[NDS32] Define CLZ_DEFINED_VALUE_AT_ZERO.
[official-gcc.git] / gcc / config / nds32 / nds32.h
blobb350a0cd047faf43640966e861778344f30d9c85
1 /* Definitions of target machine of Andes NDS32 cpu for GNU compiler
2 Copyright (C) 2012-2018 Free Software Foundation, Inc.
3 Contributed by Andes Technology Corporation.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* ------------------------------------------------------------------------ */
24 /* The following are auxiliary macros or structure declarations
25 that are used all over the nds32.c and nds32.h. */
27 /* Use SYMBOL_FLAG_MACH_DEP to define our own symbol_ref flag.
28 It is used in nds32_encode_section_info() to store flag in symbol_ref
29 in case the symbol should be placed in .rodata section.
30 So that we can check it in nds32_legitimate_address_p(). */
31 #define NDS32_SYMBOL_FLAG_RODATA \
32 (SYMBOL_FLAG_MACH_DEP << 0)
33 #define NDS32_SYMBOL_REF_RODATA_P(x) \
34 ((SYMBOL_REF_FLAGS (x) & NDS32_SYMBOL_FLAG_RODATA) != 0)
36 /* Computing the Length of an Insn. */
37 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
38 (LENGTH = nds32_adjust_insn_length (INSN, LENGTH))
40 /* Check instruction LS-37-FP-implied form.
41 Note: actually its immediate range is imm9u
42 since it is used for lwi37/swi37 instructions. */
43 #define NDS32_LS_37_FP_P(rt, ra, imm) \
44 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
45 && REGNO (ra) == FP_REGNUM \
46 && satisfies_constraint_Iu09 (imm))
48 /* Check instruction LS-37-SP-implied form.
49 Note: actually its immediate range is imm9u
50 since it is used for lwi37/swi37 instructions. */
51 #define NDS32_LS_37_SP_P(rt, ra, imm) \
52 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
53 && REGNO (ra) == SP_REGNUM \
54 && satisfies_constraint_Iu09 (imm))
57 /* Check load/store instruction form : Rt3, Ra3, imm3u. */
58 #define NDS32_LS_333_P(rt, ra, imm, mode) nds32_ls_333_p (rt, ra, imm, mode)
60 /* Check load/store instruction form : Rt4, Ra5, const_int_0.
61 Note: no need to check ra because Ra5 means it covers all registers. */
62 #define NDS32_LS_450_P(rt, ra, imm) \
63 ((imm == const0_rtx) \
64 && (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
65 || REGNO_REG_CLASS (REGNO (rt)) == MIDDLE_REGS))
67 /* Check instruction RRI-333-form. */
68 #define NDS32_RRI_333_P(rt, ra, imm) \
69 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
70 && REGNO_REG_CLASS (REGNO (ra)) == LOW_REGS \
71 && satisfies_constraint_Iu03 (imm))
73 /* Check instruction RI-45-form. */
74 #define NDS32_RI_45_P(rt, ra, imm) \
75 (REGNO (rt) == REGNO (ra) \
76 && (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
77 || REGNO_REG_CLASS (REGNO (rt)) == MIDDLE_REGS) \
78 && satisfies_constraint_Iu05 (imm))
81 /* Check instruction RR-33-form. */
82 #define NDS32_RR_33_P(rt, ra) \
83 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
84 && REGNO_REG_CLASS (REGNO (ra)) == LOW_REGS)
86 /* Check instruction RRR-333-form. */
87 #define NDS32_RRR_333_P(rt, ra, rb) \
88 (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
89 && REGNO_REG_CLASS (REGNO (ra)) == LOW_REGS \
90 && REGNO_REG_CLASS (REGNO (rb)) == LOW_REGS)
92 /* Check instruction RR-45-form.
93 Note: no need to check rb because Rb5 means it covers all registers. */
94 #define NDS32_RR_45_P(rt, ra, rb) \
95 (REGNO (rt) == REGNO (ra) \
96 && (REGNO_REG_CLASS (REGNO (rt)) == LOW_REGS \
97 || REGNO_REG_CLASS (REGNO (rt)) == MIDDLE_REGS))
99 /* Classifies address type to distinguish 16-bit/32-bit format. */
100 enum nds32_16bit_address_type
102 /* [reg]: 45 format address. */
103 ADDRESS_REG,
104 /* [lo_reg + imm3u]: 333 format address. */
105 ADDRESS_LO_REG_IMM3U,
106 /* post_inc [lo_reg + imm3u]: 333 format address. */
107 ADDRESS_POST_INC_LO_REG_IMM3U,
108 /* [$fp + imm7u]: fp imply address. */
109 ADDRESS_FP_IMM7U,
110 /* [$sp + imm7u]: sp imply address. */
111 ADDRESS_SP_IMM7U,
112 /* Other address format. */
113 ADDRESS_NOT_16BIT_FORMAT
117 /* ------------------------------------------------------------------------ */
119 /* Define maximum numbers of registers for passing arguments. */
120 #define NDS32_MAX_GPR_REGS_FOR_ARGS 6
122 /* Define the register number for first argument. */
123 #define NDS32_GPR_ARG_FIRST_REGNUM 0
125 /* Define the register number for return value. */
126 #define NDS32_GPR_RET_FIRST_REGNUM 0
128 /* Define the first integer register number. */
129 #define NDS32_FIRST_GPR_REGNUM 0
130 /* Define the last integer register number. */
131 #define NDS32_LAST_GPR_REGNUM 31
133 #define NDS32_FIRST_CALLEE_SAVE_GPR_REGNUM 6
134 #define NDS32_LAST_CALLEE_SAVE_GPR_REGNUM \
135 (TARGET_REDUCED_REGS ? 10 : 14)
137 /* Define double word alignment bits. */
138 #define NDS32_DOUBLE_WORD_ALIGNMENT 64
140 /* Define alignment checking macros for convenience. */
141 #define NDS32_HALF_WORD_ALIGN_P(value) (((value) & 0x01) == 0)
142 #define NDS32_SINGLE_WORD_ALIGN_P(value) (((value) & 0x03) == 0)
143 #define NDS32_DOUBLE_WORD_ALIGN_P(value) (((value) & 0x07) == 0)
145 /* Get alignment according to mode or type information.
