2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
4 Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
31 #include "tree-pass.h"
33 #include "optabs-tree.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
39 #include "gimple-iterator.h"
40 #include "gimplify-me.h"
41 #include "tree-ssa-loop-ivopts.h"
42 #include "tree-ssa-loop-manip.h"
43 #include "tree-ssa-loop-niter.h"
44 #include "tree-ssa-loop.h"
47 #include "tree-scalar-evolution.h"
48 #include "tree-vectorizer.h"
49 #include "gimple-fold.h"
52 #include "tree-if-conv.h"
53 #include "internal-fn.h"
54 #include "tree-vector-builder.h"
55 #include "vec-perm-indices.h"
58 /* Loop Vectorization Pass.
60 This pass tries to vectorize loops.
62 For example, the vectorizer transforms the following simple loop:
64 short a[N]; short b[N]; short c[N]; int i;
70 as if it was manually vectorized by rewriting the source code into:
72 typedef int __attribute__((mode(V8HI))) v8hi;
73 short a[N]; short b[N]; short c[N]; int i;
74 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
77 for (i=0; i<N/8; i++){
84 The main entry to this pass is vectorize_loops(), in which
85 the vectorizer applies a set of analyses on a given set of loops,
86 followed by the actual vectorization transformation for the loops that
87 had successfully passed the analysis phase.
88 Throughout this pass we make a distinction between two types of
89 data: scalars (which are represented by SSA_NAMES), and memory references
90 ("data-refs"). These two types of data require different handling both
91 during analysis and transformation. The types of data-refs that the
92 vectorizer currently supports are ARRAY_REFS which base is an array DECL
93 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
94 accesses are required to have a simple (consecutive) access pattern.
98 The driver for the analysis phase is vect_analyze_loop().
99 It applies a set of analyses, some of which rely on the scalar evolution
100 analyzer (scev) developed by Sebastian Pop.
102 During the analysis phase the vectorizer records some information
103 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
104 loop, as well as general information about the loop as a whole, which is
105 recorded in a "loop_vec_info" struct attached to each loop.
107 Transformation phase:
108 =====================
109 The loop transformation phase scans all the stmts in the loop, and
110 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
111 the loop that needs to be vectorized. It inserts the vector code sequence
112 just before the scalar stmt S, and records a pointer to the vector code
113 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
114 attached to S). This pointer will be used for the vectorization of following
115 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
116 otherwise, we rely on dead code elimination for removing it.
118 For example, say stmt S1 was vectorized into stmt VS1:
121 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
124 To vectorize stmt S2, the vectorizer first finds the stmt that defines
125 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
126 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
127 resulting sequence would be:
130 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
132 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
134 Operands that are not SSA_NAMEs, are data-refs that appear in
135 load/store operations (like 'x[i]' in S1), and are handled differently.
139 Currently the only target specific information that is used is the
140 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
141 Targets that can support different sizes of vectors, for now will need
142 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
143 flexibility will be added in the future.
145 Since we only vectorize operations which vector form can be
146 expressed using existing tree codes, to verify that an operation is
147 supported, the vectorizer checks the relevant optab at the relevant
148 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
149 the value found is CODE_FOR_nothing, then there's no target support, and
150 we can't vectorize the stmt.
152 For additional information on this project see:
153 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
156 static void vect_estimate_min_profitable_iters (loop_vec_info
, int *, int *);
158 /* Subroutine of vect_determine_vf_for_stmt that handles only one
159 statement. VECTYPE_MAYBE_SET_P is true if STMT_VINFO_VECTYPE
160 may already be set for general statements (not just data refs). */
163 vect_determine_vf_for_stmt_1 (stmt_vec_info stmt_info
,
164 bool vectype_maybe_set_p
,
166 vec
<stmt_vec_info
> *mask_producers
)
168 gimple
*stmt
= stmt_info
->stmt
;
170 if ((!STMT_VINFO_RELEVANT_P (stmt_info
)
171 && !STMT_VINFO_LIVE_P (stmt_info
))
172 || gimple_clobber_p (stmt
))
174 if (dump_enabled_p ())
175 dump_printf_loc (MSG_NOTE
, vect_location
, "skip.\n");
179 tree stmt_vectype
, nunits_vectype
;
180 if (!vect_get_vector_types_for_stmt (stmt_info
, &stmt_vectype
,
186 if (STMT_VINFO_VECTYPE (stmt_info
))
187 /* The only case when a vectype had been already set is for stmts
188 that contain a data ref, or for "pattern-stmts" (stmts generated
189 by the vectorizer to represent/replace a certain idiom). */
190 gcc_assert ((STMT_VINFO_DATA_REF (stmt_info
)
191 || vectype_maybe_set_p
)
192 && STMT_VINFO_VECTYPE (stmt_info
) == stmt_vectype
);
193 else if (stmt_vectype
== boolean_type_node
)
194 mask_producers
->safe_push (stmt_info
);
196 STMT_VINFO_VECTYPE (stmt_info
) = stmt_vectype
;
200 vect_update_max_nunits (vf
, nunits_vectype
);
205 /* Subroutine of vect_determine_vectorization_factor. Set the vector
206 types of STMT_INFO and all attached pattern statements and update
207 the vectorization factor VF accordingly. If some of the statements
208 produce a mask result whose vector type can only be calculated later,
209 add them to MASK_PRODUCERS. Return true on success or false if
210 something prevented vectorization. */
213 vect_determine_vf_for_stmt (stmt_vec_info stmt_info
, poly_uint64
*vf
,
214 vec
<stmt_vec_info
> *mask_producers
)
216 if (dump_enabled_p ())
218 dump_printf_loc (MSG_NOTE
, vect_location
, "==> examining statement: ");
219 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, stmt_info
->stmt
, 0);
221 if (!vect_determine_vf_for_stmt_1 (stmt_info
, false, vf
, mask_producers
))
224 if (STMT_VINFO_IN_PATTERN_P (stmt_info
)
225 && STMT_VINFO_RELATED_STMT (stmt_info
))
227 gimple
*pattern_def_seq
= STMT_VINFO_PATTERN_DEF_SEQ (stmt_info
);
228 stmt_info
= vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info
));
230 /* If a pattern statement has def stmts, analyze them too. */
231 for (gimple_stmt_iterator si
= gsi_start (pattern_def_seq
);
232 !gsi_end_p (si
); gsi_next (&si
))
234 stmt_vec_info def_stmt_info
= vinfo_for_stmt (gsi_stmt (si
));
235 if (dump_enabled_p ())
237 dump_printf_loc (MSG_NOTE
, vect_location
,
238 "==> examining pattern def stmt: ");
239 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
,
240 def_stmt_info
->stmt
, 0);
242 if (!vect_determine_vf_for_stmt_1 (def_stmt_info
, true,
247 if (dump_enabled_p ())
249 dump_printf_loc (MSG_NOTE
, vect_location
,
250 "==> examining pattern statement: ");
251 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, stmt_info
->stmt
, 0);
253 if (!vect_determine_vf_for_stmt_1 (stmt_info
, true, vf
, mask_producers
))
260 /* Function vect_determine_vectorization_factor
262 Determine the vectorization factor (VF). VF is the number of data elements
263 that are operated upon in parallel in a single iteration of the vectorized
264 loop. For example, when vectorizing a loop that operates on 4byte elements,
265 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
266 elements can fit in a single vector register.
268 We currently support vectorization of loops in which all types operated upon
269 are of the same size. Therefore this function currently sets VF according to
270 the size of the types operated upon, and fails if there are multiple sizes
273 VF is also the factor by which the loop iterations are strip-mined, e.g.:
280 for (i=0; i<N; i+=VF){
281 a[i:VF] = b[i:VF] + c[i:VF];
286 vect_determine_vectorization_factor (loop_vec_info loop_vinfo
)
288 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
289 basic_block
*bbs
= LOOP_VINFO_BBS (loop_vinfo
);
290 unsigned nbbs
= loop
->num_nodes
;
291 poly_uint64 vectorization_factor
= 1;
292 tree scalar_type
= NULL_TREE
;
295 stmt_vec_info stmt_info
;
297 auto_vec
<stmt_vec_info
> mask_producers
;
299 DUMP_VECT_SCOPE ("vect_determine_vectorization_factor");
301 for (i
= 0; i
< nbbs
; i
++)
303 basic_block bb
= bbs
[i
];
305 for (gphi_iterator si
= gsi_start_phis (bb
); !gsi_end_p (si
);
309 stmt_info
= vinfo_for_stmt (phi
);
310 if (dump_enabled_p ())
312 dump_printf_loc (MSG_NOTE
, vect_location
, "==> examining phi: ");
313 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, phi
, 0);
316 gcc_assert (stmt_info
);
318 if (STMT_VINFO_RELEVANT_P (stmt_info
)
319 || STMT_VINFO_LIVE_P (stmt_info
))
321 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info
));
322 scalar_type
= TREE_TYPE (PHI_RESULT (phi
));
324 if (dump_enabled_p ())
326 dump_printf_loc (MSG_NOTE
, vect_location
,
327 "get vectype for scalar type: ");
328 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, scalar_type
);
329 dump_printf (MSG_NOTE
, "\n");
332 vectype
= get_vectype_for_scalar_type (scalar_type
);
335 if (dump_enabled_p ())
337 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
338 "not vectorized: unsupported "
340 dump_generic_expr (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
,
342 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
346 STMT_VINFO_VECTYPE (stmt_info
) = vectype
;
348 if (dump_enabled_p ())
350 dump_printf_loc (MSG_NOTE
, vect_location
, "vectype: ");
351 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, vectype
);
352 dump_printf (MSG_NOTE
, "\n");
355 if (dump_enabled_p ())
357 dump_printf_loc (MSG_NOTE
, vect_location
, "nunits = ");
358 dump_dec (MSG_NOTE
, TYPE_VECTOR_SUBPARTS (vectype
));
359 dump_printf (MSG_NOTE
, "\n");
362 vect_update_max_nunits (&vectorization_factor
, vectype
);
366 for (gimple_stmt_iterator si
= gsi_start_bb (bb
); !gsi_end_p (si
);
369 stmt_info
= vinfo_for_stmt (gsi_stmt (si
));
370 if (!vect_determine_vf_for_stmt (stmt_info
, &vectorization_factor
,
376 /* TODO: Analyze cost. Decide if worth while to vectorize. */
377 if (dump_enabled_p ())
379 dump_printf_loc (MSG_NOTE
, vect_location
, "vectorization factor = ");
380 dump_dec (MSG_NOTE
, vectorization_factor
);
381 dump_printf (MSG_NOTE
, "\n");
384 if (known_le (vectorization_factor
, 1U))
386 if (dump_enabled_p ())
387 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
388 "not vectorized: unsupported data-type\n");
391 LOOP_VINFO_VECT_FACTOR (loop_vinfo
) = vectorization_factor
;
393 for (i
= 0; i
< mask_producers
.length (); i
++)
395 stmt_info
= mask_producers
[i
];
396 tree mask_type
= vect_get_mask_type_for_stmt (stmt_info
);
399 STMT_VINFO_VECTYPE (stmt_info
) = mask_type
;
406 /* Function vect_is_simple_iv_evolution.
408 FORNOW: A simple evolution of an induction variables in the loop is
409 considered a polynomial evolution. */
412 vect_is_simple_iv_evolution (unsigned loop_nb
, tree access_fn
, tree
* init
,
417 tree evolution_part
= evolution_part_in_loop_num (access_fn
, loop_nb
);
420 /* When there is no evolution in this loop, the evolution function
422 if (evolution_part
== NULL_TREE
)
425 /* When the evolution is a polynomial of degree >= 2
426 the evolution function is not "simple". */
427 if (tree_is_chrec (evolution_part
))
430 step_expr
= evolution_part
;
431 init_expr
= unshare_expr (initial_condition_in_loop_num (access_fn
, loop_nb
));
433 if (dump_enabled_p ())
435 dump_printf_loc (MSG_NOTE
, vect_location
, "step: ");
436 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, step_expr
);
437 dump_printf (MSG_NOTE
, ", init: ");
438 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, init_expr
);
439 dump_printf (MSG_NOTE
, "\n");
445 if (TREE_CODE (step_expr
) != INTEGER_CST
446 && (TREE_CODE (step_expr
) != SSA_NAME
447 || ((bb
= gimple_bb (SSA_NAME_DEF_STMT (step_expr
)))
448 && flow_bb_inside_loop_p (get_loop (cfun
, loop_nb
), bb
))
449 || (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr
))
450 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr
))
451 || !flag_associative_math
)))
452 && (TREE_CODE (step_expr
) != REAL_CST
453 || !flag_associative_math
))
455 if (dump_enabled_p ())
456 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
464 /* Function vect_analyze_scalar_cycles_1.
466 Examine the cross iteration def-use cycles of scalar variables
467 in LOOP. LOOP_VINFO represents the loop that is now being
468 considered for vectorization (can be LOOP, or an outer-loop
472 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo
, struct loop
*loop
)
474 basic_block bb
= loop
->header
;
476 auto_vec
<gimple
*, 64> worklist
;
480 DUMP_VECT_SCOPE ("vect_analyze_scalar_cycles");
482 /* First - identify all inductions. Reduction detection assumes that all the
483 inductions have been identified, therefore, this order must not be
485 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
487 gphi
*phi
= gsi
.phi ();
488 tree access_fn
= NULL
;
489 tree def
= PHI_RESULT (phi
);
490 stmt_vec_info stmt_vinfo
= vinfo_for_stmt (phi
);
492 if (dump_enabled_p ())
494 dump_printf_loc (MSG_NOTE
, vect_location
, "Analyze phi: ");
495 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, phi
, 0);
498 /* Skip virtual phi's. The data dependences that are associated with
499 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
500 if (virtual_operand_p (def
))
503 STMT_VINFO_DEF_TYPE (stmt_vinfo
) = vect_unknown_def_type
;
505 /* Analyze the evolution function. */
506 access_fn
= analyze_scalar_evolution (loop
, def
);
509 STRIP_NOPS (access_fn
);
510 if (dump_enabled_p ())
512 dump_printf_loc (MSG_NOTE
, vect_location
,
513 "Access function of PHI: ");
514 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, access_fn
);
515 dump_printf (MSG_NOTE
, "\n");
517 STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo
)
518 = initial_condition_in_loop_num (access_fn
, loop
->num
);
519 STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo
)
520 = evolution_part_in_loop_num (access_fn
, loop
->num
);
524 || !vect_is_simple_iv_evolution (loop
->num
, access_fn
, &init
, &step
)
525 || (LOOP_VINFO_LOOP (loop_vinfo
) != loop
526 && TREE_CODE (step
) != INTEGER_CST
))
528 worklist
.safe_push (phi
);
532 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo
)
534 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo
) != NULL_TREE
);
536 if (dump_enabled_p ())
537 dump_printf_loc (MSG_NOTE
, vect_location
, "Detected induction.\n");
538 STMT_VINFO_DEF_TYPE (stmt_vinfo
) = vect_induction_def
;
542 /* Second - identify all reductions and nested cycles. */
543 while (worklist
.length () > 0)
545 gimple
*phi
= worklist
.pop ();
546 tree def
= PHI_RESULT (phi
);
547 stmt_vec_info stmt_vinfo
= vinfo_for_stmt (phi
);
550 if (dump_enabled_p ())
552 dump_printf_loc (MSG_NOTE
, vect_location
, "Analyze phi: ");
553 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, phi
, 0);
556 gcc_assert (!virtual_operand_p (def
)
557 && STMT_VINFO_DEF_TYPE (stmt_vinfo
) == vect_unknown_def_type
);
559 reduc_stmt
= vect_force_simple_reduction (loop_vinfo
, phi
,
560 &double_reduc
, false);
565 if (dump_enabled_p ())
566 dump_printf_loc (MSG_NOTE
, vect_location
,
567 "Detected double reduction.\n");
569 STMT_VINFO_DEF_TYPE (stmt_vinfo
) = vect_double_reduction_def
;
570 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt
)) =
571 vect_double_reduction_def
;
575 if (loop
!= LOOP_VINFO_LOOP (loop_vinfo
))
577 if (dump_enabled_p ())
578 dump_printf_loc (MSG_NOTE
, vect_location
,
579 "Detected vectorizable nested cycle.\n");
581 STMT_VINFO_DEF_TYPE (stmt_vinfo
) = vect_nested_cycle
;
582 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt
)) =
587 if (dump_enabled_p ())
588 dump_printf_loc (MSG_NOTE
, vect_location
,
589 "Detected reduction.\n");
591 STMT_VINFO_DEF_TYPE (stmt_vinfo
) = vect_reduction_def
;
592 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt
)) =
594 /* Store the reduction cycles for possible vectorization in
595 loop-aware SLP if it was not detected as reduction
597 if (! REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (reduc_stmt
)))
598 LOOP_VINFO_REDUCTIONS (loop_vinfo
).safe_push (reduc_stmt
);
603 if (dump_enabled_p ())
604 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
605 "Unknown def-use cycle pattern.\n");
610 /* Function vect_analyze_scalar_cycles.
612 Examine the cross iteration def-use cycles of scalar variables, by
613 analyzing the loop-header PHIs of scalar variables. Classify each
614 cycle as one of the following: invariant, induction, reduction, unknown.
615 We do that for the loop represented by LOOP_VINFO, and also to its
616 inner-loop, if exists.
617 Examples for scalar cycles:
632 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo
)
634 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
636 vect_analyze_scalar_cycles_1 (loop_vinfo
, loop
);
638 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
639 Reductions in such inner-loop therefore have different properties than
640 the reductions in the nest that gets vectorized:
641 1. When vectorized, they are executed in the same order as in the original
642 scalar loop, so we can't change the order of computation when
644 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
645 current checks are too strict. */
648 vect_analyze_scalar_cycles_1 (loop_vinfo
, loop
->inner
);
651 /* Transfer group and reduction information from STMT to its pattern stmt. */
654 vect_fixup_reduc_chain (gimple
*stmt
)
656 gimple
*firstp
= STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt
));
658 gcc_assert (!REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (firstp
))
659 && REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt
)));
660 REDUC_GROUP_SIZE (vinfo_for_stmt (firstp
))
661 = REDUC_GROUP_SIZE (vinfo_for_stmt (stmt
));
664 stmtp
= STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt
));
665 REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmtp
)) = firstp
;
666 stmt
= REDUC_GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt
));
668 REDUC_GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmtp
))
669 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt
));
672 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmtp
)) = vect_reduction_def
;
675 /* Fixup scalar cycles that now have their stmts detected as patterns. */
678 vect_fixup_scalar_cycles_with_patterns (loop_vec_info loop_vinfo
)
683 FOR_EACH_VEC_ELT (LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo
), i
, first
)
684 if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (first
)))
686 gimple
*next
= REDUC_GROUP_NEXT_ELEMENT (vinfo_for_stmt (first
));
689 if (! STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (next
)))
691 next
= REDUC_GROUP_NEXT_ELEMENT (vinfo_for_stmt (next
));
693 /* If not all stmt in the chain are patterns try to handle
694 the chain without patterns. */
697 vect_fixup_reduc_chain (first
);
698 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo
)[i
]
699 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (first
));
704 /* Function vect_get_loop_niters.
706 Determine how many iterations the loop is executed and place it
707 in NUMBER_OF_ITERATIONS. Place the number of latch iterations
708 in NUMBER_OF_ITERATIONSM1. Place the condition under which the
709 niter information holds in ASSUMPTIONS.
711 Return the loop exit condition. */
715 vect_get_loop_niters (struct loop
*loop
, tree
*assumptions
,
716 tree
*number_of_iterations
, tree
*number_of_iterationsm1
)
718 edge exit
= single_exit (loop
);
719 struct tree_niter_desc niter_desc
;
720 tree niter_assumptions
, niter
, may_be_zero
;
721 gcond
*cond
= get_loop_exit_condition (loop
);
723 *assumptions
= boolean_true_node
;
724 *number_of_iterationsm1
= chrec_dont_know
;
725 *number_of_iterations
= chrec_dont_know
;
726 DUMP_VECT_SCOPE ("get_loop_niters");
731 niter
= chrec_dont_know
;
732 may_be_zero
= NULL_TREE
;
733 niter_assumptions
= boolean_true_node
;
734 if (!number_of_iterations_exit_assumptions (loop
, exit
, &niter_desc
, NULL
)
735 || chrec_contains_undetermined (niter_desc
.niter
))
738 niter_assumptions
= niter_desc
.assumptions
;
739 may_be_zero
= niter_desc
.may_be_zero
;
740 niter
= niter_desc
.niter
;
742 if (may_be_zero
&& integer_zerop (may_be_zero
))
743 may_be_zero
= NULL_TREE
;
747 if (COMPARISON_CLASS_P (may_be_zero
))
749 /* Try to combine may_be_zero with assumptions, this can simplify
750 computation of niter expression. */
751 if (niter_assumptions
&& !integer_nonzerop (niter_assumptions
))
752 niter_assumptions
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
754 fold_build1 (TRUTH_NOT_EXPR
,
758 niter
= fold_build3 (COND_EXPR
, TREE_TYPE (niter
), may_be_zero
,
759 build_int_cst (TREE_TYPE (niter
), 0),
760 rewrite_to_non_trapping_overflow (niter
));
762 may_be_zero
= NULL_TREE
;
764 else if (integer_nonzerop (may_be_zero
))
766 *number_of_iterationsm1
= build_int_cst (TREE_TYPE (niter
), 0);
767 *number_of_iterations
= build_int_cst (TREE_TYPE (niter
), 1);
774 *assumptions
= niter_assumptions
;
775 *number_of_iterationsm1
= niter
;
777 /* We want the number of loop header executions which is the number
778 of latch executions plus one.
779 ??? For UINT_MAX latch executions this number overflows to zero
780 for loops like do { n++; } while (n != 0); */
781 if (niter
&& !chrec_contains_undetermined (niter
))
782 niter
= fold_build2 (PLUS_EXPR
, TREE_TYPE (niter
), unshare_expr (niter
),
783 build_int_cst (TREE_TYPE (niter
), 1));
784 *number_of_iterations
= niter
;
789 /* Function bb_in_loop_p
791 Used as predicate for dfs order traversal of the loop bbs. */
794 bb_in_loop_p (const_basic_block bb
, const void *data
)
796 const struct loop
*const loop
= (const struct loop
*)data
;
797 if (flow_bb_inside_loop_p (loop
, bb
))
803 /* Create and initialize a new loop_vec_info struct for LOOP_IN, as well as
804 stmt_vec_info structs for all the stmts in LOOP_IN. */
806 _loop_vec_info::_loop_vec_info (struct loop
*loop_in
, vec_info_shared
*shared
)
807 : vec_info (vec_info::loop
, init_cost (loop_in
), shared
),
809 bbs (XCNEWVEC (basic_block
, loop
->num_nodes
)),
810 num_itersm1 (NULL_TREE
),
811 num_iters (NULL_TREE
),
812 num_iters_unchanged (NULL_TREE
),
813 num_iters_assumptions (NULL_TREE
),
815 versioning_threshold (0),
816 vectorization_factor (0),
817 max_vectorization_factor (0),
818 mask_skip_niters (NULL_TREE
),
819 mask_compare_type (NULL_TREE
),
821 peeling_for_alignment (0),
824 slp_unrolling_factor (1),
825 single_scalar_iteration_cost (0),
826 vectorizable (false),
827 can_fully_mask_p (true),
828 fully_masked_p (false),
829 peeling_for_gaps (false),
830 peeling_for_niter (false),
831 operands_swapped (false),
832 no_data_dependencies (false),
833 has_mask_store (false),
835 orig_loop_info (NULL
)
837 /* Create/Update stmt_info for all stmts in the loop. */
838 basic_block
*body
= get_loop_body (loop
);
839 for (unsigned int i
= 0; i
< loop
->num_nodes
; i
++)
841 basic_block bb
= body
[i
];
842 gimple_stmt_iterator si
;
844 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); gsi_next (&si
))
846 gimple
*phi
= gsi_stmt (si
);
847 gimple_set_uid (phi
, 0);
848 set_vinfo_for_stmt (phi
, new_stmt_vec_info (phi
, this));
851 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
853 gimple
*stmt
= gsi_stmt (si
);
854 gimple_set_uid (stmt
, 0);
855 set_vinfo_for_stmt (stmt
, new_stmt_vec_info (stmt
, this));
860 /* CHECKME: We want to visit all BBs before their successors (except for
861 latch blocks, for which this assertion wouldn't hold). In the simple
862 case of the loop forms we allow, a dfs order of the BBs would the same
863 as reversed postorder traversal, so we are safe. */
865 unsigned int nbbs
= dfs_enumerate_from (loop
->header
, 0, bb_in_loop_p
,
866 bbs
, loop
->num_nodes
, loop
);
867 gcc_assert (nbbs
== loop
->num_nodes
);
870 /* Free all levels of MASKS. */
873 release_vec_loop_masks (vec_loop_masks
*masks
)
877 FOR_EACH_VEC_ELT (*masks
, i
, rgm
)
878 rgm
->masks
.release ();
882 /* Free all memory used by the _loop_vec_info, as well as all the
883 stmt_vec_info structs of all the stmts in the loop. */
885 _loop_vec_info::~_loop_vec_info ()
888 gimple_stmt_iterator si
;
891 /* ??? We're releasing loop_vinfos en-block. */
892 set_stmt_vec_info_vec (&stmt_vec_infos
);
893 nbbs
= loop
->num_nodes
;
894 for (j
= 0; j
< nbbs
; j
++)
896 basic_block bb
= bbs
[j
];
897 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); gsi_next (&si
))
898 free_stmt_vec_info (gsi_stmt (si
));
900 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); )
902 gimple
*stmt
= gsi_stmt (si
);
904 /* We may have broken canonical form by moving a constant
905 into RHS1 of a commutative op. Fix such occurrences. */
906 if (operands_swapped
&& is_gimple_assign (stmt
))
908 enum tree_code code
= gimple_assign_rhs_code (stmt
);
910 if ((code
== PLUS_EXPR
911 || code
== POINTER_PLUS_EXPR
912 || code
== MULT_EXPR
)
913 && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt
)))
914 swap_ssa_operands (stmt
,
915 gimple_assign_rhs1_ptr (stmt
),
916 gimple_assign_rhs2_ptr (stmt
));
917 else if (code
== COND_EXPR
918 && CONSTANT_CLASS_P (gimple_assign_rhs2 (stmt
)))
920 tree cond_expr
= gimple_assign_rhs1 (stmt
);
921 enum tree_code cond_code
= TREE_CODE (cond_expr
);
923 if (TREE_CODE_CLASS (cond_code
) == tcc_comparison
)
925 bool honor_nans
= HONOR_NANS (TREE_OPERAND (cond_expr
,
927 cond_code
= invert_tree_comparison (cond_code
,
929 if (cond_code
!= ERROR_MARK
)
931 TREE_SET_CODE (cond_expr
, cond_code
);
932 swap_ssa_operands (stmt
,
933 gimple_assign_rhs2_ptr (stmt
),
934 gimple_assign_rhs3_ptr (stmt
));
940 /* Free stmt_vec_info. */
941 free_stmt_vec_info (stmt
);
948 release_vec_loop_masks (&masks
);
954 /* Return an invariant or register for EXPR and emit necessary
955 computations in the LOOP_VINFO loop preheader. */
958 cse_and_gimplify_to_preheader (loop_vec_info loop_vinfo
, tree expr
)
960 if (is_gimple_reg (expr
)
961 || is_gimple_min_invariant (expr
))
964 if (! loop_vinfo
->ivexpr_map
)
965 loop_vinfo
->ivexpr_map
= new hash_map
<tree_operand_hash
, tree
>;
966 tree
&cached
= loop_vinfo
->ivexpr_map
->get_or_insert (expr
);
969 gimple_seq stmts
= NULL
;
970 cached
= force_gimple_operand (unshare_expr (expr
),
971 &stmts
, true, NULL_TREE
);
974 edge e
= loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo
));
975 gsi_insert_seq_on_edge_immediate (e
, stmts
);
981 /* Return true if we can use CMP_TYPE as the comparison type to produce
982 all masks required to mask LOOP_VINFO. */
985 can_produce_all_loop_masks_p (loop_vec_info loop_vinfo
, tree cmp_type
)
989 FOR_EACH_VEC_ELT (LOOP_VINFO_MASKS (loop_vinfo
), i
, rgm
)
990 if (rgm
->mask_type
!= NULL_TREE
991 && !direct_internal_fn_supported_p (IFN_WHILE_ULT
,
992 cmp_type
, rgm
->mask_type
,
998 /* Calculate the maximum number of scalars per iteration for every
999 rgroup in LOOP_VINFO. */
1002 vect_get_max_nscalars_per_iter (loop_vec_info loop_vinfo
)
1004 unsigned int res
= 1;
1007 FOR_EACH_VEC_ELT (LOOP_VINFO_MASKS (loop_vinfo
), i
, rgm
)
1008 res
= MAX (res
, rgm
->max_nscalars_per_iter
);
1012 /* Each statement in LOOP_VINFO can be masked where necessary. Check
1013 whether we can actually generate the masks required. Return true if so,
1014 storing the type of the scalar IV in LOOP_VINFO_MASK_COMPARE_TYPE. */
1017 vect_verify_full_masking (loop_vec_info loop_vinfo
)
1019 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1020 unsigned int min_ni_width
;
1022 /* Use a normal loop if there are no statements that need masking.
1023 This only happens in rare degenerate cases: it means that the loop
1024 has no loads, no stores, and no live-out values. */
1025 if (LOOP_VINFO_MASKS (loop_vinfo
).is_empty ())
1028 /* Get the maximum number of iterations that is representable
1029 in the counter type. */
1030 tree ni_type
= TREE_TYPE (LOOP_VINFO_NITERSM1 (loop_vinfo
));
1031 widest_int max_ni
= wi::to_widest (TYPE_MAX_VALUE (ni_type
)) + 1;
1033 /* Get a more refined estimate for the number of iterations. */
1034 widest_int max_back_edges
;
1035 if (max_loop_iterations (loop
, &max_back_edges
))
1036 max_ni
= wi::smin (max_ni
, max_back_edges
+ 1);
1038 /* Account for rgroup masks, in which each bit is replicated N times. */
1039 max_ni
*= vect_get_max_nscalars_per_iter (loop_vinfo
);
1041 /* Work out how many bits we need to represent the limit. */
1042 min_ni_width
= wi::min_precision (max_ni
, UNSIGNED
);
1044 /* Find a scalar mode for which WHILE_ULT is supported. */
1045 opt_scalar_int_mode cmp_mode_iter
;
1046 tree cmp_type
= NULL_TREE
;
1047 FOR_EACH_MODE_IN_CLASS (cmp_mode_iter
, MODE_INT
)
1049 unsigned int cmp_bits
= GET_MODE_BITSIZE (cmp_mode_iter
.require ());
1050 if (cmp_bits
>= min_ni_width
1051 && targetm
.scalar_mode_supported_p (cmp_mode_iter
.require ()))
1053 tree this_type
= build_nonstandard_integer_type (cmp_bits
, true);
1055 && can_produce_all_loop_masks_p (loop_vinfo
, this_type
))
1057 /* Although we could stop as soon as we find a valid mode,
1058 it's often better to continue until we hit Pmode, since the
1059 operands to the WHILE are more likely to be reusable in
1060 address calculations. */
1061 cmp_type
= this_type
;
1062 if (cmp_bits
>= GET_MODE_BITSIZE (Pmode
))
1071 LOOP_VINFO_MASK_COMPARE_TYPE (loop_vinfo
) = cmp_type
;
1075 /* Calculate the cost of one scalar iteration of the loop. */
1077 vect_compute_single_scalar_iteration_cost (loop_vec_info loop_vinfo
)
1079 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1080 basic_block
*bbs
= LOOP_VINFO_BBS (loop_vinfo
);
1081 int nbbs
= loop
->num_nodes
, factor
;
1082 int innerloop_iters
, i
;
1084 /* Gather costs for statements in the scalar loop. */
1087 innerloop_iters
= 1;
1089 innerloop_iters
= 50; /* FIXME */
1091 for (i
= 0; i
< nbbs
; i
++)
1093 gimple_stmt_iterator si
;
1094 basic_block bb
= bbs
[i
];
1096 if (bb
->loop_father
== loop
->inner
)
1097 factor
= innerloop_iters
;
1101 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
1103 gimple
*stmt
= gsi_stmt (si
);
1104 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
1106 if (!is_gimple_assign (stmt
) && !is_gimple_call (stmt
))
1109 /* Skip stmts that are not vectorized inside the loop. */
1111 && !STMT_VINFO_RELEVANT_P (stmt_info
)
1112 && (!STMT_VINFO_LIVE_P (stmt_info
)
1113 || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info
)))
1114 && !STMT_VINFO_IN_PATTERN_P (stmt_info
))
1117 vect_cost_for_stmt kind
;
1118 if (STMT_VINFO_DATA_REF (stmt_info
))
1120 if (DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info
)))
1123 kind
= scalar_store
;
1128 record_stmt_cost (&LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo
),
1129 factor
, kind
, stmt_info
, 0, vect_prologue
);
1133 /* Now accumulate cost. */
1134 void *target_cost_data
= init_cost (loop
);
1135 stmt_info_for_cost
*si
;
1137 FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo
),
1140 struct _stmt_vec_info
*stmt_info
1141 = si
->stmt
? vinfo_for_stmt (si
->stmt
) : NULL
;
1142 (void) add_stmt_cost (target_cost_data
, si
->count
,
1143 si
->kind
, stmt_info
, si
->misalign
,
1146 unsigned dummy
, body_cost
= 0;
1147 finish_cost (target_cost_data
, &dummy
, &body_cost
, &dummy
);
1148 destroy_cost_data (target_cost_data
);
1149 LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo
) = body_cost
;
1153 /* Function vect_analyze_loop_form_1.
1155 Verify that certain CFG restrictions hold, including:
1156 - the loop has a pre-header
1157 - the loop has a single entry and exit
1158 - the loop exit condition is simple enough
1159 - the number of iterations can be analyzed, i.e, a countable loop. The
1160 niter could be analyzed under some assumptions. */
1163 vect_analyze_loop_form_1 (struct loop
*loop
, gcond
**loop_cond
,
1164 tree
*assumptions
, tree
*number_of_iterationsm1
,
1165 tree
*number_of_iterations
, gcond
**inner_loop_cond
)
1167 DUMP_VECT_SCOPE ("vect_analyze_loop_form");
1169 /* Different restrictions apply when we are considering an inner-most loop,
1170 vs. an outer (nested) loop.
1171 (FORNOW. May want to relax some of these restrictions in the future). */
1175 /* Inner-most loop. We currently require that the number of BBs is
1176 exactly 2 (the header and latch). Vectorizable inner-most loops
1187 if (loop
->num_nodes
!= 2)
1189 if (dump_enabled_p ())
1190 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1191 "not vectorized: control flow in loop.\n");
1195 if (empty_block_p (loop
->header
))
1197 if (dump_enabled_p ())
1198 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1199 "not vectorized: empty loop.\n");
1205 struct loop
*innerloop
= loop
->inner
;
1208 /* Nested loop. We currently require that the loop is doubly-nested,
1209 contains a single inner loop, and the number of BBs is exactly 5.
