Daily bump.
[official-gcc.git] / gcc / caller-save.c
blobf32d05ffde48c82f0ea31a6e889174e746d3a124
1 /* Save and restore call-clobbered registers which are live across a call.
2 Copyright (C) 1989, 1992, 1994, 1995, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "regs.h"
28 #include "insn-config.h"
29 #include "flags.h"
30 #include "hard-reg-set.h"
31 #include "recog.h"
32 #include "basic-block.h"
33 #include "df.h"
34 #include "reload.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "diagnostic-core.h"
38 #include "tm_p.h"
39 #include "addresses.h"
40 #include "output.h"
41 #include "ggc.h"
43 #define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
45 #define regno_save_mode \
46 (this_target_reload->x_regno_save_mode)
47 #define cached_reg_save_code \
48 (this_target_reload->x_cached_reg_save_code)
49 #define cached_reg_restore_code \
50 (this_target_reload->x_cached_reg_restore_code)
52 /* For each hard register, a place on the stack where it can be saved,
53 if needed. */
55 static rtx
56 regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
58 /* The number of elements in the subsequent array. */
59 static int save_slots_num;
61 /* Allocated slots so far. */
62 static rtx save_slots[FIRST_PSEUDO_REGISTER];
64 /* Set of hard regs currently residing in save area (during insn scan). */
66 static HARD_REG_SET hard_regs_saved;
68 /* Number of registers currently in hard_regs_saved. */
70 static int n_regs_saved;
72 /* Computed by mark_referenced_regs, all regs referenced in a given
73 insn. */
74 static HARD_REG_SET referenced_regs;
77 typedef void refmarker_fn (rtx *loc, enum machine_mode mode, int hardregno,
78 void *mark_arg);
80 static int reg_save_code (int, enum machine_mode);
81 static int reg_restore_code (int, enum machine_mode);
83 struct saved_hard_reg;
84 static void initiate_saved_hard_regs (void);
85 static struct saved_hard_reg *new_saved_hard_reg (int, int);
86 static void finish_saved_hard_regs (void);
87 static int saved_hard_reg_compare_func (const void *, const void *);
89 static void mark_set_regs (rtx, const_rtx, void *);
90 static void mark_referenced_regs (rtx *, refmarker_fn *mark, void *mark_arg);
91 static refmarker_fn mark_reg_as_referenced;
92 static refmarker_fn replace_reg_with_saved_mem;
93 static int insert_save (struct insn_chain *, int, int, HARD_REG_SET *,
94 enum machine_mode *);
95 static int insert_restore (struct insn_chain *, int, int, int,
96 enum machine_mode *);
97 static struct insn_chain *insert_one_insn (struct insn_chain *, int, int,
98 rtx);
99 static void add_stored_regs (rtx, const_rtx, void *);
103 static GTY(()) rtx savepat;
104 static GTY(()) rtx restpat;
105 static GTY(()) rtx test_reg;
106 static GTY(()) rtx test_mem;
107 static GTY(()) rtx saveinsn;
108 static GTY(()) rtx restinsn;
110 /* Return the INSN_CODE used to save register REG in mode MODE. */
111 static int
112 reg_save_code (int reg, enum machine_mode mode)
114 bool ok;
115 if (cached_reg_save_code[reg][mode])
116 return cached_reg_save_code[reg][mode];
117 if (!HARD_REGNO_MODE_OK (reg, mode))
119 /* Depending on how HARD_REGNO_MODE_OK is defined, range propagation
120 might deduce here that reg >= FIRST_PSEUDO_REGISTER. So the assert
121 below silences a warning. */
122 gcc_assert (reg < FIRST_PSEUDO_REGISTER);
123 cached_reg_save_code[reg][mode] = -1;
124 cached_reg_restore_code[reg][mode] = -1;
125 return -1;
128 /* Update the register number and modes of the register
129 and memory operand. */
130 SET_REGNO_RAW (test_reg, reg);
131 PUT_MODE (test_reg, mode);
132 PUT_MODE (test_mem, mode);
134 /* Force re-recognition of the modified insns. */
135 INSN_CODE (saveinsn) = -1;
136 INSN_CODE (restinsn) = -1;
138 cached_reg_save_code[reg][mode] = recog_memoized (saveinsn);
139 cached_reg_restore_code[reg][mode] = recog_memoized (restinsn);
141 /* Now extract both insns and see if we can meet their
142 constraints. */
143 ok = (cached_reg_save_code[reg][mode] != -1
144 && cached_reg_restore_code[reg][mode] != -1);
145 if (ok)
147 extract_insn (saveinsn);
148 ok = constrain_operands (1);
149 extract_insn (restinsn);
150 ok &= constrain_operands (1);
153 if (! ok)
155 cached_reg_save_code[reg][mode] = -1;
156 cached_reg_restore_code[reg][mode] = -1;
158 gcc_assert (cached_reg_save_code[reg][mode]);
159 return cached_reg_save_code[reg][mode];
162 /* Return the INSN_CODE used to restore register REG in mode MODE. */
163 static int
164 reg_restore_code (int reg, enum machine_mode mode)
166 if (cached_reg_restore_code[reg][mode])
167 return cached_reg_restore_code[reg][mode];
168 /* Populate our cache. */
169 reg_save_code (reg, mode);
170 return cached_reg_restore_code[reg][mode];
173 /* Initialize for caller-save.
175 Look at all the hard registers that are used by a call and for which
176 reginfo.c has not already excluded from being used across a call.