146 When 'type' is nonnull, there is no need to look at 'mode'. */
147 #define NDS32_MODE_TYPE_ALIGN(mode, type) \
148 (type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode))
150 /* Round X up to the nearest double word. */
151 #define NDS32_ROUND_UP_DOUBLE_WORD(value) (((value) + 7) & ~7)
154 /* This macro is used to calculate the numbers of registers for
155 containing 'size' bytes of the argument.
156 The size of a register is a word in nds32 target.
157 So we use UNITS_PER_WORD to do the calculation. */
158 #define NDS32_NEED_N_REGS_FOR_ARG(mode, type) \
159 ((mode == BLKmode) \
160 ? ((int_size_in_bytes (type) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
161 : ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
163 /* This macro is used to return the register number for passing argument.
164 We need to obey the following rules:
165 1. If it is required MORE THAN one register,
166 we need to further check if it really needs to be
167 aligned on double words.
168 a) If double word alignment is necessary,
169 the register number must be even value.
170 b) Otherwise, the register number can be odd or even value.
171 2. If it is required ONLY one register,
172 the register number can be odd or even value. */
173 #define NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG(reg_offset, mode, type) \
174 ((NDS32_NEED_N_REGS_FOR_ARG (mode, type) > 1) \
175 ? ((NDS32_MODE_TYPE_ALIGN (mode, type) > PARM_BOUNDARY) \
176 ? (((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM + 1) & ~1) \
177 : ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM)) \
178 : ((reg_offset) + NDS32_GPR_ARG_FIRST_REGNUM))
180 /* This macro is to check if there are still available registers
181 for passing argument, which must be entirely in registers. */
182 #define NDS32_ARG_ENTIRE_IN_GPR_REG_P(reg_offset, mode, type) \
183 ((NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (reg_offset, mode, type) \
184 + NDS32_NEED_N_REGS_FOR_ARG (mode, type)) \
185 <= (NDS32_GPR_ARG_FIRST_REGNUM \
186 + NDS32_MAX_GPR_REGS_FOR_ARGS))
188 /* This macro is to check if there are still available registers
189 for passing argument, either entirely in registers or partially
190 in registers. */
191 #define NDS32_ARG_PARTIAL_IN_GPR_REG_P(reg_offset, mode, type) \
192 (NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (reg_offset, mode, type) \
193 < NDS32_GPR_ARG_FIRST_REGNUM + NDS32_MAX_GPR_REGS_FOR_ARGS)
195 /* This macro is to check if the register is required to be saved on stack.
196 If call_used_regs[regno] == 0, regno is the callee-saved register.
197 If df_regs_ever_live_p(regno) == true, it is used in the current function.
198 As long as the register satisfies both criteria above,
199 it is required to be saved. */
200 #define NDS32_REQUIRED_CALLEE_SAVED_P(regno) \
201 ((!call_used_regs[regno]) && (df_regs_ever_live_p (regno)))
203 /* This macro is to check if the push25/pop25 are available to be used
204 for code generation. Because pop25 also performs return behavior,
205 the instructions may not be available for some cases.
206 If we want to use push25/pop25, all the following conditions must
207 be satisfied:
208 1. TARGET_V3PUSH is set.
209 2. Current function is not an ISR function.
210 3. Current function is not a variadic function.*/
211 #define NDS32_V3PUSH_AVAILABLE_P \
212 (TARGET_V3PUSH \
213 && !nds32_isr_function_p (current_function_decl) \
214 && (cfun->machine->va_args_size == 0))
216 /* ------------------------------------------------------------------------ */
218 /* A C structure for machine-specific, per-function data.
219 This is added to the cfun structure. */
220 struct GTY(()) machine_function
222 /* Number of bytes allocated on the stack for variadic args
223 if we want to push them into stack as pretend arguments by ourself. */
224 int va_args_size;
225 /* Number of bytes reserved on the stack for
226 local and temporary variables. */
227 int local_size;
228 /* Number of bytes allocated on the stack for outgoing arguments. */
229 int out_args_size;
231 /* Number of bytes on the stack for saving $fp. */
232 int fp_size;
233 /* Number of bytes on the stack for saving $gp. */
234 int gp_size;
235 /* Number of bytes on the stack for saving $lp. */
236 int lp_size;
238 /* Number of bytes on the stack for saving general purpose
239 callee-saved registers. */
240 int callee_saved_gpr_regs_size;
242 /* The padding bytes in callee-saved area may be required. */
243 int callee_saved_area_gpr_padding_bytes;
245 /* The first required general purpose callee-saved register. */
246 int callee_saved_first_gpr_regno;
247 /* The last required general purpose callee-saved register. */
248 int callee_saved_last_gpr_regno;
250 /* The padding bytes in varargs area may be required. */
251 int va_args_area_padding_bytes;
253 /* The first required register that should be saved on stack for va_args. */
254 int va_args_first_regno;
255 /* The last required register that should be saved on stack for va_args. */
256 int va_args_last_regno;
258 /* Indicate that whether this function needs
259 prologue/epilogue code generation. */
260 int naked_p;
261 /* Indicate that whether this function
262 uses fp_as_gp optimization. */
263 int fp_as_gp_p;
266 /* A C structure that contains the arguments information. */
267 typedef struct
269 unsigned int gpr_offset;
270 } nds32_cumulative_args;
272 /* ------------------------------------------------------------------------ */
274 /* The following we define C-ISR related stuff.
