compiler: don't set btype_ too early for alias type
[official-gcc.git] / gcc / cfgloopmanip.c
blob74c39dbe8faa812fb3db8072d65c7bb7cdf0f751
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "cfganal.h"
29 #include "cfgloop.h"
30 #include "gimple-iterator.h"
31 #include "gimplify-me.h"
32 #include "tree-ssa-loop-manip.h"
33 #include "dumpfile.h"
35 static void copy_loops_to (struct loop **, int,
36 struct loop *);
37 static void loop_redirect_edge (edge, basic_block);
38 static void remove_bbs (basic_block *, int);
39 static bool rpe_enum_p (const_basic_block, const void *);
40 static int find_path (edge, basic_block **);
41 static void fix_loop_placements (struct loop *, bool *);
42 static bool fix_bb_placement (basic_block);
43 static void fix_bb_placements (basic_block, bool *, bitmap);
45 /* Checks whether basic block BB is dominated by DATA. */
46 static bool
47 rpe_enum_p (const_basic_block bb, const void *data)
49 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
52 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
54 static void
55 remove_bbs (basic_block *bbs, int nbbs)
57 int i;
59 for (i = 0; i < nbbs; i++)
60 delete_basic_block (bbs[i]);
63 /* Find path -- i.e. the basic blocks dominated by edge E and put them
64 into array BBS, that will be allocated large enough to contain them.
65 E->dest must have exactly one predecessor for this to work (it is
66 easy to achieve and we do not put it here because we do not want to
67 alter anything by this function). The number of basic blocks in the
68 path is returned. */
69 static int
70 find_path (edge e, basic_block **bbs)
72 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
74 /* Find bbs in the path. */
75 *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
76 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
77 n_basic_blocks_for_fn (cfun), e->dest);
80 /* Fix placement of basic block BB inside loop hierarchy --
81 Let L be a loop to that BB belongs. Then every successor of BB must either
82 1) belong to some superloop of loop L, or
83 2) be a header of loop K such that K->outer is superloop of L
84 Returns true if we had to move BB into other loop to enforce this condition,
85 false if the placement of BB was already correct (provided that placements
86 of its successors are correct). */
87 static bool
88 fix_bb_placement (basic_block bb)
90 edge e;
91 edge_iterator ei;
92 struct loop *loop = current_loops->tree_root, *act;
94 FOR_EACH_EDGE (e, ei, bb->succs)
96 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
97 continue;
99 act = e->dest->loop_father;
100 if (act->header == e->dest)
101 act = loop_outer (act);
103 if (flow_loop_nested_p (loop, act))
104 loop = act;
107 if (loop == bb->loop_father)
108 return false;
110 remove_bb_from_loops (bb);
111 add_bb_to_loop (bb, loop);
113 return true;
116 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
117 of LOOP to that leads at least one exit edge of LOOP, and set it
118 as the immediate superloop of LOOP. Return true if the immediate superloop
119 of LOOP changed.
121 IRRED_INVALIDATED is set to true if a change in the loop structures might
122 invalidate the information about irreducible regions. */
124 static bool
125 fix_loop_placement (struct loop *loop, bool *irred_invalidated)
127 unsigned i;
128 edge e;
129 vec<edge> exits = get_loop_exit_edges (loop);
130 struct loop *father = current_loops->tree_root, *act;
131 bool ret = false;
133 FOR_EACH_VEC_ELT (exits, i, e)
135 act = find_common_loop (loop, e->dest->loop_father);
136 if (flow_loop_nested_p (father, act))
137 father = act;
140 if (father != loop_outer (loop))
142 for (act = loop_outer (loop); act != father; act = loop_outer (act))
143 act->num_nodes -= loop->num_nodes;
144 flow_loop_tree_node_remove (loop);
145 flow_loop_tree_node_add (father, loop);
147 /* The exit edges of LOOP no longer exits its original immediate
148 superloops; remove them from the appropriate exit lists. */
149 FOR_EACH_VEC_ELT (exits, i, e)
151 /* We may need to recompute irreducible loops. */
152 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
153 *irred_invalidated = true;
154 rescan_loop_exit (e, false, false);
157 ret = true;
160 exits.release ();
161 return ret;
164 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
165 enforce condition stated in description of fix_bb_placement. We
166 start from basic block FROM that had some of its successors removed, so that
167 his placement no longer has to be correct, and iteratively fix placement of
168 its predecessors that may change if placement of FROM changed. Also fix
169 placement of subloops of FROM->loop_father, that might also be altered due
170 to this change; the condition for them is similar, except that instead of
171 successors we consider edges coming out of the loops.