1210 Vectorizable outer-loops look like this:
1222 The inner-loop has the properties expected of inner-most loops
1223 as described above. */
1225 if ((loop
->inner
)->inner
|| (loop
->inner
)->next
)
1227 if (dump_enabled_p ())
1228 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1229 "not vectorized: multiple nested loops.\n");
1233 if (loop
->num_nodes
!= 5)
1235 if (dump_enabled_p ())
1236 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1237 "not vectorized: control flow in loop.\n");
1241 entryedge
= loop_preheader_edge (innerloop
);
1242 if (entryedge
->src
!= loop
->header
1243 || !single_exit (innerloop
)
1244 || single_exit (innerloop
)->dest
!= EDGE_PRED (loop
->latch
, 0)->src
)
1246 if (dump_enabled_p ())
1247 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1248 "not vectorized: unsupported outerloop form.\n");
1252 /* Analyze the inner-loop. */
1253 tree inner_niterm1
, inner_niter
, inner_assumptions
;
1254 if (! vect_analyze_loop_form_1 (loop
->inner
, inner_loop_cond
,
1255 &inner_assumptions
, &inner_niterm1
,
1257 /* Don't support analyzing niter under assumptions for inner
1259 || !integer_onep (inner_assumptions
))
1261 if (dump_enabled_p ())
1262 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1263 "not vectorized: Bad inner loop.\n");
1267 if (!expr_invariant_in_loop_p (loop
, inner_niter
))
1269 if (dump_enabled_p ())
1270 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1271 "not vectorized: inner-loop count not"
1276 if (dump_enabled_p ())
1277 dump_printf_loc (MSG_NOTE
, vect_location
,
1278 "Considering outer-loop vectorization.\n");
1281 if (!single_exit (loop
)
1282 || EDGE_COUNT (loop
->header
->preds
) != 2)
1284 if (dump_enabled_p ())
1286 if (!single_exit (loop
))
1287 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1288 "not vectorized: multiple exits.\n");
1289 else if (EDGE_COUNT (loop
->header
->preds
) != 2)
1290 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1291 "not vectorized: too many incoming edges.\n");
1296 /* We assume that the loop exit condition is at the end of the loop. i.e,
1297 that the loop is represented as a do-while (with a proper if-guard
1298 before the loop if needed), where the loop header contains all the
1299 executable statements, and the latch is empty. */
1300 if (!empty_block_p (loop
->latch
)
1301 || !gimple_seq_empty_p (phi_nodes (loop
->latch
)))
1303 if (dump_enabled_p ())
1304 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1305 "not vectorized: latch block not empty.\n");
1309 /* Make sure the exit is not abnormal. */
1310 edge e
= single_exit (loop
);
1311 if (e
->flags
& EDGE_ABNORMAL
)
1313 if (dump_enabled_p ())
1314 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1315 "not vectorized: abnormal loop exit edge.\n");
1319 *loop_cond
= vect_get_loop_niters (loop
, assumptions
, number_of_iterations
,
1320 number_of_iterationsm1
);
1323 if (dump_enabled_p ())
1324 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1325 "not vectorized: complicated exit condition.\n");
1329 if (integer_zerop (*assumptions
)
1330 || !*number_of_iterations
1331 || chrec_contains_undetermined (*number_of_iterations
))
1333 if (dump_enabled_p ())
1334 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1335 "not vectorized: number of iterations cannot be "
1340 if (integer_zerop (*number_of_iterations
))
1342 if (dump_enabled_p ())
1343 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1344 "not vectorized: number of iterations = 0.\n");
1351 /* Analyze LOOP form and return a loop_vec_info if it is of suitable form. */
1354 vect_analyze_loop_form (struct loop
*loop
, vec_info_shared
*shared
)
1356 tree assumptions
, number_of_iterations
, number_of_iterationsm1
;
1357 gcond
*loop_cond
, *inner_loop_cond
= NULL
;
1359 if (! vect_analyze_loop_form_1 (loop
, &loop_cond
,
1360 &assumptions
, &number_of_iterationsm1
,
1361 &number_of_iterations
, &inner_loop_cond
))
1364 loop_vec_info loop_vinfo
= new _loop_vec_info (loop
, shared
);
1365 LOOP_VINFO_NITERSM1 (loop_vinfo
) = number_of_iterationsm1
;
1366 LOOP_VINFO_NITERS (loop_vinfo
) = number_of_iterations
;
1367 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo
) = number_of_iterations
;
1368 if (!integer_onep (assumptions
))
1370 /* We consider to vectorize this loop by versioning it under
1371 some assumptions. In order to do this, we need to clear
1372 existing information computed by scev and niter analyzer. */
1374 free_numbers_of_iterations_estimates (loop
);
1375 /* Also set flag for this loop so that following scev and niter
1376 analysis are done under the assumptions. */
1377 loop_constraint_set (loop
, LOOP_C_FINITE
);
1378 /* Also record the assumptions for versioning. */
1379 LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo
) = assumptions
;
1382 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
))
1384 if (dump_enabled_p ())
1386 dump_printf_loc (MSG_NOTE
, vect_location
,
1387 "Symbolic number of iterations is ");
1388 dump_generic_expr (MSG_NOTE
, TDF_DETAILS
, number_of_iterations
);
1389 dump_printf (MSG_NOTE
, "\n");
1393 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond
)) = loop_exit_ctrl_vec_info_type
;
1394 if (inner_loop_cond
)
1395 STMT_VINFO_TYPE (vinfo_for_stmt (inner_loop_cond
))
1396 = loop_exit_ctrl_vec_info_type
;
1398 gcc_assert (!loop
->aux
);
1399 loop
->aux
= loop_vinfo
;
1405 /* Scan the loop stmts and dependent on whether there are any (non-)SLP
1406 statements update the vectorization factor. */
1409 vect_update_vf_for_slp (loop_vec_info loop_vinfo
)
1411 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1412 basic_block
*bbs
= LOOP_VINFO_BBS (loop_vinfo
);
1413 int nbbs
= loop
->num_nodes
;
1414 poly_uint64 vectorization_factor
;
1417 DUMP_VECT_SCOPE ("vect_update_vf_for_slp");
1419 vectorization_factor
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
1420 gcc_assert (known_ne (vectorization_factor
, 0U));
1422 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1423 vectorization factor of the loop is the unrolling factor required by
1424 the SLP instances. If that unrolling factor is 1, we say, that we
1425 perform pure SLP on loop - cross iteration parallelism is not
1427 bool only_slp_in_loop
= true;
1428 for (i
= 0; i
< nbbs
; i
++)
1430 basic_block bb
= bbs
[i
];
1431 for (gimple_stmt_iterator si
= gsi_start_bb (bb
); !gsi_end_p (si
);
1434 gimple
*stmt
= gsi_stmt (si
);
1435 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
1436 if (STMT_VINFO_IN_PATTERN_P (stmt_info
)
1437 && STMT_VINFO_RELATED_STMT (stmt_info
))
1439 stmt
= STMT_VINFO_RELATED_STMT (stmt_info
);
1440 stmt_info
= vinfo_for_stmt (stmt
);
1442 if ((STMT_VINFO_RELEVANT_P (stmt_info
)
1443 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info
)))
1444 && !PURE_SLP_STMT (stmt_info
))
1445 /* STMT needs both SLP and loop-based vectorization. */
1446 only_slp_in_loop
= false;
1450 if (only_slp_in_loop
)
1452 dump_printf_loc (MSG_NOTE
, vect_location
,
1453 "Loop contains only SLP stmts\n");
1454 vectorization_factor
= LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo
);
1458 dump_printf_loc (MSG_NOTE
, vect_location
,
1459 "Loop contains SLP and non-SLP stmts\n");
1460 /* Both the vectorization factor and unroll factor have the form
1461 current_vector_size * X for some rational X, so they must have
1462 a common multiple. */
1463 vectorization_factor
1464 = force_common_multiple (vectorization_factor
,
1465 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo
));
1468 LOOP_VINFO_VECT_FACTOR (loop_vinfo
) = vectorization_factor
;
1469 if (dump_enabled_p ())
1471 dump_printf_loc (MSG_NOTE
, vect_location
,
1472 "Updating vectorization factor to ");
1473 dump_dec (MSG_NOTE
, vectorization_factor
);
1474 dump_printf (MSG_NOTE
, ".\n");
1478 /* Return true if STMT_INFO describes a double reduction phi and if
1479 the other phi in the reduction is also relevant for vectorization.
1480 This rejects cases such as:
1483 x_1 = PHI <x_3(outer2), ...>;
1491 x_3 = PHI <x_2(inner)>;
1493 if nothing in x_2 or elsewhere makes x_1 relevant. */
1496 vect_active_double_reduction_p (stmt_vec_info stmt_info
)
1498 if (STMT_VINFO_DEF_TYPE (stmt_info
) != vect_double_reduction_def
)
1501 gimple
*other_phi
= STMT_VINFO_REDUC_DEF (stmt_info
);
1502 return STMT_VINFO_RELEVANT_P (vinfo_for_stmt (other_phi
));
1505 /* Function vect_analyze_loop_operations.
1507 Scan the loop stmts and make sure they are all vectorizable. */
1510 vect_analyze_loop_operations (loop_vec_info loop_vinfo
)
1512 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1513 basic_block
*bbs
= LOOP_VINFO_BBS (loop_vinfo
);
1514 int nbbs
= loop
->num_nodes
;
1516 stmt_vec_info stmt_info
;
1517 bool need_to_vectorize
= false;
1520 DUMP_VECT_SCOPE ("vect_analyze_loop_operations");
1522 stmt_vector_for_cost cost_vec
;
1523 cost_vec
.create (2);
1525 for (i
= 0; i
< nbbs
; i
++)
1527 basic_block bb
= bbs
[i
];
1529 for (gphi_iterator si
= gsi_start_phis (bb
); !gsi_end_p (si
);
1532 gphi
*phi
= si
.phi ();
1535 stmt_info
= vinfo_for_stmt (phi
);
1536 if (dump_enabled_p ())
1538 dump_printf_loc (MSG_NOTE
, vect_location
, "examining phi: ");
1539 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, phi
, 0);
1541 if (virtual_operand_p (gimple_phi_result (phi
)))
1544 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1545 (i.e., a phi in the tail of the outer-loop). */
1546 if (! is_loop_header_bb_p (bb
))
1548 /* FORNOW: we currently don't support the case that these phis
1549 are not used in the outerloop (unless it is double reduction,
1550 i.e., this phi is vect_reduction_def), cause this case
1551 requires to actually do something here. */
1552 if (STMT_VINFO_LIVE_P (stmt_info
)
1553 && !vect_active_double_reduction_p (stmt_info
))
1555 if (dump_enabled_p ())
1556 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1557 "Unsupported loop-closed phi in "
1562 /* If PHI is used in the outer loop, we check that its operand
1563 is defined in the inner loop. */
1564 if (STMT_VINFO_RELEVANT_P (stmt_info
))
1567 gimple
*op_def_stmt
;
1569 if (gimple_phi_num_args (phi
) != 1)
1572 phi_op
= PHI_ARG_DEF (phi
, 0);
1573 if (TREE_CODE (phi_op
) != SSA_NAME
)
1576 op_def_stmt
= SSA_NAME_DEF_STMT (phi_op
);
1577 if (gimple_nop_p (op_def_stmt
)
1578 || !flow_bb_inside_loop_p (loop
, gimple_bb (op_def_stmt
))
1579 || !vinfo_for_stmt (op_def_stmt
))
1582 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt
))
1583 != vect_used_in_outer
1584 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt
))
1585 != vect_used_in_outer_by_reduction
)
1592 gcc_assert (stmt_info
);
1594 if ((STMT_VINFO_RELEVANT (stmt_info
) == vect_used_in_scope
1595 || STMT_VINFO_LIVE_P (stmt_info
))
1596 && STMT_VINFO_DEF_TYPE (stmt_info
) != vect_induction_def
)
1598 /* A scalar-dependence cycle that we don't support. */
1599 if (dump_enabled_p ())
1600 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1601 "not vectorized: scalar dependence cycle.\n");
1605 if (STMT_VINFO_RELEVANT_P (stmt_info
))
1607 need_to_vectorize
= true;
1608 if (STMT_VINFO_DEF_TYPE (stmt_info
) == vect_induction_def
1609 && ! PURE_SLP_STMT (stmt_info
))
1610 ok
= vectorizable_induction (phi
, NULL
, NULL
, NULL
, &cost_vec
);
1611 else if ((STMT_VINFO_DEF_TYPE (stmt_info
) == vect_reduction_def
1612 || STMT_VINFO_DEF_TYPE (stmt_info
) == vect_nested_cycle
)
1613 && ! PURE_SLP_STMT (stmt_info
))
1614 ok
= vectorizable_reduction (phi
, NULL
, NULL
, NULL
, NULL
,
1618 /* SLP PHIs are tested by vect_slp_analyze_node_operations. */
1620 && STMT_VINFO_LIVE_P (stmt_info
)
1621 && !PURE_SLP_STMT (stmt_info
))
1622 ok
= vectorizable_live_operation (phi
, NULL
, NULL
, -1, NULL
,
1627 if (dump_enabled_p ())
1629 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1630 "not vectorized: relevant phi not "
1632 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
, phi
, 0);
1638 for (gimple_stmt_iterator si
= gsi_start_bb (bb
); !gsi_end_p (si
);
1641 gimple
*stmt
= gsi_stmt (si
);
1642 if (!gimple_clobber_p (stmt
)
1643 && !vect_analyze_stmt (stmt
, &need_to_vectorize
, NULL
, NULL
,
1649 add_stmt_costs (loop_vinfo
->target_cost_data
, &cost_vec
);
1650 cost_vec
.release ();
1652 /* All operations in the loop are either irrelevant (deal with loop
1653 control, or dead), or only used outside the loop and can be moved
1654 out of the loop (e.g. invariants, inductions). The loop can be
1655 optimized away by scalar optimizations. We're better off not
1656 touching this loop. */
1657 if (!need_to_vectorize
)
1659 if (dump_enabled_p ())
1660 dump_printf_loc (MSG_NOTE
, vect_location
,
1661 "All the computation can be taken out of the loop.\n");
1662 if (dump_enabled_p ())
1663 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1664 "not vectorized: redundant loop. no profit to "
1672 /* Analyze the cost of the loop described by LOOP_VINFO. Decide if it
1673 is worthwhile to vectorize. Return 1 if definitely yes, 0 if
1674 definitely no, or -1 if it's worth retrying. */
1677 vect_analyze_loop_costing (loop_vec_info loop_vinfo
)
1679 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1680 unsigned int assumed_vf
= vect_vf_for_cost (loop_vinfo
);
1682 /* Only fully-masked loops can have iteration counts less than the
1683 vectorization factor. */
1684 if (!LOOP_VINFO_FULLY_MASKED_P (loop_vinfo
))
1686 HOST_WIDE_INT max_niter
;
1688 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
))
1689 max_niter
= LOOP_VINFO_INT_NITERS (loop_vinfo
);
1691 max_niter
= max_stmt_executions_int (loop
);
1694 && (unsigned HOST_WIDE_INT
) max_niter
< assumed_vf
)
1696 if (dump_enabled_p ())
1697 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1698 "not vectorized: iteration count smaller than "
1699 "vectorization factor.\n");
1704 int min_profitable_iters
, min_profitable_estimate
;
1705 vect_estimate_min_profitable_iters (loop_vinfo
, &min_profitable_iters
,
1706 &min_profitable_estimate
);
1708 if (min_profitable_iters
< 0)
1710 if (dump_enabled_p ())
1711 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1712 "not vectorized: vectorization not profitable.\n");
1713 if (dump_enabled_p ())
1714 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1715 "not vectorized: vector version will never be "
1720 int min_scalar_loop_bound
= (PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND
)
1723 /* Use the cost model only if it is more conservative than user specified
1725 unsigned int th
= (unsigned) MAX (min_scalar_loop_bound
,
1726 min_profitable_iters
);
1728 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo
) = th
;
1730 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
)
1731 && LOOP_VINFO_INT_NITERS (loop_vinfo
) < th
)
1733 if (dump_enabled_p ())
1734 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1735 "not vectorized: vectorization not profitable.\n");
1736 if (dump_enabled_p ())
1737 dump_printf_loc (MSG_NOTE
, vect_location
,
1738 "not vectorized: iteration count smaller than user "
1739 "specified loop bound parameter or minimum profitable "
1740 "iterations (whichever is more conservative).\n");
1744 HOST_WIDE_INT estimated_niter
= estimated_stmt_executions_int (loop
);
1745 if (estimated_niter
== -1)
1746 estimated_niter
= likely_max_stmt_executions_int (loop
);
1747 if (estimated_niter
!= -1
1748 && ((unsigned HOST_WIDE_INT
) estimated_niter
1749 < MAX (th
, (unsigned) min_profitable_estimate
)))
1751 if (dump_enabled_p ())
1752 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1753 "not vectorized: estimated iteration count too "
1755 if (dump_enabled_p ())
1756 dump_printf_loc (MSG_NOTE
, vect_location
,
1757 "not vectorized: estimated iteration count smaller "
1758 "than specified loop bound parameter or minimum "
1759 "profitable iterations (whichever is more "
1760 "conservative).\n");
1768 vect_get_datarefs_in_loop (loop_p loop
, basic_block
*bbs
,
1769 vec
<data_reference_p
> *datarefs
,
1770 unsigned int *n_stmts
)
1773 for (unsigned i
= 0; i
< loop
->num_nodes
; i
++)
1774 for (gimple_stmt_iterator gsi
= gsi_start_bb (bbs
[i
]);
1775 !gsi_end_p (gsi
); gsi_next (&gsi
))
1777 gimple
*stmt
= gsi_stmt (gsi
);
1778 if (is_gimple_debug (stmt
))
1781 if (!vect_find_stmt_data_reference (loop
, stmt
, datarefs
))
1783 if (is_gimple_call (stmt
) && loop
->safelen
)
1785 tree fndecl
= gimple_call_fndecl (stmt
), op
;
1786 if (fndecl
!= NULL_TREE
)
1788 cgraph_node
*node
= cgraph_node::get (fndecl
);
1789 if (node
!= NULL
&& node
->simd_clones
!= NULL
)
1791 unsigned int j
, n
= gimple_call_num_args (stmt
);
1792 for (j
= 0; j
< n
; j
++)
1794 op
= gimple_call_arg (stmt
, j
);
1796 || (REFERENCE_CLASS_P (op
)
1797 && get_base_address (op
)))
1800 op
= gimple_call_lhs (stmt
);
1801 /* Ignore #pragma omp declare simd functions
1802 if they don't have data references in the
1803 call stmt itself. */
1807 || (REFERENCE_CLASS_P (op
)
1808 && get_base_address (op
)))))
1815 /* If dependence analysis will give up due to the limit on the
1816 number of datarefs stop here and fail fatally. */
1817 if (datarefs
->length ()
1818 > (unsigned)PARAM_VALUE (PARAM_LOOP_MAX_DATAREFS_FOR_DATADEPS
))
1824 /* Function vect_analyze_loop_2.
1826 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1827 for it. The different analyses will record information in the
1828 loop_vec_info struct. */
1830 vect_analyze_loop_2 (loop_vec_info loop_vinfo
, bool &fatal
, unsigned *n_stmts
)
1834 unsigned int max_vf
= MAX_VECTORIZATION_FACTOR
;
1835 poly_uint64 min_vf
= 2;
1837 /* The first group of checks is independent of the vector size. */
1840 /* Find all data references in the loop (which correspond to vdefs/vuses)
1841 and analyze their evolution in the loop. */
1843 loop_p loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1845 /* Gather the data references and count stmts in the loop. */
1846 if (!LOOP_VINFO_DATAREFS (loop_vinfo
).exists ())
1848 if (!vect_get_datarefs_in_loop (loop
, LOOP_VINFO_BBS (loop_vinfo
),
1849 &LOOP_VINFO_DATAREFS (loop_vinfo
),
1852 if (dump_enabled_p ())
1853 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1854 "not vectorized: loop contains function "
1855 "calls or data references that cannot "
1859 loop_vinfo
->shared
->save_datarefs ();
1862 loop_vinfo
->shared
->check_datarefs ();
1864 /* Analyze the data references and also adjust the minimal
1865 vectorization factor according to the loads and stores. */
1867 ok
= vect_analyze_data_refs (loop_vinfo
, &min_vf
);
1870 if (dump_enabled_p ())
1871 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1872 "bad data references.\n");
1876 /* Classify all cross-iteration scalar data-flow cycles.
1877 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1878 vect_analyze_scalar_cycles (loop_vinfo
);
1880 vect_pattern_recog (loop_vinfo
);
1882 vect_fixup_scalar_cycles_with_patterns (loop_vinfo
);
1884 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1885 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1887 ok
= vect_analyze_data_ref_accesses (loop_vinfo
);
1890 if (dump_enabled_p ())
1891 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1892 "bad data access.\n");
1896 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1898 ok
= vect_mark_stmts_to_be_vectorized (loop_vinfo
);
1901 if (dump_enabled_p ())
1902 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1903 "unexpected pattern.\n");
1907 /* While the rest of the analysis below depends on it in some way. */
1910 /* Analyze data dependences between the data-refs in the loop
1911 and adjust the maximum vectorization factor according to
1913 FORNOW: fail at the first data dependence that we encounter. */
1915 ok
= vect_analyze_data_ref_dependences (loop_vinfo
, &max_vf
);
1917 || (max_vf
!= MAX_VECTORIZATION_FACTOR
1918 && maybe_lt (max_vf
, min_vf
)))
1920 if (dump_enabled_p ())
1921 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1922 "bad data dependence.\n");
1925 LOOP_VINFO_MAX_VECT_FACTOR (loop_vinfo
) = max_vf
;
1927 ok
= vect_determine_vectorization_factor (loop_vinfo
);
1930 if (dump_enabled_p ())
1931 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1932 "can't determine vectorization factor.\n");
1935 if (max_vf
!= MAX_VECTORIZATION_FACTOR
1936 && maybe_lt (max_vf
, LOOP_VINFO_VECT_FACTOR (loop_vinfo
)))
1938 if (dump_enabled_p ())
1939 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1940 "bad data dependence.\n");
1944 /* Compute the scalar iteration cost. */
1945 vect_compute_single_scalar_iteration_cost (loop_vinfo
);
1947 poly_uint64 saved_vectorization_factor
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
1950 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1951 ok
= vect_analyze_slp (loop_vinfo
, *n_stmts
);
1955 /* If there are any SLP instances mark them as pure_slp. */
1956 bool slp
= vect_make_slp_decision (loop_vinfo
);
1959 /* Find stmts that need to be both vectorized and SLPed. */
1960 vect_detect_hybrid_slp (loop_vinfo
);
1962 /* Update the vectorization factor based on the SLP decision. */
1963 vect_update_vf_for_slp (loop_vinfo
);
1966 bool saved_can_fully_mask_p
= LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo
);
1968 /* We don't expect to have to roll back to anything other than an empty
1970 gcc_assert (LOOP_VINFO_MASKS (loop_vinfo
).is_empty ());
1972 /* This is the point where we can re-start analysis with SLP forced off. */
1975 /* Now the vectorization factor is final. */
1976 poly_uint64 vectorization_factor
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
1977 gcc_assert (known_ne (vectorization_factor
, 0U));
1979 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
) && dump_enabled_p ())
1981 dump_printf_loc (MSG_NOTE
, vect_location
,
1982 "vectorization_factor = ");
1983 dump_dec (MSG_NOTE
, vectorization_factor
);
1984 dump_printf (MSG_NOTE
, ", niters = " HOST_WIDE_INT_PRINT_DEC
"\n",
1985 LOOP_VINFO_INT_NITERS (loop_vinfo
));
1988 HOST_WIDE_INT max_niter
1989 = likely_max_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo
));
1991 /* Analyze the alignment of the data-refs in the loop.
1992 Fail if a data reference is found that cannot be vectorized. */
1994 ok
= vect_analyze_data_refs_alignment (loop_vinfo
);
1997 if (dump_enabled_p ())
1998 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
1999 "bad data alignment.\n");
2003 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
2004 It is important to call pruning after vect_analyze_data_ref_accesses,
2005 since we use grouping information gathered by interleaving analysis. */
2006 ok
= vect_prune_runtime_alias_test_list (loop_vinfo
);
2010 /* Do not invoke vect_enhance_data_refs_alignment for eplilogue
2012 if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo
))
2014 /* This pass will decide on using loop versioning and/or loop peeling in
2015 order to enhance the alignment of data references in the loop. */
2016 ok
= vect_enhance_data_refs_alignment (loop_vinfo
);
2019 if (dump_enabled_p ())
2020 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2021 "bad data alignment.\n");
2028 /* Analyze operations in the SLP instances. Note this may
2029 remove unsupported SLP instances which makes the above
2030 SLP kind detection invalid. */
2031 unsigned old_size
= LOOP_VINFO_SLP_INSTANCES (loop_vinfo
).length ();
2032 vect_slp_analyze_operations (loop_vinfo
);
2033 if (LOOP_VINFO_SLP_INSTANCES (loop_vinfo
).length () != old_size
)
2037 /* Scan all the remaining operations in the loop that are not subject
2038 to SLP and make sure they are vectorizable. */
2039 ok
= vect_analyze_loop_operations (loop_vinfo
);
2042 if (dump_enabled_p ())
2043 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2044 "bad operation or unsupported loop bound.\n");
2048 /* Decide whether to use a fully-masked loop for this vectorization
2050 LOOP_VINFO_FULLY_MASKED_P (loop_vinfo
)
2051 = (LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo
)
2052 && vect_verify_full_masking (loop_vinfo
));
2053 if (dump_enabled_p ())
2055 if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo
))
2056 dump_printf_loc (MSG_NOTE
, vect_location
,
2057 "using a fully-masked loop.\n");
2059 dump_printf_loc (MSG_NOTE
, vect_location
,
2060 "not using a fully-masked loop.\n");
2063 /* If epilog loop is required because of data accesses with gaps,
2064 one additional iteration needs to be peeled. Check if there is
2065 enough iterations for vectorization. */
2066 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo
)
2067 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
)
2068 && !LOOP_VINFO_FULLY_MASKED_P (loop_vinfo
))
2070 poly_uint64 vf
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
2071 tree scalar_niters
= LOOP_VINFO_NITERSM1 (loop_vinfo
);
2073 if (known_lt (wi::to_widest (scalar_niters
), vf
))
2075 if (dump_enabled_p ())
2076 dump_printf_loc (MSG_NOTE
, vect_location
,
2077 "loop has no enough iterations to support"
2078 " peeling for gaps.\n");
2083 /* Check the costings of the loop make vectorizing worthwhile. */
2084 res
= vect_analyze_loop_costing (loop_vinfo
);
2089 if (dump_enabled_p ())
2090 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2091 "Loop costings not worthwhile.\n");
2095 /* Decide whether we need to create an epilogue loop to handle
2096 remaining scalar iterations. */
2097 th
= LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo
);
2099 unsigned HOST_WIDE_INT const_vf
;
2100 if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo
))
2101 /* The main loop handles all iterations. */
2102 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo
) = false;
2103 else if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
)
2104 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
) > 0)
2106 if (!multiple_p (LOOP_VINFO_INT_NITERS (loop_vinfo
)
2107 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
),
2108 LOOP_VINFO_VECT_FACTOR (loop_vinfo
)))
2109 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo
) = true;
2111 else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
)
2112 || !LOOP_VINFO_VECT_FACTOR (loop_vinfo
).is_constant (&const_vf
)
2113 || ((tree_ctz (LOOP_VINFO_NITERS (loop_vinfo
))
2114 < (unsigned) exact_log2 (const_vf
))
2115 /* In case of versioning, check if the maximum number of
2116 iterations is greater than th. If they are identical,
2117 the epilogue is unnecessary. */
2118 && (!LOOP_REQUIRES_VERSIONING (loop_vinfo
)
2119 || ((unsigned HOST_WIDE_INT
) max_niter
2120 > (th
/ const_vf
) * const_vf
))))
2121 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo
) = true;
2123 /* If an epilogue loop is required make sure we can create one. */
2124 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo
)
2125 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo
))
2127 if (dump_enabled_p ())
2128 dump_printf_loc (MSG_NOTE
, vect_location
, "epilog loop required\n");
2129 if (!vect_can_advance_ivs_p (loop_vinfo
)
2130 || !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo
),
2131 single_exit (LOOP_VINFO_LOOP
2134 if (dump_enabled_p ())
2135 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2136 "not vectorized: can't create required "
2142 /* During peeling, we need to check if number of loop iterations is
2143 enough for both peeled prolog loop and vector loop. This check
2144 can be merged along with threshold check of loop versioning, so
2145 increase threshold for this case if necessary. */
2146 if (LOOP_REQUIRES_VERSIONING (loop_vinfo
))
2148 poly_uint64 niters_th
= 0;
2150 if (!vect_use_loop_mask_for_alignment_p (loop_vinfo
))
2152 /* Niters for peeled prolog loop. */
2153 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
) < 0)
2155 struct data_reference
*dr
= LOOP_VINFO_UNALIGNED_DR (loop_vinfo
);
2157 = STMT_VINFO_VECTYPE (vinfo_for_stmt (vect_dr_stmt (dr
)));
2158 niters_th
+= TYPE_VECTOR_SUBPARTS (vectype
) - 1;
2161 niters_th
+= LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
);
2164 /* Niters for at least one iteration of vectorized loop. */
2165 if (!LOOP_VINFO_FULLY_MASKED_P (loop_vinfo
))
2166 niters_th
+= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
2167 /* One additional iteration because of peeling for gap. */
2168 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo
))
2170 LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo
) = niters_th
;
2173 gcc_assert (known_eq (vectorization_factor
,
2174 LOOP_VINFO_VECT_FACTOR (loop_vinfo
)));
2176 /* Ok to vectorize! */
2180 /* Try again with SLP forced off but if we didn't do any SLP there is
2181 no point in re-trying. */
2185 /* If there are reduction chains re-trying will fail anyway. */
2186 if (! LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo
).is_empty ())
2189 /* Likewise if the grouped loads or stores in the SLP cannot be handled
2190 via interleaving or lane instructions. */
2191 slp_instance instance
;
2194 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo
), i
, instance
)
2196 stmt_vec_info vinfo
;
2197 vinfo
= vinfo_for_stmt
2198 (SLP_TREE_SCALAR_STMTS (SLP_INSTANCE_TREE (instance
))[0]);
2199 if (! STMT_VINFO_GROUPED_ACCESS (vinfo
))
2201 vinfo
= vinfo_for_stmt (DR_GROUP_FIRST_ELEMENT (vinfo
));
2202 unsigned int size
= DR_GROUP_SIZE (vinfo
);
2203 tree vectype
= STMT_VINFO_VECTYPE (vinfo
);
2204 if (! vect_store_lanes_supported (vectype
, size
, false)
2205 && ! known_eq (TYPE_VECTOR_SUBPARTS (vectype
), 1U)
2206 && ! vect_grouped_store_supported (vectype
, size
))
2208 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance
), j
, node
)
2210 vinfo
= vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (node
)[0]);
2211 vinfo
= vinfo_for_stmt (DR_GROUP_FIRST_ELEMENT (vinfo
));
2212 bool single_element_p
= !DR_GROUP_NEXT_ELEMENT (vinfo
);
2213 size
= DR_GROUP_SIZE (vinfo
);
2214 vectype
= STMT_VINFO_VECTYPE (vinfo
);
2215 if (! vect_load_lanes_supported (vectype
, size
, false)
2216 && ! vect_grouped_load_supported (vectype
, single_element_p
,
2222 if (dump_enabled_p ())
2223 dump_printf_loc (MSG_NOTE
, vect_location
,
2224 "re-trying with SLP disabled\n");
2226 /* Roll back state appropriately. No SLP this time. */
2228 /* Restore vectorization factor as it were without SLP. */
2229 LOOP_VINFO_VECT_FACTOR (loop_vinfo
) = saved_vectorization_factor
;
2230 /* Free the SLP instances. */
2231 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo
), j
, instance
)
2232 vect_free_slp_instance (instance
);
2233 LOOP_VINFO_SLP_INSTANCES (loop_vinfo
).release ();
2234 /* Reset SLP type to loop_vect on all stmts. */
2235 for (i
= 0; i
< LOOP_VINFO_LOOP (loop_vinfo
)->num_nodes
; ++i
)
2237 basic_block bb
= LOOP_VINFO_BBS (loop_vinfo
)[i
];
2238 for (gimple_stmt_iterator si
= gsi_start_phis (bb
);
2239 !gsi_end_p (si
); gsi_next (&si
))
2241 stmt_vec_info stmt_info
= vinfo_for_stmt (gsi_stmt (si
));
2242 STMT_SLP_TYPE (stmt_info
) = loop_vect
;
2244 for (gimple_stmt_iterator si
= gsi_start_bb (bb
);
2245 !gsi_end_p (si
); gsi_next (&si
))
2247 stmt_vec_info stmt_info
= vinfo_for_stmt (gsi_stmt (si
));
2248 STMT_SLP_TYPE (stmt_info
) = loop_vect
;
2249 if (STMT_VINFO_IN_PATTERN_P (stmt_info
))
2251 gimple
*pattern_def_seq
= STMT_VINFO_PATTERN_DEF_SEQ (stmt_info
);
2252 stmt_info
= vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info
));
2253 STMT_SLP_TYPE (stmt_info
) = loop_vect
;
2254 for (gimple_stmt_iterator pi
= gsi_start (pattern_def_seq
);
2255 !gsi_end_p (pi
); gsi_next (&pi
))
2257 gimple
*pstmt
= gsi_stmt (pi
);
2258 STMT_SLP_TYPE (vinfo_for_stmt (pstmt
)) = loop_vect
;
2263 /* Free optimized alias test DDRS. */
2264 LOOP_VINFO_LOWER_BOUNDS (loop_vinfo
).truncate (0);
2265 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo
).release ();
2266 LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo
).release ();
2267 /* Reset target cost data. */
2268 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo
));
2269 LOOP_VINFO_TARGET_COST_DATA (loop_vinfo
)
2270 = init_cost (LOOP_VINFO_LOOP (loop_vinfo
));
2271 /* Reset accumulated rgroup information. */
2272 release_vec_loop_masks (&LOOP_VINFO_MASKS (loop_vinfo
));
2273 /* Reset assorted flags. */
2274 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo
) = false;
2275 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo
) = false;
2276 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo
) = 0;
2277 LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo
) = 0;
2278 LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo
) = saved_can_fully_mask_p
;
2283 /* Function vect_analyze_loop.
2285 Apply a set of analyses on LOOP, and create a loop_vec_info struct
2286 for it. The different analyses will record information in the
2287 loop_vec_info struct. If ORIG_LOOP_VINFO is not NULL epilogue must
2290 vect_analyze_loop (struct loop
*loop
, loop_vec_info orig_loop_vinfo
,
2291 vec_info_shared
*shared
)
2293 loop_vec_info loop_vinfo
;
2294 auto_vector_sizes vector_sizes
;
2296 /* Autodetect first vector size we try. */
2297 current_vector_size
= 0;
2298 targetm
.vectorize
.autovectorize_vector_sizes (&vector_sizes
);
2299 unsigned int next_size
= 0;
2301 DUMP_VECT_SCOPE ("analyze_loop_nest");
2303 if (loop_outer (loop
)
2304 && loop_vec_info_for_loop (loop_outer (loop
))
2305 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop
))))
2307 if (dump_enabled_p ())
2308 dump_printf_loc (MSG_NOTE
, vect_location
,
2309 "outer-loop already vectorized.\n");
2313 if (!find_loop_nest (loop
, &shared
->loop_nest
))
2315 if (dump_enabled_p ())
2316 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2317 "not vectorized: loop nest containing two "
2318 "or more consecutive inner loops cannot be "
2323 unsigned n_stmts
= 0;
2324 poly_uint64 autodetected_vector_size
= 0;
2327 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
2328 loop_vinfo
= vect_analyze_loop_form (loop
, shared
);
2331 if (dump_enabled_p ())
2332 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2333 "bad loop form.\n");
2339 if (orig_loop_vinfo
)
2340 LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo
) = orig_loop_vinfo
;
2342 if (vect_analyze_loop_2 (loop_vinfo
, fatal
, &n_stmts
))
2344 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo
) = 1;
2352 autodetected_vector_size
= current_vector_size
;
2354 if (next_size
< vector_sizes
.length ()
2355 && known_eq (vector_sizes
[next_size
], autodetected_vector_size
))
2359 || next_size
== vector_sizes
.length ()
2360 || known_eq (current_vector_size
, 0U))
2363 /* Try the next biggest vector size. */
2364 current_vector_size
= vector_sizes
[next_size
++];
2365 if (dump_enabled_p ())
2367 dump_printf_loc (MSG_NOTE
, vect_location
,
2368 "***** Re-trying analysis with "
2370 dump_dec (MSG_NOTE
, current_vector_size
);
2371 dump_printf (MSG_NOTE
, "\n");
2376 /* Return true if there is an in-order reduction function for CODE, storing
2377 it in *REDUC_FN if so. */
2380 fold_left_reduction_fn (tree_code code
, internal_fn
*reduc_fn
)
2385 *reduc_fn
= IFN_FOLD_LEFT_PLUS
;
2393 /* Function reduction_fn_for_scalar_code
2396 CODE - tree_code of a reduction operations.
2399 REDUC_FN - the corresponding internal function to be used to reduce the
2400 vector of partial results into a single scalar result, or IFN_LAST
2401 if the operation is a supported reduction operation, but does not have
2402 such an internal function.
2404 Return FALSE if CODE currently cannot be vectorized as reduction. */
2407 reduction_fn_for_scalar_code (enum tree_code code
, internal_fn
*reduc_fn
)
2412 *reduc_fn
= IFN_REDUC_MAX
;
2416 *reduc_fn
= IFN_REDUC_MIN
;
2420 *reduc_fn
= IFN_REDUC_PLUS
;
2424 *reduc_fn
= IFN_REDUC_AND
;
2428 *reduc_fn
= IFN_REDUC_IOR
;
2432 *reduc_fn
= IFN_REDUC_XOR
;
2437 *reduc_fn
= IFN_LAST
;
2445 /* If there is a neutral value X such that SLP reduction NODE would not
2446 be affected by the introduction of additional X elements, return that X,
2447 otherwise return null. CODE is the code of the reduction. REDUC_CHAIN
2448 is true if the SLP statements perform a single reduction, false if each
2449 statement performs an independent reduction. */
2452 neutral_op_for_slp_reduction (slp_tree slp_node
, tree_code code
,
2455 vec
<gimple
*> stmts
= SLP_TREE_SCALAR_STMTS (slp_node
);
2456 gimple
*stmt
= stmts
[0];
2457 stmt_vec_info stmt_vinfo
= vinfo_for_stmt (stmt
);
2458 tree vector_type
= STMT_VINFO_VECTYPE (stmt_vinfo
);
2459 tree scalar_type
= TREE_TYPE (vector_type
);
2460 struct loop
*loop
= gimple_bb (stmt
)->loop_father
;
2465 case WIDEN_SUM_EXPR
:
2472 return build_zero_cst (scalar_type
);
2475 return build_one_cst (scalar_type
);
2478 return build_all_ones_cst (scalar_type
);
2482 /* For MIN/MAX the initial values are neutral. A reduction chain
2483 has only a single initial value, so that value is neutral for
2486 return PHI_ARG_DEF_FROM_EDGE (stmt
, loop_preheader_edge (loop
));
2494 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
2495 STMT is printed with a message MSG. */
2498 report_vect_op (dump_flags_t msg_type
, gimple
*stmt
, const char *msg
)
2500 dump_printf_loc (msg_type
, vect_location
, "%s", msg
);
2501 dump_gimple_stmt (msg_type
, TDF_SLIM
, stmt
, 0);
2505 /* Detect SLP reduction of the form:
2515 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
2516 FIRST_STMT is the first reduction stmt in the chain
2517 (a2 = operation (a1)).