275 In nds32 architecture, we have 73 vectors for interrupt/exception.
276 For each vector (except for vector 0, which is used for reset behavior),
277 we allow users to set its register saving scheme and interrupt level. */
279 /* There are 73 vectors in nds32 architecture.
280 0 for reset handler,
281 1-8 for exception handler,
282 and 9-72 for interrupt handler.
283 We use an array, which is defined in nds32.c, to record
284 essential information for each vector. */
285 #define NDS32_N_ISR_VECTORS 73
287 /* Define possible isr category. */
288 enum nds32_isr_category
290 NDS32_ISR_NONE,
291 NDS32_ISR_INTERRUPT,
292 NDS32_ISR_EXCEPTION,
293 NDS32_ISR_RESET
296 /* Define isr register saving scheme. */
297 enum nds32_isr_save_reg
299 NDS32_SAVE_ALL,
300 NDS32_PARTIAL_SAVE
303 /* Define isr nested type. */
304 enum nds32_isr_nested_type
306 NDS32_NESTED,
307 NDS32_NOT_NESTED,
308 NDS32_NESTED_READY
311 /* Define structure to record isr information.
312 The isr vector array 'isr_vectors[]' with this structure
313 is defined in nds32.c. */
314 struct nds32_isr_info
316 /* The field to identify isr category.
317 It should be set to NDS32_ISR_NONE by default.
318 If user specifies a function as isr by using attribute,
319 this field will be set accordingly. */
320 enum nds32_isr_category category;
322 /* A string for the applied function name.
323 It should be set to empty string by default. */
324 char func_name[100];
326 /* The register saving scheme.
327 It should be set to NDS32_PARTIAL_SAVE by default
328 unless user specifies attribute to change it. */
329 enum nds32_isr_save_reg save_reg;
331 /* The nested type.
332 It should be set to NDS32_NOT_NESTED by default
333 unless user specifies attribute to change it. */
334 enum nds32_isr_nested_type nested_type;
336 /* Total vectors.
337 The total vectors = interrupt + exception numbers + reset.
338 It should be set to 0 by default.
339 This field is ONLY used in NDS32_ISR_RESET category. */
340 unsigned int total_n_vectors;
342 /* A string for nmi handler name.
343 It should be set to empty string by default.
344 This field is ONLY used in NDS32_ISR_RESET category. */
345 char nmi_name[100];
347 /* A string for warm handler name.
348 It should be set to empty string by default.
349 This field is ONLY used in NDS32_ISR_RESET category. */
350 char warm_name[100];
353 /* ------------------------------------------------------------------------ */
355 /* Define code for all nds32 builtins. */
356 enum nds32_builtins
358 NDS32_BUILTIN_ISYNC,
359 NDS32_BUILTIN_ISB,
360 NDS32_BUILTIN_MFSR,
361 NDS32_BUILTIN_MFUSR,
362 NDS32_BUILTIN_MTSR,
363 NDS32_BUILTIN_MTUSR,
364 NDS32_BUILTIN_SETGIE_EN,
365 NDS32_BUILTIN_SETGIE_DIS,
366 NDS32_BUILTIN_FFB,
367 NDS32_BUILTIN_FFMISM,
368 NDS32_BUILTIN_FLMISM,
369 NDS32_BUILTIN_UALOAD_HW,
370 NDS32_BUILTIN_UALOAD_W,
371 NDS32_BUILTIN_UALOAD_DW,
372 NDS32_BUILTIN_UASTORE_HW,
373 NDS32_BUILTIN_UASTORE_W,
374 NDS32_BUILTIN_UASTORE_DW,
375 NDS32_BUILTIN_COUNT
378 /* ------------------------------------------------------------------------ */
380 #define TARGET_ISA_V2 (nds32_arch_option == ARCH_V2)
381 #define TARGET_ISA_V3 (nds32_arch_option == ARCH_V3)
382 #define TARGET_ISA_V3M (nds32_arch_option == ARCH_V3M)
384 #define TARGET_CMODEL_SMALL \
385 (nds32_cmodel_option == CMODEL_SMALL)
386 #define TARGET_CMODEL_MEDIUM \
387 (nds32_cmodel_option == CMODEL_MEDIUM)
388 #define TARGET_CMODEL_LARGE \
389 (nds32_cmodel_option == CMODEL_LARGE)
391 /* When -mcmodel=small or -mcmodel=medium,
392 compiler may generate gp-base instruction directly. */
393 #define TARGET_GP_DIRECT \
394 (nds32_cmodel_option == CMODEL_SMALL\
395 || nds32_cmodel_option == CMODEL_MEDIUM)
397 #define TARGET_SOFT_FLOAT 1
398 #define TARGET_HARD_FLOAT 0
400 /* ------------------------------------------------------------------------ */
402 /* Controlling the Compilation Driver. */
404 #define OPTION_DEFAULT_SPECS \
405 {"arch", "%{!march=*:-march=%(VALUE)}" }
407 #define CC1_SPEC \
410 #define ASM_SPEC \
411 " %{mbig-endian:-EB} %{mlittle-endian:-EL}"
413 /* If user issues -mrelax, we need to pass '--relax' to linker. */
414 #define LINK_SPEC \
415 " %{mbig-endian:-EB} %{mlittle-endian:-EL}" \
416 " %{mrelax:--relax}"
418 #define LIB_SPEC \
419 " -lc -lgloss"
421 /* The option -mno-ctor-dtor can disable constructor/destructor feature
422 by applying different crt stuff. In the convention, crt0.o is the
423 startup file without constructor/destructor;
424 crt1.o, crti.o, crtbegin.o, crtend.o, and crtn.o are the
425 startup files with constructor/destructor.