173 If the changes may invalidate the information about irreducible regions,
174 IRRED_INVALIDATED is set to true.
176 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
177 changed loop_father are collected there. */
179 static void
180 fix_bb_placements (basic_block from,
181 bool *irred_invalidated,
182 bitmap loop_closed_ssa_invalidated)
184 basic_block *queue, *qtop, *qbeg, *qend;
185 struct loop *base_loop, *target_loop;
186 edge e;
188 /* We pass through blocks back-reachable from FROM, testing whether some
189 of their successors moved to outer loop. It may be necessary to
190 iterate several times, but it is finite, as we stop unless we move
191 the basic block up the loop structure. The whole story is a bit
192 more complicated due to presence of subloops, those are moved using
193 fix_loop_placement. */
195 base_loop = from->loop_father;
196 /* If we are already in the outermost loop, the basic blocks cannot be moved
197 outside of it. If FROM is the header of the base loop, it cannot be moved
198 outside of it, either. In both cases, we can end now. */
199 if (base_loop == current_loops->tree_root
200 || from == base_loop->header)
201 return;
203 auto_sbitmap in_queue (last_basic_block_for_fn (cfun));
204 bitmap_clear (in_queue);
205 bitmap_set_bit (in_queue, from->index);
206 /* Prevent us from going out of the base_loop. */
207 bitmap_set_bit (in_queue, base_loop->header->index);
209 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
210 qtop = queue + base_loop->num_nodes + 1;
211 qbeg = queue;
212 qend = queue + 1;
213 *qbeg = from;
215 while (qbeg != qend)
217 edge_iterator ei;
218 from = *qbeg;
219 qbeg++;
220 if (qbeg == qtop)
221 qbeg = queue;
222 bitmap_clear_bit (in_queue, from->index);
224 if (from->loop_father->header == from)
226 /* Subloop header, maybe move the loop upward. */
227 if (!fix_loop_placement (from->loop_father, irred_invalidated))
228 continue;
229 target_loop = loop_outer (from->loop_father);
230 if (loop_closed_ssa_invalidated)
232 basic_block *bbs = get_loop_body (from->loop_father);
233 for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
234 bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
235 free (bbs);
238 else
240 /* Ordinary basic block. */
241 if (!fix_bb_placement (from))
242 continue;
243 target_loop = from->loop_father;
244 if (loop_closed_ssa_invalidated)
245 bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
248 FOR_EACH_EDGE (e, ei, from->succs)
250 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
251 *irred_invalidated = true;
254 /* Something has changed, insert predecessors into queue. */
255 FOR_EACH_EDGE (e, ei, from->preds)
257 basic_block pred = e->src;
258 struct loop *nca;
260 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
261 *irred_invalidated = true;
263 if (bitmap_bit_p (in_queue, pred->index))
264 continue;
266 /* If it is subloop, then it either was not moved, or
267 the path up the loop tree from base_loop do not contain
268 it. */
269 nca = find_common_loop (pred->loop_father, base_loop);
270 if (pred->loop_father != base_loop
271 && (nca == base_loop
272 || nca != pred->loop_father))
273 pred = pred->loop_father->header;
274 else if (!flow_loop_nested_p (target_loop, pred->loop_father))
276 /* If PRED is already higher in the loop hierarchy than the
277 TARGET_LOOP to that we moved FROM, the change of the position
278 of FROM does not affect the position of PRED, so there is no
279 point in processing it. */
280 continue;
283 if (bitmap_bit_p (in_queue, pred->index))
284 continue;
286 /* Schedule the basic block. */
287 *qend = pred;
288 qend++;
289 if (qend == qtop)
290 qend = queue;
291 bitmap_set_bit (in_queue, pred->index);
294 free (queue);
297 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
298 and update loop structures and dominators. Return true if we were able
299 to remove the path, false otherwise (and nothing is affected then). */
300 bool
301 remove_path (edge e, bool *irred_invalidated,
302 bitmap loop_closed_ssa_invalidated)
304 edge ae;
305 basic_block *rem_bbs, *bord_bbs, from, bb;
306 vec<basic_block> dom_bbs;
307 int i, nrem, n_bord_bbs;
308 bool local_irred_invalidated = false;
309 edge_iterator ei;
310 struct loop *l, *f;
312 if (! irred_invalidated)
313 irred_invalidated = &local_irred_invalidated;
315 if (!can_remove_branch_p (e))
316 return false;
318 /* Keep track of whether we need to update information about irreducible
319 regions. This is the case if the removed area is a part of the
320 irreducible region, or if the set of basic blocks that belong to a loop
321 that is inside an irreducible region is changed, or if such a loop is
322 removed. */
323 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
324 *irred_invalidated = true;
326 /* We need to check whether basic blocks are dominated by the edge
327 e, but we only have basic block dominators. This is easy to
328 fix -- when e->dest has exactly one predecessor, this corresponds
329 to blocks dominated by e->dest, if not, split the edge. */
330 if (!single_pred_p (e->dest))
331 e = single_pred_edge (split_edge (e));
333 /* It may happen that by removing path we remove one or more loops
334 we belong to. In this case first unloop the loops, then proceed
335 normally. We may assume that e->dest is not a header of any loop,
336 as it now has exactly one predecessor. */
337 for (l = e->src->loop_father; loop_outer (l); l = f)
339 f = loop_outer (l);
340 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
341 unloop (l, irred_invalidated, loop_closed_ssa_invalidated);
344 /* Identify the path. */
345 nrem = find_path (e, &rem_bbs);
347 n_bord_bbs = 0;
348 bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
349 auto_sbitmap seen (last_basic_block_for_fn (cfun));
350 bitmap_clear (seen);
352 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
353 for (i = 0; i < nrem; i++)
354 bitmap_set_bit (seen, rem_bbs[i]->index);
355 if (!*irred_invalidated)
356 FOR_EACH_EDGE (ae, ei, e->src->succs)
357 if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
358 && !bitmap_bit_p (seen, ae->dest->index)
359 && ae->flags & EDGE_IRREDUCIBLE_LOOP)
361 *irred_invalidated = true;
362 break;
365 for (i = 0; i < nrem; i++)
367 bb = rem_bbs[i];
368 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
369 if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
370 && !bitmap_bit_p (seen, ae->dest->index))
372 bitmap_set_bit (seen, ae->dest->index);
373 bord_bbs[n_bord_bbs++] = ae->dest;
375 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
376 *irred_invalidated = true;
380 /* Remove the path. */
381 from = e->src;
382 remove_branch (e);
383 dom_bbs.create (0);
385 /* Cancel loops contained in the path. */
386 for (i = 0; i < nrem; i++)
387 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
388 cancel_loop_tree (rem_bbs[i]->loop_father);
390 remove_bbs (rem_bbs, nrem);
391 free (rem_bbs);
393 /* Find blocks whose dominators may be affected. */
394 bitmap_clear (seen);
395 for (i = 0; i < n_bord_bbs; i++)
397 basic_block ldom;
399 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
400 if (bitmap_bit_p (seen, bb->index))
401 continue;
402 bitmap_set_bit (seen, bb->index);
404 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
405 ldom;
406 ldom = next_dom_son (CDI_DOMINATORS, ldom))
407 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
408 dom_bbs.safe_push (ldom);
411 /* Recount dominators. */
412 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
413 dom_bbs.release ();
414 free (bord_bbs);
416 /* Fix placements of basic blocks inside loops and the placement of
417 loops in the loop tree. */
418 fix_bb_placements (from, irred_invalidated, loop_closed_ssa_invalidated);
419 fix_loop_placements (from->loop_father, irred_invalidated);
421 if (local_irred_invalidated
422 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
423 mark_irreducible_loops ();
425 return true;
428 /* Creates place for a new LOOP in loops structure of FN. */
430 void
431 place_new_loop (struct function *fn, struct loop *loop)
433 loop->num = number_of_loops (fn);
434 vec_safe_push (loops_for_fn (fn)->larray, loop);
437 /* Given LOOP structure with filled header and latch, find the body of the
438 corresponding loop and add it to loops tree. Insert the LOOP as a son of
439 outer. */
441 void
442 add_loop (struct loop *loop, struct loop *outer)
444 basic_block *bbs;
445 int i, n;
446 struct loop *subloop;
447 edge e;
448 edge_iterator ei;
450 /* Add it to loop structure. */
451 place_new_loop (cfun, loop);
452 flow_loop_tree_node_add (outer, loop);
454 /* Find its nodes. */
455 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
456 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
458 for (i = 0; i < n; i++)
460 if (bbs[i]->loop_father == outer)
462 remove_bb_from_loops (bbs[i]);
463 add_bb_to_loop (bbs[i], loop);
464 continue;
467 loop->num_nodes++;
469 /* If we find a direct subloop of OUTER, move it to LOOP. */
470 subloop = bbs[i]->loop_father;
471 if (loop_outer (subloop) == outer
472 && subloop->header == bbs[i])
474 flow_loop_tree_node_remove (subloop);
475 flow_loop_tree_node_add (loop, subloop);
479 /* Update the information about loop exit edges. */
480 for (i = 0; i < n; i++)
482 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
484 rescan_loop_exit (e, false, false);
488 free (bbs);
491 /* Scale profile of loop by P. */
493 void
494 scale_loop_frequencies (struct loop *loop, profile_probability p)
496 basic_block *bbs;
498 bbs = get_loop_body (loop);
499 scale_bbs_frequencies (bbs, loop->num_nodes, p);
500 free (bbs);
503 /* Scale profile in LOOP by P.
