1 /* Implementation of the MINLOC intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
36 #include "libgfortran.h"
39 #if defined (HAVE_GFC_INTEGER_4) && defined (HAVE_GFC_INTEGER_16)
42 extern void minloc1_16_i4 (gfc_array_i16
* const restrict
,
43 gfc_array_i4
* const restrict
, const index_type
* const restrict
);
44 export_proto(minloc1_16_i4
);
47 minloc1_16_i4 (gfc_array_i16
* const restrict retarray
,
48 gfc_array_i4
* const restrict array
,
49 const index_type
* const restrict pdim
)
51 index_type count
[GFC_MAX_DIMENSIONS
];
52 index_type extent
[GFC_MAX_DIMENSIONS
];
53 index_type sstride
[GFC_MAX_DIMENSIONS
];
54 index_type dstride
[GFC_MAX_DIMENSIONS
];
55 const GFC_INTEGER_4
* restrict base
;
56 GFC_INTEGER_16
* restrict dest
;
63 /* Make dim zero based to avoid confusion. */
65 rank
= GFC_DESCRIPTOR_RANK (array
) - 1;
67 len
= array
->dim
[dim
].ubound
+ 1 - array
->dim
[dim
].lbound
;
68 delta
= array
->dim
[dim
].stride
;
70 for (n
= 0; n
< dim
; n
++)
72 sstride
[n
] = array
->dim
[n
].stride
;
73 extent
[n
] = array
->dim
[n
].ubound
+ 1 - array
->dim
[n
].lbound
;
75 for (n
= dim
; n
< rank
; n
++)
77 sstride
[n
] = array
->dim
[n
+ 1].stride
;
79 array
->dim
[n
+ 1].ubound
+ 1 - array
->dim
[n
+ 1].lbound
;
82 if (retarray
->data
== NULL
)
84 for (n
= 0; n
< rank
; n
++)
86 retarray
->dim
[n
].lbound
= 0;
87 retarray
->dim
[n
].ubound
= extent
[n
]-1;
89 retarray
->dim
[n
].stride
= 1;
91 retarray
->dim
[n
].stride
= retarray
->dim
[n
-1].stride
* extent
[n
-1];
95 = internal_malloc_size (sizeof (GFC_INTEGER_16
)
96 * retarray
->dim
[rank
-1].stride
99 retarray
->dtype
= (array
->dtype
& ~GFC_DTYPE_RANK_MASK
) | rank
;
103 if (rank
!= GFC_DESCRIPTOR_RANK (retarray
))
104 runtime_error ("rank of return array incorrect");
107 for (n
= 0; n
< rank
; n
++)
110 dstride
[n
] = retarray
->dim
[n
].stride
;
116 dest
= retarray
->data
;
120 const GFC_INTEGER_4
* restrict src
;
121 GFC_INTEGER_16 result
;
125 GFC_INTEGER_4 minval
;
126 minval
= GFC_INTEGER_4_HUGE
;
132 for (n
= 0; n
< len
; n
++, src
+= delta
)
135 if (*src
< minval
|| !result
)
138 result
= (GFC_INTEGER_16
)n
+ 1;
144 /* Advance to the next element. */
149 while (count
[n
] == extent
[n
])
151 /* When we get to the end of a dimension, reset it and increment
152 the next dimension. */
154 /* We could precalculate these products, but this is a less
155 frequently used path so proabably not worth it. */
156 base
-= sstride
[n
] * extent
[n
];
157 dest
-= dstride
[n
] * extent
[n
];
161 /* Break out of the look. */
176 extern void mminloc1_16_i4 (gfc_array_i16
* const restrict
,
177 gfc_array_i4
* const restrict
, const index_type
* const restrict
,
178 gfc_array_l4
* const restrict
);
179 export_proto(mminloc1_16_i4
);
182 mminloc1_16_i4 (gfc_array_i16
* const restrict retarray
,
183 gfc_array_i4
* const restrict array
,
184 const index_type
* const restrict pdim
,
185 gfc_array_l4
* const restrict mask
)
187 index_type count
[GFC_MAX_DIMENSIONS
];
188 index_type extent
[GFC_MAX_DIMENSIONS
];
189 index_type sstride
[GFC_MAX_DIMENSIONS
];
190 index_type dstride
[GFC_MAX_DIMENSIONS
];
191 index_type mstride
[GFC_MAX_DIMENSIONS
];
192 GFC_INTEGER_16
* restrict dest
;
193 const GFC_INTEGER_4
* restrict base
;
194 const GFC_LOGICAL_4
* restrict mbase
;
203 rank
= GFC_DESCRIPTOR_RANK (array
) - 1;
205 len
= array
->dim
[dim
].ubound
+ 1 - array