2519 Return TRUE if a reduction chain was detected. */
2522 vect_is_slp_reduction (loop_vec_info loop_info
, gimple
*phi
,
2525 struct loop
*loop
= (gimple_bb (phi
))->loop_father
;
2526 struct loop
*vect_loop
= LOOP_VINFO_LOOP (loop_info
);
2527 enum tree_code code
;
2528 gimple
*current_stmt
= NULL
, *loop_use_stmt
= NULL
, *first
, *next_stmt
;
2529 stmt_vec_info use_stmt_info
, current_stmt_info
;
2531 imm_use_iterator imm_iter
;
2532 use_operand_p use_p
;
2533 int nloop_uses
, size
= 0, n_out_of_loop_uses
;
2536 if (loop
!= vect_loop
)
2539 lhs
= PHI_RESULT (phi
);
2540 code
= gimple_assign_rhs_code (first_stmt
);
2544 n_out_of_loop_uses
= 0;
2545 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, lhs
)
2547 gimple
*use_stmt
= USE_STMT (use_p
);
2548 if (is_gimple_debug (use_stmt
))
2551 /* Check if we got back to the reduction phi. */
2552 if (use_stmt
== phi
)
2554 loop_use_stmt
= use_stmt
;
2559 if (flow_bb_inside_loop_p (loop
, gimple_bb (use_stmt
)))
2561 loop_use_stmt
= use_stmt
;
2565 n_out_of_loop_uses
++;
2567 /* There are can be either a single use in the loop or two uses in
2569 if (nloop_uses
> 1 || (n_out_of_loop_uses
&& nloop_uses
))
2576 /* We reached a statement with no loop uses. */
2577 if (nloop_uses
== 0)
2580 /* This is a loop exit phi, and we haven't reached the reduction phi. */
2581 if (gimple_code (loop_use_stmt
) == GIMPLE_PHI
)
2584 if (!is_gimple_assign (loop_use_stmt
)
2585 || code
!= gimple_assign_rhs_code (loop_use_stmt
)
2586 || !flow_bb_inside_loop_p (loop
, gimple_bb (loop_use_stmt
)))
2589 /* Insert USE_STMT into reduction chain. */
2590 use_stmt_info
= vinfo_for_stmt (loop_use_stmt
);
2593 current_stmt_info
= vinfo_for_stmt (current_stmt
);
2594 REDUC_GROUP_NEXT_ELEMENT (current_stmt_info
) = loop_use_stmt
;
2595 REDUC_GROUP_FIRST_ELEMENT (use_stmt_info
)
2596 = REDUC_GROUP_FIRST_ELEMENT (current_stmt_info
);
2599 REDUC_GROUP_FIRST_ELEMENT (use_stmt_info
) = loop_use_stmt
;
2601 lhs
= gimple_assign_lhs (loop_use_stmt
);
2602 current_stmt
= loop_use_stmt
;
2606 if (!found
|| loop_use_stmt
!= phi
|| size
< 2)
2609 /* Swap the operands, if needed, to make the reduction operand be the second
2611 lhs
= PHI_RESULT (phi
);
2612 next_stmt
= REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt
));
2615 if (gimple_assign_rhs2 (next_stmt
) == lhs
)
2617 tree op
= gimple_assign_rhs1 (next_stmt
);
2618 gimple
*def_stmt
= NULL
;
2620 if (TREE_CODE (op
) == SSA_NAME
)
2621 def_stmt
= SSA_NAME_DEF_STMT (op
);
2623 /* Check that the other def is either defined in the loop
2624 ("vect_internal_def"), or it's an induction (defined by a
2625 loop-header phi-node). */
2627 && gimple_bb (def_stmt
)
2628 && flow_bb_inside_loop_p (loop
, gimple_bb (def_stmt
))
2629 && (is_gimple_assign (def_stmt
)
2630 || is_gimple_call (def_stmt
)
2631 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt
))
2632 == vect_induction_def
2633 || (gimple_code (def_stmt
) == GIMPLE_PHI
2634 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt
))
2635 == vect_internal_def
2636 && !is_loop_header_bb_p (gimple_bb (def_stmt
)))))
2638 lhs
= gimple_assign_lhs (next_stmt
);
2639 next_stmt
= REDUC_GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt
));
2647 tree op
= gimple_assign_rhs2 (next_stmt
);
2648 gimple
*def_stmt
= NULL
;
2650 if (TREE_CODE (op
) == SSA_NAME
)
2651 def_stmt
= SSA_NAME_DEF_STMT (op
);
2653 /* Check that the other def is either defined in the loop
2654 ("vect_internal_def"), or it's an induction (defined by a
2655 loop-header phi-node). */
2657 && gimple_bb (def_stmt
)
2658 && flow_bb_inside_loop_p (loop
, gimple_bb (def_stmt
))
2659 && (is_gimple_assign (def_stmt
)
2660 || is_gimple_call (def_stmt
)
2661 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt
))
2662 == vect_induction_def
2663 || (gimple_code (def_stmt
) == GIMPLE_PHI
2664 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt
))
2665 == vect_internal_def
2666 && !is_loop_header_bb_p (gimple_bb (def_stmt
)))))
2668 if (dump_enabled_p ())
2670 dump_printf_loc (MSG_NOTE
, vect_location
, "swapping oprnds: ");
2671 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, next_stmt
, 0);
2674 swap_ssa_operands (next_stmt
,
2675 gimple_assign_rhs1_ptr (next_stmt
),
2676 gimple_assign_rhs2_ptr (next_stmt
));
2677 update_stmt (next_stmt
);
2679 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt
)))
2680 LOOP_VINFO_OPERANDS_SWAPPED (loop_info
) = true;
2686 lhs
= gimple_assign_lhs (next_stmt
);
2687 next_stmt
= REDUC_GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt
));
2690 /* Save the chain for further analysis in SLP detection. */
2691 first
= REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt
));
2692 LOOP_VINFO_REDUCTION_CHAINS (loop_info
).safe_push (first
);
2693 REDUC_GROUP_SIZE (vinfo_for_stmt (first
)) = size
;
2698 /* Return true if we need an in-order reduction for operation CODE
2699 on type TYPE. NEED_WRAPPING_INTEGRAL_OVERFLOW is true if integer
2700 overflow must wrap. */
2703 needs_fold_left_reduction_p (tree type
, tree_code code
,
2704 bool need_wrapping_integral_overflow
)
2706 /* CHECKME: check for !flag_finite_math_only too? */
2707 if (SCALAR_FLOAT_TYPE_P (type
))
2715 return !flag_associative_math
;
2718 if (INTEGRAL_TYPE_P (type
))
2720 if (!operation_no_trapping_overflow (type
, code
))
2722 if (need_wrapping_integral_overflow
2723 && !TYPE_OVERFLOW_WRAPS (type
)
2724 && operation_can_overflow (code
))
2729 if (SAT_FIXED_POINT_TYPE_P (type
))
2735 /* Return true if the reduction PHI in LOOP with latch arg LOOP_ARG and
2736 reduction operation CODE has a handled computation expression. */
2739 check_reduction_path (dump_user_location_t loc
, loop_p loop
, gphi
*phi
,
2740 tree loop_arg
, enum tree_code code
)
2742 auto_vec
<std::pair
<ssa_op_iter
, use_operand_p
> > path
;
2743 auto_bitmap visited
;
2744 tree lookfor
= PHI_RESULT (phi
);
2746 use_operand_p curr
= op_iter_init_phiuse (&curri
, phi
, SSA_OP_USE
);
2747 while (USE_FROM_PTR (curr
) != loop_arg
)
2748 curr
= op_iter_next_use (&curri
);
2749 curri
.i
= curri
.numops
;
2752 path
.safe_push (std::make_pair (curri
, curr
));
2753 tree use
= USE_FROM_PTR (curr
);
2756 gimple
*def
= SSA_NAME_DEF_STMT (use
);
2757 if (gimple_nop_p (def
)
2758 || ! flow_bb_inside_loop_p (loop
, gimple_bb (def
)))
2763 std::pair
<ssa_op_iter
, use_operand_p
> x
= path
.pop ();
2767 curr
= op_iter_next_use (&curri
);
2768 /* Skip already visited or non-SSA operands (from iterating
2770 while (curr
!= NULL_USE_OPERAND_P
2771 && (TREE_CODE (USE_FROM_PTR (curr
)) != SSA_NAME
2772 || ! bitmap_set_bit (visited
,
2774 (USE_FROM_PTR (curr
)))));
2776 while (curr
== NULL_USE_OPERAND_P
&& ! path
.is_empty ());
2777 if (curr
== NULL_USE_OPERAND_P
)
2782 if (gimple_code (def
) == GIMPLE_PHI
)
2783 curr
= op_iter_init_phiuse (&curri
, as_a
<gphi
*>(def
), SSA_OP_USE
);
2785 curr
= op_iter_init_use (&curri
, def
, SSA_OP_USE
);
2786 while (curr
!= NULL_USE_OPERAND_P
2787 && (TREE_CODE (USE_FROM_PTR (curr
)) != SSA_NAME
2788 || ! bitmap_set_bit (visited
,
2790 (USE_FROM_PTR (curr
)))))
2791 curr
= op_iter_next_use (&curri
);
2792 if (curr
== NULL_USE_OPERAND_P
)
2797 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2799 dump_printf_loc (MSG_NOTE
, loc
, "reduction path: ");
2801 std::pair
<ssa_op_iter
, use_operand_p
> *x
;
2802 FOR_EACH_VEC_ELT (path
, i
, x
)
2804 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, USE_FROM_PTR (x
->second
));
2805 dump_printf (MSG_NOTE
, " ");
2807 dump_printf (MSG_NOTE
, "\n");
2810 /* Check whether the reduction path detected is valid. */
2811 bool fail
= path
.length () == 0;
2813 for (unsigned i
= 1; i
< path
.length (); ++i
)
2815 gimple
*use_stmt
= USE_STMT (path
[i
].second
);
2816 tree op
= USE_FROM_PTR (path
[i
].second
);
2817 if (! has_single_use (op
)
2818 || ! is_gimple_assign (use_stmt
))
2823 if (gimple_assign_rhs_code (use_stmt
) != code
)
2825 if (code
== PLUS_EXPR
2826 && gimple_assign_rhs_code (use_stmt
) == MINUS_EXPR
)
2828 /* Track whether we negate the reduction value each iteration. */
2829 if (gimple_assign_rhs2 (use_stmt
) == op
)
2839 return ! fail
&& ! neg
;
2843 /* Function vect_is_simple_reduction
2845 (1) Detect a cross-iteration def-use cycle that represents a simple
2846 reduction computation. We look for the following pattern:
2851 a2 = operation (a3, a1)
2858 a2 = operation (a3, a1)
2861 1. operation is commutative and associative and it is safe to
2862 change the order of the computation
2863 2. no uses for a2 in the loop (a2 is used out of the loop)
2864 3. no uses of a1 in the loop besides the reduction operation
2865 4. no uses of a1 outside the loop.
2867 Conditions 1,4 are tested here.
2868 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
2870 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
2873 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
2877 inner loop (def of a3)
2880 (4) Detect condition expressions, ie:
2881 for (int i = 0; i < N; i++)
2888 vect_is_simple_reduction (loop_vec_info loop_info
, gimple
*phi
,
2890 bool need_wrapping_integral_overflow
,
2891 enum vect_reduction_type
*v_reduc_type
)
2893 struct loop
*loop
= (gimple_bb (phi
))->loop_father
;
2894 struct loop
*vect_loop
= LOOP_VINFO_LOOP (loop_info
);
2895 gimple
*def_stmt
, *def1
= NULL
, *def2
= NULL
, *phi_use_stmt
= NULL
;
2896 enum tree_code orig_code
, code
;
2897 tree op1
, op2
, op3
= NULL_TREE
, op4
= NULL_TREE
;
2901 imm_use_iterator imm_iter
;
2902 use_operand_p use_p
;
2905 *double_reduc
= false;
2906 *v_reduc_type
= TREE_CODE_REDUCTION
;
2908 tree phi_name
= PHI_RESULT (phi
);
2909 /* ??? If there are no uses of the PHI result the inner loop reduction
2910 won't be detected as possibly double-reduction by vectorizable_reduction
2911 because that tries to walk the PHI arg from the preheader edge which
2912 can be constant. See PR60382. */
2913 if (has_zero_uses (phi_name
))
2916 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, phi_name
)
2918 gimple
*use_stmt
= USE_STMT (use_p
);
2919 if (is_gimple_debug (use_stmt
))
2922 if (!flow_bb_inside_loop_p (loop
, gimple_bb (use_stmt
)))
2924 if (dump_enabled_p ())
2925 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2926 "intermediate value used outside loop.\n");
2934 if (dump_enabled_p ())
2935 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2936 "reduction value used in loop.\n");
2940 phi_use_stmt
= use_stmt
;
2943 edge latch_e
= loop_latch_edge (loop
);
2944 tree loop_arg
= PHI_ARG_DEF_FROM_EDGE (phi
, latch_e
);
2945 if (TREE_CODE (loop_arg
) != SSA_NAME
)
2947 if (dump_enabled_p ())
2949 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2950 "reduction: not ssa_name: ");
2951 dump_generic_expr (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
, loop_arg
);
2952 dump_printf (MSG_MISSED_OPTIMIZATION
, "\n");
2957 def_stmt
= SSA_NAME_DEF_STMT (loop_arg
);
2958 if (is_gimple_assign (def_stmt
))
2960 name
= gimple_assign_lhs (def_stmt
);
2963 else if (gimple_code (def_stmt
) == GIMPLE_PHI
)
2965 name
= PHI_RESULT (def_stmt
);
2970 if (dump_enabled_p ())
2972 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2973 "reduction: unhandled reduction operation: ");
2974 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION
, TDF_SLIM
, def_stmt
, 0);
2979 if (! flow_bb_inside_loop_p (loop
, gimple_bb (def_stmt
)))
2983 auto_vec
<gphi
*, 3> lcphis
;
2984 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, name
)
2986 gimple
*use_stmt
= USE_STMT (use_p
);
2987 if (is_gimple_debug (use_stmt
))
2989 if (flow_bb_inside_loop_p (loop
, gimple_bb (use_stmt
)))
2992 /* We can have more than one loop-closed PHI. */
2993 lcphis
.safe_push (as_a
<gphi
*> (use_stmt
));
2996 if (dump_enabled_p ())
2997 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
2998 "reduction used in loop.\n");
3003 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
3004 defined in the inner loop. */
3007 op1
= PHI_ARG_DEF (def_stmt
, 0);
3009 if (gimple_phi_num_args (def_stmt
) != 1
3010 || TREE_CODE (op1
) != SSA_NAME
)
3012 if (dump_enabled_p ())
3013 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
3014 "unsupported phi node definition.\n");
3019 def1
= SSA_NAME_DEF_STMT (op1
);
3020 if (gimple_bb (def1
)
3021 && flow_bb_inside_loop_p (loop
, gimple_bb (def_stmt
))
3023 && flow_bb_inside_loop_p (loop
->inner
, gimple_bb (def1
))
3024 && is_gimple_assign (def1
)
3025 && flow_bb_inside_loop_p (loop
->inner
, gimple_bb (phi_use_stmt
)))
3027 if (dump_enabled_p ())
3028 report_vect_op (MSG_NOTE
, def_stmt
,
3029 "detected double reduction: ");
3031 *double_reduc
= true;
3038 /* If we are vectorizing an inner reduction we are executing that
3039 in the original order only in case we are not dealing with a
3040 double reduction. */
3041 bool check_reduction
= true;
3042 if (flow_loop_nested_p (vect_loop
, loop
))
3046 check_reduction
= false;
3047 FOR_EACH_VEC_ELT (lcphis
, i
, lcphi
)
3048 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, gimple_phi_result (lcphi
))
3050 gimple
*use_stmt
= USE_STMT (use_p
);
3051 if (is_gimple_debug (use_stmt
))
3053 if (! flow_bb_inside_loop_p (vect_loop
, gimple_bb (use_stmt
)))
3054 check_reduction
= true;
3058 bool nested_in_vect_loop
= flow_loop_nested_p (vect_loop
, loop
);
3059 code
= orig_code
= gimple_assign_rhs_code (def_stmt
);
3061 /* We can handle "res -= x[i]", which is non-associative by
3062 simply rewriting this into "res += -x[i]". Avoid changing
3063 gimple instruction for the first simple tests and only do this
3064 if we're allowed to change code at all. */
3065 if (code
== MINUS_EXPR
&& gimple_assign_rhs2 (def_stmt
) != phi_name
)
3068 if (code
== COND_EXPR
)
3070 if (! nested_in_vect_loop
)
3071 *v_reduc_type
= COND_REDUCTION
;
3073 op3
= gimple_assign_rhs1 (def_stmt
);
3074 if (COMPARISON_CLASS_P (op3
))
3076 op4
= TREE_OPERAND (op3
, 1);
3077 op3
= TREE_OPERAND (op3
, 0);
3079 if (op3
== phi_name
|| op4
== phi_name
)
3081 if (dump_enabled_p ())
3082 report_vect_op (MSG_MISSED_OPTIMIZATION
, def_stmt
,
3083 "reduction: condition depends on previous"
3088 op1
= gimple_assign_rhs2 (def_stmt
);
3089 op2
= gimple_assign_rhs3 (def_stmt
);
3091 else if (!commutative_tree_code (code
) || !associative_tree_code (code
))
3093 if (dump_enabled_p ())
3094 report_vect_op (MSG_MISSED_OPTIMIZATION
, def_stmt
,
3095 "reduction: not commutative/associative: ");
3098 else if (get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
)
3100 op1
= gimple_assign_rhs1 (def_stmt
);
3101 op2
= gimple_assign_rhs2 (def_stmt
);
3105 if (dump_enabled_p ())
3106 report_vect_op (MSG_MISSED_OPTIMIZATION
, def_stmt
,
3107 "reduction: not handled operation: ");
3111 if (TREE_CODE (op1
) != SSA_NAME
&& TREE_CODE (op2
) != SSA_NAME
)
3113 if (dump_enabled_p ())
3114 report_vect_op (MSG_MISSED_OPTIMIZATION
, def_stmt
,
3115 "reduction: both uses not ssa_names: ");
3120 type
= TREE_TYPE (gimple_assign_lhs (def_stmt
));
3121 if ((TREE_CODE (op1
) == SSA_NAME
3122 && !types_compatible_p (type
,TREE_TYPE (op1
)))
3123 || (TREE_CODE (op2
) == SSA_NAME
3124 && !types_compatible_p (type
, TREE_TYPE (op2
)))
3125 || (op3
&& TREE_CODE (op3
) == SSA_NAME
3126 && !types_compatible_p (type
, TREE_TYPE (op3
)))
3127 || (op4
&& TREE_CODE (op4
) == SSA_NAME
3128 && !types_compatible_p (type
, TREE_TYPE (op4
))))
3130 if (dump_enabled_p ())
3132 dump_printf_loc (MSG_NOTE
, vect_location
,
3133 "reduction: multiple types: operation type: ");
3134 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, type
);
3135 dump_printf (MSG_NOTE
, ", operands types: ");
3136 dump_generic_expr (MSG_NOTE
, TDF_SLIM
,
3138 dump_printf (MSG_NOTE
, ",");
3139 dump_generic_expr (MSG_NOTE
, TDF_SLIM
,
3143 dump_printf (MSG_NOTE
, ",");
3144 dump_generic_expr (MSG_NOTE
, TDF_SLIM
,
3150 dump_printf (MSG_NOTE
, ",");
3151 dump_generic_expr (MSG_NOTE
, TDF_SLIM
,
3154 dump_printf (MSG_NOTE
, "\n");
3160 /* Check whether it's ok to change the order of the computation.
3161 Generally, when vectorizing a reduction we change the order of the
3162 computation. This may change the behavior of the program in some
3163 cases, so we need to check that this is ok. One exception is when
3164 vectorizing an outer-loop: the inner-loop is executed sequentially,
3165 and therefore vectorizing reductions in the inner-loop during
3166 outer-loop vectorization is safe. */
3168 && *v_reduc_type
== TREE_CODE_REDUCTION
3169 && needs_fold_left_reduction_p (type
, code
,
3170 need_wrapping_integral_overflow
))
3171 *v_reduc_type
= FOLD_LEFT_REDUCTION
;
3173 /* Reduction is safe. We're dealing with one of the following:
3174 1) integer arithmetic and no trapv
3175 2) floating point arithmetic, and special flags permit this optimization
3176 3) nested cycle (i.e., outer loop vectorization). */
3177 if (TREE_CODE (op1
) == SSA_NAME
)
3178 def1
= SSA_NAME_DEF_STMT (op1
);
3180 if (TREE_CODE (op2
) == SSA_NAME
)
3181 def2
= SSA_NAME_DEF_STMT (op2
);
3183 if (code
!= COND_EXPR
3184 && ((!def1
|| gimple_nop_p (def1
)) && (!def2
|| gimple_nop_p (def2
))))
3186 if (dump_enabled_p ())
3187 report_vect_op (MSG_NOTE
, def_stmt
, "reduction: no defs for operands: ");
3191 /* Check that one def is the reduction def, defined by PHI,
3192 the other def is either defined in the loop ("vect_internal_def"),
3193 or it's an induction (defined by a loop-header phi-node). */
3195 if (def2
&& def2
== phi
3196 && (code
== COND_EXPR
3197 || !def1
|| gimple_nop_p (def1
)
3198 || !flow_bb_inside_loop_p (loop
, gimple_bb (def1
))
3199 || (def1
&& flow_bb_inside_loop_p (loop
, gimple_bb (def1
))
3200 && (is_gimple_assign (def1
)
3201 || is_gimple_call (def1
)
3202 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1
))
3203 == vect_induction_def
3204 || (gimple_code (def1
) == GIMPLE_PHI
3205 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1
))
3206 == vect_internal_def
3207 && !is_loop_header_bb_p (gimple_bb (def1
)))))))
3209 if (dump_enabled_p ())
3210 report_vect_op (MSG_NOTE
, def_stmt
, "detected reduction: ");
3214 if (def1
&& def1
== phi
3215 && (code
== COND_EXPR
3216 || !def2
|| gimple_nop_p (def2
)
3217 || !flow_bb_inside_loop_p (loop
, gimple_bb (def2
))
3218 || (def2
&& flow_bb_inside_loop_p (loop
, gimple_bb (def2
))
3219 && (is_gimple_assign (def2
)
3220 || is_gimple_call (def2
)
3221 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2
))
3222 == vect_induction_def
3223 || (gimple_code (def2
) == GIMPLE_PHI
3224 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2
))
3225 == vect_internal_def
3226 && !is_loop_header_bb_p (gimple_bb (def2
)))))))
3228 if (! nested_in_vect_loop
&& orig_code
!= MINUS_EXPR
)
3230 /* Check if we can swap operands (just for simplicity - so that
3231 the rest of the code can assume that the reduction variable
3232 is always the last (second) argument). */
3233 if (code
== COND_EXPR
)
3235 /* Swap cond_expr by inverting the condition. */
3236 tree cond_expr
= gimple_assign_rhs1 (def_stmt
);
3237 enum tree_code invert_code
= ERROR_MARK
;
3238 enum tree_code cond_code
= TREE_CODE (cond_expr
);
3240 if (TREE_CODE_CLASS (cond_code
) == tcc_comparison
)
3242 bool honor_nans
= HONOR_NANS (TREE_OPERAND (cond_expr
, 0));
3243 invert_code
= invert_tree_comparison (cond_code
, honor_nans
);
3245 if (invert_code
!= ERROR_MARK
)
3247 TREE_SET_CODE (cond_expr
, invert_code
);
3248 swap_ssa_operands (def_stmt
,
3249 gimple_assign_rhs2_ptr (def_stmt
),
3250 gimple_assign_rhs3_ptr (def_stmt
));
3254 if (dump_enabled_p ())
3255 report_vect_op (MSG_NOTE
, def_stmt
,
3256 "detected reduction: cannot swap operands "
3262 swap_ssa_operands (def_stmt
, gimple_assign_rhs1_ptr (def_stmt
),
3263 gimple_assign_rhs2_ptr (def_stmt
));
3265 if (dump_enabled_p ())
3266 report_vect_op (MSG_NOTE
, def_stmt
,
3267 "detected reduction: need to swap operands: ");
3269 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt
)))
3270 LOOP_VINFO_OPERANDS_SWAPPED (loop_info
) = true;
3274 if (dump_enabled_p ())
3275 report_vect_op (MSG_NOTE
, def_stmt
, "detected reduction: ");
3281 /* Try to find SLP reduction chain. */
3282 if (! nested_in_vect_loop
3283 && code
!= COND_EXPR
3284 && orig_code
!= MINUS_EXPR
3285 && vect_is_slp_reduction (loop_info
, phi
, def_stmt
))
3287 if (dump_enabled_p ())
3288 report_vect_op (MSG_NOTE
, def_stmt
,
3289 "reduction: detected reduction chain: ");
3294 /* Dissolve group eventually half-built by vect_is_slp_reduction. */
3295 gimple
*first
= REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (def_stmt
));
3298 gimple
*next
= REDUC_GROUP_NEXT_ELEMENT (vinfo_for_stmt (first
));
3299 REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (first
)) = NULL
;
3300 REDUC_GROUP_NEXT_ELEMENT (vinfo_for_stmt (first
)) = NULL
;
3304 /* Look for the expression computing loop_arg from loop PHI result. */
3305 if (check_reduction_path (vect_location
, loop
, as_a
<gphi
*> (phi
), loop_arg
,
3309 if (dump_enabled_p ())
3311 report_vect_op (MSG_MISSED_OPTIMIZATION
, def_stmt
,
3312 "reduction: unknown pattern: ");
3318 /* Wrapper around vect_is_simple_reduction, which will modify code
3319 in-place if it enables detection of more reductions. Arguments
3323 vect_force_simple_reduction (loop_vec_info loop_info
, gimple
*phi
,
3325 bool need_wrapping_integral_overflow
)
3327 enum vect_reduction_type v_reduc_type
;
3328 gimple
*def
= vect_is_simple_reduction (loop_info
, phi
, double_reduc
,
3329 need_wrapping_integral_overflow
,
3333 stmt_vec_info reduc_def_info
= vinfo_for_stmt (phi
);
3334 STMT_VINFO_REDUC_TYPE (reduc_def_info
) = v_reduc_type
;
3335 STMT_VINFO_REDUC_DEF (reduc_def_info
) = def
;
3336 reduc_def_info
= vinfo_for_stmt (def
);
3337 STMT_VINFO_REDUC_TYPE (reduc_def_info
) = v_reduc_type
;
3338 STMT_VINFO_REDUC_DEF (reduc_def_info
) = phi
;
3343 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
3345 vect_get_known_peeling_cost (loop_vec_info loop_vinfo
, int peel_iters_prologue
,
3346 int *peel_iters_epilogue
,
3347 stmt_vector_for_cost
*scalar_cost_vec
,
3348 stmt_vector_for_cost
*prologue_cost_vec
,
3349 stmt_vector_for_cost
*epilogue_cost_vec
)
3352 int assumed_vf
= vect_vf_for_cost (loop_vinfo
);
3354 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
))
3356 *peel_iters_epilogue
= assumed_vf
/ 2;
3357 if (dump_enabled_p ())
3358 dump_printf_loc (MSG_NOTE
, vect_location
,
3359 "cost model: epilogue peel iters set to vf/2 "
3360 "because loop iterations are unknown .\n");
3362 /* If peeled iterations are known but number of scalar loop
3363 iterations are unknown, count a taken branch per peeled loop. */
3364 retval
= record_stmt_cost (prologue_cost_vec
, 1, cond_branch_taken
,
3365 NULL
, 0, vect_prologue
);
3366 retval
= record_stmt_cost (prologue_cost_vec
, 1, cond_branch_taken
,
3367 NULL
, 0, vect_epilogue
);
3371 int niters
= LOOP_VINFO_INT_NITERS (loop_vinfo
);
3372 peel_iters_prologue
= niters
< peel_iters_prologue
?
3373 niters
: peel_iters_prologue
;
3374 *peel_iters_epilogue
= (niters
- peel_iters_prologue
) % assumed_vf
;
3375 /* If we need to peel for gaps, but no peeling is required, we have to
3376 peel VF iterations. */
3377 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo
) && !*peel_iters_epilogue
)
3378 *peel_iters_epilogue
= assumed_vf
;
3381 stmt_info_for_cost
*si
;
3383 if (peel_iters_prologue
)
3384 FOR_EACH_VEC_ELT (*scalar_cost_vec
, j
, si
)
3386 stmt_vec_info stmt_info
3387 = si
->stmt
? vinfo_for_stmt (si
->stmt
) : NULL
;
3388 retval
+= record_stmt_cost (prologue_cost_vec
,
3389 si
->count
* peel_iters_prologue
,
3390 si
->kind
, stmt_info
, si
->misalign
,
3393 if (*peel_iters_epilogue
)
3394 FOR_EACH_VEC_ELT (*scalar_cost_vec
, j
, si
)
3396 stmt_vec_info stmt_info
3397 = si
->stmt
? vinfo_for_stmt (si
->stmt
) : NULL
;
3398 retval
+= record_stmt_cost (epilogue_cost_vec
,
3399 si
->count
* *peel_iters_epilogue
,
3400 si
->kind
, stmt_info
, si
->misalign
,
3407 /* Function vect_estimate_min_profitable_iters
3409 Return the number of iterations required for the vector version of the
3410 loop to be profitable relative to the cost of the scalar version of the
3413 *RET_MIN_PROFITABLE_NITERS is a cost model profitability threshold
3414 of iterations for vectorization. -1 value means loop vectorization
3415 is not profitable. This returned value may be used for dynamic
3416 profitability check.
3418 *RET_MIN_PROFITABLE_ESTIMATE is a profitability threshold to be used
3419 for static check against estimated number of iterations. */
3422 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo
,
3423 int *ret_min_profitable_niters
,
3424 int *ret_min_profitable_estimate
)
3426 int min_profitable_iters
;
3427 int min_profitable_estimate
;
3428 int peel_iters_prologue
;
3429 int peel_iters_epilogue
;
3430 unsigned vec_inside_cost
= 0;
3431 int vec_outside_cost
= 0;
3432 unsigned vec_prologue_cost
= 0;
3433 unsigned vec_epilogue_cost
= 0;
3434 int scalar_single_iter_cost
= 0;
3435 int scalar_outside_cost
= 0;
3436 int assumed_vf
= vect_vf_for_cost (loop_vinfo
);
3437 int npeel
= LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
);
3438 void *target_cost_data
= LOOP_VINFO_TARGET_COST_DATA (loop_vinfo
);
3440 /* Cost model disabled. */
3441 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo
)))
3443 dump_printf_loc (MSG_NOTE
, vect_location
, "cost model disabled.\n");
3444 *ret_min_profitable_niters
= 0;
3445 *ret_min_profitable_estimate
= 0;
3449 /* Requires loop versioning tests to handle misalignment. */
3450 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo
))
3452 /* FIXME: Make cost depend on complexity of individual check. */
3453 unsigned len
= LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo
).length ();
3454 (void) add_stmt_cost (target_cost_data
, len
, vector_stmt
, NULL
, 0,
3456 dump_printf (MSG_NOTE
,
3457 "cost model: Adding cost of checks for loop "
3458 "versioning to treat misalignment.\n");
3461 /* Requires loop versioning with alias checks. */
3462 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo
))
3464 /* FIXME: Make cost depend on complexity of individual check. */
3465 unsigned len
= LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo
).length ();
3466 (void) add_stmt_cost (target_cost_data
, len
, vector_stmt
, NULL
, 0,
3468 len
= LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo
).length ();
3470 /* Count LEN - 1 ANDs and LEN comparisons. */
3471 (void) add_stmt_cost (target_cost_data
, len
* 2 - 1, scalar_stmt
,
3472 NULL
, 0, vect_prologue
);
3473 len
= LOOP_VINFO_LOWER_BOUNDS (loop_vinfo
).length ();
3476 /* Count LEN - 1 ANDs and LEN comparisons. */
3477 unsigned int nstmts
= len
* 2 - 1;
3478 /* +1 for each bias that needs adding. */
3479 for (unsigned int i
= 0; i
< len
; ++i
)
3480 if (!LOOP_VINFO_LOWER_BOUNDS (loop_vinfo
)[i
].unsigned_p
)
3482 (void) add_stmt_cost (target_cost_data
, nstmts
, scalar_stmt
,
3483 NULL
, 0, vect_prologue
);
3485 dump_printf (MSG_NOTE
,
3486 "cost model: Adding cost of checks for loop "
3487 "versioning aliasing.\n");
3490 /* Requires loop versioning with niter checks. */
3491 if (LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo
))
3493 /* FIXME: Make cost depend on complexity of individual check. */
3494 (void) add_stmt_cost (target_cost_data
, 1, vector_stmt
, NULL
, 0,
3496 dump_printf (MSG_NOTE
,
3497 "cost model: Adding cost of checks for loop "
3498 "versioning niters.\n");
3501 if (LOOP_REQUIRES_VERSIONING (loop_vinfo
))
3502 (void) add_stmt_cost (target_cost_data
, 1, cond_branch_taken
, NULL
, 0,
3505 /* Count statements in scalar loop. Using this as scalar cost for a single
3508 TODO: Add outer loop support.
3510 TODO: Consider assigning different costs to different scalar
3513 scalar_single_iter_cost
3514 = LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo
);
3516 /* Add additional cost for the peeled instructions in prologue and epilogue
3517 loop. (For fully-masked loops there will be no peeling.)
3519 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
3520 at compile-time - we assume it's vf/2 (the worst would be vf-1).
3522 TODO: Build an expression that represents peel_iters for prologue and
3523 epilogue to be used in a run-time test. */
3525 if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo
))
3527 peel_iters_prologue
= 0;
3528 peel_iters_epilogue
= 0;
3530 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo
))
3532 /* We need to peel exactly one iteration. */
3533 peel_iters_epilogue
+= 1;
3534 stmt_info_for_cost
*si
;
3536 FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo
),
3539 struct _stmt_vec_info
*stmt_info
3540 = si
->stmt
? vinfo_for_stmt (si
->stmt
) : NULL
;
3541 (void) add_stmt_cost (target_cost_data
, si
->count
,
3542 si
->kind
, stmt_info
, si
->misalign
,
3549 peel_iters_prologue
= assumed_vf
/ 2;
3550 dump_printf (MSG_NOTE
, "cost model: "
3551 "prologue peel iters set to vf/2.\n");
3553 /* If peeling for alignment is unknown, loop bound of main loop becomes
3555 peel_iters_epilogue
= assumed_vf
/ 2;
3556 dump_printf (MSG_NOTE
, "cost model: "
3557 "epilogue peel iters set to vf/2 because "
3558 "peeling for alignment is unknown.\n");
3560 /* If peeled iterations are unknown, count a taken branch and a not taken
3561 branch per peeled loop. Even if scalar loop iterations are known,
3562 vector iterations are not known since peeled prologue iterations are
3563 not known. Hence guards remain the same. */
3564 (void) add_stmt_cost (target_cost_data
, 1, cond_branch_taken
,
3565 NULL
, 0, vect_prologue
);
3566 (void) add_stmt_cost (target_cost_data
, 1, cond_branch_not_taken
,
3567 NULL
, 0, vect_prologue
);
3568 (void) add_stmt_cost (target_cost_data
, 1, cond_branch_taken
,
3569 NULL
, 0, vect_epilogue
);
3570 (void) add_stmt_cost (target_cost_data
, 1, cond_branch_not_taken
,
3571 NULL
, 0, vect_epilogue
);
3572 stmt_info_for_cost
*si
;
3574 FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo
), j
, si
)
3576 struct _stmt_vec_info
*stmt_info
3577 = si
->stmt
? vinfo_for_stmt (si
->stmt
) : NULL
;
3578 (void) add_stmt_cost (target_cost_data
,
3579 si
->count
* peel_iters_prologue
,
3580 si
->kind
, stmt_info
, si
->misalign
,
3582 (void) add_stmt_cost (target_cost_data
,
3583 si
->count
* peel_iters_epilogue
,
3584 si
->kind
, stmt_info
, si
->misalign
,
3590 stmt_vector_for_cost prologue_cost_vec
, epilogue_cost_vec
;
3591 stmt_info_for_cost
*si
;
3593 void *data
= LOOP_VINFO_TARGET_COST_DATA (loop_vinfo
);
3595 prologue_cost_vec
.create (2);
3596 epilogue_cost_vec
.create (2);
3597 peel_iters_prologue
= npeel
;
3599 (void) vect_get_known_peeling_cost (loop_vinfo
, peel_iters_prologue
,
3600 &peel_iters_epilogue
,
3601 &LOOP_VINFO_SCALAR_ITERATION_COST
3604 &epilogue_cost_vec
);
3606 FOR_EACH_VEC_ELT (prologue_cost_vec
, j
, si
)
3608 struct _stmt_vec_info
*stmt_info
3609 = si
->stmt
? vinfo_for_stmt (si
->stmt
) : NULL
;
3610 (void) add_stmt_cost (data
, si
->count
, si
->kind
, stmt_info
,
3611 si
->misalign
, vect_prologue
);
3614 FOR_EACH_VEC_ELT (epilogue_cost_vec
, j
, si
)
3616 struct _stmt_vec_info
*stmt_info
3617 = si
->stmt
? vinfo_for_stmt (si
->stmt
) : NULL
;
3618 (void) add_stmt_cost (data
, si
->count
, si
->kind
, stmt_info
,
3619 si
->misalign
, vect_epilogue
);
3622 prologue_cost_vec
.release ();
3623 epilogue_cost_vec
.release ();
3626 /* FORNOW: The scalar outside cost is incremented in one of the
3629 1. The vectorizer checks for alignment and aliasing and generates
3630 a condition that allows dynamic vectorization. A cost model
3631 check is ANDED with the versioning condition. Hence scalar code
3632 path now has the added cost of the versioning check.
3634 if (cost > th & versioning_check)
3637 Hence run-time scalar is incremented by not-taken branch cost.
3639 2. The vectorizer then checks if a prologue is required. If the
3640 cost model check was not done before during versioning, it has to
3641 be done before the prologue check.
3644 prologue = scalar_iters
3649 if (prologue == num_iters)
3652 Hence the run-time scalar cost is incremented by a taken branch,
3653 plus a not-taken branch, plus a taken branch cost.
3655 3. The vectorizer then checks if an epilogue is required. If the
3656 cost model check was not done before during prologue check, it
3657 has to be done with the epilogue check.