504 If ITERATION_BOUND is non-zero, scale even further if loop is predicted
505 to iterate too many times.
506 Before caling this function, preheader block profile should be already
507 scaled to final count. This is necessary because loop iterations are
508 determined by comparing header edge count to latch ege count and thus
509 they need to be scaled synchronously. */
511 void
512 scale_loop_profile (struct loop *loop, profile_probability p,
513 gcov_type iteration_bound)
515 edge e, preheader_e;
516 edge_iterator ei;
518 if (dump_file && (dump_flags & TDF_DETAILS))
520 fprintf (dump_file, ";; Scaling loop %i with scale ",
521 loop->num);
522 p.dump (dump_file);
523 fprintf (dump_file, " bounding iterations to %i\n",
524 (int)iteration_bound);
527 /* Scale the probabilities. */
528 scale_loop_frequencies (loop, p);
530 if (iteration_bound == 0)
531 return;
533 gcov_type iterations = expected_loop_iterations_unbounded (loop, NULL, true);
535 if (dump_file && (dump_flags & TDF_DETAILS))
537 fprintf (dump_file, ";; guessed iterations after scaling %i\n",
538 (int)iterations);
541 /* See if loop is predicted to iterate too many times. */
542 if (iterations <= iteration_bound)
543 return;
545 preheader_e = loop_preheader_edge (loop);
547 /* We could handle also loops without preheaders, but bounding is
548 currently used only by optimizers that have preheaders constructed. */
549 gcc_checking_assert (preheader_e);
550 profile_count count_in = preheader_e->count ();
552 if (count_in > profile_count::zero ()
553 && loop->header->count.initialized_p ())
555 profile_count count_delta = profile_count::zero ();
557 e = single_exit (loop);
558 if (e)
560 edge other_e;
561 FOR_EACH_EDGE (other_e, ei, e->src->succs)
562 if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
563 && e != other_e)
564 break;
566 /* Probability of exit must be 1/iterations. */
567 count_delta = e->count ();
568 e->probability = profile_probability::always ()
569 .apply_scale (1, iteration_bound);
570 other_e->probability = e->probability.invert ();
572 /* In code below we only handle the following two updates. */
573 if (other_e->dest != loop->header
574 && other_e->dest != loop->latch
575 && (dump_file && (dump_flags & TDF_DETAILS)))
577 fprintf (dump_file, ";; giving up on update of paths from "
578 "exit condition to latch\n");
581 else
582 if (dump_file && (dump_flags & TDF_DETAILS))
583 fprintf (dump_file, ";; Loop has multiple exit edges; "
584 "giving up on exit condition update\n");
586 /* Roughly speaking we want to reduce the loop body profile by the
587 difference of loop iterations. We however can do better if
588 we look at the actual profile, if it is available. */
589 p = profile_probability::always ();
591 count_in = count_in.apply_scale (iteration_bound, 1);
592 p = count_in.probability_in (loop->header->count);
593 if (!(p > profile_probability::never ()))
594 p = profile_probability::very_unlikely ();
596 if (p == profile_probability::always ()
597 || !p.initialized_p ())
598 return;
600 /* If latch exists, change its count, since we changed
601 probability of exit. Theoretically we should update everything from
602 source of exit edge to latch, but for vectorizer this is enough. */
603 if (loop->latch && loop->latch != e->src)
604 loop->latch->count += count_delta;
606 /* Scale the probabilities. */
607 scale_loop_frequencies (loop, p);
609 /* Change latch's count back. */
610 if (loop->latch && loop->latch != e->src)
611 loop->latch->count -= count_delta;
613 if (dump_file && (dump_flags & TDF_DETAILS))
614 fprintf (dump_file, ";; guessed iterations are now %i\n",
615 (int)expected_loop_iterations_unbounded (loop, NULL, true));
619 /* Recompute dominance information for basic blocks outside LOOP. */
621 static void
622 update_dominators_in_loop (struct loop *loop)
624 vec<basic_block> dom_bbs = vNULL;
625 basic_block *body;
626 unsigned i;
628 auto_sbitmap seen (last_basic_block_for_fn (cfun));
629 bitmap_clear (seen);
630 body = get_loop_body (loop);
632 for (i = 0; i < loop->num_nodes; i++)
633 bitmap_set_bit (seen, body[i]->index);
635 for (i = 0; i < loop->num_nodes; i++)
637 basic_block ldom;
639 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
640 ldom;
641 ldom = next_dom_son (CDI_DOMINATORS, ldom))
642 if (!bitmap_bit_p (seen, ldom->index))
644 bitmap_set_bit (seen, ldom->index);
645 dom_bbs.safe_push (ldom);
649 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
650 free (body);
651 dom_bbs.release ();
654 /* Creates an if region as shown above. CONDITION is used to create
655 the test for the if.
