PR sanitizer/65081
[official-gcc.git] / gcc / var-tracking.c
blob9ec5d8bcf81c384bf00642ae69308fc08b5fd145
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "rtl.h"
93 #include "hash-set.h"
94 #include "machmode.h"
95 #include "vec.h"
96 #include "double-int.h"
97 #include "input.h"
98 #include "alias.h"
99 #include "symtab.h"
100 #include "wide-int.h"
101 #include "inchash.h"
102 #include "tree.h"
103 #include "varasm.h"
104 #include "stor-layout.h"
105 #include "hash-map.h"
106 #include "hash-table.h"
107 #include "predict.h"
108 #include "hard-reg-set.h"
109 #include "function.h"
110 #include "dominance.h"
111 #include "cfg.h"
112 #include "cfgrtl.h"
113 #include "cfganal.h"
114 #include "basic-block.h"
115 #include "tm_p.h"
116 #include "flags.h"
117 #include "insn-config.h"
118 #include "reload.h"
119 #include "sbitmap.h"
120 #include "alloc-pool.h"
121 #include "regs.h"
122 #include "hashtab.h"
123 #include "statistics.h"
124 #include "real.h"
125 #include "fixed-value.h"
126 #include "expmed.h"
127 #include "dojump.h"
128 #include "explow.h"
129 #include "calls.h"
130 #include "emit-rtl.h"
131 #include "stmt.h"
132 #include "expr.h"
133 #include "tree-pass.h"
134 #include "bitmap.h"
135 #include "tree-dfa.h"
136 #include "tree-ssa.h"
137 #include "cselib.h"
138 #include "target.h"
139 #include "params.h"
140 #include "diagnostic.h"
141 #include "tree-pretty-print.h"
142 #include "recog.h"
143 #include "rtl-iter.h"
144 #include "fibonacci_heap.h"
146 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
147 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
149 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
150 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
151 Currently the value is the same as IDENTIFIER_NODE, which has such
152 a property. If this compile time assertion ever fails, make sure that
153 the new tree code that equals (int) VALUE has the same property. */
154 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
156 /* Type of micro operation. */
157 enum micro_operation_type
159 MO_USE, /* Use location (REG or MEM). */
160 MO_USE_NO_VAR,/* Use location which is not associated with a variable
161 or the variable is not trackable. */
162 MO_VAL_USE, /* Use location which is associated with a value. */
163 MO_VAL_LOC, /* Use location which appears in a debug insn. */
164 MO_VAL_SET, /* Set location associated with a value. */
165 MO_SET, /* Set location. */
166 MO_COPY, /* Copy the same portion of a variable from one
167 location to another. */
168 MO_CLOBBER, /* Clobber location. */
169 MO_CALL, /* Call insn. */
170 MO_ADJUST /* Adjust stack pointer. */
174 static const char * const ATTRIBUTE_UNUSED
175 micro_operation_type_name[] = {
176 "MO_USE",
177 "MO_USE_NO_VAR",
178 "MO_VAL_USE",
179 "MO_VAL_LOC",
180 "MO_VAL_SET",
181 "MO_SET",
182 "MO_COPY",
183 "MO_CLOBBER",
184 "MO_CALL",
185 "MO_ADJUST"
188 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
189 Notes emitted as AFTER_CALL are to take effect during the call,
190 rather than after the call. */
191 enum emit_note_where
193 EMIT_NOTE_BEFORE_INSN,
194 EMIT_NOTE_AFTER_INSN,
195 EMIT_NOTE_AFTER_CALL_INSN
198 /* Structure holding information about micro operation. */
199 typedef struct micro_operation_def
201 /* Type of micro operation. */
202 enum micro_operation_type type;
204 /* The instruction which the micro operation is in, for MO_USE,
205 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
206 instruction or note in the original flow (before any var-tracking
207 notes are inserted, to simplify emission of notes), for MO_SET
208 and MO_CLOBBER. */
209 rtx_insn *insn;
211 union {
212 /* Location. For MO_SET and MO_COPY, this is the SET that
213 performs the assignment, if known, otherwise it is the target
214 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
215 CONCAT of the VALUE and the LOC associated with it. For
216 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
217 associated with it. */
218 rtx loc;
220 /* Stack adjustment. */
221 HOST_WIDE_INT adjust;
222 } u;
223 } micro_operation;
226 /* A declaration of a variable, or an RTL value being handled like a
227 declaration. */
228 typedef void *decl_or_value;
230 /* Return true if a decl_or_value DV is a DECL or NULL. */
231 static inline bool
232 dv_is_decl_p (decl_or_value dv)
234 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
237 /* Return true if a decl_or_value is a VALUE rtl. */
238 static inline bool
239 dv_is_value_p (decl_or_value dv)
241 return dv && !dv_is_decl_p (dv);
244 /* Return the decl in the decl_or_value. */
245 static inline tree
246 dv_as_decl (decl_or_value dv)
248 gcc_checking_assert (dv_is_decl_p (dv));
249 return (tree) dv;
252 /* Return the value in the decl_or_value. */
253 static inline rtx
254 dv_as_value (decl_or_value dv)
256 gcc_checking_assert (dv_is_value_p (dv));
257 return (rtx)dv;
260 /* Return the opaque pointer in the decl_or_value. */
261 static inline void *
262 dv_as_opaque (decl_or_value dv)
264 return dv;
268 /* Description of location of a part of a variable. The content of a physical
269 register is described by a chain of these structures.
270 The chains are pretty short (usually 1 or 2 elements) and thus
271 chain is the best data structure. */
272 typedef struct attrs_def
274 /* Pointer to next member of the list. */
275 struct attrs_def *next;
277 /* The rtx of register. */
278 rtx loc;
280 /* The declaration corresponding to LOC. */
281 decl_or_value dv;
283 /* Offset from start of DECL. */
284 HOST_WIDE_INT offset;
285 } *attrs;
287 /* Structure for chaining the locations. */
288 typedef struct location_chain_def
290 /* Next element in the chain. */
291 struct location_chain_def *next;
293 /* The location (REG, MEM or VALUE). */
294 rtx loc;
296 /* The "value" stored in this location. */
297 rtx set_src;
299 /* Initialized? */
300 enum var_init_status init;
301 } *location_chain;
303 /* A vector of loc_exp_dep holds the active dependencies of a one-part
304 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
305 location of DV. Each entry is also part of VALUE' s linked-list of
306 backlinks back to DV. */
307 typedef struct loc_exp_dep_s
309 /* The dependent DV. */
310 decl_or_value dv;
311 /* The dependency VALUE or DECL_DEBUG. */
312 rtx value;
313 /* The next entry in VALUE's backlinks list. */
314 struct loc_exp_dep_s *next;
315 /* A pointer to the pointer to this entry (head or prev's next) in
316 the doubly-linked list. */
317 struct loc_exp_dep_s **pprev;
318 } loc_exp_dep;
321 /* This data structure holds information about the depth of a variable
322 expansion. */
323 typedef struct expand_depth_struct
325 /* This measures the complexity of the expanded expression. It
326 grows by one for each level of expansion that adds more than one
327 operand. */
328 int complexity;
329 /* This counts the number of ENTRY_VALUE expressions in an
330 expansion. We want to minimize their use. */
331 int entryvals;
332 } expand_depth;
334 /* This data structure is allocated for one-part variables at the time
335 of emitting notes. */
336 struct onepart_aux
338 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
339 computation used the expansion of this variable, and that ought
340 to be notified should this variable change. If the DV's cur_loc
341 expanded to NULL, all components of the loc list are regarded as
342 active, so that any changes in them give us a chance to get a
343 location. Otherwise, only components of the loc that expanded to
344 non-NULL are regarded as active dependencies. */
345 loc_exp_dep *backlinks;
346 /* This holds the LOC that was expanded into cur_loc. We need only
347 mark a one-part variable as changed if the FROM loc is removed,
348 or if it has no known location and a loc is added, or if it gets
349 a change notification from any of its active dependencies. */
350 rtx from;
351 /* The depth of the cur_loc expression. */
352 expand_depth depth;
353 /* Dependencies actively used when expand FROM into cur_loc. */
354 vec<loc_exp_dep, va_heap, vl_embed> deps;
357 /* Structure describing one part of variable. */
358 typedef struct variable_part_def
360 /* Chain of locations of the part. */
361 location_chain loc_chain;
363 /* Location which was last emitted to location list. */
364 rtx cur_loc;
366 union variable_aux
368 /* The offset in the variable, if !var->onepart. */
369 HOST_WIDE_INT offset;
371 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
372 struct onepart_aux *onepaux;
373 } aux;
374 } variable_part;
376 /* Maximum number of location parts. */
377 #define MAX_VAR_PARTS 16
379 /* Enumeration type used to discriminate various types of one-part
380 variables. */
381 typedef enum onepart_enum
383 /* Not a one-part variable. */
384 NOT_ONEPART = 0,
385 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
386 ONEPART_VDECL = 1,
387 /* A DEBUG_EXPR_DECL. */
388 ONEPART_DEXPR = 2,
389 /* A VALUE. */
390 ONEPART_VALUE = 3
391 } onepart_enum_t;
393 /* Structure describing where the variable is located. */
394 typedef struct variable_def
396 /* The declaration of the variable, or an RTL value being handled
397 like a declaration. */
398 decl_or_value dv;
400 /* Reference count. */
401 int refcount;
403 /* Number of variable parts. */
404 char n_var_parts;
406 /* What type of DV this is, according to enum onepart_enum. */
407 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
409 /* True if this variable_def struct is currently in the
410 changed_variables hash table. */
411 bool in_changed_variables;
413 /* The variable parts. */
414 variable_part var_part[1];
415 } *variable;
416 typedef const struct variable_def *const_variable;
418 /* Pointer to the BB's information specific to variable tracking pass. */
419 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
421 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
422 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
424 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
426 /* Access VAR's Ith part's offset, checking that it's not a one-part
427 variable. */
428 #define VAR_PART_OFFSET(var, i) __extension__ \
429 (*({ variable const __v = (var); \
430 gcc_checking_assert (!__v->onepart); \
431 &__v->var_part[(i)].aux.offset; }))
433 /* Access VAR's one-part auxiliary data, checking that it is a
434 one-part variable. */
435 #define VAR_LOC_1PAUX(var) __extension__ \
436 (*({ variable const __v = (var); \
437 gcc_checking_assert (__v->onepart); \
438 &__v->var_part[0].aux.onepaux; }))
440 #else
441 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
442 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
443 #endif
445 /* These are accessor macros for the one-part auxiliary data. When
446 convenient for users, they're guarded by tests that the data was
447 allocated. */
448 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
449 ? VAR_LOC_1PAUX (var)->backlinks \
450 : NULL)
451 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
452 ? &VAR_LOC_1PAUX (var)->backlinks \
453 : NULL)
454 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
455 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
456 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
457 ? &VAR_LOC_1PAUX (var)->deps \
458 : NULL)
462 typedef unsigned int dvuid;
464 /* Return the uid of DV. */
466 static inline dvuid
467 dv_uid (decl_or_value dv)
469 if (dv_is_value_p (dv))
470 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
471 else
472 return DECL_UID (dv_as_decl (dv));
475 /* Compute the hash from the uid. */
477 static inline hashval_t
478 dv_uid2hash (dvuid uid)
480 return uid;
483 /* The hash function for a mask table in a shared_htab chain. */
485 static inline hashval_t
486 dv_htab_hash (decl_or_value dv)
488 return dv_uid2hash (dv_uid (dv));
491 static void variable_htab_free (void *);
493 /* Variable hashtable helpers. */
495 struct variable_hasher
497 typedef variable_def value_type;
498 typedef void compare_type;
499 static inline hashval_t hash (const value_type *);
500 static inline bool equal (const value_type *, const compare_type *);
501 static inline void remove (value_type *);
504 /* The hash function for variable_htab, computes the hash value
505 from the declaration of variable X. */
507 inline hashval_t
508 variable_hasher::hash (const value_type *v)
510 return dv_htab_hash (v->dv);
513 /* Compare the declaration of variable X with declaration Y. */
515 inline bool
516 variable_hasher::equal (const value_type *v, const compare_type *y)
518 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
520 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
523 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
525 inline void
526 variable_hasher::remove (value_type *var)
528 variable_htab_free (var);
531 typedef hash_table<variable_hasher> variable_table_type;
532 typedef variable_table_type::iterator variable_iterator_type;
534 /* Structure for passing some other parameters to function
535 emit_note_insn_var_location. */
536 typedef struct emit_note_data_def
538 /* The instruction which the note will be emitted before/after. */
539 rtx_insn *insn;
541 /* Where the note will be emitted (before/after insn)? */
542 enum emit_note_where where;
544 /* The variables and values active at this point. */
545 variable_table_type *vars;
546 } emit_note_data;
548 /* Structure holding a refcounted hash table. If refcount > 1,
549 it must be first unshared before modified. */
550 typedef struct shared_hash_def
552 /* Reference count. */
553 int refcount;
555 /* Actual hash table. */
556 variable_table_type *htab;
557 } *shared_hash;
559 /* Structure holding the IN or OUT set for a basic block. */
560 typedef struct dataflow_set_def
562 /* Adjustment of stack offset. */
563 HOST_WIDE_INT stack_adjust;
565 /* Attributes for registers (lists of attrs). */
566 attrs regs[FIRST_PSEUDO_REGISTER];
568 /* Variable locations. */
569 shared_hash vars;
571 /* Vars that is being traversed. */
572 shared_hash traversed_vars;
573 } dataflow_set;
575 /* The structure (one for each basic block) containing the information
576 needed for variable tracking. */
577 typedef struct variable_tracking_info_def
579 /* The vector of micro operations. */
580 vec<micro_operation> mos;
582 /* The IN and OUT set for dataflow analysis. */
583 dataflow_set in;
584 dataflow_set out;
586 /* The permanent-in dataflow set for this block. This is used to
587 hold values for which we had to compute entry values. ??? This
588 should probably be dynamically allocated, to avoid using more
589 memory in non-debug builds. */
590 dataflow_set *permp;
592 /* Has the block been visited in DFS? */
593 bool visited;
595 /* Has the block been flooded in VTA? */
596 bool flooded;
598 } *variable_tracking_info;
600 /* Alloc pool for struct attrs_def. */
601 static alloc_pool attrs_pool;
603 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
604 static alloc_pool var_pool;
606 /* Alloc pool for struct variable_def with a single var_part entry. */
607 static alloc_pool valvar_pool;
609 /* Alloc pool for struct location_chain_def. */
610 static alloc_pool loc_chain_pool;
612 /* Alloc pool for struct shared_hash_def. */
613 static alloc_pool shared_hash_pool;
615 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
616 static alloc_pool loc_exp_dep_pool;
618 /* Changed variables, notes will be emitted for them. */
619 static variable_table_type *changed_variables;
621 /* Shall notes be emitted? */
622 static bool emit_notes;
624 /* Values whose dynamic location lists have gone empty, but whose
625 cselib location lists are still usable. Use this to hold the
626 current location, the backlinks, etc, during emit_notes. */
627 static variable_table_type *dropped_values;
629 /* Empty shared hashtable. */
630 static shared_hash empty_shared_hash;
632 /* Scratch register bitmap used by cselib_expand_value_rtx. */
633 static bitmap scratch_regs = NULL;
635 #ifdef HAVE_window_save
636 typedef struct GTY(()) parm_reg {
637 rtx outgoing;
638 rtx incoming;
639 } parm_reg_t;
642 /* Vector of windowed parameter registers, if any. */
643 static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
644 #endif
646 /* Variable used to tell whether cselib_process_insn called our hook. */
647 static bool cselib_hook_called;
649 /* Local function prototypes. */
650 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
651 HOST_WIDE_INT *);
652 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
653 HOST_WIDE_INT *);
654 static bool vt_stack_adjustments (void);
656 static void init_attrs_list_set (attrs *);
657 static void attrs_list_clear (attrs *);
658 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
659 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
660 static void attrs_list_copy (attrs *, attrs);
661 static void attrs_list_union (attrs *, attrs);
663 static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
664 variable var, enum var_init_status);
665 static void vars_copy (variable_table_type *, variable_table_type *);
666 static tree var_debug_decl (tree);
667 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
668 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
669 enum var_init_status, rtx);
670 static void var_reg_delete (dataflow_set *, rtx, bool);
671 static void var_regno_delete (dataflow_set *, int);
672 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
673 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
674 enum var_init_status, rtx);
675 static void var_mem_delete (dataflow_set *, rtx, bool);
677 static void dataflow_set_init (dataflow_set *);
678 static void dataflow_set_clear (dataflow_set *);
679 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
680 static int variable_union_info_cmp_pos (const void *, const void *);
681 static void dataflow_set_union (dataflow_set *, dataflow_set *);
682 static location_chain find_loc_in_1pdv (rtx, variable, variable_table_type *);
683 static bool canon_value_cmp (rtx, rtx);
684 static int loc_cmp (rtx, rtx);
685 static bool variable_part_different_p (variable_part *, variable_part *);
686 static bool onepart_variable_different_p (variable, variable);
687 static bool variable_different_p (variable, variable);
688 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
689 static void dataflow_set_destroy (dataflow_set *);
691 static bool contains_symbol_ref (rtx);
692 static bool track_expr_p (tree, bool);
693 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
694 static void add_uses_1 (rtx *, void *);
695 static void add_stores (rtx, const_rtx, void *);
696 static bool compute_bb_dataflow (basic_block);
697 static bool vt_find_locations (void);
699 static void dump_attrs_list (attrs);
700 static void dump_var (variable);
701 static void dump_vars (variable_table_type *);
702 static void dump_dataflow_set (dataflow_set *);
703 static void dump_dataflow_sets (void);
705 static void set_dv_changed (decl_or_value, bool);
706 static void variable_was_changed (variable, dataflow_set *);
707 static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
708 decl_or_value, HOST_WIDE_INT,
709 enum var_init_status, rtx);
710 static void set_variable_part (dataflow_set *, rtx,
711 decl_or_value, HOST_WIDE_INT,
712 enum var_init_status, rtx, enum insert_option);
713 static variable_def **clobber_slot_part (dataflow_set *, rtx,
714 variable_def **, HOST_WIDE_INT, rtx);
715 static void clobber_variable_part (dataflow_set *, rtx,
716 decl_or_value, HOST_WIDE_INT, rtx);
717 static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
718 HOST_WIDE_INT);
719 static void delete_variable_part (dataflow_set *, rtx,
720 decl_or_value, HOST_WIDE_INT);
721 static void emit_notes_in_bb (basic_block, dataflow_set *);
722 static void vt_emit_notes (void);
724 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
725 static void vt_add_function_parameters (void);
726 static bool vt_initialize (void);
727 static void vt_finalize (void);
729 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
731 static int
732 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
733 void *arg)
735 if (dest != stack_pointer_rtx)
736 return 0;
738 switch (GET_CODE (op))
740 case PRE_INC:
741 case PRE_DEC:
742 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
743 return 0;
744 case POST_INC:
745 case POST_DEC:
746 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
747 return 0;
748 case PRE_MODIFY:
749 case POST_MODIFY:
750 /* We handle only adjustments by constant amount. */
751 gcc_assert (GET_CODE (src) == PLUS
752 && CONST_INT_P (XEXP (src, 1))
753 && XEXP (src, 0) == stack_pointer_rtx);
754 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
755 -= INTVAL (XEXP (src, 1));
756 return 0;
757 default:
758 gcc_unreachable ();
762 /* Given a SET, calculate the amount of stack adjustment it contains
763 PRE- and POST-modifying stack pointer.
764 This function is similar to stack_adjust_offset. */
766 static void
767 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
768 HOST_WIDE_INT *post)
770 rtx src = SET_SRC (pattern);
771 rtx dest = SET_DEST (pattern);
772 enum rtx_code code;
774 if (dest == stack_pointer_rtx)
776 /* (set (reg sp) (plus (reg sp) (const_int))) */
777 code = GET_CODE (src);
778 if (! (code == PLUS || code == MINUS)
779 || XEXP (src, 0) != stack_pointer_rtx
780 || !CONST_INT_P (XEXP (src, 1)))
781 return;
783 if (code == MINUS)
784 *post += INTVAL (XEXP (src, 1));
785 else
786 *post -= INTVAL (XEXP (src, 1));
787 return;
789 HOST_WIDE_INT res[2] = { 0, 0 };
790 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
791 *pre += res[0];
792 *post += res[1];
795 /* Given an INSN, calculate the amount of stack adjustment it contains
796 PRE- and POST-modifying stack pointer. */
798 static void
799 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
800 HOST_WIDE_INT *post)
802 rtx pattern;
804 *pre = 0;
805 *post = 0;
807 pattern = PATTERN (insn);
808 if (RTX_FRAME_RELATED_P (insn))
810 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
811 if (expr)
812 pattern = XEXP (expr, 0);
815 if (GET_CODE (pattern) == SET)
816 stack_adjust_offset_pre_post (pattern, pre, post);
817 else if (GET_CODE (pattern) == PARALLEL
818 || GET_CODE (pattern) == SEQUENCE)
820 int i;
822 /* There may be stack adjustments inside compound insns. Search
823 for them. */
824 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
825 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
826 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
830 /* Compute stack adjustments for all blocks by traversing DFS tree.
