the temporary
1365 where we stored the old memory contents. */
1366 newphi
= create_phi_node (condstoretemp
, join_bb
);
1367 add_phi_arg (newphi
, then_rhs
, EDGE_SUCC (then_bb
, 0), then_locus
);
1368 add_phi_arg (newphi
, else_rhs
, EDGE_SUCC (else_bb
, 0), else_locus
);
1370 new_stmt
= gimple_build_assign (lhs
, PHI_RESULT (newphi
));
1372 /* 4) Insert that PHI node. */
1373 gsi
= gsi_after_labels (join_bb
);
1374 if (gsi_end_p (gsi
))
1376 gsi
= gsi_last_bb (join_bb
);
1377 gsi_insert_after (&gsi
, new_stmt
, GSI_NEW_STMT
);
1380 gsi_insert_before (&gsi
, new_stmt
, GSI_NEW_STMT
);
1385 /* Conditional store replacement. We already know
1386 that the recognized pattern looks like so:
1389 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
1399 fallthrough (edge E0)
1403 We check that it is safe to sink the store to JOIN_BB by verifying that
1404 there are no read-after-write or write-after-write dependencies in
1405 THEN_BB and ELSE_BB. */
1408 cond_if_else_store_replacement (basic_block then_bb
, basic_block else_bb
,
1409 basic_block join_bb
)
1411 gimple then_assign
= last_and_only_stmt (then_bb
);
1412 gimple else_assign
= last_and_only_stmt (else_bb
);
1413 VEC (data_reference_p
, heap
) *then_datarefs
, *else_datarefs
;
1414 VEC (ddr_p
, heap
) *then_ddrs
, *else_ddrs
;
1415 gimple then_store
, else_store
;
1416 bool found
, ok
= false, res
;
1417 struct data_dependence_relation
*ddr
;
1418 data_reference_p then_dr
, else_dr
;
1420 tree then_lhs
, else_lhs
;
1421 VEC (gimple
, heap
) *then_stores
, *else_stores
;
1422 basic_block blocks
[3];
1424 if (MAX_STORES_TO_SINK
== 0)
1427 /* Handle the case with single statement in THEN_BB and ELSE_BB. */
1428 if (then_assign
&& else_assign
)
1429 return cond_if_else_store_replacement_1 (then_bb
, else_bb
, join_bb
,
1430 then_assign
, else_assign
);
1432 /* Find data references. */
1433 then_datarefs
= VEC_alloc (data_reference_p
, heap
, 1);
1434 else_datarefs
= VEC_alloc (data_reference_p
, heap
, 1);
1435 if ((find_data_references_in_bb (NULL
, then_bb
, &then_datarefs
)
1437 || !VEC_length (data_reference_p
, then_datarefs
)
1438 || (find_data_references_in_bb (NULL
, else_bb
, &else_datarefs
)
1440 || !VEC_length (data_reference_p
, else_datarefs
))
1442 free_data_refs (then_datarefs
);
1443 free_data_refs (else_datarefs
);
1447 /* Find pairs of stores with equal LHS. */
1448 then_stores
= VEC_alloc (gimple
, heap
, 1);
1449 else_stores
= VEC_alloc (gimple
, heap
, 1);
1450 FOR_EACH_VEC_ELT (data_reference_p
, then_datarefs
, i
, then_dr
)
1452 if (DR_IS_READ (then_dr
))
1455 then_store
= DR_STMT (then_dr
);
1456 then_lhs
= gimple_assign_lhs (then_store
);
1459 FOR_EACH_VEC_ELT (data_reference_p
, else_datarefs
, j
, else_dr
)
1461 if (DR_IS_READ (else_dr
))
1464 else_store
= DR_STMT (else_dr
);
1465 else_lhs
= gimple_assign_lhs (else_store
);
1467 if (operand_equal_p (then_lhs
, else_lhs
, 0))
1477 VEC_safe_push (gimple
, heap
, then_stores
, then_store
);
1478 VEC_safe_push (gimple
, heap
, else_stores
, else_store
);
1481 /* No pairs of stores found. */
1482 if (!VEC_length (gimple
, then_stores
)
1483 || VEC_length (gimple
, then_stores
) > (unsigned) MAX_STORES_TO_SINK
)
1485 free_data_refs (then_datarefs
);
1486 free_data_refs (else_datarefs
);
1487 VEC_free (gimple
, heap
, then_stores
);
1488 VEC_free (gimple
, heap
, else_stores
);
1492 /* Compute and check data dependencies in both basic blocks. */
1493 then_ddrs