658 | ------------- -------------
659 | | pred_bb | | pred_bb |
660 | ------------- -------------
661 | | |
662 | | | ENTRY_EDGE
663 | | ENTRY_EDGE V
664 | | ====> -------------
665 | | | cond_bb |
666 | | | CONDITION |
667 | | -------------
668 | V / \
669 | ------------- e_false / \ e_true
670 | | succ_bb | V V
671 | ------------- ----------- -----------
672 | | false_bb | | true_bb |
673 | ----------- -----------
674 | \ /
675 | \ /
676 | V V
677 | -------------
678 | | join_bb |
679 | -------------
680 | | exit_edge (result)
682 | -----------
683 | | succ_bb |
684 | -----------
688 edge
689 create_empty_if_region_on_edge (edge entry_edge, tree condition)
692 basic_block cond_bb, true_bb, false_bb, join_bb;
693 edge e_true, e_false, exit_edge;
694 gcond *cond_stmt;
695 tree simple_cond;
696 gimple_stmt_iterator gsi;
698 cond_bb = split_edge (entry_edge);
700 /* Insert condition in cond_bb. */
701 gsi = gsi_last_bb (cond_bb);
702 simple_cond =
703 force_gimple_operand_gsi (&gsi, condition, true, NULL,
704 false, GSI_NEW_STMT);
705 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
706 gsi = gsi_last_bb (cond_bb);
707 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
709 join_bb = split_edge (single_succ_edge (cond_bb));
711 e_true = single_succ_edge (cond_bb);
712 true_bb = split_edge (e_true);
714 e_false = make_edge (cond_bb, join_bb, 0);
715 false_bb = split_edge (e_false);
717 e_true->flags &= ~EDGE_FALLTHRU;
718 e_true->flags |= EDGE_TRUE_VALUE;
719 e_false->flags &= ~EDGE_FALLTHRU;
720 e_false->flags |= EDGE_FALSE_VALUE;
722 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
723 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
724 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
725 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
727 exit_edge = single_succ_edge (join_bb);
729 if (single_pred_p (exit_edge->dest))
730 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
732 return exit_edge;
735 /* create_empty_loop_on_edge
737 | - pred_bb - ------ pred_bb ------
738 | | | | iv0 = initial_value |
739 | -----|----- ---------|-----------
740 | | ______ | entry_edge
741 | | entry_edge / | |
742 | | ====> | -V---V- loop_header -------------
743 | V | | iv_before = phi (iv0, iv_after) |
744 | - succ_bb - | ---|-----------------------------
745 | | | | |
746 | ----------- | ---V--- loop_body ---------------
747 | | | iv_after = iv_before + stride |
748 | | | if (iv_before < upper_bound) |
749 | | ---|--------------\--------------
750 | | | \ exit_e
751 | | V \
752 | | - loop_latch - V- succ_bb -
753 | | | | | |
754 | | /------------- -----------
755 | \ ___ /
757 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
758 that is used before the increment of IV. IV_BEFORE should be used for
759 adding code to the body that uses the IV. OUTER is the outer loop in
760 which the new loop should be inserted.
762 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
763 inserted on the loop entry edge. This implies that this function
764 should be used only when the UPPER_BOUND expression is a loop
765 invariant. */
767 struct loop *
768 create_empty_loop_on_edge (edge entry_edge,
769 tree initial_value,
770 tree stride, tree upper_bound,
771 tree iv,
772 tree *iv_before,
773 tree *iv_after,
774 struct loop *outer)
776 basic_block loop_header, loop_latch, succ_bb, pred_bb;
777 struct loop *loop;
778 gimple_stmt_iterator gsi;
779 gimple_seq stmts;
780 gcond *cond_expr;
781 tree exit_test;
782 edge exit_e;
784 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
786 /* Create header, latch and wire up the loop. */
787 pred_bb = entry_edge->src;
788 loop_header = split_edge (entry_edge);
789 loop_latch = split_edge (single_succ_edge (loop_header));
790 succ_bb = single_succ (loop_latch);
791 make_edge (loop_header, succ_bb, 0);
792 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
794 /* Set immediate dominator information. */
795 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
796 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
797 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
799 /* Initialize a loop structure and put it in a loop hierarchy. */
800 loop = alloc_loop ();
801 loop->header = loop_header;
802 loop->latch = loop_latch;
803 add_loop (loop, outer);
805 /* TODO: Fix counts. */
806 scale_loop_frequencies (loop, profile_probability::even ());
808 /* Update dominators. */
809 update_dominators_in_loop (loop);
811 /* Modify edge flags. */
812 exit_e = single_exit (loop);
813 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
814 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
816 /* Construct IV code in loop. */
817 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
818 if (stmts)
820 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
821 gsi_commit_edge_inserts ();
824 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
825 if (stmts)
827 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
828 gsi_commit_edge_inserts ();
831 gsi = gsi_last_bb (loop_header);
832 create_iv (initial_value, stride, iv, loop, &gsi, false,
833 iv_before, iv_after);
835 /* Insert loop exit condition. */
836 cond_expr = gimple_build_cond
837 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
839 exit_test = gimple_cond_lhs (cond_expr);
840 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
841 false, GSI_NEW_STMT);
842 gimple_cond_set_lhs (cond_expr, exit_test);
843 gsi = gsi_last_bb (exit_e->src);
844 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
846 split_block_after_labels (loop_header);
848 return loop;
851 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
852 latch to header and update loop tree and dominators
853 accordingly. Everything between them plus LATCH_EDGE destination must
854 be dominated by HEADER_EDGE destination, and back-reachable from
855 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
856 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
857 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
858 Returns the newly created loop. Frequencies and counts in the new loop
859 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
861 struct loop *
862 loopify (edge latch_edge, edge header_edge,
863 basic_block switch_bb, edge true_edge, edge false_edge,
864 bool redirect_all_edges, profile_probability true_scale,
865 profile_probability false_scale)
867 basic_block succ_bb = latch_edge->dest;
868 basic_block pred_bb = header_edge->src;
869 struct loop *loop = alloc_loop ();
870 struct loop *outer = loop_outer (succ_bb->loop_father);
871 profile_count cnt;
873 loop->header = header_edge->dest;
874 loop->latch = latch_edge->src;
876 cnt = header_edge->count ();
878 /* Redirect edges. */
879 loop_redirect_edge (latch_edge, loop->header);
880 loop_redirect_edge (true_edge, succ_bb);
882 /* During loop versioning, one of the switch_bb edge is already properly
883 set. Do not redirect it again unless redirect_all_edges is true. */
884 if (redirect_all_edges)
886 loop_redirect_edge (header_edge, switch_bb);
887 loop_redirect_edge (false_edge, loop->header);
889 /* Update dominators. */
890 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
891 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
894 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
896 /* Compute new loop. */
897 add_loop (loop, outer);
899 /* Add switch_bb to appropriate loop. */
900 if (switch_bb->loop_father)
901 remove_bb_from_loops (switch_bb);
902 add_bb_to_loop (switch_bb, outer);
904 /* Fix counts. */
905 if (redirect_all_edges)
907 switch_bb->count = cnt;
909 scale_loop_frequencies (loop, false_scale);
910 scale_loop_frequencies (succ_bb->loop_father, true_scale);
911 update_dominators_in_loop (loop);
913 return loop;
916 /* Remove the latch edge of a LOOP and update loops to indicate that
917 the LOOP was removed. After this function, original loop latch will
918 have no successor, which caller is expected to fix somehow.
