1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains optimizer of the control flow. The main entry point is
21 cleanup_cfg. Following optimizations are performed:
23 - Unreachable blocks removal
24 - Edge forwarding (edge to the forwarder block is forwarded to its
25 successor. Simplification of the branch instruction is performed by
26 underlying infrastructure so branch can be converted to simplejump or
28 - Cross jumping (tail merging)
29 - Conditional jump-around-simplejump simplification
30 - Basic block merging. */
34 #include "coretypes.h"
43 #include "insn-config.h"
46 #include "tree-pass.h"
51 #include "cfgcleanup.h"
56 #include "function-abi.h"
58 #define FORWARDER_BLOCK_P(BB) ((BB)->flags & BB_FORWARDER_BLOCK)
60 /* Set to true when we are running first pass of try_optimize_cfg loop. */
61 static bool first_pass
;
63 /* Set to true if crossjumps occurred in the latest run of try_optimize_cfg. */
64 static bool crossjumps_occurred
;
66 /* Set to true if we couldn't run an optimization due to stale liveness
67 information; we should run df_analyze to enable more opportunities. */
68 static bool block_was_dirty
;
70 static bool try_crossjump_to_edge (int, edge
, edge
, enum replace_direction
);
71 static bool try_crossjump_bb (int, basic_block
);
72 static bool outgoing_edges_match (int, basic_block
, basic_block
);
73 static enum replace_direction
old_insns_match_p (int, rtx_insn
*, rtx_insn
*);
75 static void merge_blocks_move_predecessor_nojumps (basic_block
, basic_block
);
76 static void merge_blocks_move_successor_nojumps (basic_block
, basic_block
);
77 static bool try_optimize_cfg (int);
78 static bool try_simplify_condjump (basic_block
);
79 static bool try_forward_edges (int, basic_block
);
80 static edge
thread_jump (edge
, basic_block
);
81 static bool mark_effect (rtx
, bitmap
);
82 static void notice_new_block (basic_block
);
83 static void update_forwarder_flag (basic_block
);
84 static void merge_memattrs (rtx
, rtx
);
86 /* Set flags for newly created block. */
89 notice_new_block (basic_block bb
)
94 if (forwarder_block_p (bb
))
95 bb
->flags
|= BB_FORWARDER_BLOCK
;
98 /* Recompute forwarder flag after block has been modified. */
101 update_forwarder_flag (basic_block bb
)
103 if (forwarder_block_p (bb
))
104 bb
->flags
|= BB_FORWARDER_BLOCK
;
106 bb
->flags
&= ~BB_FORWARDER_BLOCK
;
109 /* Simplify a conditional jump around an unconditional jump.
110 Return true if something changed. */
113 try_simplify_condjump (basic_block cbranch_block
)
115 basic_block jump_block
, jump_dest_block
, cbranch_dest_block
;
116 edge cbranch_jump_edge
, cbranch_fallthru_edge
;
117 rtx_insn
*cbranch_insn
;
119 /* Verify that there are exactly two successors. */
120 if (EDGE_COUNT (cbranch_block
->succs
) != 2)
123 /* Verify that we've got a normal conditional branch at the end
125 cbranch_insn
= BB_END (cbranch_block
);
126 if (!any_condjump_p (cbranch_insn
))
129 cbranch_fallthru_edge
= FALLTHRU_EDGE (cbranch_block
);
130 cbranch_jump_edge
= BRANCH_EDGE (cbranch_block
);
132 /* The next block must not have multiple predecessors, must not
133 be the last block in the function, and must contain just the
134 unconditional jump. */
135 jump_block
= cbranch_fallthru_edge
->dest
;
136 if (!single_pred_p (jump_block
)
137 || jump_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
138 || !FORWARDER_BLOCK_P (jump_block
))
140 jump_dest_block
= single_succ (jump_block
);
142 /* If we are partitioning hot/cold basic blocks, we don't want to
143 mess up unconditional or indirect jumps that cross between hot
146 Basic block partitioning may result in some jumps that appear to
147 be optimizable (or blocks that appear to be mergeable), but which really
148 must be left untouched (they are required to make it safely across
149 partition boundaries). See the comments at the top of
150 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
152 if (BB_PARTITION (jump_block
) != BB_PARTITION (jump_dest_block
)
153 || (cbranch_jump_edge
->flags
& EDGE_CROSSING
))
156 /* The conditional branch must target the block after the
157 unconditional branch. */
158 cbranch_dest_block
= cbranch_jump_edge
->dest
;
160 if (cbranch_dest_block
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
161 || jump_dest_block
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
162 || !can_fallthru (jump_block
, cbranch_dest_block
))
165 /* Invert the conditional branch. */
166 if (!invert_jump (as_a
<rtx_jump_insn
*> (cbranch_insn
),
167 block_label (jump_dest_block
), 0))
171 fprintf (dump_file
, "Simplifying condjump %i around jump %i\n",
172 INSN_UID (cbranch_insn
), INSN_UID (BB_END (jump_block
)));
174 /* Success. Update the CFG to match. Note that after this point
175 the edge variable names appear backwards; the redirection is done
176 this way to preserve edge profile data. */
177 cbranch_jump_edge
= redirect_edge_succ_nodup (cbranch_jump_edge
,
179 cbranch_fallthru_edge
= redirect_edge_succ_nodup (cbranch_fallthru_edge
,
181 cbranch_jump_edge
->flags
|= EDGE_FALLTHRU
;
182 cbranch_fallthru_edge
->flags
&= ~EDGE_FALLTHRU
;
183 update_br_prob_note (cbranch_block
);
185 /* Delete the block with the unconditional jump, and clean up the mess. */
186 delete_basic_block (jump_block
);
187 tidy_fallthru_edge (cbranch_jump_edge
);
188 update_forwarder_flag (cbranch_block
);
193 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
194 on register. Used by jump threading. */
197 mark_effect (rtx exp
, regset nonequal
)
200 switch (GET_CODE (exp
))
202 /* In case we do clobber the register, mark it as equal, as we know the
203 value is dead so it don't have to match. */
205 dest
= XEXP (exp
, 0);
207 bitmap_clear_range (nonequal
, REGNO (dest
), REG_NREGS (dest
));
211 if (rtx_equal_for_cselib_p (SET_DEST (exp
), SET_SRC (exp
)))
213 dest
= SET_DEST (exp
);
218 bitmap_set_range (nonequal
, REGNO (dest
), REG_NREGS (dest
));
226 /* Return true if X contains a register in NONEQUAL. */
228 mentions_nonequal_regs (const_rtx x
, regset nonequal
)
230 subrtx_iterator::array_type array
;
231 FOR_EACH_SUBRTX (iter
, array
, x
, NONCONST
)
236 unsigned int end_regno
= END_REGNO (x
);
237 for (unsigned int regno
= REGNO (x
); regno
< end_regno
; ++regno
)
238 if (REGNO_REG_SET_P (nonequal
, regno
))
245 /* Attempt to prove that the basic block B will have no side effects and
246 always continues in the same edge if reached via E. Return the edge
247 if exist, NULL otherwise. */
250 thread_jump (edge e
, basic_block b
)
252 rtx set1
, set2
, cond1
, cond2
;
254 enum rtx_code code1
, code2
, reversed_code2
;
255 bool reverse1
= false;
259 reg_set_iterator rsi
;
261 /* Jump threading may cause fixup_partitions to introduce new crossing edges,
262 which is not allowed after reload. */
263 gcc_checking_assert (!reload_completed
|| !crtl
->has_bb_partition
);
265 if (b
->flags
& BB_NONTHREADABLE_BLOCK
)
268 /* At the moment, we do handle only conditional jumps, but later we may
269 want to extend this code to tablejumps and others. */
270 if (EDGE_COUNT (e
->src
->succs
) != 2)
272 if (EDGE_COUNT (b
->succs
) != 2)
274 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
278 /* Second branch must end with onlyjump, as we will eliminate the jump. */
279 if (!any_condjump_p (BB_END (e
->src
)))
282 if (!any_condjump_p (BB_END (b
)) || !onlyjump_p (BB_END (b
)))
284 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
288 set1
= pc_set (BB_END (e
->src
));
289 set2
= pc_set (BB_END (b
));
290 if (((e
->flags
& EDGE_FALLTHRU
) != 0)
291 != (XEXP (SET_SRC (set1
), 1) == pc_rtx
))
294 cond1
= XEXP (SET_SRC (set1
), 0);
295 cond2
= XEXP (SET_SRC (set2
), 0);
297 code1
= reversed_comparison_code (cond1
, BB_END (e
->src
));
299 code1
= GET_CODE (cond1
);
301 code2
= GET_CODE (cond2
);
302 reversed_code2
= reversed_comparison_code (cond2
, BB_END (b
));
304 if (!comparison_dominates_p (code1
, code2
)
305 && !comparison_dominates_p (code1
, reversed_code2
))
308 /* Ensure that the comparison operators are equivalent.
309 ??? This is far too pessimistic. We should allow swapped operands,
310 different CCmodes, or for example comparisons for interval, that
311 dominate even when operands are not equivalent. */
312 if (!rtx_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
313 || !rtx_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
316 /* Punt if BB_END (e->src) is doloop-like conditional jump that modifies
317 the registers used in cond1. */
318 if (modified_in_p (cond1
, BB_END (e
->src
)))
321 /* Short circuit cases where block B contains some side effects, as we can't
323 for (insn
= NEXT_INSN (BB_HEAD (b
)); insn
!= NEXT_INSN (BB_END (b
));
324 insn
= NEXT_INSN (insn
))
325 if (INSN_P (insn
) && side_effects_p (PATTERN (insn
)))
327 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
333 /* First process all values computed in the source basic block. */
334 for (insn
= NEXT_INSN (BB_HEAD (e
->src
));
335 insn
!= NEXT_INSN (BB_END (e
->src
));
336 insn
= NEXT_INSN (insn
))
338 cselib_process_insn (insn
);
340 nonequal
= BITMAP_ALLOC (NULL
);
341 CLEAR_REG_SET (nonequal
);
343 /* Now assume that we've continued by the edge E to B and continue
344 processing as if it were same basic block.
345 Our goal is to prove that whole block is an NOOP. */
347 for (insn
= NEXT_INSN (BB_HEAD (b
));
348 insn
!= NEXT_INSN (BB_END (b
)) && !failed
;
349 insn
= NEXT_INSN (insn
))
351 /* cond2 must not mention any register that is not equal to the
352 former block. Check this before processing that instruction,
353 as BB_END (b) could contain also clobbers. */
354 if (insn
== BB_END (b
)
355 && mentions_nonequal_regs (cond2
, nonequal
))
360 rtx pat
= PATTERN (insn
);
362 if (GET_CODE (pat
) == PARALLEL
)
364 for (i
= 0; i
< (unsigned)XVECLEN (pat
, 0); i
++)
365 failed
|= mark_effect (XVECEXP (pat
, 0, i
), nonequal
);
368 failed
|= mark_effect (pat
, nonequal
);
371 cselib_process_insn (insn
);
374 /* Later we should clear nonequal of dead registers. So far we don't
375 have life information in cfg_cleanup. */
378 b
->flags
|= BB_NONTHREADABLE_BLOCK
;
382 EXECUTE_IF_SET_IN_REG_SET (nonequal
, 0, i
, rsi
)
385 BITMAP_FREE (nonequal
);
387 if ((comparison_dominates_p (code1
, code2
) != 0)
388 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
389 return BRANCH_EDGE (b
);
391 return FALLTHRU_EDGE (b
);
394 BITMAP_FREE (nonequal
);
399 /* Attempt to forward edges leaving basic block B.
400 Return true if successful. */
403 try_forward_edges (int mode
, basic_block b
)
405 bool changed
= false;
407 edge e
, *threaded_edges
= NULL
;
409 for (ei
= ei_start (b
->succs
); (e
= ei_safe_edge (ei
)); )
411 basic_block target
, first
;
412 location_t goto_locus
;
414 bool threaded
= false;
415 int nthreaded_edges
= 0;
416 bool may_thread
= first_pass
|| (b
->flags
& BB_MODIFIED
) != 0;
417 bool new_target_threaded
= false;
419 /* Skip complex edges because we don't know how to update them.
