2006-06-30 Andrew Pinski <pinskia@gmail.com>
[official-gcc.git] / libgfortran / generated / matmul_i8.c
blob7bdfb6f715431fc7bdc11a682ecfe75eb27a9bb5
1 /* Implementation of the MATMUL intrinsic
2 Copyright 2002, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
31 #include "config.h"
32 #include <stdlib.h>
33 #include <string.h>
34 #include <assert.h>
35 #include "libgfortran.h"
37 #if defined (HAVE_GFC_INTEGER_8)
39 /* The order of loops is different in the case of plain matrix
40 multiplication C=MATMUL(A,B), and in the frequent special case where
41 the argument A is the temporary result of a TRANSPOSE intrinsic:
42 C=MATMUL(TRANSPOSE(A),B). Transposed temporaries are detected by
43 looking at their strides.
45 The equivalent Fortran pseudo-code is:
47 DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
48 IF (.NOT.IS_TRANSPOSED(A)) THEN
49 C = 0
50 DO J=1,N
51 DO K=1,COUNT
52 DO I=1,M
53 C(I,J) = C(I,J)+A(I,K)*B(K,J)
54 ELSE
55 DO J=1,N
56 DO I=1,M
57 S = 0
58 DO K=1,COUNT
59 S = S+A(I,K)+B(K,J)
60 C(I,J) = S
61 ENDIF
64 extern void matmul_i8 (gfc_array_i8 * const restrict retarray,
65 gfc_array_i8 * const restrict a, gfc_array_i8 * const restrict b);
66 export_proto(matmul_i8);
68 void
69 matmul_i8 (gfc_array_i8 * const restrict retarray,
70 gfc_array_i8 * const restrict a, gfc_array_i8 * const restrict b)
72 const GFC_INTEGER_8 * restrict abase;
73 const GFC_INTEGER_8 * restrict bbase;
74 GFC_INTEGER_8 * restrict dest;
76 index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
77 index_type x, y, n, count, xcount, ycount;
79 assert (GFC_DESCRIPTOR_RANK (a) == 2
80 || GFC_DESCRIPTOR_RANK (b) == 2);
82 /* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
84 Either A or B (but not both) can be rank 1:
86 o One-dimensional argument A is implicitly treated as a row matrix
87 dimensioned [1,count], so xcount=1.
89 o One-dimensional argument B is implicitly treated as a column matrix
90 dimensioned [count, 1], so ycount=1.
93 if (retarray->data == NULL)
95 if (GFC_DESCRIPTOR_RANK (a) == 1)
97 retarray->dim[0].lbound = 0;
98 retarray->dim[0].ubound = b->dim[1].ubound - b->dim[1].lbound;
99 retarray->dim[0].stride = 1;
101 else if (GFC_DESCRIPTOR_RANK (b) == 1)
103 retarray->dim[0].lbound = 0;
104 retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
105 retarray->dim[0].stride = 1;
107 else
109 retarray->dim[0].lbound = 0;
110 retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
111 retarray->dim[0].stride = 1;
113 retarray->dim[1].lbound = 0;
114 retarray->dim[1].ubound = b->dim[1].ubound - b->dim[1].lbound;
115 retarray->dim[1].stride = retarray->dim[0].ubound+1;
118 retarray->data
119 = internal_malloc_size (sizeof (GFC_INTEGER_8) * size0 ((array_t *) retarray));
120 retarray->offset = 0;
124 if (GFC_DESCRIPTOR_RANK (retarray) == 1)
126 /* One-dimensional result may be addressed in the code below
127 either as a row or a column matrix. We want both cases to
128 work. */
129 rxstride = rystride = retarray->dim[0].stride;
131 else
133 rxstride = retarray->dim[0].stride;
134 rystride = retarray->dim[1].stride;
138 if (GFC_DESCRIPTOR_RANK (a) == 1)
140 /* Treat it as a a row matrix A[1,count]. */
141 axstride = a->dim[0].stride;
142 aystride = 1;
144 xcount = 1;
145 count = a->dim[0].ubound + 1 - a->dim[0].lbound;
147 else
149 axstride = a->dim[0].stride;
150 aystride = a->dim[1].stride;
152 count = a->dim[1].ubound + 1 - a->dim[1].lbound;
153 xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
156 assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
158 if (GFC_DESCRIPTOR_RANK (b) == 1)
160 /* Treat it as a column matrix B[count,1] */
161 bxstride = b->dim[0].stride;
163 /* bystride should never be used for 1-dimensional b.