831 Return true when the adjustments on all incoming edges are consistent.
832 Heavily borrowed from pre_and_rev_post_order_compute. */
834 static bool
835 vt_stack_adjustments (void)
837 edge_iterator *stack;
838 int sp;
840 /* Initialize entry block. */
841 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
842 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
843 = INCOMING_FRAME_SP_OFFSET;
844 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
845 = INCOMING_FRAME_SP_OFFSET;
847 /* Allocate stack for back-tracking up CFG. */
848 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
849 sp = 0;
851 /* Push the first edge on to the stack. */
852 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
854 while (sp)
856 edge_iterator ei;
857 basic_block src;
858 basic_block dest;
860 /* Look at the edge on the top of the stack. */
861 ei = stack[sp - 1];
862 src = ei_edge (ei)->src;
863 dest = ei_edge (ei)->dest;
865 /* Check if the edge destination has been visited yet. */
866 if (!VTI (dest)->visited)
868 rtx_insn *insn;
869 HOST_WIDE_INT pre, post, offset;
870 VTI (dest)->visited = true;
871 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
873 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
874 for (insn = BB_HEAD (dest);
875 insn != NEXT_INSN (BB_END (dest));
876 insn = NEXT_INSN (insn))
877 if (INSN_P (insn))
879 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
880 offset += pre + post;
883 VTI (dest)->out.stack_adjust = offset;
885 if (EDGE_COUNT (dest->succs) > 0)
886 /* Since the DEST node has been visited for the first
887 time, check its successors. */
888 stack[sp++] = ei_start (dest->succs);
890 else
892 /* We can end up with different stack adjustments for the exit block
893 of a shrink-wrapped function if stack_adjust_offset_pre_post
894 doesn't understand the rtx pattern used to restore the stack
895 pointer in the epilogue. For example, on s390(x), the stack
896 pointer is often restored via a load-multiple instruction
897 and so no stack_adjust offset is recorded for it. This means
898 that the stack offset at the end of the epilogue block is the
899 the same as the offset before the epilogue, whereas other paths
900 to the exit block will have the correct stack_adjust.
902 It is safe to ignore these differences because (a) we never
903 use the stack_adjust for the exit block in this pass and
904 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
905 function are correct.
907 We must check whether the adjustments on other edges are
908 the same though. */
909 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
910 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
912 free (stack);
913 return false;
916 if (! ei_one_before_end_p (ei))
917 /* Go to the next edge. */
918 ei_next (&stack[sp - 1]);
919 else
920 /* Return to previous level if there are no more edges. */
921 sp--;
925 free (stack);
926 return true;
929 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
930 hard_frame_pointer_rtx is being mapped to it and offset for it. */
931 static rtx cfa_base_rtx;
932 static HOST_WIDE_INT cfa_base_offset;
934 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
935 or hard_frame_pointer_rtx. */
937 static inline rtx
938 compute_cfa_pointer (HOST_WIDE_INT adjustment)
940 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
943 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
944 or -1 if the replacement shouldn't be done. */
945 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
947 /* Data for adjust_mems callback. */
949 struct adjust_mem_data
951 bool store;
952 machine_mode mem_mode;
953 HOST_WIDE_INT stack_adjust;
954 rtx_expr_list *side_effects;
957 /* Helper for adjust_mems. Return true if X is suitable for
958 transformation of wider mode arithmetics to narrower mode. */
960 static bool
961 use_narrower_mode_test (rtx x, const_rtx subreg)
963 subrtx_var_iterator::array_type array;
964 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
966 rtx x = *iter;
967 if (CONSTANT_P (x))
968 iter.skip_subrtxes ();
969 else
970 switch (GET_CODE (x))
972 case REG:
973 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
974 return false;
975 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
976 subreg_lowpart_offset (GET_MODE (subreg),
977 GET_MODE (x))))
978 return false;
979 break;
980 case PLUS:
981 case MINUS:
982 case MULT:
983 break;
984 case ASHIFT:
985 iter.substitute (XEXP (x, 0));
986 break;
987 default:
988 return false;
991 return true;
994 /* Transform X into narrower mode MODE from wider mode WMODE. */
996 static rtx
997 use_narrower_mode (rtx x, machine_mode mode, machine_mode wmode)
999 rtx op0, op1;
1000 if (CONSTANT_P (x))
1001 return lowpart_subreg (mode, x, wmode);
1002 switch (GET_CODE (x))
1004 case REG:
1005 return lowpart_subreg (mode, x, wmode);
1006 case PLUS:
1007 case MINUS:
1008 case MULT:
1009 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1010 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
1011 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
1012 case ASHIFT:
1013 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1014 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
1015 default:
1016 gcc_unreachable ();
1020 /* Helper function for adjusting used MEMs. */
1022 static rtx
1023 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1025 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1026 rtx mem, addr = loc, tem;
1027 machine_mode mem_mode_save;
1028 bool store_save;
1029 switch (GET_CODE (loc))
1031 case REG:
1032 /* Don't do any sp or fp replacements outside of MEM addresses
1033 on the LHS. */
1034 if (amd->mem_mode == VOIDmode && amd->store)
1035 return loc;
1036 if (loc == stack_pointer_rtx
1037 && !frame_pointer_needed
1038 && cfa_base_rtx)
1039 return compute_cfa_pointer (amd->stack_adjust);
1040 else if (loc == hard_frame_pointer_rtx
1041 && frame_pointer_needed
1042 && hard_frame_pointer_adjustment != -1
1043 && cfa_base_rtx)
1044 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1045 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1046 return loc;
1047 case MEM:
1048 mem = loc;
1049 if (!amd->store)
1051 mem = targetm.delegitimize_address (mem);
1052 if (mem != loc && !MEM_P (mem))
1053 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1056 addr = XEXP (mem, 0);
1057 mem_mode_save = amd->mem_mode;
1058 amd->mem_mode = GET_MODE (mem);
1059 store_save = amd->store;
1060 amd->store = false;
1061 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1062 amd->store = store_save;
1063 amd->mem_mode = mem_mode_save;
1064 if (mem == loc)
1065 addr = targetm.delegitimize_address (addr);
1066 if (addr != XEXP (mem, 0))
1067 mem = replace_equiv_address_nv (mem, addr);
1068 if (!amd->store)
1069 mem = avoid_constant_pool_reference (mem);
1070 return mem;
1071 case PRE_INC:
1072 case PRE_DEC:
1073 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1074 gen_int_mode (GET_CODE (loc) == PRE_INC
1075 ? GET_MODE_SIZE (amd->mem_mode)
1076 : -GET_MODE_SIZE (amd->mem_mode),
1077 GET_MODE (loc)));
1078 case POST_INC:
1079 case POST_DEC:
1080 if (addr == loc)
1081 addr = XEXP (loc, 0);
1082 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1083 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1084 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1085 gen_int_mode ((GET_CODE (loc) == PRE_INC
1086 || GET_CODE (loc) == POST_INC)
1087 ? GET_MODE_SIZE (amd->mem_mode)
1088 : -GET_MODE_SIZE (amd->mem_mode),
1089 GET_MODE (loc)));
1090 store_save = amd->store;
1091 amd->store = false;
1092 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1093 amd->store = store_save;
1094 amd->side_effects = alloc_EXPR_LIST (0,
1095 gen_rtx_SET (VOIDmode,
1096 XEXP (loc, 0), tem),
1097 amd->side_effects);
1098 return addr;
1099 case PRE_MODIFY:
1100 addr = XEXP (loc, 1);
1101 case POST_MODIFY:
1102 if (addr == loc)
1103 addr = XEXP (loc, 0);
1104 gcc_assert (amd->mem_mode != VOIDmode);
1105 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1106 store_save = amd->store;
1107 amd->store = false;
1108 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1109 adjust_mems, data);
1110 amd->store = store_save;
1111 amd->side_effects = alloc_EXPR_LIST (0,
1112 gen_rtx_SET (VOIDmode,
1113 XEXP (loc, 0), tem),
1114 amd->side_effects);
1115 return addr;
1116 case SUBREG:
1117 /* First try without delegitimization of whole MEMs and
1118 avoid_constant_pool_reference, which is more likely to succeed. */
1119 store_save = amd->store;
1120 amd->store = true;
1121 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1122 data);
1123 amd->store = store_save;
1124 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1125 if (mem == SUBREG_REG (loc))
1127 tem = loc;
1128 goto finish_subreg;
1130 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1131 GET_MODE (SUBREG_REG (loc)),
1132 SUBREG_BYTE (loc));
1133 if (tem)
1134 goto finish_subreg;
1135 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1136 GET_MODE (SUBREG_REG (loc)),
1137 SUBREG_BYTE (loc));
1138 if (tem == NULL_RTX)
1139 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1140 finish_subreg:
1141 if (MAY_HAVE_DEBUG_INSNS
1142 && GET_CODE (tem) == SUBREG
1143 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1144 || GET_CODE (SUBREG_REG (tem)) == MINUS
1145 || GET_CODE (SUBREG_REG (tem)) == MULT
1146 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1147 && (GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1148 || GET_MODE_CLASS (GET_MODE (tem)) == MODE_PARTIAL_INT)
1149 && (GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1150 || GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_PARTIAL_INT)
1151 && GET_MODE_PRECISION (GET_MODE (tem))
1152 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (tem)))
1153 && subreg_lowpart_p (tem)
1154 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1155 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1156 GET_MODE (SUBREG_REG (tem)));
1157 return tem;
1158 case ASM_OPERANDS:
1159 /* Don't do any replacements in second and following
1160 ASM_OPERANDS of inline-asm with multiple sets.
1161 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1162 and ASM_OPERANDS_LABEL_VEC need to be equal between
1163 all the ASM_OPERANDs in the insn and adjust_insn will
1164 fix this up. */
1165 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1166 return loc;
1167 break;
1168 default:
1169 break;
1171 return NULL_RTX;
1174 /* Helper function for replacement of uses. */
1176 static void
1177 adjust_mem_uses (rtx *x, void *data)
1179 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1180 if (new_x != *x)
1181 validate_change (NULL_RTX, x, new_x, true);
1184 /* Helper function for replacement of stores. */
1186 static void
1187 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1189 if (MEM_P (loc))
1191 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1192 adjust_mems, data);
1193 if (new_dest != SET_DEST (expr))
1195 rtx xexpr = CONST_CAST_RTX (expr);
1196 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1201 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1202 replace them with their value in the insn and add the side-effects
1203 as other sets to the insn. */
1205 static void
1206 adjust_insn (basic_block bb, rtx_insn *insn)
1208 struct adjust_mem_data amd;
1209 rtx set;
1211 #ifdef HAVE_window_save
1212 /* If the target machine has an explicit window save instruction, the
1213 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1214 if (RTX_FRAME_RELATED_P (insn)
1215 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1217 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1218 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1219 parm_reg_t *p;
1221 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1223 XVECEXP (rtl, 0, i * 2)
1224 = gen_rtx_SET (VOIDmode, p->incoming, p->outgoing);
1225 /* Do not clobber the attached DECL, but only the REG. */
1226 XVECEXP (rtl, 0, i * 2 + 1)
1227 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1228 gen_raw_REG (GET_MODE (p->outgoing),
1229 REGNO (p->outgoing)));
1232 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1233 return;
1235 #endif
1237 amd.mem_mode = VOIDmode;
1238 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1239 amd.side_effects = NULL;
1241 amd.store = true;
1242 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1244 amd.store = false;
1245 if (GET_CODE (PATTERN (insn)) == PARALLEL
1246 && asm_noperands (PATTERN (insn)) > 0
1247 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1249 rtx body, set0;
1250 int i;
1252 /* inline-asm with multiple sets is tiny bit more complicated,
1253 because the 3 vectors in ASM_OPERANDS need to be shared between
1254 all ASM_OPERANDS in the instruction. adjust_mems will
1255 not touch ASM_OPERANDS other than the first one, asm_noperands
1256 test above needs to be called before that (otherwise it would fail)
1257 and afterwards this code fixes it up. */
1258 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1259 body = PATTERN (insn);
1260 set0 = XVECEXP (body, 0, 0);
1261 gcc_checking_assert (GET_CODE (set0) == SET
1262 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1263 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1264 for (i = 1; i < XVECLEN (body, 0); i++)
1265 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1266 break;
1267 else
1269 set = XVECEXP (body, 0, i);
1270 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1271 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1272 == i);
1273 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1274 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1275 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1276 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1277 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1278 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1280 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1281 ASM_OPERANDS_INPUT_VEC (newsrc)
1282 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1283 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1284 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1285 ASM_OPERANDS_LABEL_VEC (newsrc)
1286 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1287 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1291 else
1292 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1294 /* For read-only MEMs containing some constant, prefer those
1295 constants. */
1296 set = single_set (insn);
1297 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1299 rtx note = find_reg_equal_equiv_note (insn);
1301 if (note && CONSTANT_P (XEXP (note, 0)))
1302 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1305 if (amd.side_effects)
1307 rtx *pat, new_pat, s;
1308 int i, oldn, newn;
1310 pat = &PATTERN (insn);
1311 if (GET_CODE (*pat) == COND_EXEC)
1312 pat = &COND_EXEC_CODE (*pat);
1313 if (GET_CODE (*pat) == PARALLEL)
1314 oldn = XVECLEN (*pat, 0);
1315 else
1316 oldn = 1;
1317 for (s = amd.side_effects, newn = 0; s; newn++)
1318 s = XEXP (s, 1);
1319 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1320 if (GET_CODE (*pat) == PARALLEL)
1321 for (i = 0; i < oldn; i++)
1322 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1323 else
1324 XVECEXP (new_pat, 0, 0) = *pat;
1325 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1326 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1327 free_EXPR_LIST_list (&amd.side_effects);
1328 validate_change (NULL_RTX, pat, new_pat, true);
1332 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1333 static inline rtx
1334 dv_as_rtx (decl_or_value dv)
1336 tree decl;
1338 if (dv_is_value_p (dv))
1339 return dv_as_value (dv);
1341 decl = dv_as_decl (dv);
1343 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1344 return DECL_RTL_KNOWN_SET (decl);
1347 /* Return nonzero if a decl_or_value must not have more than one
1348 variable part. The returned value discriminates among various
1349 kinds of one-part DVs ccording to enum onepart_enum. */
1350 static inline onepart_enum_t
1351 dv_onepart_p (decl_or_value dv)
1353 tree decl;
1355 if (!MAY_HAVE_DEBUG_INSNS)
1356 return NOT_ONEPART;
1358 if (dv_is_value_p (dv))
1359 return ONEPART_VALUE;
1361 decl = dv_as_decl (dv);
1363 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1364 return ONEPART_DEXPR;
1366 if (target_for_debug_bind (decl) != NULL_TREE)
1367 return ONEPART_VDECL;
1369 return NOT_ONEPART;
1372 /* Return the variable pool to be used for a dv of type ONEPART. */
1373 static inline alloc_pool
1374 onepart_pool (onepart_enum_t onepart)
1376 return onepart ? valvar_pool : var_pool;
1379 /* Build a decl_or_value out of a decl. */
1380 static inline decl_or_value
1381 dv_from_decl (tree decl)
1383 decl_or_value dv;
1384 dv = decl;
1385 gcc_checking_assert (dv_is_decl_p (dv));
1386 return dv;
1389 /* Build a decl_or_value out of a value. */
1390 static inline decl_or_value
1391 dv_from_value (rtx value)
1393 decl_or_value dv;
1394 dv = value;
1395 gcc_checking_assert (dv_is_value_p (dv));
1396 return dv;
1399 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1400 static inline decl_or_value
1401 dv_from_rtx (rtx x)
1403 decl_or_value dv;
1405 switch (GET_CODE (x))
1407 case DEBUG_EXPR:
1408 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1409 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1410 break;
1412 case VALUE:
1413 dv = dv_from_value (x);
1414 break;
1416 default:
1417 gcc_unreachable ();
1420 return dv;
1423 extern void debug_dv (decl_or_value dv);
1425 DEBUG_FUNCTION void
1426 debug_dv (decl_or_value dv)
1428 if (dv_is_value_p (dv))
1429 debug_rtx (dv_as_value (dv));
1430 else
1431 debug_generic_stmt (dv_as_decl (dv));
1434 static void loc_exp_dep_clear (variable var);
1436 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1438 static void
1439 variable_htab_free (void *elem)
1441 int i;
1442 variable var = (variable) elem;
1443 location_chain node, next;
1445 gcc_checking_assert (var->refcount > 0);
1447 var->refcount--;
1448 if (var->refcount > 0)
1449 return;
1451 for (i = 0; i < var->n_var_parts; i++)
1453 for (node = var->var_part[i].loc_chain; node; node = next)
1455 next = node->next;
1456 pool_free (loc_chain_pool, node);
1458 var->var_part[i].loc_chain = NULL;
1460 if (var->onepart && VAR_LOC_1PAUX (var))
1462 loc_exp_dep_clear (var);
1463 if (VAR_LOC_DEP_LST (var))
1464 VAR_LOC_DEP_LST (var)->pprev = NULL;
1465 XDELETE (VAR_LOC_1PAUX (var));
1466 /* These may be reused across functions, so reset
1467 e.g. NO_LOC_P. */
1468 if (var->onepart == ONEPART_DEXPR)
1469 set_dv_changed (var->dv, true);
1471 pool_free (onepart_pool (var->onepart), var);
1474 /* Initialize the set (array) SET of attrs to empty lists. */
1476 static void
1477 init_attrs_list_set (attrs *set)
1479 int i;
1481 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1482 set[i] = NULL;
1485 /* Make the list *LISTP empty. */
1487 static void
1488 attrs_list_clear (attrs *listp)
1490 attrs list, next;
1492 for (list = *listp; list; list = next)
1494 next = list->next;
1495 pool_free (attrs_pool, list);
1497 *listp = NULL;
1500 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1502 static attrs
1503 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1505 for (; list; list = list->next)
1506 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1507 return list;
1508 return NULL;
1511 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1513 static void
1514 attrs_list_insert (attrs *listp, decl_or_value dv,
1515 HOST_WIDE_INT offset, rtx loc)
1517 attrs list;
1519 list = (attrs) pool_alloc (attrs_pool);
1520 list->loc = loc;
1521 list->dv = dv;
1522 list->offset = offset;
1523 list->next = *listp;
1524 *listp = list;
1527 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1529 static void
1530 attrs_list_copy (attrs *dstp, attrs src)
1532 attrs n;
1534 attrs_list_clear (dstp);
1535 for (; src; src = src->next)
1537 n = (attrs) pool_alloc (attrs_pool);
1538 n->loc = src->loc;
1539 n->dv = src->dv;
1540 n->offset = src->offset;
1541 n->next = *dstp;
1542 *dstp = n;
1546 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1548 static void
1549 attrs_list_union (attrs *dstp, attrs src)
1551 for (; src; src = src->next)
1553 if (!attrs_list_member (*dstp, src->dv, src->offset))
1554 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1558 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1559 *DSTP. */
1561 static void
1562 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1564 gcc_assert (!*dstp);
1565 for (; src; src = src->next)
1567 if (!dv_onepart_p (src->dv))
1568 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1570 for (src = src2; src; src = src->next)
1572 if (!dv_onepart_p (src->dv)
1573 && !attrs_list_member (*dstp, src->dv, src->offset))
1574 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1578 /* Shared hashtable support. */
1580 /* Return true if VARS is shared. */
1582 static inline bool
1583 shared_hash_shared (shared_hash vars)
1585 return vars->refcount > 1;
1588 /* Return the hash table for VARS. */
1590 static inline variable_table_type *
1591 shared_hash_htab (shared_hash vars)
1593 return vars->htab;
1596 /* Return true if VAR is shared, or maybe because VARS is shared. */
1598 static inline bool
1599 shared_var_p (variable var, shared_hash vars)
1601 /* Don't count an entry in the changed_variables table as a duplicate. */
1602 return ((var->refcount > 1 + (int) var->in_changed_variables)
1603 || shared_hash_shared (vars));
1606 /* Copy variables into a new hash table. */
1608 static shared_hash
1609 shared_hash_unshare (shared_hash vars)
1611 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1612 gcc_assert (vars->refcount > 1);
1613 new_vars->refcount = 1;
1614 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1615 vars_copy (new_vars->htab, vars->htab);
1616 vars->refcount--;
1617 return new_vars;
1620 /* Increment reference counter on VARS and return it. */
1622 static inline shared_hash
1623 shared_hash_copy (shared_hash vars)
1625 vars->refcount++;
1626 return vars;
1629 /* Decrement reference counter and destroy hash table if not shared
1630 anymore. */
1632 static void
1633 shared_hash_destroy (shared_hash vars)
1635 gcc_checking_assert (vars->refcount > 0);
1636 if (--vars->refcount == 0)
1638 delete vars->htab;
1639 pool_free (shared_hash_pool, vars);
1643 /* Unshare *PVARS if shared and return slot for DV. If INS is
1644 INSERT, insert it if not already present. */
1646 static inline variable_def **
1647 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1648 hashval_t dvhash, enum insert_option ins)
1650 if (shared_hash_shared (*pvars))
1651 *pvars = shared_hash_unshare (*pvars);
1652 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1655 static inline variable_def **
1656 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1657 enum insert_option ins)
1659 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1662 /* Return slot for DV, if it is already present in the hash table.