426 Note that crt0.o, crt1.o, crti.o, and crtn.o are provided
427 by newlib/mculib/glibc/ublic, while crtbegin.o and crtend.o are
428 currently provided by GCC for nds32 target.
430 For nds32 target so far:
431 If -mno-ctor-dtor, we are going to link
432 "crt0.o [user objects]".
433 If general cases, we are going to link
434 "crt1.o crtbegin1.o [user objects] crtend1.o". */
435 #define STARTFILE_SPEC \
436 " %{!mno-ctor-dtor:crt1.o%s;:crt0.o%s}" \
437 " %{!mno-ctor-dtor:crtbegin1.o%s}"
438 #define ENDFILE_SPEC \
439 " %{!mno-ctor-dtor:crtend1.o%s}"
441 /* The TARGET_BIG_ENDIAN_DEFAULT is defined if we
442 configure gcc with --target=nds32be-* setting.
443 Check gcc/config.gcc for more information. */
444 #ifdef TARGET_BIG_ENDIAN_DEFAULT
445 # define NDS32_ENDIAN_DEFAULT "mbig-endian"
446 #else
447 # define NDS32_ENDIAN_DEFAULT "mlittle-endian"
448 #endif
450 /* Currently we only have elf toolchain,
451 where -mcmodel=medium is always the default. */
452 #define NDS32_CMODEL_DEFAULT "mcmodel=medium"
454 #define MULTILIB_DEFAULTS \
455 { NDS32_ENDIAN_DEFAULT, NDS32_CMODEL_DEFAULT }
458 /* Run-time Target Specification. */
460 #define TARGET_CPU_CPP_BUILTINS() \
461 nds32_cpu_cpp_builtins (pfile)
464 /* Defining Data Structures for Per-function Information. */
466 /* This macro is called once per function,
467 before generation of any RTL has begun. */
468 #define INIT_EXPANDERS nds32_init_expanders ()
471 /* Storage Layout. */
473 #define BITS_BIG_ENDIAN 0
475 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN)
477 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN)
479 #define UNITS_PER_WORD 4
481 #define PROMOTE_MODE(m, unsignedp, type) \
482 if (GET_MODE_CLASS (m) == MODE_INT && GET_MODE_SIZE (m) < UNITS_PER_WORD) \
484 (m) = SImode; \
487 #define PARM_BOUNDARY 32
489 #define STACK_BOUNDARY 64
491 #define FUNCTION_BOUNDARY 32
493 #define BIGGEST_ALIGNMENT 64
495 #define EMPTY_FIELD_BOUNDARY 32
497 #define STRUCTURE_SIZE_BOUNDARY 8
499 #define STRICT_ALIGNMENT 1
501 #define PCC_BITFIELD_TYPE_MATTERS 1
504 /* Layout of Source Language Data Types. */
506 #define INT_TYPE_SIZE 32
507 #define SHORT_TYPE_SIZE 16
508 #define LONG_TYPE_SIZE 32
509 #define LONG_LONG_TYPE_SIZE 64
511 #define FLOAT_TYPE_SIZE 32
512 #define DOUBLE_TYPE_SIZE 64
513 #define LONG_DOUBLE_TYPE_SIZE 64
515 #define DEFAULT_SIGNED_CHAR 1
517 #define SIZE_TYPE "long unsigned int"
518 #define PTRDIFF_TYPE "long int"
519 #define WCHAR_TYPE "short unsigned int"
520 #define WCHAR_TYPE_SIZE 16
523 /* Register Usage. */
525 /* Number of actual hardware registers.
526 The hardware registers are assigned numbers for the compiler
527 from 0 to just below FIRST_PSEUDO_REGISTER.
528 All registers that the compiler knows about must be given numbers,
529 even those that are not normally considered general registers. */
530 #define FIRST_PSEUDO_REGISTER 101
532 /* An initializer that says which registers are used for fixed
533 purposes all throughout the compiled code and are therefore
534 not available for general allocation.