= VEC_alloc (ddr_p
, heap
, 1);
1494 else_ddrs
= VEC_alloc (ddr_p
, heap
, 1);
1495 compute_all_dependences (then_datarefs
, &then_ddrs
, NULL
, false);
1496 compute_all_dependences (else_datarefs
, &else_ddrs
, NULL
, false);
1497 blocks
[0] = then_bb
;
1498 blocks
[1] = else_bb
;
1499 blocks
[2] = join_bb
;
1500 renumber_gimple_stmt_uids_in_blocks (blocks
, 3);
1502 /* Check that there are no read-after-write or write-after-write dependencies
1504 FOR_EACH_VEC_ELT (ddr_p
, then_ddrs
, i
, ddr
)
1506 struct data_reference
*dra
= DDR_A (ddr
);
1507 struct data_reference
*drb
= DDR_B (ddr
);
1509 if (DDR_ARE_DEPENDENT (ddr
) != chrec_known
1510 && ((DR_IS_READ (dra
) && DR_IS_WRITE (drb
)
1511 && gimple_uid (DR_STMT (dra
)) > gimple_uid (DR_STMT (drb
)))
1512 || (DR_IS_READ (drb
) && DR_IS_WRITE (dra
)
1513 && gimple_uid (DR_STMT (drb
)) > gimple_uid (DR_STMT (dra
)))
1514 || (DR_IS_WRITE (dra
) && DR_IS_WRITE (drb
))))
1516 free_dependence_relations (then_ddrs
);
1517 free_dependence_relations (else_ddrs
);
1518 free_data_refs (then_datarefs
);
1519 free_data_refs (else_datarefs
);
1520 VEC_free (gimple
, heap
, then_stores
);
1521 VEC_free (gimple
, heap
, else_stores
);
1526 /* Check that there are no read-after-write or write-after-write dependencies
1528 FOR_EACH_VEC_ELT (ddr_p
, else_ddrs
, i
, ddr
)
1530 struct data_reference
*dra
= DDR_A (ddr
);
1531 struct data_reference
*drb
= DDR_B (ddr
);
1533 if (DDR_ARE_DEPENDENT (ddr
) != chrec_known
1534 && ((DR_IS_READ (dra
) && DR_IS_WRITE (drb
)
1535 && gimple_uid (DR_STMT (dra
)) > gimple_uid (DR_STMT (drb
)))
1536 || (DR_IS_READ (drb
) && DR_IS_WRITE (dra
)
1537 && gimple_uid (DR_STMT (drb
)) > gimple_uid (DR_STMT (dra
)))
1538 || (DR_IS_WRITE (dra
) && DR_IS_WRITE (drb
))))
1540 free_dependence_relations (then_ddrs
);
1541 free_dependence_relations (else_ddrs
);
1542 free_data_refs (then_datarefs
);
1543 free_data_refs (else_datarefs
);
1544 VEC_free (gimple
, heap
, then_stores
);
1545 VEC_free (gimple
, heap
, else_stores
);
1550 /* Sink stores with same LHS. */
1551 FOR_EACH_VEC_ELT (gimple
, then_stores
, i
, then_store
)
1553 else_store
= VEC_index (gimple
, else_stores
, i
);
1554 res
= cond_if_else_store_replacement_1 (then_bb
, else_bb
, join_bb
,
1555 then_store
, else_store
);
1559 free_dependence_relations (then_ddrs
);
1560 free_dependence_relations (else_ddrs
);
1561 free_data_refs (then_datarefs
);
1562 free_data_refs (else_datarefs
);
1563 VEC_free (gimple
, heap
, then_stores
);
1564 VEC_free (gimple
, heap
, else_stores
);
1569 /* Always do these optimizations if we have SSA
1570 trees to work on. */
1577 struct gimple_opt_pass pass_phiopt
=
1581 "phiopt", /* name */
1582 gate_phiopt
, /* gate */
1583 tree_ssa_phiopt
, /* execute */
1586 0, /* static_pass_number */
1587 TV_TREE_PHIOPT
, /* tv_id */
1588 PROP_cfg
| PROP_ssa
, /* properties_required */
1589 0, /* properties_provided */
1590 0, /* properties_destroyed */
1591 0, /* todo_flags_start */
1596 | TODO_verify_stmts
/* todo_flags_finish */
1603 return flag_tree_cselim
;
1606 struct gimple_opt_pass pass_cselim
=
1610 "cselim", /* name */
1611 gate_cselim
, /* gate */
1612 tree_ssa_cs_elim
, /* execute */
1615 0, /* static_pass_number */
1616 TV_TREE_PHIOPT
, /* tv_id */
1617 PROP_cfg
| PROP_ssa
, /* properties_required */
1618 0, /* properties_provided */
1619 0, /* properties_destroyed */
1620 0, /* todo_flags_start */
1625 | TODO_verify_stmts
/* todo_flags_finish */