1663 If it is not present, insert it only VARS is not shared, otherwise
1664 return NULL. */
1666 static inline variable_def **
1667 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1669 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1670 shared_hash_shared (vars)
1671 ? NO_INSERT : INSERT);
1674 static inline variable_def **
1675 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1677 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1680 /* Return slot for DV only if it is already present in the hash table. */
1682 static inline variable_def **
1683 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1684 hashval_t dvhash)
1686 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1689 static inline variable_def **
1690 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1692 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1695 /* Return variable for DV or NULL if not already present in the hash
1696 table. */
1698 static inline variable
1699 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1701 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1704 static inline variable
1705 shared_hash_find (shared_hash vars, decl_or_value dv)
1707 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1710 /* Return true if TVAL is better than CVAL as a canonival value. We
1711 choose lowest-numbered VALUEs, using the RTX address as a
1712 tie-breaker. The idea is to arrange them into a star topology,
1713 such that all of them are at most one step away from the canonical
1714 value, and the canonical value has backlinks to all of them, in
1715 addition to all the actual locations. We don't enforce this
1716 topology throughout the entire dataflow analysis, though.
1719 static inline bool
1720 canon_value_cmp (rtx tval, rtx cval)
1722 return !cval
1723 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1726 static bool dst_can_be_shared;
1728 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1730 static variable_def **
1731 unshare_variable (dataflow_set *set, variable_def **slot, variable var,
1732 enum var_init_status initialized)
1734 variable new_var;
1735 int i;
1737 new_var = (variable) pool_alloc (onepart_pool (var->onepart));
1738 new_var->dv = var->dv;
1739 new_var->refcount = 1;
1740 var->refcount--;
1741 new_var->n_var_parts = var->n_var_parts;
1742 new_var->onepart = var->onepart;
1743 new_var->in_changed_variables = false;
1745 if (! flag_var_tracking_uninit)
1746 initialized = VAR_INIT_STATUS_INITIALIZED;
1748 for (i = 0; i < var->n_var_parts; i++)
1750 location_chain node;
1751 location_chain *nextp;
1753 if (i == 0 && var->onepart)
1755 /* One-part auxiliary data is only used while emitting
1756 notes, so propagate it to the new variable in the active
1757 dataflow set. If we're not emitting notes, this will be
1758 a no-op. */
1759 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1760 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1761 VAR_LOC_1PAUX (var) = NULL;
1763 else
1764 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1765 nextp = &new_var->var_part[i].loc_chain;
1766 for (node = var->var_part[i].loc_chain; node; node = node->next)
1768 location_chain new_lc;
1770 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1771 new_lc->next = NULL;
1772 if (node->init > initialized)
1773 new_lc->init = node->init;
1774 else
1775 new_lc->init = initialized;
1776 if (node->set_src && !(MEM_P (node->set_src)))
1777 new_lc->set_src = node->set_src;
1778 else
1779 new_lc->set_src = NULL;
1780 new_lc->loc = node->loc;
1782 *nextp = new_lc;
1783 nextp = &new_lc->next;
1786 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1789 dst_can_be_shared = false;
1790 if (shared_hash_shared (set->vars))
1791 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1792 else if (set->traversed_vars && set->vars != set->traversed_vars)
1793 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1794 *slot = new_var;
1795 if (var->in_changed_variables)
1797 variable_def **cslot
1798 = changed_variables->find_slot_with_hash (var->dv,
1799 dv_htab_hash (var->dv),
1800 NO_INSERT);
1801 gcc_assert (*cslot == (void *) var);
1802 var->in_changed_variables = false;
1803 variable_htab_free (var);
1804 *cslot = new_var;
1805 new_var->in_changed_variables = true;
1807 return slot;
1810 /* Copy all variables from hash table SRC to hash table DST. */
1812 static void
1813 vars_copy (variable_table_type *dst, variable_table_type *src)
1815 variable_iterator_type hi;
1816 variable var;
1818 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1820 variable_def **dstp;
1821 var->refcount++;
1822 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1823 INSERT);
1824 *dstp = var;
1828 /* Map a decl to its main debug decl. */
1830 static inline tree
1831 var_debug_decl (tree decl)
1833 if (decl && TREE_CODE (decl) == VAR_DECL
1834 && DECL_HAS_DEBUG_EXPR_P (decl))
1836 tree debugdecl = DECL_DEBUG_EXPR (decl);
1837 if (DECL_P (debugdecl))
1838 decl = debugdecl;
1841 return decl;
1844 /* Set the register LOC to contain DV, OFFSET. */
1846 static void
1847 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1848 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1849 enum insert_option iopt)
1851 attrs node;
1852 bool decl_p = dv_is_decl_p (dv);
1854 if (decl_p)
1855 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1857 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1858 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1859 && node->offset == offset)
1860 break;
1861 if (!node)
1862 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1863 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1866 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1868 static void
1869 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1870 rtx set_src)
1872 tree decl = REG_EXPR (loc);
1873 HOST_WIDE_INT offset = REG_OFFSET (loc);
1875 var_reg_decl_set (set, loc, initialized,
1876 dv_from_decl (decl), offset, set_src, INSERT);
1879 static enum var_init_status
1880 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1882 variable var;
1883 int i;
1884 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1886 if (! flag_var_tracking_uninit)
1887 return VAR_INIT_STATUS_INITIALIZED;
1889 var = shared_hash_find (set->vars, dv);
1890 if (var)
1892 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1894 location_chain nextp;
1895 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1896 if (rtx_equal_p (nextp->loc, loc))
1898 ret_val = nextp->init;
1899 break;
1904 return ret_val;
1907 /* Delete current content of register LOC in dataflow set SET and set
1908 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1909 MODIFY is true, any other live copies of the same variable part are
1910 also deleted from the dataflow set, otherwise the variable part is
1911 assumed to be copied from another location holding the same
1912 part. */
1914 static void
1915 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1916 enum var_init_status initialized, rtx set_src)
1918 tree decl = REG_EXPR (loc);
1919 HOST_WIDE_INT offset = REG_OFFSET (loc);
1920 attrs node, next;
1921 attrs *nextp;
1923 decl = var_debug_decl (decl);
1925 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1926 initialized = get_init_value (set, loc, dv_from_decl (decl));
1928 nextp = &set->regs[REGNO (loc)];
1929 for (node = *nextp; node; node = next)
1931 next = node->next;
1932 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1934 delete_variable_part (set, node->loc, node->dv, node->offset);
1935 pool_free (attrs_pool, node);
1936 *nextp = next;
1938 else
1940 node->loc = loc;
1941 nextp = &node->next;
1944 if (modify)
1945 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1946 var_reg_set (set, loc, initialized, set_src);
1949 /* Delete the association of register LOC in dataflow set SET with any
1950 variables that aren't onepart. If CLOBBER is true, also delete any
1951 other live copies of the same variable part, and delete the
1952 association with onepart dvs too. */
1954 static void
1955 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1957 attrs *nextp = &set->regs[REGNO (loc)];
1958 attrs node, next;
1960 if (clobber)
1962 tree decl = REG_EXPR (loc);
1963 HOST_WIDE_INT offset = REG_OFFSET (loc);
1965 decl = var_debug_decl (decl);
1967 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1970 for (node = *nextp; node; node = next)
1972 next = node->next;
1973 if (clobber || !dv_onepart_p (node->dv))
1975 delete_variable_part (set, node->loc, node->dv, node->offset);
1976 pool_free (attrs_pool, node);
1977 *nextp = next;
1979 else
1980 nextp = &node->next;
1984 /* Delete content of register with number REGNO in dataflow set SET. */
1986 static void
1987 var_regno_delete (dataflow_set *set, int regno)
1989 attrs *reg = &set->regs[regno];
1990 attrs node, next;
1992 for (node = *reg; node; node = next)
1994 next = node->next;
1995 delete_variable_part (set, node->loc, node->dv, node->offset);
1996 pool_free (attrs_pool, node);
1998 *reg = NULL;
2001 /* Return true if I is the negated value of a power of two. */
2002 static bool
2003 negative_power_of_two_p (HOST_WIDE_INT i)
2005 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
2006 return x == (x & -x);
2009 /* Strip constant offsets and alignments off of LOC. Return the base
2010 expression. */
2012 static rtx
2013 vt_get_canonicalize_base (rtx loc)
2015 while ((GET_CODE (loc) == PLUS
2016 || GET_CODE (loc) == AND)
2017 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2018 && (GET_CODE (loc) != AND
2019 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2020 loc = XEXP (loc, 0);
2022 return loc;
2025 /* This caches canonicalized addresses for VALUEs, computed using
2026 information in the global cselib table. */
2027 static hash_map<rtx, rtx> *global_get_addr_cache;
2029 /* This caches canonicalized addresses for VALUEs, computed using
2030 information from the global cache and information pertaining to a
2031 basic block being analyzed. */
2032 static hash_map<rtx, rtx> *local_get_addr_cache;
2034 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2036 /* Return the canonical address for LOC, that must be a VALUE, using a
2037 cached global equivalence or computing it and storing it in the
2038 global cache. */
2040 static rtx
2041 get_addr_from_global_cache (rtx const loc)
2043 rtx x;
2045 gcc_checking_assert (GET_CODE (loc) == VALUE);
2047 bool existed;
2048 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2049 if (existed)
2050 return *slot;
2052 x = canon_rtx (get_addr (loc));
2054 /* Tentative, avoiding infinite recursion. */
2055 *slot = x;
2057 if (x != loc)
2059 rtx nx = vt_canonicalize_addr (NULL, x);
2060 if (nx != x)
2062 /* The table may have moved during recursion, recompute
2063 SLOT. */
2064 *global_get_addr_cache->get (loc) = x = nx;
2068 return x;
2071 /* Return the canonical address for LOC, that must be a VALUE, using a
2072 cached local equivalence or computing it and storing it in the
2073 local cache. */
2075 static rtx
2076 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2078 rtx x;
2079 decl_or_value dv;
2080 variable var;
2081 location_chain l;
2083 gcc_checking_assert (GET_CODE (loc) == VALUE);
2085 bool existed;
2086 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2087 if (existed)
2088 return *slot;
2090 x = get_addr_from_global_cache (loc);
2092 /* Tentative, avoiding infinite recursion. */
2093 *slot = x;
2095 /* Recurse to cache local expansion of X, or if we need to search
2096 for a VALUE in the expansion. */
2097 if (x != loc)
2099 rtx nx = vt_canonicalize_addr (set, x);
2100 if (nx != x)
2102 slot = local_get_addr_cache->get (loc);
2103 *slot = x = nx;
2105 return x;
2108 dv = dv_from_rtx (x);
2109 var = shared_hash_find (set->vars, dv);
2110 if (!var)
2111 return x;
2113 /* Look for an improved equivalent expression. */
2114 for (l = var->var_part[0].loc_chain; l; l = l->next)
2116 rtx base = vt_get_canonicalize_base (l->loc);
2117 if (GET_CODE (base) == VALUE
2118 && canon_value_cmp (base, loc))
2120 rtx nx = vt_canonicalize_addr (set, l->loc);
2121 if (x != nx)
2123 slot = local_get_addr_cache->get (loc);
2124 *slot = x = nx;
2126 break;
2130 return x;
2133 /* Canonicalize LOC using equivalences from SET in addition to those
2134 in the cselib static table. It expects a VALUE-based expression,
2135 and it will only substitute VALUEs with other VALUEs or
2136 function-global equivalences, so that, if two addresses have base
2137 VALUEs that are locally or globally related in ways that
2138 memrefs_conflict_p cares about, they will both canonicalize to
2139 expressions that have the same base VALUE.
2141 The use of VALUEs as canonical base addresses enables the canonical
2142 RTXs to remain unchanged globally, if they resolve to a constant,
2143 or throughout a basic block otherwise, so that they can be cached
2144 and the cache needs not be invalidated when REGs, MEMs or such
2145 change. */
2147 static rtx
2148 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2150 HOST_WIDE_INT ofst = 0;
2151 machine_mode mode = GET_MODE (oloc);
2152 rtx loc = oloc;
2153 rtx x;
2154 bool retry = true;
2156 while (retry)
2158 while (GET_CODE (loc) == PLUS
2159 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2161 ofst += INTVAL (XEXP (loc, 1));
2162 loc = XEXP (loc, 0);
2165 /* Alignment operations can't normally be combined, so just
2166 canonicalize the base and we're done. We'll normally have
2167 only one stack alignment anyway. */
2168 if (GET_CODE (loc) == AND
2169 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2170 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2172 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2173 if (x != XEXP (loc, 0))
2174 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2175 retry = false;
2178 if (GET_CODE (loc) == VALUE)
2180 if (set)
2181 loc = get_addr_from_local_cache (set, loc);
2182 else
2183 loc = get_addr_from_global_cache (loc);
2185 /* Consolidate plus_constants. */
2186 while (ofst && GET_CODE (loc) == PLUS
2187 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2189 ofst += INTVAL (XEXP (loc, 1));
2190 loc = XEXP (loc, 0);
2193 retry = false;
2195 else
2197 x = canon_rtx (loc);
2198 if (retry)
2199 retry = (x != loc);
2200 loc = x;
2204 /* Add OFST back in. */
2205 if (ofst)
2207 /* Don't build new RTL if we can help it. */
2208 if (GET_CODE (oloc) == PLUS
2209 && XEXP (oloc, 0) == loc
2210 && INTVAL (XEXP (oloc, 1)) == ofst)
2211 return oloc;
2213 loc = plus_constant (mode, loc, ofst);
2216 return loc;
2219 /* Return true iff there's a true dependence between MLOC and LOC.
2220 MADDR must be a canonicalized version of MLOC's address. */
2222 static inline bool
2223 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2225 if (GET_CODE (loc) != MEM)
2226 return false;
2228 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2229 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2230 return false;
2232 return true;
2235 /* Hold parameters for the hashtab traversal function
2236 drop_overlapping_mem_locs, see below. */
2238 struct overlapping_mems
2240 dataflow_set *set;
2241 rtx loc, addr;
2244 /* Remove all MEMs that overlap with COMS->LOC from the location list
2245 of a hash table entry for a value. COMS->ADDR must be a
2246 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2247 canonicalized itself. */
2250 drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
2252 dataflow_set *set = coms->set;
2253 rtx mloc = coms->loc, addr = coms->addr;
2254 variable var = *slot;
2256 if (var->onepart == ONEPART_VALUE)
2258 location_chain loc, *locp;
2259 bool changed = false;
2260 rtx cur_loc;
2262 gcc_assert (var->n_var_parts == 1);
2264 if (shared_var_p (var, set->vars))
2266 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2267 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2268 break;
2270 if (!loc)
2271 return 1;
2273 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2274 var = *slot;
2275 gcc_assert (var->n_var_parts == 1);
2278 if (VAR_LOC_1PAUX (var))
2279 cur_loc = VAR_LOC_FROM (var);
2280 else
2281 cur_loc = var->var_part[0].cur_loc;
2283 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2284 loc; loc = *locp)
2286 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2288 locp = &loc->next;
2289 continue;
2292 *locp = loc->next;
2293 /* If we have deleted the location which was last emitted
2294 we have to emit new location so add the variable to set
2295 of changed variables. */
2296 if (cur_loc == loc->loc)
2298 changed = true;
2299 var->var_part[0].cur_loc = NULL;
2300 if (VAR_LOC_1PAUX (var))
2301 VAR_LOC_FROM (var) = NULL;
2303 pool_free (loc_chain_pool, loc);
2306 if (!var->var_part[0].loc_chain)
2308 var->n_var_parts--;
2309 changed = true;
2311 if (changed)
2312 variable_was_changed (var, set);
2315 return 1;
2318 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2320 static void
2321 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2323 struct overlapping_mems coms;
2325 gcc_checking_assert (GET_CODE (loc) == MEM);
2327 coms.set = set;
2328 coms.loc = canon_rtx (loc);
2329 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2331 set->traversed_vars = set->vars;
2332 shared_hash_htab (set->vars)
2333 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2334 set->traversed_vars = NULL;
2337 /* Set the location of DV, OFFSET as the MEM LOC. */
2339 static void
2340 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2341 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2342 enum insert_option iopt)
2344 if (dv_is_decl_p (dv))
2345 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2347 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2350 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2351 SET to LOC.
2352 Adjust the address first if it is stack pointer based. */
2354 static void
2355 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2356 rtx set_src)
2358 tree decl = MEM_EXPR (loc);
2359 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2361 var_mem_decl_set (set, loc, initialized,
2362 dv_from_decl (decl), offset, set_src, INSERT);
2365 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2366 dataflow set SET to LOC. If MODIFY is true, any other live copies
2367 of the same variable part are also deleted from the dataflow set,
2368 otherwise the variable part is assumed to be copied from another
2369 location holding the same part.
2370 Adjust the address first if it is stack pointer based. */
2372 static void
2373 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2374 enum var_init_status initialized, rtx set_src)
2376 tree decl = MEM_EXPR (loc);
2377 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2379 clobber_overlapping_mems (set, loc);
2380 decl = var_debug_decl (decl);
2382 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2383 initialized = get_init_value (set, loc, dv_from_decl (decl));
2385 if (modify)
2386 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2387 var_mem_set (set, loc, initialized, set_src);
2390 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2391 true, also delete any other live copies of the same variable part.
2392 Adjust the address first if it is stack pointer based. */
2394 static void
2395 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2397 tree decl = MEM_EXPR (loc);
2398 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2400 clobber_overlapping_mems (set, loc);
2401 decl = var_debug_decl (decl);
2402 if (clobber)
2403 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2404 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2407 /* Return true if LOC should not be expanded for location expressions,
2408 or used in them. */
2410 static inline bool
2411 unsuitable_loc (rtx loc)
2413 switch (GET_CODE (loc))
2415 case PC:
2416 case SCRATCH:
2417 case CC0:
2418 case ASM_INPUT:
2419 case ASM_OPERANDS:
2420 return true;
2422 default:
2423 return false;
2427 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2428 bound to it. */
2430 static inline void
2431 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2433 if (REG_P (loc))
2435 if (modified)
2436 var_regno_delete (set, REGNO (loc));
2437 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2438 dv_from_value (val), 0, NULL_RTX, INSERT);
2440 else if (MEM_P (loc))
2442 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2444 if (modified)
2445 clobber_overlapping_mems (set, loc);
2447 if (l && GET_CODE (l->loc) == VALUE)
2448 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2450 /* If this MEM is a global constant, we don't need it in the
2451 dynamic tables. ??? We should test this before emitting the
2452 micro-op in the first place. */
2453 while (l)
2454 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2455 break;
2456 else
2457 l = l->next;
2459 if (!l)
2460 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2461 dv_from_value (val), 0, NULL_RTX, INSERT);
2463 else
2465 /* Other kinds of equivalences are necessarily static, at least
2466 so long as we do not perform substitutions while merging
2467 expressions. */
2468 gcc_unreachable ();
2469 set_variable_part (set, loc, dv_from_value (val), 0,
2470 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2474 /* Bind a value to a location it was just stored in. If MODIFIED
2475 holds, assume the location was modified, detaching it from any
2476 values bound to it. */
2478 static void
2479 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2480 bool modified)
2482 cselib_val *v = CSELIB_VAL_PTR (val);
2484 gcc_assert (cselib_preserved_value_p (v));
2486 if (dump_file)
2488 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2489 print_inline_rtx (dump_file, loc, 0);
2490 fprintf (dump_file, " evaluates to ");
2491 print_inline_rtx (dump_file, val, 0);
2492 if (v->locs)
2494 struct elt_loc_list *l;
2495 for (l = v->locs; l; l = l->next)
2497 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2498 print_inline_rtx (dump_file, l->loc, 0);
2501 fprintf (dump_file, "\n");
2504 gcc_checking_assert (!unsuitable_loc (loc));
2506 val_bind (set, val, loc, modified);
2509 /* Clear (canonical address) slots that reference X. */
2511 bool
2512 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2514 if (vt_get_canonicalize_base (*slot) == x)
2515 *slot = NULL;
2516 return true;
2519 /* Reset this node, detaching all its equivalences. Return the slot
2520 in the variable hash table that holds dv, if there is one. */
2522 static void
2523 val_reset (dataflow_set *set, decl_or_value dv)
2525 variable var = shared_hash_find (set->vars, dv) ;
2526 location_chain node;
2527 rtx cval;
2529 if (!var || !var->n_var_parts)
2530 return;
2532 gcc_assert (var->n_var_parts == 1);
2534 if (var->onepart == ONEPART_VALUE)
2536 rtx x = dv_as_value (dv);
2538 /* Relationships in the global cache don't change, so reset the
2539 local cache entry only. */
2540 rtx *slot = local_get_addr_cache->get (x);
2541 if (slot)
2543 /* If the value resolved back to itself, odds are that other
2544 values may have cached it too. These entries now refer
2545 to the old X, so detach them too. Entries that used the
2546 old X but resolved to something else remain ok as long as
2547 that something else isn't also reset. */
2548 if (*slot == x)
2549 local_get_addr_cache
2550 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2551 *slot = NULL;
2555 cval = NULL;
2556 for (node = var->var_part[0].loc_chain; node; node = node->next)
2557 if (GET_CODE (node->loc) == VALUE
2558 && canon_value_cmp (node->loc, cval))
2559 cval = node->loc;
2561 for (node = var->var_part[0].loc_chain; node; node = node->next)
2562 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2564 /* Redirect the equivalence link to the new canonical
2565 value, or simply remove it if it would point at
2566 itself. */
2567 if (cval)
2568 set_variable_part (set, cval, dv_from_value (node->loc),
2569 0, node->init, node->set_src, NO_INSERT);
2570 delete_variable_part (set, dv_as_value (dv),
2571 dv_from_value (node->loc), 0);
2574 if (cval)
2576 decl_or_value cdv = dv_from_value (cval);
2578 /* Keep the remaining values connected, accummulating links
2579 in the canonical value. */
2580 for (node = var->var_part[0].loc_chain; node; node = node->next)
2582 if (node->loc == cval)
2583 continue;
2584 else if (GET_CODE (node->loc) == REG)
2585 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2586 node->set_src, NO_INSERT);
2587 else if (GET_CODE (node->loc) == MEM)
2588 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2589 node->set_src, NO_INSERT);
2590 else
2591 set_variable_part (set, node->loc, cdv, 0,
2592 node->init, node->set_src, NO_INSERT);
2596 /* We remove this last, to make sure that the canonical value is not
2597 removed to the point of requiring reinsertion. */
2598 if (cval)
2599 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2601 clobber_variable_part (set, NULL, dv, 0, NULL);
2604 /* Find the values in a given location and map the val to another
2605 value, if it is unique, or add the location as one holding the
2606 value. */
2608 static void
2609 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2611 decl_or_value dv = dv_from_value (val);
2613 if (dump_file && (dump_flags & TDF_DETAILS))
2615 if (insn)
2616 fprintf (dump_file, "%i: ", INSN_UID (insn));
2617 else
2618 fprintf (dump_file, "head: ");
2619 print_inline_rtx (dump_file, val, 0);
2620 fputs (" is at ", dump_file);
2621 print_inline_rtx (dump_file, loc, 0);
2622 fputc ('\n', dump_file);
2625 val_reset (set, dv);
2627 gcc_checking_assert (!unsuitable_loc (loc));
2629 if (REG_P (loc))
2631 attrs node, found = NULL;
2633 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2634 if (dv_is_value_p (node->dv)
2635 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2637 found = node;
2639 /* Map incoming equivalences. ??? Wouldn't it be nice if
2640 we just started sharing the location lists? Maybe a
2641 circular list ending at the value itself or some
2642 such. */
2643 set_variable_part (set, dv_as_value (node->dv),
2644 dv_from_value (val), node->offset,
2645 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2646 set_variable_part (set, val, node->dv, node->offset,
2647 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2650 /* If we didn't find any equivalence, we need to remember that
2651 this value is held in the named register. */
2652 if (found)
2653 return;
2655 /* ??? Attempt to find and merge equivalent MEMs or other
2656 expressions too. */
2658 val_bind (set, val, loc, false);
2661 /* Initialize dataflow set SET to be empty.