178 Ensure that we can find a mode to save the register and that there is a
179 simple insn to save and restore the register. This latter check avoids
180 problems that would occur if we tried to save the MQ register of some
181 machines directly into memory. */
183 void
184 init_caller_save (void)
186 rtx addr_reg;
187 int offset;
188 rtx address;
189 int i, j;
191 if (caller_save_initialized_p)
192 return;
194 caller_save_initialized_p = true;
196 CLEAR_HARD_REG_SET (no_caller_save_reg_set);
197 /* First find all the registers that we need to deal with and all
198 the modes that they can have. If we can't find a mode to use,
199 we can't have the register live over calls. */
201 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
203 if (call_used_regs[i]
204 && !TEST_HARD_REG_BIT (call_fixed_reg_set, i))
206 for (j = 1; j <= MOVE_MAX_WORDS; j++)
208 regno_save_mode[i][j] = HARD_REGNO_CALLER_SAVE_MODE (i, j,
209 VOIDmode);
210 if (regno_save_mode[i][j] == VOIDmode && j == 1)
212 SET_HARD_REG_BIT (call_fixed_reg_set, i);
216 else
217 regno_save_mode[i][1] = VOIDmode;
220 /* The following code tries to approximate the conditions under which
221 we can easily save and restore a register without scratch registers or
222 other complexities. It will usually work, except under conditions where
223 the validity of an insn operand is dependent on the address offset.
224 No such cases are currently known.
226 We first find a typical offset from some BASE_REG_CLASS register.
227 This address is chosen by finding the first register in the class
228 and by finding the smallest power of two that is a valid offset from
229 that register in every mode we will use to save registers. */
231 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
232 if (TEST_HARD_REG_BIT
233 (reg_class_contents
234 [(int) base_reg_class (regno_save_mode[i][1], PLUS, CONST_INT)], i))
235 break;
237 gcc_assert (i < FIRST_PSEUDO_REGISTER);
239 addr_reg = gen_rtx_REG (Pmode, i);
241 for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
243 address = gen_rtx_PLUS (Pmode, addr_reg, GEN_INT (offset));
245 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
246 if (regno_save_mode[i][1] != VOIDmode
247 && ! strict_memory_address_p (regno_save_mode[i][1], address))
248 break;
250 if (i == FIRST_PSEUDO_REGISTER)
251 break;
254 /* If we didn't find a valid address, we must use register indirect. */
255 if (offset == 0)
256 address = addr_reg;
258 /* Next we try to form an insn to save and restore the register. We
259 see if such an insn is recognized and meets its constraints.
261 To avoid lots of unnecessary RTL allocation, we construct all the RTL
262 once, then modify the memory and register operands in-place. */
264 test_reg = gen_rtx_REG (VOIDmode, 0);
265 test_mem = gen_rtx_MEM (VOIDmode, address);
266 savepat = gen_rtx_SET (VOIDmode, test_mem, test_reg);
267 restpat = gen_rtx_SET (VOIDmode, test_reg, test_mem);
269 saveinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, savepat, 0, -1, 0);
270 restinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, restpat, 0, -1, 0);
272 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
273 for (j = 1; j <= MOVE_MAX_WORDS; j++)
274 if (reg_save_code (i,regno_save_mode[i][j]) == -1)
276 regno_save_mode[i][j] = VOIDmode;
277 if (j == 1)
279 SET_HARD_REG_BIT (call_fixed_reg_set, i);
280 if (call_used_regs[i])
281 SET_HARD_REG_BIT (no_caller_save_reg_set, i);
288 /* Initialize save areas by showing that we haven't allocated any yet. */
290 void
291 init_save_areas (void)
293 int i, j;
295 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
296 for (j = 1; j <= MOVE_MAX_WORDS; j++)
297 regno_save_mem[i][j] = 0;
298 save_slots_num = 0;
302 /* The structure represents a hard register which should be saved
303 through the call. It is used when the integrated register
304 allocator (IRA) is used and sharing save slots is on. */
305 struct saved_hard_reg
307 /* Order number starting with 0. */
308 int num;
309 /* The hard regno. */
310 int hard_regno;
311 /* Execution frequency of all calls through which given hard
312 register should be saved. */
313 int call_freq;
314 /* Stack slot reserved to save the hard register through calls. */
315 rtx slot;
316 /* True if it is first hard register in the chain of hard registers
317 sharing the same stack slot. */
318 int first_p;
319 /* Order number of the next hard register structure with the same
320 slot in the chain. -1 represents end of the chain. */
321 int next;
324 /* Map: hard register number to the corresponding structure. */
325 static struct saved_hard_reg *hard_reg_map[FIRST_PSEUDO_REGISTER];
327 /* The number of all structures representing hard registers should be
328 saved, in order words, the number of used elements in the following
329 array. */
330 static int saved_regs_num;
332 /* Pointers to all the structures. Index is the order number of the
333 corresponding structure. */
334 static struct saved_hard_reg *all_saved_regs[FIRST_PSEUDO_REGISTER];
336 /* First called function for work with saved hard registers. */
337 static void
338 initiate_saved_hard_regs (void)
340 int i;
342 saved_regs_num = 0;
343 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
344 hard_reg_map[i] = NULL;
347 /* Allocate and return new saved hard register with given REGNO and
348 CALL_FREQ. */
349 static struct saved_hard_reg *
350 new_saved_hard_reg (int regno, int call_freq)
352 struct saved_hard_reg *saved_reg;
354 saved_reg
355 = (struct saved_hard_reg *) xmalloc (sizeof (struct saved_hard_reg));
356 hard_reg_map[regno] = all_saved_regs[saved_regs_num] = saved_reg;
357 saved_reg->num = saved_regs_num++;
358 saved_reg->hard_regno = regno;
359 saved_reg->call_freq = call_freq;
360 saved_reg->first_p = FALSE;
361 saved_reg->next = -1;
362 return saved_reg;
365 /* Free memory allocated for the saved hard registers. */
366 static void
367 finish_saved_hard_regs (void)
369 int i;
371 for (i = 0; i < saved_regs_num; i++)
372 free (all_saved_regs[i]);
375 /* The function is used to sort the saved hard register structures
376 according their frequency. */
377 static int
378 saved_hard_reg_compare_func (const void *v1p, const void *v2p)
380 const struct saved_hard_reg *p1 = *(struct saved_hard_reg * const *) v1p;
381 const struct saved_hard_reg *p2 = *(struct saved_hard_reg * const *) v2p;
383 if (flag_omit_frame_pointer)
385 if (p1->call_freq - p2->call_freq != 0)
386 return p1->call_freq - p2->call_freq;
388 else if (p2->call_freq - p1->call_freq != 0)
389 return p2->call_freq - p1->call_freq;
391 return p1->num - p2->num;
394 /* Allocate save areas for any hard registers that might need saving.