536 $r28 : $fp
537 $r29 : $gp
538 $r30 : $lp
539 $r31 : $sp
541 caller-save registers: $r0 ~ $r5, $r16 ~ $r23
542 callee-save registers: $r6 ~ $r10, $r11 ~ $r14
544 reserved for assembler : $r15
545 reserved for other use : $r24, $r25, $r26, $r27 */
546 #define FIXED_REGISTERS \
547 { /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
548 0, 0, 0, 0, 0, 0, 0, 0, \
549 /* r8 r9 r10 r11 r12 r13 r14 r15 */ \
550 0, 0, 0, 0, 0, 0, 0, 1, \
551 /* r16 r17 r18 r19 r20 r21 r22 r23 */ \
552 0, 0, 0, 0, 0, 0, 0, 0, \
553 /* r24 r25 r26 r27 r28 r29 r30 r31 */ \
554 1, 1, 1, 1, 0, 1, 0, 1, \
555 /* AP FP Reserved.................... */ \
556 1, 1, 1, 1, 1, 1, 1, 1, \
557 /* Reserved............................... */ \
558 1, 1, 1, 1, 1, 1, 1, 1, \
559 /* Reserved............................... */ \
560 1, 1, 1, 1, 1, 1, 1, 1, \
561 /* Reserved............................... */ \
562 1, 1, 1, 1, 1, 1, 1, 1, \
563 /* Reserved............................... */ \
564 1, 1, 1, 1, 1, 1, 1, 1, \
565 /* Reserved............................... */ \
566 1, 1, 1, 1, 1, 1, 1, 1, \
567 /* Reserved............................... */ \
568 1, 1, 1, 1, 1, 1, 1, 1, \
569 /* Reserved............................... */ \
570 1, 1, 1, 1, 1, 1, 1, 1, \
571 /* Reserved............................... */ \
572 1, 1, 1, 1, 1 \
575 /* Identifies the registers that are not available for
576 general allocation of values that must live across
577 function calls -- so they are caller-save registers.
579 0 : callee-save registers
580 1 : caller-save registers */
581 #define CALL_USED_REGISTERS \
582 { /* r0 r1 r2 r3 r4 r5 r6 r7 */ \
583 1, 1, 1, 1, 1, 1, 0, 0, \
584 /* r8 r9 r10 r11 r12 r13 r14 r15 */ \
585 0, 0, 0, 0, 0, 0, 0, 1, \
586 /* r16 r17 r18 r19 r20 r21 r22 r23 */ \
587 1, 1, 1, 1, 1, 1, 1, 1, \
588 /* r24 r25 r26 r27 r28 r29 r30 r31 */ \
589 1, 1, 1, 1, 0, 1, 0, 1, \
590 /* AP FP Reserved.................... */ \
591 1, 1, 1, 1, 1, 1, 1, 1, \
592 /* Reserved............................... */ \
593 1, 1, 1, 1, 1, 1, 1, 1, \
594 /* Reserved............................... */ \
595 1, 1, 1, 1, 1, 1, 1, 1, \
596 /* Reserved............................... */ \
597 1, 1, 1, 1, 1, 1, 1, 1, \
598 /* Reserved............................... */ \
599 1, 1, 1, 1, 1, 1, 1, 1, \
600 /* Reserved............................... */ \
601 1, 1, 1, 1, 1, 1, 1, 1, \
602 /* Reserved............................... */ \
603 1, 1, 1, 1, 1, 1, 1, 1, \
604 /* Reserved............................... */ \
605 1, 1, 1, 1, 1, 1, 1, 1, \
606 /* Reserved............................... */ \
607 1, 1, 1, 1, 1 \
610 /* In nds32 target, we have three levels of registers:
611 LOW_COST_REGS : $r0 ~ $r7
612 MIDDLE_COST_REGS : $r8 ~ $r11, $r16 ~ $r19
613 HIGH_COST_REGS : $r12 ~ $r14, $r20 ~ $r31 */
614 #define REG_ALLOC_ORDER \
615 { 0, 1, 2, 3, 4, 5, 6, 7, \
616 16, 17, 18, 19, 9, 10, 11, 12, \
617 13, 14, 8, 15, 20, 21, 22, 23, \
618 24, 25, 26, 27, 28, 29, 30, 31, \
619 32, 33, 34, 35, 36, 37, 38, 39, \
620 40, 41, 42, 43, 44, 45, 46, 47, \
621 48, 49, 50, 51, 52, 53, 54, 55, \
622 56, 57, 58, 59, 60, 61, 62, 63, \
623 64, 65, 66, 67, 68, 69, 70, 71, \
624 72, 73, 74, 75, 76, 77, 78, 79, \
625 80, 81, 82, 83, 84, 85, 86, 87, \
626 88, 89, 90, 91, 92, 93, 94, 95, \
627 96, 97, 98, 99, 100, \
630 /* ADJUST_REG_ALLOC_ORDER is a macro which permits reg_alloc_order
631 to be rearranged based on optimizing for speed or size. */
632 #define ADJUST_REG_ALLOC_ORDER nds32_adjust_reg_alloc_order ()
634 /* Tell IRA to use the order we define rather than messing it up with its
635 own cost calculations. */
636 #define HONOR_REG_ALLOC_ORDER optimize_size
639 /* Register Classes. */
641 /* In nds32 target, we have three levels of registers:
642 Low cost regsiters : $r0 ~ $r7
643 Middle cost registers : $r8 ~ $r11, $r16 ~ $r19
644 High cost registers : $r12 ~ $r14, $r20 ~ $r31
646 In practice, we have MIDDLE_REGS cover LOW_REGS register class contents
647 so that it provides more chance to use low cost registers. */
648 enum reg_class
650 NO_REGS,
651 R5_REG,
652 R8_REG,
653 R15_TA_REG,
654 STACK_REG,
655 FRAME_POINTER_REG,
656 LOW_REGS,
657 MIDDLE_REGS,
658 HIGH_REGS,