2662 VARS_SIZE is the initial size of hash table VARS. */
2664 static void
2665 dataflow_set_init (dataflow_set *set)
2667 init_attrs_list_set (set->regs);
2668 set->vars = shared_hash_copy (empty_shared_hash);
2669 set->stack_adjust = 0;
2670 set->traversed_vars = NULL;
2673 /* Delete the contents of dataflow set SET. */
2675 static void
2676 dataflow_set_clear (dataflow_set *set)
2678 int i;
2680 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2681 attrs_list_clear (&set->regs[i]);
2683 shared_hash_destroy (set->vars);
2684 set->vars = shared_hash_copy (empty_shared_hash);
2687 /* Copy the contents of dataflow set SRC to DST. */
2689 static void
2690 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2692 int i;
2694 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2695 attrs_list_copy (&dst->regs[i], src->regs[i]);
2697 shared_hash_destroy (dst->vars);
2698 dst->vars = shared_hash_copy (src->vars);
2699 dst->stack_adjust = src->stack_adjust;
2702 /* Information for merging lists of locations for a given offset of variable.
2704 struct variable_union_info
2706 /* Node of the location chain. */
2707 location_chain lc;
2709 /* The sum of positions in the input chains. */
2710 int pos;
2712 /* The position in the chain of DST dataflow set. */
2713 int pos_dst;
2716 /* Buffer for location list sorting and its allocated size. */
2717 static struct variable_union_info *vui_vec;
2718 static int vui_allocated;
2720 /* Compare function for qsort, order the structures by POS element. */
2722 static int
2723 variable_union_info_cmp_pos (const void *n1, const void *n2)
2725 const struct variable_union_info *const i1 =
2726 (const struct variable_union_info *) n1;
2727 const struct variable_union_info *const i2 =
2728 ( const struct variable_union_info *) n2;
2730 if (i1->pos != i2->pos)
2731 return i1->pos - i2->pos;
2733 return (i1->pos_dst - i2->pos_dst);
2736 /* Compute union of location parts of variable *SLOT and the same variable
2737 from hash table DATA. Compute "sorted" union of the location chains
2738 for common offsets, i.e. the locations of a variable part are sorted by
2739 a priority where the priority is the sum of the positions in the 2 chains
2740 (if a location is only in one list the position in the second list is
2741 defined to be larger than the length of the chains).
2742 When we are updating the location parts the newest location is in the
2743 beginning of the chain, so when we do the described "sorted" union
2744 we keep the newest locations in the beginning. */
2746 static int
2747 variable_union (variable src, dataflow_set *set)
2749 variable dst;
2750 variable_def **dstp;
2751 int i, j, k;
2753 dstp = shared_hash_find_slot (set->vars, src->dv);
2754 if (!dstp || !*dstp)
2756 src->refcount++;
2758 dst_can_be_shared = false;
2759 if (!dstp)
2760 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2762 *dstp = src;
2764 /* Continue traversing the hash table. */
2765 return 1;
2767 else
2768 dst = *dstp;
2770 gcc_assert (src->n_var_parts);
2771 gcc_checking_assert (src->onepart == dst->onepart);
2773 /* We can combine one-part variables very efficiently, because their
2774 entries are in canonical order. */
2775 if (src->onepart)
2777 location_chain *nodep, dnode, snode;
2779 gcc_assert (src->n_var_parts == 1
2780 && dst->n_var_parts == 1);
2782 snode = src->var_part[0].loc_chain;
2783 gcc_assert (snode);
2785 restart_onepart_unshared:
2786 nodep = &dst->var_part[0].loc_chain;
2787 dnode = *nodep;
2788 gcc_assert (dnode);
2790 while (snode)
2792 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2794 if (r > 0)
2796 location_chain nnode;
2798 if (shared_var_p (dst, set->vars))
2800 dstp = unshare_variable (set, dstp, dst,
2801 VAR_INIT_STATUS_INITIALIZED);
2802 dst = *dstp;
2803 goto restart_onepart_unshared;
2806 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2807 nnode->loc = snode->loc;
2808 nnode->init = snode->init;
2809 if (!snode->set_src || MEM_P (snode->set_src))
2810 nnode->set_src = NULL;
2811 else
2812 nnode->set_src = snode->set_src;
2813 nnode->next = dnode;
2814 dnode = nnode;
2816 else if (r == 0)
2817 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2819 if (r >= 0)
2820 snode = snode->next;
2822 nodep = &dnode->next;
2823 dnode = *nodep;
2826 return 1;
2829 gcc_checking_assert (!src->onepart);
2831 /* Count the number of location parts, result is K. */
2832 for (i = 0, j = 0, k = 0;
2833 i < src->n_var_parts && j < dst->n_var_parts; k++)
2835 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2837 i++;
2838 j++;
2840 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2841 i++;
2842 else
2843 j++;
2845 k += src->n_var_parts - i;
2846 k += dst->n_var_parts - j;
2848 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2849 thus there are at most MAX_VAR_PARTS different offsets. */
2850 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2852 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2854 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2855 dst = *dstp;
2858 i = src->n_var_parts - 1;
2859 j = dst->n_var_parts - 1;
2860 dst->n_var_parts = k;
2862 for (k--; k >= 0; k--)
2864 location_chain node, node2;
2866 if (i >= 0 && j >= 0
2867 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2869 /* Compute the "sorted" union of the chains, i.e. the locations which
2870 are in both chains go first, they are sorted by the sum of
2871 positions in the chains. */
2872 int dst_l, src_l;
2873 int ii, jj, n;
2874 struct variable_union_info *vui;
2876 /* If DST is shared compare the location chains.
2877 If they are different we will modify the chain in DST with
2878 high probability so make a copy of DST. */
2879 if (shared_var_p (dst, set->vars))
2881 for (node = src->var_part[i].loc_chain,
2882 node2 = dst->var_part[j].loc_chain; node && node2;
2883 node = node->next, node2 = node2->next)
2885 if (!((REG_P (node2->loc)
2886 && REG_P (node->loc)
2887 && REGNO (node2->loc) == REGNO (node->loc))
2888 || rtx_equal_p (node2->loc, node->loc)))
2890 if (node2->init < node->init)
2891 node2->init = node->init;
2892 break;
2895 if (node || node2)
2897 dstp = unshare_variable (set, dstp, dst,
2898 VAR_INIT_STATUS_UNKNOWN);
2899 dst = (variable)*dstp;
2903 src_l = 0;
2904 for (node = src->var_part[i].loc_chain; node; node = node->next)
2905 src_l++;
2906 dst_l = 0;
2907 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2908 dst_l++;
2910 if (dst_l == 1)
2912 /* The most common case, much simpler, no qsort is needed. */
2913 location_chain dstnode = dst->var_part[j].loc_chain;
2914 dst->var_part[k].loc_chain = dstnode;
2915 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2916 node2 = dstnode;
2917 for (node = src->var_part[i].loc_chain; node; node = node->next)
2918 if (!((REG_P (dstnode->loc)
2919 && REG_P (node->loc)
2920 && REGNO (dstnode->loc) == REGNO (node->loc))
2921 || rtx_equal_p (dstnode->loc, node->loc)))
2923 location_chain new_node;
2925 /* Copy the location from SRC. */
2926 new_node = (location_chain) pool_alloc (loc_chain_pool);
2927 new_node->loc = node->loc;
2928 new_node->init = node->init;
2929 if (!node->set_src || MEM_P (node->set_src))
2930 new_node->set_src = NULL;
2931 else
2932 new_node->set_src = node->set_src;
2933 node2->next = new_node;
2934 node2 = new_node;
2936 node2->next = NULL;
2938 else
2940 if (src_l + dst_l > vui_allocated)
2942 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2943 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2944 vui_allocated);
2946 vui = vui_vec;
2948 /* Fill in the locations from DST. */
2949 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2950 node = node->next, jj++)
2952 vui[jj].lc = node;
2953 vui[jj].pos_dst = jj;
2955 /* Pos plus value larger than a sum of 2 valid positions. */
2956 vui[jj].pos = jj + src_l + dst_l;
2959 /* Fill in the locations from SRC. */
2960 n = dst_l;
2961 for (node = src->var_part[i].loc_chain, ii = 0; node;
2962 node = node->next, ii++)
2964 /* Find location from NODE. */
2965 for (jj = 0; jj < dst_l; jj++)
2967 if ((REG_P (vui[jj].lc->loc)
2968 && REG_P (node->loc)
2969 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2970 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2972 vui[jj].pos = jj + ii;
2973 break;
2976 if (jj >= dst_l) /* The location has not been found. */
2978 location_chain new_node;
2980 /* Copy the location from SRC. */
2981 new_node = (location_chain) pool_alloc (loc_chain_pool);
2982 new_node->loc = node->loc;
2983 new_node->init = node->init;
2984 if (!node->set_src || MEM_P (node->set_src))
2985 new_node->set_src = NULL;
2986 else
2987 new_node->set_src = node->set_src;
2988 vui[n].lc = new_node;
2989 vui[n].pos_dst = src_l + dst_l;
2990 vui[n].pos = ii + src_l + dst_l;
2991 n++;
2995 if (dst_l == 2)
2997 /* Special case still very common case. For dst_l == 2
2998 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2999 vui[i].pos == i + src_l + dst_l. */
3000 if (vui[0].pos > vui[1].pos)
3002 /* Order should be 1, 0, 2... */
3003 dst->var_part[k].loc_chain = vui[1].lc;
3004 vui[1].lc->next = vui[0].lc;
3005 if (n >= 3)
3007 vui[0].lc->next = vui[2].lc;
3008 vui[n - 1].lc->next = NULL;
3010 else
3011 vui[0].lc->next = NULL;
3012 ii = 3;
3014 else
3016 dst->var_part[k].loc_chain = vui[0].lc;
3017 if (n >= 3 && vui[2].pos < vui[1].pos)
3019 /* Order should be 0, 2, 1, 3... */
3020 vui[0].lc->next = vui[2].lc;
3021 vui[2].lc->next = vui[1].lc;
3022 if (n >= 4)
3024 vui[1].lc->next = vui[3].lc;
3025 vui[n - 1].lc->next = NULL;
3027 else
3028 vui[1].lc->next = NULL;
3029 ii = 4;
3031 else
3033 /* Order should be 0, 1, 2... */
3034 ii = 1;
3035 vui[n - 1].lc->next = NULL;
3038 for (; ii < n; ii++)
3039 vui[ii - 1].lc->next = vui[ii].lc;
3041 else
3043 qsort (vui, n, sizeof (struct variable_union_info),
3044 variable_union_info_cmp_pos);
3046 /* Reconnect the nodes in sorted order. */
3047 for (ii = 1; ii < n; ii++)
3048 vui[ii - 1].lc->next = vui[ii].lc;
3049 vui[n - 1].lc->next = NULL;
3050 dst->var_part[k].loc_chain = vui[0].lc;
3053 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3055 i--;
3056 j--;
3058 else if ((i >= 0 && j >= 0
3059 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3060 || i < 0)
3062 dst->var_part[k] = dst->var_part[j];
3063 j--;
3065 else if ((i >= 0 && j >= 0
3066 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3067 || j < 0)
3069 location_chain *nextp;
3071 /* Copy the chain from SRC. */
3072 nextp = &dst->var_part[k].loc_chain;
3073 for (node = src->var_part[i].loc_chain; node; node = node->next)
3075 location_chain new_lc;
3077 new_lc = (location_chain) pool_alloc (loc_chain_pool);
3078 new_lc->next = NULL;
3079 new_lc->init = node->init;
3080 if (!node->set_src || MEM_P (node->set_src))
3081 new_lc->set_src = NULL;
3082 else
3083 new_lc->set_src = node->set_src;
3084 new_lc->loc = node->loc;
3086 *nextp = new_lc;
3087 nextp = &new_lc->next;
3090 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3091 i--;
3093 dst->var_part[k].cur_loc = NULL;
3096 if (flag_var_tracking_uninit)
3097 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3099 location_chain node, node2;
3100 for (node = src->var_part[i].loc_chain; node; node = node->next)
3101 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3102 if (rtx_equal_p (node->loc, node2->loc))
3104 if (node->init > node2->init)
3105 node2->init = node->init;
3109 /* Continue traversing the hash table. */
3110 return 1;
3113 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3115 static void
3116 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3118 int i;
3120 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3121 attrs_list_union (&dst->regs[i], src->regs[i]);
3123 if (dst->vars == empty_shared_hash)
3125 shared_hash_destroy (dst->vars);
3126 dst->vars = shared_hash_copy (src->vars);
3128 else
3130 variable_iterator_type hi;
3131 variable var;
3133 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3134 var, variable, hi)
3135 variable_union (var, dst);
3139 /* Whether the value is currently being expanded. */
3140 #define VALUE_RECURSED_INTO(x) \
3141 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3143 /* Whether no expansion was found, saving useless lookups.