395 We take a conservative approach here and look for call-clobbered hard
396 registers that are assigned to pseudos that cross calls. This may
397 overestimate slightly (especially if some of these registers are later
398 used as spill registers), but it should not be significant.
400 For IRA we use priority coloring to decrease stack slots needed for
401 saving hard registers through calls. We build conflicts for them
402 to do coloring.
404 Future work:
406 In the fallback case we should iterate backwards across all possible
407 modes for the save, choosing the largest available one instead of
408 falling back to the smallest mode immediately. (eg TF -> DF -> SF).
410 We do not try to use "move multiple" instructions that exist
411 on some machines (such as the 68k moveml). It could be a win to try
412 and use them when possible. The hard part is doing it in a way that is
413 machine independent since they might be saving non-consecutive
414 registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
416 void
417 setup_save_areas (void)
419 int i, j, k, freq;
420 HARD_REG_SET hard_regs_used;
421 struct saved_hard_reg *saved_reg;
422 rtx insn;
423 struct insn_chain *chain, *next;
424 unsigned int regno;
425 HARD_REG_SET hard_regs_to_save, used_regs, this_insn_sets;
426 reg_set_iterator rsi;
428 CLEAR_HARD_REG_SET (hard_regs_used);
430 /* Find every CALL_INSN and record which hard regs are live across the
431 call into HARD_REG_MAP and HARD_REGS_USED. */
432 initiate_saved_hard_regs ();
433 /* Create hard reg saved regs. */
434 for (chain = reload_insn_chain; chain != 0; chain = next)
436 insn = chain->insn;
437 next = chain->next;
438 if (!CALL_P (insn)
439 || find_reg_note (insn, REG_NORETURN, NULL))
440 continue;
441 freq = REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn));
442 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
443 &chain->live_throughout);
444 COPY_HARD_REG_SET (used_regs, call_used_reg_set);
446 /* Record all registers set in this call insn. These don't
447 need to be saved. N.B. the call insn might set a subreg
448 of a multi-hard-reg pseudo; then the pseudo is considered
449 live during the call, but the subreg that is set
450 isn't. */
451 CLEAR_HARD_REG_SET (this_insn_sets);
452 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
453 /* Sibcalls are considered to set the return value. */
454 if (SIBLING_CALL_P (insn) && crtl->return_rtx)
455 mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
457 AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
458 AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
459 AND_HARD_REG_SET (hard_regs_to_save, used_regs);
460 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
461 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
463 if (hard_reg_map[regno] != NULL)
464 hard_reg_map[regno]->call_freq += freq;
465 else
466 saved_reg = new_saved_hard_reg (regno, freq);
467 SET_HARD_REG_BIT (hard_regs_used, regno);
469 /* Look through all live pseudos, mark their hard registers. */
470 EXECUTE_IF_SET_IN_REG_SET
471 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
473 int r = reg_renumber[regno];
474 int bound;
476 if (r < 0)
477 continue;
479 bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
480 for (; r < bound; r++)
481 if (TEST_HARD_REG_BIT (used_regs, r))
483 if (hard_reg_map[r] != NULL)
484 hard_reg_map[r]->call_freq += freq;
485 else
486 saved_reg = new_saved_hard_reg (r, freq);
487 SET_HARD_REG_BIT (hard_regs_to_save, r);
488 SET_HARD_REG_BIT (hard_regs_used, r);
493 /* If requested, figure out which hard regs can share save slots. */
494 if (optimize && flag_ira_share_save_slots)
496 rtx slot;
497 char *saved_reg_conflicts;
498 int next_k;
499 struct saved_hard_reg *saved_reg2, *saved_reg3;
500 int call_saved_regs_num;
501 struct saved_hard_reg *call_saved_regs[FIRST_PSEUDO_REGISTER];
502 int best_slot_num;
503 int prev_save_slots_num;
504 rtx prev_save_slots[FIRST_PSEUDO_REGISTER];
506 /* Find saved hard register conflicts. */
507 saved_reg_conflicts = (char *) xmalloc (saved_regs_num * saved_regs_num);
508 memset (saved_reg_conflicts, 0, saved_regs_num * saved_regs_num);
509 for (chain = reload_insn_chain; chain != 0; chain = next)
511 call_saved_regs_num = 0;
512 insn = chain->insn;
513 next = chain->next;
514 if (!CALL_P (insn)
515 || find_reg_note (insn, REG_NORETURN, NULL))
516 continue;
517 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
518 &chain->live_throughout);
519 COPY_HARD_REG_SET (used_regs, call_used_reg_set);
521 /* Record all registers set in this call insn. These don't
522 need to be saved. N.B. the call insn might set a subreg
523 of a multi-hard-reg pseudo; then the pseudo is considered
524 live during the call, but the subreg that is set
525 isn't. */
526 CLEAR_HARD_REG_SET (this_insn_sets);
527 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
528 /* Sibcalls are considered to set the return value,
529 compare df-scan.c:df_get_call_refs. */
530 if (SIBLING_CALL_P (insn) && crtl->return_rtx)
531 mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
533 AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
534 AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