3663 if (prologue == num_iters)
3666 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
3669 Hence the run-time scalar cost should be incremented by 2 taken
3672 TODO: The back end may reorder the BBS's differently and reverse
3673 conditions/branch directions. Change the estimates below to
3674 something more reasonable. */
3676 /* If the number of iterations is known and we do not do versioning, we can
3677 decide whether to vectorize at compile time. Hence the scalar version
3678 do not carry cost model guard costs. */
3679 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
)
3680 || LOOP_REQUIRES_VERSIONING (loop_vinfo
))
3682 /* Cost model check occurs at versioning. */
3683 if (LOOP_REQUIRES_VERSIONING (loop_vinfo
))
3684 scalar_outside_cost
+= vect_get_stmt_cost (cond_branch_not_taken
);
3687 /* Cost model check occurs at prologue generation. */
3688 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
) < 0)
3689 scalar_outside_cost
+= 2 * vect_get_stmt_cost (cond_branch_taken
)
3690 + vect_get_stmt_cost (cond_branch_not_taken
);
3691 /* Cost model check occurs at epilogue generation. */
3693 scalar_outside_cost
+= 2 * vect_get_stmt_cost (cond_branch_taken
);
3697 /* Complete the target-specific cost calculations. */
3698 finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo
), &vec_prologue_cost
,
3699 &vec_inside_cost
, &vec_epilogue_cost
);
3701 vec_outside_cost
= (int)(vec_prologue_cost
+ vec_epilogue_cost
);
3703 if (dump_enabled_p ())
3705 dump_printf_loc (MSG_NOTE
, vect_location
, "Cost model analysis: \n");
3706 dump_printf (MSG_NOTE
, " Vector inside of loop cost: %d\n",
3708 dump_printf (MSG_NOTE
, " Vector prologue cost: %d\n",
3710 dump_printf (MSG_NOTE
, " Vector epilogue cost: %d\n",
3712 dump_printf (MSG_NOTE
, " Scalar iteration cost: %d\n",
3713 scalar_single_iter_cost
);
3714 dump_printf (MSG_NOTE
, " Scalar outside cost: %d\n",
3715 scalar_outside_cost
);
3716 dump_printf (MSG_NOTE
, " Vector outside cost: %d\n",
3718 dump_printf (MSG_NOTE
, " prologue iterations: %d\n",
3719 peel_iters_prologue
);
3720 dump_printf (MSG_NOTE
, " epilogue iterations: %d\n",
3721 peel_iters_epilogue
);
3724 /* Calculate number of iterations required to make the vector version
3725 profitable, relative to the loop bodies only. The following condition
3727 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
3729 SIC = scalar iteration cost, VIC = vector iteration cost,
3730 VOC = vector outside cost, VF = vectorization factor,
3731 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
3732 SOC = scalar outside cost for run time cost model check. */
3734 if ((scalar_single_iter_cost
* assumed_vf
) > (int) vec_inside_cost
)
3736 min_profitable_iters
= ((vec_outside_cost
- scalar_outside_cost
)
3738 - vec_inside_cost
* peel_iters_prologue
3739 - vec_inside_cost
* peel_iters_epilogue
);
3740 if (min_profitable_iters
<= 0)
3741 min_profitable_iters
= 0;
3744 min_profitable_iters
/= ((scalar_single_iter_cost
* assumed_vf
)
3747 if ((scalar_single_iter_cost
* assumed_vf
* min_profitable_iters
)
3748 <= (((int) vec_inside_cost
* min_profitable_iters
)
3749 + (((int) vec_outside_cost
- scalar_outside_cost
)
3751 min_profitable_iters
++;
3754 /* vector version will never be profitable. */
3757 if (LOOP_VINFO_LOOP (loop_vinfo
)->force_vectorize
)
3758 warning_at (vect_location
.get_location_t (), OPT_Wopenmp_simd
,
3759 "vectorization did not happen for a simd loop");
3761 if (dump_enabled_p ())
3762 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
3763 "cost model: the vector iteration cost = %d "
3764 "divided by the scalar iteration cost = %d "
3765 "is greater or equal to the vectorization factor = %d"
3767 vec_inside_cost
, scalar_single_iter_cost
, assumed_vf
);
3768 *ret_min_profitable_niters
= -1;
3769 *ret_min_profitable_estimate
= -1;
3773 dump_printf (MSG_NOTE
,
3774 " Calculated minimum iters for profitability: %d\n",
3775 min_profitable_iters
);
3777 if (!LOOP_VINFO_FULLY_MASKED_P (loop_vinfo
)
3778 && min_profitable_iters
< (assumed_vf
+ peel_iters_prologue
))
3779 /* We want the vectorized loop to execute at least once. */
3780 min_profitable_iters
= assumed_vf
+ peel_iters_prologue
;
3782 if (dump_enabled_p ())
3783 dump_printf_loc (MSG_NOTE
, vect_location
,
3784 " Runtime profitability threshold = %d\n",
3785 min_profitable_iters
);
3787 *ret_min_profitable_niters
= min_profitable_iters
;
3789 /* Calculate number of iterations required to make the vector version
3790 profitable, relative to the loop bodies only.
3792 Non-vectorized variant is SIC * niters and it must win over vector
3793 variant on the expected loop trip count. The following condition must hold true:
3794 SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
3796 if (vec_outside_cost
<= 0)
3797 min_profitable_estimate
= 0;
3800 min_profitable_estimate
= ((vec_outside_cost
+ scalar_outside_cost
)
3802 - vec_inside_cost
* peel_iters_prologue
3803 - vec_inside_cost
* peel_iters_epilogue
)
3804 / ((scalar_single_iter_cost
* assumed_vf
)
3807 min_profitable_estimate
= MAX (min_profitable_estimate
, min_profitable_iters
);
3808 if (dump_enabled_p ())
3809 dump_printf_loc (MSG_NOTE
, vect_location
,
3810 " Static estimate profitability threshold = %d\n",
3811 min_profitable_estimate
);
3813 *ret_min_profitable_estimate
= min_profitable_estimate
;
3816 /* Writes into SEL a mask for a vec_perm, equivalent to a vec_shr by OFFSET
3817 vector elements (not bits) for a vector with NELT elements. */
3819 calc_vec_perm_mask_for_shift (unsigned int offset
, unsigned int nelt
,
3820 vec_perm_builder
*sel
)
3822 /* The encoding is a single stepped pattern. Any wrap-around is handled
3823 by vec_perm_indices. */
3824 sel
->new_vector (nelt
, 1, 3);
3825 for (unsigned int i
= 0; i
< 3; i
++)
3826 sel
->quick_push (i
+ offset
);
3829 /* Checks whether the target supports whole-vector shifts for vectors of mode
3830 MODE. This is the case if _either_ the platform handles vec_shr_optab, _or_
3831 it supports vec_perm_const with masks for all necessary shift amounts. */
3833 have_whole_vector_shift (machine_mode mode
)
3835 if (optab_handler (vec_shr_optab
, mode
) != CODE_FOR_nothing
)
3838 /* Variable-length vectors should be handled via the optab. */
3840 if (!GET_MODE_NUNITS (mode
).is_constant (&nelt
))
3843 vec_perm_builder sel
;
3844 vec_perm_indices indices
;
3845 for (unsigned int i
= nelt
/ 2; i
>= 1; i
/= 2)
3847 calc_vec_perm_mask_for_shift (i
, nelt
, &sel
);
3848 indices
.new_vector (sel
, 2, nelt
);
3849 if (!can_vec_perm_const_p (mode
, indices
, false))
3855 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
3856 functions. Design better to avoid maintenance issues. */
3858 /* Function vect_model_reduction_cost.
3860 Models cost for a reduction operation, including the vector ops
3861 generated within the strip-mine loop, the initial definition before
3862 the loop, and the epilogue code that must be generated. */
3865 vect_model_reduction_cost (stmt_vec_info stmt_info
, internal_fn reduc_fn
,
3866 int ncopies
, stmt_vector_for_cost
*cost_vec
)
3868 int prologue_cost
= 0, epilogue_cost
= 0, inside_cost
;
3869 enum tree_code code
;
3874 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
3875 struct loop
*loop
= NULL
;
3878 loop
= LOOP_VINFO_LOOP (loop_vinfo
);
3880 /* Condition reductions generate two reductions in the loop. */
3881 vect_reduction_type reduction_type
3882 = STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info
);
3883 if (reduction_type
== COND_REDUCTION
)
3886 vectype
= STMT_VINFO_VECTYPE (stmt_info
);
3887 mode
= TYPE_MODE (vectype
);
3888 orig_stmt
= STMT_VINFO_RELATED_STMT (stmt_info
);
3891 orig_stmt
= STMT_VINFO_STMT (stmt_info
);
3893 code
= gimple_assign_rhs_code (orig_stmt
);
3895 if (reduction_type
== EXTRACT_LAST_REDUCTION
3896 || reduction_type
== FOLD_LEFT_REDUCTION
)
3898 /* No extra instructions needed in the prologue. */
3901 if (reduction_type
== EXTRACT_LAST_REDUCTION
|| reduc_fn
!= IFN_LAST
)
3902 /* Count one reduction-like operation per vector. */
3903 inside_cost
= record_stmt_cost (cost_vec
, ncopies
, vec_to_scalar
,
3904 stmt_info
, 0, vect_body
);
3907 /* Use NELEMENTS extracts and NELEMENTS scalar ops. */
3908 unsigned int nelements
= ncopies
* vect_nunits_for_cost (vectype
);
3909 inside_cost
= record_stmt_cost (cost_vec
, nelements
,
3910 vec_to_scalar
, stmt_info
, 0,
3912 inside_cost
+= record_stmt_cost (cost_vec
, nelements
,
3913 scalar_stmt
, stmt_info
, 0,
3919 /* Add in cost for initial definition.
3920 For cond reduction we have four vectors: initial index, step,
3921 initial result of the data reduction, initial value of the index
3923 int prologue_stmts
= reduction_type
== COND_REDUCTION
? 4 : 1;
3924 prologue_cost
+= record_stmt_cost (cost_vec
, prologue_stmts
,
3925 scalar_to_vec
, stmt_info
, 0,
3928 /* Cost of reduction op inside loop. */
3929 inside_cost
= record_stmt_cost (cost_vec
, ncopies
, vector_stmt
,
3930 stmt_info
, 0, vect_body
);
3933 /* Determine cost of epilogue code.
3935 We have a reduction operator that will reduce the vector in one statement.
3936 Also requires scalar extract. */
3938 if (!loop
|| !nested_in_vect_loop_p (loop
, orig_stmt
))
3940 if (reduc_fn
!= IFN_LAST
)
3942 if (reduction_type
== COND_REDUCTION
)
3944 /* An EQ stmt and an COND_EXPR stmt. */
3945 epilogue_cost
+= record_stmt_cost (cost_vec
, 2,
3946 vector_stmt
, stmt_info
, 0,
3948 /* Reduction of the max index and a reduction of the found
3950 epilogue_cost
+= record_stmt_cost (cost_vec
, 2,
3951 vec_to_scalar
, stmt_info
, 0,
3953 /* A broadcast of the max value. */
3954 epilogue_cost
+= record_stmt_cost (cost_vec
, 1,
3955 scalar_to_vec
, stmt_info
, 0,
3960 epilogue_cost
+= record_stmt_cost (cost_vec
, 1, vector_stmt
,
3961 stmt_info
, 0, vect_epilogue
);
3962 epilogue_cost
+= record_stmt_cost (cost_vec
, 1,
3963 vec_to_scalar
, stmt_info
, 0,
3967 else if (reduction_type
== COND_REDUCTION
)
3969 unsigned estimated_nunits
= vect_nunits_for_cost (vectype
);
3970 /* Extraction of scalar elements. */
3971 epilogue_cost
+= record_stmt_cost (cost_vec
,
3972 2 * estimated_nunits
,
3973 vec_to_scalar
, stmt_info
, 0,
3975 /* Scalar max reductions via COND_EXPR / MAX_EXPR. */
3976 epilogue_cost
+= record_stmt_cost (cost_vec
,
3977 2 * estimated_nunits
- 3,
3978 scalar_stmt
, stmt_info
, 0,
3981 else if (reduction_type
== EXTRACT_LAST_REDUCTION
3982 || reduction_type
== FOLD_LEFT_REDUCTION
)
3983 /* No extra instructions need in the epilogue. */
3987 int vec_size_in_bits
= tree_to_uhwi (TYPE_SIZE (vectype
));
3989 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt
)));
3990 int element_bitsize
= tree_to_uhwi (bitsize
);
3991 int nelements
= vec_size_in_bits
/ element_bitsize
;
3993 if (code
== COND_EXPR
)
3996 optab
= optab_for_tree_code (code
, vectype
, optab_default
);
3998 /* We have a whole vector shift available. */
3999 if (optab
!= unknown_optab
4000 && VECTOR_MODE_P (mode
)
4001 && optab_handler (optab
, mode
) != CODE_FOR_nothing
4002 && have_whole_vector_shift (mode
))
4004 /* Final reduction via vector shifts and the reduction operator.
4005 Also requires scalar extract. */
4006 epilogue_cost
+= record_stmt_cost (cost_vec
,
4007 exact_log2 (nelements
) * 2,
4008 vector_stmt
, stmt_info
, 0,
4010 epilogue_cost
+= record_stmt_cost (cost_vec
, 1,
4011 vec_to_scalar
, stmt_info
, 0,
4015 /* Use extracts and reduction op for final reduction. For N
4016 elements, we have N extracts and N-1 reduction ops. */
4017 epilogue_cost
+= record_stmt_cost (cost_vec
,
4018 nelements
+ nelements
- 1,
4019 vector_stmt
, stmt_info
, 0,
4024 if (dump_enabled_p ())
4025 dump_printf (MSG_NOTE
,
4026 "vect_model_reduction_cost: inside_cost = %d, "
4027 "prologue_cost = %d, epilogue_cost = %d .\n", inside_cost
,
4028 prologue_cost
, epilogue_cost
);
4032 /* Function vect_model_induction_cost.
4034 Models cost for induction operations. */
4037 vect_model_induction_cost (stmt_vec_info stmt_info
, int ncopies
,
4038 stmt_vector_for_cost
*cost_vec
)
4040 unsigned inside_cost
, prologue_cost
;
4042 if (PURE_SLP_STMT (stmt_info
))
4045 /* loop cost for vec_loop. */
4046 inside_cost
= record_stmt_cost (cost_vec
, ncopies
, vector_stmt
,
4047 stmt_info
, 0, vect_body
);
4049 /* prologue cost for vec_init and vec_step. */
4050 prologue_cost
= record_stmt_cost (cost_vec
, 2, scalar_to_vec
,
4051 stmt_info
, 0, vect_prologue
);
4053 if (dump_enabled_p ())
4054 dump_printf_loc (MSG_NOTE
, vect_location
,
4055 "vect_model_induction_cost: inside_cost = %d, "
4056 "prologue_cost = %d .\n", inside_cost
, prologue_cost
);
4061 /* Function get_initial_def_for_reduction
4064 STMT - a stmt that performs a reduction operation in the loop.
4065 INIT_VAL - the initial value of the reduction variable
4068 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
4069 of the reduction (used for adjusting the epilog - see below).
4070 Return a vector variable, initialized according to the operation that STMT
4071 performs. This vector will be used as the initial value of the
4072 vector of partial results.
4074 Option1 (adjust in epilog): Initialize the vector as follows:
4075 add/bit or/xor: [0,0,...,0,0]
4076 mult/bit and: [1,1,...,1,1]
4077 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
4078 and when necessary (e.g. add/mult case) let the caller know
4079 that it needs to adjust the result by init_val.
4081 Option2: Initialize the vector as follows:
4082 add/bit or/xor: [init_val,0,0,...,0]
4083 mult/bit and: [init_val,1,1,...,1]
4084 min/max/cond_expr: [init_val,init_val,...,init_val]
4085 and no adjustments are needed.
4087 For example, for the following code:
4093 STMT is 's = s + a[i]', and the reduction variable is 's'.
4094 For a vector of 4 units, we want to return either [0,0,0,init_val],
4095 or [0,0,0,0] and let the caller know that it needs to adjust
4096 the result at the end by 'init_val'.
4098 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
4099 initialization vector is simpler (same element in all entries), if
4100 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
4102 A cost model should help decide between these two schemes. */
4105 get_initial_def_for_reduction (gimple
*stmt
, tree init_val
,
4106 tree
*adjustment_def
)
4108 stmt_vec_info stmt_vinfo
= vinfo_for_stmt (stmt
);
4109 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_vinfo
);
4110 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
4111 tree scalar_type
= TREE_TYPE (init_val
);
4112 tree vectype
= get_vectype_for_scalar_type (scalar_type
);
4113 enum tree_code code
= gimple_assign_rhs_code (stmt
);
4116 bool nested_in_vect_loop
= false;
4117 REAL_VALUE_TYPE real_init_val
= dconst0
;
4118 int int_init_val
= 0;
4119 gimple
*def_stmt
= NULL
;
4120 gimple_seq stmts
= NULL
;
4122 gcc_assert (vectype
);
4124 gcc_assert (POINTER_TYPE_P (scalar_type
) || INTEGRAL_TYPE_P (scalar_type
)
4125 || SCALAR_FLOAT_TYPE_P (scalar_type
));
4127 if (nested_in_vect_loop_p (loop
, stmt
))
4128 nested_in_vect_loop
= true;
4130 gcc_assert (loop
== (gimple_bb (stmt
))->loop_father
);
4132 /* In case of double reduction we only create a vector variable to be put
4133 in the reduction phi node. The actual statement creation is done in
4134 vect_create_epilog_for_reduction. */
4135 if (adjustment_def
&& nested_in_vect_loop
4136 && TREE_CODE (init_val
) == SSA_NAME
4137 && (def_stmt
= SSA_NAME_DEF_STMT (init_val
))
4138 && gimple_code (def_stmt
) == GIMPLE_PHI
4139 && flow_bb_inside_loop_p (loop
, gimple_bb (def_stmt
))
4140 && vinfo_for_stmt (def_stmt
)
4141 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt
))
4142 == vect_double_reduction_def
)
4144 *adjustment_def
= NULL
;
4145 return vect_create_destination_var (init_val
, vectype
);
4148 vect_reduction_type reduction_type
4149 = STMT_VINFO_VEC_REDUCTION_TYPE (stmt_vinfo
);
4151 /* In case of a nested reduction do not use an adjustment def as
4152 that case is not supported by the epilogue generation correctly
4153 if ncopies is not one. */
4154 if (adjustment_def
&& nested_in_vect_loop
)
4156 *adjustment_def
= NULL
;
4157 return vect_get_vec_def_for_operand (init_val
, stmt
);
4162 case WIDEN_SUM_EXPR
:
4172 /* ADJUSTMENT_DEF is NULL when called from
4173 vect_create_epilog_for_reduction to vectorize double reduction. */
4175 *adjustment_def
= init_val
;
4177 if (code
== MULT_EXPR
)
4179 real_init_val
= dconst1
;
4183 if (code
== BIT_AND_EXPR
)
4186 if (SCALAR_FLOAT_TYPE_P (scalar_type
))
4187 def_for_init
= build_real (scalar_type
, real_init_val
);
4189 def_for_init
= build_int_cst (scalar_type
, int_init_val
);
4192 /* Option1: the first element is '0' or '1' as well. */
4193 init_def
= gimple_build_vector_from_val (&stmts
, vectype
,
4195 else if (!TYPE_VECTOR_SUBPARTS (vectype
).is_constant ())
4197 /* Option2 (variable length): the first element is INIT_VAL. */
4198 init_def
= gimple_build_vector_from_val (&stmts
, vectype
,
4200 init_def
= gimple_build (&stmts
, CFN_VEC_SHL_INSERT
,
4201 vectype
, init_def
, init_val
);
4205 /* Option2: the first element is INIT_VAL. */
4206 tree_vector_builder
elts (vectype
, 1, 2);
4207 elts
.quick_push (init_val
);
4208 elts
.quick_push (def_for_init
);
4209 init_def
= gimple_build_vector (&stmts
, &elts
);
4220 *adjustment_def
= NULL_TREE
;
4221 if (reduction_type
!= COND_REDUCTION
4222 && reduction_type
!= EXTRACT_LAST_REDUCTION
)
4224 init_def
= vect_get_vec_def_for_operand (init_val
, stmt
);
4228 init_val
= gimple_convert (&stmts
, TREE_TYPE (vectype
), init_val
);
4229 init_def
= gimple_build_vector_from_val (&stmts
, vectype
, init_val
);
4238 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop
), stmts
);
4242 /* Get at the initial defs for the reduction PHIs in SLP_NODE.
4243 NUMBER_OF_VECTORS is the number of vector defs to create.
4244 If NEUTRAL_OP is nonnull, introducing extra elements of that
4245 value will not change the result. */
4248 get_initial_defs_for_reduction (slp_tree slp_node
,
4249 vec
<tree
> *vec_oprnds
,
4250 unsigned int number_of_vectors
,
4251 bool reduc_chain
, tree neutral_op
)
4253 vec
<gimple
*> stmts
= SLP_TREE_SCALAR_STMTS (slp_node
);
4254 gimple
*stmt
= stmts
[0];
4255 stmt_vec_info stmt_vinfo
= vinfo_for_stmt (stmt
);
4256 unsigned HOST_WIDE_INT nunits
;
4257 unsigned j
, number_of_places_left_in_vector
;
4260 int group_size
= stmts
.length ();
4261 unsigned int vec_num
, i
;
4262 unsigned number_of_copies
= 1;
4264 voprnds
.create (number_of_vectors
);
4266 auto_vec
<tree
, 16> permute_results
;
4268 vector_type
= STMT_VINFO_VECTYPE (stmt_vinfo
);
4270 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo
) == vect_reduction_def
);
4272 loop
= (gimple_bb (stmt
))->loop_father
;
4274 edge pe
= loop_preheader_edge (loop
);
4276 gcc_assert (!reduc_chain
|| neutral_op
);
4278 /* NUMBER_OF_COPIES is the number of times we need to use the same values in
4279 created vectors. It is greater than 1 if unrolling is performed.
4281 For example, we have two scalar operands, s1 and s2 (e.g., group of
4282 strided accesses of size two), while NUNITS is four (i.e., four scalars
4283 of this type can be packed in a vector). The output vector will contain
4284 two copies of each scalar operand: {s1, s2, s1, s2}. (NUMBER_OF_COPIES
4287 If REDUC_GROUP_SIZE > NUNITS, the scalars will be split into several
4288 vectors containing the operands.
4290 For example, NUNITS is four as before, and the group size is 8
4291 (s1, s2, ..., s8). We will create two vectors {s1, s2, s3, s4} and
4292 {s5, s6, s7, s8}. */
4294 if (!TYPE_VECTOR_SUBPARTS (vector_type
).is_constant (&nunits
))
4295 nunits
= group_size
;
4297 number_of_copies
= nunits
* number_of_vectors
/ group_size
;
4299 number_of_places_left_in_vector
= nunits
;
4300 bool constant_p
= true;
4301 tree_vector_builder
elts (vector_type
, nunits
, 1);
4302 elts
.quick_grow (nunits
);
4303 for (j
= 0; j
< number_of_copies
; j
++)
4305 for (i
= group_size
- 1; stmts
.iterate (i
, &stmt
); i
--)
4308 /* Get the def before the loop. In reduction chain we have only
4309 one initial value. */
4310 if ((j
!= (number_of_copies
- 1)
4311 || (reduc_chain
&& i
!= 0))
4315 op
= PHI_ARG_DEF_FROM_EDGE (stmt
, pe
);
4317 /* Create 'vect_ = {op0,op1,...,opn}'. */
4318 number_of_places_left_in_vector
--;
4319 elts
[number_of_places_left_in_vector
] = op
;
4320 if (!CONSTANT_CLASS_P (op
))
4323 if (number_of_places_left_in_vector
== 0)
4325 gimple_seq ctor_seq
= NULL
;
4327 if (constant_p
&& !neutral_op
4328 ? multiple_p (TYPE_VECTOR_SUBPARTS (vector_type
), nunits
)
4329 : known_eq (TYPE_VECTOR_SUBPARTS (vector_type
), nunits
))
4330 /* Build the vector directly from ELTS. */
4331 init
= gimple_build_vector (&ctor_seq
, &elts
);
4332 else if (neutral_op
)
4334 /* Build a vector of the neutral value and shift the
4335 other elements into place. */
4336 init
= gimple_build_vector_from_val (&ctor_seq
, vector_type
,
4339 while (k
> 0 && elts
[k
- 1] == neutral_op
)
4344 init
= gimple_build (&ctor_seq
, CFN_VEC_SHL_INSERT
,
4345 vector_type
, init
, elts
[k
]);
4350 /* First time round, duplicate ELTS to fill the
4351 required number of vectors, then cherry pick the
4352 appropriate result for each iteration. */
4353 if (vec_oprnds
->is_empty ())
4354 duplicate_and_interleave (&ctor_seq
, vector_type
, elts
,
4357 init
= permute_results
[number_of_vectors
- j
- 1];
4359 if (ctor_seq
!= NULL
)
4360 gsi_insert_seq_on_edge_immediate (pe
, ctor_seq
);
4361 voprnds
.quick_push (init
);
4363 number_of_places_left_in_vector
= nunits
;
4364 elts
.new_vector (vector_type
, nunits
, 1);
4365 elts
.quick_grow (nunits
);
4371 /* Since the vectors are created in the reverse order, we should invert
4373 vec_num
= voprnds
.length ();
4374 for (j
= vec_num
; j
!= 0; j
--)
4376 vop
= voprnds
[j
- 1];
4377 vec_oprnds
->quick_push (vop
);
4382 /* In case that VF is greater than the unrolling factor needed for the SLP
4383 group of stmts, NUMBER_OF_VECTORS to be created is greater than
4384 NUMBER_OF_SCALARS/NUNITS or NUNITS/NUMBER_OF_SCALARS, and hence we have
4385 to replicate the vectors. */
4386 tree neutral_vec
= NULL
;
4387 while (number_of_vectors
> vec_oprnds
->length ())
4393 gimple_seq ctor_seq
= NULL
;
4394 neutral_vec
= gimple_build_vector_from_val
4395 (&ctor_seq
, vector_type
, neutral_op
);
4396 if (ctor_seq
!= NULL
)
4397 gsi_insert_seq_on_edge_immediate (pe
, ctor_seq
);
4399 vec_oprnds
->quick_push (neutral_vec
);
4403 for (i
= 0; vec_oprnds
->iterate (i
, &vop
) && i
< vec_num
; i
++)
4404 vec_oprnds
->quick_push (vop
);
4410 /* Function vect_create_epilog_for_reduction
4412 Create code at the loop-epilog to finalize the result of a reduction
4415 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
4416 reduction statements.
4417 STMT is the scalar reduction stmt that is being vectorized.
4418 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
4419 number of elements that we can fit in a vectype (nunits). In this case
4420 we have to generate more than one vector stmt - i.e - we need to "unroll"
4421 the vector stmt by a factor VF/nunits. For more details see documentation
4422 in vectorizable_operation.
4423 REDUC_FN is the internal function for the epilog reduction.
4424 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
4426 REDUC_INDEX is the index of the operand in the right hand side of the
4427 statement that is defined by REDUCTION_PHI.
4428 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
4429 SLP_NODE is an SLP node containing a group of reduction statements. The
4430 first one in this group is STMT.
4431 INDUC_VAL is for INTEGER_INDUC_COND_REDUCTION the value to use for the case
4432 when the COND_EXPR is never true in the loop. For MAX_EXPR, it needs to
4433 be smaller than any value of the IV in the loop, for MIN_EXPR larger than
4434 any value of the IV in the loop.
4435 INDUC_CODE is the code for epilog reduction if INTEGER_INDUC_COND_REDUCTION.
4436 NEUTRAL_OP is the value given by neutral_op_for_slp_reduction; it is
4437 null if this is not an SLP reduction
4440 1. Creates the reduction def-use cycles: sets the arguments for
4442 The loop-entry argument is the vectorized initial-value of the reduction.
4443 The loop-latch argument is taken from VECT_DEFS - the vector of partial
4445 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
4446 by calling the function specified by REDUC_FN if available, or by
4447 other means (whole-vector shifts or a scalar loop).
4448 The function also creates a new phi node at the loop exit to preserve
4449 loop-closed form, as illustrated below.
4451 The flow at the entry to this function:
4454 vec_def = phi <null, null> # REDUCTION_PHI
4455 VECT_DEF = vector_stmt # vectorized form of STMT
4456 s_loop = scalar_stmt # (scalar) STMT
4458 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4462 The above is transformed by this function into:
4465 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4466 VECT_DEF = vector_stmt # vectorized form of STMT
4467 s_loop = scalar_stmt # (scalar) STMT
4469 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4470 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4471 v_out2 = reduce <v_out1>
4472 s_out3 = extract_field <v_out2, 0>
4473 s_out4 = adjust_result <s_out3>
4479 vect_create_epilog_for_reduction (vec
<tree
> vect_defs
, gimple
*stmt
,
4480 gimple
*reduc_def_stmt
,
4481 int ncopies
, internal_fn reduc_fn
,
4482 vec
<gimple
*> reduction_phis
,
4485 slp_instance slp_node_instance
,
4486 tree induc_val
, enum tree_code induc_code
,
4489 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
4490 stmt_vec_info prev_phi_info
;
4493 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
4494 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
), *outer_loop
= NULL
;
4495 basic_block exit_bb
;
4498 gimple
*new_phi
= NULL
, *phi
;
4499 gimple_stmt_iterator exit_gsi
;
4501 tree new_temp
= NULL_TREE
, new_dest
, new_name
, new_scalar_dest
;
4502 gimple
*epilog_stmt
= NULL
;
4503 enum tree_code code
= gimple_assign_rhs_code (stmt
);
4506 tree adjustment_def
= NULL
;
4507 tree vec_initial_def
= NULL
;
4508 tree expr
, def
, initial_def
= NULL
;
4509 tree orig_name
, scalar_result
;
4510 imm_use_iterator imm_iter
, phi_imm_iter
;
4511 use_operand_p use_p
, phi_use_p
;
4512 gimple
*use_stmt
, *orig_stmt
, *reduction_phi
= NULL
;
4513 bool nested_in_vect_loop
= false;
4514 auto_vec
<gimple
*> new_phis
;
4515 auto_vec
<gimple
*> inner_phis
;
4516 enum vect_def_type dt
= vect_unknown_def_type
;
4518 auto_vec
<tree
> scalar_results
;
4519 unsigned int group_size
= 1, k
, ratio
;
4520 auto_vec
<tree
> vec_initial_defs
;
4521 auto_vec
<gimple
*> phis
;
4522 bool slp_reduc
= false;
4523 bool direct_slp_reduc
;
4524 tree new_phi_result
;
4525 gimple
*inner_phi
= NULL
;
4526 tree induction_index
= NULL_TREE
;
4529 group_size
= SLP_TREE_SCALAR_STMTS (slp_node
).length ();
4531 if (nested_in_vect_loop_p (loop
, stmt
))
4535 nested_in_vect_loop
= true;
4536 gcc_assert (!slp_node
);
4539 vectype
= STMT_VINFO_VECTYPE (stmt_info
);
4540 gcc_assert (vectype
);
4541 mode
= TYPE_MODE (vectype
);
4543 /* 1. Create the reduction def-use cycle:
4544 Set the arguments of REDUCTION_PHIS, i.e., transform
4547 vec_def = phi <null, null> # REDUCTION_PHI
4548 VECT_DEF = vector_stmt # vectorized form of STMT
4554 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4555 VECT_DEF = vector_stmt # vectorized form of STMT
4558 (in case of SLP, do it for all the phis). */
4560 /* Get the loop-entry arguments. */
4561 enum vect_def_type initial_def_dt
= vect_unknown_def_type
;
4564 unsigned vec_num
= SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node
);
4565 vec_initial_defs
.reserve (vec_num
);
4566 get_initial_defs_for_reduction (slp_node_instance
->reduc_phis
,
4567 &vec_initial_defs
, vec_num
,
4568 REDUC_GROUP_FIRST_ELEMENT (stmt_info
),
4573 /* Get at the scalar def before the loop, that defines the initial value
4574 of the reduction variable. */
4575 initial_def
= PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt
,
4576 loop_preheader_edge (loop
));
4577 /* Optimize: if initial_def is for REDUC_MAX smaller than the base
4578 and we can't use zero for induc_val, use initial_def. Similarly
4579 for REDUC_MIN and initial_def larger than the base. */
4580 if (TREE_CODE (initial_def
) == INTEGER_CST
4581 && (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info
)
4582 == INTEGER_INDUC_COND_REDUCTION
)
4583 && !integer_zerop (induc_val
)
4584 && ((induc_code
== MAX_EXPR
4585 && tree_int_cst_lt (initial_def
, induc_val
))
4586 || (induc_code
== MIN_EXPR
4587 && tree_int_cst_lt (induc_val
, initial_def
))))
4588 induc_val
= initial_def
;
4589 vect_is_simple_use (initial_def
, loop_vinfo
, &initial_def_dt
);
4590 vec_initial_def
= get_initial_def_for_reduction (stmt
, initial_def
,
4592 vec_initial_defs
.create (1);
4593 vec_initial_defs
.quick_push (vec_initial_def
);
4596 /* Set phi nodes arguments. */
4597 FOR_EACH_VEC_ELT (reduction_phis
, i
, phi
)
4599 tree vec_init_def
= vec_initial_defs
[i
];
4600 tree def
= vect_defs
[i
];
4601 for (j
= 0; j
< ncopies
; j
++)
4605 phi
= STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi
));
4606 if (nested_in_vect_loop
)
4608 = vect_get_vec_def_for_stmt_copy (initial_def_dt
,
4612 /* Set the loop-entry arg of the reduction-phi. */
4614 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info
)
4615 == INTEGER_INDUC_COND_REDUCTION
)
4617 /* Initialise the reduction phi to zero. This prevents initial
4618 values of non-zero interferring with the reduction op. */
4619 gcc_assert (ncopies
== 1);
4620 gcc_assert (i
== 0);
4622 tree vec_init_def_type
= TREE_TYPE (vec_init_def
);
4624 = build_vector_from_val (vec_init_def_type
, induc_val
);
4626 add_phi_arg (as_a
<gphi
*> (phi
), induc_val_vec
,
4627 loop_preheader_edge (loop
), UNKNOWN_LOCATION
);
4630 add_phi_arg (as_a
<gphi
*> (phi
), vec_init_def
,
4631 loop_preheader_edge (loop
), UNKNOWN_LOCATION
);
4633 /* Set the loop-latch arg for the reduction-phi. */
4635 def
= vect_get_vec_def_for_stmt_copy (vect_unknown_def_type
, def
);
4637 add_phi_arg (as_a
<gphi
*> (phi
), def
, loop_latch_edge (loop
),
4640 if (dump_enabled_p ())
4642 dump_printf_loc (MSG_NOTE
, vect_location
,
4643 "transform reduction: created def-use cycle: ");
4644 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, phi
, 0);
4645 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, SSA_NAME_DEF_STMT (def
), 0);
4650 /* For cond reductions we want to create a new vector (INDEX_COND_EXPR)
4651 which is updated with the current index of the loop for every match of
4652 the original loop's cond_expr (VEC_STMT). This results in a vector
4653 containing the last time the condition passed for that vector lane.
4654 The first match will be a 1 to allow 0 to be used for non-matching
4655 indexes. If there are no matches at all then the vector will be all
4657 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info
) == COND_REDUCTION
)
4659 tree indx_before_incr
, indx_after_incr
;
4660 poly_uint64 nunits_out
= TYPE_VECTOR_SUBPARTS (vectype
);
4662 gimple
*vec_stmt
= STMT_VINFO_VEC_STMT (stmt_info
);
4663 gcc_assert (gimple_assign_rhs_code (vec_stmt
) == VEC_COND_EXPR
);
4665 int scalar_precision
4666 = GET_MODE_PRECISION (SCALAR_TYPE_MODE (TREE_TYPE (vectype
)));
4667 tree cr_index_scalar_type
= make_unsigned_type (scalar_precision
);
4668 tree cr_index_vector_type
= build_vector_type
4669 (cr_index_scalar_type
, TYPE_VECTOR_SUBPARTS (vectype
));
4671 /* First we create a simple vector induction variable which starts
4672 with the values {1,2,3,...} (SERIES_VECT) and increments by the
4673 vector size (STEP). */
4675 /* Create a {1,2,3,...} vector. */
4676 tree series_vect
= build_index_vector (cr_index_vector_type
, 1, 1);
4678 /* Create a vector of the step value. */
4679 tree step
= build_int_cst (cr_index_scalar_type
, nunits_out
);
4680 tree vec_step
= build_vector_from_val (cr_index_vector_type
, step
);
4682 /* Create an induction variable. */
4683 gimple_stmt_iterator incr_gsi
;
4685 standard_iv_increment_position (loop
, &incr_gsi
, &insert_after
);
4686 create_iv (series_vect
, vec_step
, NULL_TREE
, loop
, &incr_gsi
,
4687 insert_after
, &indx_before_incr
, &indx_after_incr
);
4689 /* Next create a new phi node vector (NEW_PHI_TREE) which starts
4690 filled with zeros (VEC_ZERO). */
4692 /* Create a vector of 0s. */
4693 tree zero
= build_zero_cst (cr_index_scalar_type
);
4694 tree vec_zero
= build_vector_from_val (cr_index_vector_type
, zero
);
4696 /* Create a vector phi node. */
4697 tree new_phi_tree
= make_ssa_name (cr_index_vector_type
);
4698 new_phi
= create_phi_node (new_phi_tree
, loop
->header
);
4699 set_vinfo_for_stmt (new_phi
,
4700 new_stmt_vec_info (new_phi
, loop_vinfo
));
4701 add_phi_arg (as_a
<gphi
*> (new_phi
), vec_zero
,
4702 loop_preheader_edge (loop
), UNKNOWN_LOCATION
);
4704 /* Now take the condition from the loops original cond_expr
4705 (VEC_STMT) and produce a new cond_expr (INDEX_COND_EXPR) which for
4706 every match uses values from the induction variable
4707 (INDEX_BEFORE_INCR) otherwise uses values from the phi node
4709 Finally, we update the phi (NEW_PHI_TREE) to take the value of
4710 the new cond_expr (INDEX_COND_EXPR). */
4712 /* Duplicate the condition from vec_stmt. */
4713 tree ccompare
= unshare_expr (gimple_assign_rhs1 (vec_stmt
));
4715 /* Create a conditional, where the condition is taken from vec_stmt
4716 (CCOMPARE), then is the induction index (INDEX_BEFORE_INCR) and
4717 else is the phi (NEW_PHI_TREE). */
4718 tree index_cond_expr
= build3 (VEC_COND_EXPR
, cr_index_vector_type
,
4719 ccompare
, indx_before_incr
,
4721 induction_index
= make_ssa_name (cr_index_vector_type
);
4722 gimple
*index_condition
= gimple_build_assign (induction_index
,
4724 gsi_insert_before (&incr_gsi
, index_condition
, GSI_SAME_STMT
);
4725 stmt_vec_info index_vec_info
= new_stmt_vec_info (index_condition
,
4727 STMT_VINFO_VECTYPE (index_vec_info
) = cr_index_vector_type
;
4728 set_vinfo_for_stmt (index_condition
, index_vec_info
);
4730 /* Update the phi with the vec cond. */
4731 add_phi_arg (as_a
<gphi
*> (new_phi
), induction_index
,
4732 loop_latch_edge (loop
), UNKNOWN_LOCATION
);
4735 /* 2. Create epilog code.
4736 The reduction epilog code operates across the elements of the vector
4737 of partial results computed by the vectorized loop.
4738 The reduction epilog code consists of:
4740 step 1: compute the scalar result in a vector (v_out2)
4741 step 2: extract the scalar result (s_out3) from the vector (v_out2)
4742 step 3: adjust the scalar result (s_out3) if needed.
4744 Step 1 can be accomplished using one the following three schemes:
4745 (scheme 1) using reduc_fn, if available.
4746 (scheme 2) using whole-vector shifts, if available.
4747 (scheme 3) using a scalar loop. In this case steps 1+2 above are
4750 The overall epilog code looks like this:
4752 s_out0 = phi <s_loop> # original EXIT_PHI
4753 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4754 v_out2 = reduce <v_out1> # step 1
4755 s_out3 = extract_field <v_out2, 0> # step 2
4756 s_out4 = adjust_result <s_out3> # step 3
4758 (step 3 is optional, and steps 1 and 2 may be combined).