3144 It must only be set when VALUE_CHANGED is clear. */
3145 #define NO_LOC_P(x) \
3146 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3148 /* Whether cur_loc in the value needs to be (re)computed. */
3149 #define VALUE_CHANGED(x) \
3150 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3151 /* Whether cur_loc in the decl needs to be (re)computed. */
3152 #define DECL_CHANGED(x) TREE_VISITED (x)
3154 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3155 user DECLs, this means they're in changed_variables. Values and
3156 debug exprs may be left with this flag set if no user variable
3157 requires them to be evaluated. */
3159 static inline void
3160 set_dv_changed (decl_or_value dv, bool newv)
3162 switch (dv_onepart_p (dv))
3164 case ONEPART_VALUE:
3165 if (newv)
3166 NO_LOC_P (dv_as_value (dv)) = false;
3167 VALUE_CHANGED (dv_as_value (dv)) = newv;
3168 break;
3170 case ONEPART_DEXPR:
3171 if (newv)
3172 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3173 /* Fall through... */
3175 default:
3176 DECL_CHANGED (dv_as_decl (dv)) = newv;
3177 break;
3181 /* Return true if DV needs to have its cur_loc recomputed. */
3183 static inline bool
3184 dv_changed_p (decl_or_value dv)
3186 return (dv_is_value_p (dv)
3187 ? VALUE_CHANGED (dv_as_value (dv))
3188 : DECL_CHANGED (dv_as_decl (dv)));
3191 /* Return a location list node whose loc is rtx_equal to LOC, in the
3192 location list of a one-part variable or value VAR, or in that of
3193 any values recursively mentioned in the location lists. VARS must
3194 be in star-canonical form. */
3196 static location_chain
3197 find_loc_in_1pdv (rtx loc, variable var, variable_table_type *vars)
3199 location_chain node;
3200 enum rtx_code loc_code;
3202 if (!var)
3203 return NULL;
3205 gcc_checking_assert (var->onepart);
3207 if (!var->n_var_parts)
3208 return NULL;
3210 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3212 loc_code = GET_CODE (loc);
3213 for (node = var->var_part[0].loc_chain; node; node = node->next)
3215 decl_or_value dv;
3216 variable rvar;
3218 if (GET_CODE (node->loc) != loc_code)
3220 if (GET_CODE (node->loc) != VALUE)
3221 continue;
3223 else if (loc == node->loc)
3224 return node;
3225 else if (loc_code != VALUE)
3227 if (rtx_equal_p (loc, node->loc))
3228 return node;
3229 continue;
3232 /* Since we're in star-canonical form, we don't need to visit
3233 non-canonical nodes: one-part variables and non-canonical
3234 values would only point back to the canonical node. */
3235 if (dv_is_value_p (var->dv)
3236 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3238 /* Skip all subsequent VALUEs. */
3239 while (node->next && GET_CODE (node->next->loc) == VALUE)
3241 node = node->next;
3242 gcc_checking_assert (!canon_value_cmp (node->loc,
3243 dv_as_value (var->dv)));
3244 if (loc == node->loc)
3245 return node;
3247 continue;
3250 gcc_checking_assert (node == var->var_part[0].loc_chain);
3251 gcc_checking_assert (!node->next);
3253 dv = dv_from_value (node->loc);
3254 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3255 return find_loc_in_1pdv (loc, rvar, vars);
3258 /* ??? Gotta look in cselib_val locations too. */
3260 return NULL;
3263 /* Hash table iteration argument passed to variable_merge. */
3264 struct dfset_merge
3266 /* The set in which the merge is to be inserted. */
3267 dataflow_set *dst;
3268 /* The set that we're iterating in. */
3269 dataflow_set *cur;
3270 /* The set that may contain the other dv we are to merge with. */
3271 dataflow_set *src;
3272 /* Number of onepart dvs in src. */
3273 int src_onepart_cnt;
3276 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3277 loc_cmp order, and it is maintained as such. */
3279 static void
3280 insert_into_intersection (location_chain *nodep, rtx loc,
3281 enum var_init_status status)
3283 location_chain node;
3284 int r;
3286 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3287 if ((r = loc_cmp (node->loc, loc)) == 0)
3289 node->init = MIN (node->init, status);
3290 return;
3292 else if (r > 0)
3293 break;
3295 node = (location_chain) pool_alloc (loc_chain_pool);
3297 node->loc = loc;
3298 node->set_src = NULL;
3299 node->init = status;
3300 node->next = *nodep;
3301 *nodep = node;
3304 /* Insert in DEST the intersection of the locations present in both
3305 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3306 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3307 DSM->dst. */
3309 static void
3310 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
3311 location_chain s1node, variable s2var)
3313 dataflow_set *s1set = dsm->cur;
3314 dataflow_set *s2set = dsm->src;
3315 location_chain found;
3317 if (s2var)
3319 location_chain s2node;
3321 gcc_checking_assert (s2var->onepart);
3323 if (s2var->n_var_parts)
3325 s2node = s2var->var_part[0].loc_chain;
3327 for (; s1node && s2node;
3328 s1node = s1node->next, s2node = s2node->next)
3329 if (s1node->loc != s2node->loc)
3330 break;
3331 else if (s1node->loc == val)
3332 continue;
3333 else
3334 insert_into_intersection (dest, s1node->loc,
3335 MIN (s1node->init, s2node->init));
3339 for (; s1node; s1node = s1node->next)
3341 if (s1node->loc == val)
3342 continue;
3344 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3345 shared_hash_htab (s2set->vars))))
3347 insert_into_intersection (dest, s1node->loc,
3348 MIN (s1node->init, found->init));
3349 continue;
3352 if (GET_CODE (s1node->loc) == VALUE
3353 && !VALUE_RECURSED_INTO (s1node->loc))
3355 decl_or_value dv = dv_from_value (s1node->loc);
3356 variable svar = shared_hash_find (s1set->vars, dv);
3357 if (svar)
3359 if (svar->n_var_parts == 1)
3361 VALUE_RECURSED_INTO (s1node->loc) = true;
3362 intersect_loc_chains (val, dest, dsm,
3363 svar->var_part[0].loc_chain,
3364 s2var);
3365 VALUE_RECURSED_INTO (s1node->loc) = false;
3370 /* ??? gotta look in cselib_val locations too. */
3372 /* ??? if the location is equivalent to any location in src,
3373 searched recursively
3375 add to dst the values needed to represent the equivalence
3377 telling whether locations S is equivalent to another dv's
3378 location list:
3380 for each location D in the list
3382 if S and D satisfy rtx_equal_p, then it is present
3384 else if D is a value, recurse without cycles
3386 else if S and D have the same CODE and MODE
3388 for each operand oS and the corresponding oD
3390 if oS and oD are not equivalent, then S an D are not equivalent
3392 else if they are RTX vectors
3394 if any vector oS element is not equivalent to its respective oD,
3395 then S and D are not equivalent
3403 /* Return -1 if X should be before Y in a location list for a 1-part
3404 variable, 1 if Y should be before X, and 0 if they're equivalent
3405 and should not appear in the list. */
3407 static int
3408 loc_cmp (rtx x, rtx y)
3410 int i, j, r;
3411 RTX_CODE code = GET_CODE (x);
3412 const char *fmt;
3414 if (x == y)
3415 return 0;
3417 if (REG_P (x))
3419 if (!REG_P (y))
3420 return -1;
3421 gcc_assert (GET_MODE (x) == GET_MODE (y));
3422 if (REGNO (x) == REGNO (y))
3423 return 0;
3424 else if (REGNO (x) < REGNO (y))
3425 return -1;
3426 else
3427 return 1;
3430 if (REG_P (y))
3431 return 1;
3433 if (MEM_P (x))
3435 if (!MEM_P (y))
3436 return -1;
3437 gcc_assert (GET_MODE (x) == GET_MODE (y));
3438 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3441 if (MEM_P (y))
3442 return 1;
3444 if (GET_CODE (x) == VALUE)
3446 if (GET_CODE (y) != VALUE)
3447 return -1;
3448 /* Don't assert the modes are the same, that is true only
3449 when not recursing. (subreg:QI (value:SI 1:1) 0)
3450 and (subreg:QI (value:DI 2:2) 0) can be compared,
3451 even when the modes are different. */
3452 if (canon_value_cmp (x, y))
3453 return -1;
3454 else
3455 return 1;
3458 if (GET_CODE (y) == VALUE)
3459 return 1;
3461 /* Entry value is the least preferable kind of expression. */
3462 if (GET_CODE (x) == ENTRY_VALUE)
3464 if (GET_CODE (y) != ENTRY_VALUE)
3465 return 1;
3466 gcc_assert (GET_MODE (x) == GET_MODE (y));
3467 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3470 if (GET_CODE (y) == ENTRY_VALUE)
3471 return -1;
3473 if (GET_CODE (x) == GET_CODE (y))
3474 /* Compare operands below. */;
3475 else if (GET_CODE (x) < GET_CODE (y))
3476 return -1;
3477 else
3478 return 1;
3480 gcc_assert (GET_MODE (x) == GET_MODE (y));
3482 if (GET_CODE (x) == DEBUG_EXPR)
3484 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3485 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3486 return -1;
3487 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3488 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3489 return 1;
3492 fmt = GET_RTX_FORMAT (code);
3493 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3494 switch (fmt[i])
3496 case 'w':
3497 if (XWINT (x, i) == XWINT (y, i))
3498 break;
3499 else if (XWINT (x, i) < XWINT (y, i))
3500 return -1;
3501 else
3502 return 1;
3504 case 'n':
3505 case 'i':
3506 if (XINT (x, i) == XINT (y, i))
3507 break;
3508 else if (XINT (x, i) < XINT (y, i))
3509 return -1;
3510 else
3511 return 1;
3513 case 'V':
3514 case 'E':
3515 /* Compare the vector length first. */
3516 if (XVECLEN (x, i) == XVECLEN (y, i))
3517 /* Compare the vectors elements. */;
3518 else if (XVECLEN (x, i) < XVECLEN (y, i))
3519 return -1;
3520 else
3521 return 1;
3523 for (j = 0; j < XVECLEN (x, i); j++)
3524 if ((r = loc_cmp (XVECEXP (x, i, j),
3525 XVECEXP (y, i, j))))
3526 return r;
3527 break;
3529 case 'e':
3530 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3531 return r;
3532 break;
3534 case 'S':
3535 case 's':
3536 if (XSTR (x, i) == XSTR (y, i))
3537 break;
3538 if (!XSTR (x, i))
3539 return -1;
3540 if (!XSTR (y, i))
3541 return 1;
3542 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3543 break;
3544 else if (r < 0)
3545 return -1;
3546 else
3547 return 1;
3549 case 'u':
3550 /* These are just backpointers, so they don't matter. */
3551 break;
3553 case '0':
3554 case 't':
3555 break;
3557 /* It is believed that rtx's at this level will never
3558 contain anything but integers and other rtx's,
3559 except for within LABEL_REFs and SYMBOL_REFs. */
3560 default:
3561 gcc_unreachable ();
3563 if (CONST_WIDE_INT_P (x))
3565 /* Compare the vector length first. */
3566 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3567 return 1;
3568 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3569 return -1;
3571 /* Compare the vectors elements. */;
3572 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3574 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3575 return -1;
3576 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3577 return 1;
3581 return 0;
3584 #if ENABLE_CHECKING
3585 /* Check the order of entries in one-part variables. */
3588 canonicalize_loc_order_check (variable_def **slot,
3589 dataflow_set *data ATTRIBUTE_UNUSED)
3591 variable var = *slot;
3592 location_chain node, next;
3594 #ifdef ENABLE_RTL_CHECKING
3595 int i;
3596 for (i = 0; i < var->n_var_parts; i++)
3597 gcc_assert (var->var_part[0].cur_loc == NULL);
3598 gcc_assert (!var->in_changed_variables);
3599 #endif
3601 if (!var->onepart)
3602 return 1;
3604 gcc_assert (var->n_var_parts == 1);
3605 node = var->var_part[0].loc_chain;
3606 gcc_assert (node);
3608 while ((next = node->next))
3610 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3611 node = next;
3614 return 1;
3616 #endif
3618 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3619 more likely to be chosen as canonical for an equivalence set.
3620 Ensure less likely values can reach more likely neighbors, making
3621 the connections bidirectional. */
3624 canonicalize_values_mark (variable_def **slot, dataflow_set *set)
3626 variable var = *slot;
3627 decl_or_value dv = var->dv;
3628 rtx val;
3629 location_chain node;
3631 if (!dv_is_value_p (dv))
3632 return 1;
3634 gcc_checking_assert (var->n_var_parts == 1);
3636 val = dv_as_value (dv);
3638 for (node = var->var_part[0].loc_chain; node; node = node->next)
3639 if (GET_CODE (node->loc) == VALUE)
3641 if (canon_value_cmp (node->loc, val))
3642 VALUE_RECURSED_INTO (val) = true;
3643 else
3645 decl_or_value odv = dv_from_value (node->loc);
3646 variable_def **oslot;
3647 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3649 set_slot_part (set, val, oslot, odv, 0,
3650 node->init, NULL_RTX);
3652 VALUE_RECURSED_INTO (node->loc) = true;
3656 return 1;
3659 /* Remove redundant entries from equivalence lists in onepart
3660 variables, canonicalizing equivalence sets into star shapes. */
3663 canonicalize_values_star (variable_def **slot, dataflow_set *set)
3665 variable var = *slot;
3666 decl_or_value dv = var->dv;
3667 location_chain node;
3668 decl_or_value cdv;
3669 rtx val, cval;
3670 variable_def **cslot;
3671 bool has_value;
3672 bool has_marks;
3674 if (!var->onepart)
3675 return 1;
3677 gcc_checking_assert (var->n_var_parts == 1);
3679 if (dv_is_value_p (dv))
3681 cval = dv_as_value (dv);
3682 if (!VALUE_RECURSED_INTO (cval))
3683 return 1;
3684 VALUE_RECURSED_INTO (cval) = false;
3686 else
3687 cval = NULL_RTX;
3689 restart:
3690 val = cval;
3691 has_value = false;
3692 has_marks = false;
3694 gcc_assert (var->n_var_parts == 1);
3696 for (node = var->var_part[0].loc_chain; node; node = node->next)
3697 if (GET_CODE (node->loc) == VALUE)
3699 has_value = true;
3700 if (VALUE_RECURSED_INTO (node->loc))
3701 has_marks = true;
3702 if (canon_value_cmp (node->loc, cval))
3703 cval = node->loc;
3706 if (!has_value)
3707 return 1;
3709 if (cval == val)
3711 if (!has_marks || dv_is_decl_p (dv))
3712 return 1;
3714 /* Keep it marked so that we revisit it, either after visiting a
3715 child node, or after visiting a new parent that might be
3716 found out. */
3717 VALUE_RECURSED_INTO (val) = true;
3719 for (node = var->var_part[0].loc_chain; node; node = node->next)
3720 if (GET_CODE (node->loc) == VALUE
3721 && VALUE_RECURSED_INTO (node->loc))
3723 cval = node->loc;
3724 restart_with_cval:
3725 VALUE_RECURSED_INTO (cval) = false;
3726 dv = dv_from_value (cval);
3727 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3728 if (!slot)
3730 gcc_assert (dv_is_decl_p (var->dv));
3731 /* The canonical value was reset and dropped.
3732 Remove it. */
3733 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3734 return 1;
3736 var = *slot;
3737 gcc_assert (dv_is_value_p (var->dv));
3738 if (var->n_var_parts == 0)
3739 return 1;
3740 gcc_assert (var->n_var_parts == 1);
3741 goto restart;
3744 VALUE_RECURSED_INTO (val) = false;
3746 return 1;
3749 /* Push values to the canonical one. */
3750 cdv = dv_from_value (cval);
3751 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3753 for (node = var->var_part[0].loc_chain; node; node = node->next)
3754 if (node->loc != cval)
3756 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3757 node->init, NULL_RTX);
3758 if (GET_CODE (node->loc) == VALUE)
3760 decl_or_value ndv = dv_from_value (node->loc);
3762 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3763 NO_INSERT);
3765 if (canon_value_cmp (node->loc, val))
3767 /* If it could have been a local minimum, it's not any more,
3768 since it's now neighbor to cval, so it may have to push
3769 to it. Conversely, if it wouldn't have prevailed over
3770 val, then whatever mark it has is fine: if it was to
3771 push, it will now push to a more canonical node, but if
3772 it wasn't, then it has already pushed any values it might
3773 have to. */
3774 VALUE_RECURSED_INTO (node->loc) = true;
3775 /* Make sure we visit node->loc by ensuring we cval is
3776 visited too. */
3777 VALUE_RECURSED_INTO (cval) = true;
3779 else if (!VALUE_RECURSED_INTO (node->loc))
3780 /* If we have no need to "recurse" into this node, it's
3781 already "canonicalized", so drop the link to the old
3782 parent. */
3783 clobber_variable_part (set, cval, ndv, 0, NULL);
3785 else if (GET_CODE (node->loc) == REG)
3787 attrs list = set->regs[REGNO (node->loc)], *listp;
3789 /* Change an existing attribute referring to dv so that it
3790 refers to cdv, removing any duplicate this might
3791 introduce, and checking that no previous duplicates
3792 existed, all in a single pass. */
3794 while (list)
3796 if (list->offset == 0
3797 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3798 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3799 break;
3801 list = list->next;
3804 gcc_assert (list);
3805 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3807 list->dv = cdv;
3808 for (listp = &list->next; (list = *listp); listp = &list->next)
3810 if (list->offset)
3811 continue;
3813 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3815 *listp = list->next;
3816 pool_free (attrs_pool, list);
3817 list = *listp;
3818 break;
3821 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3824 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3826 for (listp = &list->next; (list = *listp); listp = &list->next)
3828 if (list->offset)
3829 continue;
3831 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3833 *listp = list->next;
3834 pool_free (attrs_pool, list);
3835 list = *listp;
3836 break;
3839 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3842 else
3843 gcc_unreachable ();
3845 #if ENABLE_CHECKING
3846 while (list)
3848 if (list->offset == 0
3849 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3850 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3851 gcc_unreachable ();
3853 list = list->next;
3855 #endif
3859 if (val)
3860 set_slot_part (set, val, cslot, cdv, 0,
3861 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3863 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3865 /* Variable may have been unshared. */
3866 var = *slot;
3867 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3868 && var->var_part[0].loc_chain->next == NULL);
3870 if (VALUE_RECURSED_INTO (cval))
3871 goto restart_with_cval;
3873 return 1;
3876 /* Bind one-part variables to the canonical value in an equivalence
3877 set. Not doing this causes dataflow convergence failure in rare
3878 circumstances, see PR42873. Unfortunately we can't do this
3879 efficiently as part of canonicalize_values_star, since we may not
3880 have determined or even seen the canonical value of a set when we
3881 get to a variable that references another member of the set. */
3884 canonicalize_vars_star (variable_def **slot, dataflow_set *set)
3886 variable var = *slot;
3887 decl_or_value dv = var->dv;
3888 location_chain node;
3889 rtx cval;
3890 decl_or_value cdv;
3891 variable_def **cslot;
3892 variable cvar;
3893 location_chain cnode;
3895 if (!var->onepart || var->onepart == ONEPART_VALUE)
3896 return 1;
3898 gcc_assert (var->n_var_parts == 1);
3900 node = var->var_part[0].loc_chain;
3902 if (GET_CODE (node->loc) != VALUE)
3903 return 1;
3905 gcc_assert (!node->next);
3906 cval = node->loc;
3908 /* Push values to the canonical one. */
3909 cdv = dv_from_value (cval);
3910 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3911 if (!cslot)
3912 return 1;
3913 cvar = *cslot;
3914 gcc_assert (cvar->n_var_parts == 1);
3916 cnode = cvar->var_part[0].loc_chain;
3918 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3919 that are not “more canonical” than it. */
3920 if (GET_CODE (cnode->loc) != VALUE
3921 || !canon_value_cmp (cnode->loc, cval))
3922 return 1;
3924 /* CVAL was found to be non-canonical. Change the variable to point
3925 to the canonical VALUE. */
3926 gcc_assert (!cnode->next);
3927 cval = cnode->loc;
3929 slot = set_slot_part (set, cval, slot, dv, 0,
3930 node->init, node->set_src);
3931 clobber_slot_part (set, cval, slot, 0, node->set_src);
3933 return 1;
3936 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3937 corresponding entry in DSM->src. Multi-part variables are combined
3938 with variable_union, whereas onepart dvs are combined with
3939 intersection. */
3941 static int
3942 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3944 dataflow_set *dst = dsm->dst;
3945 variable_def **dstslot;
3946 variable s2var, dvar = NULL;
3947 decl_or_value dv = s1var->dv;
3948 onepart_enum_t onepart = s1var->onepart;
3949 rtx val;
3950 hashval_t dvhash;
3951 location_chain node, *nodep;
3953 /* If the incoming onepart variable has an empty location list, then
3954 the intersection will be just as empty. For other variables,
3955 it's always union. */
3956 gcc_checking_assert (s1var->n_var_parts
3957 && s1var->var_part[0].loc_chain);
3959 if (!onepart)
3960 return variable_union (s1var, dst);
3962 gcc_checking_assert (s1var->n_var_parts == 1);
3964 dvhash = dv_htab_hash (dv);
3965 if (dv_is_value_p (dv))
3966 val = dv_as_value (dv);
3967 else
3968 val = NULL;
3970 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3971 if (!s2var)
3973 dst_can_be_shared = false;
3974 return 1;
3977 dsm->src_onepart_cnt--;
3978 gcc_assert (s2var->var_part[0].loc_chain
3979 && s2var->onepart == onepart
3980 && s2var->n_var_parts == 1);
3982 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3983 if (dstslot)
3985 dvar = *dstslot;
3986 gcc_assert (dvar->refcount == 1
3987 && dvar->onepart == onepart
3988 && dvar->n_var_parts == 1);
3989 nodep = &dvar->var_part[0].loc_chain;
3991 else
3993 nodep = &node;
3994 node = NULL;
3997 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3999 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
4000 dvhash, INSERT);
4001 *dstslot = dvar = s2var;
4002 dvar->refcount++;
4004 else
4006 dst_can_be_shared = false;
4008 intersect_loc_chains (val, nodep, dsm,
4009 s1var->var_part[0].loc_chain, s2var);
4011 if (!dstslot)
4013 if (node)
4015 dvar = (variable) pool_alloc (onepart_pool (onepart));
4016 dvar->dv = dv;
4017 dvar->refcount = 1;
4018 dvar->n_var_parts = 1;
4019 dvar->onepart = onepart;
4020 dvar->in_changed_variables = false;
4021 dvar->var_part[0].loc_chain = node;
4022 dvar->var_part[0].cur_loc = NULL;
4023 if (onepart)
4024 VAR_LOC_1PAUX (dvar) = NULL;
4025 else
4026 VAR_PART_OFFSET (dvar, 0) = 0;
4028 dstslot
4029 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4030 INSERT);
4031 gcc_assert (!*dstslot);
4032 *dstslot = dvar;
4034 else
4035 return 1;
4039 nodep = &dvar->var_part[0].loc_chain;
4040 while ((node = *nodep))
4042 location_chain *nextp = &node->next;
4044 if (GET_CODE (node->loc) == REG)
4046 attrs list;
4048 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4049 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4050 && dv_is_value_p (list->dv))
4051 break;
4053 if (!list)
4054 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4055 dv, 0, node->loc);
4056 /* If this value became canonical for another value that had
4057 this register, we want to leave it alone. */
4058 else if (dv_as_value (list->dv) != val)
4060 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4061 dstslot, dv, 0,
4062 node->init, NULL_RTX);
4063 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4065 /* Since nextp points into the removed node, we can't
4066 use it. The pointer to the next node moved to nodep.