920 If this may cause the information about irreducible regions to become
921 invalid, IRRED_INVALIDATED is set to true.
923 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
924 basic blocks that had non-trivial update on their loop_father.*/
926 void
927 unloop (struct loop *loop, bool *irred_invalidated,
928 bitmap loop_closed_ssa_invalidated)
930 basic_block *body;
931 struct loop *ploop;
932 unsigned i, n;
933 basic_block latch = loop->latch;
934 bool dummy = false;
936 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
937 *irred_invalidated = true;
939 /* This is relatively straightforward. The dominators are unchanged, as
940 loop header dominates loop latch, so the only thing we have to care of
941 is the placement of loops and basic blocks inside the loop tree. We
942 move them all to the loop->outer, and then let fix_bb_placements do
943 its work. */
945 body = get_loop_body (loop);
946 n = loop->num_nodes;
947 for (i = 0; i < n; i++)
948 if (body[i]->loop_father == loop)
950 remove_bb_from_loops (body[i]);
951 add_bb_to_loop (body[i], loop_outer (loop));
953 free (body);
955 while (loop->inner)
957 ploop = loop->inner;
958 flow_loop_tree_node_remove (ploop);
959 flow_loop_tree_node_add (loop_outer (loop), ploop);
962 /* Remove the loop and free its data. */
963 delete_loop (loop);
965 remove_edge (single_succ_edge (latch));
967 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
968 there is an irreducible region inside the cancelled loop, the flags will
969 be still correct. */
970 fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
973 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
974 condition stated in description of fix_loop_placement holds for them.
975 It is used in case when we removed some edges coming out of LOOP, which
976 may cause the right placement of LOOP inside loop tree to change.
978 IRRED_INVALIDATED is set to true if a change in the loop structures might
979 invalidate the information about irreducible regions. */
981 static void
982 fix_loop_placements (struct loop *loop, bool *irred_invalidated)
984 struct loop *outer;
986 while (loop_outer (loop))
988 outer = loop_outer (loop);
989 if (!fix_loop_placement (loop, irred_invalidated))
990 break;
992 /* Changing the placement of a loop in the loop tree may alter the
993 validity of condition 2) of the description of fix_bb_placement
994 for its preheader, because the successor is the header and belongs
995 to the loop. So call fix_bb_placements to fix up the placement
996 of the preheader and (possibly) of its predecessors. */
997 fix_bb_placements (loop_preheader_edge (loop)->src,
998 irred_invalidated, NULL);
999 loop = outer;
1003 /* Duplicate loop bounds and other information we store about
1004 the loop into its duplicate. */
1006 void
1007 copy_loop_info (struct loop *loop, struct loop *target)
1009 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
1010 target->any_upper_bound = loop->any_upper_bound;
1011 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
1012 target->any_likely_upper_bound = loop->any_likely_upper_bound;
1013 target->nb_iterations_likely_upper_bound
1014 = loop->nb_iterations_likely_upper_bound;
1015 target->any_estimate = loop->any_estimate;
1016 target->nb_iterations_estimate = loop->nb_iterations_estimate;
1017 target->estimate_state = loop->estimate_state;
1018 target->constraints = loop->constraints;
1019 target->warned_aggressive_loop_optimizations
1020 |= loop->warned_aggressive_loop_optimizations;
1021 target->in_oacc_kernels_region = loop->in_oacc_kernels_region;
1024 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
1025 created loop into loops structure. If AFTER is non-null
1026 the new loop is added at AFTER->next, otherwise in front of TARGETs
1027 sibling list. */
1028 struct loop *
1029 duplicate_loop (struct loop *loop, struct loop *target, struct loop *after)
1031 struct loop *cloop;
1032 cloop = alloc_loop ();
1033 place_new_loop (cfun, cloop);
1035 copy_loop_info (loop, cloop);
1037 /* Mark the new loop as copy of LOOP. */
1038 set_loop_copy (loop, cloop);
1040 /* Add it to target. */
1041 flow_loop_tree_node_add (target, cloop, after);
1043 return cloop;
1046 /* Copies structure of subloops of LOOP into TARGET loop, placing
1047 newly created loops into loop tree at the end of TARGETs sibling
1048 list in the original order. */
1049 void
1050 duplicate_subloops (struct loop *loop, struct loop *target)
1052 struct loop *aloop, *cloop, *tail;
1054 for (tail = target->inner; tail && tail->next; tail = tail->next)
1056 for (aloop = loop->inner; aloop; aloop = aloop->next)
1058 cloop = duplicate_loop (aloop, target, tail);
1059 tail = cloop;
1060 gcc_assert(!tail->next);
1061 duplicate_subloops (aloop, cloop);
1065 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1066 into TARGET loop, placing newly created loops into loop tree adding
1067 them to TARGETs sibling list at the end in order. */
1068 static void
1069 copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
1071 struct loop *aloop, *tail;
1072 int i;
1074 for (tail = target->inner; tail && tail->next; tail = tail->next)
1076 for (i = 0; i < n; i++)
1078 aloop = duplicate_loop (copied_loops[i], target, tail);
1079 tail = aloop;
1080 gcc_assert(!tail->next);
1081 duplicate_subloops (copied_loops[i], aloop);
1085 /* Redirects edge E to basic block DEST. */
1086 static void
1087 loop_redirect_edge (edge e, basic_block dest)
1089 if (e->dest == dest)
1090 return;
1092 redirect_edge_and_branch_force (e, dest);
1095 /* Check whether LOOP's body can be duplicated. */
1096 bool
1097 can_duplicate_loop_p (const struct loop *loop)
1099 int ret;
1100 basic_block *bbs = get_loop_body (loop);
1102 ret = can_copy_bbs_p (bbs, loop->num_nodes);
1103 free (bbs);
1105 return ret;
1108 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
1109 loop structure and dominators (order of inner subloops is retained).