659 GENERAL_REGS,
660 FRAME_REGS,
661 ALL_REGS,
662 LIM_REG_CLASSES
665 #define N_REG_CLASSES (int) LIM_REG_CLASSES
667 #define REG_CLASS_NAMES \
669 "NO_REGS", \
670 "R5_REG", \
671 "R8_REG", \
672 "R15_TA_REG", \
673 "STACK_REG", \
674 "FRAME_POINTER_REG", \
675 "LOW_REGS", \
676 "MIDDLE_REGS", \
677 "HIGH_REGS", \
678 "GENERAL_REGS", \
679 "FRAME_REGS", \
680 "ALL_REGS" \
683 #define REG_CLASS_CONTENTS \
684 { /* NO_REGS */ \
685 {0x00000000, 0x00000000, 0x00000000, 0x00000000}, \
686 /* R5_REG : 5 */ \
687 {0x00000020, 0x00000000, 0x00000000, 0x00000000}, \
688 /* R8_REG : 8 */ \
689 {0x00000100, 0x00000000, 0x00000000, 0x00000000}, \
690 /* R15_TA_REG : 15 */ \
691 {0x00008000, 0x00000000, 0x00000000, 0x00000000}, \
692 /* STACK_REG : 31 */ \
693 {0x80000000, 0x00000000, 0x00000000, 0x00000000}, \
694 /* FRAME_POINTER_REG : 28 */ \
695 {0x10000000, 0x00000000, 0x00000000, 0x00000000}, \
696 /* LOW_REGS : 0-7 */ \
697 {0x000000ff, 0x00000000, 0x00000000, 0x00000000}, \
698 /* MIDDLE_REGS : 0-11, 16-19 */ \
699 {0x000f0fff, 0x00000000, 0x00000000, 0x00000000}, \
700 /* HIGH_REGS : 12-14, 20-31 */ \
701 {0xfff07000, 0x00000000, 0x00000000, 0x00000000}, \
702 /* GENERAL_REGS : 0-31 */ \
703 {0xffffffff, 0x00000000, 0x00000000, 0x00000000}, \
704 /* FRAME_REGS : 32, 33 */ \
705 {0x00000000, 0x00000003, 0x00000000, 0x00000000}, \
706 /* ALL_REGS : 0-100 */ \
707 {0xffffffff, 0xffffffff, 0xffffffff, 0x0000001f} \
710 #define REGNO_REG_CLASS(regno) nds32_regno_reg_class (regno)
712 #define BASE_REG_CLASS GENERAL_REGS
713 #define INDEX_REG_CLASS GENERAL_REGS
715 /* Return nonzero if it is suitable for use as a
716 base register in operand addresses.
717 So far, we return nonzero only if "num" is a hard reg
718 of the suitable class or a pseudo register which is
719 allocated to a suitable hard reg. */
720 #define REGNO_OK_FOR_BASE_P(num) \
721 ((num) < 32 || (unsigned) reg_renumber[num] < 32)
723 /* Return nonzero if it is suitable for use as a
724 index register in operand addresses.
725 So far, we return nonzero only if "num" is a hard reg
726 of the suitable class or a pseudo register which is
727 allocated to a suitable hard reg.
728 The difference between an index register and a base register is that
729 the index register may be scaled. */
730 #define REGNO_OK_FOR_INDEX_P(num) \
731 ((num) < 32 || (unsigned) reg_renumber[num] < 32)
734 /* Obsolete Macros for Defining Constraints. */
737 /* Stack Layout and Calling Conventions. */
739 #define STACK_GROWS_DOWNWARD 1
741 #define FRAME_GROWS_DOWNWARD 1
743 #define STACK_POINTER_OFFSET 0
745 #define FIRST_PARM_OFFSET(fundecl) \
746 (NDS32_DOUBLE_WORD_ALIGN_P (crtl->args.pretend_args_size) ? 0 : 4)
748 #define RETURN_ADDR_RTX(count, frameaddr) \
749 nds32_return_addr_rtx (count, frameaddr)
751 /* A C expression whose value is RTL representing the location
752 of the incoming return address at the beginning of any function
753 before the prologue.
754 If this RTL is REG, you should also define
755 DWARF_FRAME_RETURN_COLUMN to DWARF_FRAME_REGNUM (REGNO). */
756 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LP_REGNUM)
757 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LP_REGNUM)
759 #define STACK_POINTER_REGNUM SP_REGNUM
761 #define FRAME_POINTER_REGNUM 33
763 #define HARD_FRAME_POINTER_REGNUM FP_REGNUM
765 #define ARG_POINTER_REGNUM 32
767 #define STATIC_CHAIN_REGNUM 16
769 #define ELIMINABLE_REGS \
770 { { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
771 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
772 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
773 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM } }
775 #define INITIAL_ELIMINATION_OFFSET(from_reg, to_reg, offset_var) \
776 (offset_var) = nds32_initial_elimination_offset (from_reg, to_reg)
778 #define ACCUMULATE_OUTGOING_ARGS 1
780 #define OUTGOING_REG_PARM_STACK_SPACE(fntype) 1
782 #define CUMULATIVE_ARGS nds32_cumulative_args
784 #define INIT_CUMULATIVE_ARGS(cum, fntype, libname, fndecl, n_named_args) \
785 nds32_init_cumulative_args (&cum, fntype, libname, fndecl, n_named_args)
787 /* The REGNO is an unsigned integer but NDS32_GPR_ARG_FIRST_REGNUM may be 0.