4067 However, if the variable we're walking is unshared
4068 during our walk, we'll keep walking the location list
4069 of the previously-shared variable, in which case the
4070 node won't have been removed, and we'll want to skip
4071 it. That's why we test *nodep here. */
4072 if (*nodep != node)
4073 nextp = nodep;
4076 else
4077 /* Canonicalization puts registers first, so we don't have to
4078 walk it all. */
4079 break;
4080 nodep = nextp;
4083 if (dvar != *dstslot)
4084 dvar = *dstslot;
4085 nodep = &dvar->var_part[0].loc_chain;
4087 if (val)
4089 /* Mark all referenced nodes for canonicalization, and make sure
4090 we have mutual equivalence links. */
4091 VALUE_RECURSED_INTO (val) = true;
4092 for (node = *nodep; node; node = node->next)
4093 if (GET_CODE (node->loc) == VALUE)
4095 VALUE_RECURSED_INTO (node->loc) = true;
4096 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4097 node->init, NULL, INSERT);
4100 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4101 gcc_assert (*dstslot == dvar);
4102 canonicalize_values_star (dstslot, dst);
4103 gcc_checking_assert (dstslot
4104 == shared_hash_find_slot_noinsert_1 (dst->vars,
4105 dv, dvhash));
4106 dvar = *dstslot;
4108 else
4110 bool has_value = false, has_other = false;
4112 /* If we have one value and anything else, we're going to
4113 canonicalize this, so make sure all values have an entry in
4114 the table and are marked for canonicalization. */
4115 for (node = *nodep; node; node = node->next)
4117 if (GET_CODE (node->loc) == VALUE)
4119 /* If this was marked during register canonicalization,
4120 we know we have to canonicalize values. */
4121 if (has_value)
4122 has_other = true;
4123 has_value = true;
4124 if (has_other)
4125 break;
4127 else
4129 has_other = true;
4130 if (has_value)
4131 break;
4135 if (has_value && has_other)
4137 for (node = *nodep; node; node = node->next)
4139 if (GET_CODE (node->loc) == VALUE)
4141 decl_or_value dv = dv_from_value (node->loc);
4142 variable_def **slot = NULL;
4144 if (shared_hash_shared (dst->vars))
4145 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4146 if (!slot)
4147 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4148 INSERT);
4149 if (!*slot)
4151 variable var = (variable) pool_alloc (onepart_pool
4152 (ONEPART_VALUE));
4153 var->dv = dv;
4154 var->refcount = 1;
4155 var->n_var_parts = 1;
4156 var->onepart = ONEPART_VALUE;
4157 var->in_changed_variables = false;
4158 var->var_part[0].loc_chain = NULL;
4159 var->var_part[0].cur_loc = NULL;
4160 VAR_LOC_1PAUX (var) = NULL;
4161 *slot = var;
4164 VALUE_RECURSED_INTO (node->loc) = true;
4168 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4169 gcc_assert (*dstslot == dvar);
4170 canonicalize_values_star (dstslot, dst);
4171 gcc_checking_assert (dstslot
4172 == shared_hash_find_slot_noinsert_1 (dst->vars,
4173 dv, dvhash));
4174 dvar = *dstslot;
4178 if (!onepart_variable_different_p (dvar, s2var))
4180 variable_htab_free (dvar);
4181 *dstslot = dvar = s2var;
4182 dvar->refcount++;
4184 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4186 variable_htab_free (dvar);
4187 *dstslot = dvar = s1var;
4188 dvar->refcount++;
4189 dst_can_be_shared = false;
4191 else
4192 dst_can_be_shared = false;
4194 return 1;
4197 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4198 multi-part variable. Unions of multi-part variables and
4199 intersections of one-part ones will be handled in
4200 variable_merge_over_cur(). */
4202 static int
4203 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
4205 dataflow_set *dst = dsm->dst;
4206 decl_or_value dv = s2var->dv;
4208 if (!s2var->onepart)
4210 variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
4211 *dstp = s2var;
4212 s2var->refcount++;
4213 return 1;
4216 dsm->src_onepart_cnt++;
4217 return 1;
4220 /* Combine dataflow set information from SRC2 into DST, using PDST
4221 to carry over information across passes. */
4223 static void
4224 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4226 dataflow_set cur = *dst;
4227 dataflow_set *src1 = &cur;
4228 struct dfset_merge dsm;
4229 int i;
4230 size_t src1_elems, src2_elems;
4231 variable_iterator_type hi;
4232 variable var;
4234 src1_elems = shared_hash_htab (src1->vars)->elements ();
4235 src2_elems = shared_hash_htab (src2->vars)->elements ();
4236 dataflow_set_init (dst);
4237 dst->stack_adjust = cur.stack_adjust;
4238 shared_hash_destroy (dst->vars);
4239 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
4240 dst->vars->refcount = 1;
4241 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4243 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4244 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4246 dsm.dst = dst;
4247 dsm.src = src2;
4248 dsm.cur = src1;
4249 dsm.src_onepart_cnt = 0;
4251 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4252 var, variable, hi)
4253 variable_merge_over_src (var, &dsm);
4254 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4255 var, variable, hi)
4256 variable_merge_over_cur (var, &dsm);
4258 if (dsm.src_onepart_cnt)
4259 dst_can_be_shared = false;
4261 dataflow_set_destroy (src1);
4264 /* Mark register equivalences. */
4266 static void
4267 dataflow_set_equiv_regs (dataflow_set *set)
4269 int i;
4270 attrs list, *listp;
4272 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4274 rtx canon[NUM_MACHINE_MODES];
4276 /* If the list is empty or one entry, no need to canonicalize
4277 anything. */
4278 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4279 continue;
4281 memset (canon, 0, sizeof (canon));
4283 for (list = set->regs[i]; list; list = list->next)
4284 if (list->offset == 0 && dv_is_value_p (list->dv))
4286 rtx val = dv_as_value (list->dv);
4287 rtx *cvalp = &canon[(int)GET_MODE (val)];
4288 rtx cval = *cvalp;
4290 if (canon_value_cmp (val, cval))
4291 *cvalp = val;
4294 for (list = set->regs[i]; list; list = list->next)
4295 if (list->offset == 0 && dv_onepart_p (list->dv))
4297 rtx cval = canon[(int)GET_MODE (list->loc)];
4299 if (!cval)
4300 continue;
4302 if (dv_is_value_p (list->dv))
4304 rtx val = dv_as_value (list->dv);
4306 if (val == cval)
4307 continue;
4309 VALUE_RECURSED_INTO (val) = true;
4310 set_variable_part (set, val, dv_from_value (cval), 0,
4311 VAR_INIT_STATUS_INITIALIZED,
4312 NULL, NO_INSERT);
4315 VALUE_RECURSED_INTO (cval) = true;
4316 set_variable_part (set, cval, list->dv, 0,
4317 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4320 for (listp = &set->regs[i]; (list = *listp);
4321 listp = list ? &list->next : listp)
4322 if (list->offset == 0 && dv_onepart_p (list->dv))
4324 rtx cval = canon[(int)GET_MODE (list->loc)];
4325 variable_def **slot;
4327 if (!cval)
4328 continue;
4330 if (dv_is_value_p (list->dv))
4332 rtx val = dv_as_value (list->dv);
4333 if (!VALUE_RECURSED_INTO (val))
4334 continue;
4337 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4338 canonicalize_values_star (slot, set);
4339 if (*listp != list)
4340 list = NULL;
4345 /* Remove any redundant values in the location list of VAR, which must
4346 be unshared and 1-part. */
4348 static void
4349 remove_duplicate_values (variable var)
4351 location_chain node, *nodep;
4353 gcc_assert (var->onepart);
4354 gcc_assert (var->n_var_parts == 1);
4355 gcc_assert (var->refcount == 1);
4357 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4359 if (GET_CODE (node->loc) == VALUE)
4361 if (VALUE_RECURSED_INTO (node->loc))
4363 /* Remove duplicate value node. */
4364 *nodep = node->next;
4365 pool_free (loc_chain_pool, node);
4366 continue;
4368 else
4369 VALUE_RECURSED_INTO (node->loc) = true;
4371 nodep = &node->next;
4374 for (node = var->var_part[0].loc_chain; node; node = node->next)
4375 if (GET_CODE (node->loc) == VALUE)
4377 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4378 VALUE_RECURSED_INTO (node->loc) = false;
4383 /* Hash table iteration argument passed to variable_post_merge. */
4384 struct dfset_post_merge
4386 /* The new input set for the current block. */
4387 dataflow_set *set;
4388 /* Pointer to the permanent input set for the current block, or
4389 NULL. */
4390 dataflow_set **permp;
4393 /* Create values for incoming expressions associated with one-part
4394 variables that don't have value numbers for them. */
4397 variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
4399 dataflow_set *set = dfpm->set;
4400 variable var = *slot;
4401 location_chain node;
4403 if (!var->onepart || !var->n_var_parts)
4404 return 1;
4406 gcc_assert (var->n_var_parts == 1);
4408 if (dv_is_decl_p (var->dv))
4410 bool check_dupes = false;
4412 restart:
4413 for (node = var->var_part[0].loc_chain; node; node = node->next)
4415 if (GET_CODE (node->loc) == VALUE)
4416 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4417 else if (GET_CODE (node->loc) == REG)
4419 attrs att, *attp, *curp = NULL;
4421 if (var->refcount != 1)
4423 slot = unshare_variable (set, slot, var,
4424 VAR_INIT_STATUS_INITIALIZED);
4425 var = *slot;
4426 goto restart;
4429 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4430 attp = &att->next)
4431 if (att->offset == 0
4432 && GET_MODE (att->loc) == GET_MODE (node->loc))
4434 if (dv_is_value_p (att->dv))
4436 rtx cval = dv_as_value (att->dv);
4437 node->loc = cval;
4438 check_dupes = true;
4439 break;
4441 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4442 curp = attp;
4445 if (!curp)
4447 curp = attp;
4448 while (*curp)
4449 if ((*curp)->offset == 0
4450 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4451 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4452 break;
4453 else
4454 curp = &(*curp)->next;
4455 gcc_assert (*curp);
4458 if (!att)
4460 decl_or_value cdv;
4461 rtx cval;
4463 if (!*dfpm->permp)
4465 *dfpm->permp = XNEW (dataflow_set);
4466 dataflow_set_init (*dfpm->permp);
4469 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4470 att; att = att->next)
4471 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4473 gcc_assert (att->offset == 0
4474 && dv_is_value_p (att->dv));
4475 val_reset (set, att->dv);
4476 break;
4479 if (att)
4481 cdv = att->dv;
4482 cval = dv_as_value (cdv);
4484 else
4486 /* Create a unique value to hold this register,
4487 that ought to be found and reused in
4488 subsequent rounds. */
4489 cselib_val *v;
4490 gcc_assert (!cselib_lookup (node->loc,
4491 GET_MODE (node->loc), 0,
4492 VOIDmode));
4493 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4494 VOIDmode);
4495 cselib_preserve_value (v);
4496 cselib_invalidate_rtx (node->loc);
4497 cval = v->val_rtx;
4498 cdv = dv_from_value (cval);
4499 if (dump_file)
4500 fprintf (dump_file,
4501 "Created new value %u:%u for reg %i\n",
4502 v->uid, v->hash, REGNO (node->loc));
4505 var_reg_decl_set (*dfpm->permp, node->loc,
4506 VAR_INIT_STATUS_INITIALIZED,
4507 cdv, 0, NULL, INSERT);
4509 node->loc = cval;
4510 check_dupes = true;
4513 /* Remove attribute referring to the decl, which now
4514 uses the value for the register, already existing or
4515 to be added when we bring perm in. */
4516 att = *curp;
4517 *curp = att->next;
4518 pool_free (attrs_pool, att);
4522 if (check_dupes)
4523 remove_duplicate_values (var);
4526 return 1;
4529 /* Reset values in the permanent set that are not associated with the
4530 chosen expression. */
4533 variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
4535 dataflow_set *set = dfpm->set;
4536 variable pvar = *pslot, var;
4537 location_chain pnode;
4538 decl_or_value dv;
4539 attrs att;
4541 gcc_assert (dv_is_value_p (pvar->dv)
4542 && pvar->n_var_parts == 1);
4543 pnode = pvar->var_part[0].loc_chain;
4544 gcc_assert (pnode
4545 && !pnode->next
4546 && REG_P (pnode->loc));
4548 dv = pvar->dv;
4550 var = shared_hash_find (set->vars, dv);
4551 if (var)
4553 /* Although variable_post_merge_new_vals may have made decls
4554 non-star-canonical, values that pre-existed in canonical form
4555 remain canonical, and newly-created values reference a single
4556 REG, so they are canonical as well. Since VAR has the
4557 location list for a VALUE, using find_loc_in_1pdv for it is
4558 fine, since VALUEs don't map back to DECLs. */
4559 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4560 return 1;
4561 val_reset (set, dv);
4564 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4565 if (att->offset == 0
4566 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4567 && dv_is_value_p (att->dv))
4568 break;
4570 /* If there is a value associated with this register already, create
4571 an equivalence. */
4572 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4574 rtx cval = dv_as_value (att->dv);
4575 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4576 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4577 NULL, INSERT);
4579 else if (!att)
4581 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4582 dv, 0, pnode->loc);
4583 variable_union (pvar, set);
4586 return 1;
4589 /* Just checking stuff and registering register attributes for
4590 now. */
4592 static void
4593 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4595 struct dfset_post_merge dfpm;
4597 dfpm.set = set;
4598 dfpm.permp = permp;
4600 shared_hash_htab (set->vars)
4601 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4602 if (*permp)
4603 shared_hash_htab ((*permp)->vars)
4604 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4605 shared_hash_htab (set->vars)
4606 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4607 shared_hash_htab (set->vars)
4608 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4611 /* Return a node whose loc is a MEM that refers to EXPR in the
4612 location list of a one-part variable or value VAR, or in that of
4613 any values recursively mentioned in the location lists. */
4615 static location_chain
4616 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4618 location_chain node;
4619 decl_or_value dv;
4620 variable var;
4621 location_chain where = NULL;
4623 if (!val)
4624 return NULL;
4626 gcc_assert (GET_CODE (val) == VALUE
4627 && !VALUE_RECURSED_INTO (val));
4629 dv = dv_from_value (val);
4630 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4632 if (!var)
4633 return NULL;
4635 gcc_assert (var->onepart);
4637 if (!var->n_var_parts)
4638 return NULL;
4640 VALUE_RECURSED_INTO (val) = true;
4642 for (node = var->var_part[0].loc_chain; node; node = node->next)
4643 if (MEM_P (node->loc)
4644 && MEM_EXPR (node->loc) == expr
4645 && INT_MEM_OFFSET (node->loc) == 0)
4647 where = node;
4648 break;
4650 else if (GET_CODE (node->loc) == VALUE
4651 && !VALUE_RECURSED_INTO (node->loc)
4652 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4653 break;
4655 VALUE_RECURSED_INTO (val) = false;
4657 return where;
4660 /* Return TRUE if the value of MEM may vary across a call. */
4662 static bool
4663 mem_dies_at_call (rtx mem)
4665 tree expr = MEM_EXPR (mem);
4666 tree decl;
4668 if (!expr)
4669 return true;
4671 decl = get_base_address (expr);
4673 if (!decl)
4674 return true;
4676 if (!DECL_P (decl))
4677 return true;
4679 return (may_be_aliased (decl)
4680 || (!TREE_READONLY (decl) && is_global_var (decl)));
4683 /* Remove all MEMs from the location list of a hash table entry for a
4684 one-part variable, except those whose MEM attributes map back to
4685 the variable itself, directly or within a VALUE. */
4688 dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
4690 variable var = *slot;
4692 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4694 tree decl = dv_as_decl (var->dv);
4695 location_chain loc, *locp;
4696 bool changed = false;
4698 if (!var->n_var_parts)
4699 return 1;
4701 gcc_assert (var->n_var_parts == 1);
4703 if (shared_var_p (var, set->vars))
4705 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4707 /* We want to remove dying MEMs that doesn't refer to DECL. */
4708 if (GET_CODE (loc->loc) == MEM
4709 && (MEM_EXPR (loc->loc) != decl
4710 || INT_MEM_OFFSET (loc->loc) != 0)
4711 && !mem_dies_at_call (loc->loc))
4712 break;
4713 /* We want to move here MEMs that do refer to DECL. */
4714 else if (GET_CODE (loc->loc) == VALUE
4715 && find_mem_expr_in_1pdv (decl, loc->loc,
4716 shared_hash_htab (set->vars)))
4717 break;
4720 if (!loc)
4721 return 1;
4723 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4724 var = *slot;
4725 gcc_assert (var->n_var_parts == 1);
4728 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4729 loc; loc = *locp)
4731 rtx old_loc = loc->loc;
4732 if (GET_CODE (old_loc) == VALUE)
4734 location_chain mem_node
4735 = find_mem_expr_in_1pdv (decl, loc->loc,
4736 shared_hash_htab (set->vars));
4738 /* ??? This picks up only one out of multiple MEMs that
4739 refer to the same variable. Do we ever need to be
4740 concerned about dealing with more than one, or, given
4741 that they should all map to the same variable
4742 location, their addresses will have been merged and
4743 they will be regarded as equivalent? */
4744 if (mem_node)
4746 loc->loc = mem_node->loc;
4747 loc->set_src = mem_node->set_src;
4748 loc->init = MIN (loc->init, mem_node->init);
4752 if (GET_CODE (loc->loc) != MEM
4753 || (MEM_EXPR (loc->loc) == decl
4754 && INT_MEM_OFFSET (loc->loc) == 0)
4755 || !mem_dies_at_call (loc->loc))
4757 if (old_loc != loc->loc && emit_notes)
4759 if (old_loc == var->var_part[0].cur_loc)
4761 changed = true;
4762 var->var_part[0].cur_loc = NULL;
4765 locp = &loc->next;
4766 continue;
4769 if (emit_notes)
4771 if (old_loc == var->var_part[0].cur_loc)
4773 changed = true;
4774 var->var_part[0].cur_loc = NULL;
4777 *locp = loc->next;
4778 pool_free (loc_chain_pool, loc);
4781 if (!var->var_part[0].loc_chain)
4783 var->n_var_parts--;
4784 changed = true;
4786 if (changed)
4787 variable_was_changed (var, set);
4790 return 1;
4793 /* Remove all MEMs from the location list of a hash table entry for a
4794 value. */
4797 dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
4799 variable var = *slot;
4801 if (var->onepart == ONEPART_VALUE)
4803 location_chain loc, *locp;
4804 bool changed = false;
4805 rtx cur_loc;
4807 gcc_assert (var->n_var_parts == 1);
4809 if (shared_var_p (var, set->vars))
4811 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4812 if (GET_CODE (loc->loc) == MEM
4813 && mem_dies_at_call (loc->loc))
4814 break;
4816 if (!loc)
4817 return 1;
4819 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4820 var = *slot;
4821 gcc_assert (var->n_var_parts == 1);
4824 if (VAR_LOC_1PAUX (var))
4825 cur_loc = VAR_LOC_FROM (var);
4826 else
4827 cur_loc = var->var_part[0].cur_loc;
4829 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4830 loc; loc = *locp)
4832 if (GET_CODE (loc->loc) != MEM
4833 || !mem_dies_at_call (loc->loc))
4835 locp = &loc->next;
4836 continue;
4839 *locp = loc->next;
4840 /* If we have deleted the location which was last emitted
4841 we have to emit new location so add the variable to set
4842 of changed variables. */
4843 if (cur_loc == loc->loc)
4845 changed = true;
4846 var->var_part[0].cur_loc = NULL;
4847 if (VAR_LOC_1PAUX (var))
4848 VAR_LOC_FROM (var) = NULL;
4850 pool_free (loc_chain_pool, loc);
4853 if (!var->var_part[0].loc_chain)
4855 var->n_var_parts--;
4856 changed = true;
4858 if (changed)
4859 variable_was_changed (var, set);
4862 return 1;
4865 /* Remove all variable-location information about call-clobbered
4866 registers, as well as associations between MEMs and VALUEs. */
4868 static void
4869 dataflow_set_clear_at_call (dataflow_set *set)
4871 unsigned int r;
4872 hard_reg_set_iterator hrsi;
4874 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, r, hrsi)
4875 var_regno_delete (set, r);
4877 if (MAY_HAVE_DEBUG_INSNS)
4879 set->traversed_vars = set->vars;
4880 shared_hash_htab (set->vars)
4881 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4882 set->traversed_vars = set->vars;
4883 shared_hash_htab (set->vars)
4884 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4885 set->traversed_vars = NULL;
4889 static bool
4890 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4892 location_chain lc1, lc2;
4894 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4896 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4898 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4900 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4901 break;
4903 if (rtx_equal_p (lc1->loc, lc2->loc))
4904 break;
4906 if (!lc2)
4907 return true;
4909 return false;
4912 /* Return true if one-part variables VAR1 and VAR2 are different.
4913 They must be in canonical order. */
4915 static bool
4916 onepart_variable_different_p (variable var1, variable var2)
4918 location_chain lc1, lc2;
4920 if (var1 == var2)
4921 return false;
4923 gcc_assert (var1->n_var_parts == 1
4924 && var2->n_var_parts == 1);
4926 lc1 = var1->var_part[0].loc_chain;
4927 lc2 = var2->var_part[0].loc_chain;
4929 gcc_assert (lc1 && lc2);
4931 while (lc1 && lc2)
4933 if (loc_cmp (lc1->loc, lc2->loc))
4934 return true;
4935 lc1 = lc1->next;
4936 lc2 = lc2->next;
4939 return lc1 != lc2;
4942 /* Return true if variables VAR1 and VAR2 are different. */
4944 static bool
4945 variable_different_p (variable var1, variable var2)
4947 int i;
4949 if (var1 == var2)
4950 return false;
4952 if (var1->onepart != var2->onepart)
4953 return true;
4955 if (var1->n_var_parts != var2->n_var_parts)
4956 return true;
4958 if (var1->onepart && var1->n_var_parts)
4960 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4961 && var1->n_var_parts == 1);
4962 /* One-part values have locations in a canonical order. */
4963 return onepart_variable_different_p (var1, var2);
4966 for (i = 0; i < var1->n_var_parts; i++)
4968 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4969 return true;
4970 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4971 return true;
4972 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4973 return true;
4975 return false;
4978 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4980 static bool
4981 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4983 variable_iterator_type hi;
4984 variable var1;
4986 if (old_set->vars == new_set->vars)
4987 return false;
4989 if (shared_hash_htab (old_set->vars)->elements ()
4990 != shared_hash_htab (new_set->vars)->elements ())
4991 return true;
4993 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
4994 var1, variable, hi)
4996 variable_table_type *htab = shared_hash_htab (new_set->vars);
4997 variable var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
4998 if (!var2)
5000 if (dump_file && (dump_flags & TDF_DETAILS))
5002 fprintf (dump_file, "dataflow difference found: removal of:\n");
5003 dump_var (var1);
5005 return true;
5008 if (variable_different_p (var1, var2))
5010 if (dump_file && (dump_flags & TDF_DETAILS))
5012 fprintf (dump_file, "dataflow difference found: "
5013 "old and new follow:\n");
5014 dump_var (var1);
5015 dump_var (var2);
5017 return true;
5021 /* No need to traverse the second hashtab, if both have the same number
5022 of elements and the second one had all entries found in the first one,
5023 then it can't have any extra entries. */
5024 return false;
5027 /* Free the contents of dataflow set SET. */
5029 static void
5030 dataflow_set_destroy (dataflow_set *set)
5032 int i;
5034 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5035 attrs_list_clear (&set->regs[i]);
5037 shared_hash_destroy (set->vars);
5038 set->vars = NULL;
5041 /* Return true if RTL X contains a SYMBOL_REF. */
5043 static bool
5044 contains_symbol_ref (rtx x)
5046 const char *fmt;
5047 RTX_CODE code;
5048 int i;
5050 if (!x)
5051 return false;
5053 code = GET_CODE (x);
5054 if (code == SYMBOL_REF)
5055 return true;
5057 fmt = GET_RTX_FORMAT (code);
5058 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5060 if (fmt[i] == 'e')
5062 if (contains_symbol_ref (XEXP (x, i)))
5063 return true;
5065 else if (fmt[i] == 'E')
5067 int j;
5068 for (j = 0; j < XVECLEN (x, i); j++)
5069 if (contains_symbol_ref (XVECEXP (x, i, j)))
5070 return true;
5074 return false;
5077 /* Shall EXPR be tracked? */
5079 static bool
5080 track_expr_p (tree expr, bool need_rtl)
5082 rtx decl_rtl;
5083 tree realdecl;
5085 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5086 return DECL_RTL_SET_P (expr);
5088 /* If EXPR is not a parameter or a variable do not track it. */
5089 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5090 return 0;
5092 /* It also must have a name... */
5093 if (!DECL_NAME (expr) && need_rtl)
5094 return 0;
5096 /* ... and a RTL assigned to it. */
5097 decl_rtl = DECL_RTL_IF_SET (expr);
5098 if (!decl_rtl && need_rtl)
5099 return 0;
5101 /* If this expression is really a debug alias of some other declaration, we
5102 don't need to track this expression if the ultimate declaration is
5103 ignored. */
5104 realdecl = expr;
5105 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5107 realdecl = DECL_DEBUG_EXPR (realdecl);
5108 if (!DECL_P (realdecl))
5110 if (handled_component_p (realdecl)
5111 || (TREE_CODE (realdecl) == MEM_REF
5112 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5114 HOST_WIDE_INT bitsize, bitpos, maxsize;
5115 tree innerdecl
5116 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5117 &maxsize);
5118 if (!DECL_P (innerdecl)
5119 || DECL_IGNORED_P (innerdecl)
5120 /* Do not track declarations for parts of tracked parameters
5121 since we want to track them as a whole instead. */
5122 || (TREE_CODE (innerdecl) == PARM_DECL
5123 && DECL_MODE (innerdecl) != BLKmode
5124 && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
5125 || TREE_STATIC (innerdecl)
5126 || bitsize <= 0
5127 || bitpos + bitsize > 256
5128 || bitsize != maxsize)
5129 return 0;
5130 else
5131 realdecl = expr;
5133 else
5134 return 0;
5138 /* Do not track EXPR if REALDECL it should be ignored for debugging
5139 purposes. */
5140 if (DECL_IGNORED_P (realdecl))
5141 return 0;
5143 /* Do not track global variables until we are able to emit correct location
5144 list for them. */
5145 if (TREE_STATIC (realdecl))
5146 return 0;
5148 /* When the EXPR is a DECL for alias of some variable (see example)
5149 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5150 DECL_RTL contains SYMBOL_REF.