1110 E's destination must be LOOP header for this to work, i.e. it must be entry
1111 or latch edge of this loop; these are unique, as the loops must have
1112 preheaders for this function to work correctly (in case E is latch, the
1113 function unrolls the loop, if E is entry edge, it peels the loop). Store
1114 edges created by copying ORIG edge from copies corresponding to set bits in
1115 WONT_EXIT bitmap (bit 0 corresponds to original LOOP body, the other copies
1116 are numbered in order given by control flow through them) into TO_REMOVE
1117 array. Returns false if duplication is
1118 impossible. */
1120 bool
1121 duplicate_loop_to_header_edge (struct loop *loop, edge e,
1122 unsigned int ndupl, sbitmap wont_exit,
1123 edge orig, vec<edge> *to_remove,
1124 int flags)
1126 struct loop *target, *aloop;
1127 struct loop **orig_loops;
1128 unsigned n_orig_loops;
1129 basic_block header = loop->header, latch = loop->latch;
1130 basic_block *new_bbs, *bbs, *first_active;
1131 basic_block new_bb, bb, first_active_latch = NULL;
1132 edge ae, latch_edge;
1133 edge spec_edges[2], new_spec_edges[2];
1134 const int SE_LATCH = 0;
1135 const int SE_ORIG = 1;
1136 unsigned i, j, n;
1137 int is_latch = (latch == e->src);
1138 profile_probability *scale_step = NULL;
1139 profile_probability scale_main = profile_probability::always ();
1140 profile_probability scale_act = profile_probability::always ();
1141 profile_count after_exit_num = profile_count::zero (),
1142 after_exit_den = profile_count::zero ();
1143 bool scale_after_exit = false;
1144 int add_irreducible_flag;
1145 basic_block place_after;
1146 bitmap bbs_to_scale = NULL;
1147 bitmap_iterator bi;
1149 gcc_assert (e->dest == loop->header);
1150 gcc_assert (ndupl > 0);
1152 if (orig)
1154 /* Orig must be edge out of the loop. */
1155 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1156 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1159 n = loop->num_nodes;
1160 bbs = get_loop_body_in_dom_order (loop);
1161 gcc_assert (bbs[0] == loop->header);
1162 gcc_assert (bbs[n - 1] == loop->latch);
1164 /* Check whether duplication is possible. */
1165 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1167 free (bbs);
1168 return false;
1170 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1172 /* In case we are doing loop peeling and the loop is in the middle of
1173 irreducible region, the peeled copies will be inside it too. */
1174 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1175 gcc_assert (!is_latch || !add_irreducible_flag);
1177 /* Find edge from latch. */
1178 latch_edge = loop_latch_edge (loop);
1180 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1182 /* Calculate coefficients by that we have to scale counts
1183 of duplicated loop bodies. */
1184 profile_count count_in = header->count;
1185 profile_count count_le = latch_edge->count ();
1186 profile_count count_out_orig = orig ? orig->count () : count_in - count_le;
1187 profile_probability prob_pass_thru = count_le.probability_in (count_in);
1188 profile_probability prob_pass_wont_exit =
1189 (count_le + count_out_orig).probability_in (count_in);
1191 if (orig && orig->probability.initialized_p ()
1192 && !(orig->probability == profile_probability::always ()))
1194 /* The blocks that are dominated by a removed exit edge ORIG have
1195 frequencies scaled by this. */
1196 if (orig->count ().initialized_p ())
1198 after_exit_num = orig->src->count;
1199 after_exit_den = after_exit_num - orig->count ();
1200 scale_after_exit = true;
1202 bbs_to_scale = BITMAP_ALLOC (NULL);
1203 for (i = 0; i < n; i++)
1205 if (bbs[i] != orig->src
1206 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1207 bitmap_set_bit (bbs_to_scale, i);
1211 scale_step = XNEWVEC (profile_probability, ndupl);
1213 for (i = 1; i <= ndupl; i++)
1214 scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
1215 ? prob_pass_wont_exit
1216 : prob_pass_thru;
1218 /* Complete peeling is special as the probability of exit in last
1219 copy becomes 1. */
1220 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1222 profile_count wanted_count = e->count ();
1224 gcc_assert (!is_latch);
1225 /* First copy has count of incoming edge. Each subsequent
1226 count should be reduced by prob_pass_wont_exit. Caller
1227 should've managed the flags so all except for original loop
1228 has won't exist set. */
1229 scale_act = wanted_count.probability_in (count_in);
1230 /* Now simulate the duplication adjustments and compute header
1231 frequency of the last copy. */
1232 for (i = 0; i < ndupl; i++)
1233 wanted_count = wanted_count.apply_probability (scale_step [i]);
1234 scale_main = wanted_count.probability_in (count_in);
1236 /* Here we insert loop bodies inside the loop itself (for loop unrolling).