535 AND_HARD_REG_SET (hard_regs_to_save, used_regs);
536 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
537 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
539 gcc_assert (hard_reg_map[regno] != NULL);
540 call_saved_regs[call_saved_regs_num++] = hard_reg_map[regno];
542 /* Look through all live pseudos, mark their hard registers. */
543 EXECUTE_IF_SET_IN_REG_SET
544 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
546 int r = reg_renumber[regno];
547 int bound;
549 if (r < 0)
550 continue;
552 bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
553 for (; r < bound; r++)
554 if (TEST_HARD_REG_BIT (used_regs, r))
555 call_saved_regs[call_saved_regs_num++] = hard_reg_map[r];
557 for (i = 0; i < call_saved_regs_num; i++)
559 saved_reg = call_saved_regs[i];
560 for (j = 0; j < call_saved_regs_num; j++)
561 if (i != j)
563 saved_reg2 = call_saved_regs[j];
564 saved_reg_conflicts[saved_reg->num * saved_regs_num
565 + saved_reg2->num]
566 = saved_reg_conflicts[saved_reg2->num * saved_regs_num
567 + saved_reg->num]
568 = TRUE;
572 /* Sort saved hard regs. */
573 qsort (all_saved_regs, saved_regs_num, sizeof (struct saved_hard_reg *),
574 saved_hard_reg_compare_func);
575 /* Initiate slots available from the previous reload
576 iteration. */
577 prev_save_slots_num = save_slots_num;
578 memcpy (prev_save_slots, save_slots, save_slots_num * sizeof (rtx));
579 save_slots_num = 0;
580 /* Allocate stack slots for the saved hard registers. */
581 for (i = 0; i < saved_regs_num; i++)
583 saved_reg = all_saved_regs[i];
584 regno = saved_reg->hard_regno;
585 for (j = 0; j < i; j++)
587 saved_reg2 = all_saved_regs[j];
588 if (! saved_reg2->first_p)
589 continue;
590 slot = saved_reg2->slot;
591 for (k = j; k >= 0; k = next_k)
593 saved_reg3 = all_saved_regs[k];
594 next_k = saved_reg3->next;
595 if (saved_reg_conflicts[saved_reg->num * saved_regs_num
596 + saved_reg3->num])
597 break;
599 if (k < 0
600 && (GET_MODE_SIZE (regno_save_mode[regno][1])
601 <= GET_MODE_SIZE (regno_save_mode
602 [saved_reg2->hard_regno][1])))
604 saved_reg->slot
605 = adjust_address_nv
606 (slot, regno_save_mode[saved_reg->hard_regno][1], 0);
607 regno_save_mem[regno][1] = saved_reg->slot;
608 saved_reg->next = saved_reg2->next;
609 saved_reg2->next = i;
610 if (dump_file != NULL)
611 fprintf (dump_file, "%d uses slot of %d\n",
612 regno, saved_reg2->hard_regno);
613 break;
616 if (j == i)
618 saved_reg->first_p = TRUE;
619 for (best_slot_num = -1, j = 0; j < prev_save_slots_num; j++)
621 slot = prev_save_slots[j];
622 if (slot == NULL_RTX)
623 continue;
624 if (GET_MODE_SIZE (regno_save_mode[regno][1])
625 <= GET_MODE_SIZE (GET_MODE (slot))
626 && best_slot_num < 0)
627 best_slot_num = j;
628 if (GET_MODE (slot) == regno_save_mode[regno][1])
629 break;
631 if (best_slot_num >= 0)
633 saved_reg->slot = prev_save_slots[best_slot_num];
634 saved_reg->slot
635 = adjust_address_nv
636 (saved_reg->slot,
637 regno_save_mode[saved_reg->hard_regno][1], 0);
638 if (dump_file != NULL)
639 fprintf (dump_file,
640 "%d uses a slot from prev iteration\n", regno);
641 prev_save_slots[best_slot_num] = NULL_RTX;
642 if (best_slot_num + 1 == prev_save_slots_num)
643 prev_save_slots_num--;
645 else
647 saved_reg->slot
648 = assign_stack_local_1
649 (regno_save_mode[regno][1],
650 GET_MODE_SIZE (regno_save_mode[regno][1]), 0,
651 ASLK_REDUCE_ALIGN);
652 if (dump_file != NULL)
653 fprintf (dump_file, "%d uses a new slot\n", regno);
655 regno_save_mem[regno][1] = saved_reg->slot;
656 save_slots[save_slots_num++] = saved_reg->slot;
659 free (saved_reg_conflicts);
660 finish_saved_hard_regs ();
662 else
664 /* We are not sharing slots.
666 Run through all the call-used hard-registers and allocate
667 space for each in the caller-save area. Try to allocate space
668 in a manner which allows multi-register saves/restores to be done. */
670 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
671 for (j = MOVE_MAX_WORDS; j > 0; j--)
673 int do_save = 1;
675 /* If no mode exists for this size, try another. Also break out
676 if we have already saved this hard register. */
677 if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
678 continue;
680 /* See if any register in this group has been saved. */
681 for (k = 0; k < j; k++)
682 if (regno_save_mem[i + k][1])
684 do_save = 0;
685 break;
687 if (! do_save)
688 continue;
690 for (k = 0; k < j; k++)
691 if (! TEST_HARD_REG_BIT (hard_regs_used, i + k))
693 do_save = 0;
694 break;
696 if (! do_save)
697 continue;
699 /* We have found an acceptable mode to store in. Since
700 hard register is always saved in the widest mode
701 available, the mode may be wider than necessary, it is
702 OK to reduce the alignment of spill space. We will
703 verify that it is equal to or greater than required
704 when we restore and save the hard register in
705 insert_restore and insert_save. */
706 regno_save_mem[i][j]
707 = assign_stack_local_1 (regno_save_mode[i][j],
708 GET_MODE_SIZE (regno_save_mode[i][j]),
709 0, ASLK_REDUCE_ALIGN);
711 /* Setup single word save area just in case... */
712 for (k = 0; k < j; k++)
713 /* This should not depend on WORDS_BIG_ENDIAN.