4759 Lastly, the uses of s_out0 are replaced by s_out4. */
4762 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
4763 v_out1 = phi <VECT_DEF>
4764 Store them in NEW_PHIS. */
4766 exit_bb
= single_exit (loop
)->dest
;
4767 prev_phi_info
= NULL
;
4768 new_phis
.create (vect_defs
.length ());
4769 FOR_EACH_VEC_ELT (vect_defs
, i
, def
)
4771 for (j
= 0; j
< ncopies
; j
++)
4773 tree new_def
= copy_ssa_name (def
);
4774 phi
= create_phi_node (new_def
, exit_bb
);
4775 set_vinfo_for_stmt (phi
, new_stmt_vec_info (phi
, loop_vinfo
));
4777 new_phis
.quick_push (phi
);
4780 def
= vect_get_vec_def_for_stmt_copy (dt
, def
);
4781 STMT_VINFO_RELATED_STMT (prev_phi_info
) = phi
;
4784 SET_PHI_ARG_DEF (phi
, single_exit (loop
)->dest_idx
, def
);
4785 prev_phi_info
= vinfo_for_stmt (phi
);
4789 /* The epilogue is created for the outer-loop, i.e., for the loop being
4790 vectorized. Create exit phis for the outer loop. */
4794 exit_bb
= single_exit (loop
)->dest
;
4795 inner_phis
.create (vect_defs
.length ());
4796 FOR_EACH_VEC_ELT (new_phis
, i
, phi
)
4798 tree new_result
= copy_ssa_name (PHI_RESULT (phi
));
4799 gphi
*outer_phi
= create_phi_node (new_result
, exit_bb
);
4800 SET_PHI_ARG_DEF (outer_phi
, single_exit (loop
)->dest_idx
,
4802 set_vinfo_for_stmt (outer_phi
, new_stmt_vec_info (outer_phi
,
4804 inner_phis
.quick_push (phi
);
4805 new_phis
[i
] = outer_phi
;
4806 prev_phi_info
= vinfo_for_stmt (outer_phi
);
4807 while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi
)))
4809 phi
= STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi
));
4810 new_result
= copy_ssa_name (PHI_RESULT (phi
));
4811 outer_phi
= create_phi_node (new_result
, exit_bb
);
4812 SET_PHI_ARG_DEF (outer_phi
, single_exit (loop
)->dest_idx
,
4814 set_vinfo_for_stmt (outer_phi
, new_stmt_vec_info (outer_phi
,
4816 STMT_VINFO_RELATED_STMT (prev_phi_info
) = outer_phi
;
4817 prev_phi_info
= vinfo_for_stmt (outer_phi
);
4822 exit_gsi
= gsi_after_labels (exit_bb
);
4824 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
4825 (i.e. when reduc_fn is not available) and in the final adjustment
4826 code (if needed). Also get the original scalar reduction variable as
4827 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
4828 represents a reduction pattern), the tree-code and scalar-def are
4829 taken from the original stmt that the pattern-stmt (STMT) replaces.
4830 Otherwise (it is a regular reduction) - the tree-code and scalar-def
4831 are taken from STMT. */
4833 orig_stmt
= STMT_VINFO_RELATED_STMT (stmt_info
);
4836 /* Regular reduction */
4841 /* Reduction pattern */
4842 stmt_vec_info stmt_vinfo
= vinfo_for_stmt (orig_stmt
);
4843 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo
));
4844 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo
) == stmt
);
4847 code
= gimple_assign_rhs_code (orig_stmt
);
4848 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
4849 partial results are added and not subtracted. */
4850 if (code
== MINUS_EXPR
)
4853 scalar_dest
= gimple_assign_lhs (orig_stmt
);
4854 scalar_type
= TREE_TYPE (scalar_dest
);
4855 scalar_results
.create (group_size
);
4856 new_scalar_dest
= vect_create_destination_var (scalar_dest
, NULL
);
4857 bitsize
= TYPE_SIZE (scalar_type
);
4859 /* In case this is a reduction in an inner-loop while vectorizing an outer
4860 loop - we don't need to extract a single scalar result at the end of the
4861 inner-loop (unless it is double reduction, i.e., the use of reduction is
4862 outside the outer-loop). The final vector of partial results will be used
4863 in the vectorized outer-loop, or reduced to a scalar result at the end of
4865 if (nested_in_vect_loop
&& !double_reduc
)
4866 goto vect_finalize_reduction
;
4868 /* SLP reduction without reduction chain, e.g.,
4872 b2 = operation (b1) */
4873 slp_reduc
= (slp_node
&& !REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt
)));
4875 /* True if we should implement SLP_REDUC using native reduction operations
4876 instead of scalar operations. */
4877 direct_slp_reduc
= (reduc_fn
!= IFN_LAST
4879 && !TYPE_VECTOR_SUBPARTS (vectype
).is_constant ());
4881 /* In case of reduction chain, e.g.,
4884 a3 = operation (a2),
4886 we may end up with more than one vector result. Here we reduce them to
4888 if (REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt
)) || direct_slp_reduc
)
4890 tree first_vect
= PHI_RESULT (new_phis
[0]);
4891 gassign
*new_vec_stmt
= NULL
;
4892 vec_dest
= vect_create_destination_var (scalar_dest
, vectype
);
4893 for (k
= 1; k
< new_phis
.length (); k
++)
4895 gimple
*next_phi
= new_phis
[k
];
4896 tree second_vect
= PHI_RESULT (next_phi
);
4897 tree tem
= make_ssa_name (vec_dest
, new_vec_stmt
);
4898 new_vec_stmt
= gimple_build_assign (tem
, code
,
4899 first_vect
, second_vect
);
4900 gsi_insert_before (&exit_gsi
, new_vec_stmt
, GSI_SAME_STMT
);
4904 new_phi_result
= first_vect
;
4907 new_phis
.truncate (0);
4908 new_phis
.safe_push (new_vec_stmt
);
4911 /* Likewise if we couldn't use a single defuse cycle. */
4912 else if (ncopies
> 1)
4914 gcc_assert (new_phis
.length () == 1);
4915 tree first_vect
= PHI_RESULT (new_phis
[0]);
4916 gassign
*new_vec_stmt
= NULL
;
4917 vec_dest
= vect_create_destination_var (scalar_dest
, vectype
);
4918 gimple
*next_phi
= new_phis
[0];
4919 for (int k
= 1; k
< ncopies
; ++k
)
4921 next_phi
= STMT_VINFO_RELATED_STMT (vinfo_for_stmt (next_phi
));
4922 tree second_vect
= PHI_RESULT (next_phi
);
4923 tree tem
= make_ssa_name (vec_dest
, new_vec_stmt
);
4924 new_vec_stmt
= gimple_build_assign (tem
, code
,
4925 first_vect
, second_vect
);
4926 gsi_insert_before (&exit_gsi
, new_vec_stmt
, GSI_SAME_STMT
);
4929 new_phi_result
= first_vect
;
4930 new_phis
.truncate (0);
4931 new_phis
.safe_push (new_vec_stmt
);
4934 new_phi_result
= PHI_RESULT (new_phis
[0]);
4936 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info
) == COND_REDUCTION
4937 && reduc_fn
!= IFN_LAST
)
4939 /* For condition reductions, we have a vector (NEW_PHI_RESULT) containing
4940 various data values where the condition matched and another vector
4941 (INDUCTION_INDEX) containing all the indexes of those matches. We
4942 need to extract the last matching index (which will be the index with
4943 highest value) and use this to index into the data vector.
4944 For the case where there were no matches, the data vector will contain
4945 all default values and the index vector will be all zeros. */
4947 /* Get various versions of the type of the vector of indexes. */
4948 tree index_vec_type
= TREE_TYPE (induction_index
);
4949 gcc_checking_assert (TYPE_UNSIGNED (index_vec_type
));
4950 tree index_scalar_type
= TREE_TYPE (index_vec_type
);
4951 tree index_vec_cmp_type
= build_same_sized_truth_vector_type
4954 /* Get an unsigned integer version of the type of the data vector. */
4955 int scalar_precision
4956 = GET_MODE_PRECISION (SCALAR_TYPE_MODE (scalar_type
));
4957 tree scalar_type_unsigned
= make_unsigned_type (scalar_precision
);
4958 tree vectype_unsigned
= build_vector_type
4959 (scalar_type_unsigned
, TYPE_VECTOR_SUBPARTS (vectype
));
4961 /* First we need to create a vector (ZERO_VEC) of zeros and another
4962 vector (MAX_INDEX_VEC) filled with the last matching index, which we
4963 can create using a MAX reduction and then expanding.
4964 In the case where the loop never made any matches, the max index will
4967 /* Vector of {0, 0, 0,...}. */
4968 tree zero_vec
= make_ssa_name (vectype
);
4969 tree zero_vec_rhs
= build_zero_cst (vectype
);
4970 gimple
*zero_vec_stmt
= gimple_build_assign (zero_vec
, zero_vec_rhs
);
4971 gsi_insert_before (&exit_gsi
, zero_vec_stmt
, GSI_SAME_STMT
);
4973 /* Find maximum value from the vector of found indexes. */
4974 tree max_index
= make_ssa_name (index_scalar_type
);
4975 gcall
*max_index_stmt
= gimple_build_call_internal (IFN_REDUC_MAX
,
4976 1, induction_index
);
4977 gimple_call_set_lhs (max_index_stmt
, max_index
);
4978 gsi_insert_before (&exit_gsi
, max_index_stmt
, GSI_SAME_STMT
);
4980 /* Vector of {max_index, max_index, max_index,...}. */
4981 tree max_index_vec
= make_ssa_name (index_vec_type
);
4982 tree max_index_vec_rhs
= build_vector_from_val (index_vec_type
,
4984 gimple
*max_index_vec_stmt
= gimple_build_assign (max_index_vec
,
4986 gsi_insert_before (&exit_gsi
, max_index_vec_stmt
, GSI_SAME_STMT
);
4988 /* Next we compare the new vector (MAX_INDEX_VEC) full of max indexes
4989 with the vector (INDUCTION_INDEX) of found indexes, choosing values
4990 from the data vector (NEW_PHI_RESULT) for matches, 0 (ZERO_VEC)
4991 otherwise. Only one value should match, resulting in a vector
4992 (VEC_COND) with one data value and the rest zeros.
4993 In the case where the loop never made any matches, every index will
4994 match, resulting in a vector with all data values (which will all be
4995 the default value). */
4997 /* Compare the max index vector to the vector of found indexes to find
4998 the position of the max value. */
4999 tree vec_compare
= make_ssa_name (index_vec_cmp_type
);
5000 gimple
*vec_compare_stmt
= gimple_build_assign (vec_compare
, EQ_EXPR
,
5003 gsi_insert_before (&exit_gsi
, vec_compare_stmt
, GSI_SAME_STMT
);
5005 /* Use the compare to choose either values from the data vector or
5007 tree vec_cond
= make_ssa_name (vectype
);
5008 gimple
*vec_cond_stmt
= gimple_build_assign (vec_cond
, VEC_COND_EXPR
,
5009 vec_compare
, new_phi_result
,
5011 gsi_insert_before (&exit_gsi
, vec_cond_stmt
, GSI_SAME_STMT
);
5013 /* Finally we need to extract the data value from the vector (VEC_COND)
5014 into a scalar (MATCHED_DATA_REDUC). Logically we want to do a OR
5015 reduction, but because this doesn't exist, we can use a MAX reduction
5016 instead. The data value might be signed or a float so we need to cast
5018 In the case where the loop never made any matches, the data values are
5019 all identical, and so will reduce down correctly. */
5021 /* Make the matched data values unsigned. */
5022 tree vec_cond_cast
= make_ssa_name (vectype_unsigned
);
5023 tree vec_cond_cast_rhs
= build1 (VIEW_CONVERT_EXPR
, vectype_unsigned
,
5025 gimple
*vec_cond_cast_stmt
= gimple_build_assign (vec_cond_cast
,
5028 gsi_insert_before (&exit_gsi
, vec_cond_cast_stmt
, GSI_SAME_STMT
);
5030 /* Reduce down to a scalar value. */
5031 tree data_reduc
= make_ssa_name (scalar_type_unsigned
);
5032 gcall
*data_reduc_stmt
= gimple_build_call_internal (IFN_REDUC_MAX
,
5034 gimple_call_set_lhs (data_reduc_stmt
, data_reduc
);
5035 gsi_insert_before (&exit_gsi
, data_reduc_stmt
, GSI_SAME_STMT
);
5037 /* Convert the reduced value back to the result type and set as the
5039 gimple_seq stmts
= NULL
;
5040 new_temp
= gimple_build (&stmts
, VIEW_CONVERT_EXPR
, scalar_type
,
5042 gsi_insert_seq_before (&exit_gsi
, stmts
, GSI_SAME_STMT
);
5043 scalar_results
.safe_push (new_temp
);
5045 else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info
) == COND_REDUCTION
5046 && reduc_fn
== IFN_LAST
)
5048 /* Condition reduction without supported IFN_REDUC_MAX. Generate
5050 idx_val = induction_index[0];
5051 val = data_reduc[0];
5052 for (idx = 0, val = init, i = 0; i < nelts; ++i)
5053 if (induction_index[i] > idx_val)
5054 val = data_reduc[i], idx_val = induction_index[i];
5057 tree data_eltype
= TREE_TYPE (TREE_TYPE (new_phi_result
));
5058 tree idx_eltype
= TREE_TYPE (TREE_TYPE (induction_index
));
5059 unsigned HOST_WIDE_INT el_size
= tree_to_uhwi (TYPE_SIZE (idx_eltype
));
5060 poly_uint64 nunits
= TYPE_VECTOR_SUBPARTS (TREE_TYPE (induction_index
));
5061 /* Enforced by vectorizable_reduction, which ensures we have target
5062 support before allowing a conditional reduction on variable-length
5064 unsigned HOST_WIDE_INT v_size
= el_size
* nunits
.to_constant ();
5065 tree idx_val
= NULL_TREE
, val
= NULL_TREE
;
5066 for (unsigned HOST_WIDE_INT off
= 0; off
< v_size
; off
+= el_size
)
5068 tree old_idx_val
= idx_val
;
5070 idx_val
= make_ssa_name (idx_eltype
);
5071 epilog_stmt
= gimple_build_assign (idx_val
, BIT_FIELD_REF
,
5072 build3 (BIT_FIELD_REF
, idx_eltype
,
5074 bitsize_int (el_size
),
5075 bitsize_int (off
)));
5076 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
5077 val
= make_ssa_name (data_eltype
);
5078 epilog_stmt
= gimple_build_assign (val
, BIT_FIELD_REF
,
5079 build3 (BIT_FIELD_REF
,
5082 bitsize_int (el_size
),
5083 bitsize_int (off
)));
5084 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
5087 tree new_idx_val
= idx_val
;
5089 if (off
!= v_size
- el_size
)
5091 new_idx_val
= make_ssa_name (idx_eltype
);
5092 epilog_stmt
= gimple_build_assign (new_idx_val
,
5095 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
5097 new_val
= make_ssa_name (data_eltype
);
5098 epilog_stmt
= gimple_build_assign (new_val
,
5105 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
5106 idx_val
= new_idx_val
;
5110 /* Convert the reduced value back to the result type and set as the
5112 gimple_seq stmts
= NULL
;
5113 val
= gimple_convert (&stmts
, scalar_type
, val
);
5114 gsi_insert_seq_before (&exit_gsi
, stmts
, GSI_SAME_STMT
);
5115 scalar_results
.safe_push (val
);
5118 /* 2.3 Create the reduction code, using one of the three schemes described
5119 above. In SLP we simply need to extract all the elements from the
5120 vector (without reducing them), so we use scalar shifts. */
5121 else if (reduc_fn
!= IFN_LAST
&& !slp_reduc
)
5127 v_out2 = reduc_expr <v_out1> */
5129 if (dump_enabled_p ())
5130 dump_printf_loc (MSG_NOTE
, vect_location
,
5131 "Reduce using direct vector reduction.\n");
5133 vec_elem_type
= TREE_TYPE (TREE_TYPE (new_phi_result
));
5134 if (!useless_type_conversion_p (scalar_type
, vec_elem_type
))
5137 = vect_create_destination_var (scalar_dest
, vec_elem_type
);
5138 epilog_stmt
= gimple_build_call_internal (reduc_fn
, 1,
5140 gimple_set_lhs (epilog_stmt
, tmp_dest
);
5141 new_temp
= make_ssa_name (tmp_dest
, epilog_stmt
);
5142 gimple_set_lhs (epilog_stmt
, new_temp
);
5143 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
5145 epilog_stmt
= gimple_build_assign (new_scalar_dest
, NOP_EXPR
,
5150 epilog_stmt
= gimple_build_call_internal (reduc_fn
, 1,
5152 gimple_set_lhs (epilog_stmt
, new_scalar_dest
);
5155 new_temp
= make_ssa_name (new_scalar_dest
, epilog_stmt
);
5156 gimple_set_lhs (epilog_stmt
, new_temp
);
5157 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
5159 if ((STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info
)
5160 == INTEGER_INDUC_COND_REDUCTION
)
5161 && !operand_equal_p (initial_def
, induc_val
, 0))
5163 /* Earlier we set the initial value to be a vector if induc_val
5164 values. Check the result and if it is induc_val then replace
5165 with the original initial value, unless induc_val is
5166 the same as initial_def already. */
5167 tree zcompare
= build2 (EQ_EXPR
, boolean_type_node
, new_temp
,
5170 tmp
= make_ssa_name (new_scalar_dest
);
5171 epilog_stmt
= gimple_build_assign (tmp
, COND_EXPR
, zcompare
,
5172 initial_def
, new_temp
);
5173 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
5177 scalar_results
.safe_push (new_temp
);
5179 else if (direct_slp_reduc
)
5181 /* Here we create one vector for each of the REDUC_GROUP_SIZE results,
5182 with the elements for other SLP statements replaced with the
5183 neutral value. We can then do a normal reduction on each vector. */
5185 /* Enforced by vectorizable_reduction. */
5186 gcc_assert (new_phis
.length () == 1);
5187 gcc_assert (pow2p_hwi (group_size
));
5189 slp_tree orig_phis_slp_node
= slp_node_instance
->reduc_phis
;
5190 vec
<gimple
*> orig_phis
= SLP_TREE_SCALAR_STMTS (orig_phis_slp_node
);
5191 gimple_seq seq
= NULL
;
5193 /* Build a vector {0, 1, 2, ...}, with the same number of elements
5194 and the same element size as VECTYPE. */
5195 tree index
= build_index_vector (vectype
, 0, 1);
5196 tree index_type
= TREE_TYPE (index
);
5197 tree index_elt_type
= TREE_TYPE (index_type
);
5198 tree mask_type
= build_same_sized_truth_vector_type (index_type
);
5200 /* Create a vector that, for each element, identifies which of
5201 the REDUC_GROUP_SIZE results should use it. */
5202 tree index_mask
= build_int_cst (index_elt_type
, group_size
- 1);
5203 index
= gimple_build (&seq
, BIT_AND_EXPR
, index_type
, index
,
5204 build_vector_from_val (index_type
, index_mask
));
5206 /* Get a neutral vector value. This is simply a splat of the neutral
5207 scalar value if we have one, otherwise the initial scalar value
5208 is itself a neutral value. */
5209 tree vector_identity
= NULL_TREE
;
5211 vector_identity
= gimple_build_vector_from_val (&seq
, vectype
,
5213 for (unsigned int i
= 0; i
< group_size
; ++i
)
5215 /* If there's no univeral neutral value, we can use the
5216 initial scalar value from the original PHI. This is used
5217 for MIN and MAX reduction, for example. */
5221 = PHI_ARG_DEF_FROM_EDGE (orig_phis
[i
],
5222 loop_preheader_edge (loop
));
5223 vector_identity
= gimple_build_vector_from_val (&seq
, vectype
,
5227 /* Calculate the equivalent of:
5229 sel[j] = (index[j] == i);
5231 which selects the elements of NEW_PHI_RESULT that should
5232 be included in the result. */
5233 tree compare_val
= build_int_cst (index_elt_type
, i
);
5234 compare_val
= build_vector_from_val (index_type
, compare_val
);
5235 tree sel
= gimple_build (&seq
, EQ_EXPR
, mask_type
,
5236 index
, compare_val
);
5238 /* Calculate the equivalent of:
5240 vec = seq ? new_phi_result : vector_identity;
5242 VEC is now suitable for a full vector reduction. */
5243 tree vec
= gimple_build (&seq
, VEC_COND_EXPR
, vectype
,
5244 sel
, new_phi_result
, vector_identity
);
5246 /* Do the reduction and convert it to the appropriate type. */
5247 tree scalar
= gimple_build (&seq
, as_combined_fn (reduc_fn
),
5248 TREE_TYPE (vectype
), vec
);
5249 scalar
= gimple_convert (&seq
, scalar_type
, scalar
);
5250 scalar_results
.safe_push (scalar
);
5252 gsi_insert_seq_before (&exit_gsi
, seq
, GSI_SAME_STMT
);
5256 bool reduce_with_shift
;
5259 /* COND reductions all do the final reduction with MAX_EXPR
5261 if (code
== COND_EXPR
)
5263 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info
)
5264 == INTEGER_INDUC_COND_REDUCTION
)
5270 /* See if the target wants to do the final (shift) reduction
5271 in a vector mode of smaller size and first reduce upper/lower
5272 halves against each other. */
5273 enum machine_mode mode1
= mode
;
5274 tree vectype1
= vectype
;
5275 unsigned sz
= tree_to_uhwi (TYPE_SIZE_UNIT (vectype
));
5278 && (mode1
= targetm
.vectorize
.split_reduction (mode
)) != mode
)
5279 sz1
= GET_MODE_SIZE (mode1
).to_constant ();
5281 vectype1
= get_vectype_for_scalar_type_and_size (scalar_type
, sz1
);
5282 reduce_with_shift
= have_whole_vector_shift (mode1
);
5283 if (!VECTOR_MODE_P (mode1
))
5284 reduce_with_shift
= false;
5287 optab optab
= optab_for_tree_code (code
, vectype1
, optab_default
);
5288 if (optab_handler (optab
, mode1
) == CODE_FOR_nothing
)
5289 reduce_with_shift
= false;
5292 /* First reduce the vector to the desired vector size we should
5293 do shift reduction on by combining upper and lower halves. */
5294 new_temp
= new_phi_result
;
5297 gcc_assert (!slp_reduc
);
5299 vectype1
= get_vectype_for_scalar_type_and_size (scalar_type
, sz
);
5301 /* The target has to make sure we support lowpart/highpart
5302 extraction, either via direct vector extract or through
5303 an integer mode punning. */
5305 if (convert_optab_handler (vec_extract_optab
,
5306 TYPE_MODE (TREE_TYPE (new_temp
)),
5307 TYPE_MODE (vectype1
))
5308 != CODE_FOR_nothing
)
5310 /* Extract sub-vectors directly once vec_extract becomes
5311 a conversion optab. */
5312 dst1
= make_ssa_name (vectype1
);
5314 = gimple_build_assign (dst1
, BIT_FIELD_REF
,
5315 build3 (BIT_FIELD_REF
, vectype1
,
5316 new_temp
, TYPE_SIZE (vectype1
),
5318 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
5319 dst2
= make_ssa_name (vectype1
);
5321 = gimple_build_assign (dst2
, BIT_FIELD_REF
,
5322 build3 (BIT_FIELD_REF
, vectype1
,
5323 new_temp
, TYPE_SIZE (vectype1
),
5324 bitsize_int (sz
* BITS_PER_UNIT
)));
5325 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
5329 /* Extract via punning to appropriately sized integer mode
5331 tree eltype
= build_nonstandard_integer_type (sz
* BITS_PER_UNIT
,
5333 tree etype
= build_vector_type (eltype
, 2);
5334 gcc_assert (convert_optab_handler (vec_extract_optab
,
5337 != CODE_FOR_nothing
);
5338 tree tem
= make_ssa_name (etype
);
5339 epilog_stmt
= gimple_build_assign (tem
, VIEW_CONVERT_EXPR
,
5340 build1 (VIEW_CONVERT_EXPR
,
5342 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
5344 tem
= make_ssa_name (eltype
);
5346 = gimple_build_assign (tem
, BIT_FIELD_REF
,
5347 build3 (BIT_FIELD_REF
, eltype
,
5348 new_temp
, TYPE_SIZE (eltype
),
5350 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
5351 dst1
= make_ssa_name (vectype1
);
5352 epilog_stmt
= gimple_build_assign (dst1
, VIEW_CONVERT_EXPR
,
5353 build1 (VIEW_CONVERT_EXPR
,
5355 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
5356 tem
= make_ssa_name (eltype
);
5358 = gimple_build_assign (tem
, BIT_FIELD_REF
,
5359 build3 (BIT_FIELD_REF
, eltype
,
5360 new_temp
, TYPE_SIZE (eltype
),
5361 bitsize_int (sz
* BITS_PER_UNIT
)));
5362 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
5363 dst2
= make_ssa_name (vectype1
);
5364 epilog_stmt
= gimple_build_assign (dst2
, VIEW_CONVERT_EXPR
,
5365 build1 (VIEW_CONVERT_EXPR
,
5367 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
5370 new_temp
= make_ssa_name (vectype1
);
5371 epilog_stmt
= gimple_build_assign (new_temp
, code
, dst1
, dst2
);
5372 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
5375 if (reduce_with_shift
&& !slp_reduc
)
5377 int element_bitsize
= tree_to_uhwi (bitsize
);
5378 /* Enforced by vectorizable_reduction, which disallows SLP reductions
5379 for variable-length vectors and also requires direct target support
5380 for loop reductions. */
5381 int vec_size_in_bits
= tree_to_uhwi (TYPE_SIZE (vectype1
));
5382 int nelements
= vec_size_in_bits
/ element_bitsize
;
5383 vec_perm_builder sel
;
5384 vec_perm_indices indices
;
5388 tree zero_vec
= build_zero_cst (vectype1
);
5390 for (offset = nelements/2; offset >= 1; offset/=2)
5392 Create: va' = vec_shift <va, offset>
5393 Create: va = vop <va, va'>
5398 if (dump_enabled_p ())
5399 dump_printf_loc (MSG_NOTE
, vect_location
,
5400 "Reduce using vector shifts\n");
5402 mode1
= TYPE_MODE (vectype1
);
5403 vec_dest
= vect_create_destination_var (scalar_dest
, vectype1
);
5404 for (elt_offset
= nelements
/ 2;
5408 calc_vec_perm_mask_for_shift (elt_offset
, nelements
, &sel
);
5409 indices
.new_vector (sel
, 2, nelements
);
5410 tree mask
= vect_gen_perm_mask_any (vectype1
, indices
);
5411 epilog_stmt
= gimple_build_assign (vec_dest
, VEC_PERM_EXPR
,
5412 new_temp
, zero_vec
, mask
);
5413 new_name
= make_ssa_name (vec_dest
, epilog_stmt
);
5414 gimple_assign_set_lhs (epilog_stmt
, new_name
);
5415 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
5417 epilog_stmt
= gimple_build_assign (vec_dest
, code
, new_name
,
5419 new_temp
= make_ssa_name (vec_dest
, epilog_stmt
);
5420 gimple_assign_set_lhs (epilog_stmt
, new_temp
);
5421 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
5424 /* 2.4 Extract the final scalar result. Create:
5425 s_out3 = extract_field <v_out2, bitpos> */
5427 if (dump_enabled_p ())
5428 dump_printf_loc (MSG_NOTE
, vect_location
,
5429 "extract scalar result\n");
5431 rhs
= build3 (BIT_FIELD_REF
, scalar_type
, new_temp
,
5432 bitsize
, bitsize_zero_node
);
5433 epilog_stmt
= gimple_build_assign (new_scalar_dest
, rhs
);
5434 new_temp
= make_ssa_name (new_scalar_dest
, epilog_stmt
);
5435 gimple_assign_set_lhs (epilog_stmt
, new_temp
);
5436 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
5437 scalar_results
.safe_push (new_temp
);
5442 s = extract_field <v_out2, 0>
5443 for (offset = element_size;
5444 offset < vector_size;
5445 offset += element_size;)
5447 Create: s' = extract_field <v_out2, offset>
5448 Create: s = op <s, s'> // For non SLP cases
5451 if (dump_enabled_p ())
5452 dump_printf_loc (MSG_NOTE
, vect_location
,
5453 "Reduce using scalar code.\n");
5455 int vec_size_in_bits
= tree_to_uhwi (TYPE_SIZE (vectype1
));
5456 int element_bitsize
= tree_to_uhwi (bitsize
);
5457 FOR_EACH_VEC_ELT (new_phis
, i
, new_phi
)
5460 if (gimple_code (new_phi
) == GIMPLE_PHI
)
5461 vec_temp
= PHI_RESULT (new_phi
);
5463 vec_temp
= gimple_assign_lhs (new_phi
);
5464 tree rhs
= build3 (BIT_FIELD_REF
, scalar_type
, vec_temp
, bitsize
,
5466 epilog_stmt
= gimple_build_assign (new_scalar_dest
, rhs
);
5467 new_temp
= make_ssa_name (new_scalar_dest
, epilog_stmt
);
5468 gimple_assign_set_lhs (epilog_stmt
, new_temp
);
5469 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
5471 /* In SLP we don't need to apply reduction operation, so we just
5472 collect s' values in SCALAR_RESULTS. */
5474 scalar_results
.safe_push (new_temp
);
5476 for (bit_offset
= element_bitsize
;
5477 bit_offset
< vec_size_in_bits
;
5478 bit_offset
+= element_bitsize
)
5480 tree bitpos
= bitsize_int (bit_offset
);
5481 tree rhs
= build3 (BIT_FIELD_REF
, scalar_type
, vec_temp
,
5484 epilog_stmt
= gimple_build_assign (new_scalar_dest
, rhs
);
5485 new_name
= make_ssa_name (new_scalar_dest
, epilog_stmt
);
5486 gimple_assign_set_lhs (epilog_stmt
, new_name
);
5487 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
5491 /* In SLP we don't need to apply reduction operation, so
5492 we just collect s' values in SCALAR_RESULTS. */
5493 new_temp
= new_name
;
5494 scalar_results
.safe_push (new_name
);
5498 epilog_stmt
= gimple_build_assign (new_scalar_dest
, code
,
5499 new_name
, new_temp
);
5500 new_temp
= make_ssa_name (new_scalar_dest
, epilog_stmt
);
5501 gimple_assign_set_lhs (epilog_stmt
, new_temp
);
5502 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
5507 /* The only case where we need to reduce scalar results in SLP, is
5508 unrolling. If the size of SCALAR_RESULTS is greater than
5509 REDUC_GROUP_SIZE, we reduce them combining elements modulo
5510 REDUC_GROUP_SIZE. */
5513 tree res
, first_res
, new_res
;
5516 /* Reduce multiple scalar results in case of SLP unrolling. */
5517 for (j
= group_size
; scalar_results
.iterate (j
, &res
);
5520 first_res
= scalar_results
[j
% group_size
];
5521 new_stmt
= gimple_build_assign (new_scalar_dest
, code
,
5523 new_res
= make_ssa_name (new_scalar_dest
, new_stmt
);
5524 gimple_assign_set_lhs (new_stmt
, new_res
);
5525 gsi_insert_before (&exit_gsi
, new_stmt
, GSI_SAME_STMT
);
5526 scalar_results
[j
% group_size
] = new_res
;
5530 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
5531 scalar_results
.safe_push (new_temp
);
5534 if ((STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info
)
5535 == INTEGER_INDUC_COND_REDUCTION
)
5536 && !operand_equal_p (initial_def
, induc_val
, 0))
5538 /* Earlier we set the initial value to be a vector if induc_val
5539 values. Check the result and if it is induc_val then replace
5540 with the original initial value, unless induc_val is
5541 the same as initial_def already. */
5542 tree zcompare
= build2 (EQ_EXPR
, boolean_type_node
, new_temp
,
5545 tree tmp
= make_ssa_name (new_scalar_dest
);
5546 epilog_stmt
= gimple_build_assign (tmp
, COND_EXPR
, zcompare
,
5547 initial_def
, new_temp
);
5548 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
5549 scalar_results
[0] = tmp
;
5553 vect_finalize_reduction
:
5558 /* 2.5 Adjust the final result by the initial value of the reduction
5559 variable. (When such adjustment is not needed, then
5560 'adjustment_def' is zero). For example, if code is PLUS we create:
5561 new_temp = loop_exit_def + adjustment_def */
5565 gcc_assert (!slp_reduc
);
5566 if (nested_in_vect_loop
)
5568 new_phi
= new_phis
[0];
5569 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def
)) == VECTOR_TYPE
);
5570 expr
= build2 (code
, vectype
, PHI_RESULT (new_phi
), adjustment_def
);
5571 new_dest
= vect_create_destination_var (scalar_dest
, vectype
);
5575 new_temp
= scalar_results
[0];
5576 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def
)) != VECTOR_TYPE
);
5577 expr
= build2 (code
, scalar_type
, new_temp
, adjustment_def
);
5578 new_dest
= vect_create_destination_var (scalar_dest
, scalar_type
);
5581 epilog_stmt
= gimple_build_assign (new_dest
, expr
);
5582 new_temp
= make_ssa_name (new_dest
, epilog_stmt
);
5583 gimple_assign_set_lhs (epilog_stmt
, new_temp
);
5584 gsi_insert_before (&exit_gsi
, epilog_stmt
, GSI_SAME_STMT
);
5585 if (nested_in_vect_loop
)
5587 set_vinfo_for_stmt (epilog_stmt
,
5588 new_stmt_vec_info (epilog_stmt
, loop_vinfo
));
5589 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt
)) =
5590 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi
));
5593 scalar_results
.quick_push (new_temp
);
5595 scalar_results
[0] = new_temp
;
5598 scalar_results
[0] = new_temp
;
5600 new_phis
[0] = epilog_stmt
;
5603 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
5604 phis with new adjusted scalar results, i.e., replace use <s_out0>
5609 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
5610 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
5611 v_out2 = reduce <v_out1>
5612 s_out3 = extract_field <v_out2, 0>
5613 s_out4 = adjust_result <s_out3>
5620 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
5621 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
5622 v_out2 = reduce <v_out1>
5623 s_out3 = extract_field <v_out2, 0>
5624 s_out4 = adjust_result <s_out3>
5629 /* In SLP reduction chain we reduce vector results into one vector if
5630 necessary, hence we set here REDUC_GROUP_SIZE to 1. SCALAR_DEST is the
5631 LHS of the last stmt in the reduction chain, since we are looking for
5632 the loop exit phi node. */
5633 if (REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt
)))
5635 gimple
*dest_stmt
= SLP_TREE_SCALAR_STMTS (slp_node
)[group_size
- 1];
5636 /* Handle reduction patterns. */
5637 if (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt
)))
5638 dest_stmt
= STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt
));
5640 scalar_dest
= gimple_assign_lhs (dest_stmt
);
5644 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
5645 case that REDUC_GROUP_SIZE is greater than vectorization factor).
5646 Therefore, we need to match SCALAR_RESULTS with corresponding statements.
5647 The first (REDUC_GROUP_SIZE / number of new vector stmts) scalar results
5648 correspond to the first vector stmt, etc.
5649 (RATIO is equal to (REDUC_GROUP_SIZE / number of new vector stmts)). */
5650 if (group_size
> new_phis
.length ())
5652 ratio
= group_size
/ new_phis
.length ();
5653 gcc_assert (!(group_size
% new_phis
.length ()));
5658 for (k
= 0; k
< group_size
; k
++)
5662 epilog_stmt
= new_phis
[k
/ ratio
];
5663 reduction_phi
= reduction_phis
[k
/ ratio
];
5665 inner_phi
= inner_phis
[k
/ ratio
];
5670 gimple
*current_stmt
= SLP_TREE_SCALAR_STMTS (slp_node
)[k
];
5672 orig_stmt
= STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt
));
5673 /* SLP statements can't participate in patterns. */
5674 gcc_assert (!orig_stmt
);
5675 scalar_dest
= gimple_assign_lhs (current_stmt
);
5679 /* Find the loop-closed-use at the loop exit of the original scalar
5680 result. (The reduction result is expected to have two immediate uses -
5681 one at the latch block, and one at the loop exit). */
5682 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, scalar_dest
)
5683 if (!flow_bb_inside_loop_p (loop
, gimple_bb (USE_STMT (use_p
)))
5684 && !is_gimple_debug (USE_STMT (use_p
)))
5685 phis
.safe_push (USE_STMT (use_p
));
5687 /* While we expect to have found an exit_phi because of loop-closed-ssa
5688 form we can end up without one if the scalar cycle is dead. */
5690 FOR_EACH_VEC_ELT (phis
, i
, exit_phi
)
5694 stmt_vec_info exit_phi_vinfo
= vinfo_for_stmt (exit_phi
);
5697 /* FORNOW. Currently not supporting the case that an inner-loop
5698 reduction is not used in the outer-loop (but only outside the
5699 outer-loop), unless it is double reduction. */
5700 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo
)
5701 && !STMT_VINFO_LIVE_P (exit_phi_vinfo
))
5705 STMT_VINFO_VEC_STMT (exit_phi_vinfo
) = inner_phi
;
5707 STMT_VINFO_VEC_STMT (exit_phi_vinfo
) = epilog_stmt
;
5709 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo
)
5710 != vect_double_reduction_def
)
5713 /* Handle double reduction:
5715 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
5716 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
5717 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
5718 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
5720 At that point the regular reduction (stmt2 and stmt3) is
5721 already vectorized, as well as the exit phi node, stmt4.