1237 First iteration will be original loop followed by duplicated bodies.
1238 It is necessary to scale down the original so we get right overall
1239 number of iterations. */
1240 else if (is_latch)
1242 profile_probability prob_pass_main = bitmap_bit_p (wont_exit, 0)
1243 ? prob_pass_wont_exit
1244 : prob_pass_thru;
1245 profile_probability p = prob_pass_main;
1246 profile_count scale_main_den = count_in;
1247 for (i = 0; i < ndupl; i++)
1249 scale_main_den += count_in.apply_probability (p);
1250 p = p * scale_step[i];
1252 /* If original loop is executed COUNT_IN times, the unrolled
1253 loop will account SCALE_MAIN_DEN times. */
1254 scale_main = count_in.probability_in (scale_main_den);
1255 scale_act = scale_main * prob_pass_main;
1257 else
1259 profile_count preheader_count = e->count ();
1260 for (i = 0; i < ndupl; i++)
1261 scale_main = scale_main * scale_step[i];
1262 scale_act = preheader_count.probability_in (count_in);
1266 /* Loop the new bbs will belong to. */
1267 target = e->src->loop_father;
1269 /* Original loops. */
1270 n_orig_loops = 0;
1271 for (aloop = loop->inner; aloop; aloop = aloop->next)
1272 n_orig_loops++;
1273 orig_loops = XNEWVEC (struct loop *, n_orig_loops);
1274 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1275 orig_loops[i] = aloop;
1277 set_loop_copy (loop, target);
1279 first_active = XNEWVEC (basic_block, n);
1280 if (is_latch)
1282 memcpy (first_active, bbs, n * sizeof (basic_block));
1283 first_active_latch = latch;
1286 spec_edges[SE_ORIG] = orig;
1287 spec_edges[SE_LATCH] = latch_edge;
1289 place_after = e->src;
1290 for (j = 0; j < ndupl; j++)
1292 /* Copy loops. */
1293 copy_loops_to (orig_loops, n_orig_loops, target);
1295 /* Copy bbs. */
1296 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1297 place_after, true);
1298 place_after = new_spec_edges[SE_LATCH]->src;
1300 if (flags & DLTHE_RECORD_COPY_NUMBER)
1301 for (i = 0; i < n; i++)
1303 gcc_assert (!new_bbs[i]->aux);
1304 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1307 /* Note whether the blocks and edges belong to an irreducible loop. */
1308 if (add_irreducible_flag)
1310 for (i = 0; i < n; i++)
1311 new_bbs[i]->flags |= BB_DUPLICATED;
1312 for (i = 0; i < n; i++)
1314 edge_iterator ei;
1315 new_bb = new_bbs[i];
1316 if (new_bb->loop_father == target)
1317 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1319 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1320 if ((ae->dest->flags & BB_DUPLICATED)
1321 && (ae->src->loop_father == target
1322 || ae->dest->loop_father == target))
1323 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1325 for (i = 0; i < n; i++)
1326 new_bbs[i]->flags &= ~BB_DUPLICATED;
1329 /* Redirect the special edges. */
1330 if (is_latch)
1332 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1333 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1334 loop->header);
1335 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1336 latch = loop->latch = new_bbs[n - 1];
1337 e = latch_edge = new_spec_edges[SE_LATCH];
1339 else
1341 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1342 loop->header);
1343 redirect_edge_and_branch_force (e, new_bbs[0]);
1344 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1345 e = new_spec_edges[SE_LATCH];
1348 /* Record exit edge in this copy. */
1349 if (orig && bitmap_bit_p (wont_exit, j + 1))
1351 if (to_remove)
1352 to_remove->safe_push (new_spec_edges[SE_ORIG]);
1353 force_edge_cold (new_spec_edges[SE_ORIG], true);
1355 /* Scale the frequencies of the blocks dominated by the exit. */
1356 if (bbs_to_scale && scale_after_exit)
1358 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1359 scale_bbs_frequencies_profile_count (new_bbs + i, 1, after_exit_num,
1360 after_exit_den);
1364 /* Record the first copy in the control flow order if it is not
1365 the original loop (i.e. in case of peeling). */
1366 if (!first_active_latch)
1368 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1369 first_active_latch = new_bbs[n - 1];
1372 /* Set counts and frequencies. */
1373 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1375 scale_bbs_frequencies (new_bbs, n, scale_act);
1376 scale_act = scale_act * scale_step[j];
1379 free (new_bbs);
1380 free (orig_loops);
1382 /* Record the exit edge in the original loop body, and update the frequencies. */
1383 if (orig && bitmap_bit_p (wont_exit, 0))
1385 if (to_remove)
1386 to_remove->safe_push (orig);
1387 force_edge_cold (orig, true);
1389 /* Scale the frequencies of the blocks dominated by the exit. */
1390 if (bbs_to_scale && scale_after_exit)
1392 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1393 scale_bbs_frequencies_profile_count (bbs + i, 1, after_exit_num,
1394 after_exit_den);
1398 /* Update the original loop. */
1399 if (!is_latch)
1400 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1401 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1403 scale_bbs_frequencies (bbs, n, scale_main);
1404 free (scale_step);
1407 /* Update dominators of outer blocks if affected. */
1408 for (i = 0; i < n; i++)
1410 basic_block dominated, dom_bb;
1411 vec<basic_block> dom_bbs;
1412 unsigned j;
1414 bb = bbs[i];
1415 bb->aux = 0;
1417 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1418 FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
1420 if (flow_bb_inside_loop_p (loop, dominated))
1421 continue;
1422 dom_bb = nearest_common_dominator (
1423 CDI_DOMINATORS, first_active[i], first_active_latch);
1424 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1426 dom_bbs.release ();
1428 free (first_active);
1430 free (bbs);
1431 BITMAP_FREE (bbs_to_scale);
1433 return true;
1436 /* A callback for make_forwarder block, to redirect all edges except for
1437 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1438 whether to redirect it. */
1440 edge mfb_kj_edge;
1441 bool
1442 mfb_keep_just (edge e)
1444 return e != mfb_kj_edge;
1447 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1449 static bool
1450 has_preds_from_loop (basic_block block, struct loop *loop)
1452 edge e;
1453 edge_iterator ei;
1455 FOR_EACH_EDGE (e, ei, block->preds)
1456 if (e->src->loop_father == loop)
1457 return true;
1458 return false;
1461 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1462 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1463 entry; otherwise we also force preheader block to have only one successor.
1464 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1465 to be a fallthru predecessor to the loop header and to have only
1466 predecessors from outside of the loop.
1467 The function also updates dominators. */
1469 basic_block
1470 create_preheader (struct loop *loop, int flags)
1472 edge e;
1473 basic_block dummy;
1474 int nentry = 0;
1475 bool irred = false;
1476 bool latch_edge_was_fallthru;
1477 edge one_succ_pred = NULL, single_entry = NULL;
1478 edge_iterator ei;
1480 FOR_EACH_EDGE (e, ei, loop->header->preds)
1482 if (e->src == loop->latch)
1483 continue;
1484 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1485 nentry++;
1486 single_entry = e;
1487 if (single_succ_p (e->src))
1488 one_succ_pred = e;
1490 gcc_assert (nentry);
1491 if (nentry == 1)
1493 bool need_forwarder_block = false;
1495 /* We do not allow entry block to be the loop preheader, since we
1496 cannot emit code there. */
1497 if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1498 need_forwarder_block = true;
1499 else
1501 /* If we want simple preheaders, also force the preheader to have
1502 just a single successor. */
1503 if ((flags & CP_SIMPLE_PREHEADERS)
1504 && !single_succ_p (single_entry->src))
1505 need_forwarder_block = true;
1506 /* If we want fallthru preheaders, also create forwarder block when
1507 preheader ends with a jump or has predecessors from loop. */
1508 else if ((flags & CP_FALLTHRU_PREHEADERS)
1509 && (JUMP_P (BB_END (single_entry->src))
1510 || has_preds_from_loop (single_entry->src, loop)))
1511 need_forwarder_block = true;
1513 if (! need_forwarder_block)
1514 return NULL;
1517 mfb_kj_edge = loop_latch_edge (loop);
1518 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1519 if (nentry == 1
1520 && ((flags & CP_FALLTHRU_PREHEADERS) == 0
1521 || (single_entry->flags & EDGE_CROSSING) == 0))
1522 dummy = split_edge (single_entry);
1523 else
1525 edge fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1526 dummy = fallthru->src;
1527 loop->header = fallthru->dest;
1530 /* Try to be clever in placing the newly created preheader. The idea is to
1531 avoid breaking any "fallthruness" relationship between blocks.