421 Still handle fallthru edges, as we can succeed to forward fallthru
422 edge to the same place as the branch edge of conditional branch
423 and turn conditional branch to an unconditional branch. */
424 if (e
->flags
& EDGE_COMPLEX
)
430 target
= first
= e
->dest
;
431 counter
= NUM_FIXED_BLOCKS
;
432 goto_locus
= e
->goto_locus
;
434 while (counter
< n_basic_blocks_for_fn (cfun
))
436 basic_block new_target
= NULL
;
437 may_thread
|= (target
->flags
& BB_MODIFIED
) != 0;
439 if (FORWARDER_BLOCK_P (target
)
440 && single_succ (target
) != EXIT_BLOCK_PTR_FOR_FN (cfun
))
442 /* Bypass trivial infinite loops. */
443 new_target
= single_succ (target
);
444 if (target
== new_target
)
445 counter
= n_basic_blocks_for_fn (cfun
);
448 /* When not optimizing, ensure that edges or forwarder
449 blocks with different locus are not optimized out. */
450 location_t new_locus
= single_succ_edge (target
)->goto_locus
;
451 location_t locus
= goto_locus
;
453 if (LOCATION_LOCUS (new_locus
) != UNKNOWN_LOCATION
454 && LOCATION_LOCUS (locus
) != UNKNOWN_LOCATION
455 && new_locus
!= locus
)
459 if (LOCATION_LOCUS (new_locus
) != UNKNOWN_LOCATION
)
462 rtx_insn
*last
= BB_END (target
);
463 if (DEBUG_INSN_P (last
))
464 last
= prev_nondebug_insn (last
);
465 if (last
&& INSN_P (last
))
466 new_locus
= INSN_LOCATION (last
);
468 new_locus
= UNKNOWN_LOCATION
;
470 if (LOCATION_LOCUS (new_locus
) != UNKNOWN_LOCATION
471 && LOCATION_LOCUS (locus
) != UNKNOWN_LOCATION
472 && new_locus
!= locus
)
476 if (LOCATION_LOCUS (new_locus
) != UNKNOWN_LOCATION
)
485 /* Allow to thread only over one edge at time to simplify updating
487 else if ((mode
& CLEANUP_THREADING
) && may_thread
)
489 edge t
= thread_jump (e
, target
);
493 threaded_edges
= XNEWVEC (edge
,
494 n_basic_blocks_for_fn (cfun
));
499 /* Detect an infinite loop across blocks not
500 including the start block. */
501 for (i
= 0; i
< nthreaded_edges
; ++i
)
502 if (threaded_edges
[i
] == t
)
504 if (i
< nthreaded_edges
)
506 counter
= n_basic_blocks_for_fn (cfun
);
511 /* Detect an infinite loop across the start block. */
515 gcc_assert (nthreaded_edges
516 < (n_basic_blocks_for_fn (cfun
)
517 - NUM_FIXED_BLOCKS
));
518 threaded_edges
[nthreaded_edges
++] = t
;
520 new_target
= t
->dest
;
521 new_target_threaded
= true;
529 /* Do not turn non-crossing jump to crossing. Depending on target
530 it may require different instruction pattern. */
531 if ((e
->flags
& EDGE_CROSSING
)
532 || BB_PARTITION (first
) == BB_PARTITION (new_target
))
535 threaded
|= new_target_threaded
;
539 if (counter
>= n_basic_blocks_for_fn (cfun
))
542 fprintf (dump_file
, "Infinite loop in BB %i.\n",
545 else if (target
== first
)
546 ; /* We didn't do anything. */
549 /* Save the values now, as the edge may get removed. */
550 profile_count edge_count
= e
->count ();
553 e
->goto_locus
= goto_locus
;
555 /* Don't force if target is exit block. */
556 if (threaded
&& target
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
558 notice_new_block (redirect_edge_and_branch_force (e
, target
));
560 fprintf (dump_file
, "Conditionals threaded.\n");
562 else if (!redirect_edge_and_branch (e
, target
))
566 "Forwarding edge %i->%i to %i failed.\n",
567 b
->index
, e
->dest
->index
, target
->index
);
572 /* We successfully forwarded the edge. Now update profile
573 data: for each edge we traversed in the chain, remove
574 the original edge's execution count. */
579 if (!single_succ_p (first
))
581 gcc_assert (n
< nthreaded_edges
);
582 t
= threaded_edges
[n
++];
583 gcc_assert (t
->src
== first
);
584 update_bb_profile_for_threading (first
, edge_count
, t
);
585 update_br_prob_note (first
);
589 first
->count
-= edge_count
;
590 /* It is possible that as the result of
591 threading we've removed edge as it is
592 threaded to the fallthru edge. Avoid
593 getting out of sync. */
594 if (n
< nthreaded_edges
595 && first
== threaded_edges
[n
]->src
)
597 t
= single_succ_edge (first
);
602 while (first
!= target
);
610 free (threaded_edges
);
615 /* Blocks A and B are to be merged into a single block. A has no incoming
616 fallthru edge, so it can be moved before B without adding or modifying
617 any jumps (aside from the jump from A to B). */
620 merge_blocks_move_predecessor_nojumps (basic_block a
, basic_block b
)
624 /* If we are partitioning hot/cold basic blocks, we don't want to
625 mess up unconditional or indirect jumps that cross between hot
628 Basic block partitioning may result in some jumps that appear to
629 be optimizable (or blocks that appear to be mergeable), but which really
630 must be left untouched (they are required to make it safely across
631 partition boundaries). See the comments at the top of
632 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
634 if (BB_PARTITION (a
) != BB_PARTITION (b
))
637 barrier
= next_nonnote_insn (BB_END (a
));
638 gcc_assert (BARRIER_P (barrier
));
639 delete_insn (barrier
);
641 /* Scramble the insn chain. */
642 if (BB_END (a
) != PREV_INSN (BB_HEAD (b
)))
643 reorder_insns_nobb (BB_HEAD (a
), BB_END (a
), PREV_INSN (BB_HEAD (b
)));
647 fprintf (dump_file
, "Moved block %d before %d and merged.\n",
650 /* Swap the records for the two blocks around. */
653 link_block (a
, b
->prev_bb
);
655 /* Now blocks A and B are contiguous. Merge them. */
659 /* Blocks A and B are to be merged into a single block. B has no outgoing
660 fallthru edge, so it can be moved after A without adding or modifying
661 any jumps (aside from the jump from A to B). */
664 merge_blocks_move_successor_nojumps (basic_block a
, basic_block b
)
666 rtx_insn
*barrier
, *real_b_end
;
668 rtx_jump_table_data
*table
;
670 /* If we are partitioning hot/cold basic blocks, we don't want to
671 mess up unconditional or indirect jumps that cross between hot
674 Basic block partitioning may result in some jumps that appear to
675 be optimizable (or blocks that appear to be mergeable), but which really
676 must be left untouched (they are required to make it safely across
677 partition boundaries). See the comments at the top of
678 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
680 if (BB_PARTITION (a
) != BB_PARTITION (b
))
683 real_b_end
= BB_END (b
);
685 /* If there is a jump table following block B temporarily add the jump table
686 to block B so that it will also be moved to the correct location. */
687 if (tablejump_p (BB_END (b
), &label
, &table
)
688 && prev_active_insn (label
) == BB_END (b
))
693 /* There had better have been a barrier there. Delete it. */
694 barrier
= NEXT_INSN (BB_END (b
));
695 if (barrier
&& BARRIER_P (barrier
))
696 delete_insn (barrier
);
699 /* Scramble the insn chain. */
700 reorder_insns_nobb (BB_HEAD (b
), BB_END (b
), BB_END (a
));
702 /* Restore the real end of b. */
703 BB_END (b
) = real_b_end
;
706 fprintf (dump_file
, "Moved block %d after %d and merged.\n",
709 /* Now blocks A and B are contiguous. Merge them. */
713 /* Attempt to merge basic blocks that are potentially non-adjacent.
714 Return NULL iff the attempt failed, otherwise return basic block
715 where cleanup_cfg should continue. Because the merging commonly
716 moves basic block away or introduces another optimization
717 possibility, return basic block just before B so cleanup_cfg don't
720 It may be good idea to return basic block before C in the case
721 C has been moved after B and originally appeared earlier in the
722 insn sequence, but we have no information available about the
723 relative ordering of these two. Hopefully it is not too common. */
726 merge_blocks_move (edge e
, basic_block b
, basic_block c
, int mode
)
730 /* If we are partitioning hot/cold basic blocks, we don't want to
731 mess up unconditional or indirect jumps that cross between hot
734 Basic block partitioning may result in some jumps that appear to
735 be optimizable (or blocks that appear to be mergeable), but which really
736 must be left untouched (they are required to make it safely across
737 partition boundaries). See the comments at the top of
738 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
740 if (BB_PARTITION (b
) != BB_PARTITION (c
))
743 /* If B has a fallthru edge to C, no need to move anything. */
744 if (e
->flags
& EDGE_FALLTHRU
)
746 int b_index
= b
->index
, c_index
= c
->index
;
748 /* Protect the loop latches. */
749 if (current_loops
&& c
->loop_father
->latch
== c
)
753 update_forwarder_flag (b
);
756 fprintf (dump_file
, "Merged %d and %d without moving.\n",
759 return b
->prev_bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) ? b
: b
->prev_bb
;
762 /* Otherwise we will need to move code around. Do that only if expensive
763 transformations are allowed. */
764 else if (mode
& CLEANUP_EXPENSIVE
)
766 edge tmp_edge
, b_fallthru_edge
;
767 bool c_has_outgoing_fallthru
;
768 bool b_has_incoming_fallthru
;
770 /* Avoid overactive code motion, as the forwarder blocks should be
771 eliminated by edge redirection instead. One exception might have
772 been if B is a forwarder block and C has no fallthru edge, but
773 that should be cleaned up by bb-reorder instead. */
774 if (FORWARDER_BLOCK_P (b
) || FORWARDER_BLOCK_P (c
))
777 /* We must make sure to not munge nesting of lexical blocks,
778 and loop notes. This is done by squeezing out all the notes
779 and leaving them there to lie. Not ideal, but functional. */
781 tmp_edge
= find_fallthru_edge (c
->succs
);
782 c_has_outgoing_fallthru
= (tmp_edge
!= NULL
);
784 tmp_edge
= find_fallthru_edge (b
->preds
);
785 b_has_incoming_fallthru
= (tmp_edge
!= NULL
);
786 b_fallthru_edge
= tmp_edge
;
789 next
= next
->prev_bb
;
791 /* Otherwise, we're going to try to move C after B. If C does
792 not have an outgoing fallthru, then it can be moved
793 immediately after B without introducing or modifying jumps. */
794 if (! c_has_outgoing_fallthru
)
796 merge_blocks_move_successor_nojumps (b
, c
);
797 return next
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) ? next
->next_bb
: next
;
800 /* If B does not have an incoming fallthru, then it can be moved
801 immediately before C without introducing or modifying jumps.
802 C cannot be the first block, so we do not have to worry about
803 accessing a non-existent block. */
805 if (b_has_incoming_fallthru
)
809 if (b_fallthru_edge
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
811 bb
= force_nonfallthru (b_fallthru_edge
);
813 notice_new_block (bb
);
816 merge_blocks_move_predecessor_nojumps (b
, c
);
817 return next
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) ? next
->next_bb
: next
;
824 /* Removes the memory attributes of MEM expression
825 if they are not equal. */
828 merge_memattrs (rtx x
, rtx y
)
837 if (x
== 0 || y
== 0)
842 if (code
!= GET_CODE (y
))
845 if (GET_MODE (x
) != GET_MODE (y
))
848 if (code
== MEM
&& !mem_attrs_eq_p (MEM_ATTRS (x
), MEM_ATTRS (y
)))
852 else if (! MEM_ATTRS (y
))
856 if (MEM_ALIAS_SET (x
) != MEM_ALIAS_SET (y
))
858 set_mem_alias_set (x
, 0);
859 set_mem_alias_set (y
, 0);
862 if (! mem_expr_equal_p (MEM_EXPR (x
), MEM_EXPR (y
)))
866 clear_mem_offset (x
);
867 clear_mem_offset (y
);
869 else if (MEM_OFFSET_KNOWN_P (x
) != MEM_OFFSET_KNOWN_P (y
)
870 || (MEM_OFFSET_KNOWN_P (x
)
871 && maybe_ne (MEM_OFFSET (x
), MEM_OFFSET (y
))))
873 clear_mem_offset (x
);
874 clear_mem_offset (y
);
877 if (!MEM_SIZE_KNOWN_P (x
))
879 else if (!MEM_SIZE_KNOWN_P (y
))
881 else if (known_le (MEM_SIZE (x
), MEM_SIZE (y
)))
882 set_mem_size (x
, MEM_SIZE (y
));
883 else if (known_le (MEM_SIZE (y
), MEM_SIZE (x
)))
884 set_mem_size (y
, MEM_SIZE (x
));
887 /* The sizes aren't ordered, so we can't merge them. */
892 set_mem_align (x
, MIN (MEM_ALIGN (x
), MEM_ALIGN (y
)));
893 set_mem_align (y
, MEM_ALIGN (x
));
898 if (MEM_READONLY_P (x
) != MEM_READONLY_P (y
))
900 MEM_READONLY_P (x
) = 0;
901 MEM_READONLY_P (y
) = 0;
903 if (MEM_NOTRAP_P (x
) != MEM_NOTRAP_P (y
))
905 MEM_NOTRAP_P (x
) = 0;
906 MEM_NOTRAP_P (y
) = 0;
908 if (MEM_VOLATILE_P (x
) != MEM_VOLATILE_P (y
))
910 MEM_VOLATILE_P (x
) = 1;
911 MEM_VOLATILE_P (y
) = 1;
915 fmt
= GET_RTX_FORMAT (code
);
916 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
921 /* Two vectors must have the same length. */
922 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
925 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
926 merge_memattrs (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
));
931 merge_memattrs (XEXP (x
, i
), XEXP (y
, i
));
938 /* Checks if patterns P1 and P2 are equivalent, apart from the possibly
939 different single sets S1 and S2. */
942 equal_different_set_p (rtx p1
, rtx s1
, rtx p2
, rtx s2
)
947 if (p1
== s1
&& p2
== s2
)
950 if (GET_CODE (p1
) != PARALLEL
|| GET_CODE (p2
) != PARALLEL
)
953 if (XVECLEN (p1
, 0) != XVECLEN (p2
, 0))
956 for (i
= 0; i
< XVECLEN (p1
, 0); i
++)
958 e1
= XVECEXP (p1
, 0, i
);
959 e2
= XVECEXP (p2
, 0, i
);
960 if (e1
== s1
&& e2
== s2
)
963 ? rtx_renumbered_equal_p (e1
, e2
) : rtx_equal_p (e1
, e2
))