714 The order of words in regs is the same as in memory. */
715 regno_save_mem[i + k][1]
716 = adjust_address_nv (regno_save_mem[i][j],
717 regno_save_mode[i + k][1],
718 k * UNITS_PER_WORD);
722 /* Now loop again and set the alias set of any save areas we made to
723 the alias set used to represent frame objects. */
724 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
725 for (j = MOVE_MAX_WORDS; j > 0; j--)
726 if (regno_save_mem[i][j] != 0)
727 set_mem_alias_set (regno_save_mem[i][j], get_frame_alias_set ());
732 /* Find the places where hard regs are live across calls and save them. */
734 void
735 save_call_clobbered_regs (void)
737 struct insn_chain *chain, *next, *last = NULL;
738 enum machine_mode save_mode [FIRST_PSEUDO_REGISTER];
740 /* Computed in mark_set_regs, holds all registers set by the current
741 instruction. */
742 HARD_REG_SET this_insn_sets;
744 CLEAR_HARD_REG_SET (hard_regs_saved);
745 n_regs_saved = 0;
747 for (chain = reload_insn_chain; chain != 0; chain = next)
749 rtx insn = chain->insn;
750 enum rtx_code code = GET_CODE (insn);
752 next = chain->next;
754 gcc_assert (!chain->is_caller_save_insn);
756 if (NONDEBUG_INSN_P (insn))
758 /* If some registers have been saved, see if INSN references
759 any of them. We must restore them before the insn if so. */
761 if (n_regs_saved)
763 int regno;
764 HARD_REG_SET this_insn_sets;
766 if (code == JUMP_INSN)
767 /* Restore all registers if this is a JUMP_INSN. */
768 COPY_HARD_REG_SET (referenced_regs, hard_regs_saved);
769 else
771 CLEAR_HARD_REG_SET (referenced_regs);
772 mark_referenced_regs (&PATTERN (insn),
773 mark_reg_as_referenced, NULL);
774 AND_HARD_REG_SET (referenced_regs, hard_regs_saved);
777 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
778 if (TEST_HARD_REG_BIT (referenced_regs, regno))
779 regno += insert_restore (chain, 1, regno, MOVE_MAX_WORDS,
780 save_mode);
781 /* If a saved register is set after the call, this means we no
782 longer should restore it. This can happen when parts of a
783 multi-word pseudo do not conflict with other pseudos, so
784 IRA may allocate the same hard register for both. One may
785 be live across the call, while the other is set
786 afterwards. */
787 CLEAR_HARD_REG_SET (this_insn_sets);
788 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
789 AND_COMPL_HARD_REG_SET (hard_regs_saved, this_insn_sets);
792 if (code == CALL_INSN
793 && ! SIBLING_CALL_P (insn)
794 && ! find_reg_note (insn, REG_NORETURN, NULL))
796 unsigned regno;
797 HARD_REG_SET hard_regs_to_save;
798 reg_set_iterator rsi;
800 /* Use the register life information in CHAIN to compute which
801 regs are live during the call. */
802 REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
803 &chain->live_throughout);
804 /* Save hard registers always in the widest mode available. */
805 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
806 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
807 save_mode [regno] = regno_save_mode [regno][1];
808 else
809 save_mode [regno] = VOIDmode;
811 /* Look through all live pseudos, mark their hard registers
812 and choose proper mode for saving. */
813 EXECUTE_IF_SET_IN_REG_SET
814 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
816 int r = reg_renumber[regno];
817 int nregs;
818 enum machine_mode mode;
820 if (r < 0)
821 continue;
822 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
823 mode = HARD_REGNO_CALLER_SAVE_MODE
824 (r, nregs, PSEUDO_REGNO_MODE (regno));
825 if (GET_MODE_BITSIZE (mode)
826 > GET_MODE_BITSIZE (save_mode[r]))
827 save_mode[r] = mode;
828 while (nregs-- > 0)
829 SET_HARD_REG_BIT (hard_regs_to_save, r + nregs);
832 /* Record all registers set in this call insn. These don't need
833 to be saved. N.B. the call insn might set a subreg of a
834 multi-hard-reg pseudo; then the pseudo is considered live
835 during the call, but the subreg that is set isn't. */
836 CLEAR_HARD_REG_SET (this_insn_sets);
837 note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
839 /* Compute which hard regs must be saved before this call. */
840 AND_COMPL_HARD_REG_SET (hard_regs_to_save, call_fixed_reg_set);
841 AND_COMPL_HARD_REG_SET (hard_regs_to_save, this_insn_sets);
842 AND_COMPL_HARD_REG_SET (hard_regs_to_save, hard_regs_saved);
843 AND_HARD_REG_SET (hard_regs_to_save, call_used_reg_set);
845 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
846 if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
847 regno += insert_save (chain, 1, regno, &hard_regs_to_save, save_mode);
849 /* Must recompute n_regs_saved. */
850 n_regs_saved = 0;
851 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
852 if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
853 n_regs_saved++;
855 last = chain;
857 else if (DEBUG_INSN_P (insn) && n_regs_saved)
858 mark_referenced_regs (&PATTERN (insn),
859 replace_reg_with_saved_mem,
860 save_mode);
862 if (chain->next == 0 || chain->next->block != chain->block)
864 int regno;
865 /* At the end of the basic block, we must restore any registers that
866 remain saved. If the last insn in the block is a JUMP_INSN, put
867 the restore before the insn, otherwise, put it after the insn. */
869 if (n_regs_saved
870 && DEBUG_INSN_P (insn)
871 && last
872 && last->block == chain->block)
874 rtx ins, prev;
875 basic_block bb = BLOCK_FOR_INSN (insn);
877 /* When adding hard reg restores after a DEBUG_INSN, move
878 all notes between last real insn and this DEBUG_INSN after
879 the DEBUG_INSN, otherwise we could get code
880 -g/-g0 differences. */
881 for (ins = PREV_INSN (insn); ins != last->insn; ins = prev)
883 prev = PREV_INSN (ins);
884 if (NOTE_P (ins))
886 NEXT_INSN (prev) = NEXT_INSN (ins);
887 PREV_INSN (NEXT_INSN (ins)) = prev;
888 PREV_INSN (ins) = insn;
889 NEXT_INSN (ins) = NEXT_INSN (insn);
890 NEXT_INSN (insn) = ins;
891 if (NEXT_INSN (ins))
892 PREV_INSN (NEXT_INSN (ins)) = ins;
893 if (BB_END (bb) == insn)
894 BB_END (bb) = ins;
896 else
897 gcc_assert (DEBUG_INSN_P (ins));
900 last = NULL;
902 if (n_regs_saved)
903 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
904 if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
905 regno += insert_restore (chain, JUMP_P (insn),
906 regno, MOVE_MAX_WORDS, save_mode);
911 /* Here from note_stores, or directly from save_call_clobbered_regs, when
912 an insn stores a value in a register.