5722 Here we vectorize the phi node of double reduction, stmt1, and
5723 update all relevant statements. */
5725 /* Go through all the uses of s2 to find double reduction phi
5726 node, i.e., stmt1 above. */
5727 orig_name
= PHI_RESULT (exit_phi
);
5728 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, orig_name
)
5730 stmt_vec_info use_stmt_vinfo
;
5731 stmt_vec_info new_phi_vinfo
;
5732 tree vect_phi_init
, preheader_arg
, vect_phi_res
;
5733 basic_block bb
= gimple_bb (use_stmt
);
5736 /* Check that USE_STMT is really double reduction phi
5738 if (gimple_code (use_stmt
) != GIMPLE_PHI
5739 || gimple_phi_num_args (use_stmt
) != 2
5740 || bb
->loop_father
!= outer_loop
)
5742 use_stmt_vinfo
= vinfo_for_stmt (use_stmt
);
5744 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo
)
5745 != vect_double_reduction_def
)
5748 /* Create vector phi node for double reduction:
5749 vs1 = phi <vs0, vs2>
5750 vs1 was created previously in this function by a call to
5751 vect_get_vec_def_for_operand and is stored in
5753 vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
5754 vs0 is created here. */
5756 /* Create vector phi node. */
5757 vect_phi
= create_phi_node (vec_initial_def
, bb
);
5758 new_phi_vinfo
= new_stmt_vec_info (vect_phi
,
5759 loop_vec_info_for_loop (outer_loop
));
5760 set_vinfo_for_stmt (vect_phi
, new_phi_vinfo
);
5762 /* Create vs0 - initial def of the double reduction phi. */
5763 preheader_arg
= PHI_ARG_DEF_FROM_EDGE (use_stmt
,
5764 loop_preheader_edge (outer_loop
));
5765 vect_phi_init
= get_initial_def_for_reduction
5766 (stmt
, preheader_arg
, NULL
);
5768 /* Update phi node arguments with vs0 and vs2. */
5769 add_phi_arg (vect_phi
, vect_phi_init
,
5770 loop_preheader_edge (outer_loop
),
5772 add_phi_arg (vect_phi
, PHI_RESULT (inner_phi
),
5773 loop_latch_edge (outer_loop
), UNKNOWN_LOCATION
);
5774 if (dump_enabled_p ())
5776 dump_printf_loc (MSG_NOTE
, vect_location
,
5777 "created double reduction phi node: ");
5778 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, vect_phi
, 0);
5781 vect_phi_res
= PHI_RESULT (vect_phi
);
5783 /* Replace the use, i.e., set the correct vs1 in the regular
5784 reduction phi node. FORNOW, NCOPIES is always 1, so the
5785 loop is redundant. */
5786 use
= reduction_phi
;
5787 for (j
= 0; j
< ncopies
; j
++)
5789 edge pr_edge
= loop_preheader_edge (loop
);
5790 SET_PHI_ARG_DEF (use
, pr_edge
->dest_idx
, vect_phi_res
);
5791 use
= STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use
));
5798 if (nested_in_vect_loop
)
5807 /* Find the loop-closed-use at the loop exit of the original scalar
5808 result. (The reduction result is expected to have two immediate uses,
5809 one at the latch block, and one at the loop exit). For double
5810 reductions we are looking for exit phis of the outer loop. */
5811 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, scalar_dest
)
5813 if (!flow_bb_inside_loop_p (loop
, gimple_bb (USE_STMT (use_p
))))
5815 if (!is_gimple_debug (USE_STMT (use_p
)))
5816 phis
.safe_push (USE_STMT (use_p
));
5820 if (double_reduc
&& gimple_code (USE_STMT (use_p
)) == GIMPLE_PHI
)
5822 tree phi_res
= PHI_RESULT (USE_STMT (use_p
));
5824 FOR_EACH_IMM_USE_FAST (phi_use_p
, phi_imm_iter
, phi_res
)
5826 if (!flow_bb_inside_loop_p (loop
,
5827 gimple_bb (USE_STMT (phi_use_p
)))
5828 && !is_gimple_debug (USE_STMT (phi_use_p
)))
5829 phis
.safe_push (USE_STMT (phi_use_p
));
5835 FOR_EACH_VEC_ELT (phis
, i
, exit_phi
)
5837 /* Replace the uses: */
5838 orig_name
= PHI_RESULT (exit_phi
);
5839 scalar_result
= scalar_results
[k
];
5840 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, orig_name
)
5841 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
5842 SET_USE (use_p
, scalar_result
);
5849 /* Return a vector of type VECTYPE that is equal to the vector select
5850 operation "MASK ? VEC : IDENTITY". Insert the select statements
5854 merge_with_identity (gimple_stmt_iterator
*gsi
, tree mask
, tree vectype
,
5855 tree vec
, tree identity
)
5857 tree cond
= make_temp_ssa_name (vectype
, NULL
, "cond");
5858 gimple
*new_stmt
= gimple_build_assign (cond
, VEC_COND_EXPR
,
5859 mask
, vec
, identity
);
5860 gsi_insert_before (gsi
, new_stmt
, GSI_SAME_STMT
);
5864 /* Successively apply CODE to each element of VECTOR_RHS, in left-to-right
5865 order, starting with LHS. Insert the extraction statements before GSI and
5866 associate the new scalar SSA names with variable SCALAR_DEST.
5867 Return the SSA name for the result. */
5870 vect_expand_fold_left (gimple_stmt_iterator
*gsi
, tree scalar_dest
,
5871 tree_code code
, tree lhs
, tree vector_rhs
)
5873 tree vectype
= TREE_TYPE (vector_rhs
);
5874 tree scalar_type
= TREE_TYPE (vectype
);
5875 tree bitsize
= TYPE_SIZE (scalar_type
);
5876 unsigned HOST_WIDE_INT vec_size_in_bits
= tree_to_uhwi (TYPE_SIZE (vectype
));
5877 unsigned HOST_WIDE_INT element_bitsize
= tree_to_uhwi (bitsize
);
5879 for (unsigned HOST_WIDE_INT bit_offset
= 0;
5880 bit_offset
< vec_size_in_bits
;
5881 bit_offset
+= element_bitsize
)
5883 tree bitpos
= bitsize_int (bit_offset
);
5884 tree rhs
= build3 (BIT_FIELD_REF
, scalar_type
, vector_rhs
,
5887 gassign
*stmt
= gimple_build_assign (scalar_dest
, rhs
);
5888 rhs
= make_ssa_name (scalar_dest
, stmt
);
5889 gimple_assign_set_lhs (stmt
, rhs
);
5890 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
5892 stmt
= gimple_build_assign (scalar_dest
, code
, lhs
, rhs
);
5893 tree new_name
= make_ssa_name (scalar_dest
, stmt
);
5894 gimple_assign_set_lhs (stmt
, new_name
);
5895 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
5901 /* Perform an in-order reduction (FOLD_LEFT_REDUCTION). STMT is the
5902 statement that sets the live-out value. REDUC_DEF_STMT is the phi
5903 statement. CODE is the operation performed by STMT and OPS are
5904 its scalar operands. REDUC_INDEX is the index of the operand in
5905 OPS that is set by REDUC_DEF_STMT. REDUC_FN is the function that
5906 implements in-order reduction, or IFN_LAST if we should open-code it.
5907 VECTYPE_IN is the type of the vector input. MASKS specifies the masks
5908 that should be used to control the operation in a fully-masked loop. */
5911 vectorize_fold_left_reduction (gimple
*stmt
, gimple_stmt_iterator
*gsi
,
5912 gimple
**vec_stmt
, slp_tree slp_node
,
5913 gimple
*reduc_def_stmt
,
5914 tree_code code
, internal_fn reduc_fn
,
5915 tree ops
[3], tree vectype_in
,
5916 int reduc_index
, vec_loop_masks
*masks
)
5918 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
5919 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
5920 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
5921 tree vectype_out
= STMT_VINFO_VECTYPE (stmt_info
);
5922 gimple
*new_stmt
= NULL
;
5928 ncopies
= vect_get_num_copies (loop_vinfo
, vectype_in
);
5930 gcc_assert (!nested_in_vect_loop_p (loop
, stmt
));
5931 gcc_assert (ncopies
== 1);
5932 gcc_assert (TREE_CODE_LENGTH (code
) == binary_op
);
5933 gcc_assert (reduc_index
== (code
== MINUS_EXPR
? 0 : 1));
5934 gcc_assert (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info
)
5935 == FOLD_LEFT_REDUCTION
);
5938 gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (vectype_out
),
5939 TYPE_VECTOR_SUBPARTS (vectype_in
)));
5941 tree op0
= ops
[1 - reduc_index
];
5944 gimple
*scalar_dest_def
;
5945 auto_vec
<tree
> vec_oprnds0
;
5948 vect_get_vec_defs (op0
, NULL_TREE
, stmt
, &vec_oprnds0
, NULL
, slp_node
);
5949 group_size
= SLP_TREE_SCALAR_STMTS (slp_node
).length ();
5950 scalar_dest_def
= SLP_TREE_SCALAR_STMTS (slp_node
)[group_size
- 1];
5954 tree loop_vec_def0
= vect_get_vec_def_for_operand (op0
, stmt
);
5955 vec_oprnds0
.create (1);
5956 vec_oprnds0
.quick_push (loop_vec_def0
);
5957 scalar_dest_def
= stmt
;
5960 tree scalar_dest
= gimple_assign_lhs (scalar_dest_def
);
5961 tree scalar_type
= TREE_TYPE (scalar_dest
);
5962 tree reduc_var
= gimple_phi_result (reduc_def_stmt
);
5964 int vec_num
= vec_oprnds0
.length ();
5965 gcc_assert (vec_num
== 1 || slp_node
);
5966 tree vec_elem_type
= TREE_TYPE (vectype_out
);
5967 gcc_checking_assert (useless_type_conversion_p (scalar_type
, vec_elem_type
));
5969 tree vector_identity
= NULL_TREE
;
5970 if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo
))
5971 vector_identity
= build_zero_cst (vectype_out
);
5973 tree scalar_dest_var
= vect_create_destination_var (scalar_dest
, NULL
);
5976 FOR_EACH_VEC_ELT (vec_oprnds0
, i
, def0
)
5978 tree mask
= NULL_TREE
;
5979 if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo
))
5980 mask
= vect_get_loop_mask (gsi
, masks
, vec_num
, vectype_in
, i
);
5982 /* Handle MINUS by adding the negative. */
5983 if (reduc_fn
!= IFN_LAST
&& code
== MINUS_EXPR
)
5985 tree negated
= make_ssa_name (vectype_out
);
5986 new_stmt
= gimple_build_assign (negated
, NEGATE_EXPR
, def0
);
5987 gsi_insert_before (gsi
, new_stmt
, GSI_SAME_STMT
);
5992 def0
= merge_with_identity (gsi
, mask
, vectype_out
, def0
,
5995 /* On the first iteration the input is simply the scalar phi
5996 result, and for subsequent iterations it is the output of
5997 the preceding operation. */
5998 if (reduc_fn
!= IFN_LAST
)
6000 new_stmt
= gimple_build_call_internal (reduc_fn
, 2, reduc_var
, def0
);
6001 /* For chained SLP reductions the output of the previous reduction
6002 operation serves as the input of the next. For the final statement
6003 the output cannot be a temporary - we reuse the original
6004 scalar destination of the last statement. */
6005 if (i
!= vec_num
- 1)
6007 gimple_set_lhs (new_stmt
, scalar_dest_var
);
6008 reduc_var
= make_ssa_name (scalar_dest_var
, new_stmt
);
6009 gimple_set_lhs (new_stmt
, reduc_var
);
6014 reduc_var
= vect_expand_fold_left (gsi
, scalar_dest_var
, code
,
6016 new_stmt
= SSA_NAME_DEF_STMT (reduc_var
);
6017 /* Remove the statement, so that we can use the same code paths
6018 as for statements that we've just created. */
6019 gimple_stmt_iterator tmp_gsi
= gsi_for_stmt (new_stmt
);
6020 gsi_remove (&tmp_gsi
, false);
6023 if (i
== vec_num
- 1)
6025 gimple_set_lhs (new_stmt
, scalar_dest
);
6026 vect_finish_replace_stmt (scalar_dest_def
, new_stmt
);
6029 vect_finish_stmt_generation (scalar_dest_def
, new_stmt
, gsi
);
6032 SLP_TREE_VEC_STMTS (slp_node
).quick_push (new_stmt
);
6036 STMT_VINFO_VEC_STMT (stmt_info
) = *vec_stmt
= new_stmt
;
6041 /* Function is_nonwrapping_integer_induction.
6043 Check if STMT (which is part of loop LOOP) both increments and
6044 does not cause overflow. */
6047 is_nonwrapping_integer_induction (gimple
*stmt
, struct loop
*loop
)
6049 stmt_vec_info stmt_vinfo
= vinfo_for_stmt (stmt
);
6050 tree base
= STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo
);
6051 tree step
= STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo
);
6052 tree lhs_type
= TREE_TYPE (gimple_phi_result (stmt
));
6053 widest_int ni
, max_loop_value
, lhs_max
;
6054 wi::overflow_type overflow
= wi::OVF_NONE
;
6056 /* Make sure the loop is integer based. */
6057 if (TREE_CODE (base
) != INTEGER_CST
6058 || TREE_CODE (step
) != INTEGER_CST
)
6061 /* Check that the max size of the loop will not wrap. */
6063 if (TYPE_OVERFLOW_UNDEFINED (lhs_type
))
6066 if (! max_stmt_executions (loop
, &ni
))
6069 max_loop_value
= wi::mul (wi::to_widest (step
), ni
, TYPE_SIGN (lhs_type
),
6074 max_loop_value
= wi::add (wi::to_widest (base
), max_loop_value
,
6075 TYPE_SIGN (lhs_type
), &overflow
);
6079 return (wi::min_precision (max_loop_value
, TYPE_SIGN (lhs_type
))
6080 <= TYPE_PRECISION (lhs_type
));
6083 /* Function vectorizable_reduction.
6085 Check if STMT performs a reduction operation that can be vectorized.
6086 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
6087 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
6088 Return FALSE if not a vectorizable STMT, TRUE otherwise.
6090 This function also handles reduction idioms (patterns) that have been
6091 recognized in advance during vect_pattern_recog. In this case, STMT may be
6093 X = pattern_expr (arg0, arg1, ..., X)
6094 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
6095 sequence that had been detected and replaced by the pattern-stmt (STMT).
6097 This function also handles reduction of condition expressions, for example:
6098 for (int i = 0; i < N; i++)
6101 This is handled by vectorising the loop and creating an additional vector
6102 containing the loop indexes for which "a[i] < value" was true. In the
6103 function epilogue this is reduced to a single max value and then used to
6104 index into the vector of results.
6106 In some cases of reduction patterns, the type of the reduction variable X is
6107 different than the type of the other arguments of STMT.
6108 In such cases, the vectype that is used when transforming STMT into a vector
6109 stmt is different than the vectype that is used to determine the
6110 vectorization factor, because it consists of a different number of elements
6111 than the actual number of elements that are being operated upon in parallel.
6113 For example, consider an accumulation of shorts into an int accumulator.
6114 On some targets it's possible to vectorize this pattern operating on 8
6115 shorts at a time (hence, the vectype for purposes of determining the
6116 vectorization factor should be V8HI); on the other hand, the vectype that
6117 is used to create the vector form is actually V4SI (the type of the result).
6119 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
6120 indicates what is the actual level of parallelism (V8HI in the example), so
6121 that the right vectorization factor would be derived. This vectype
6122 corresponds to the type of arguments to the reduction stmt, and should *NOT*
6123 be used to create the vectorized stmt. The right vectype for the vectorized
6124 stmt is obtained from the type of the result X:
6125 get_vectype_for_scalar_type (TREE_TYPE (X))
6127 This means that, contrary to "regular" reductions (or "regular" stmts in
6128 general), the following equation:
6129 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
6130 does *NOT* necessarily hold for reduction patterns. */
6133 vectorizable_reduction (gimple
*stmt
, gimple_stmt_iterator
*gsi
,
6134 gimple
**vec_stmt
, slp_tree slp_node
,
6135 slp_instance slp_node_instance
,
6136 stmt_vector_for_cost
*cost_vec
)
6140 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
6141 tree vectype_out
= STMT_VINFO_VECTYPE (stmt_info
);
6142 tree vectype_in
= NULL_TREE
;
6143 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
6144 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
6145 enum tree_code code
, orig_code
;
6146 internal_fn reduc_fn
;
6147 machine_mode vec_mode
;
6150 tree new_temp
= NULL_TREE
;
6152 enum vect_def_type dt
, cond_reduc_dt
= vect_unknown_def_type
;
6153 gimple
*cond_reduc_def_stmt
= NULL
;
6154 enum tree_code cond_reduc_op_code
= ERROR_MARK
;
6158 stmt_vec_info orig_stmt_info
= NULL
;
6162 stmt_vec_info prev_stmt_info
, prev_phi_info
;
6163 bool single_defuse_cycle
= false;
6164 gimple
*new_stmt
= NULL
;
6167 enum vect_def_type dts
[3];
6168 bool nested_cycle
= false, found_nested_cycle_def
= false;
6169 bool double_reduc
= false;
6171 struct loop
* def_stmt_loop
, *outer_loop
= NULL
;
6173 gimple
*def_arg_stmt
;
6174 auto_vec
<tree
> vec_oprnds0
;
6175 auto_vec
<tree
> vec_oprnds1
;
6176 auto_vec
<tree
> vec_oprnds2
;
6177 auto_vec
<tree
> vect_defs
;
6178 auto_vec
<gimple
*> phis
;
6181 bool first_p
= true;
6182 tree cr_index_scalar_type
= NULL_TREE
, cr_index_vector_type
= NULL_TREE
;
6183 tree cond_reduc_val
= NULL_TREE
;
6185 /* Make sure it was already recognized as a reduction computation. */
6186 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt
)) != vect_reduction_def
6187 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt
)) != vect_nested_cycle
)
6190 if (nested_in_vect_loop_p (loop
, stmt
))
6194 nested_cycle
= true;
6197 /* In case of reduction chain we switch to the first stmt in the chain, but
6198 we don't update STMT_INFO, since only the last stmt is marked as reduction
6199 and has reduction properties. */
6200 if (REDUC_GROUP_FIRST_ELEMENT (stmt_info
)
6201 && REDUC_GROUP_FIRST_ELEMENT (stmt_info
) != stmt
)
6203 stmt
= REDUC_GROUP_FIRST_ELEMENT (stmt_info
);
6207 if (gimple_code (stmt
) == GIMPLE_PHI
)
6209 /* Analysis is fully done on the reduction stmt invocation. */
6213 slp_node_instance
->reduc_phis
= slp_node
;
6215 STMT_VINFO_TYPE (stmt_info
) = reduc_vec_info_type
;
6219 if (STMT_VINFO_REDUC_TYPE (stmt_info
) == FOLD_LEFT_REDUCTION
)
6220 /* Leave the scalar phi in place. Note that checking
6221 STMT_VINFO_VEC_REDUCTION_TYPE (as below) only works
6222 for reductions involving a single statement. */
6225 gimple
*reduc_stmt
= STMT_VINFO_REDUC_DEF (stmt_info
);
6226 if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (reduc_stmt
)))
6227 reduc_stmt
= STMT_VINFO_RELATED_STMT (vinfo_for_stmt (reduc_stmt
));
6229 if (STMT_VINFO_VEC_REDUCTION_TYPE (vinfo_for_stmt (reduc_stmt
))
6230 == EXTRACT_LAST_REDUCTION
)
6231 /* Leave the scalar phi in place. */
6234 gcc_assert (is_gimple_assign (reduc_stmt
));
6235 for (unsigned k
= 1; k
< gimple_num_ops (reduc_stmt
); ++k
)
6237 tree op
= gimple_op (reduc_stmt
, k
);
6238 if (op
== gimple_phi_result (stmt
))
6241 && gimple_assign_rhs_code (reduc_stmt
) == COND_EXPR
)
6244 || (GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (vectype_in
)))
6245 < GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (op
)))))
6246 vectype_in
= get_vectype_for_scalar_type (TREE_TYPE (op
));
6249 gcc_assert (vectype_in
);
6254 ncopies
= vect_get_num_copies (loop_vinfo
, vectype_in
);
6256 use_operand_p use_p
;
6259 && (STMT_VINFO_RELEVANT (vinfo_for_stmt (reduc_stmt
))
6260 <= vect_used_only_live
)
6261 && single_imm_use (gimple_phi_result (stmt
), &use_p
, &use_stmt
)
6262 && (use_stmt
== reduc_stmt
6263 || (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use_stmt
))
6265 single_defuse_cycle
= true;
6267 /* Create the destination vector */
6268 scalar_dest
= gimple_assign_lhs (reduc_stmt
);
6269 vec_dest
= vect_create_destination_var (scalar_dest
, vectype_out
);
6272 /* The size vect_schedule_slp_instance computes is off for us. */
6273 vec_num
= vect_get_num_vectors
6274 (LOOP_VINFO_VECT_FACTOR (loop_vinfo
)
6275 * SLP_TREE_SCALAR_STMTS (slp_node
).length (),
6280 /* Generate the reduction PHIs upfront. */
6281 prev_phi_info
= NULL
;
6282 for (j
= 0; j
< ncopies
; j
++)
6284 if (j
== 0 || !single_defuse_cycle
)
6286 for (i
= 0; i
< vec_num
; i
++)
6288 /* Create the reduction-phi that defines the reduction
6290 gimple
*new_phi
= create_phi_node (vec_dest
, loop
->header
);
6291 set_vinfo_for_stmt (new_phi
,
6292 new_stmt_vec_info (new_phi
, loop_vinfo
));
6295 SLP_TREE_VEC_STMTS (slp_node
).quick_push (new_phi
);
6299 STMT_VINFO_VEC_STMT (stmt_info
) = *vec_stmt
= new_phi
;
6301 STMT_VINFO_RELATED_STMT (prev_phi_info
) = new_phi
;
6302 prev_phi_info
= vinfo_for_stmt (new_phi
);
6311 /* 1. Is vectorizable reduction? */
6312 /* Not supportable if the reduction variable is used in the loop, unless
6313 it's a reduction chain. */
6314 if (STMT_VINFO_RELEVANT (stmt_info
) > vect_used_in_outer
6315 && !REDUC_GROUP_FIRST_ELEMENT (stmt_info
))
6318 /* Reductions that are not used even in an enclosing outer-loop,
6319 are expected to be "live" (used out of the loop). */
6320 if (STMT_VINFO_RELEVANT (stmt_info
) == vect_unused_in_scope
6321 && !STMT_VINFO_LIVE_P (stmt_info
))
6324 /* 2. Has this been recognized as a reduction pattern?
6326 Check if STMT represents a pattern that has been recognized
6327 in earlier analysis stages. For stmts that represent a pattern,
6328 the STMT_VINFO_RELATED_STMT field records the last stmt in
6329 the original sequence that constitutes the pattern. */
6331 orig_stmt
= STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt
));
6334 orig_stmt_info
= vinfo_for_stmt (orig_stmt
);
6335 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info
));
6336 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info
));
6339 /* 3. Check the operands of the operation. The first operands are defined
6340 inside the loop body. The last operand is the reduction variable,
6341 which is defined by the loop-header-phi. */
6343 gcc_assert (is_gimple_assign (stmt
));
6346 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
)))
6348 case GIMPLE_BINARY_RHS
:
6349 code
= gimple_assign_rhs_code (stmt
);
6350 op_type
= TREE_CODE_LENGTH (code
);
6351 gcc_assert (op_type
== binary_op
);
6352 ops
[0] = gimple_assign_rhs1 (stmt
);
6353 ops
[1] = gimple_assign_rhs2 (stmt
);
6356 case GIMPLE_TERNARY_RHS
:
6357 code
= gimple_assign_rhs_code (stmt
);
6358 op_type
= TREE_CODE_LENGTH (code
);
6359 gcc_assert (op_type
== ternary_op
);
6360 ops
[0] = gimple_assign_rhs1 (stmt
);
6361 ops
[1] = gimple_assign_rhs2 (stmt
);
6362 ops
[2] = gimple_assign_rhs3 (stmt
);
6365 case GIMPLE_UNARY_RHS
:
6372 if (code
== COND_EXPR
&& slp_node
)
6375 scalar_dest
= gimple_assign_lhs (stmt
);
6376 scalar_type
= TREE_TYPE (scalar_dest
);
6377 if (!POINTER_TYPE_P (scalar_type
) && !INTEGRAL_TYPE_P (scalar_type
)
6378 && !SCALAR_FLOAT_TYPE_P (scalar_type
))
6381 /* Do not try to vectorize bit-precision reductions. */
6382 if (!type_has_mode_precision_p (scalar_type
))
6385 /* All uses but the last are expected to be defined in the loop.
6386 The last use is the reduction variable. In case of nested cycle this
6387 assumption is not true: we use reduc_index to record the index of the
6388 reduction variable. */
6389 gimple
*reduc_def_stmt
= NULL
;
6390 int reduc_index
= -1;
6391 for (i
= 0; i
< op_type
; i
++)
6393 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
6394 if (i
== 0 && code
== COND_EXPR
)
6397 is_simple_use
= vect_is_simple_use (ops
[i
], loop_vinfo
,
6398 &dts
[i
], &tem
, &def_stmt
);
6400 gcc_assert (is_simple_use
);
6401 if (dt
== vect_reduction_def
)
6403 reduc_def_stmt
= def_stmt
;
6409 /* To properly compute ncopies we are interested in the widest
6410 input type in case we're looking at a widening accumulation. */
6412 || (GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (vectype_in
)))
6413 < GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (tem
)))))
6417 if (dt
!= vect_internal_def
6418 && dt
!= vect_external_def
6419 && dt
!= vect_constant_def
6420 && dt
!= vect_induction_def
6421 && !(dt
== vect_nested_cycle
&& nested_cycle
))
6424 if (dt
== vect_nested_cycle
)
6426 found_nested_cycle_def
= true;
6427 reduc_def_stmt
= def_stmt
;
6431 if (i
== 1 && code
== COND_EXPR
)
6433 /* Record how value of COND_EXPR is defined. */
6434 if (dt
== vect_constant_def
)
6437 cond_reduc_val
= ops
[i
];
6439 if (dt
== vect_induction_def
6441 && is_nonwrapping_integer_induction (def_stmt
, loop
))
6444 cond_reduc_def_stmt
= def_stmt
;
6450 vectype_in
= vectype_out
;
6452 /* When vectorizing a reduction chain w/o SLP the reduction PHI is not
6453 directy used in stmt. */
6454 if (reduc_index
== -1)
6456 if (STMT_VINFO_REDUC_TYPE (stmt_info
) == FOLD_LEFT_REDUCTION
)
6458 if (dump_enabled_p ())
6459 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
6460 "in-order reduction chain without SLP.\n");
6465 reduc_def_stmt
= STMT_VINFO_REDUC_DEF (orig_stmt_info
);
6467 reduc_def_stmt
= STMT_VINFO_REDUC_DEF (stmt_info
);
6470 if (! reduc_def_stmt
|| gimple_code (reduc_def_stmt
) != GIMPLE_PHI
)
6473 if (!(reduc_index
== -1
6474 || dts
[reduc_index
] == vect_reduction_def
6475 || dts
[reduc_index
] == vect_nested_cycle
6476 || ((dts
[reduc_index
] == vect_internal_def
6477 || dts
[reduc_index
] == vect_external_def
6478 || dts
[reduc_index
] == vect_constant_def
6479 || dts
[reduc_index
] == vect_induction_def
)
6480 && nested_cycle
&& found_nested_cycle_def
)))
6482 /* For pattern recognized stmts, orig_stmt might be a reduction,
6483 but some helper statements for the pattern might not, or
6484 might be COND_EXPRs with reduction uses in the condition. */
6485 gcc_assert (orig_stmt
);
6489 stmt_vec_info reduc_def_info
= vinfo_for_stmt (reduc_def_stmt
);
6490 /* PHIs should not participate in patterns. */
6491 gcc_assert (!STMT_VINFO_RELATED_STMT (reduc_def_info
));
6492 enum vect_reduction_type v_reduc_type
6493 = STMT_VINFO_REDUC_TYPE (reduc_def_info
);
6494 gimple
*tmp
= STMT_VINFO_REDUC_DEF (reduc_def_info
);
6496 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info
) = v_reduc_type
;
6497 /* If we have a condition reduction, see if we can simplify it further. */
6498 if (v_reduc_type
== COND_REDUCTION
)
6500 /* TODO: We can't yet handle reduction chains, since we need to treat
6501 each COND_EXPR in the chain specially, not just the last one.
6504 x_1 = PHI <x_3, ...>
6505 x_2 = a_2 ? ... : x_1;
6506 x_3 = a_3 ? ... : x_2;
6508 we're interested in the last element in x_3 for which a_2 || a_3
6509 is true, whereas the current reduction chain handling would
6510 vectorize x_2 as a normal VEC_COND_EXPR and only treat x_3
6511 as a reduction operation. */
6512 if (reduc_index
== -1)
6514 if (dump_enabled_p ())
6515 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
6516 "conditional reduction chains not supported\n");
6520 /* vect_is_simple_reduction ensured that operand 2 is the
6521 loop-carried operand. */
6522 gcc_assert (reduc_index
== 2);
6524 /* Loop peeling modifies initial value of reduction PHI, which
6525 makes the reduction stmt to be transformed different to the
6526 original stmt analyzed. We need to record reduction code for
6527 CONST_COND_REDUCTION type reduction at analyzing stage, thus
6528 it can be used directly at transform stage. */
6529 if (STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info
) == MAX_EXPR
6530 || STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info
) == MIN_EXPR
)
6532 /* Also set the reduction type to CONST_COND_REDUCTION. */
6533 gcc_assert (cond_reduc_dt
== vect_constant_def
);
6534 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info
) = CONST_COND_REDUCTION
;
6536 else if (direct_internal_fn_supported_p (IFN_FOLD_EXTRACT_LAST
,
6537 vectype_in
, OPTIMIZE_FOR_SPEED
))
6539 if (dump_enabled_p ())
6540 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
6541 "optimizing condition reduction with"
6542 " FOLD_EXTRACT_LAST.\n");
6543 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info
) = EXTRACT_LAST_REDUCTION
;
6545 else if (cond_reduc_dt
== vect_induction_def
)
6547 stmt_vec_info cond_stmt_vinfo
= vinfo_for_stmt (cond_reduc_def_stmt
);
6549 = STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (cond_stmt_vinfo
);
6550 tree step
= STMT_VINFO_LOOP_PHI_EVOLUTION_PART (cond_stmt_vinfo
);
6552 gcc_assert (TREE_CODE (base
) == INTEGER_CST
6553 && TREE_CODE (step
) == INTEGER_CST
);
6554 cond_reduc_val
= NULL_TREE
;
6555 /* Find a suitable value, for MAX_EXPR below base, for MIN_EXPR
6556 above base; punt if base is the minimum value of the type for
6557 MAX_EXPR or maximum value of the type for MIN_EXPR for now. */
6558 if (tree_int_cst_sgn (step
) == -1)
6560 cond_reduc_op_code
= MIN_EXPR
;
6561 if (tree_int_cst_sgn (base
) == -1)
6562 cond_reduc_val
= build_int_cst (TREE_TYPE (base
), 0);
6563 else if (tree_int_cst_lt (base
,
6564 TYPE_MAX_VALUE (TREE_TYPE (base
))))
6566 = int_const_binop (PLUS_EXPR
, base
, integer_one_node
);
6570 cond_reduc_op_code
= MAX_EXPR
;
6571 if (tree_int_cst_sgn (base
) == 1)
6572 cond_reduc_val
= build_int_cst (TREE_TYPE (base
), 0);
6573 else if (tree_int_cst_lt (TYPE_MIN_VALUE (TREE_TYPE (base
)),
6576 = int_const_binop (MINUS_EXPR
, base
, integer_one_node
);
6580 if (dump_enabled_p ())
6581 dump_printf_loc (MSG_NOTE
, vect_location
,
6582 "condition expression based on "
6583 "integer induction.\n");
6584 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info
)
6585 = INTEGER_INDUC_COND_REDUCTION
;
6588 else if (cond_reduc_dt
== vect_constant_def
)
6590 enum vect_def_type cond_initial_dt
;
6591 gimple
*def_stmt
= SSA_NAME_DEF_STMT (ops
[reduc_index
]);
6592 tree cond_initial_val
6593 = PHI_ARG_DEF_FROM_EDGE (def_stmt
, loop_preheader_edge (loop
));
6595 gcc_assert (cond_reduc_val
!= NULL_TREE
);
6596 vect_is_simple_use (cond_initial_val
, loop_vinfo
, &cond_initial_dt
);
6597 if (cond_initial_dt
== vect_constant_def
6598 && types_compatible_p (TREE_TYPE (cond_initial_val
),
6599 TREE_TYPE (cond_reduc_val
)))
6601 tree e
= fold_binary (LE_EXPR
, boolean_type_node
,
6602 cond_initial_val
, cond_reduc_val
);
6603 if (e
&& (integer_onep (e
) || integer_zerop (e
)))
6605 if (dump_enabled_p ())
6606 dump_printf_loc (MSG_NOTE
, vect_location
,
6607 "condition expression based on "
6608 "compile time constant.\n");
6609 /* Record reduction code at analysis stage. */
6610 STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info
)
6611 = integer_onep (e
) ? MAX_EXPR
: MIN_EXPR
;
6612 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info
)
6613 = CONST_COND_REDUCTION
;
6620 gcc_assert (tmp
== orig_stmt
6621 || (REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp
))
6624 /* We changed STMT to be the first stmt in reduction chain, hence we
6625 check that in this case the first element in the chain is STMT. */
6626 gcc_assert (stmt
== tmp
6627 || REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp
)) == stmt
);
6629 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt
)))
6635 ncopies
= vect_get_num_copies (loop_vinfo
, vectype_in
);
6637 gcc_assert (ncopies
>= 1);
6639 vec_mode
= TYPE_MODE (vectype_in
);
6640 poly_uint64 nunits_out
= TYPE_VECTOR_SUBPARTS (vectype_out
);
6642 if (code
== COND_EXPR
)
6644 /* Only call during the analysis stage, otherwise we'll lose
6646 if (!vec_stmt
&& !vectorizable_condition (stmt
, gsi
, NULL
,
6647 ops
[reduc_index
], 0, NULL
,
6650 if (dump_enabled_p ())
6651 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
6652 "unsupported condition in reduction\n");
6658 /* 4. Supportable by target? */
6660 if (code
== LSHIFT_EXPR
|| code
== RSHIFT_EXPR
6661 || code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
)
6663 /* Shifts and rotates are only supported by vectorizable_shifts,
6664 not vectorizable_reduction. */
6665 if (dump_enabled_p ())
6666 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
6667 "unsupported shift or rotation.\n");
6671 /* 4.1. check support for the operation in the loop */
6672 optab
= optab_for_tree_code (code
, vectype_in
, optab_default
);
6675 if (dump_enabled_p ())
6676 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
6682 if (optab_handler (optab
, vec_mode
) == CODE_FOR_nothing
)
6684 if (dump_enabled_p ())
6685 dump_printf (MSG_NOTE
, "op not supported by target.\n");
6687 if (maybe_ne (GET_MODE_SIZE (vec_mode
), UNITS_PER_WORD
)
6688 || !vect_worthwhile_without_simd_p (loop_vinfo
, code
))
6691 if (dump_enabled_p ())
6692 dump_printf (MSG_NOTE
, "proceeding using word mode.\n");
6695 /* Worthwhile without SIMD support? */
6696 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in
))
6697 && !vect_worthwhile_without_simd_p (loop_vinfo
, code
))
6699 if (dump_enabled_p ())
6700 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
6701 "not worthwhile without SIMD support.\n");
6707 /* 4.2. Check support for the epilog operation.
6709 If STMT represents a reduction pattern, then the type of the
6710 reduction variable may be different than the type of the rest
6711 of the arguments. For example, consider the case of accumulation
6712 of shorts into an int accumulator; The original code:
6713 S1: int_a = (int) short_a;
6714 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
6717 STMT: int_acc = widen_sum <short_a, int_acc>
6720 1. The tree-code that is used to create the vector operation in the
6721 epilog code (that reduces the partial results) is not the
6722 tree-code of STMT, but is rather the tree-code of the original
6723 stmt from the pattern that STMT is replacing. I.e, in the example
6724 above we want to use 'widen_sum' in the loop, but 'plus' in the
6726 2. The type (mode) we use to check available target support
6727 for the vector operation to be created in the *epilog*, is
6728 determined by the type of the reduction variable (in the example
6729 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
6730 However the type (mode) we use to check available target support
6731 for the vector operation to be created *inside the loop*, is
6732 determined by the type of the other arguments to STMT (in the
6733 example we'd check this: optab_handler (widen_sum_optab,
6736 This is contrary to "regular" reductions, in which the types of all
6737 the arguments are the same as the type of the reduction variable.