973 /* NOTE1 is the REG_EQUAL note, if any, attached to an insn
974 that is a single_set with a SET_SRC of SRC1. Similarly
977 So effectively NOTE1/NOTE2 are an alternate form of
978 SRC1/SRC2 respectively.
980 Return nonzero if SRC1 or NOTE1 has the same constant
981 integer value as SRC2 or NOTE2. Else return zero. */
983 values_equal_p (rtx note1
, rtx note2
, rtx src1
, rtx src2
)
987 && CONST_INT_P (XEXP (note1
, 0))
988 && rtx_equal_p (XEXP (note1
, 0), XEXP (note2
, 0)))
993 && CONST_INT_P (src1
)
994 && CONST_INT_P (src2
)
995 && rtx_equal_p (src1
, src2
))
999 && CONST_INT_P (src2
)
1000 && rtx_equal_p (XEXP (note1
, 0), src2
))
1004 && CONST_INT_P (src1
)
1005 && rtx_equal_p (XEXP (note2
, 0), src1
))
1011 /* Examine register notes on I1 and I2 and return:
1012 - dir_forward if I1 can be replaced by I2, or
1013 - dir_backward if I2 can be replaced by I1, or
1014 - dir_both if both are the case. */
1016 static enum replace_direction
1017 can_replace_by (rtx_insn
*i1
, rtx_insn
*i2
)
1019 rtx s1
, s2
, d1
, d2
, src1
, src2
, note1
, note2
;
1022 /* Check for 2 sets. */
1023 s1
= single_set (i1
);
1024 s2
= single_set (i2
);
1025 if (s1
== NULL_RTX
|| s2
== NULL_RTX
)
1028 /* Check that the 2 sets set the same dest. */
1031 if (!(reload_completed
1032 ? rtx_renumbered_equal_p (d1
, d2
) : rtx_equal_p (d1
, d2
)))
1035 /* Find identical req_equiv or reg_equal note, which implies that the 2 sets
1036 set dest to the same value. */
1037 note1
= find_reg_equal_equiv_note (i1
);
1038 note2
= find_reg_equal_equiv_note (i2
);
1040 src1
= SET_SRC (s1
);
1041 src2
= SET_SRC (s2
);
1043 if (!values_equal_p (note1
, note2
, src1
, src2
))
1046 if (!equal_different_set_p (PATTERN (i1
), s1
, PATTERN (i2
), s2
))
1049 /* Although the 2 sets set dest to the same value, we cannot replace
1050 (set (dest) (const_int))
1053 because we don't know if the reg is live and has the same value at the
1054 location of replacement. */
1055 c1
= CONST_INT_P (src1
);
1056 c2
= CONST_INT_P (src2
);
1062 return dir_backward
;
1067 /* Merges directions A and B. */
1069 static enum replace_direction
1070 merge_dir (enum replace_direction a
, enum replace_direction b
)
1072 /* Implements the following table:
1091 /* Array of flags indexed by reg note kind, true if the given
1092 reg note is CFA related. */
1093 static const bool reg_note_cfa_p
[] = {
1095 #define DEF_REG_NOTE(NAME) false,
1096 #define REG_CFA_NOTE(NAME) true,
1097 #include "reg-notes.def"
1103 /* Return true if I1 and I2 have identical CFA notes (the same order
1104 and equivalent content). */
1107 insns_have_identical_cfa_notes (rtx_insn
*i1
, rtx_insn
*i2
)
1110 for (n1
= REG_NOTES (i1
), n2
= REG_NOTES (i2
); ;
1111 n1
= XEXP (n1
, 1), n2
= XEXP (n2
, 1))
1113 /* Skip over reg notes not related to CFI information. */
1114 while (n1
&& !reg_note_cfa_p
[REG_NOTE_KIND (n1
)])
1116 while (n2
&& !reg_note_cfa_p
[REG_NOTE_KIND (n2
)])
1118 if (n1
== NULL_RTX
&& n2
== NULL_RTX
)
1120 if (n1
== NULL_RTX
|| n2
== NULL_RTX
)
1122 if (XEXP (n1
, 0) == XEXP (n2
, 0))
1124 else if (XEXP (n1
, 0) == NULL_RTX
|| XEXP (n2
, 0) == NULL_RTX
)
1126 else if (!(reload_completed
1127 ? rtx_renumbered_equal_p (XEXP (n1
, 0), XEXP (n2
, 0))
1128 : rtx_equal_p (XEXP (n1
, 0), XEXP (n2
, 0))))
1133 /* Examine I1 and I2 and return:
1134 - dir_forward if I1 can be replaced by I2, or
1135 - dir_backward if I2 can be replaced by I1, or
1136 - dir_both if both are the case. */
1138 static enum replace_direction
1139 old_insns_match_p (int mode ATTRIBUTE_UNUSED
, rtx_insn
*i1
, rtx_insn
*i2
)
1143 /* Verify that I1 and I2 are equivalent. */
1144 if (GET_CODE (i1
) != GET_CODE (i2
))
1147 /* __builtin_unreachable() may lead to empty blocks (ending with
1148 NOTE_INSN_BASIC_BLOCK). They may be crossjumped. */
1149 if (NOTE_INSN_BASIC_BLOCK_P (i1
) && NOTE_INSN_BASIC_BLOCK_P (i2
))
1152 /* ??? Do not allow cross-jumping between different stack levels. */
1153 p1
= find_reg_note (i1
, REG_ARGS_SIZE
, NULL
);
1154 p2
= find_reg_note (i2
, REG_ARGS_SIZE
, NULL
);
1159 if (!rtx_equal_p (p1
, p2
))
1162 /* ??? Worse, this adjustment had better be constant lest we
1163 have differing incoming stack levels. */
1164 if (!frame_pointer_needed
1165 && known_eq (find_args_size_adjust (i1
), HOST_WIDE_INT_MIN
))
1171 /* Do not allow cross-jumping between frame related insns and other
1173 if (RTX_FRAME_RELATED_P (i1
) != RTX_FRAME_RELATED_P (i2
))
1179 if (GET_CODE (p1
) != GET_CODE (p2
))
1182 /* If this is a CALL_INSN, compare register usage information.
1183 If we don't check this on stack register machines, the two
1184 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1185 numbers of stack registers in the same basic block.
1186 If we don't check this on machines with delay slots, a delay slot may
1187 be filled that clobbers a parameter expected by the subroutine.
1189 ??? We take the simple route for now and assume that if they're
1190 equal, they were constructed identically.
1192 Also check for identical exception regions. */
1196 /* Ensure the same EH region. */
1197 rtx n1
= find_reg_note (i1
, REG_EH_REGION
, 0);
1198 rtx n2
= find_reg_note (i2
, REG_EH_REGION
, 0);
1203 if (n1
&& (!n2
|| XEXP (n1
, 0) != XEXP (n2
, 0)))
1206 if (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1
),
1207 CALL_INSN_FUNCTION_USAGE (i2
))
1208 || SIBLING_CALL_P (i1
) != SIBLING_CALL_P (i2
))
1211 /* For address sanitizer, never crossjump __asan_report_* builtins,
1212 otherwise errors might be reported on incorrect lines. */
1213 if (flag_sanitize
& SANITIZE_ADDRESS
)
1215 rtx call
= get_call_rtx_from (i1
);
1216 if (call
&& GET_CODE (XEXP (XEXP (call
, 0), 0)) == SYMBOL_REF
)
1218 rtx symbol
= XEXP (XEXP (call
, 0), 0);
1219 if (SYMBOL_REF_DECL (symbol
)
1220 && TREE_CODE (SYMBOL_REF_DECL (symbol
)) == FUNCTION_DECL
)
1222 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol
))
1224 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol
))
1225 >= BUILT_IN_ASAN_REPORT_LOAD1
1226 && DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol
))
1227 <= BUILT_IN_ASAN_STOREN
)
1233 if (insn_callee_abi (i1
) != insn_callee_abi (i2
))
1237 /* If both i1 and i2 are frame related, verify all the CFA notes
1238 in the same order and with the same content. */
1239 if (RTX_FRAME_RELATED_P (i1
) && !insns_have_identical_cfa_notes (i1
, i2
))
1243 /* If cross_jump_death_matters is not 0, the insn's mode
1244 indicates whether or not the insn contains any stack-like
1247 if ((mode
& CLEANUP_POST_REGSTACK
) && stack_regs_mentioned (i1
))
1249 /* If register stack conversion has already been done, then
1250 death notes must also be compared before it is certain that
1251 the two instruction streams match. */
1254 HARD_REG_SET i1_regset
, i2_regset
;
1256 CLEAR_HARD_REG_SET (i1_regset
);
1257 CLEAR_HARD_REG_SET (i2_regset
);
1259 for (note
= REG_NOTES (i1
); note
; note
= XEXP (note
, 1))
1260 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
1261 SET_HARD_REG_BIT (i1_regset
, REGNO (XEXP (note
, 0)));
1263 for (note
= REG_NOTES (i2
); note
; note
= XEXP (note
, 1))
1264 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
1265 SET_HARD_REG_BIT (i2_regset
, REGNO (XEXP (note
, 0)));
1267 if (i1_regset
!= i2_regset
)
1272 if (reload_completed
1273 ? rtx_renumbered_equal_p (p1
, p2
) : rtx_equal_p (p1
, p2
))
1276 return can_replace_by (i1
, i2
);
1279 /* When comparing insns I1 and I2 in flow_find_cross_jump or
1280 flow_find_head_matching_sequence, ensure the notes match. */
1283 merge_notes (rtx_insn
*i1
, rtx_insn
*i2
)
1285 /* If the merged insns have different REG_EQUAL notes, then
1287 rtx equiv1
= find_reg_equal_equiv_note (i1
);
1288 rtx equiv2
= find_reg_equal_equiv_note (i2
);
1290 if (equiv1
&& !equiv2
)
1291 remove_note (i1
, equiv1
);
1292 else if (!equiv1
&& equiv2
)
1293 remove_note (i2
, equiv2
);
1294 else if (equiv1
&& equiv2
1295 && !rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))
1297 remove_note (i1
, equiv1
);
1298 remove_note (i2
, equiv2
);
1302 /* Walks from I1 in BB1 backward till the next non-debug insn, and returns the
1303 resulting insn in I1, and the corresponding bb in BB1. At the head of a
1304 bb, if there is a predecessor bb that reaches this bb via fallthru, and
1305 FOLLOW_FALLTHRU, walks further in the predecessor bb and registers this in
1306 DID_FALLTHRU. Otherwise, stops at the head of the bb. */
1309 walk_to_nondebug_insn (rtx_insn
**i1
, basic_block
*bb1
, bool follow_fallthru
,
1314 *did_fallthru
= false;
1317 while (!NONDEBUG_INSN_P (*i1
))
1319 if (*i1
!= BB_HEAD (*bb1
))
1321 *i1
= PREV_INSN (*i1
);
1325 if (!follow_fallthru
)
1328 fallthru
= find_fallthru_edge ((*bb1
)->preds
);
1329 if (!fallthru
|| fallthru
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
)
1330 || !single_succ_p (fallthru
->src
))
1333 *bb1
= fallthru
->src
;
1334 *i1
= BB_END (*bb1
);
1335 *did_fallthru
= true;
1339 /* Look through the insns at the end of BB1 and BB2 and find the longest
1340 sequence that are either equivalent, or allow forward or backward
1341 replacement. Store the first insns for that sequence in *F1 and *F2 and
1342 return the sequence length.
1344 DIR_P indicates the allowed replacement direction on function entry, and
1345 the actual replacement direction on function exit. If NULL, only equivalent
1346 sequences are allowed.