1533 The preheader was created just before the header and all incoming edges
1534 to the header were redirected to the preheader, except the latch edge.
1535 So the only problematic case is when this latch edge was a fallthru
1536 edge: it is not anymore after the preheader creation so we have broken
1537 the fallthruness. We're therefore going to look for a better place. */
1538 if (latch_edge_was_fallthru)
1540 if (one_succ_pred)
1541 e = one_succ_pred;
1542 else
1543 e = EDGE_PRED (dummy, 0);
1545 move_block_after (dummy, e->src);
1548 if (irred)
1550 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1551 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1554 if (dump_file)
1555 fprintf (dump_file, "Created preheader block for loop %i\n",
1556 loop->num);
1558 if (flags & CP_FALLTHRU_PREHEADERS)
1559 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1560 && !JUMP_P (BB_END (dummy)));
1562 return dummy;
1565 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1567 void
1568 create_preheaders (int flags)
1570 struct loop *loop;
1572 if (!current_loops)
1573 return;
1575 FOR_EACH_LOOP (loop, 0)
1576 create_preheader (loop, flags);
1577 loops_state_set (LOOPS_HAVE_PREHEADERS);
1580 /* Forces all loop latches to have only single successor. */
1582 void
1583 force_single_succ_latches (void)
1585 struct loop *loop;
1586 edge e;
1588 FOR_EACH_LOOP (loop, 0)
1590 if (loop->latch != loop->header && single_succ_p (loop->latch))
1591 continue;
1593 e = find_edge (loop->latch, loop->header);
1594 gcc_checking_assert (e != NULL);
1596 split_edge (e);
1598 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1601 /* This function is called from loop_version. It splits the entry edge
1602 of the loop we want to version, adds the versioning condition, and
1603 adjust the edges to the two versions of the loop appropriately.
1604 e is an incoming edge. Returns the basic block containing the
1605 condition.
1607 --- edge e ---- > [second_head]
1609 Split it and insert new conditional expression and adjust edges.
1611 --- edge e ---> [cond expr] ---> [first_head]
1613 +---------> [second_head]
1615 THEN_PROB is the probability of then branch of the condition.
1616 ELSE_PROB is the probability of else branch. Note that they may be both
1617 REG_BR_PROB_BASE when condition is IFN_LOOP_VECTORIZED or
1618 IFN_LOOP_DIST_ALIAS. */
1620 static basic_block
1621 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1622 edge e, void *cond_expr,
1623 profile_probability then_prob,
1624 profile_probability else_prob)
1626 basic_block new_head = NULL;
1627 edge e1;
1629 gcc_assert (e->dest == second_head);
1631 /* Split edge 'e'. This will create a new basic block, where we can
1632 insert conditional expr. */
1633 new_head = split_edge (e);
1635 lv_add_condition_to_bb (first_head, second_head, new_head,
1636 cond_expr);
1638 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1639 e = single_succ_edge (new_head);
1640 e1 = make_edge (new_head, first_head,
1641 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1642 e1->probability = then_prob;
1643 e->probability = else_prob;
1645 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1646 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1648 /* Adjust loop header phi nodes. */
1649 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1651 return new_head;
1654 /* Main entry point for Loop Versioning transformation.
1656 This transformation given a condition and a loop, creates
1657 -if (condition) { loop_copy1 } else { loop_copy2 },
1658 where loop_copy1 is the loop transformed in one way, and loop_copy2
1659 is the loop transformed in another way (or unchanged). COND_EXPR
1660 may be a run time test for things that were not resolved by static
1661 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1663 If non-NULL, CONDITION_BB is set to the basic block containing the
1664 condition.
1666 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1667 is the ratio by that the frequencies in the original loop should
1668 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1669 new loop should be scaled.
1671 If PLACE_AFTER is true, we place the new loop after LOOP in the
1672 instruction stream, otherwise it is placed before LOOP. */
1674 struct loop *
1675 loop_version (struct loop *loop,
1676 void *cond_expr, basic_block *condition_bb,
1677 profile_probability then_prob, profile_probability else_prob,
1678 profile_probability then_scale, profile_probability else_scale,
1679 bool place_after)
1681 basic_block first_head, second_head;
1682 edge entry, latch_edge, true_edge, false_edge;
1683 int irred_flag;
1684 struct loop *nloop;
1685 basic_block cond_bb;
1687 /* Record entry and latch edges for the loop */
1688 entry = loop_preheader_edge (loop);
1689 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1690 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1692 /* Note down head of loop as first_head. */
1693 first_head = entry->dest;
1695 /* Duplicate loop. */
1696 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1697 NULL, NULL, NULL, 0))
1699 entry->flags |= irred_flag;
1700 return NULL;
1703 /* After duplication entry edge now points to new loop head block.
1704 Note down new head as second_head. */
1705 second_head = entry->dest;
1707 /* Split loop entry edge and insert new block with cond expr. */
1708 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1709 entry, cond_expr, then_prob, else_prob);
1710 if (condition_bb)
1711 *condition_bb = cond_bb;
1713 if (!cond_bb)
1715 entry->flags |= irred_flag;
1716 return NULL;
1719 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1721 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1722 nloop = loopify (latch_edge,
1723 single_pred_edge (get_bb_copy (loop->header)),
1724 cond_bb, true_edge, false_edge,
1725 false /* Do not redirect all edges. */,
1726 then_scale, else_scale);
1728 copy_loop_info (loop, nloop);
1730 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1731 lv_flush_pending_stmts (latch_edge);
1733 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
1734 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1735 lv_flush_pending_stmts (false_edge);
1736 /* Adjust irreducible flag. */
1737 if (irred_flag)
1739 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1740 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1741 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1742 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1745 if (place_after)
1747 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1748 unsigned i;
1750 after = loop->latch;
1752 for (i = 0; i < nloop->num_nodes; i++)
1754 move_block_after (bbs[i], after);
1755 after = bbs[i];
1757 free (bbs);
1760 /* At this point condition_bb is loop preheader with two successors,
1761 first_head and second_head. Make sure that loop preheader has only
1762 one successor. */
1763 split_edge (loop_preheader_edge (loop));
1764 split_edge (loop_preheader_edge (nloop));
1766 return nloop;