6738 For "regular" reductions we can therefore use the same vector type
6739 (and also the same tree-code) when generating the epilog code and
6740 when generating the code inside the loop. */
6742 vect_reduction_type reduction_type
6743 = STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info
);
6745 && (reduction_type
== TREE_CODE_REDUCTION
6746 || reduction_type
== FOLD_LEFT_REDUCTION
))
6748 /* This is a reduction pattern: get the vectype from the type of the
6749 reduction variable, and get the tree-code from orig_stmt. */
6750 orig_code
= gimple_assign_rhs_code (orig_stmt
);
6751 gcc_assert (vectype_out
);
6752 vec_mode
= TYPE_MODE (vectype_out
);
6756 /* Regular reduction: use the same vectype and tree-code as used for
6757 the vector code inside the loop can be used for the epilog code. */
6760 if (code
== MINUS_EXPR
)
6761 orig_code
= PLUS_EXPR
;
6763 /* For simple condition reductions, replace with the actual expression
6764 we want to base our reduction around. */
6765 if (reduction_type
== CONST_COND_REDUCTION
)
6767 orig_code
= STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info
);
6768 gcc_assert (orig_code
== MAX_EXPR
|| orig_code
== MIN_EXPR
);
6770 else if (reduction_type
== INTEGER_INDUC_COND_REDUCTION
)
6771 orig_code
= cond_reduc_op_code
;
6776 def_bb
= gimple_bb (reduc_def_stmt
);
6777 def_stmt_loop
= def_bb
->loop_father
;
6778 def_arg
= PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt
,
6779 loop_preheader_edge (def_stmt_loop
));
6780 if (TREE_CODE (def_arg
) == SSA_NAME
6781 && (def_arg_stmt
= SSA_NAME_DEF_STMT (def_arg
))
6782 && gimple_code (def_arg_stmt
) == GIMPLE_PHI
6783 && flow_bb_inside_loop_p (outer_loop
, gimple_bb (def_arg_stmt
))
6784 && vinfo_for_stmt (def_arg_stmt
)
6785 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt
))
6786 == vect_double_reduction_def
)
6787 double_reduc
= true;
6790 reduc_fn
= IFN_LAST
;
6792 if (reduction_type
== TREE_CODE_REDUCTION
6793 || reduction_type
== FOLD_LEFT_REDUCTION
6794 || reduction_type
== INTEGER_INDUC_COND_REDUCTION
6795 || reduction_type
== CONST_COND_REDUCTION
)
6797 if (reduction_type
== FOLD_LEFT_REDUCTION
6798 ? fold_left_reduction_fn (orig_code
, &reduc_fn
)
6799 : reduction_fn_for_scalar_code (orig_code
, &reduc_fn
))
6801 if (reduc_fn
!= IFN_LAST
6802 && !direct_internal_fn_supported_p (reduc_fn
, vectype_out
,
6803 OPTIMIZE_FOR_SPEED
))
6805 if (dump_enabled_p ())
6806 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
6807 "reduc op not supported by target.\n");
6809 reduc_fn
= IFN_LAST
;
6814 if (!nested_cycle
|| double_reduc
)
6816 if (dump_enabled_p ())
6817 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
6818 "no reduc code for scalar code.\n");
6824 else if (reduction_type
== COND_REDUCTION
)
6826 int scalar_precision
6827 = GET_MODE_PRECISION (SCALAR_TYPE_MODE (scalar_type
));
6828 cr_index_scalar_type
= make_unsigned_type (scalar_precision
);
6829 cr_index_vector_type
= build_vector_type (cr_index_scalar_type
,
6832 if (direct_internal_fn_supported_p (IFN_REDUC_MAX
, cr_index_vector_type
,
6833 OPTIMIZE_FOR_SPEED
))
6834 reduc_fn
= IFN_REDUC_MAX
;
6837 if (reduction_type
!= EXTRACT_LAST_REDUCTION
6838 && reduc_fn
== IFN_LAST
6839 && !nunits_out
.is_constant ())
6841 if (dump_enabled_p ())
6842 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
6843 "missing target support for reduction on"
6844 " variable-length vectors.\n");
6848 if ((double_reduc
|| reduction_type
!= TREE_CODE_REDUCTION
)
6851 if (dump_enabled_p ())
6852 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
6853 "multiple types in double reduction or condition "
6858 /* For SLP reductions, see if there is a neutral value we can use. */
6859 tree neutral_op
= NULL_TREE
;
6861 neutral_op
= neutral_op_for_slp_reduction
6862 (slp_node_instance
->reduc_phis
, code
,
6863 REDUC_GROUP_FIRST_ELEMENT (stmt_info
) != NULL
);
6865 if (double_reduc
&& reduction_type
== FOLD_LEFT_REDUCTION
)
6867 /* We can't support in-order reductions of code such as this:
6869 for (int i = 0; i < n1; ++i)
6870 for (int j = 0; j < n2; ++j)
6873 since GCC effectively transforms the loop when vectorizing:
6875 for (int i = 0; i < n1 / VF; ++i)
6876 for (int j = 0; j < n2; ++j)
6877 for (int k = 0; k < VF; ++k)
6880 which is a reassociation of the original operation. */
6881 if (dump_enabled_p ())
6882 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
6883 "in-order double reduction not supported.\n");
6888 if (reduction_type
== FOLD_LEFT_REDUCTION
6890 && !REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt
)))
6892 /* We cannot use in-order reductions in this case because there is
6893 an implicit reassociation of the operations involved. */
6894 if (dump_enabled_p ())
6895 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
6896 "in-order unchained SLP reductions not supported.\n");
6900 /* For double reductions, and for SLP reductions with a neutral value,
6901 we construct a variable-length initial vector by loading a vector
6902 full of the neutral value and then shift-and-inserting the start
6903 values into the low-numbered elements. */
6904 if ((double_reduc
|| neutral_op
)
6905 && !nunits_out
.is_constant ()
6906 && !direct_internal_fn_supported_p (IFN_VEC_SHL_INSERT
,
6907 vectype_out
, OPTIMIZE_FOR_SPEED
))
6909 if (dump_enabled_p ())
6910 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
6911 "reduction on variable-length vectors requires"
6912 " target support for a vector-shift-and-insert"
6917 /* Check extra constraints for variable-length unchained SLP reductions. */
6918 if (STMT_SLP_TYPE (stmt_info
)
6919 && !REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt
))
6920 && !nunits_out
.is_constant ())
6922 /* We checked above that we could build the initial vector when
6923 there's a neutral element value. Check here for the case in
6924 which each SLP statement has its own initial value and in which
6925 that value needs to be repeated for every instance of the
6926 statement within the initial vector. */
6927 unsigned int group_size
= SLP_TREE_SCALAR_STMTS (slp_node
).length ();
6928 scalar_mode elt_mode
= SCALAR_TYPE_MODE (TREE_TYPE (vectype_out
));
6930 && !can_duplicate_and_interleave_p (group_size
, elt_mode
))
6932 if (dump_enabled_p ())
6933 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
6934 "unsupported form of SLP reduction for"
6935 " variable-length vectors: cannot build"
6936 " initial vector.\n");
6939 /* The epilogue code relies on the number of elements being a multiple
6940 of the group size. The duplicate-and-interleave approach to setting
6941 up the the initial vector does too. */
6942 if (!multiple_p (nunits_out
, group_size
))
6944 if (dump_enabled_p ())
6945 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
6946 "unsupported form of SLP reduction for"
6947 " variable-length vectors: the vector size"
6948 " is not a multiple of the number of results.\n");
6953 /* In case of widenning multiplication by a constant, we update the type
6954 of the constant to be the type of the other operand. We check that the
6955 constant fits the type in the pattern recognition pass. */
6956 if (code
== DOT_PROD_EXPR
6957 && !types_compatible_p (TREE_TYPE (ops
[0]), TREE_TYPE (ops
[1])))
6959 if (TREE_CODE (ops
[0]) == INTEGER_CST
)
6960 ops
[0] = fold_convert (TREE_TYPE (ops
[1]), ops
[0]);
6961 else if (TREE_CODE (ops
[1]) == INTEGER_CST
)
6962 ops
[1] = fold_convert (TREE_TYPE (ops
[0]), ops
[1]);
6965 if (dump_enabled_p ())
6966 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
6967 "invalid types in dot-prod\n");
6973 if (reduction_type
== COND_REDUCTION
)
6977 if (! max_loop_iterations (loop
, &ni
))
6979 if (dump_enabled_p ())
6980 dump_printf_loc (MSG_NOTE
, vect_location
,
6981 "loop count not known, cannot create cond "
6985 /* Convert backedges to iterations. */
6988 /* The additional index will be the same type as the condition. Check
6989 that the loop can fit into this less one (because we'll use up the
6990 zero slot for when there are no matches). */
6991 tree max_index
= TYPE_MAX_VALUE (cr_index_scalar_type
);
6992 if (wi::geu_p (ni
, wi::to_widest (max_index
)))
6994 if (dump_enabled_p ())
6995 dump_printf_loc (MSG_NOTE
, vect_location
,
6996 "loop size is greater than data size.\n");
7001 /* In case the vectorization factor (VF) is bigger than the number
7002 of elements that we can fit in a vectype (nunits), we have to generate
7003 more than one vector stmt - i.e - we need to "unroll" the
7004 vector stmt by a factor VF/nunits. For more details see documentation
7005 in vectorizable_operation. */
7007 /* If the reduction is used in an outer loop we need to generate
7008 VF intermediate results, like so (e.g. for ncopies=2):
7013 (i.e. we generate VF results in 2 registers).
7014 In this case we have a separate def-use cycle for each copy, and therefore
7015 for each copy we get the vector def for the reduction variable from the
7016 respective phi node created for this copy.
7018 Otherwise (the reduction is unused in the loop nest), we can combine
7019 together intermediate results, like so (e.g. for ncopies=2):
7023 (i.e. we generate VF/2 results in a single register).
7024 In this case for each copy we get the vector def for the reduction variable
7025 from the vectorized reduction operation generated in the previous iteration.
7027 This only works when we see both the reduction PHI and its only consumer
7028 in vectorizable_reduction and there are no intermediate stmts
7030 use_operand_p use_p
;
7033 && (STMT_VINFO_RELEVANT (stmt_info
) <= vect_used_only_live
)
7034 && single_imm_use (gimple_phi_result (reduc_def_stmt
), &use_p
, &use_stmt
)
7035 && (use_stmt
== stmt
7036 || STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use_stmt
)) == stmt
))
7038 single_defuse_cycle
= true;
7042 epilog_copies
= ncopies
;
7044 /* If the reduction stmt is one of the patterns that have lane
7045 reduction embedded we cannot handle the case of ! single_defuse_cycle. */
7047 && ! single_defuse_cycle
)
7048 && (code
== DOT_PROD_EXPR
7049 || code
== WIDEN_SUM_EXPR
7050 || code
== SAD_EXPR
))
7052 if (dump_enabled_p ())
7053 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
7054 "multi def-use cycle not possible for lane-reducing "
7055 "reduction operation\n");
7060 vec_num
= SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node
);
7064 internal_fn cond_fn
= get_conditional_internal_fn (code
);
7065 vec_loop_masks
*masks
= &LOOP_VINFO_MASKS (loop_vinfo
);
7067 if (!vec_stmt
) /* transformation not required. */
7070 vect_model_reduction_cost (stmt_info
, reduc_fn
, ncopies
, cost_vec
);
7071 if (loop_vinfo
&& LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo
))
7073 if (reduction_type
!= FOLD_LEFT_REDUCTION
7074 && (cond_fn
== IFN_LAST
7075 || !direct_internal_fn_supported_p (cond_fn
, vectype_in
,
7076 OPTIMIZE_FOR_SPEED
)))
7078 if (dump_enabled_p ())
7079 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
7080 "can't use a fully-masked loop because no"
7081 " conditional operation is available.\n");
7082 LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo
) = false;
7084 else if (reduc_index
== -1)
7086 if (dump_enabled_p ())
7087 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
7088 "can't use a fully-masked loop for chained"
7090 LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo
) = false;
7093 vect_record_loop_mask (loop_vinfo
, masks
, ncopies
* vec_num
,
7096 if (dump_enabled_p ()
7097 && reduction_type
== FOLD_LEFT_REDUCTION
)
7098 dump_printf_loc (MSG_NOTE
, vect_location
,
7099 "using an in-order (fold-left) reduction.\n");
7100 STMT_VINFO_TYPE (stmt_info
) = reduc_vec_info_type
;
7106 if (dump_enabled_p ())
7107 dump_printf_loc (MSG_NOTE
, vect_location
, "transform reduction.\n");
7109 /* FORNOW: Multiple types are not supported for condition. */
7110 if (code
== COND_EXPR
)
7111 gcc_assert (ncopies
== 1);
7113 bool masked_loop_p
= LOOP_VINFO_FULLY_MASKED_P (loop_vinfo
);
7115 if (reduction_type
== FOLD_LEFT_REDUCTION
)
7116 return vectorize_fold_left_reduction
7117 (stmt
, gsi
, vec_stmt
, slp_node
, reduc_def_stmt
, code
,
7118 reduc_fn
, ops
, vectype_in
, reduc_index
, masks
);
7120 if (reduction_type
== EXTRACT_LAST_REDUCTION
)
7122 gcc_assert (!slp_node
);
7123 return vectorizable_condition (stmt
, gsi
, vec_stmt
,
7124 NULL
, reduc_index
, NULL
, NULL
);
7127 /* Create the destination vector */
7128 vec_dest
= vect_create_destination_var (scalar_dest
, vectype_out
);
7130 prev_stmt_info
= NULL
;
7131 prev_phi_info
= NULL
;
7134 vec_oprnds0
.create (1);
7135 vec_oprnds1
.create (1);
7136 if (op_type
== ternary_op
)
7137 vec_oprnds2
.create (1);
7140 phis
.create (vec_num
);
7141 vect_defs
.create (vec_num
);
7143 vect_defs
.quick_push (NULL_TREE
);
7146 phis
.splice (SLP_TREE_VEC_STMTS (slp_node_instance
->reduc_phis
));
7148 phis
.quick_push (STMT_VINFO_VEC_STMT (vinfo_for_stmt (reduc_def_stmt
)));
7150 for (j
= 0; j
< ncopies
; j
++)
7152 if (code
== COND_EXPR
)
7154 gcc_assert (!slp_node
);
7155 vectorizable_condition (stmt
, gsi
, vec_stmt
,
7156 PHI_RESULT (phis
[0]),
7157 reduc_index
, NULL
, NULL
);
7158 /* Multiple types are not supported for condition. */
7167 /* Get vec defs for all the operands except the reduction index,
7168 ensuring the ordering of the ops in the vector is kept. */
7169 auto_vec
<tree
, 3> slp_ops
;
7170 auto_vec
<vec
<tree
>, 3> vec_defs
;
7172 slp_ops
.quick_push (ops
[0]);
7173 slp_ops
.quick_push (ops
[1]);
7174 if (op_type
== ternary_op
)
7175 slp_ops
.quick_push (ops
[2]);
7177 vect_get_slp_defs (slp_ops
, slp_node
, &vec_defs
);
7179 vec_oprnds0
.safe_splice (vec_defs
[0]);
7180 vec_defs
[0].release ();
7181 vec_oprnds1
.safe_splice (vec_defs
[1]);
7182 vec_defs
[1].release ();
7183 if (op_type
== ternary_op
)
7185 vec_oprnds2
.safe_splice (vec_defs
[2]);
7186 vec_defs
[2].release ();
7191 vec_oprnds0
.quick_push
7192 (vect_get_vec_def_for_operand (ops
[0], stmt
));
7193 vec_oprnds1
.quick_push
7194 (vect_get_vec_def_for_operand (ops
[1], stmt
));
7195 if (op_type
== ternary_op
)
7196 vec_oprnds2
.quick_push
7197 (vect_get_vec_def_for_operand (ops
[2], stmt
));
7204 gcc_assert (reduc_index
!= -1 || ! single_defuse_cycle
);
7206 if (single_defuse_cycle
&& reduc_index
== 0)
7207 vec_oprnds0
[0] = gimple_get_lhs (new_stmt
);
7210 = vect_get_vec_def_for_stmt_copy (dts
[0], vec_oprnds0
[0]);
7211 if (single_defuse_cycle
&& reduc_index
== 1)
7212 vec_oprnds1
[0] = gimple_get_lhs (new_stmt
);
7215 = vect_get_vec_def_for_stmt_copy (dts
[1], vec_oprnds1
[0]);
7216 if (op_type
== ternary_op
)
7218 if (single_defuse_cycle
&& reduc_index
== 2)
7219 vec_oprnds2
[0] = gimple_get_lhs (new_stmt
);
7222 = vect_get_vec_def_for_stmt_copy (dts
[2], vec_oprnds2
[0]);
7227 FOR_EACH_VEC_ELT (vec_oprnds0
, i
, def0
)
7229 tree vop
[3] = { def0
, vec_oprnds1
[i
], NULL_TREE
};
7232 /* Make sure that the reduction accumulator is vop[0]. */
7233 if (reduc_index
== 1)
7235 gcc_assert (commutative_tree_code (code
));
7236 std::swap (vop
[0], vop
[1]);
7238 tree mask
= vect_get_loop_mask (gsi
, masks
, vec_num
* ncopies
,
7239 vectype_in
, i
* ncopies
+ j
);
7240 gcall
*call
= gimple_build_call_internal (cond_fn
, 4, mask
,
7243 new_temp
= make_ssa_name (vec_dest
, call
);
7244 gimple_call_set_lhs (call
, new_temp
);
7245 gimple_call_set_nothrow (call
, true);
7250 if (op_type
== ternary_op
)
7251 vop
[2] = vec_oprnds2
[i
];
7253 new_temp
= make_ssa_name (vec_dest
, new_stmt
);
7254 new_stmt
= gimple_build_assign (new_temp
, code
,
7255 vop
[0], vop
[1], vop
[2]);
7257 vect_finish_stmt_generation (stmt
, new_stmt
, gsi
);
7261 SLP_TREE_VEC_STMTS (slp_node
).quick_push (new_stmt
);
7262 vect_defs
.quick_push (new_temp
);
7265 vect_defs
[0] = new_temp
;
7272 STMT_VINFO_VEC_STMT (stmt_info
) = *vec_stmt
= new_stmt
;
7274 STMT_VINFO_RELATED_STMT (prev_stmt_info
) = new_stmt
;
7276 prev_stmt_info
= vinfo_for_stmt (new_stmt
);
7279 /* Finalize the reduction-phi (set its arguments) and create the
7280 epilog reduction code. */
7281 if ((!single_defuse_cycle
|| code
== COND_EXPR
) && !slp_node
)
7282 vect_defs
[0] = gimple_get_lhs (*vec_stmt
);
7284 vect_create_epilog_for_reduction (vect_defs
, stmt
, reduc_def_stmt
,
7285 epilog_copies
, reduc_fn
, phis
,
7286 double_reduc
, slp_node
, slp_node_instance
,
7287 cond_reduc_val
, cond_reduc_op_code
,
7293 /* Function vect_min_worthwhile_factor.
7295 For a loop where we could vectorize the operation indicated by CODE,
7296 return the minimum vectorization factor that makes it worthwhile
7297 to use generic vectors. */
7299 vect_min_worthwhile_factor (enum tree_code code
)
7319 /* Return true if VINFO indicates we are doing loop vectorization and if
7320 it is worth decomposing CODE operations into scalar operations for
7321 that loop's vectorization factor. */
7324 vect_worthwhile_without_simd_p (vec_info
*vinfo
, tree_code code
)
7326 loop_vec_info loop_vinfo
= dyn_cast
<loop_vec_info
> (vinfo
);
7327 unsigned HOST_WIDE_INT value
;
7329 && LOOP_VINFO_VECT_FACTOR (loop_vinfo
).is_constant (&value
)
7330 && value
>= vect_min_worthwhile_factor (code
));
7333 /* Function vectorizable_induction
7335 Check if PHI performs an induction computation that can be vectorized.
7336 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
7337 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
7338 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
7341 vectorizable_induction (gimple
*phi
,
7342 gimple_stmt_iterator
*gsi ATTRIBUTE_UNUSED
,
7343 gimple
**vec_stmt
, slp_tree slp_node
,
7344 stmt_vector_for_cost
*cost_vec
)
7346 stmt_vec_info stmt_info
= vinfo_for_stmt (phi
);
7347 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
7348 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
7350 bool nested_in_vect_loop
= false;
7351 struct loop
*iv_loop
;
7353 edge pe
= loop_preheader_edge (loop
);
7355 tree new_vec
, vec_init
, vec_step
, t
;
7358 gphi
*induction_phi
;
7359 tree induc_def
, vec_dest
;
7360 tree init_expr
, step_expr
;
7361 poly_uint64 vf
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
7365 imm_use_iterator imm_iter
;
7366 use_operand_p use_p
;
7370 gimple_stmt_iterator si
;
7371 basic_block bb
= gimple_bb (phi
);
7373 if (gimple_code (phi
) != GIMPLE_PHI
)
7376 if (!STMT_VINFO_RELEVANT_P (stmt_info
))
7379 /* Make sure it was recognized as induction computation. */
7380 if (STMT_VINFO_DEF_TYPE (stmt_info
) != vect_induction_def
)
7383 tree vectype
= STMT_VINFO_VECTYPE (stmt_info
);
7384 poly_uint64 nunits
= TYPE_VECTOR_SUBPARTS (vectype
);
7389 ncopies
= vect_get_num_copies (loop_vinfo
, vectype
);
7390 gcc_assert (ncopies
>= 1);
7392 /* FORNOW. These restrictions should be relaxed. */
7393 if (nested_in_vect_loop_p (loop
, phi
))
7395 imm_use_iterator imm_iter
;
7396 use_operand_p use_p
;
7403 if (dump_enabled_p ())
7404 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
7405 "multiple types in nested loop.\n");
7409 /* FORNOW: outer loop induction with SLP not supported. */
7410 if (STMT_SLP_TYPE (stmt_info
))
7414 latch_e
= loop_latch_edge (loop
->inner
);
7415 loop_arg
= PHI_ARG_DEF_FROM_EDGE (phi
, latch_e
);
7416 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, loop_arg
)
7418 gimple
*use_stmt
= USE_STMT (use_p
);
7419 if (is_gimple_debug (use_stmt
))
7422 if (!flow_bb_inside_loop_p (loop
->inner
, gimple_bb (use_stmt
)))
7424 exit_phi
= use_stmt
;
7430 stmt_vec_info exit_phi_vinfo
= vinfo_for_stmt (exit_phi
);
7431 if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo
)
7432 && !STMT_VINFO_LIVE_P (exit_phi_vinfo
)))
7434 if (dump_enabled_p ())
7435 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
7436 "inner-loop induction only used outside "
7437 "of the outer vectorized loop.\n");
7442 nested_in_vect_loop
= true;
7443 iv_loop
= loop
->inner
;
7447 gcc_assert (iv_loop
== (gimple_bb (phi
))->loop_father
);
7449 if (slp_node
&& !nunits
.is_constant ())
7451 /* The current SLP code creates the initial value element-by-element. */
7452 if (dump_enabled_p ())
7453 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
7454 "SLP induction not supported for variable-length"
7459 if (!vec_stmt
) /* transformation not required. */
7461 STMT_VINFO_TYPE (stmt_info
) = induc_vec_info_type
;
7462 DUMP_VECT_SCOPE ("vectorizable_induction");
7463 vect_model_induction_cost (stmt_info
, ncopies
, cost_vec
);
7469 /* Compute a vector variable, initialized with the first VF values of
7470 the induction variable. E.g., for an iv with IV_PHI='X' and
7471 evolution S, for a vector of 4 units, we want to compute:
7472 [X, X + S, X + 2*S, X + 3*S]. */
7474 if (dump_enabled_p ())
7475 dump_printf_loc (MSG_NOTE
, vect_location
, "transform induction phi.\n");
7477 latch_e
= loop_latch_edge (iv_loop
);
7478 loop_arg
= PHI_ARG_DEF_FROM_EDGE (phi
, latch_e
);
7480 step_expr
= STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info
);
7481 gcc_assert (step_expr
!= NULL_TREE
);
7483 pe
= loop_preheader_edge (iv_loop
);
7484 init_expr
= PHI_ARG_DEF_FROM_EDGE (phi
,
7485 loop_preheader_edge (iv_loop
));
7488 if (!nested_in_vect_loop
)
7490 /* Convert the initial value to the desired type. */
7491 tree new_type
= TREE_TYPE (vectype
);
7492 init_expr
= gimple_convert (&stmts
, new_type
, init_expr
);
7494 /* If we are using the loop mask to "peel" for alignment then we need
7495 to adjust the start value here. */
7496 tree skip_niters
= LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo
);
7497 if (skip_niters
!= NULL_TREE
)
7499 if (FLOAT_TYPE_P (vectype
))
7500 skip_niters
= gimple_build (&stmts
, FLOAT_EXPR
, new_type
,
7503 skip_niters
= gimple_convert (&stmts
, new_type
, skip_niters
);
7504 tree skip_step
= gimple_build (&stmts
, MULT_EXPR
, new_type
,
7505 skip_niters
, step_expr
);
7506 init_expr
= gimple_build (&stmts
, MINUS_EXPR
, new_type
,
7507 init_expr
, skip_step
);
7511 /* Convert the step to the desired type. */
7512 step_expr
= gimple_convert (&stmts
, TREE_TYPE (vectype
), step_expr
);
7516 new_bb
= gsi_insert_seq_on_edge_immediate (pe
, stmts
);
7517 gcc_assert (!new_bb
);
7520 /* Find the first insertion point in the BB. */
7521 si
= gsi_after_labels (bb
);
7523 /* For SLP induction we have to generate several IVs as for example
7524 with group size 3 we need [i, i, i, i + S] [i + S, i + S, i + 2*S, i + 2*S]
7525 [i + 2*S, i + 3*S, i + 3*S, i + 3*S]. The step is the same uniform
7526 [VF*S, VF*S, VF*S, VF*S] for all. */
7529 /* Enforced above. */
7530 unsigned int const_nunits
= nunits
.to_constant ();
7532 /* Generate [VF*S, VF*S, ... ]. */
7533 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr
)))
7535 expr
= build_int_cst (integer_type_node
, vf
);
7536 expr
= fold_convert (TREE_TYPE (step_expr
), expr
);
7539 expr
= build_int_cst (TREE_TYPE (step_expr
), vf
);
7540 new_name
= fold_build2 (MULT_EXPR
, TREE_TYPE (step_expr
),
7542 if (! CONSTANT_CLASS_P (new_name
))
7543 new_name
= vect_init_vector (phi
, new_name
,
7544 TREE_TYPE (step_expr
), NULL
);
7545 new_vec
= build_vector_from_val (vectype
, new_name
);
7546 vec_step
= vect_init_vector (phi
, new_vec
, vectype
, NULL
);
7548 /* Now generate the IVs. */
7549 unsigned group_size
= SLP_TREE_SCALAR_STMTS (slp_node
).length ();
7550 unsigned nvects
= SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node
);
7551 unsigned elts
= const_nunits
* nvects
;
7552 unsigned nivs
= least_common_multiple (group_size
,
7553 const_nunits
) / const_nunits
;
7554 gcc_assert (elts
% group_size
== 0);
7555 tree elt
= init_expr
;
7557 for (ivn
= 0; ivn
< nivs
; ++ivn
)
7559 tree_vector_builder
elts (vectype
, const_nunits
, 1);
7561 for (unsigned eltn
= 0; eltn
< const_nunits
; ++eltn
)
7563 if (ivn
*const_nunits
+ eltn
>= group_size
7564 && (ivn
* const_nunits
+ eltn
) % group_size
== 0)
7565 elt
= gimple_build (&stmts
, PLUS_EXPR
, TREE_TYPE (elt
),
7567 elts
.quick_push (elt
);
7569 vec_init
= gimple_build_vector (&stmts
, &elts
);
7572 new_bb
= gsi_insert_seq_on_edge_immediate (pe
, stmts
);
7573 gcc_assert (!new_bb
);
7576 /* Create the induction-phi that defines the induction-operand. */
7577 vec_dest
= vect_get_new_vect_var (vectype
, vect_simple_var
, "vec_iv_");
7578 induction_phi
= create_phi_node (vec_dest
, iv_loop
->header
);
7579 set_vinfo_for_stmt (induction_phi
,
7580 new_stmt_vec_info (induction_phi
, loop_vinfo
));
7581 induc_def
= PHI_RESULT (induction_phi
);
7583 /* Create the iv update inside the loop */
7584 vec_def
= make_ssa_name (vec_dest
);
7585 new_stmt
= gimple_build_assign (vec_def
, PLUS_EXPR
, induc_def
, vec_step
);
7586 gsi_insert_before (&si
, new_stmt
, GSI_SAME_STMT
);
7587 set_vinfo_for_stmt (new_stmt
, new_stmt_vec_info (new_stmt
, loop_vinfo
));
7589 /* Set the arguments of the phi node: */
7590 add_phi_arg (induction_phi
, vec_init
, pe
, UNKNOWN_LOCATION
);
7591 add_phi_arg (induction_phi
, vec_def
, loop_latch_edge (iv_loop
),
7594 SLP_TREE_VEC_STMTS (slp_node
).quick_push (induction_phi
);
7597 /* Re-use IVs when we can. */
7601 = least_common_multiple (group_size
, const_nunits
) / group_size
;
7602 /* Generate [VF'*S, VF'*S, ... ]. */
7603 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr
)))
7605 expr
= build_int_cst (integer_type_node
, vfp
);
7606 expr
= fold_convert (TREE_TYPE (step_expr
), expr
);
7609 expr
= build_int_cst (TREE_TYPE (step_expr
), vfp
);
7610 new_name
= fold_build2 (MULT_EXPR
, TREE_TYPE (step_expr
),
7612 if (! CONSTANT_CLASS_P (new_name
))
7613 new_name
= vect_init_vector (phi
, new_name
,
7614 TREE_TYPE (step_expr
), NULL
);
7615 new_vec
= build_vector_from_val (vectype
, new_name
);
7616 vec_step
= vect_init_vector (phi
, new_vec
, vectype
, NULL
);
7617 for (; ivn
< nvects
; ++ivn
)
7619 gimple
*iv
= SLP_TREE_VEC_STMTS (slp_node
)[ivn
- nivs
];
7621 if (gimple_code (iv
) == GIMPLE_PHI
)
7622 def
= gimple_phi_result (iv
);
7624 def
= gimple_assign_lhs (iv
);
7625 new_stmt
= gimple_build_assign (make_ssa_name (vectype
),
7628 if (gimple_code (iv
) == GIMPLE_PHI
)
7629 gsi_insert_before (&si
, new_stmt
, GSI_SAME_STMT
);
7632 gimple_stmt_iterator tgsi
= gsi_for_stmt (iv
);
7633 gsi_insert_after (&tgsi
, new_stmt
, GSI_CONTINUE_LINKING
);
7635 set_vinfo_for_stmt (new_stmt
,
7636 new_stmt_vec_info (new_stmt
, loop_vinfo
));
7637 SLP_TREE_VEC_STMTS (slp_node
).quick_push (new_stmt
);
7644 /* Create the vector that holds the initial_value of the induction. */
7645 if (nested_in_vect_loop
)
7647 /* iv_loop is nested in the loop to be vectorized. init_expr had already
7648 been created during vectorization of previous stmts. We obtain it
7649 from the STMT_VINFO_VEC_STMT of the defining stmt. */
7650 vec_init
= vect_get_vec_def_for_operand (init_expr
, phi
);
7651 /* If the initial value is not of proper type, convert it. */
7652 if (!useless_type_conversion_p (vectype
, TREE_TYPE (vec_init
)))
7655 = gimple_build_assign (vect_get_new_ssa_name (vectype
,
7659 build1 (VIEW_CONVERT_EXPR
, vectype
,
7661 vec_init
= gimple_assign_lhs (new_stmt
);
7662 new_bb
= gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop
),
7664 gcc_assert (!new_bb
);
7665 set_vinfo_for_stmt (new_stmt
,
7666 new_stmt_vec_info (new_stmt
, loop_vinfo
));
7671 /* iv_loop is the loop to be vectorized. Create:
7672 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
7674 new_name
= gimple_convert (&stmts
, TREE_TYPE (vectype
), init_expr
);
7676 unsigned HOST_WIDE_INT const_nunits
;
7677 if (nunits
.is_constant (&const_nunits
))
7679 tree_vector_builder
elts (vectype
, const_nunits
, 1);
7680 elts
.quick_push (new_name
);
7681 for (i
= 1; i
< const_nunits
; i
++)
7683 /* Create: new_name_i = new_name + step_expr */
7684 new_name
= gimple_build (&stmts
, PLUS_EXPR
, TREE_TYPE (new_name
),
7685 new_name
, step_expr
);
7686 elts
.quick_push (new_name
);
7688 /* Create a vector from [new_name_0, new_name_1, ...,
7689 new_name_nunits-1] */
7690 vec_init
= gimple_build_vector (&stmts
, &elts
);
7692 else if (INTEGRAL_TYPE_P (TREE_TYPE (step_expr
)))
7693 /* Build the initial value directly from a VEC_SERIES_EXPR. */
7694 vec_init
= gimple_build (&stmts
, VEC_SERIES_EXPR
, vectype
,
7695 new_name
, step_expr
);
7699 [base, base, base, ...]
7700 + (vectype) [0, 1, 2, ...] * [step, step, step, ...]. */
7701 gcc_assert (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr
)));
7702 gcc_assert (flag_associative_math
);
7703 tree index
= build_index_vector (vectype
, 0, 1);
7704 tree base_vec
= gimple_build_vector_from_val (&stmts
, vectype
,
7706 tree step_vec
= gimple_build_vector_from_val (&stmts
, vectype
,
7708 vec_init
= gimple_build (&stmts
, FLOAT_EXPR
, vectype
, index
);
7709 vec_init
= gimple_build (&stmts
, MULT_EXPR
, vectype
,
7710 vec_init
, step_vec
);
7711 vec_init
= gimple_build (&stmts
, PLUS_EXPR
, vectype
,
7712 vec_init
, base_vec
);
7717 new_bb
= gsi_insert_seq_on_edge_immediate (pe
, stmts
);
7718 gcc_assert (!new_bb
);
7723 /* Create the vector that holds the step of the induction. */
7724 if (nested_in_vect_loop
)
7725 /* iv_loop is nested in the loop to be vectorized. Generate:
7726 vec_step = [S, S, S, S] */
7727 new_name
= step_expr
;
7730 /* iv_loop is the loop to be vectorized. Generate:
7731 vec_step = [VF*S, VF*S, VF*S, VF*S] */
7732 gimple_seq seq
= NULL
;
7733 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr
)))
7735 expr
= build_int_cst (integer_type_node
, vf
);
7736 expr
= gimple_build (&seq
, FLOAT_EXPR
, TREE_TYPE (step_expr
), expr
);
7739 expr
= build_int_cst (TREE_TYPE (step_expr
), vf
);
7740 new_name
= gimple_build (&seq
, MULT_EXPR
, TREE_TYPE (step_expr
),
7744 new_bb
= gsi_insert_seq_on_edge_immediate (pe
, seq
);
7745 gcc_assert (!new_bb
);
7749 t
= unshare_expr (new_name
);
7750 gcc_assert (CONSTANT_CLASS_P (new_name
)
7751 || TREE_CODE (new_name
) == SSA_NAME
);
7752 new_vec
= build_vector_from_val (vectype
, t
);
7753 vec_step
= vect_init_vector (phi
, new_vec
, vectype
, NULL
);
7756 /* Create the following def-use cycle:
7761 vec_iv = PHI <vec_init, vec_loop>
7765 vec_loop = vec_iv + vec_step; */
7767 /* Create the induction-phi that defines the induction-operand. */
7768 vec_dest
= vect_get_new_vect_var (vectype
, vect_simple_var
, "vec_iv_");
7769 induction_phi
= create_phi_node (vec_dest
, iv_loop
->header
);
7770 set_vinfo_for_stmt (induction_phi
,
7771 new_stmt_vec_info (induction_phi
, loop_vinfo
));
7772 induc_def
= PHI_RESULT (induction_phi
);
7774 /* Create the iv update inside the loop */
7775 vec_def
= make_ssa_name (vec_dest
);
7776 new_stmt
= gimple_build_assign (vec_def
, PLUS_EXPR
, induc_def
, vec_step
);
7777 gsi_insert_before (&si
, new_stmt
, GSI_SAME_STMT
);
7778 set_vinfo_for_stmt (new_stmt
, new_stmt_vec_info (new_stmt
, loop_vinfo
));
7780 /* Set the arguments of the phi node: */
7781 add_phi_arg (induction_phi
, vec_init
, pe
, UNKNOWN_LOCATION
);
7782 add_phi_arg (induction_phi
, vec_def
, loop_latch_edge (iv_loop
),
7785 STMT_VINFO_VEC_STMT (stmt_info
) = *vec_stmt
= induction_phi
;
7787 /* In case that vectorization factor (VF) is bigger than the number
7788 of elements that we can fit in a vectype (nunits), we have to generate
7789 more than one vector stmt - i.e - we need to "unroll" the
7790 vector stmt by a factor VF/nunits. For more details see documentation
7791 in vectorizable_operation. */
7795 gimple_seq seq
= NULL
;
7796 stmt_vec_info prev_stmt_vinfo
;
7797 /* FORNOW. This restriction should be relaxed. */
7798 gcc_assert (!nested_in_vect_loop
);
7800 /* Create the vector that holds the step of the induction. */
7801 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr
)))
7803 expr
= build_int_cst (integer_type_node
, nunits
);
7804 expr
= gimple_build (&seq
, FLOAT_EXPR
, TREE_TYPE (step_expr
), expr
);
7807 expr
= build_int_cst (TREE_TYPE (step_expr
), nunits
);
7808 new_name
= gimple_build (&seq
, MULT_EXPR
, TREE_TYPE (step_expr
),
7812 new_bb
= gsi_insert_seq_on_edge_immediate (pe
, seq
);
7813 gcc_assert (!new_bb
);
7816 t
= unshare_expr (new_name
);
7817 gcc_assert (CONSTANT_CLASS_P (new_name
)
7818 || TREE_CODE (new_name
) == SSA_NAME
);
7819 new_vec
= build_vector_from_val (vectype
, t
);
7820 vec_step
= vect_init_vector (phi
, new_vec
, vectype
, NULL
);
7822 vec_def
= induc_def
;
7823 prev_stmt_vinfo
= vinfo_for_stmt (induction_phi
);
7824 for (i
= 1; i
< ncopies
; i
++)
7826 /* vec_i = vec_prev + vec_step */
7827 new_stmt
= gimple_build_assign (vec_dest
, PLUS_EXPR
,
7829 vec_def
= make_ssa_name (vec_dest
, new_stmt
);
7830 gimple_assign_set_lhs (new_stmt
, vec_def
);
7832 gsi_insert_before (&si
, new_stmt
, GSI_SAME_STMT
);
7833 set_vinfo_for_stmt (new_stmt
,
7834 new_stmt_vec_info (new_stmt
, loop_vinfo
));
7835 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo
) = new_stmt
;
7836 prev_stmt_vinfo
= vinfo_for_stmt (new_stmt
);
7840 if (nested_in_vect_loop
)
7842 /* Find the loop-closed exit-phi of the induction, and record
7843 the final vector of induction results: */
7845 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, loop_arg
)
7847 gimple
*use_stmt
= USE_STMT (use_p
);
7848 if (is_gimple_debug (use_stmt
))
7851 if (!flow_bb_inside_loop_p (iv_loop
, gimple_bb (use_stmt
)))
7853 exit_phi
= use_stmt
;
7859 stmt_vec_info stmt_vinfo
= vinfo_for_stmt (exit_phi
);
7860 /* FORNOW. Currently not supporting the case that an inner-loop induction
7861 is not used in the outer-loop (i.e. only outside the outer-loop). */
7862 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo
)
7863 && !STMT_VINFO_LIVE_P (stmt_vinfo
));
7865 STMT_VINFO_VEC_STMT (stmt_vinfo
) = new_stmt
;
7866 if (dump_enabled_p ())
7868 dump_printf_loc (MSG_NOTE
, vect_location
,
7869 "vector of inductions after inner-loop:");
7870 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, new_stmt
, 0);
7876 if (dump_enabled_p ())
7878 dump_printf_loc (MSG_NOTE
, vect_location
,
7879 "transform induction: created def-use cycle: ");
7880 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, induction_phi
, 0);
7881 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
,
7882 SSA_NAME_DEF_STMT (vec_def
), 0);
7888 /* Function vectorizable_live_operation.