1348 To simplify callers of this function, if the blocks match exactly,
1349 store the head of the blocks in *F1 and *F2. */
1352 flow_find_cross_jump (basic_block bb1
, basic_block bb2
, rtx_insn
**f1
,
1353 rtx_insn
**f2
, enum replace_direction
*dir_p
)
1355 rtx_insn
*i1
, *i2
, *last1
, *last2
, *afterlast1
, *afterlast2
;
1357 enum replace_direction dir
, last_dir
, afterlast_dir
;
1358 bool follow_fallthru
, did_fallthru
;
1364 afterlast_dir
= dir
;
1365 last_dir
= afterlast_dir
;
1367 /* Skip simple jumps at the end of the blocks. Complex jumps still
1368 need to be compared for equivalence, which we'll do below. */
1371 last1
= afterlast1
= last2
= afterlast2
= NULL
;
1373 || (returnjump_p (i1
) && !side_effects_p (PATTERN (i1
))))
1376 i1
= PREV_INSN (i1
);
1381 || (returnjump_p (i2
) && !side_effects_p (PATTERN (i2
))))
1384 /* Count everything except for unconditional jump as insn.
1385 Don't count any jumps if dir_p is NULL. */
1386 if (!simplejump_p (i2
) && !returnjump_p (i2
) && last1
&& dir_p
)
1388 i2
= PREV_INSN (i2
);
1393 /* In the following example, we can replace all jumps to C by jumps to A.
1395 This removes 4 duplicate insns.
1396 [bb A] insn1 [bb C] insn1
1402 We could also replace all jumps to A by jumps to C, but that leaves B
1403 alive, and removes only 2 duplicate insns. In a subsequent crossjump
1404 step, all jumps to B would be replaced with jumps to the middle of C,
1405 achieving the same result with more effort.
1406 So we allow only the first possibility, which means that we don't allow
1407 fallthru in the block that's being replaced. */
1409 follow_fallthru
= dir_p
&& dir
!= dir_forward
;
1410 walk_to_nondebug_insn (&i1
, &bb1
, follow_fallthru
, &did_fallthru
);
1414 follow_fallthru
= dir_p
&& dir
!= dir_backward
;
1415 walk_to_nondebug_insn (&i2
, &bb2
, follow_fallthru
, &did_fallthru
);
1419 if (i1
== BB_HEAD (bb1
) || i2
== BB_HEAD (bb2
))
1422 /* Do not turn corssing edge to non-crossing or vice versa after
1424 if (BB_PARTITION (BLOCK_FOR_INSN (i1
))
1425 != BB_PARTITION (BLOCK_FOR_INSN (i2
))
1426 && reload_completed
)
1429 dir
= merge_dir (dir
, old_insns_match_p (0, i1
, i2
));
1430 if (dir
== dir_none
|| (!dir_p
&& dir
!= dir_both
))
1433 merge_memattrs (i1
, i2
);
1435 /* Don't begin a cross-jump with a NOTE insn. */
1438 merge_notes (i1
, i2
);
1440 afterlast1
= last1
, afterlast2
= last2
;
1441 last1
= i1
, last2
= i2
;
1442 afterlast_dir
= last_dir
;
1444 if (active_insn_p (i1
))
1448 i1
= PREV_INSN (i1
);
1449 i2
= PREV_INSN (i2
);
1452 /* Don't allow the insn after a compare to be shared by
1453 cross-jumping unless the compare is also shared. */
1454 if (HAVE_cc0
&& ninsns
&& reg_mentioned_p (cc0_rtx
, last1
)
1455 && ! sets_cc0_p (last1
))
1456 last1
= afterlast1
, last2
= afterlast2
, last_dir
= afterlast_dir
, ninsns
--;
1458 /* Include preceding notes and labels in the cross-jump. One,
1459 this may bring us to the head of the blocks as requested above.
1460 Two, it keeps line number notes as matched as may be. */
1463 bb1
= BLOCK_FOR_INSN (last1
);
1464 while (last1
!= BB_HEAD (bb1
) && !NONDEBUG_INSN_P (PREV_INSN (last1
)))
1465 last1
= PREV_INSN (last1
);
1467 if (last1
!= BB_HEAD (bb1
) && LABEL_P (PREV_INSN (last1
)))
1468 last1
= PREV_INSN (last1
);
1470 bb2
= BLOCK_FOR_INSN (last2
);
1471 while (last2
!= BB_HEAD (bb2
) && !NONDEBUG_INSN_P (PREV_INSN (last2
)))
1472 last2
= PREV_INSN (last2
);
1474 if (last2
!= BB_HEAD (bb2
) && LABEL_P (PREV_INSN (last2
)))
1475 last2
= PREV_INSN (last2
);
1486 /* Like flow_find_cross_jump, except start looking for a matching sequence from
1487 the head of the two blocks. Do not include jumps at the end.
1488 If STOP_AFTER is nonzero, stop after finding that many matching
1489 instructions. If STOP_AFTER is zero, count all INSN_P insns, if it is
1490 non-zero, only count active insns. */
1493 flow_find_head_matching_sequence (basic_block bb1
, basic_block bb2
, rtx_insn
**f1
,
1494 rtx_insn
**f2
, int stop_after
)
1496 rtx_insn
*i1
, *i2
, *last1
, *last2
, *beforelast1
, *beforelast2
;
1500 int nehedges1
= 0, nehedges2
= 0;
1502 FOR_EACH_EDGE (e
, ei
, bb1
->succs
)
1503 if (e
->flags
& EDGE_EH
)
1505 FOR_EACH_EDGE (e
, ei
, bb2
->succs
)
1506 if (e
->flags
& EDGE_EH
)
1511 last1
= beforelast1
= last2
= beforelast2
= NULL
;
1515 /* Ignore notes, except NOTE_INSN_EPILOGUE_BEG. */
1516 while (!NONDEBUG_INSN_P (i1
) && i1
!= BB_END (bb1
))
1518 if (NOTE_P (i1
) && NOTE_KIND (i1
) == NOTE_INSN_EPILOGUE_BEG
)
1520 i1
= NEXT_INSN (i1
);
1523 while (!NONDEBUG_INSN_P (i2
) && i2
!= BB_END (bb2
))
1525 if (NOTE_P (i2
) && NOTE_KIND (i2
) == NOTE_INSN_EPILOGUE_BEG
)
1527 i2
= NEXT_INSN (i2
);
1530 if ((i1
== BB_END (bb1
) && !NONDEBUG_INSN_P (i1
))
1531 || (i2
== BB_END (bb2
) && !NONDEBUG_INSN_P (i2
)))
1534 if (NOTE_P (i1
) || NOTE_P (i2
)
1535 || JUMP_P (i1
) || JUMP_P (i2
))
1538 /* A sanity check to make sure we're not merging insns with different
1539 effects on EH. If only one of them ends a basic block, it shouldn't
1540 have an EH edge; if both end a basic block, there should be the same
1541 number of EH edges. */
1542 if ((i1
== BB_END (bb1
) && i2
!= BB_END (bb2
)
1544 || (i2
== BB_END (bb2
) && i1
!= BB_END (bb1
)
1546 || (i1
== BB_END (bb1
) && i2
== BB_END (bb2
)
1547 && nehedges1
!= nehedges2
))
1550 if (old_insns_match_p (0, i1
, i2
) != dir_both
)
1553 merge_memattrs (i1
, i2
);
1555 /* Don't begin a cross-jump with a NOTE insn. */
1558 merge_notes (i1
, i2
);
1560 beforelast1
= last1
, beforelast2
= last2
;
1561 last1
= i1
, last2
= i2
;
1562 if (!stop_after
|| active_insn_p (i1
))
1566 if (i1
== BB_END (bb1
) || i2
== BB_END (bb2
)
1567 || (stop_after
> 0 && ninsns
== stop_after
))
1570 i1
= NEXT_INSN (i1
);
1571 i2
= NEXT_INSN (i2
);
1574 /* Don't allow a compare to be shared by cross-jumping unless the insn
1575 after the compare is also shared. */
1576 if (HAVE_cc0
&& ninsns
&& reg_mentioned_p (cc0_rtx
, last1
)
1577 && sets_cc0_p (last1
))
1578 last1
= beforelast1
, last2
= beforelast2
, ninsns
--;
1589 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1590 the branch instruction. This means that if we commonize the control
1591 flow before end of the basic block, the semantic remains unchanged.
1593 We may assume that there exists one edge with a common destination. */
1596 outgoing_edges_match (int mode
, basic_block bb1
, basic_block bb2
)
1598 int nehedges1
= 0, nehedges2
= 0;
1599 edge fallthru1
= 0, fallthru2
= 0;
1603 /* If we performed shrink-wrapping, edges to the exit block can
1604 only be distinguished for JUMP_INSNs. The two paths may differ in
1605 whether they went through the prologue. Sibcalls are fine, we know
1606 that we either didn't need or inserted an epilogue before them. */
1607 if (crtl
->shrink_wrapped
1608 && single_succ_p (bb1
)
1609 && single_succ (bb1
) == EXIT_BLOCK_PTR_FOR_FN (cfun
)
1610 && (!JUMP_P (BB_END (bb1
))
1611 /* Punt if the only successor is a fake edge to exit, the jump
1612 must be some weird one. */
1613 || (single_succ_edge (bb1
)->flags
& EDGE_FAKE
) != 0)
1614 && !(CALL_P (BB_END (bb1
)) && SIBLING_CALL_P (BB_END (bb1
))))
1617 /* If BB1 has only one successor, we may be looking at either an
1618 unconditional jump, or a fake edge to exit. */
1619 if (single_succ_p (bb1
)
1620 && (single_succ_edge (bb1
)->flags
& (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1621 && (!JUMP_P (BB_END (bb1
)) || simplejump_p (BB_END (bb1
))))
1622 return (single_succ_p (bb2
)
1623 && (single_succ_edge (bb2
)->flags
1624 & (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1625 && (!JUMP_P (BB_END (bb2
)) || simplejump_p (BB_END (bb2
))));
1627 /* Match conditional jumps - this may get tricky when fallthru and branch
1628 edges are crossed. */
1629 if (EDGE_COUNT (bb1
->succs
) == 2
1630 && any_condjump_p (BB_END (bb1
))
1631 && onlyjump_p (BB_END (bb1
)))
1633 edge b1
, f1
, b2
, f2
;
1634 bool reverse
, match
;
1635 rtx set1
, set2
, cond1
, cond2
;
1636 enum rtx_code code1
, code2
;
1638 if (EDGE_COUNT (bb2
->succs
) != 2
1639 || !any_condjump_p (BB_END (bb2
))
1640 || !onlyjump_p (BB_END (bb2
)))
1643 b1
= BRANCH_EDGE (bb1
);
1644 b2
= BRANCH_EDGE (bb2
);
1645 f1
= FALLTHRU_EDGE (bb1
);
1646 f2
= FALLTHRU_EDGE (bb2
);
1648 /* Get around possible forwarders on fallthru edges. Other cases
1649 should be optimized out already. */
1650 if (FORWARDER_BLOCK_P (f1
->dest
))
1651 f1
= single_succ_edge (f1
->dest
);
1653 if (FORWARDER_BLOCK_P (f2
->dest
))
1654 f2
= single_succ_edge (f2
->dest
);
1656 /* To simplify use of this function, return false if there are
1657 unneeded forwarder blocks. These will get eliminated later
1658 during cleanup_cfg. */
1659 if (FORWARDER_BLOCK_P (f1
->dest
)
1660 || FORWARDER_BLOCK_P (f2
->dest
)
1661 || FORWARDER_BLOCK_P (b1
->dest
)
1662 || FORWARDER_BLOCK_P (b2
->dest
))
1665 if (f1
->dest
== f2
->dest
&& b1
->dest
== b2
->dest
)
1667 else if (f1
->dest
== b2
->dest
&& b1
->dest
== f2
->dest
)
1672 set1
= pc_set (BB_END (bb1
));
1673 set2
= pc_set (BB_END (bb2
));
1674 if ((XEXP (SET_SRC (set1
), 1) == pc_rtx
)
1675 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
1678 cond1
= XEXP (SET_SRC (set1
), 0);
1679 cond2
= XEXP (SET_SRC (set2
), 0);
1680 code1
= GET_CODE (cond1
);
1682 code2
= reversed_comparison_code (cond2
, BB_END (bb2
));
1684 code2
= GET_CODE (cond2
);
1686 if (code2
== UNKNOWN
)
1689 /* Verify codes and operands match. */
1690 match
= ((code1
== code2
1691 && rtx_renumbered_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
1692 && rtx_renumbered_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
1693 || (code1
== swap_condition (code2
)
1694 && rtx_renumbered_equal_p (XEXP (cond1
, 1),
1696 && rtx_renumbered_equal_p (XEXP (cond1
, 0),
1699 /* If we return true, we will join the blocks. Which means that
1700 we will only have one branch prediction bit to work with. Thus
1701 we require the existing branches to have probabilities that are
1704 && optimize_bb_for_speed_p (bb1
)
1705 && optimize_bb_for_speed_p (bb2
))
1707 profile_probability prob2
;
1709 if (b1
->dest
== b2
->dest
)
1710 prob2
= b2
->probability
;
1712 /* Do not use f2 probability as f2 may be forwarded. */
1713 prob2
= b2
->probability
.invert ();
1715 /* Fail if the difference in probabilities is greater than 50%.