->dim
[dim
].lbound
;
208 delta
= array
->dim
[dim
].stride
;
209 mdelta
= mask
->dim
[dim
].stride
;
211 for (n
= 0; n
< dim
; n
++)
213 sstride
[n
] = array
->dim
[n
].stride
;
214 mstride
[n
] = mask
->dim
[n
].stride
;
215 extent
[n
] = array
->dim
[n
].ubound
+ 1 - array
->dim
[n
].lbound
;
217 for (n
= dim
; n
< rank
; n
++)
219 sstride
[n
] = array
->dim
[n
+ 1].stride
;
220 mstride
[n
] = mask
->dim
[n
+ 1].stride
;
222 array
->dim
[n
+ 1].ubound
+ 1 - array
->dim
[n
+ 1].lbound
;
225 if (retarray
->data
== NULL
)
227 for (n
= 0; n
< rank
; n
++)
229 retarray
->dim
[n
].lbound
= 0;
230 retarray
->dim
[n
].ubound
= extent
[n
]-1;
232 retarray
->dim
[n
].stride
= 1;
234 retarray
->dim
[n
].stride
= retarray
->dim
[n
-1].stride
* extent
[n
-1];
238 = internal_malloc_size (sizeof (GFC_INTEGER_16
)
239 * retarray
->dim
[rank
-1].stride
241 retarray
->offset
= 0;
242 retarray
->dtype
= (array
->dtype
& ~GFC_DTYPE_RANK_MASK
) | rank
;
246 if (rank
!= GFC_DESCRIPTOR_RANK (retarray
))
247 runtime_error ("rank of return array incorrect");
250 for (n
= 0; n
< rank
; n
++)
253 dstride
[n
] = retarray
->dim
[n
].stride
;
258 dest
= retarray
->data
;
262 if (GFC_DESCRIPTOR_SIZE (mask
) != 4)
264 /* This allows the same loop to be used for all logical types. */
265 assert (GFC_DESCRIPTOR_SIZE (mask
) == 8);
266 for (n
= 0; n
< rank
; n
++)
269 mbase
= (GFOR_POINTER_L8_TO_L4 (mbase
));
274 const GFC_INTEGER_4
* restrict src
;
275 const GFC_LOGICAL_4
* restrict msrc
;
276 GFC_INTEGER_16 result
;
281 GFC_INTEGER_4 minval
;
282 minval
= GFC_INTEGER_4_HUGE
;
288 for (n
= 0; n
< len
; n
++, src
+= delta
, msrc
+= mdelta
)
291 if (*msrc
&& (*src
< minval
|| !result
))
294 result
= (GFC_INTEGER_16
)n
+ 1;
300 /* Advance to the next element. */
306 while (count
[n
] == extent
[n
])
308 /* When we get to the end of a dimension, reset it and increment
309 the next dimension. */
311 /* We could precalculate these products, but this is a less
312 frequently used path so proabably not worth it. */
313 base
-= sstride
[n
] * extent
[n
];
314 mbase
-= mstride
[n
] * extent
[n
];
315 dest
-= dstride
[n
] * extent
[n
];
319 /* Break out of the look. */
335 extern void sminloc1_16_i4 (gfc_array_i16
* const restrict
,
336 gfc_array_i4
* const restrict
, const index_type
* const restrict
,
338 export_proto(sminloc1_16_i4
);
341 sminloc1_16_i4 (gfc_array_i16
* const restrict retarray
,
342 gfc_array_i4
* const restrict array
,
343 const index_type
* const restrict pdim
,
344 GFC_LOGICAL_4
* mask
)
349 GFC_INTEGER_16
*dest
;
353 minloc1_16_i4 (retarray
, array
, pdim
);
356 rank
= GFC_DESCRIPTOR_RANK (array
);
358 runtime_error ("Rank of array needs to be > 0");
360 if (retarray
->data
== NULL
)
362 retarray
->dim
[0].lbound
= 0;
363 retarray
->dim
[0].ubound
= rank
-1;
364 retarray
->dim
[0].stride
= 1;
365 retarray
->dtype
= (retarray
->dtype
& ~GFC_DTYPE_RANK_MASK
) | 1;
366 retarray
->offset
= 0;
367 retarray
->data
= internal_malloc_size (sizeof (GFC_INTEGER_16
) * rank
);
371 if (GFC_DESCRIPTOR_RANK (retarray
) != 1)
372 runtime_error ("rank of return array does not equal 1");
374 if (retarray
->dim
[0].ubound
+ 1 - retarray
->dim
[0].lbound
!= rank
)
375 runtime_error ("dimension of return array incorrect");
378 dstride
= retarray
->dim
[0].stride
;
379 dest
= retarray
->data
;
381 for (n
= 0; n
< rank
; n
++)
382 dest
[n
* dstride
] = 0 ;