7890 STMT computes a value that is used outside the loop. Check if
7891 it can be supported. */
7894 vectorizable_live_operation (gimple
*stmt
,
7895 gimple_stmt_iterator
*gsi ATTRIBUTE_UNUSED
,
7896 slp_tree slp_node
, int slp_index
,
7898 stmt_vector_for_cost
*)
7900 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
7901 loop_vec_info loop_vinfo
= STMT_VINFO_LOOP_VINFO (stmt_info
);
7902 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
7903 imm_use_iterator imm_iter
;
7904 tree lhs
, lhs_type
, bitsize
, vec_bitsize
;
7905 tree vectype
= STMT_VINFO_VECTYPE (stmt_info
);
7906 poly_uint64 nunits
= TYPE_VECTOR_SUBPARTS (vectype
);
7909 auto_vec
<tree
> vec_oprnds
;
7911 poly_uint64 vec_index
= 0;
7913 gcc_assert (STMT_VINFO_LIVE_P (stmt_info
));
7915 if (STMT_VINFO_DEF_TYPE (stmt_info
) == vect_reduction_def
)
7918 /* FORNOW. CHECKME. */
7919 if (nested_in_vect_loop_p (loop
, stmt
))
7922 /* If STMT is not relevant and it is a simple assignment and its inputs are
7923 invariant then it can remain in place, unvectorized. The original last
7924 scalar value that it computes will be used. */
7925 if (!STMT_VINFO_RELEVANT_P (stmt_info
))
7927 gcc_assert (is_simple_and_all_uses_invariant (stmt
, loop_vinfo
));
7928 if (dump_enabled_p ())
7929 dump_printf_loc (MSG_NOTE
, vect_location
,
7930 "statement is simple and uses invariant. Leaving in "
7938 ncopies
= vect_get_num_copies (loop_vinfo
, vectype
);
7942 gcc_assert (slp_index
>= 0);
7944 int num_scalar
= SLP_TREE_SCALAR_STMTS (slp_node
).length ();
7945 int num_vec
= SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node
);
7947 /* Get the last occurrence of the scalar index from the concatenation of
7948 all the slp vectors. Calculate which slp vector it is and the index
7950 poly_uint64 pos
= (num_vec
* nunits
) - num_scalar
+ slp_index
;
7952 /* Calculate which vector contains the result, and which lane of
7953 that vector we need. */
7954 if (!can_div_trunc_p (pos
, nunits
, &vec_entry
, &vec_index
))
7956 if (dump_enabled_p ())
7957 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
7958 "Cannot determine which vector holds the"
7959 " final result.\n");
7966 /* No transformation required. */
7967 if (LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo
))
7969 if (!direct_internal_fn_supported_p (IFN_EXTRACT_LAST
, vectype
,
7970 OPTIMIZE_FOR_SPEED
))
7972 if (dump_enabled_p ())
7973 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
7974 "can't use a fully-masked loop because "
7975 "the target doesn't support extract last "
7977 LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo
) = false;
7981 if (dump_enabled_p ())
7982 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
7983 "can't use a fully-masked loop because an "
7984 "SLP statement is live after the loop.\n");
7985 LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo
) = false;
7987 else if (ncopies
> 1)
7989 if (dump_enabled_p ())
7990 dump_printf_loc (MSG_MISSED_OPTIMIZATION
, vect_location
,
7991 "can't use a fully-masked loop because"
7992 " ncopies is greater than 1.\n");
7993 LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo
) = false;
7997 gcc_assert (ncopies
== 1 && !slp_node
);
7998 vect_record_loop_mask (loop_vinfo
,
7999 &LOOP_VINFO_MASKS (loop_vinfo
),
8006 /* If stmt has a related stmt, then use that for getting the lhs. */
8007 if (is_pattern_stmt_p (stmt_info
))
8008 stmt
= STMT_VINFO_RELATED_STMT (stmt_info
);
8010 lhs
= (is_a
<gphi
*> (stmt
)) ? gimple_phi_result (stmt
)
8011 : gimple_get_lhs (stmt
);
8012 lhs_type
= TREE_TYPE (lhs
);
8014 bitsize
= (VECTOR_BOOLEAN_TYPE_P (vectype
)
8015 ? bitsize_int (TYPE_PRECISION (TREE_TYPE (vectype
)))
8016 : TYPE_SIZE (TREE_TYPE (vectype
)));
8017 vec_bitsize
= TYPE_SIZE (vectype
);
8019 /* Get the vectorized lhs of STMT and the lane to use (counted in bits). */
8020 tree vec_lhs
, bitstart
;
8023 gcc_assert (!LOOP_VINFO_FULLY_MASKED_P (loop_vinfo
));
8025 /* Get the correct slp vectorized stmt. */
8026 gimple
*vec_stmt
= SLP_TREE_VEC_STMTS (slp_node
)[vec_entry
];
8027 if (gphi
*phi
= dyn_cast
<gphi
*> (vec_stmt
))
8028 vec_lhs
= gimple_phi_result (phi
);
8030 vec_lhs
= gimple_get_lhs (vec_stmt
);
8032 /* Get entry to use. */
8033 bitstart
= bitsize_int (vec_index
);
8034 bitstart
= int_const_binop (MULT_EXPR
, bitsize
, bitstart
);
8038 enum vect_def_type dt
= STMT_VINFO_DEF_TYPE (stmt_info
);
8039 vec_lhs
= vect_get_vec_def_for_operand_1 (stmt
, dt
);
8040 gcc_checking_assert (ncopies
== 1
8041 || !LOOP_VINFO_FULLY_MASKED_P (loop_vinfo
));
8043 /* For multiple copies, get the last copy. */
8044 for (int i
= 1; i
< ncopies
; ++i
)
8045 vec_lhs
= vect_get_vec_def_for_stmt_copy (vect_unknown_def_type
,
8048 /* Get the last lane in the vector. */
8049 bitstart
= int_const_binop (MINUS_EXPR
, vec_bitsize
, bitsize
);
8052 gimple_seq stmts
= NULL
;
8054 if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo
))
8058 SCALAR_RES = EXTRACT_LAST <VEC_LHS, MASK>
8060 where VEC_LHS is the vectorized live-out result and MASK is
8061 the loop mask for the final iteration. */
8062 gcc_assert (ncopies
== 1 && !slp_node
);
8063 tree scalar_type
= TREE_TYPE (STMT_VINFO_VECTYPE (stmt_info
));
8064 tree mask
= vect_get_loop_mask (gsi
, &LOOP_VINFO_MASKS (loop_vinfo
),
8066 tree scalar_res
= gimple_build (&stmts
, CFN_EXTRACT_LAST
,
8067 scalar_type
, mask
, vec_lhs
);
8069 /* Convert the extracted vector element to the required scalar type. */
8070 new_tree
= gimple_convert (&stmts
, lhs_type
, scalar_res
);
8074 tree bftype
= TREE_TYPE (vectype
);
8075 if (VECTOR_BOOLEAN_TYPE_P (vectype
))
8076 bftype
= build_nonstandard_integer_type (tree_to_uhwi (bitsize
), 1);
8077 new_tree
= build3 (BIT_FIELD_REF
, bftype
, vec_lhs
, bitsize
, bitstart
);
8078 new_tree
= force_gimple_operand (fold_convert (lhs_type
, new_tree
),
8079 &stmts
, true, NULL_TREE
);
8083 gsi_insert_seq_on_edge_immediate (single_exit (loop
), stmts
);
8085 /* Replace use of lhs with newly computed result. If the use stmt is a
8086 single arg PHI, just replace all uses of PHI result. It's necessary
8087 because lcssa PHI defining lhs may be before newly inserted stmt. */
8088 use_operand_p use_p
;
8089 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, lhs
)
8090 if (!flow_bb_inside_loop_p (loop
, gimple_bb (use_stmt
))
8091 && !is_gimple_debug (use_stmt
))
8093 if (gimple_code (use_stmt
) == GIMPLE_PHI
8094 && gimple_phi_num_args (use_stmt
) == 1)
8096 replace_uses_by (gimple_phi_result (use_stmt
), new_tree
);
8100 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
8101 SET_USE (use_p
, new_tree
);
8103 update_stmt (use_stmt
);
8109 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
8112 vect_loop_kill_debug_uses (struct loop
*loop
, gimple
*stmt
)
8114 ssa_op_iter op_iter
;
8115 imm_use_iterator imm_iter
;
8116 def_operand_p def_p
;
8119 FOR_EACH_PHI_OR_STMT_DEF (def_p
, stmt
, op_iter
, SSA_OP_DEF
)
8121 FOR_EACH_IMM_USE_STMT (ustmt
, imm_iter
, DEF_FROM_PTR (def_p
))
8125 if (!is_gimple_debug (ustmt
))
8128 bb
= gimple_bb (ustmt
);
8130 if (!flow_bb_inside_loop_p (loop
, bb
))
8132 if (gimple_debug_bind_p (ustmt
))
8134 if (dump_enabled_p ())
8135 dump_printf_loc (MSG_NOTE
, vect_location
,
8136 "killing debug use\n");
8138 gimple_debug_bind_reset_value (ustmt
);
8139 update_stmt (ustmt
);
8148 /* Given loop represented by LOOP_VINFO, return true if computation of
8149 LOOP_VINFO_NITERS (= LOOP_VINFO_NITERSM1 + 1) doesn't overflow, false
8153 loop_niters_no_overflow (loop_vec_info loop_vinfo
)
8155 /* Constant case. */
8156 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
))
8158 tree cst_niters
= LOOP_VINFO_NITERS (loop_vinfo
);
8159 tree cst_nitersm1
= LOOP_VINFO_NITERSM1 (loop_vinfo
);
8161 gcc_assert (TREE_CODE (cst_niters
) == INTEGER_CST
);
8162 gcc_assert (TREE_CODE (cst_nitersm1
) == INTEGER_CST
);
8163 if (wi::to_widest (cst_nitersm1
) < wi::to_widest (cst_niters
))
8168 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
8169 /* Check the upper bound of loop niters. */
8170 if (get_max_loop_iterations (loop
, &max
))
8172 tree type
= TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo
));
8173 signop sgn
= TYPE_SIGN (type
);
8174 widest_int type_max
= widest_int::from (wi::max_value (type
), sgn
);
8181 /* Return a mask type with half the number of elements as TYPE. */
8184 vect_halve_mask_nunits (tree type
)
8186 poly_uint64 nunits
= exact_div (TYPE_VECTOR_SUBPARTS (type
), 2);
8187 return build_truth_vector_type (nunits
, current_vector_size
);
8190 /* Return a mask type with twice as many elements as TYPE. */
8193 vect_double_mask_nunits (tree type
)
8195 poly_uint64 nunits
= TYPE_VECTOR_SUBPARTS (type
) * 2;
8196 return build_truth_vector_type (nunits
, current_vector_size
);
8199 /* Record that a fully-masked version of LOOP_VINFO would need MASKS to
8200 contain a sequence of NVECTORS masks that each control a vector of type
8204 vect_record_loop_mask (loop_vec_info loop_vinfo
, vec_loop_masks
*masks
,
8205 unsigned int nvectors
, tree vectype
)
8207 gcc_assert (nvectors
!= 0);
8208 if (masks
->length () < nvectors
)
8209 masks
->safe_grow_cleared (nvectors
);
8210 rgroup_masks
*rgm
= &(*masks
)[nvectors
- 1];
8211 /* The number of scalars per iteration and the number of vectors are
8212 both compile-time constants. */
8213 unsigned int nscalars_per_iter
8214 = exact_div (nvectors
* TYPE_VECTOR_SUBPARTS (vectype
),
8215 LOOP_VINFO_VECT_FACTOR (loop_vinfo
)).to_constant ();
8216 if (rgm
->max_nscalars_per_iter
< nscalars_per_iter
)
8218 rgm
->max_nscalars_per_iter
= nscalars_per_iter
;
8219 rgm
->mask_type
= build_same_sized_truth_vector_type (vectype
);
8223 /* Given a complete set of masks MASKS, extract mask number INDEX
8224 for an rgroup that operates on NVECTORS vectors of type VECTYPE,
8225 where 0 <= INDEX < NVECTORS. Insert any set-up statements before GSI.
8227 See the comment above vec_loop_masks for more details about the mask
8231 vect_get_loop_mask (gimple_stmt_iterator
*gsi
, vec_loop_masks
*masks
,
8232 unsigned int nvectors
, tree vectype
, unsigned int index
)
8234 rgroup_masks
*rgm
= &(*masks
)[nvectors
- 1];
8235 tree mask_type
= rgm
->mask_type
;
8237 /* Populate the rgroup's mask array, if this is the first time we've
8239 if (rgm
->masks
.is_empty ())
8241 rgm
->masks
.safe_grow_cleared (nvectors
);
8242 for (unsigned int i
= 0; i
< nvectors
; ++i
)
8244 tree mask
= make_temp_ssa_name (mask_type
, NULL
, "loop_mask");
8245 /* Provide a dummy definition until the real one is available. */
8246 SSA_NAME_DEF_STMT (mask
) = gimple_build_nop ();
8247 rgm
->masks
[i
] = mask
;
8251 tree mask
= rgm
->masks
[index
];
8252 if (maybe_ne (TYPE_VECTOR_SUBPARTS (mask_type
),
8253 TYPE_VECTOR_SUBPARTS (vectype
)))
8255 /* A loop mask for data type X can be reused for data type Y
8256 if X has N times more elements than Y and if Y's elements
8257 are N times bigger than X's. In this case each sequence
8258 of N elements in the loop mask will be all-zero or all-one.
8259 We can then view-convert the mask so that each sequence of
8260 N elements is replaced by a single element. */
8261 gcc_assert (multiple_p (TYPE_VECTOR_SUBPARTS (mask_type
),
8262 TYPE_VECTOR_SUBPARTS (vectype
)));
8263 gimple_seq seq
= NULL
;
8264 mask_type
= build_same_sized_truth_vector_type (vectype
);
8265 mask
= gimple_build (&seq
, VIEW_CONVERT_EXPR
, mask_type
, mask
);
8267 gsi_insert_seq_before (gsi
, seq
, GSI_SAME_STMT
);
8272 /* Scale profiling counters by estimation for LOOP which is vectorized
8276 scale_profile_for_vect_loop (struct loop
*loop
, unsigned vf
)
8278 edge preheader
= loop_preheader_edge (loop
);
8279 /* Reduce loop iterations by the vectorization factor. */
8280 gcov_type new_est_niter
= niter_for_unrolled_loop (loop
, vf
);
8281 profile_count freq_h
= loop
->header
->count
, freq_e
= preheader
->count ();
8283 if (freq_h
.nonzero_p ())
8285 profile_probability p
;
8287 /* Avoid dropping loop body profile counter to 0 because of zero count
8288 in loop's preheader. */
8289 if (!(freq_e
== profile_count::zero ()))
8290 freq_e
= freq_e
.force_nonzero ();
8291 p
= freq_e
.apply_scale (new_est_niter
+ 1, 1).probability_in (freq_h
);
8292 scale_loop_frequencies (loop
, p
);
8295 edge exit_e
= single_exit (loop
);
8296 exit_e
->probability
= profile_probability::always ()
8297 .apply_scale (1, new_est_niter
+ 1);
8299 edge exit_l
= single_pred_edge (loop
->latch
);
8300 profile_probability prob
= exit_l
->probability
;
8301 exit_l
->probability
= exit_e
->probability
.invert ();
8302 if (prob
.initialized_p () && exit_l
->probability
.initialized_p ())
8303 scale_bbs_frequencies (&loop
->latch
, 1, exit_l
->probability
/ prob
);
8306 /* Vectorize STMT if relevant, inserting any new instructions before GSI.
8307 When vectorizing STMT as a store, set *SEEN_STORE to its stmt_vec_info.
8308 *SLP_SCHEDULE is a running record of whether we have called
8309 vect_schedule_slp. */
8312 vect_transform_loop_stmt (loop_vec_info loop_vinfo
, gimple
*stmt
,
8313 gimple_stmt_iterator
*gsi
,
8314 stmt_vec_info
*seen_store
, bool *slp_scheduled
)
8316 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
8317 poly_uint64 vf
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
8318 stmt_vec_info stmt_info
= vinfo_for_stmt (stmt
);
8322 if (dump_enabled_p ())
8324 dump_printf_loc (MSG_NOTE
, vect_location
,
8325 "------>vectorizing statement: ");
8326 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, stmt
, 0);
8329 if (MAY_HAVE_DEBUG_BIND_STMTS
&& !STMT_VINFO_LIVE_P (stmt_info
))
8330 vect_loop_kill_debug_uses (loop
, stmt
);
8332 if (!STMT_VINFO_RELEVANT_P (stmt_info
)
8333 && !STMT_VINFO_LIVE_P (stmt_info
))
8336 if (STMT_VINFO_VECTYPE (stmt_info
))
8339 = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info
));
8340 if (!STMT_SLP_TYPE (stmt_info
)
8341 && maybe_ne (nunits
, vf
)
8342 && dump_enabled_p ())
8343 /* For SLP VF is set according to unrolling factor, and not
8344 to vector size, hence for SLP this print is not valid. */
8345 dump_printf_loc (MSG_NOTE
, vect_location
, "multiple-types.\n");
8348 /* SLP. Schedule all the SLP instances when the first SLP stmt is
8350 if (slp_vect_type slptype
= STMT_SLP_TYPE (stmt_info
))
8353 if (!*slp_scheduled
)
8355 *slp_scheduled
= true;
8357 DUMP_VECT_SCOPE ("scheduling SLP instances");
8359 vect_schedule_slp (loop_vinfo
);
8362 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
8363 if (slptype
== pure_slp
)
8367 if (dump_enabled_p ())
8368 dump_printf_loc (MSG_NOTE
, vect_location
, "transform statement.\n");
8370 bool grouped_store
= false;
8371 if (vect_transform_stmt (stmt
, gsi
, &grouped_store
, NULL
, NULL
))
8372 *seen_store
= stmt_info
;
8375 /* Function vect_transform_loop.
8377 The analysis phase has determined that the loop is vectorizable.
8378 Vectorize the loop - created vectorized stmts to replace the scalar
8379 stmts in the loop, and update the loop exit condition.
8380 Returns scalar epilogue loop if any. */
8383 vect_transform_loop (loop_vec_info loop_vinfo
)
8385 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
8386 struct loop
*epilogue
= NULL
;
8387 basic_block
*bbs
= LOOP_VINFO_BBS (loop_vinfo
);
8388 int nbbs
= loop
->num_nodes
;
8390 tree niters_vector
= NULL_TREE
;
8391 tree step_vector
= NULL_TREE
;
8392 tree niters_vector_mult_vf
= NULL_TREE
;
8393 poly_uint64 vf
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
8394 unsigned int lowest_vf
= constant_lower_bound (vf
);
8395 bool slp_scheduled
= false;
8397 bool check_profitability
= false;
8400 DUMP_VECT_SCOPE ("vec_transform_loop");
8402 loop_vinfo
->shared
->check_datarefs ();
8404 /* Use the more conservative vectorization threshold. If the number
8405 of iterations is constant assume the cost check has been performed
8406 by our caller. If the threshold makes all loops profitable that
8407 run at least the (estimated) vectorization factor number of times
8408 checking is pointless, too. */
8409 th
= LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo
);
8410 if (th
>= vect_vf_for_cost (loop_vinfo
)
8411 && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
))
8413 if (dump_enabled_p ())
8414 dump_printf_loc (MSG_NOTE
, vect_location
,
8415 "Profitability threshold is %d loop iterations.\n",
8417 check_profitability
= true;
8420 /* Make sure there exists a single-predecessor exit bb. Do this before
8422 edge e
= single_exit (loop
);
8423 if (! single_pred_p (e
->dest
))
8425 split_loop_exit_edge (e
);
8426 if (dump_enabled_p ())
8427 dump_printf (MSG_NOTE
, "split exit edge\n");
8430 /* Version the loop first, if required, so the profitability check
8433 if (LOOP_REQUIRES_VERSIONING (loop_vinfo
))
8435 poly_uint64 versioning_threshold
8436 = LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo
);
8437 if (check_profitability
8438 && ordered_p (poly_uint64 (th
), versioning_threshold
))
8440 versioning_threshold
= ordered_max (poly_uint64 (th
),
8441 versioning_threshold
);
8442 check_profitability
= false;
8444 vect_loop_versioning (loop_vinfo
, th
, check_profitability
,
8445 versioning_threshold
);
8446 check_profitability
= false;
8449 /* Make sure there exists a single-predecessor exit bb also on the
8450 scalar loop copy. Do this after versioning but before peeling
8451 so CFG structure is fine for both scalar and if-converted loop
8452 to make slpeel_duplicate_current_defs_from_edges face matched
8453 loop closed PHI nodes on the exit. */
8454 if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo
))
8456 e
= single_exit (LOOP_VINFO_SCALAR_LOOP (loop_vinfo
));
8457 if (! single_pred_p (e
->dest
))
8459 split_loop_exit_edge (e
);
8460 if (dump_enabled_p ())
8461 dump_printf (MSG_NOTE
, "split exit edge of scalar loop\n");
8465 tree niters
= vect_build_loop_niters (loop_vinfo
);
8466 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo
) = niters
;
8467 tree nitersm1
= unshare_expr (LOOP_VINFO_NITERSM1 (loop_vinfo
));
8468 bool niters_no_overflow
= loop_niters_no_overflow (loop_vinfo
);
8469 epilogue
= vect_do_peeling (loop_vinfo
, niters
, nitersm1
, &niters_vector
,
8470 &step_vector
, &niters_vector_mult_vf
, th
,
8471 check_profitability
, niters_no_overflow
);
8473 if (niters_vector
== NULL_TREE
)
8475 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
)
8476 && !LOOP_VINFO_FULLY_MASKED_P (loop_vinfo
)
8477 && known_eq (lowest_vf
, vf
))
8480 = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo
)),
8481 LOOP_VINFO_INT_NITERS (loop_vinfo
) / lowest_vf
);
8482 step_vector
= build_one_cst (TREE_TYPE (niters
));
8485 vect_gen_vector_loop_niters (loop_vinfo
, niters
, &niters_vector
,
8486 &step_vector
, niters_no_overflow
);
8489 /* 1) Make sure the loop header has exactly two entries
8490 2) Make sure we have a preheader basic block. */
8492 gcc_assert (EDGE_COUNT (loop
->header
->preds
) == 2);
8494 split_edge (loop_preheader_edge (loop
));
8496 if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo
)
8497 && vect_use_loop_mask_for_alignment_p (loop_vinfo
))
8498 /* This will deal with any possible peeling. */
8499 vect_prepare_for_masked_peels (loop_vinfo
);
8501 /* FORNOW: the vectorizer supports only loops which body consist
8502 of one basic block (header + empty latch). When the vectorizer will
8503 support more involved loop forms, the order by which the BBs are
8504 traversed need to be reconsidered. */
8506 for (i
= 0; i
< nbbs
; i
++)
8508 basic_block bb
= bbs
[i
];
8509 stmt_vec_info stmt_info
;
8511 for (gphi_iterator si
= gsi_start_phis (bb
); !gsi_end_p (si
);
8514 gphi
*phi
= si
.phi ();
8515 if (dump_enabled_p ())
8517 dump_printf_loc (MSG_NOTE
, vect_location
,
8518 "------>vectorizing phi: ");
8519 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, phi
, 0);
8521 stmt_info
= vinfo_for_stmt (phi
);
8525 if (MAY_HAVE_DEBUG_BIND_STMTS
&& !STMT_VINFO_LIVE_P (stmt_info
))
8526 vect_loop_kill_debug_uses (loop
, phi
);
8528 if (!STMT_VINFO_RELEVANT_P (stmt_info
)
8529 && !STMT_VINFO_LIVE_P (stmt_info
))
8532 if (STMT_VINFO_VECTYPE (stmt_info
)
8534 (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info
)), vf
))
8535 && dump_enabled_p ())
8536 dump_printf_loc (MSG_NOTE
, vect_location
, "multiple-types.\n");
8538 if ((STMT_VINFO_DEF_TYPE (stmt_info
) == vect_induction_def
8539 || STMT_VINFO_DEF_TYPE (stmt_info
) == vect_reduction_def
8540 || STMT_VINFO_DEF_TYPE (stmt_info
) == vect_nested_cycle
)
8541 && ! PURE_SLP_STMT (stmt_info
))
8543 if (dump_enabled_p ())
8544 dump_printf_loc (MSG_NOTE
, vect_location
, "transform phi.\n");
8545 vect_transform_stmt (phi
, NULL
, NULL
, NULL
, NULL
);
8549 for (gimple_stmt_iterator si
= gsi_start_bb (bb
);
8552 stmt
= gsi_stmt (si
);
8553 /* During vectorization remove existing clobber stmts. */
8554 if (gimple_clobber_p (stmt
))
8556 unlink_stmt_vdef (stmt
);
8557 gsi_remove (&si
, true);
8558 release_defs (stmt
);
8562 stmt_info
= vinfo_for_stmt (stmt
);
8564 /* vector stmts created in the outer-loop during vectorization of
8565 stmts in an inner-loop may not have a stmt_info, and do not
8566 need to be vectorized. */
8567 stmt_vec_info seen_store
= NULL
;
8570 if (STMT_VINFO_IN_PATTERN_P (stmt_info
))
8572 gimple
*def_seq
= STMT_VINFO_PATTERN_DEF_SEQ (stmt_info
);
8573 for (gimple_stmt_iterator subsi
= gsi_start (def_seq
);
8574 !gsi_end_p (subsi
); gsi_next (&subsi
))
8575 vect_transform_loop_stmt (loop_vinfo
,
8576 gsi_stmt (subsi
), &si
,
8579 gimple
*pat_stmt
= STMT_VINFO_RELATED_STMT (stmt_info
);
8580 vect_transform_loop_stmt (loop_vinfo
, pat_stmt
, &si
,
8581 &seen_store
, &slp_scheduled
);
8583 vect_transform_loop_stmt (loop_vinfo
, stmt
, &si
,
8584 &seen_store
, &slp_scheduled
);
8588 if (STMT_VINFO_GROUPED_ACCESS (seen_store
))
8590 /* Interleaving. If IS_STORE is TRUE, the
8591 vectorization of the interleaving chain was
8592 completed - free all the stores in the chain. */
8594 vect_remove_stores (DR_GROUP_FIRST_ELEMENT (seen_store
));
8598 /* Free the attached stmt_vec_info and remove the
8600 free_stmt_vec_info (stmt
);
8601 unlink_stmt_vdef (stmt
);
8602 gsi_remove (&si
, true);
8603 release_defs (stmt
);
8611 /* Stub out scalar statements that must not survive vectorization.
8612 Doing this here helps with grouped statements, or statements that
8613 are involved in patterns. */
8614 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
);
8615 !gsi_end_p (gsi
); gsi_next (&gsi
))
8617 gcall
*call
= dyn_cast
<gcall
*> (gsi_stmt (gsi
));
8618 if (call
&& gimple_call_internal_p (call
, IFN_MASK_LOAD
))
8620 tree lhs
= gimple_get_lhs (call
);
8621 if (!VECTOR_TYPE_P (TREE_TYPE (lhs
)))
8623 tree zero
= build_zero_cst (TREE_TYPE (lhs
));
8624 gimple
*new_stmt
= gimple_build_assign (lhs
, zero
);
8625 gsi_replace (&gsi
, new_stmt
, true);
8631 /* The vectorization factor is always > 1, so if we use an IV increment of 1.
8632 a zero NITERS becomes a nonzero NITERS_VECTOR. */
8633 if (integer_onep (step_vector
))
8634 niters_no_overflow
= true;
8635 vect_set_loop_condition (loop
, loop_vinfo
, niters_vector
, step_vector
,
8636 niters_vector_mult_vf
, !niters_no_overflow
);
8638 unsigned int assumed_vf
= vect_vf_for_cost (loop_vinfo
);
8639 scale_profile_for_vect_loop (loop
, assumed_vf
);
8641 /* True if the final iteration might not handle a full vector's
8642 worth of scalar iterations. */
8643 bool final_iter_may_be_partial
= LOOP_VINFO_FULLY_MASKED_P (loop_vinfo
);
8644 /* The minimum number of iterations performed by the epilogue. This
8645 is 1 when peeling for gaps because we always need a final scalar
8647 int min_epilogue_iters
= LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo
) ? 1 : 0;
8648 /* +1 to convert latch counts to loop iteration counts,
8649 -min_epilogue_iters to remove iterations that cannot be performed
8650 by the vector code. */
8651 int bias_for_lowest
= 1 - min_epilogue_iters
;
8652 int bias_for_assumed
= bias_for_lowest
;
8653 int alignment_npeels
= LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
);
8654 if (alignment_npeels
&& LOOP_VINFO_FULLY_MASKED_P (loop_vinfo
))
8656 /* When the amount of peeling is known at compile time, the first
8657 iteration will have exactly alignment_npeels active elements.
8658 In the worst case it will have at least one. */
8659 int min_first_active
= (alignment_npeels
> 0 ? alignment_npeels
: 1);
8660 bias_for_lowest
+= lowest_vf
- min_first_active
;
8661 bias_for_assumed
+= assumed_vf
- min_first_active
;
8663 /* In these calculations the "- 1" converts loop iteration counts
8664 back to latch counts. */
8665 if (loop
->any_upper_bound
)
8666 loop
->nb_iterations_upper_bound
8667 = (final_iter_may_be_partial
8668 ? wi::udiv_ceil (loop
->nb_iterations_upper_bound
+ bias_for_lowest
,
8670 : wi::udiv_floor (loop
->nb_iterations_upper_bound
+ bias_for_lowest
,
8672 if (loop
->any_likely_upper_bound
)
8673 loop
->nb_iterations_likely_upper_bound
8674 = (final_iter_may_be_partial
8675 ? wi::udiv_ceil (loop
->nb_iterations_likely_upper_bound
8676 + bias_for_lowest
, lowest_vf
) - 1
8677 : wi::udiv_floor (loop
->nb_iterations_likely_upper_bound
8678 + bias_for_lowest
, lowest_vf
) - 1);
8679 if (loop
->any_estimate
)
8680 loop
->nb_iterations_estimate
8681 = (final_iter_may_be_partial
8682 ? wi::udiv_ceil (loop
->nb_iterations_estimate
+ bias_for_assumed
,
8684 : wi::udiv_floor (loop
->nb_iterations_estimate
+ bias_for_assumed
,
8687 if (dump_enabled_p ())
8689 if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo
))
8691 dump_printf_loc (MSG_NOTE
, vect_location
,
8692 "LOOP VECTORIZED\n");
8694 dump_printf_loc (MSG_NOTE
, vect_location
,
8695 "OUTER LOOP VECTORIZED\n");
8696 dump_printf (MSG_NOTE
, "\n");
8700 dump_printf_loc (MSG_NOTE
, vect_location
,
8701 "LOOP EPILOGUE VECTORIZED (VS=");
8702 dump_dec (MSG_NOTE
, current_vector_size
);
8703 dump_printf (MSG_NOTE
, ")\n");
8707 /* Free SLP instances here because otherwise stmt reference counting
8709 slp_instance instance
;
8710 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo
), i
, instance
)
8711 vect_free_slp_instance (instance
);
8712 LOOP_VINFO_SLP_INSTANCES (loop_vinfo
).release ();
8713 /* Clear-up safelen field since its value is invalid after vectorization
8714 since vectorized loop can have loop-carried dependencies. */
8717 /* Don't vectorize epilogue for epilogue. */
8718 if (LOOP_VINFO_EPILOGUE_P (loop_vinfo
))
8721 if (!PARAM_VALUE (PARAM_VECT_EPILOGUES_NOMASK
))
8726 auto_vector_sizes vector_sizes
;
8727 targetm
.vectorize
.autovectorize_vector_sizes (&vector_sizes
);
8728 unsigned int next_size
= 0;
8730 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
)
8731 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
) >= 0
8732 && known_eq (vf
, lowest_vf
))
8735 = (LOOP_VINFO_INT_NITERS (loop_vinfo
)
8736 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
));
8737 eiters
= eiters
% lowest_vf
;
8738 epilogue
->nb_iterations_upper_bound
= eiters
- 1;
8741 while (next_size
< vector_sizes
.length ()
8742 && !(constant_multiple_p (current_vector_size
,
8743 vector_sizes
[next_size
], &ratio
)
8744 && eiters
>= lowest_vf
/ ratio
))
8748 while (next_size
< vector_sizes
.length ()
8749 && maybe_lt (current_vector_size
, vector_sizes
[next_size
]))
8752 if (next_size
== vector_sizes
.length ())
8758 epilogue
->force_vectorize
= loop
->force_vectorize
;
8759 epilogue
->safelen
= loop
->safelen
;
8760 epilogue
->dont_vectorize
= false;
8762 /* We may need to if-convert epilogue to vectorize it. */
8763 if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo
))
8764 tree_if_conversion (epilogue
);
8770 /* The code below is trying to perform simple optimization - revert
8771 if-conversion for masked stores, i.e. if the mask of a store is zero
8772 do not perform it and all stored value producers also if possible.
8780 this transformation will produce the following semi-hammock:
8782 if (!mask__ifc__42.18_165 == { 0, 0, 0, 0, 0, 0, 0, 0 })
8784 vect__11.19_170 = MASK_LOAD (vectp_p1.20_168, 0B, mask__ifc__42.18_165);
8785 vect__12.22_172 = vect__11.19_170 + vect_cst__171;
8786 MASK_STORE (vectp_p1.23_175, 0B, mask__ifc__42.18_165, vect__12.22_172);
8787 vect__18.25_182 = MASK_LOAD (vectp_p3.26_180, 0B, mask__ifc__42.18_165);
8788 vect__19.28_184 = vect__18.25_182 + vect_cst__183;
8789 MASK_STORE (vectp_p2.29_187, 0B, mask__ifc__42.18_165, vect__19.28_184);
8794 optimize_mask_stores (struct loop
*loop
)
8796 basic_block
*bbs
= get_loop_body (loop
);
8797 unsigned nbbs
= loop
->num_nodes
;
8800 struct loop
*bb_loop
;
8801 gimple_stmt_iterator gsi
;
8803 auto_vec
<gimple
*> worklist
;
8805 vect_location
= find_loop_location (loop
);
8806 /* Pick up all masked stores in loop if any. */
8807 for (i
= 0; i
< nbbs
; i
++)
8810 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);
8813 stmt
= gsi_stmt (gsi
);
8814 if (gimple_call_internal_p (stmt
, IFN_MASK_STORE
))
8815 worklist
.safe_push (stmt
);
8820 if (worklist
.is_empty ())
8823 /* Loop has masked stores. */
8824 while (!worklist
.is_empty ())
8826 gimple
*last
, *last_store
;
8829 basic_block store_bb
, join_bb
;
8830 gimple_stmt_iterator gsi_to
;
8831 tree vdef
, new_vdef
;
8836 last
= worklist
.pop ();
8837 mask
= gimple_call_arg (last
, 2);
8838 bb
= gimple_bb (last
);
8839 /* Create then_bb and if-then structure in CFG, then_bb belongs to
8840 the same loop as if_bb. It could be different to LOOP when two
8841 level loop-nest is vectorized and mask_store belongs to the inner
8843 e
= split_block (bb
, last
);
8844 bb_loop
= bb
->loop_father
;
8845 gcc_assert (loop
== bb_loop
|| flow_loop_nested_p (loop
, bb_loop
));
8847 store_bb
= create_empty_bb (bb
);
8848 add_bb_to_loop (store_bb
, bb_loop
);
8849 e
->flags
= EDGE_TRUE_VALUE
;
8850 efalse
= make_edge (bb
, store_bb
, EDGE_FALSE_VALUE
);
8851 /* Put STORE_BB to likely part. */
8852 efalse
->probability
= profile_probability::unlikely ();
8853 store_bb
->count
= efalse
->count ();
8854 make_single_succ_edge (store_bb
, join_bb
, EDGE_FALLTHRU
);
8855 if (dom_info_available_p (CDI_DOMINATORS
))
8856 set_immediate_dominator (CDI_DOMINATORS
, store_bb
, bb
);
8857 if (dump_enabled_p ())
8858 dump_printf_loc (MSG_NOTE
, vect_location
,
8859 "Create new block %d to sink mask stores.",
8861 /* Create vector comparison with boolean result. */
8862 vectype
= TREE_TYPE (mask
);
8863 zero
= build_zero_cst (vectype
);
8864 stmt
= gimple_build_cond (EQ_EXPR
, mask
, zero
, NULL_TREE
, NULL_TREE
);
8865 gsi
= gsi_last_bb (bb
);
8866 gsi_insert_after (&gsi
, stmt
, GSI_SAME_STMT
);
8867 /* Create new PHI node for vdef of the last masked store:
8868 .MEM_2 = VDEF <.MEM_1>
8869 will be converted to
8870 .MEM.3 = VDEF <.MEM_1>
8871 and new PHI node will be created in join bb
8872 .MEM_2 = PHI <.MEM_1, .MEM_3>
8874 vdef
= gimple_vdef (last
);
8875 new_vdef
= make_ssa_name (gimple_vop (cfun
), last
);
8876 gimple_set_vdef (last
, new_vdef
);
8877 phi
= create_phi_node (vdef
, join_bb
);
8878 add_phi_arg (phi
, new_vdef
, EDGE_SUCC (store_bb
, 0), UNKNOWN_LOCATION
);
8880 /* Put all masked stores with the same mask to STORE_BB if possible. */
8883 gimple_stmt_iterator gsi_from
;
8884 gimple
*stmt1
= NULL
;
8886 /* Move masked store to STORE_BB. */
8888 gsi
= gsi_for_stmt (last
);
8890 /* Shift GSI to the previous stmt for further traversal. */
8892 gsi_to
= gsi_start_bb (store_bb
);
8893 gsi_move_before (&gsi_from
, &gsi_to
);
8894 /* Setup GSI_TO to the non-empty block start. */
8895 gsi_to
= gsi_start_bb (store_bb
);
8896 if (dump_enabled_p ())
8898 dump_printf_loc (MSG_NOTE
, vect_location
,
8899 "Move stmt to created bb\n");
8900 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, last
, 0);
8902 /* Move all stored value producers if possible. */
8903 while (!gsi_end_p (gsi
))
8906 imm_use_iterator imm_iter
;
8907 use_operand_p use_p
;
8910 /* Skip debug statements. */
8911 if (is_gimple_debug (gsi_stmt (gsi
)))
8916 stmt1
= gsi_stmt (gsi
);
8917 /* Do not consider statements writing to memory or having
8918 volatile operand. */
8919 if (gimple_vdef (stmt1
)
8920 || gimple_has_volatile_ops (stmt1
))
8924 lhs
= gimple_get_lhs (stmt1
);
8928 /* LHS of vectorized stmt must be SSA_NAME. */
8929 if (TREE_CODE (lhs
) != SSA_NAME
)
8932 if (!VECTOR_TYPE_P (TREE_TYPE (lhs
)))
8934 /* Remove dead scalar statement. */
8935 if (has_zero_uses (lhs
))
8937 gsi_remove (&gsi_from
, true);
8942 /* Check that LHS does not have uses outside of STORE_BB. */
8944 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, lhs
)
8947 use_stmt
= USE_STMT (use_p
);
8948 if (is_gimple_debug (use_stmt
))
8950 if (gimple_bb (use_stmt
) != store_bb
)
8959 if (gimple_vuse (stmt1
)
8960 && gimple_vuse (stmt1
) != gimple_vuse (last_store
))
8963 /* Can move STMT1 to STORE_BB. */
8964 if (dump_enabled_p ())
8966 dump_printf_loc (MSG_NOTE
, vect_location
,
8967 "Move stmt to created bb\n");
8968 dump_gimple_stmt (MSG_NOTE
, TDF_SLIM
, stmt1
, 0);
8970 gsi_move_before (&gsi_from
, &gsi_to
);
8971 /* Shift GSI_TO for further insertion. */
8974 /* Put other masked stores with the same mask to STORE_BB. */
8975 if (worklist
.is_empty ()
8976 || gimple_call_arg (worklist
.last (), 2) != mask
8977 || worklist
.last () != stmt1
)
8979 last
= worklist
.pop ();
8981 add_phi_arg (phi
, gimple_vuse (last_store
), e
, UNKNOWN_LOCATION
);