1716 This rules out two well-predicted branches with opposite
1718 if (b1
->probability
.differs_lot_from_p (prob2
))
1723 "Outcomes of branch in bb %i and %i differ too"
1724 " much (", bb1
->index
, bb2
->index
);
1725 b1
->probability
.dump (dump_file
);
1726 prob2
.dump (dump_file
);
1727 fprintf (dump_file
, ")\n");
1733 if (dump_file
&& match
)
1734 fprintf (dump_file
, "Conditionals in bb %i and %i match.\n",
1735 bb1
->index
, bb2
->index
);
1740 /* Generic case - we are seeing a computed jump, table jump or trapping
1743 /* Check whether there are tablejumps in the end of BB1 and BB2.
1744 Return true if they are identical. */
1746 rtx_insn
*label1
, *label2
;
1747 rtx_jump_table_data
*table1
, *table2
;
1749 if (tablejump_p (BB_END (bb1
), &label1
, &table1
)
1750 && tablejump_p (BB_END (bb2
), &label2
, &table2
)
1751 && GET_CODE (PATTERN (table1
)) == GET_CODE (PATTERN (table2
)))
1753 /* The labels should never be the same rtx. If they really are same
1754 the jump tables are same too. So disable crossjumping of blocks BB1
1755 and BB2 because when deleting the common insns in the end of BB1
1756 by delete_basic_block () the jump table would be deleted too. */
1757 /* If LABEL2 is referenced in BB1->END do not do anything
1758 because we would loose information when replacing
1759 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1760 if (label1
!= label2
&& !rtx_referenced_p (label2
, BB_END (bb1
)))
1762 /* Set IDENTICAL to true when the tables are identical. */
1763 bool identical
= false;
1766 p1
= PATTERN (table1
);
1767 p2
= PATTERN (table2
);
1768 if (GET_CODE (p1
) == ADDR_VEC
&& rtx_equal_p (p1
, p2
))
1772 else if (GET_CODE (p1
) == ADDR_DIFF_VEC
1773 && (XVECLEN (p1
, 1) == XVECLEN (p2
, 1))
1774 && rtx_equal_p (XEXP (p1
, 2), XEXP (p2
, 2))
1775 && rtx_equal_p (XEXP (p1
, 3), XEXP (p2
, 3)))
1780 for (i
= XVECLEN (p1
, 1) - 1; i
>= 0 && identical
; i
--)
1781 if (!rtx_equal_p (XVECEXP (p1
, 1, i
), XVECEXP (p2
, 1, i
)))
1789 /* Temporarily replace references to LABEL1 with LABEL2
1790 in BB1->END so that we could compare the instructions. */
1791 replace_label_in_insn (BB_END (bb1
), label1
, label2
, false);
1793 match
= (old_insns_match_p (mode
, BB_END (bb1
), BB_END (bb2
))
1795 if (dump_file
&& match
)
1797 "Tablejumps in bb %i and %i match.\n",
1798 bb1
->index
, bb2
->index
);
1800 /* Set the original label in BB1->END because when deleting
1801 a block whose end is a tablejump, the tablejump referenced
1802 from the instruction is deleted too. */
1803 replace_label_in_insn (BB_END (bb1
), label2
, label1
, false);
1812 /* Find the last non-debug non-note instruction in each bb, except
1813 stop when we see the NOTE_INSN_BASIC_BLOCK, as old_insns_match_p
1814 handles that case specially. old_insns_match_p does not handle
1815 other types of instruction notes. */
1816 rtx_insn
*last1
= BB_END (bb1
);
1817 rtx_insn
*last2
= BB_END (bb2
);
1818 while (!NOTE_INSN_BASIC_BLOCK_P (last1
) &&
1819 (DEBUG_INSN_P (last1
) || NOTE_P (last1
)))
1820 last1
= PREV_INSN (last1
);
1821 while (!NOTE_INSN_BASIC_BLOCK_P (last2
) &&
1822 (DEBUG_INSN_P (last2
) || NOTE_P (last2
)))
1823 last2
= PREV_INSN (last2
);
1824 gcc_assert (last1
&& last2
);
1826 /* First ensure that the instructions match. There may be many outgoing
1827 edges so this test is generally cheaper. */
1828 if (old_insns_match_p (mode
, last1
, last2
) != dir_both
)
1831 /* Search the outgoing edges, ensure that the counts do match, find possible
1832 fallthru and exception handling edges since these needs more
1834 if (EDGE_COUNT (bb1
->succs
) != EDGE_COUNT (bb2
->succs
))
1837 bool nonfakeedges
= false;
1838 FOR_EACH_EDGE (e1
, ei
, bb1
->succs
)
1840 e2
= EDGE_SUCC (bb2
, ei
.index
);
1842 if ((e1
->flags
& EDGE_FAKE
) == 0)
1843 nonfakeedges
= true;
1845 if (e1
->flags
& EDGE_EH
)
1848 if (e2
->flags
& EDGE_EH
)
1851 if (e1
->flags
& EDGE_FALLTHRU
)
1853 if (e2
->flags
& EDGE_FALLTHRU
)
1857 /* If number of edges of various types does not match, fail. */
1858 if (nehedges1
!= nehedges2
1859 || (fallthru1
!= 0) != (fallthru2
!= 0))
1862 /* If !ACCUMULATE_OUTGOING_ARGS, bb1 (and bb2) have no successors
1863 and the last real insn doesn't have REG_ARGS_SIZE note, don't
1864 attempt to optimize, as the two basic blocks might have different
1865 REG_ARGS_SIZE depths. For noreturn calls and unconditional
1866 traps there should be REG_ARG_SIZE notes, they could be missing
1867 for __builtin_unreachable () uses though. */
1869 && !ACCUMULATE_OUTGOING_ARGS
1871 || !find_reg_note (last1
, REG_ARGS_SIZE
, NULL
)))
1874 /* fallthru edges must be forwarded to the same destination. */
1877 basic_block d1
= (forwarder_block_p (fallthru1
->dest
)
1878 ? single_succ (fallthru1
->dest
): fallthru1
->dest
);
1879 basic_block d2
= (forwarder_block_p (fallthru2
->dest
)
1880 ? single_succ (fallthru2
->dest
): fallthru2
->dest
);
1886 /* Ensure the same EH region. */
1888 rtx n1
= find_reg_note (BB_END (bb1
), REG_EH_REGION
, 0);
1889 rtx n2
= find_reg_note (BB_END (bb2
), REG_EH_REGION
, 0);
1894 if (n1
&& (!n2
|| XEXP (n1
, 0) != XEXP (n2
, 0)))
1898 /* The same checks as in try_crossjump_to_edge. It is required for RTL
1899 version of sequence abstraction. */
1900 FOR_EACH_EDGE (e1
, ei
, bb2
->succs
)
1904 basic_block d1
= e1
->dest
;
1906 if (FORWARDER_BLOCK_P (d1
))
1907 d1
= EDGE_SUCC (d1
, 0)->dest
;
1909 FOR_EACH_EDGE (e2
, ei
, bb1
->succs
)
1911 basic_block d2
= e2
->dest
;
1912 if (FORWARDER_BLOCK_P (d2
))
1913 d2
= EDGE_SUCC (d2
, 0)->dest
;
1925 /* Returns true if BB basic block has a preserve label. */
1928 block_has_preserve_label (basic_block bb
)
1932 && LABEL_PRESERVE_P (block_label (bb
)));
1935 /* E1 and E2 are edges with the same destination block. Search their
1936 predecessors for common code. If found, redirect control flow from
1937 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC (dir_forward),
1938 or the other way around (dir_backward). DIR specifies the allowed
1939 replacement direction. */
1942 try_crossjump_to_edge (int mode
, edge e1
, edge e2
,
1943 enum replace_direction dir
)
1946 basic_block src1
= e1
->src
, src2
= e2
->src
;
1947 basic_block redirect_to
, redirect_from
, to_remove
;
1948 basic_block osrc1
, osrc2
, redirect_edges_to
, tmp
;
1949 rtx_insn
*newpos1
, *newpos2
;
1953 newpos1
= newpos2
= NULL
;
1955 /* Search backward through forwarder blocks. We don't need to worry
1956 about multiple entry or chained forwarders, as they will be optimized
1957 away. We do this to look past the unconditional jump following a
1958 conditional jump that is required due to the current CFG shape. */
1959 if (single_pred_p (src1
)
1960 && FORWARDER_BLOCK_P (src1
))
1961 e1
= single_pred_edge (src1
), src1
= e1
->src
;
1963 if (single_pred_p (src2
)
1964 && FORWARDER_BLOCK_P (src2
))
1965 e2
= single_pred_edge (src2
), src2
= e2
->src
;
1967 /* Nothing to do if we reach ENTRY, or a common source block. */
1968 if (src1
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) || src2
1969 == ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1974 /* Seeing more than 1 forwarder blocks would confuse us later... */
1975 if (FORWARDER_BLOCK_P (e1
->dest
)
1976 && FORWARDER_BLOCK_P (single_succ (e1
->dest
)))
1979 if (FORWARDER_BLOCK_P (e2
->dest
)
1980 && FORWARDER_BLOCK_P (single_succ (e2
->dest
)))
1983 /* Likewise with dead code (possibly newly created by the other optimizations
1985 if (EDGE_COUNT (src1
->preds
) == 0 || EDGE_COUNT (src2
->preds
) == 0)
1988 /* Do not turn corssing edge to non-crossing or vice versa after reload. */
1989 if (BB_PARTITION (src1
) != BB_PARTITION (src2
)
1990 && reload_completed
)
1993 /* Look for the common insn sequence, part the first ... */
1994 if (!outgoing_edges_match (mode
, src1
, src2
))
1997 /* ... and part the second. */
1998 nmatch
= flow_find_cross_jump (src1
, src2
, &newpos1
, &newpos2
, &dir
);
2002 if (newpos1
!= NULL_RTX
)
2003 src1
= BLOCK_FOR_INSN (newpos1
);
2004 if (newpos2
!= NULL_RTX
)
2005 src2
= BLOCK_FOR_INSN (newpos2
);
2007 /* Check that SRC1 and SRC2 have preds again. They may have changed
2008 above due to the call to flow_find_cross_jump. */
2009 if (EDGE_COUNT (src1
->preds
) == 0 || EDGE_COUNT (src2
->preds
) == 0)
2012 if (dir
== dir_backward
)
2014 std::swap (osrc1
, osrc2
);
2015 std::swap (src1
, src2
);
2017 std::swap (newpos1
, newpos2
);
2020 /* Don't proceed with the crossjump unless we found a sufficient number
2021 of matching instructions or the 'from' block was totally matched
2022 (such that its predecessors will hopefully be redirected and the
2024 if ((nmatch
< param_min_crossjump_insns
)
2025 && (newpos1
!= BB_HEAD (src1
)))
2028 /* Avoid deleting preserve label when redirecting ABNORMAL edges. */
2029 if (block_has_preserve_label (e1
->dest
)
2030 && (e1
->flags
& EDGE_ABNORMAL
))
2033 /* Here we know that the insns in the end of SRC1 which are common with SRC2
2035 If we have tablejumps in the end of SRC1 and SRC2
2036 they have been already compared for equivalence in outgoing_edges_match ()
2037 so replace the references to TABLE1 by references to TABLE2. */