788 We better cast REGNO into signed integer so that we can avoid
789 'comparison of unsigned expression >= 0 is always true' warning. */
790 #define FUNCTION_ARG_REGNO_P(regno) \
791 (((int) regno - NDS32_GPR_ARG_FIRST_REGNUM >= 0) \
792 && ((int) regno - NDS32_GPR_ARG_FIRST_REGNUM < NDS32_MAX_GPR_REGS_FOR_ARGS))
794 #define DEFAULT_PCC_STRUCT_RETURN 0
796 /* EXIT_IGNORE_STACK should be nonzero if, when returning
797 from a function, the stack pointer does not matter.
798 The value is tested only in functions that have frame pointers.
799 In nds32 target, the function epilogue recovers the
800 stack pointer from the frame. */
801 #define EXIT_IGNORE_STACK 1
803 #define FUNCTION_PROFILER(file, labelno) \
804 fprintf (file, "/* profiler %d */", (labelno))
807 /* Implementing the Varargs Macros. */
810 /* Trampolines for Nested Functions. */
812 /* Giving A-function and B-function,
813 if B-function wants to call A-function's nested function,
814 we need to fill trampoline code into A-function's stack
815 so that B-function can execute the code in stack to indirectly
816 jump to (like 'trampoline' action) desired nested function.
818 The trampoline code for nds32 target must contains following parts:
820 1. instructions (4 * 4 = 16 bytes):
821 get $pc first
822 load chain_value to static chain register via $pc
823 load nested function address to $r15 via $pc
824 jump to desired nested function via $r15
825 2. data (4 * 2 = 8 bytes):
826 chain_value
827 nested function address
829 Please check nds32.c implementation for more information. */
830 #define TRAMPOLINE_SIZE 24
832 /* Because all instructions/data in trampoline template are 4-byte size,
833 we set trampoline alignment 8*4=32 bits. */
834 #define TRAMPOLINE_ALIGNMENT 32
837 /* Implicit Calls to Library Routines. */
840 /* Addressing Modes. */
842 /* We can use "LWI.bi Rt, [Ra], 4" to support post increment. */
843 #define HAVE_POST_INCREMENT 1
844 /* We can use "LWI.bi Rt, [Ra], -4" to support post decrement. */
845 #define HAVE_POST_DECREMENT 1
847 /* We have "LWI.bi Rt, [Ra], imm" instruction form. */
848 #define HAVE_POST_MODIFY_DISP 1
849 /* We have "LW.bi Rt, [Ra], Rb" instruction form. */
850 #define HAVE_POST_MODIFY_REG 1
852 #define CONSTANT_ADDRESS_P(x) (CONSTANT_P (x) && GET_CODE (x) != CONST_DOUBLE)
854 #define MAX_REGS_PER_ADDRESS 2
857 /* Anchored Addresses. */
860 /* Condition Code Status. */
863 /* Describing Relative Costs of Operations. */
865 /* A C expression for the cost of a branch instruction.
866 A value of 1 is the default;
867 other values are interpreted relative to that. */
868 #define BRANCH_COST(speed_p, predictable_p) ((speed_p) ? 2 : 0)
870 #define SLOW_BYTE_ACCESS 1
872 #define NO_FUNCTION_CSE 1
875 /* Adjusting the Instruction Scheduler. */
878 /* Dividing the Output into Sections (Texts, Data, . . . ). */
880 #define TEXT_SECTION_ASM_OP "\t.text"
881 #define DATA_SECTION_ASM_OP "\t.data"
883 /* Currently, nds32 assembler does NOT handle '.bss' pseudo-op.
884 So we use '.section .bss' alternatively. */
885 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
887 /* Define this macro to be an expression with a nonzero value if jump tables
888 (for tablejump insns) should be output in the text section,
889 along with the assembler instructions.
890 Otherwise, the readonly data section is used. */
891 #define JUMP_TABLES_IN_TEXT_SECTION 1
894 /* Position Independent Code. */
896 #define PIC_OFFSET_TABLE_REGNUM GP_REGNUM
899 /* Defining the Output Assembler Language. */
901 #define ASM_COMMENT_START "!"
903 #define ASM_APP_ON "! #APP"
905 #define ASM_APP_OFF "! #NO_APP\n"
907 #define ASM_OUTPUT_LABELREF(stream, name) \
908 asm_fprintf (stream, "%U%s", (*targetm.strip_name_encoding) (name))
910 #define ASM_OUTPUT_SYMBOL_REF(stream, sym) \
911 assemble_name (stream, XSTR (sym, 0))
913 #define ASM_OUTPUT_LABEL_REF(stream, buf) \
914 assemble_name (stream, buf)
916 #define LOCAL_LABEL_PREFIX "."