913 Set the proper bit or bits in this_insn_sets. All pseudos that have
914 been assigned hard regs have had their register number changed already,
915 so we can ignore pseudos. */
916 static void
917 mark_set_regs (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *data)
919 int regno, endregno, i;
920 HARD_REG_SET *this_insn_sets = (HARD_REG_SET *) data;
922 if (GET_CODE (reg) == SUBREG)
924 rtx inner = SUBREG_REG (reg);
925 if (!REG_P (inner) || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
926 return;
927 regno = subreg_regno (reg);
928 endregno = regno + subreg_nregs (reg);
930 else if (REG_P (reg)
931 && REGNO (reg) < FIRST_PSEUDO_REGISTER)
933 regno = REGNO (reg);
934 endregno = END_HARD_REGNO (reg);
936 else
937 return;
939 for (i = regno; i < endregno; i++)
940 SET_HARD_REG_BIT (*this_insn_sets, i);
943 /* Here from note_stores when an insn stores a value in a register.
944 Set the proper bit or bits in the passed regset. All pseudos that have
945 been assigned hard regs have had their register number changed already,
946 so we can ignore pseudos. */
947 static void
948 add_stored_regs (rtx reg, const_rtx setter, void *data)
950 int regno, endregno, i;
951 enum machine_mode mode = GET_MODE (reg);
952 int offset = 0;
954 if (GET_CODE (setter) == CLOBBER)
955 return;
957 if (GET_CODE (reg) == SUBREG
958 && REG_P (SUBREG_REG (reg))
959 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
961 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
962 GET_MODE (SUBREG_REG (reg)),
963 SUBREG_BYTE (reg),
964 GET_MODE (reg));
965 regno = REGNO (SUBREG_REG (reg)) + offset;
966 endregno = regno + subreg_nregs (reg);
968 else
970 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
971 return;
973 regno = REGNO (reg) + offset;
974 endregno = end_hard_regno (mode, regno);
977 for (i = regno; i < endregno; i++)
978 SET_REGNO_REG_SET ((regset) data, i);
981 /* Walk X and record all referenced registers in REFERENCED_REGS. */
982 static void
983 mark_referenced_regs (rtx *loc, refmarker_fn *mark, void *arg)
985 enum rtx_code code = GET_CODE (*loc);
986 const char *fmt;
987 int i, j;
989 if (code == SET)
990 mark_referenced_regs (&SET_SRC (*loc), mark, arg);
991 if (code == SET || code == CLOBBER)
993 loc = &SET_DEST (*loc);
994 code = GET_CODE (*loc);
995 if ((code == REG && REGNO (*loc) < FIRST_PSEUDO_REGISTER)
996 || code == PC || code == CC0
997 || (code == SUBREG && REG_P (SUBREG_REG (*loc))
998 && REGNO (SUBREG_REG (*loc)) < FIRST_PSEUDO_REGISTER
999 /* If we're setting only part of a multi-word register,
1000 we shall mark it as referenced, because the words
1001 that are not being set should be restored. */
1002 && ((GET_MODE_SIZE (GET_MODE (*loc))
1003 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc))))
1004 || (GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc)))
1005 <= UNITS_PER_WORD))))
1006 return;
1008 if (code == MEM || code == SUBREG)
1010 loc = &XEXP (*loc, 0);
1011 code = GET_CODE (*loc);
1014 if (code == REG)
1016 int regno = REGNO (*loc);
1017 int hardregno = (regno < FIRST_PSEUDO_REGISTER ? regno
1018 : reg_renumber[regno]);
1020 if (hardregno >= 0)
1021 mark (loc, GET_MODE (*loc), hardregno, arg);
1022 else if (arg)
1023 /* ??? Will we ever end up with an equiv expression in a debug
1024 insn, that would have required restoring a reg, or will
1025 reload take care of it for us? */
1026 return;
1027 /* If this is a pseudo that did not get a hard register, scan its
1028 memory location, since it might involve the use of another
1029 register, which might be saved. */
1030 else if (reg_equiv_mem[regno] != 0)
1031 mark_referenced_regs (&XEXP (reg_equiv_mem[regno], 0), mark, arg);
1032 else if (reg_equiv_address[regno] != 0)
1033 mark_referenced_regs (&reg_equiv_address[regno], mark, arg);
1034 return;
1037 fmt = GET_RTX_FORMAT (code);
1038 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1040 if (fmt[i] == 'e')
1041 mark_referenced_regs (&XEXP (*loc, i), mark, arg);
1042 else if (fmt[i] == 'E')
1043 for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
1044 mark_referenced_regs (&XVECEXP (*loc, i, j), mark, arg);
1048 /* Parameter function for mark_referenced_regs() that adds registers
1049 present in the insn and in equivalent mems and addresses to
1050 referenced_regs. */
1052 static void
1053 mark_reg_as_referenced (rtx *loc ATTRIBUTE_UNUSED,
1054 enum machine_mode mode,
1055 int hardregno,
1056 void *arg ATTRIBUTE_UNUSED)
1058 add_to_hard_reg_set (&referenced_regs, mode, hardregno);
1061 /* Parameter function for mark_referenced_regs() that replaces
1062 registers referenced in a debug_insn that would have been restored,
1063 should it be a non-debug_insn, with their save locations. */
1065 static void
1066 replace_reg_with_saved_mem (rtx *loc,
1067 enum machine_mode mode,
1068 int regno,
1069 void *arg)
1071 unsigned int i, nregs = hard_regno_nregs [regno][mode];
1072 rtx mem;
1073 enum machine_mode *save_mode = (enum machine_mode *)arg;
1075 for (i = 0; i < nregs; i++)
1076 if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1077 break;
1079 /* If none of the registers in the range would need restoring, we're
1080 all set. */
1081 if (i == nregs)
1082 return;
1084 while (++i < nregs)
1085 if (!TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1086 break;