2039 rtx_insn
*label1
, *label2
;
2040 rtx_jump_table_data
*table1
, *table2
;
2042 if (tablejump_p (BB_END (osrc1
), &label1
, &table1
)
2043 && tablejump_p (BB_END (osrc2
), &label2
, &table2
)
2044 && label1
!= label2
)
2048 /* Replace references to LABEL1 with LABEL2. */
2049 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2051 /* Do not replace the label in SRC1->END because when deleting
2052 a block whose end is a tablejump, the tablejump referenced
2053 from the instruction is deleted too. */
2054 if (insn
!= BB_END (osrc1
))
2055 replace_label_in_insn (insn
, label1
, label2
, true);
2060 /* Avoid splitting if possible. We must always split when SRC2 has
2061 EH predecessor edges, or we may end up with basic blocks with both
2062 normal and EH predecessor edges. */
2063 if (newpos2
== BB_HEAD (src2
)
2064 && !(EDGE_PRED (src2
, 0)->flags
& EDGE_EH
))
2068 if (newpos2
== BB_HEAD (src2
))
2070 /* Skip possible basic block header. */
2071 if (LABEL_P (newpos2
))
2072 newpos2
= NEXT_INSN (newpos2
);
2073 while (DEBUG_INSN_P (newpos2
))
2074 newpos2
= NEXT_INSN (newpos2
);
2075 if (NOTE_P (newpos2
))
2076 newpos2
= NEXT_INSN (newpos2
);
2077 while (DEBUG_INSN_P (newpos2
))
2078 newpos2
= NEXT_INSN (newpos2
);
2082 fprintf (dump_file
, "Splitting bb %i before %i insns\n",
2083 src2
->index
, nmatch
);
2084 redirect_to
= split_block (src2
, PREV_INSN (newpos2
))->dest
;
2089 "Cross jumping from bb %i to bb %i; %i common insns\n",
2090 src1
->index
, src2
->index
, nmatch
);
2092 /* We may have some registers visible through the block. */
2093 df_set_bb_dirty (redirect_to
);
2096 redirect_edges_to
= redirect_to
;
2098 redirect_edges_to
= osrc2
;
2100 /* Recompute the counts of destinations of outgoing edges. */
2101 FOR_EACH_EDGE (s
, ei
, redirect_edges_to
->succs
)
2105 basic_block d
= s
->dest
;
2107 if (FORWARDER_BLOCK_P (d
))
2108 d
= single_succ (d
);
2110 FOR_EACH_EDGE (s2
, ei
, src1
->succs
)
2112 basic_block d2
= s2
->dest
;
2113 if (FORWARDER_BLOCK_P (d2
))
2114 d2
= single_succ (d2
);
2119 /* Take care to update possible forwarder blocks. We verified
2120 that there is no more than one in the chain, so we can't run
2121 into infinite loop. */
2122 if (FORWARDER_BLOCK_P (s
->dest
))
2123 s
->dest
->count
+= s
->count ();
2125 if (FORWARDER_BLOCK_P (s2
->dest
))
2126 s2
->dest
->count
-= s
->count ();
2128 s
->probability
= s
->probability
.combine_with_count
2129 (redirect_edges_to
->count
,
2130 s2
->probability
, src1
->count
);
2133 /* Adjust count for the block. An earlier jump
2134 threading pass may have left the profile in an inconsistent
2135 state (see update_bb_profile_for_threading) so we must be
2136 prepared for overflows. */
2140 tmp
->count
+= src1
->count
;
2141 if (tmp
== redirect_edges_to
)
2143 tmp
= find_fallthru_edge (tmp
->succs
)->dest
;
2146 update_br_prob_note (redirect_edges_to
);
2148 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
2150 /* Skip possible basic block header. */
2151 if (LABEL_P (newpos1
))
2152 newpos1
= NEXT_INSN (newpos1
);
2154 while (DEBUG_INSN_P (newpos1
))
2155 newpos1
= NEXT_INSN (newpos1
);
2157 if (NOTE_INSN_BASIC_BLOCK_P (newpos1
))
2158 newpos1
= NEXT_INSN (newpos1
);
2160 while (DEBUG_INSN_P (newpos1
))
2161 newpos1
= NEXT_INSN (newpos1
);
2163 redirect_from
= split_block (src1
, PREV_INSN (newpos1
))->src
;
2164 to_remove
= single_succ (redirect_from
);
2166 redirect_edge_and_branch_force (single_succ_edge (redirect_from
), redirect_to
);
2167 delete_basic_block (to_remove
);
2169 update_forwarder_flag (redirect_from
);
2170 if (redirect_to
!= src2
)
2171 update_forwarder_flag (src2
);
2176 /* Search the predecessors of BB for common insn sequences. When found,
2177 share code between them by redirecting control flow. Return true if
2178 any changes made. */
2181 try_crossjump_bb (int mode
, basic_block bb
)
2183 edge e
, e2
, fallthru
;
2185 unsigned max
, ix
, ix2
;
2187 /* Nothing to do if there is not at least two incoming edges. */
2188 if (EDGE_COUNT (bb
->preds
) < 2)
2191 /* Don't crossjump if this block ends in a computed jump,
2192 unless we are optimizing for size. */
2193 if (optimize_bb_for_size_p (bb
)
2194 && bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2195 && computed_jump_p (BB_END (bb
)))
2198 /* If we are partitioning hot/cold basic blocks, we don't want to
2199 mess up unconditional or indirect jumps that cross between hot
2202 Basic block partitioning may result in some jumps that appear to
2203 be optimizable (or blocks that appear to be mergeable), but which really
2204 must be left untouched (they are required to make it safely across
2205 partition boundaries). See the comments at the top of
2206 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
2208 if (BB_PARTITION (EDGE_PRED (bb
, 0)->src
) !=
2209 BB_PARTITION (EDGE_PRED (bb
, 1)->src
)
2210 || (EDGE_PRED (bb
, 0)->flags
& EDGE_CROSSING
))
2213 /* It is always cheapest to redirect a block that ends in a branch to
2214 a block that falls through into BB, as that adds no branches to the
2215 program. We'll try that combination first. */
2217 max
= param_max_crossjump_edges
;
2219 if (EDGE_COUNT (bb
->preds
) > max
)
2222 fallthru
= find_fallthru_edge (bb
->preds
);
2225 for (ix
= 0; ix
< EDGE_COUNT (bb
->preds
);)
2227 e
= EDGE_PRED (bb
, ix
);
2230 /* As noted above, first try with the fallthru predecessor (or, a
2231 fallthru predecessor if we are in cfglayout mode). */
2234 /* Don't combine the fallthru edge into anything else.
2235 If there is a match, we'll do it the other way around. */
2238 /* If nothing changed since the last attempt, there is nothing
2241 && !((e
->src
->flags
& BB_MODIFIED
)
2242 || (fallthru
->src
->flags
& BB_MODIFIED
)))
2245 if (try_crossjump_to_edge (mode
, e
, fallthru
, dir_forward
))
2253 /* Non-obvious work limiting check: Recognize that we're going
2254 to call try_crossjump_bb on every basic block. So if we have
2255 two blocks with lots of outgoing edges (a switch) and they
2256 share lots of common destinations, then we would do the
2257 cross-jump check once for each common destination.
2259 Now, if the blocks actually are cross-jump candidates, then
2260 all of their destinations will be shared. Which means that
2261 we only need check them for cross-jump candidacy once. We
2262 can eliminate redundant checks of crossjump(A,B) by arbitrarily
2263 choosing to do the check from the block for which the edge
2264 in question is the first successor of A. */
2265 if (EDGE_SUCC (e
->src
, 0) != e
)
2268 for (ix2
= 0; ix2
< EDGE_COUNT (bb
->preds
); ix2
++)
2270 e2
= EDGE_PRED (bb
, ix2
);
2275 /* We've already checked the fallthru edge above. */
2279 /* The "first successor" check above only prevents multiple
2280 checks of crossjump(A,B). In order to prevent redundant
2281 checks of crossjump(B,A), require that A be the block
2282 with the lowest index. */
2283 if (e
->src
->index
> e2
->src
->index
)
2286 /* If nothing changed since the last attempt, there is nothing
2289 && !((e
->src
->flags
& BB_MODIFIED
)
2290 || (e2
->src
->flags
& BB_MODIFIED
)))
2293 /* Both e and e2 are not fallthru edges, so we can crossjump in either
2295 if (try_crossjump_to_edge (mode
, e
, e2
, dir_both
))
2305 crossjumps_occurred
= true;
2310 /* Search the successors of BB for common insn sequences. When found,
2311 share code between them by moving it across the basic block
2312 boundary. Return true if any changes made. */
2315 try_head_merge_bb (basic_block bb
)
2317 basic_block final_dest_bb
= NULL
;
2318 int max_match
= INT_MAX
;
2320 rtx_insn
**headptr
, **currptr
, **nextptr
;
2321 bool changed
, moveall
;
2323 rtx_insn
*e0_last_head
;
2325 rtx_insn
*move_before
;
2326 unsigned nedges
= EDGE_COUNT (bb
->succs
);
2327 rtx_insn
*jump
= BB_END (bb
);
2328 regset live
, live_union
;
2330 /* Nothing to do if there is not at least two outgoing edges. */
2334 /* Don't crossjump if this block ends in a computed jump,
2335 unless we are optimizing for size. */
2336 if (optimize_bb_for_size_p (bb
)
2337 && bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2338 && computed_jump_p (BB_END (bb
)))
2341 cond
= get_condition (jump
, &move_before
, true, false);
2342 if (cond
== NULL_RTX
)
2344 if (HAVE_cc0
&& reg_mentioned_p (cc0_rtx
, jump
))
2345 move_before
= prev_nonnote_nondebug_insn (jump
);
2350 for (ix
= 0; ix
< nedges
; ix
++)
2351 if (EDGE_SUCC (bb
, ix
)->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
2354 for (ix
= 0; ix
< nedges
; ix
++)
2356 edge e
= EDGE_SUCC (bb
, ix
);
2357 basic_block other_bb
= e
->dest
;
2359 if (df_get_bb_dirty (other_bb
))
2361 block_was_dirty
= true;
2365 if (e
->flags
& EDGE_ABNORMAL
)
2368 /* Normally, all destination blocks must only be reachable from this
2369 block, i.e. they must have one incoming edge.
2371 There is one special case we can handle, that of multiple consecutive
2372 jumps where the first jumps to one of the targets of the second jump.
2373 This happens frequently in switch statements for default labels.
2374 The structure is as follows:
2380 jump with targets A, B, C, D...