164 in case it is we want it to cause a segfault, rather than
165 an incorrect result. */
166 bystride = 0xDEADBEEF;
167 ycount = 1;
169 else
171 bxstride = b->dim[0].stride;
172 bystride = b->dim[1].stride;
173 ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
176 abase = a->data;
177 bbase = b->data;
178 dest = retarray->data;
180 if (rxstride == 1 && axstride == 1 && bxstride == 1)
182 const GFC_INTEGER_8 * restrict bbase_y;
183 GFC_INTEGER_8 * restrict dest_y;
184 const GFC_INTEGER_8 * restrict abase_n;
185 GFC_INTEGER_8 bbase_yn;
187 if (rystride == xcount)
188 memset (dest, 0, (sizeof (GFC_INTEGER_8) * xcount * ycount));
189 else
191 for (y = 0; y < ycount; y++)
192 for (x = 0; x < xcount; x++)
193 dest[x + y*rystride] = (GFC_INTEGER_8)0;
196 for (y = 0; y < ycount; y++)
198 bbase_y = bbase + y*bystride;
199 dest_y = dest + y*rystride;
200 for (n = 0; n < count; n++)
202 abase_n = abase + n*aystride;
203 bbase_yn = bbase_y[n];
204 for (x = 0; x < xcount; x++)
206 dest_y[x] += abase_n[x] * bbase_yn;
211 else if (rxstride == 1 && aystride == 1 && bxstride == 1)
213 if (GFC_DESCRIPTOR_RANK (a) != 1)
215 const GFC_INTEGER_8 *restrict abase_x;
216 const GFC_INTEGER_8 *restrict bbase_y;
217 GFC_INTEGER_8 *restrict dest_y;
218 GFC_INTEGER_8 s;
220 for (y = 0; y < ycount; y++)
222 bbase_y = &bbase[y*bystride];
223 dest_y = &dest[y*rystride];
224 for (x = 0; x < xcount; x++)
226 abase_x = &abase[x*axstride];
227 s = (GFC_INTEGER_8) 0;
228 for (n = 0; n < count; n++)
229 s += abase_x[n] * bbase_y[n];
230 dest_y[x] = s;
234 else
236 const GFC_INTEGER_8 *restrict bbase_y;
237 GFC_INTEGER_8 s;
239 for (y = 0; y < ycount; y++)
241 bbase_y = &bbase[y*bystride];
242 s = (GFC_INTEGER_8) 0;
243 for (n = 0; n < count; n++)
244 s += abase[n*axstride] * bbase_y[n];
245 dest[y*rystride] = s;
249 else if (axstride < aystride)
251 for (y = 0; y < ycount; y++)
252 for (x = 0; x < xcount; x++)
253 dest[x*rxstride + y*rystride] = (GFC_INTEGER_8)0;
255 for (y = 0; y < ycount; y++)
256 for (n = 0; n < count; n++)
257 for (x = 0; x < xcount; x++)
258 /* dest[x,y] += a[x,n] * b[n,y] */
259 dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
261 else
263 const GFC_INTEGER_8 *restrict abase_x;
264 const GFC_INTEGER_8 *restrict bbase_y;
265 GFC_INTEGER_8 *restrict dest_y;
266 GFC_INTEGER_8 s;
268 for (y = 0; y < ycount; y++)
270 bbase_y = &bbase[y*bystride];
271 dest_y = &dest[y*rystride];
272 for (x = 0; x < xcount; x++)
274 abase_x = &abase[x*axstride];
275 s = (GFC_INTEGER_8) 0;
276 for (n = 0; n < count; n++)
277 s += abase_x[n*aystride] * bbase_y[n*bxstride];
278 dest_y[x*rxstride] = s;
284 #endif