5152 Example:
5153 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5154 char **_dl_argv;
5156 if (decl_rtl && MEM_P (decl_rtl)
5157 && contains_symbol_ref (XEXP (decl_rtl, 0)))
5158 return 0;
5160 /* If RTX is a memory it should not be very large (because it would be
5161 an array or struct). */
5162 if (decl_rtl && MEM_P (decl_rtl))
5164 /* Do not track structures and arrays. */
5165 if (GET_MODE (decl_rtl) == BLKmode
5166 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5167 return 0;
5168 if (MEM_SIZE_KNOWN_P (decl_rtl)
5169 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5170 return 0;
5173 DECL_CHANGED (expr) = 0;
5174 DECL_CHANGED (realdecl) = 0;
5175 return 1;
5178 /* Determine whether a given LOC refers to the same variable part as
5179 EXPR+OFFSET. */
5181 static bool
5182 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5184 tree expr2;
5185 HOST_WIDE_INT offset2;
5187 if (! DECL_P (expr))
5188 return false;
5190 if (REG_P (loc))
5192 expr2 = REG_EXPR (loc);
5193 offset2 = REG_OFFSET (loc);
5195 else if (MEM_P (loc))
5197 expr2 = MEM_EXPR (loc);
5198 offset2 = INT_MEM_OFFSET (loc);
5200 else
5201 return false;
5203 if (! expr2 || ! DECL_P (expr2))
5204 return false;
5206 expr = var_debug_decl (expr);
5207 expr2 = var_debug_decl (expr2);
5209 return (expr == expr2 && offset == offset2);
5212 /* LOC is a REG or MEM that we would like to track if possible.
5213 If EXPR is null, we don't know what expression LOC refers to,
5214 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5215 LOC is an lvalue register.
5217 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5218 is something we can track. When returning true, store the mode of
5219 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5220 from EXPR in *OFFSET_OUT (if nonnull). */
5222 static bool
5223 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5224 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5226 machine_mode mode;
5228 if (expr == NULL || !track_expr_p (expr, true))
5229 return false;
5231 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5232 whole subreg, but only the old inner part is really relevant. */
5233 mode = GET_MODE (loc);
5234 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5236 machine_mode pseudo_mode;
5238 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5239 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5241 offset += byte_lowpart_offset (pseudo_mode, mode);
5242 mode = pseudo_mode;
5246 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5247 Do the same if we are storing to a register and EXPR occupies
5248 the whole of register LOC; in that case, the whole of EXPR is
5249 being changed. We exclude complex modes from the second case
5250 because the real and imaginary parts are represented as separate
5251 pseudo registers, even if the whole complex value fits into one
5252 hard register. */
5253 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5254 || (store_reg_p
5255 && !COMPLEX_MODE_P (DECL_MODE (expr))
5256 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5257 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5259 mode = DECL_MODE (expr);
5260 offset = 0;
5263 if (offset < 0 || offset >= MAX_VAR_PARTS)
5264 return false;
5266 if (mode_out)
5267 *mode_out = mode;
5268 if (offset_out)
5269 *offset_out = offset;
5270 return true;
5273 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5274 want to track. When returning nonnull, make sure that the attributes
5275 on the returned value are updated. */
5277 static rtx
5278 var_lowpart (machine_mode mode, rtx loc)
5280 unsigned int offset, reg_offset, regno;
5282 if (GET_MODE (loc) == mode)
5283 return loc;
5285 if (!REG_P (loc) && !MEM_P (loc))
5286 return NULL;
5288 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5290 if (MEM_P (loc))
5291 return adjust_address_nv (loc, mode, offset);
5293 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5294 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5295 reg_offset, mode);
5296 return gen_rtx_REG_offset (loc, mode, regno, offset);
5299 /* Carry information about uses and stores while walking rtx. */
5301 struct count_use_info
5303 /* The insn where the RTX is. */
5304 rtx_insn *insn;
5306 /* The basic block where insn is. */
5307 basic_block bb;
5309 /* The array of n_sets sets in the insn, as determined by cselib. */
5310 struct cselib_set *sets;
5311 int n_sets;
5313 /* True if we're counting stores, false otherwise. */
5314 bool store_p;
5317 /* Find a VALUE corresponding to X. */
5319 static inline cselib_val *
5320 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5322 int i;
5324 if (cui->sets)
5326 /* This is called after uses are set up and before stores are
5327 processed by cselib, so it's safe to look up srcs, but not
5328 dsts. So we look up expressions that appear in srcs or in
5329 dest expressions, but we search the sets array for dests of
5330 stores. */
5331 if (cui->store_p)
5333 /* Some targets represent memset and memcpy patterns
5334 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5335 (set (mem:BLK ...) (const_int ...)) or
5336 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5337 in that case, otherwise we end up with mode mismatches. */
5338 if (mode == BLKmode && MEM_P (x))
5339 return NULL;
5340 for (i = 0; i < cui->n_sets; i++)
5341 if (cui->sets[i].dest == x)
5342 return cui->sets[i].src_elt;
5344 else
5345 return cselib_lookup (x, mode, 0, VOIDmode);
5348 return NULL;
5351 /* Replace all registers and addresses in an expression with VALUE
5352 expressions that map back to them, unless the expression is a
5353 register. If no mapping is or can be performed, returns NULL. */
5355 static rtx
5356 replace_expr_with_values (rtx loc)
5358 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5359 return NULL;
5360 else if (MEM_P (loc))
5362 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5363 get_address_mode (loc), 0,
5364 GET_MODE (loc));
5365 if (addr)
5366 return replace_equiv_address_nv (loc, addr->val_rtx);
5367 else
5368 return NULL;
5370 else
5371 return cselib_subst_to_values (loc, VOIDmode);
5374 /* Return true if X contains a DEBUG_EXPR. */
5376 static bool
5377 rtx_debug_expr_p (const_rtx x)
5379 subrtx_iterator::array_type array;
5380 FOR_EACH_SUBRTX (iter, array, x, ALL)
5381 if (GET_CODE (*iter) == DEBUG_EXPR)
5382 return true;
5383 return false;
5386 /* Determine what kind of micro operation to choose for a USE. Return
5387 MO_CLOBBER if no micro operation is to be generated. */
5389 static enum micro_operation_type
5390 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5392 tree expr;
5394 if (cui && cui->sets)
5396 if (GET_CODE (loc) == VAR_LOCATION)
5398 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5400 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5401 if (! VAR_LOC_UNKNOWN_P (ploc))
5403 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5404 VOIDmode);
5406 /* ??? flag_float_store and volatile mems are never
5407 given values, but we could in theory use them for
5408 locations. */
5409 gcc_assert (val || 1);
5411 return MO_VAL_LOC;
5413 else
5414 return MO_CLOBBER;
5417 if (REG_P (loc) || MEM_P (loc))
5419 if (modep)
5420 *modep = GET_MODE (loc);
5421 if (cui->store_p)
5423 if (REG_P (loc)
5424 || (find_use_val (loc, GET_MODE (loc), cui)
5425 && cselib_lookup (XEXP (loc, 0),
5426 get_address_mode (loc), 0,
5427 GET_MODE (loc))))
5428 return MO_VAL_SET;
5430 else
5432 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5434 if (val && !cselib_preserved_value_p (val))
5435 return MO_VAL_USE;
5440 if (REG_P (loc))
5442 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5444 if (loc == cfa_base_rtx)
5445 return MO_CLOBBER;
5446 expr = REG_EXPR (loc);
5448 if (!expr)
5449 return MO_USE_NO_VAR;
5450 else if (target_for_debug_bind (var_debug_decl (expr)))
5451 return MO_CLOBBER;
5452 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5453 false, modep, NULL))
5454 return MO_USE;
5455 else
5456 return MO_USE_NO_VAR;
5458 else if (MEM_P (loc))
5460 expr = MEM_EXPR (loc);
5462 if (!expr)
5463 return MO_CLOBBER;
5464 else if (target_for_debug_bind (var_debug_decl (expr)))
5465 return MO_CLOBBER;
5466 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5467 false, modep, NULL)
5468 /* Multi-part variables shouldn't refer to one-part
5469 variable names such as VALUEs (never happens) or
5470 DEBUG_EXPRs (only happens in the presence of debug
5471 insns). */
5472 && (!MAY_HAVE_DEBUG_INSNS
5473 || !rtx_debug_expr_p (XEXP (loc, 0))))
5474 return MO_USE;
5475 else
5476 return MO_CLOBBER;
5479 return MO_CLOBBER;
5482 /* Log to OUT information about micro-operation MOPT involving X in
5483 INSN of BB. */
5485 static inline void
5486 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5487 enum micro_operation_type mopt, FILE *out)
5489 fprintf (out, "bb %i op %i insn %i %s ",
5490 bb->index, VTI (bb)->mos.length (),
5491 INSN_UID (insn), micro_operation_type_name[mopt]);
5492 print_inline_rtx (out, x, 2);
5493 fputc ('\n', out);
5496 /* Tell whether the CONCAT used to holds a VALUE and its location
5497 needs value resolution, i.e., an attempt of mapping the location
5498 back to other incoming values. */
5499 #define VAL_NEEDS_RESOLUTION(x) \
5500 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5501 /* Whether the location in the CONCAT is a tracked expression, that
5502 should also be handled like a MO_USE. */
5503 #define VAL_HOLDS_TRACK_EXPR(x) \
5504 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5505 /* Whether the location in the CONCAT should be handled like a MO_COPY
5506 as well. */
5507 #define VAL_EXPR_IS_COPIED(x) \
5508 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5509 /* Whether the location in the CONCAT should be handled like a
5510 MO_CLOBBER as well. */
5511 #define VAL_EXPR_IS_CLOBBERED(x) \
5512 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5514 /* All preserved VALUEs. */
5515 static vec<rtx> preserved_values;
5517 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5519 static void
5520 preserve_value (cselib_val *val)
5522 cselib_preserve_value (val);
5523 preserved_values.safe_push (val->val_rtx);
5526 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5527 any rtxes not suitable for CONST use not replaced by VALUEs
5528 are discovered. */
5530 static bool
5531 non_suitable_const (const_rtx x)
5533 subrtx_iterator::array_type array;
5534 FOR_EACH_SUBRTX (iter, array, x, ALL)
5536 const_rtx x = *iter;
5537 switch (GET_CODE (x))
5539 case REG:
5540 case DEBUG_EXPR:
5541 case PC:
5542 case SCRATCH:
5543 case CC0:
5544 case ASM_INPUT:
5545 case ASM_OPERANDS:
5546 return true;
5547 case MEM:
5548 if (!MEM_READONLY_P (x))
5549 return true;
5550 break;
5551 default:
5552 break;
5555 return false;
5558 /* Add uses (register and memory references) LOC which will be tracked
5559 to VTI (bb)->mos. */
5561 static void
5562 add_uses (rtx loc, struct count_use_info *cui)
5564 machine_mode mode = VOIDmode;
5565 enum micro_operation_type type = use_type (loc, cui, &mode);
5567 if (type != MO_CLOBBER)
5569 basic_block bb = cui->bb;
5570 micro_operation mo;
5572 mo.type = type;
5573 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5574 mo.insn = cui->insn;
5576 if (type == MO_VAL_LOC)
5578 rtx oloc = loc;
5579 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5580 cselib_val *val;
5582 gcc_assert (cui->sets);
5584 if (MEM_P (vloc)
5585 && !REG_P (XEXP (vloc, 0))
5586 && !MEM_P (XEXP (vloc, 0)))
5588 rtx mloc = vloc;
5589 machine_mode address_mode = get_address_mode (mloc);
5590 cselib_val *val
5591 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5592 GET_MODE (mloc));
5594 if (val && !cselib_preserved_value_p (val))
5595 preserve_value (val);
5598 if (CONSTANT_P (vloc)
5599 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5600 /* For constants don't look up any value. */;
5601 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5602 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5604 machine_mode mode2;
5605 enum micro_operation_type type2;
5606 rtx nloc = NULL;
5607 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5609 if (resolvable)
5610 nloc = replace_expr_with_values (vloc);
5612 if (nloc)
5614 oloc = shallow_copy_rtx (oloc);
5615 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5618 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5620 type2 = use_type (vloc, 0, &mode2);
5622 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5623 || type2 == MO_CLOBBER);
5625 if (type2 == MO_CLOBBER
5626 && !cselib_preserved_value_p (val))
5628 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5629 preserve_value (val);
5632 else if (!VAR_LOC_UNKNOWN_P (vloc))
5634 oloc = shallow_copy_rtx (oloc);
5635 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5638 mo.u.loc = oloc;
5640 else if (type == MO_VAL_USE)
5642 machine_mode mode2 = VOIDmode;
5643 enum micro_operation_type type2;
5644 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5645 rtx vloc, oloc = loc, nloc;
5647 gcc_assert (cui->sets);
5649 if (MEM_P (oloc)
5650 && !REG_P (XEXP (oloc, 0))
5651 && !MEM_P (XEXP (oloc, 0)))
5653 rtx mloc = oloc;
5654 machine_mode address_mode = get_address_mode (mloc);
5655 cselib_val *val
5656 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5657 GET_MODE (mloc));
5659 if (val && !cselib_preserved_value_p (val))
5660 preserve_value (val);
5663 type2 = use_type (loc, 0, &mode2);
5665 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5666 || type2 == MO_CLOBBER);
5668 if (type2 == MO_USE)
5669 vloc = var_lowpart (mode2, loc);
5670 else
5671 vloc = oloc;
5673 /* The loc of a MO_VAL_USE may have two forms:
5675 (concat val src): val is at src, a value-based
5676 representation.
5678 (concat (concat val use) src): same as above, with use as
5679 the MO_USE tracked value, if it differs from src.
5683 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5684 nloc = replace_expr_with_values (loc);
5685 if (!nloc)
5686 nloc = oloc;
5688 if (vloc != nloc)
5689 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5690 else
5691 oloc = val->val_rtx;
5693 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5695 if (type2 == MO_USE)
5696 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5697 if (!cselib_preserved_value_p (val))
5699 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5700 preserve_value (val);
5703 else
5704 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5706 if (dump_file && (dump_flags & TDF_DETAILS))
5707 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5708 VTI (bb)->mos.safe_push (mo);
5712 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5714 static void
5715 add_uses_1 (rtx *x, void *cui)
5717 subrtx_var_iterator::array_type array;
5718 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5719 add_uses (*iter, (struct count_use_info *) cui);
5722 /* This is the value used during expansion of locations. We want it
5723 to be unbounded, so that variables expanded deep in a recursion
5724 nest are fully evaluated, so that their values are cached
5725 correctly. We avoid recursion cycles through other means, and we
5726 don't unshare RTL, so excess complexity is not a problem. */
5727 #define EXPR_DEPTH (INT_MAX)
5728 /* We use this to keep too-complex expressions from being emitted as
5729 location notes, and then to debug information. Users can trade
5730 compile time for ridiculously complex expressions, although they're
5731 seldom useful, and they may often have to be discarded as not
5732 representable anyway. */
5733 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5735 /* Attempt to reverse the EXPR operation in the debug info and record
5736 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5737 no longer live we can express its value as VAL - 6. */
5739 static void
5740 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5742 rtx src, arg, ret;
5743 cselib_val *v;
5744 struct elt_loc_list *l;
5745 enum rtx_code code;
5746 int count;
5748 if (GET_CODE (expr) != SET)
5749 return;
5751 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5752 return;
5754 src = SET_SRC (expr);
5755 switch (GET_CODE (src))
5757 case PLUS:
5758 case MINUS:
5759 case XOR:
5760 case NOT:
5761 case NEG:
5762 if (!REG_P (XEXP (src, 0)))
5763 return;
5764 break;
5765 case SIGN_EXTEND:
5766 case ZERO_EXTEND:
5767 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5768 return;
5769 break;
5770 default:
5771 return;
5774 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5775 return;
5777 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5778 if (!v || !cselib_preserved_value_p (v))
5779 return;
5781 /* Use canonical V to avoid creating multiple redundant expressions
5782 for different VALUES equivalent to V. */
5783 v = canonical_cselib_val (v);
5785 /* Adding a reverse op isn't useful if V already has an always valid
5786 location. Ignore ENTRY_VALUE, while it is always constant, we should
5787 prefer non-ENTRY_VALUE locations whenever possible. */
5788 for (l = v->locs, count = 0; l; l = l->next, count++)
5789 if (CONSTANT_P (l->loc)
5790 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5791 return;
5792 /* Avoid creating too large locs lists. */
5793 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5794 return;
5796 switch (GET_CODE (src))
5798 case NOT:
5799 case NEG:
5800 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5801 return;
5802 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5803 break;
5804 case SIGN_EXTEND:
5805 case ZERO_EXTEND:
5806 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5807 break;
5808 case XOR:
5809 code = XOR;
5810 goto binary;
5811 case PLUS:
5812 code = MINUS;
5813 goto binary;
5814 case MINUS:
5815 code = PLUS;
5816 goto binary;
5817 binary:
5818 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5819 return;
5820 arg = XEXP (src, 1);
5821 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5823 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5824 if (arg == NULL_RTX)
5825 return;
5826 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5827 return;
5829 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5830 if (ret == val)
5831 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5832 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5833 breaks a lot of routines during var-tracking. */
5834 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5835 break;
5836 default:
5837 gcc_unreachable ();
5840 cselib_add_permanent_equiv (v, ret, insn);
5843 /* Add stores (register and memory references) LOC which will be tracked
5844 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5845 CUIP->insn is instruction which the LOC is part of. */
5847 static void
5848 add_stores (rtx loc, const_rtx expr, void *cuip)
5850 machine_mode mode = VOIDmode, mode2;
5851 struct count_use_info *cui = (struct count_use_info *)cuip;
5852 basic_block bb = cui->bb;
5853 micro_operation mo;
5854 rtx oloc = loc, nloc, src = NULL;
5855 enum micro_operation_type type = use_type (loc, cui, &mode);
5856 bool track_p = false;
5857 cselib_val *v;
5858 bool resolve, preserve;
5860 if (type == MO_CLOBBER)
5861 return;
5863 mode2 = mode;
5865 if (REG_P (loc))
5867 gcc_assert (loc != cfa_base_rtx);
5868 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5869 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5870 || GET_CODE (expr) == CLOBBER)
5872 mo.type = MO_CLOBBER;
5873 mo.u.loc = loc;
5874 if (GET_CODE (expr) == SET
5875 && SET_DEST (expr) == loc
5876 && !unsuitable_loc (SET_SRC (expr))
5877 && find_use_val (loc, mode, cui))
5879 gcc_checking_assert (type == MO_VAL_SET);
5880 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5883 else
5885 if (GET_CODE (expr) == SET
5886 && SET_DEST (expr) == loc
5887 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5888 src = var_lowpart (mode2, SET_SRC (expr));
5889 loc = var_lowpart (mode2, loc);
5891 if (src == NULL)
5893 mo.type = MO_SET;
5894 mo.u.loc = loc;
5896 else
5898 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5899 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5901 /* If this is an instruction copying (part of) a parameter
5902 passed by invisible reference to its register location,
5903 pretend it's a SET so that the initial memory location
5904 is discarded, as the parameter register can be reused
5905 for other purposes and we do not track locations based
5906 on generic registers. */
5907 if (MEM_P (src)
5908 && REG_EXPR (loc)
5909 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5910 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5911 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5912 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5913 != arg_pointer_rtx)
5914 mo.type = MO_SET;
5915 else
5916 mo.type = MO_COPY;
5918 else
5919 mo.type = MO_SET;
5920 mo.u.loc = xexpr;
5923 mo.insn = cui->insn;
5925 else if (MEM_P (loc)
5926 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5927 || cui->sets))
5929 if (MEM_P (loc) && type == MO_VAL_SET
5930 && !REG_P (XEXP (loc, 0))
5931 && !MEM_P (XEXP (loc, 0)))
5933 rtx mloc = loc;
5934 machine_mode address_mode = get_address_mode (mloc);
5935 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5936 address_mode, 0,
5937 GET_MODE (mloc));
5939 if (val && !cselib_preserved_value_p (val))
5940 preserve_value (val);
5943 if (GET_CODE (expr) == CLOBBER || !track_p)
5945 mo.type = MO_CLOBBER;
5946 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5948 else
5950 if (GET_CODE (expr) == SET
5951 && SET_DEST (expr) == loc
5952 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5953 src = var_lowpart (mode2, SET_SRC (expr));
5954 loc = var_lowpart (mode2, loc);
5956 if (src == NULL)
5958 mo.type = MO_SET;
5959 mo.u.loc = loc;
5961 else
5963 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5964 if (same_variable_part_p (SET_SRC (xexpr),
5965 MEM_EXPR (loc),
5966 INT_MEM_OFFSET (loc)))
5967 mo.type = MO_COPY;
5968 else
5969 mo.type = MO_SET;
5970 mo.u.loc = xexpr;
5973 mo.insn = cui->insn;
5975 else
5976 return;
5978 if (type != MO_VAL_SET)
5979 goto log_and_return;
5981 v = find_use_val (oloc, mode, cui);
5983 if (!v)
5984 goto log_and_return;
5986 resolve = preserve = !cselib_preserved_value_p (v);
5988 /* We cannot track values for multiple-part variables, so we track only
5989 locations for tracked parameters passed either by invisible reference
5990 or directly in multiple locations. */
5991 if (track_p
5992 && REG_P (loc)
5993 && REG_EXPR (loc)
5994 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5995 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5996 && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
5997 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5998 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
5999 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
6000 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
6002 /* Although we don't use the value here, it could be used later by the
6003 mere virtue of its existence as the operand of the reverse operation
6004 that gave rise to it (typically extension/truncation). Make sure it
6005 is preserved as required by vt_expand_var_loc_chain. */
6006 if (preserve)
6007 preserve_value (v);
6008 goto log_and_return;
6011 if (loc == stack_pointer_rtx
6012 && hard_frame_pointer_adjustment != -1
6013 && preserve)
6014 cselib_set_value_sp_based (v);
6016 nloc = replace_expr_with_values (oloc);
6017 if (nloc)
6018 oloc = nloc;
6020 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6022 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6024 if (oval == v)
6025 return;
6026 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6028 if (oval && !cselib_preserved_value_p (oval))
6030 micro_operation moa;
6032 preserve_value (oval);
6034 moa.type = MO_VAL_USE;
6035 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6036 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6037 moa.insn = cui->insn;
6039 if (dump_file && (dump_flags & TDF_DETAILS))
6040 log_op_type (moa.u.loc, cui->bb, cui->insn,
6041 moa.type, dump_file);
6042 VTI (bb)->mos.safe_push (moa);
6045 resolve = false;
6047 else if (resolve && GET_CODE (mo.u.loc) == SET)
6049 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6050 nloc = replace_expr_with_values (SET_SRC (expr));
6051 else
6052 nloc = NULL_RTX;
6054 /* Avoid the mode mismatch between oexpr and expr. */
6055 if (!nloc && mode != mode2)
6057 nloc = SET_SRC (expr);
6058 gcc_assert (oloc == SET_DEST (expr));
6061 if (nloc && nloc != SET_SRC (mo.u.loc))
6062 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
6063 else
6065 if (oloc == SET_DEST (mo.u.loc))
6066 /* No point in duplicating. */
6067 oloc = mo.u.loc;
6068 if (!REG_P (SET_SRC (mo.u.loc)))
6069 resolve = false;
6072 else if (!resolve)
6074 if (GET_CODE (mo.u.loc) == SET
6075 && oloc == SET_DEST (mo.u.loc))
6076 /* No point in duplicating. */
6077 oloc = mo.u.loc;
6079 else
6080 resolve = false;
6082 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6084 if (mo.u.loc != oloc)
6085 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6087 /* The loc of a MO_VAL_SET may have various forms:
6089 (concat val dst): dst now holds val
6091 (concat val (set dst src)): dst now holds val, copied from src
6093 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6094 after replacing mems and non-top-level regs with values.