2382 has two incoming edges, from FINAL_DEST_BB and BB
2384 In this case, we can try to move the insns through BB and into
2386 if (EDGE_COUNT (other_bb
->preds
) != 1)
2388 edge incoming_edge
, incoming_bb_other_edge
;
2391 if (final_dest_bb
!= NULL
2392 || EDGE_COUNT (other_bb
->preds
) != 2)
2395 /* We must be able to move the insns across the whole block. */
2396 move_before
= BB_HEAD (bb
);
2397 while (!NONDEBUG_INSN_P (move_before
))
2398 move_before
= NEXT_INSN (move_before
);
2400 if (EDGE_COUNT (bb
->preds
) != 1)
2402 incoming_edge
= EDGE_PRED (bb
, 0);
2403 final_dest_bb
= incoming_edge
->src
;
2404 if (EDGE_COUNT (final_dest_bb
->succs
) != 2)
2406 FOR_EACH_EDGE (incoming_bb_other_edge
, ei
, final_dest_bb
->succs
)
2407 if (incoming_bb_other_edge
!= incoming_edge
)
2409 if (incoming_bb_other_edge
->dest
!= other_bb
)
2414 e0
= EDGE_SUCC (bb
, 0);
2415 e0_last_head
= NULL
;
2418 for (ix
= 1; ix
< nedges
; ix
++)
2420 edge e
= EDGE_SUCC (bb
, ix
);
2421 rtx_insn
*e0_last
, *e_last
;
2424 nmatch
= flow_find_head_matching_sequence (e0
->dest
, e
->dest
,
2425 &e0_last
, &e_last
, 0);
2429 if (nmatch
< max_match
)
2432 e0_last_head
= e0_last
;
2436 /* If we matched an entire block, we probably have to avoid moving the
2439 && e0_last_head
== BB_END (e0
->dest
)
2440 && (find_reg_note (e0_last_head
, REG_EH_REGION
, 0)
2441 || control_flow_insn_p (e0_last_head
)))
2446 e0_last_head
= prev_real_nondebug_insn (e0_last_head
);
2452 /* We must find a union of the live registers at each of the end points. */
2453 live
= BITMAP_ALLOC (NULL
);
2454 live_union
= BITMAP_ALLOC (NULL
);
2456 currptr
= XNEWVEC (rtx_insn
*, nedges
);
2457 headptr
= XNEWVEC (rtx_insn
*, nedges
);
2458 nextptr
= XNEWVEC (rtx_insn
*, nedges
);
2460 for (ix
= 0; ix
< nedges
; ix
++)
2463 basic_block merge_bb
= EDGE_SUCC (bb
, ix
)->dest
;
2464 rtx_insn
*head
= BB_HEAD (merge_bb
);
2466 while (!NONDEBUG_INSN_P (head
))
2467 head
= NEXT_INSN (head
);
2471 /* Compute the end point and live information */
2472 for (j
= 1; j
< max_match
; j
++)
2474 head
= NEXT_INSN (head
);
2475 while (!NONDEBUG_INSN_P (head
));
2476 simulate_backwards_to_point (merge_bb
, live
, head
);
2477 IOR_REG_SET (live_union
, live
);
2480 /* If we're moving across two blocks, verify the validity of the
2481 first move, then adjust the target and let the loop below deal
2482 with the final move. */
2483 if (final_dest_bb
!= NULL
)
2485 rtx_insn
*move_upto
;
2487 moveall
= can_move_insns_across (currptr
[0], e0_last_head
, move_before
,
2488 jump
, e0
->dest
, live_union
,
2492 if (move_upto
== NULL_RTX
)
2495 while (e0_last_head
!= move_upto
)
2497 df_simulate_one_insn_backwards (e0
->dest
, e0_last_head
,
2499 e0_last_head
= PREV_INSN (e0_last_head
);
2502 if (e0_last_head
== NULL_RTX
)
2505 jump
= BB_END (final_dest_bb
);
2506 cond
= get_condition (jump
, &move_before
, true, false);
2507 if (cond
== NULL_RTX
)
2509 if (HAVE_cc0
&& reg_mentioned_p (cc0_rtx
, jump
))
2510 move_before
= prev_nonnote_nondebug_insn (jump
);
2518 rtx_insn
*move_upto
;
2519 moveall
= can_move_insns_across (currptr
[0], e0_last_head
,
2520 move_before
, jump
, e0
->dest
, live_union
,
2522 if (!moveall
&& move_upto
== NULL_RTX
)
2524 if (jump
== move_before
)
2527 /* Try again, using a different insertion point. */
2530 /* Don't try moving before a cc0 user, as that may invalidate
2532 if (HAVE_cc0
&& reg_mentioned_p (cc0_rtx
, jump
))
2538 if (final_dest_bb
&& !moveall
)
2539 /* We haven't checked whether a partial move would be OK for the first
2540 move, so we have to fail this case. */
2546 if (currptr
[0] == move_upto
)
2548 for (ix
= 0; ix
< nedges
; ix
++)
2550 rtx_insn
*curr
= currptr
[ix
];
2552 curr
= NEXT_INSN (curr
);
2553 while (!NONDEBUG_INSN_P (curr
));
2558 /* If we can't currently move all of the identical insns, remember
2559 each insn after the range that we'll merge. */
2561 for (ix
= 0; ix
< nedges
; ix
++)
2563 rtx_insn
*curr
= currptr
[ix
];
2565 curr
= NEXT_INSN (curr
);
2566 while (!NONDEBUG_INSN_P (curr
));
2570 reorder_insns (headptr
[0], currptr
[0], PREV_INSN (move_before
));
2571 df_set_bb_dirty (EDGE_SUCC (bb
, 0)->dest
);
2572 if (final_dest_bb
!= NULL
)
2573 df_set_bb_dirty (final_dest_bb
);
2574 df_set_bb_dirty (bb
);
2575 for (ix
= 1; ix
< nedges
; ix
++)
2577 df_set_bb_dirty (EDGE_SUCC (bb
, ix
)->dest
);
2578 delete_insn_chain (headptr
[ix
], currptr
[ix
], false);
2582 if (jump
== move_before
)
2585 /* For the unmerged insns, try a different insertion point. */
2588 /* Don't try moving before a cc0 user, as that may invalidate
2590 if (HAVE_cc0
&& reg_mentioned_p (cc0_rtx
, jump
))
2593 for (ix
= 0; ix
< nedges
; ix
++)
2594 currptr
[ix
] = headptr
[ix
] = nextptr
[ix
];
2604 crossjumps_occurred
|= changed
;
2609 /* Return true if BB contains just bb note, or bb note followed
2610 by only DEBUG_INSNs. */
2613 trivially_empty_bb_p (basic_block bb
)
2615 rtx_insn
*insn
= BB_END (bb
);
2619 if (insn
== BB_HEAD (bb
))
2621 if (!DEBUG_INSN_P (insn
))
2623 insn
= PREV_INSN (insn
);
2627 /* Return true if BB contains just a return and possibly a USE of the
2628 return value. Fill in *RET and *USE with the return and use insns
2629 if any found, otherwise NULL. All CLOBBERs are ignored. */
2632 bb_is_just_return (basic_block bb
, rtx_insn
**ret
, rtx_insn
**use
)
2637 if (bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
2640 FOR_BB_INSNS (bb
, insn
)
2641 if (NONDEBUG_INSN_P (insn
))
2643 rtx pat
= PATTERN (insn
);
2645 if (!*ret
&& ANY_RETURN_P (pat
))
2647 else if (!*ret
&& !*use
&& GET_CODE (pat
) == USE
2648 && REG_P (XEXP (pat
, 0))
2649 && REG_FUNCTION_VALUE_P (XEXP (pat
, 0)))
2651 else if (GET_CODE (pat
) != CLOBBER
)
2658 /* Do simple CFG optimizations - basic block merging, simplifying of jump
2659 instructions etc. Return nonzero if changes were made. */
2662 try_optimize_cfg (int mode
)
2664 bool changed_overall
= false;
2667 basic_block bb
, b
, next
;
2669 if (mode
& (CLEANUP_CROSSJUMP
| CLEANUP_THREADING
))
2672 crossjumps_occurred
= false;
2674 FOR_EACH_BB_FN (bb
, cfun
)
2675 update_forwarder_flag (bb
);
2677 if (! targetm
.cannot_modify_jumps_p ())
2680 /* Attempt to merge blocks as made possible by edge removal. If
2681 a block has only one successor, and the successor has only
2682 one predecessor, they may be combined. */
2685 block_was_dirty
= false;
2691 "\n\ntry_optimize_cfg iteration %i\n\n",
2694 for (b
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
; b
2695 != EXIT_BLOCK_PTR_FOR_FN (cfun
);)
2699 bool changed_here
= false;
2701 /* Delete trivially dead basic blocks. This is either
2702 blocks with no predecessors, or empty blocks with no
2703 successors. However if the empty block with no
2704 successors is the successor of the ENTRY_BLOCK, it is
2705 kept. This ensures that the ENTRY_BLOCK will have a
2706 successor which is a precondition for many RTL
2707 passes. Empty blocks may result from expanding
2708 __builtin_unreachable (). */
2709 if (EDGE_COUNT (b
->preds
) == 0
2710 || (EDGE_COUNT (b
->succs
) == 0
2711 && trivially_empty_bb_p (b
)
2712 && single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
))->dest
2716 if (EDGE_COUNT (b
->preds
) > 0)
2721 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
2724 for (insn
= BB_FOOTER (b
);
2725 insn
; insn
= NEXT_INSN (insn
))
2726 if (BARRIER_P (insn
))
2729 FOR_EACH_EDGE (e
, ei
, b
->preds
)
2730 if ((e
->flags
& EDGE_FALLTHRU
))
2733 && BB_FOOTER (e
->src
) == NULL
)
2735 BB_FOOTER (e
->src
) = BB_FOOTER (b
);
2736 BB_FOOTER (b
) = NULL
;
2739 emit_barrier_after_bb (e
->src
);
2744 rtx_insn
*last
= get_last_bb_insn (b
);
2745 if (last
&& BARRIER_P (last
))
2746 FOR_EACH_EDGE (e
, ei
, b
->preds
)
2747 if ((e
->flags
& EDGE_FALLTHRU
))
2748 emit_barrier_after (BB_END (e
->src
));
2751 delete_basic_block (b
);
2753 /* Avoid trying to remove the exit block. */
2754 b
= (c
== ENTRY_BLOCK_PTR_FOR_FN (cfun
) ? c
->next_bb
: c
);
2758 /* Remove code labels no longer used. */
2759 if (single_pred_p (b
)
2760 && (single_pred_edge (b
)->flags
& EDGE_FALLTHRU
)
2761 && !(single_pred_edge (b
)->flags
& EDGE_COMPLEX
)
2762 && LABEL_P (BB_HEAD (b
))
2763 && !LABEL_PRESERVE_P (BB_HEAD (b
))
2764 /* If the previous block ends with a branch to this
2765 block, we can't delete the label. Normally this
2766 is a condjump that is yet to be simplified, but
2767 if CASE_DROPS_THRU, this can be a tablejump with
2768 some element going to the same place as the
2769 default (fallthru). */
2770 && (single_pred (b
) == ENTRY_BLOCK_PTR_FOR_FN (cfun
)
2771 || !JUMP_P (BB_END (single_pred (b
)))
2772 || ! label_is_jump_target_p (BB_HEAD (b
),
2773 BB_END (single_pred (b
)))))
2775 delete_insn (BB_HEAD (b
));
2777 fprintf (dump_file
, "Deleted label in block %i.\n",
2781 /* If we fall through an empty block, we can remove it. */
2782 if (!(mode
& (CLEANUP_CFGLAYOUT
| CLEANUP_NO_INSN_DEL
))
2783 && single_pred_p (b
)
2784 && (single_pred_edge (b
)->flags
& EDGE_FALLTHRU
)
2785 && !LABEL_P (BB_HEAD (b
))
2786 && FORWARDER_BLOCK_P (b
)
2787 /* Note that forwarder_block_p true ensures that
2788 there is a successor for this block. */
2789 && (single_succ_edge (b
)->flags
& EDGE_FALLTHRU
)
2790 && n_basic_blocks_for_fn (cfun
) > NUM_FIXED_BLOCKS
+ 1)
2794 "Deleting fallthru block %i.\n",
2797 c
= ((b
->prev_bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
2798 ? b
->next_bb
: b
->prev_bb
);
2799 redirect_edge_succ_nodup (single_pred_edge (b
),
2801 delete_basic_block (b
);
2807 /* Merge B with its single successor, if any. */
2808 if (single_succ_p (b
)
2809 && (s
= single_succ_edge (b
))
2810 && !(s
->flags
& EDGE_COMPLEX
)
2811 && (c
= s
->dest
) != EXIT_BLOCK_PTR_FOR_FN (cfun
)
2812 && single_pred_p (c
)
2815 /* When not in cfg_layout mode use code aware of reordering
2816 INSN. This code possibly creates new basic blocks so it
2817 does not fit merge_blocks interface and is kept here in
2818 hope that it will become useless once more of compiler
2819 is transformed to use cfg_layout mode. */
2821 if ((mode
& CLEANUP_CFGLAYOUT
)
2822 && can_merge_blocks_p (b
, c
))
2824 merge_blocks (b
, c
);
2825 update_forwarder_flag (b
);
2826 changed_here
= true;
2828 else if (!(mode
& CLEANUP_CFGLAYOUT
)
2829 /* If the jump insn has side effects,
2830 we can't kill the edge. */
2831 && (!JUMP_P (BB_END (b
))
2832 || (reload_completed
2833 ? simplejump_p (BB_END (b
))
2834 : (onlyjump_p (BB_END (b
))
2835 && !tablejump_p (BB_END (b
),
2837 && (next
= merge_blocks_move (s
, b
, c
, mode
)))
2840 changed_here
= true;
2844 /* Try to change a branch to a return to just that return. */
2845 rtx_insn
*ret
, *use
;
2846 if (single_succ_p (b
)
2847 && onlyjump_p (BB_END (b
))
2848 && bb_is_just_return (single_succ (b
), &ret
, &use
))
2850 if (redirect_jump (as_a
<rtx_jump_insn
*> (BB_END (b
)),
2854 emit_insn_before (copy_insn (PATTERN (use
)),
2857 fprintf (dump_file
, "Changed jump %d->%d to return.\n",
2858 b
->index
, single_succ (b
)->index
);
2859 redirect_edge_succ (single_succ_edge (b
),
2860 EXIT_BLOCK_PTR_FOR_FN (cfun
));
2861 single_succ_edge (b
)->flags
&= ~EDGE_CROSSING
;
2862 changed_here
= true;
2866 /* Try to change a conditional branch to a return to the
2867 respective conditional return. */
2868 if (EDGE_COUNT (b
->succs
) == 2
2869 && any_condjump_p (BB_END (b
))
2870 && bb_is_just_return (BRANCH_EDGE (b
)->dest
, &ret
, &use
))
2872 if (redirect_jump (as_a
<rtx_jump_insn
*> (BB_END (b
)),
2876 emit_insn_before (copy_insn (PATTERN (use
)),
2879 fprintf (dump_file
, "Changed conditional jump %d->%d "
2880 "to conditional return.\n",
2881 b
->index
, BRANCH_EDGE (b
)->dest
->index
);