1088 if (i == nregs
1089 && regno_save_mem[regno][nregs])
1091 mem = copy_rtx (regno_save_mem[regno][nregs]);
1093 if (nregs == (unsigned int) hard_regno_nregs[regno][save_mode[regno]])
1094 mem = adjust_address_nv (mem, save_mode[regno], 0);
1096 if (GET_MODE (mem) != mode)
1098 /* This is gen_lowpart_if_possible(), but without validating
1099 the newly-formed address. */
1100 int offset = 0;
1102 if (WORDS_BIG_ENDIAN)
1103 offset = (MAX (GET_MODE_SIZE (GET_MODE (mem)), UNITS_PER_WORD)
1104 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1105 if (BYTES_BIG_ENDIAN)
1106 /* Adjust the address so that the address-after-the-data is
1107 unchanged. */
1108 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1109 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (mem))));
1111 mem = adjust_address_nv (mem, mode, offset);
1114 else
1116 mem = gen_rtx_CONCATN (mode, rtvec_alloc (nregs));
1117 for (i = 0; i < nregs; i++)
1118 if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
1120 gcc_assert (regno_save_mem[regno + i][1]);
1121 XVECEXP (mem, 0, i) = copy_rtx (regno_save_mem[regno + i][1]);
1123 else
1125 gcc_assert (save_mode[regno] != VOIDmode);
1126 XVECEXP (mem, 0, i) = gen_rtx_REG (save_mode [regno],
1127 regno + i);
1131 gcc_assert (GET_MODE (mem) == mode);
1132 *loc = mem;
1136 /* Insert a sequence of insns to restore. Place these insns in front of
1137 CHAIN if BEFORE_P is nonzero, behind the insn otherwise. MAXRESTORE is
1138 the maximum number of registers which should be restored during this call.
1139 It should never be less than 1 since we only work with entire registers.
1141 Note that we have verified in init_caller_save that we can do this
1142 with a simple SET, so use it. Set INSN_CODE to what we save there
1143 since the address might not be valid so the insn might not be recognized.
1144 These insns will be reloaded and have register elimination done by
1145 find_reload, so we need not worry about that here.
1147 Return the extra number of registers saved. */
1149 static int
1150 insert_restore (struct insn_chain *chain, int before_p, int regno,
1151 int maxrestore, enum machine_mode *save_mode)
1153 int i, k;
1154 rtx pat = NULL_RTX;
1155 int code;
1156 unsigned int numregs = 0;
1157 struct insn_chain *new_chain;
1158 rtx mem;
1160 /* A common failure mode if register status is not correct in the
1161 RTL is for this routine to be called with a REGNO we didn't
1162 expect to save. That will cause us to write an insn with a (nil)
1163 SET_DEST or SET_SRC. Instead of doing so and causing a crash
1164 later, check for this common case here instead. This will remove
1165 one step in debugging such problems. */
1166 gcc_assert (regno_save_mem[regno][1]);
1168 /* Get the pattern to emit and update our status.
1170 See if we can restore `maxrestore' registers at once. Work
1171 backwards to the single register case. */
1172 for (i = maxrestore; i > 0; i--)
1174 int j;
1175 int ok = 1;
1177 if (regno_save_mem[regno][i] == 0)
1178 continue;
1180 for (j = 0; j < i; j++)
1181 if (! TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
1183 ok = 0;
1184 break;
1186 /* Must do this one restore at a time. */
1187 if (! ok)
1188 continue;
1190 numregs = i;
1191 break;
1194 mem = regno_save_mem [regno][numregs];
1195 if (save_mode [regno] != VOIDmode
1196 && save_mode [regno] != GET_MODE (mem)
1197 && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]]
1198 /* Check that insn to restore REGNO in save_mode[regno] is
1199 correct. */
1200 && reg_save_code (regno, save_mode[regno]) >= 0)
1201 mem = adjust_address_nv (mem, save_mode[regno], 0);
1202 else
1203 mem = copy_rtx (mem);
1205 /* Verify that the alignment of spill space is equal to or greater
1206 than required. */
1207 gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
1208 GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
1210 pat = gen_rtx_SET (VOIDmode,
1211 gen_rtx_REG (GET_MODE (mem),
1212 regno), mem);
1213 code = reg_restore_code (regno, GET_MODE (mem));
1214 new_chain = insert_one_insn (chain, before_p, code, pat);
1216 /* Clear status for all registers we restored. */
1217 for (k = 0; k < i; k++)
1219 CLEAR_HARD_REG_BIT (hard_regs_saved, regno + k);
1220 SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
1221 n_regs_saved--;
1224 /* Tell our callers how many extra registers we saved/restored. */
1225 return numregs - 1;
1228 /* Like insert_restore above, but save registers instead. */
1230 static int
1231 insert_save (struct insn_chain *chain, int before_p, int regno,
1232 HARD_REG_SET (*to_save), enum machine_mode *save_mode)
1234 int i;
1235 unsigned int k;
1236 rtx pat = NULL_RTX;
1237 int code;
1238 unsigned int numregs = 0;
1239 struct insn_chain *new_chain;
1240 rtx mem;
1242 /* A common failure mode if register status is not correct in the
1243 RTL is for this routine to be called with a REGNO we didn't
1244 expect to save. That will cause us to write an insn with a (nil)
1245 SET_DEST or SET_SRC. Instead of doing so and causing a crash
1246 later, check for this common case here. This will remove one
1247 step in debugging such problems. */
1248 gcc_assert (regno_save_mem[regno][1]);
1250 /* Get the pattern to emit and update our status.