918 #define REGISTER_NAMES \
919 { "$r0", "$r1", "$r2", "$r3", "$r4", "$r5", "$r6", "$r7", \
920 "$r8", "$r9", "$r10", "$r11", "$r12", "$r13", "$r14", "$ta", \
921 "$r16", "$r17", "$r18", "$r19", "$r20", "$r21", "$r22", "$r23", \
922 "$r24", "$r25", "$r26", "$r27", "$fp", "$gp", "$lp", "$sp", \
923 "$AP", "$SFP", "NA", "NA", "NA", "NA", "NA", "NA", \
924 "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", \
925 "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", \
926 "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", \
927 "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", \
928 "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", \
929 "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", \
930 "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", \
931 "NA", "NA", "NA", "NA", "NA" \
934 /* Output normal jump table entry. */
935 #define ASM_OUTPUT_ADDR_VEC_ELT(stream, value) \
936 asm_fprintf (stream, "\t.word\t%LL%d\n", value)
938 /* Output pc relative jump table entry. */
939 #define ASM_OUTPUT_ADDR_DIFF_ELT(stream, body, value, rel) \
940 do \
942 switch (GET_MODE (body)) \
944 case E_QImode: \
945 asm_fprintf (stream, "\t.byte\t.L%d-.L%d\n", value, rel); \
946 break; \
947 case E_HImode: \
948 asm_fprintf (stream, "\t.short\t.L%d-.L%d\n", value, rel); \
949 break; \
950 case E_SImode: \
951 asm_fprintf (stream, "\t.word\t.L%d-.L%d\n", value, rel); \
952 break; \
953 default: \
954 gcc_unreachable(); \
956 } while (0)
958 /* We have to undef it first because elfos.h formerly define it
959 check gcc/config.gcc and gcc/config/elfos.h for more information. */
960 #undef ASM_OUTPUT_CASE_LABEL
961 #define ASM_OUTPUT_CASE_LABEL(stream, prefix, num, table) \
962 do \
964 asm_fprintf (stream, "\t! Jump Table Begin\n"); \
965 (*targetm.asm_out.internal_label) (stream, prefix, num); \
966 } while (0)
968 #define ASM_OUTPUT_CASE_END(stream, num, table) \
969 do \
971 /* Because our jump table is in text section, \
972 we need to make sure 2-byte alignment after \
973 the jump table for instructions fetch. */ \
974 if (GET_MODE (PATTERN (table)) == QImode) \
975 ASM_OUTPUT_ALIGN (stream, 1); \
976 asm_fprintf (stream, "\t! Jump Table End\n"); \
977 } while (0)
979 /* This macro is not documented yet.
980 But we do need it to make jump table vector aligned. */
981 #define ADDR_VEC_ALIGN(JUMPTABLE) 2
983 #define DWARF2_UNWIND_INFO 1
985 #define JUMP_ALIGN(x) \
986 (align_jumps_log ? align_jumps_log : nds32_target_alignment (x))
988 #define LOOP_ALIGN(x) \
989 (align_loops_log ? align_loops_log : nds32_target_alignment (x))
991 #define LABEL_ALIGN(x) \
992 (align_labels_log ? align_labels_log : nds32_target_alignment (x))
994 #define ASM_OUTPUT_ALIGN(stream, power) \
995 fprintf (stream, "\t.align\t%d\n", power)
998 /* Controlling Debugging Information Format. */
1000 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1002 #define DWARF2_DEBUGGING_INFO 1
1004 #define DWARF2_ASM_LINE_DEBUG_INFO 1
1007 /* Cross Compilation and Floating Point. */
1010 /* Mode Switching Instructions. */
1013 /* Defining target-specific uses of __attribute__. */
1016 /* Emulating TLS. */
1019 /* Defining coprocessor specifics for MIPS targets. */
1022 /* Parameters for Precompiled Header Validity Checking. */
1025 /* C++ ABI parameters. */
1028 /* Adding support for named address spaces. */
1031 /* Miscellaneous Parameters. */
1033 /* This is the machine mode that elements of a jump-table should have. */
1034 #define CASE_VECTOR_MODE Pmode
1036 /* Return the preferred mode for and addr_diff_vec when the mininum
1037 and maximum offset are known. */
1038 #define CASE_VECTOR_SHORTEN_MODE(min_offset, max_offset, body) \
1039 ((min_offset < 0 || max_offset >= 0x2000 ) ? SImode \
1040 : (max_offset >= 100) ? HImode \
1041 : QImode)
1043 /* Generate pc relative jump table when -fpic or -Os. */
1044 #define CASE_VECTOR_PC_RELATIVE (flag_pic || optimize_size)
1046 /* Define this macro if operations between registers with integral mode
1047 smaller than a word are always performed on the entire register. */
1048 #define WORD_REGISTER_OPERATIONS 1
1050 /* A C expression indicating when insns that read memory in mem_mode,
1051 an integral mode narrower than a word, set the bits outside of mem_mode
1052 to be either the sign-extension or the zero-extension of the data read. */
1053 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1055 /* The maximum number of bytes that a single instruction can move quickly
1056 between memory and registers or between two memory locations. */
1057 #define MOVE_MAX 4
1059 /* A C expression that is nonzero if on this machine the number of bits
1060 actually used for the count of a shift operation is equal to the number
1061 of bits needed to represent the size of the object being shifted. */
1062 #define SHIFT_COUNT_TRUNCATED 1
1064 /* A C expression describing the value returned by a comparison operator with
1065 an integral mode and stored by a store-flag instruction ('cstoremode4')
1066 when the condition is true. */
1067 #define STORE_FLAG_VALUE 1
1069 /* A C expression that indicates whether the architecture defines a value for
1070 clz or ctz with a zero operand. In nds32 clz for 0 result 32 is defined
1071 in ISA spec */
1072 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
1074 /* An alias for the machine mode for pointers. */
1075 #define Pmode SImode
1077 /* An alias for the machine mode used for memory references to functions
1078 being called, in call RTL expressions. */
1079 #define FUNCTION_MODE SImode
1081 /* ------------------------------------------------------------------------ */