2882 redirect_edge_succ (BRANCH_EDGE (b
),
2883 EXIT_BLOCK_PTR_FOR_FN (cfun
));
2884 BRANCH_EDGE (b
)->flags
&= ~EDGE_CROSSING
;
2885 changed_here
= true;
2889 /* Try to flip a conditional branch that falls through to
2890 a return so that it becomes a conditional return and a
2891 new jump to the original branch target. */
2892 if (EDGE_COUNT (b
->succs
) == 2
2893 && BRANCH_EDGE (b
)->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
2894 && any_condjump_p (BB_END (b
))
2895 && bb_is_just_return (FALLTHRU_EDGE (b
)->dest
, &ret
, &use
))
2897 if (invert_jump (as_a
<rtx_jump_insn
*> (BB_END (b
)),
2898 JUMP_LABEL (BB_END (b
)), 0))
2900 basic_block new_ft
= BRANCH_EDGE (b
)->dest
;
2901 if (redirect_jump (as_a
<rtx_jump_insn
*> (BB_END (b
)),
2905 emit_insn_before (copy_insn (PATTERN (use
)),
2908 fprintf (dump_file
, "Changed conditional jump "
2909 "%d->%d to conditional return, adding "
2910 "fall-through jump.\n",
2911 b
->index
, BRANCH_EDGE (b
)->dest
->index
);
2912 redirect_edge_succ (BRANCH_EDGE (b
),
2913 EXIT_BLOCK_PTR_FOR_FN (cfun
));
2914 BRANCH_EDGE (b
)->flags
&= ~EDGE_CROSSING
;
2915 std::swap (BRANCH_EDGE (b
)->probability
,
2916 FALLTHRU_EDGE (b
)->probability
);
2917 update_br_prob_note (b
);
2918 basic_block jb
= force_nonfallthru (FALLTHRU_EDGE (b
));
2919 notice_new_block (jb
);
2920 if (!redirect_jump (as_a
<rtx_jump_insn
*> (BB_END (jb
)),
2921 block_label (new_ft
), 0))
2923 redirect_edge_succ (single_succ_edge (jb
), new_ft
);
2924 changed_here
= true;
2928 /* Invert the jump back to what it was. This should
2930 if (!invert_jump (as_a
<rtx_jump_insn
*> (BB_END (b
)),
2931 JUMP_LABEL (BB_END (b
)), 0))
2937 /* Simplify branch over branch. */
2938 if ((mode
& CLEANUP_EXPENSIVE
)
2939 && !(mode
& CLEANUP_CFGLAYOUT
)
2940 && try_simplify_condjump (b
))
2941 changed_here
= true;
2943 /* If B has a single outgoing edge, but uses a
2944 non-trivial jump instruction without side-effects, we
2945 can either delete the jump entirely, or replace it
2946 with a simple unconditional jump. */
2947 if (single_succ_p (b
)
2948 && single_succ (b
) != EXIT_BLOCK_PTR_FOR_FN (cfun
)
2949 && onlyjump_p (BB_END (b
))
2950 && !CROSSING_JUMP_P (BB_END (b
))
2951 && try_redirect_by_replacing_jump (single_succ_edge (b
),
2953 (mode
& CLEANUP_CFGLAYOUT
) != 0))
2955 update_forwarder_flag (b
);
2956 changed_here
= true;
2959 /* Simplify branch to branch. */
2960 if (try_forward_edges (mode
, b
))
2962 update_forwarder_flag (b
);
2963 changed_here
= true;
2966 /* Look for shared code between blocks. */
2967 if ((mode
& CLEANUP_CROSSJUMP
)
2968 && try_crossjump_bb (mode
, b
))
2969 changed_here
= true;
2971 if ((mode
& CLEANUP_CROSSJUMP
)
2972 /* This can lengthen register lifetimes. Do it only after
2975 && try_head_merge_bb (b
))
2976 changed_here
= true;
2978 /* Don't get confused by the index shift caused by
2986 if ((mode
& CLEANUP_CROSSJUMP
)
2987 && try_crossjump_bb (mode
, EXIT_BLOCK_PTR_FOR_FN (cfun
)))
2990 if (block_was_dirty
)
2992 /* This should only be set by head-merging. */
2993 gcc_assert (mode
& CLEANUP_CROSSJUMP
);
2999 /* Edge forwarding in particular can cause hot blocks previously
3000 reached by both hot and cold blocks to become dominated only
3001 by cold blocks. This will cause the verification below to fail,
3002 and lead to now cold code in the hot section. This is not easy
3003 to detect and fix during edge forwarding, and in some cases
3004 is only visible after newly unreachable blocks are deleted,
3005 which will be done in fixup_partitions. */
3006 if ((mode
& CLEANUP_NO_PARTITIONING
) == 0)
3008 fixup_partitions ();
3009 checking_verify_flow_info ();
3013 changed_overall
|= changed
;
3019 FOR_ALL_BB_FN (b
, cfun
)
3020 b
->flags
&= ~(BB_FORWARDER_BLOCK
| BB_NONTHREADABLE_BLOCK
);
3022 return changed_overall
;
3025 /* Delete all unreachable basic blocks. */
3028 delete_unreachable_blocks (void)
3030 bool changed
= false;
3031 basic_block b
, prev_bb
;
3033 find_unreachable_blocks ();
3035 /* When we're in GIMPLE mode and there may be debug bind insns, we
3036 should delete blocks in reverse dominator order, so as to get a
3037 chance to substitute all released DEFs into debug bind stmts. If
3038 we don't have dominators information, walking blocks backward
3039 gets us a better chance of retaining most debug information than
3041 if (MAY_HAVE_DEBUG_BIND_INSNS
&& current_ir_type () == IR_GIMPLE
3042 && dom_info_available_p (CDI_DOMINATORS
))
3044 for (b
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
3045 b
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
); b
= prev_bb
)
3047 prev_bb
= b
->prev_bb
;
3049 if (!(b
->flags
& BB_REACHABLE
))
3051 /* Speed up the removal of blocks that don't dominate
3052 others. Walking backwards, this should be the common
3054 if (!first_dom_son (CDI_DOMINATORS
, b
))
3055 delete_basic_block (b
);
3059 = get_all_dominated_blocks (CDI_DOMINATORS
, b
);
3065 prev_bb
= b
->prev_bb
;
3067 gcc_assert (!(b
->flags
& BB_REACHABLE
));
3069 delete_basic_block (b
);
3081 for (b
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
3082 b
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
); b
= prev_bb
)
3084 prev_bb
= b
->prev_bb
;
3086 if (!(b
->flags
& BB_REACHABLE
))
3088 delete_basic_block (b
);
3095 tidy_fallthru_edges ();
3099 /* Delete any jump tables never referenced. We can't delete them at the
3100 time of removing tablejump insn as they are referenced by the preceding
3101 insns computing the destination, so we delay deleting and garbagecollect
3102 them once life information is computed. */
3104 delete_dead_jumptables (void)
3108 /* A dead jump table does not belong to any basic block. Scan insns
3109 between two adjacent basic blocks. */
3110 FOR_EACH_BB_FN (bb
, cfun
)
3112 rtx_insn
*insn
, *next
;
3114 for (insn
= NEXT_INSN (BB_END (bb
));
3115 insn
&& !NOTE_INSN_BASIC_BLOCK_P (insn
);
3118 next
= NEXT_INSN (insn
);
3120 && LABEL_NUSES (insn
) == LABEL_PRESERVE_P (insn
)
3121 && JUMP_TABLE_DATA_P (next
))
3123 rtx_insn
*label
= insn
, *jump
= next
;
3126 fprintf (dump_file
, "Dead jumptable %i removed\n",
3129 next
= NEXT_INSN (next
);
3131 delete_insn (label
);
3138 /* Tidy the CFG by deleting unreachable code and whatnot. */
3141 cleanup_cfg (int mode
)
3143 bool changed
= false;
3145 /* Set the cfglayout mode flag here. We could update all the callers
3146 but that is just inconvenient, especially given that we eventually
3147 want to have cfglayout mode as the default. */
3148 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
3149 mode
|= CLEANUP_CFGLAYOUT
;
3151 timevar_push (TV_CLEANUP_CFG
);
3152 if (delete_unreachable_blocks ())
3155 /* We've possibly created trivially dead code. Cleanup it right
3156 now to introduce more opportunities for try_optimize_cfg. */
3157 if (!(mode
& (CLEANUP_NO_INSN_DEL
))
3158 && !reload_completed
)
3159 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3164 /* To tail-merge blocks ending in the same noreturn function (e.g.
3165 a call to abort) we have to insert fake edges to exit. Do this
3166 here once. The fake edges do not interfere with any other CFG
3168 if (mode
& CLEANUP_CROSSJUMP
)
3169 add_noreturn_fake_exit_edges ();
3171 if (!dbg_cnt (cfg_cleanup
))
3174 while (try_optimize_cfg (mode
))
3176 delete_unreachable_blocks (), changed
= true;
3177 if (!(mode
& CLEANUP_NO_INSN_DEL
))
3179 /* Try to remove some trivially dead insns when doing an expensive
3180 cleanup. But delete_trivially_dead_insns doesn't work after
3181 reload (it only handles pseudos) and run_fast_dce is too costly
3182 to run in every iteration.
3184 For effective cross jumping, we really want to run a fast DCE to
3185 clean up any dead conditions, or they get in the way of performing
3188 Other transformations in cleanup_cfg are not so sensitive to dead
3189 code, so delete_trivially_dead_insns or even doing nothing at all
3191 if ((mode
& CLEANUP_EXPENSIVE
) && !reload_completed
3192 && !delete_trivially_dead_insns (get_insns (), max_reg_num ()))
3194 if ((mode
& CLEANUP_CROSSJUMP
) && crossjumps_occurred
)
3197 mode
&= ~CLEANUP_FORCE_FAST_DCE
;
3204 if (mode
& CLEANUP_CROSSJUMP
)
3205 remove_fake_exit_edges ();
3207 if (mode
& CLEANUP_FORCE_FAST_DCE
)
3210 /* Don't call delete_dead_jumptables in cfglayout mode, because
3211 that function assumes that jump tables are in the insns stream.
3212 But we also don't _have_ to delete dead jumptables in cfglayout
3213 mode because we shouldn't even be looking at things that are
3214 not in a basic block. Dead jumptables are cleaned up when
3215 going out of cfglayout mode. */
3216 if (!(mode
& CLEANUP_CFGLAYOUT
))
3217 delete_dead_jumptables ();
3219 /* ??? We probably do this way too often. */
3222 || (mode
& CLEANUP_CFG_CHANGED
)))
3224 timevar_push (TV_REPAIR_LOOPS
);
3225 /* The above doesn't preserve dominance info if available. */
3226 gcc_assert (!dom_info_available_p (CDI_DOMINATORS
));
3227 calculate_dominance_info (CDI_DOMINATORS
);
3228 fix_loop_structure (NULL
);
3229 free_dominance_info (CDI_DOMINATORS
);
3230 timevar_pop (TV_REPAIR_LOOPS
);
3233 timevar_pop (TV_CLEANUP_CFG
);
3240 const pass_data pass_data_jump
=
3242 RTL_PASS
, /* type */
3244 OPTGROUP_NONE
, /* optinfo_flags */
3245 TV_JUMP
, /* tv_id */
3246 0, /* properties_required */
3247 0, /* properties_provided */
3248 0, /* properties_destroyed */
3249 0, /* todo_flags_start */
3250 0, /* todo_flags_finish */
3253 class pass_jump
: public rtl_opt_pass
3256 pass_jump (gcc::context
*ctxt
)
3257 : rtl_opt_pass (pass_data_jump
, ctxt
)
3260 /* opt_pass methods: */
3261 virtual unsigned int execute (function
*);
3263 }; // class pass_jump
3266 pass_jump::execute (function
*)
3268 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3270 dump_flow_info (dump_file
, dump_flags
);
3271 cleanup_cfg ((optimize
? CLEANUP_EXPENSIVE
: 0)
3272 | (flag_thread_jumps
? CLEANUP_THREADING
: 0));
3279 make_pass_jump (gcc::context
*ctxt
)
3281 return new pass_jump (ctxt
);
3286 const pass_data pass_data_jump_after_combine
=
3288 RTL_PASS
, /* type */
3289 "jump_after_combine", /* name */
3290 OPTGROUP_NONE
, /* optinfo_flags */
3291 TV_JUMP
, /* tv_id */
3292 0, /* properties_required */
3293 0, /* properties_provided */
3294 0, /* properties_destroyed */
3295 0, /* todo_flags_start */
3296 0, /* todo_flags_finish */
3299 class pass_jump_after_combine
: public rtl_opt_pass
3302 pass_jump_after_combine (gcc::context
*ctxt
)
3303 : rtl_opt_pass (pass_data_jump_after_combine
, ctxt
)
3306 /* opt_pass methods: */
3307 virtual bool gate (function
*) { return flag_thread_jumps
; }
3308 virtual unsigned int execute (function
*);
3310 }; // class pass_jump_after_combine
3313 pass_jump_after_combine::execute (function
*)
3315 /* Jump threading does not keep dominators up-to-date. */
3316 free_dominance_info (CDI_DOMINATORS
);
3317 cleanup_cfg (CLEANUP_THREADING
);
3324 make_pass_jump_after_combine (gcc::context
*ctxt
)
3326 return new pass_jump_after_combine (ctxt
);
3331 const pass_data pass_data_jump2
=
3333 RTL_PASS
, /* type */
3335 OPTGROUP_NONE
, /* optinfo_flags */
3336 TV_JUMP
, /* tv_id */
3337 0, /* properties_required */
3338 0, /* properties_provided */
3339 0, /* properties_destroyed */
3340 0, /* todo_flags_start */
3341 0, /* todo_flags_finish */
3344 class pass_jump2
: public rtl_opt_pass
3347 pass_jump2 (gcc::context
*ctxt
)
3348 : rtl_opt_pass (pass_data_jump2
, ctxt
)
3351 /* opt_pass methods: */
3352 virtual unsigned int execute (function
*)
3354 cleanup_cfg (flag_crossjumping
? CLEANUP_CROSSJUMP
: 0);
3358 }; // class pass_jump2
3363 make_pass_jump2 (gcc::context
*ctxt
)
3365 return new pass_jump2 (ctxt
);