1252 See if we can save several registers with a single instruction.
1253 Work backwards to the single register case. */
1254 for (i = MOVE_MAX_WORDS; i > 0; i--)
1256 int j;
1257 int ok = 1;
1258 if (regno_save_mem[regno][i] == 0)
1259 continue;
1261 for (j = 0; j < i; j++)
1262 if (! TEST_HARD_REG_BIT (*to_save, regno + j))
1264 ok = 0;
1265 break;
1267 /* Must do this one save at a time. */
1268 if (! ok)
1269 continue;
1271 numregs = i;
1272 break;
1275 mem = regno_save_mem [regno][numregs];
1276 if (save_mode [regno] != VOIDmode
1277 && save_mode [regno] != GET_MODE (mem)
1278 && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]]
1279 /* Check that insn to save REGNO in save_mode[regno] is
1280 correct. */
1281 && reg_save_code (regno, save_mode[regno]) >= 0)
1282 mem = adjust_address_nv (mem, save_mode[regno], 0);
1283 else
1284 mem = copy_rtx (mem);
1286 /* Verify that the alignment of spill space is equal to or greater
1287 than required. */
1288 gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
1289 GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
1291 pat = gen_rtx_SET (VOIDmode, mem,
1292 gen_rtx_REG (GET_MODE (mem),
1293 regno));
1294 code = reg_save_code (regno, GET_MODE (mem));
1295 new_chain = insert_one_insn (chain, before_p, code, pat);
1297 /* Set hard_regs_saved and dead_or_set for all the registers we saved. */
1298 for (k = 0; k < numregs; k++)
1300 SET_HARD_REG_BIT (hard_regs_saved, regno + k);
1301 SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
1302 n_regs_saved++;
1305 /* Tell our callers how many extra registers we saved/restored. */
1306 return numregs - 1;
1309 /* A for_each_rtx callback used by add_used_regs. Add the hard-register
1310 equivalent of each REG to regset DATA. */
1312 static int
1313 add_used_regs_1 (rtx *loc, void *data)
1315 unsigned int regno;
1316 regset live;
1317 rtx x;
1319 x = *loc;
1320 live = (regset) data;
1321 if (REG_P (x))
1323 regno = REGNO (x);
1324 if (HARD_REGISTER_NUM_P (regno))
1325 bitmap_set_range (live, regno, hard_regno_nregs[regno][GET_MODE (x)]);
1326 else
1327 regno = reg_renumber[regno];
1329 return 0;
1332 /* A note_uses callback used by insert_one_insn. Add the hard-register
1333 equivalent of each REG to regset DATA. */
1335 static void
1336 add_used_regs (rtx *loc, void *data)
1338 for_each_rtx (loc, add_used_regs_1, data);
1341 /* Emit a new caller-save insn and set the code. */
1342 static struct insn_chain *
1343 insert_one_insn (struct insn_chain *chain, int before_p, int code, rtx pat)
1345 rtx insn = chain->insn;
1346 struct insn_chain *new_chain;
1348 #ifdef HAVE_cc0
1349 /* If INSN references CC0, put our insns in front of the insn that sets
1350 CC0. This is always safe, since the only way we could be passed an
1351 insn that references CC0 is for a restore, and doing a restore earlier
1352 isn't a problem. We do, however, assume here that CALL_INSNs don't
1353 reference CC0. Guard against non-INSN's like CODE_LABEL. */
1355 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
1356 && before_p
1357 && reg_referenced_p (cc0_rtx, PATTERN (insn)))
1358 chain = chain->prev, insn = chain->insn;
1359 #endif
1361 new_chain = new_insn_chain ();
1362 if (before_p)
1364 rtx link;
1366 new_chain->prev = chain->prev;
1367 if (new_chain->prev != 0)
1368 new_chain->prev->next = new_chain;
1369 else
1370 reload_insn_chain = new_chain;
1372 chain->prev = new_chain;
1373 new_chain->next = chain;
1374 new_chain->insn = emit_insn_before (pat, insn);
1375 /* ??? It would be nice if we could exclude the already / still saved
1376 registers from the live sets. */
1377 COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
1378 note_uses (&PATTERN (chain->insn), add_used_regs,
1379 &new_chain->live_throughout);
1380 /* If CHAIN->INSN is a call, then the registers which contain
1381 the arguments to the function are live in the new insn. */
1382 if (CALL_P (chain->insn))
1383 for (link = CALL_INSN_FUNCTION_USAGE (chain->insn);
1384 link != NULL_RTX;
1385 link = XEXP (link, 1))
1386 note_uses (&XEXP (link, 0), add_used_regs,
1387 &new_chain->live_throughout);
1389 CLEAR_REG_SET (&new_chain->dead_or_set);
1390 if (chain->insn == BB_HEAD (BASIC_BLOCK (chain->block)))
1391 BB_HEAD (BASIC_BLOCK (chain->block)) = new_chain->insn;
1393 else
1395 new_chain->next = chain->next;
1396 if (new_chain->next != 0)
1397 new_chain->next->prev = new_chain;
1398 chain->next = new_chain;
1399 new_chain->prev = chain;
1400 new_chain->insn = emit_insn_after (pat, insn);
1401 /* ??? It would be nice if we could exclude the already / still saved
1402 registers from the live sets, and observe REG_UNUSED notes. */
1403 COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
1404 /* Registers that are set in CHAIN->INSN live in the new insn.
1405 (Unless there is a REG_UNUSED note for them, but we don't
1406 look for them here.) */
1407 note_stores (PATTERN (chain->insn), add_stored_regs,
1408 &new_chain->live_throughout);
1409 CLEAR_REG_SET (&new_chain->dead_or_set);
1410 if (chain->insn == BB_END (BASIC_BLOCK (chain->block)))
1411 BB_END (BASIC_BLOCK (chain->block)) = new_chain->insn;
1413 new_chain->block = chain->block;
1414 new_chain->is_caller_save_insn = 1;
1416 INSN_CODE (new_chain->insn) = code;
1417 return new_chain;
1419 #include "gt-caller-save.h"