6096 (concat (concat val dstv) (set dst src)): dst now holds val,
6097 copied from src. dstv is a value-based representation of dst, if
6098 it differs from dst. If resolution is needed, src is a REG, and
6099 its mode is the same as that of val.
6101 (concat (concat val (set dstv srcv)) (set dst src)): src
6102 copied to dst, holding val. dstv and srcv are value-based
6103 representations of dst and src, respectively.
6107 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6108 reverse_op (v->val_rtx, expr, cui->insn);
6110 mo.u.loc = loc;
6112 if (track_p)
6113 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6114 if (preserve)
6116 VAL_NEEDS_RESOLUTION (loc) = resolve;
6117 preserve_value (v);
6119 if (mo.type == MO_CLOBBER)
6120 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6121 if (mo.type == MO_COPY)
6122 VAL_EXPR_IS_COPIED (loc) = 1;
6124 mo.type = MO_VAL_SET;
6126 log_and_return:
6127 if (dump_file && (dump_flags & TDF_DETAILS))
6128 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6129 VTI (bb)->mos.safe_push (mo);
6132 /* Arguments to the call. */
6133 static rtx call_arguments;
6135 /* Compute call_arguments. */
6137 static void
6138 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6140 rtx link, x, call;
6141 rtx prev, cur, next;
6142 rtx this_arg = NULL_RTX;
6143 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6144 tree obj_type_ref = NULL_TREE;
6145 CUMULATIVE_ARGS args_so_far_v;
6146 cumulative_args_t args_so_far;
6148 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6149 args_so_far = pack_cumulative_args (&args_so_far_v);
6150 call = get_call_rtx_from (insn);
6151 if (call)
6153 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6155 rtx symbol = XEXP (XEXP (call, 0), 0);
6156 if (SYMBOL_REF_DECL (symbol))
6157 fndecl = SYMBOL_REF_DECL (symbol);
6159 if (fndecl == NULL_TREE)
6160 fndecl = MEM_EXPR (XEXP (call, 0));
6161 if (fndecl
6162 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6163 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6164 fndecl = NULL_TREE;
6165 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6166 type = TREE_TYPE (fndecl);
6167 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6169 if (TREE_CODE (fndecl) == INDIRECT_REF
6170 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6171 obj_type_ref = TREE_OPERAND (fndecl, 0);
6172 fndecl = NULL_TREE;
6174 if (type)
6176 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6177 t = TREE_CHAIN (t))
6178 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6179 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6180 break;
6181 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6182 type = NULL;
6183 else
6185 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6186 link = CALL_INSN_FUNCTION_USAGE (insn);
6187 #ifndef PCC_STATIC_STRUCT_RETURN
6188 if (aggregate_value_p (TREE_TYPE (type), type)
6189 && targetm.calls.struct_value_rtx (type, 0) == 0)
6191 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6192 machine_mode mode = TYPE_MODE (struct_addr);
6193 rtx reg;
6194 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6195 nargs + 1);
6196 reg = targetm.calls.function_arg (args_so_far, mode,
6197 struct_addr, true);
6198 targetm.calls.function_arg_advance (args_so_far, mode,
6199 struct_addr, true);
6200 if (reg == NULL_RTX)
6202 for (; link; link = XEXP (link, 1))
6203 if (GET_CODE (XEXP (link, 0)) == USE
6204 && MEM_P (XEXP (XEXP (link, 0), 0)))
6206 link = XEXP (link, 1);
6207 break;
6211 else
6212 #endif
6213 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6214 nargs);
6215 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6217 machine_mode mode;
6218 t = TYPE_ARG_TYPES (type);
6219 mode = TYPE_MODE (TREE_VALUE (t));
6220 this_arg = targetm.calls.function_arg (args_so_far, mode,
6221 TREE_VALUE (t), true);
6222 if (this_arg && !REG_P (this_arg))
6223 this_arg = NULL_RTX;
6224 else if (this_arg == NULL_RTX)
6226 for (; link; link = XEXP (link, 1))
6227 if (GET_CODE (XEXP (link, 0)) == USE
6228 && MEM_P (XEXP (XEXP (link, 0), 0)))
6230 this_arg = XEXP (XEXP (link, 0), 0);
6231 break;
6238 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6240 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6241 if (GET_CODE (XEXP (link, 0)) == USE)
6243 rtx item = NULL_RTX;
6244 x = XEXP (XEXP (link, 0), 0);
6245 if (GET_MODE (link) == VOIDmode
6246 || GET_MODE (link) == BLKmode
6247 || (GET_MODE (link) != GET_MODE (x)
6248 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6249 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6250 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6251 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6252 /* Can't do anything for these, if the original type mode
6253 isn't known or can't be converted. */;
6254 else if (REG_P (x))
6256 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6257 if (val && cselib_preserved_value_p (val))
6258 item = val->val_rtx;
6259 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
6260 || GET_MODE_CLASS (GET_MODE (x)) == MODE_PARTIAL_INT)
6262 machine_mode mode = GET_MODE (x);
6264 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6265 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6267 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6269 if (reg == NULL_RTX || !REG_P (reg))
6270 continue;
6271 val = cselib_lookup (reg, mode, 0, VOIDmode);
6272 if (val && cselib_preserved_value_p (val))
6274 item = val->val_rtx;
6275 break;
6280 else if (MEM_P (x))
6282 rtx mem = x;
6283 cselib_val *val;
6285 if (!frame_pointer_needed)
6287 struct adjust_mem_data amd;
6288 amd.mem_mode = VOIDmode;
6289 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6290 amd.side_effects = NULL;
6291 amd.store = true;
6292 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6293 &amd);
6294 gcc_assert (amd.side_effects == NULL_RTX);
6296 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6297 if (val && cselib_preserved_value_p (val))
6298 item = val->val_rtx;
6299 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6300 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6302 /* For non-integer stack argument see also if they weren't
6303 initialized by integers. */
6304 machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6305 if (imode != GET_MODE (mem) && imode != BLKmode)
6307 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6308 imode, 0, VOIDmode);
6309 if (val && cselib_preserved_value_p (val))
6310 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6311 imode);
6315 if (item)
6317 rtx x2 = x;
6318 if (GET_MODE (item) != GET_MODE (link))
6319 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6320 if (GET_MODE (x2) != GET_MODE (link))
6321 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6322 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6323 call_arguments
6324 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6326 if (t && t != void_list_node)
6328 tree argtype = TREE_VALUE (t);
6329 machine_mode mode = TYPE_MODE (argtype);
6330 rtx reg;
6331 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6333 argtype = build_pointer_type (argtype);
6334 mode = TYPE_MODE (argtype);
6336 reg = targetm.calls.function_arg (args_so_far, mode,
6337 argtype, true);
6338 if (TREE_CODE (argtype) == REFERENCE_TYPE
6339 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6340 && reg
6341 && REG_P (reg)
6342 && GET_MODE (reg) == mode
6343 && (GET_MODE_CLASS (mode) == MODE_INT
6344 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6345 && REG_P (x)
6346 && REGNO (x) == REGNO (reg)
6347 && GET_MODE (x) == mode
6348 && item)
6350 machine_mode indmode
6351 = TYPE_MODE (TREE_TYPE (argtype));
6352 rtx mem = gen_rtx_MEM (indmode, x);
6353 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6354 if (val && cselib_preserved_value_p (val))
6356 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6357 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6358 call_arguments);
6360 else
6362 struct elt_loc_list *l;
6363 tree initial;
6365 /* Try harder, when passing address of a constant
6366 pool integer it can be easily read back. */
6367 item = XEXP (item, 1);
6368 if (GET_CODE (item) == SUBREG)
6369 item = SUBREG_REG (item);
6370 gcc_assert (GET_CODE (item) == VALUE);
6371 val = CSELIB_VAL_PTR (item);
6372 for (l = val->locs; l; l = l->next)
6373 if (GET_CODE (l->loc) == SYMBOL_REF
6374 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6375 && SYMBOL_REF_DECL (l->loc)
6376 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6378 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6379 if (tree_fits_shwi_p (initial))
6381 item = GEN_INT (tree_to_shwi (initial));
6382 item = gen_rtx_CONCAT (indmode, mem, item);
6383 call_arguments
6384 = gen_rtx_EXPR_LIST (VOIDmode, item,
6385 call_arguments);
6387 break;
6391 targetm.calls.function_arg_advance (args_so_far, mode,
6392 argtype, true);
6393 t = TREE_CHAIN (t);
6397 /* Add debug arguments. */
6398 if (fndecl
6399 && TREE_CODE (fndecl) == FUNCTION_DECL
6400 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6402 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6403 if (debug_args)
6405 unsigned int ix;
6406 tree param;
6407 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6409 rtx item;
6410 tree dtemp = (**debug_args)[ix + 1];
6411 machine_mode mode = DECL_MODE (dtemp);
6412 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6413 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6414 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6415 call_arguments);
6420 /* Reverse call_arguments chain. */
6421 prev = NULL_RTX;
6422 for (cur = call_arguments; cur; cur = next)
6424 next = XEXP (cur, 1);
6425 XEXP (cur, 1) = prev;
6426 prev = cur;
6428 call_arguments = prev;
6430 x = get_call_rtx_from (insn);
6431 if (x)
6433 x = XEXP (XEXP (x, 0), 0);
6434 if (GET_CODE (x) == SYMBOL_REF)
6435 /* Don't record anything. */;
6436 else if (CONSTANT_P (x))
6438 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6439 pc_rtx, x);
6440 call_arguments
6441 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6443 else
6445 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6446 if (val && cselib_preserved_value_p (val))
6448 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6449 call_arguments
6450 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6454 if (this_arg)
6456 machine_mode mode
6457 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6458 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6459 HOST_WIDE_INT token
6460 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6461 if (token)
6462 clobbered = plus_constant (mode, clobbered,
6463 token * GET_MODE_SIZE (mode));
6464 clobbered = gen_rtx_MEM (mode, clobbered);
6465 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6466 call_arguments
6467 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6471 /* Callback for cselib_record_sets_hook, that records as micro
6472 operations uses and stores in an insn after cselib_record_sets has
6473 analyzed the sets in an insn, but before it modifies the stored
6474 values in the internal tables, unless cselib_record_sets doesn't
6475 call it directly (perhaps because we're not doing cselib in the
6476 first place, in which case sets and n_sets will be 0). */
6478 static void
6479 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6481 basic_block bb = BLOCK_FOR_INSN (insn);
6482 int n1, n2;
6483 struct count_use_info cui;
6484 micro_operation *mos;
6486 cselib_hook_called = true;
6488 cui.insn = insn;
6489 cui.bb = bb;
6490 cui.sets = sets;
6491 cui.n_sets = n_sets;
6493 n1 = VTI (bb)->mos.length ();
6494 cui.store_p = false;
6495 note_uses (&PATTERN (insn), add_uses_1, &cui);
6496 n2 = VTI (bb)->mos.length () - 1;
6497 mos = VTI (bb)->mos.address ();
6499 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6500 MO_VAL_LOC last. */
6501 while (n1 < n2)
6503 while (n1 < n2 && mos[n1].type == MO_USE)
6504 n1++;
6505 while (n1 < n2 && mos[n2].type != MO_USE)
6506 n2--;
6507 if (n1 < n2)
6509 micro_operation sw;
6511 sw = mos[n1];
6512 mos[n1] = mos[n2];
6513 mos[n2] = sw;
6517 n2 = VTI (bb)->mos.length () - 1;
6518 while (n1 < n2)
6520 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6521 n1++;
6522 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6523 n2--;
6524 if (n1 < n2)
6526 micro_operation sw;
6528 sw = mos[n1];
6529 mos[n1] = mos[n2];
6530 mos[n2] = sw;
6534 if (CALL_P (insn))
6536 micro_operation mo;
6538 mo.type = MO_CALL;
6539 mo.insn = insn;
6540 mo.u.loc = call_arguments;
6541 call_arguments = NULL_RTX;
6543 if (dump_file && (dump_flags & TDF_DETAILS))
6544 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6545 VTI (bb)->mos.safe_push (mo);
6548 n1 = VTI (bb)->mos.length ();
6549 /* This will record NEXT_INSN (insn), such that we can
6550 insert notes before it without worrying about any
6551 notes that MO_USEs might emit after the insn. */
6552 cui.store_p = true;
6553 note_stores (PATTERN (insn), add_stores, &cui);
6554 n2 = VTI (bb)->mos.length () - 1;
6555 mos = VTI (bb)->mos.address ();
6557 /* Order the MO_VAL_USEs first (note_stores does nothing
6558 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6559 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6560 while (n1 < n2)
6562 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6563 n1++;
6564 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6565 n2--;
6566 if (n1 < n2)
6568 micro_operation sw;
6570 sw = mos[n1];
6571 mos[n1] = mos[n2];
6572 mos[n2] = sw;
6576 n2 = VTI (bb)->mos.length () - 1;
6577 while (n1 < n2)
6579 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6580 n1++;
6581 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6582 n2--;
6583 if (n1 < n2)
6585 micro_operation sw;
6587 sw = mos[n1];
6588 mos[n1] = mos[n2];
6589 mos[n2] = sw;
6594 static enum var_init_status
6595 find_src_status (dataflow_set *in, rtx src)
6597 tree decl = NULL_TREE;
6598 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6600 if (! flag_var_tracking_uninit)
6601 status = VAR_INIT_STATUS_INITIALIZED;
6603 if (src && REG_P (src))
6604 decl = var_debug_decl (REG_EXPR (src));
6605 else if (src && MEM_P (src))
6606 decl = var_debug_decl (MEM_EXPR (src));
6608 if (src && decl)
6609 status = get_init_value (in, src, dv_from_decl (decl));
6611 return status;
6614 /* SRC is the source of an assignment. Use SET to try to find what
6615 was ultimately assigned to SRC. Return that value if known,
6616 otherwise return SRC itself. */
6618 static rtx
6619 find_src_set_src (dataflow_set *set, rtx src)
6621 tree decl = NULL_TREE; /* The variable being copied around. */
6622 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6623 variable var;
6624 location_chain nextp;
6625 int i;
6626 bool found;
6628 if (src && REG_P (src))
6629 decl = var_debug_decl (REG_EXPR (src));
6630 else if (src && MEM_P (src))
6631 decl = var_debug_decl (MEM_EXPR (src));
6633 if (src && decl)
6635 decl_or_value dv = dv_from_decl (decl);
6637 var = shared_hash_find (set->vars, dv);
6638 if (var)
6640 found = false;
6641 for (i = 0; i < var->n_var_parts && !found; i++)
6642 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6643 nextp = nextp->next)
6644 if (rtx_equal_p (nextp->loc, src))
6646 set_src = nextp->set_src;
6647 found = true;
6653 return set_src;
6656 /* Compute the changes of variable locations in the basic block BB. */
6658 static bool
6659 compute_bb_dataflow (basic_block bb)
6661 unsigned int i;
6662 micro_operation *mo;
6663 bool changed;
6664 dataflow_set old_out;
6665 dataflow_set *in = &VTI (bb)->in;
6666 dataflow_set *out = &VTI (bb)->out;
6668 dataflow_set_init (&old_out);
6669 dataflow_set_copy (&old_out, out);
6670 dataflow_set_copy (out, in);
6672 if (MAY_HAVE_DEBUG_INSNS)
6673 local_get_addr_cache = new hash_map<rtx, rtx>;
6675 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6677 rtx_insn *insn = mo->insn;
6679 switch (mo->type)
6681 case MO_CALL:
6682 dataflow_set_clear_at_call (out);
6683 break;
6685 case MO_USE:
6687 rtx loc = mo->u.loc;
6689 if (REG_P (loc))
6690 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6691 else if (MEM_P (loc))
6692 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6694 break;
6696 case MO_VAL_LOC:
6698 rtx loc = mo->u.loc;
6699 rtx val, vloc;
6700 tree var;
6702 if (GET_CODE (loc) == CONCAT)
6704 val = XEXP (loc, 0);
6705 vloc = XEXP (loc, 1);
6707 else
6709 val = NULL_RTX;
6710 vloc = loc;
6713 var = PAT_VAR_LOCATION_DECL (vloc);
6715 clobber_variable_part (out, NULL_RTX,
6716 dv_from_decl (var), 0, NULL_RTX);
6717 if (val)
6719 if (VAL_NEEDS_RESOLUTION (loc))
6720 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6721 set_variable_part (out, val, dv_from_decl (var), 0,
6722 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6723 INSERT);
6725 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6726 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6727 dv_from_decl (var), 0,
6728 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6729 INSERT);
6731 break;
6733 case MO_VAL_USE:
6735 rtx loc = mo->u.loc;
6736 rtx val, vloc, uloc;
6738 vloc = uloc = XEXP (loc, 1);
6739 val = XEXP (loc, 0);
6741 if (GET_CODE (val) == CONCAT)
6743 uloc = XEXP (val, 1);
6744 val = XEXP (val, 0);
6747 if (VAL_NEEDS_RESOLUTION (loc))
6748 val_resolve (out, val, vloc, insn);
6749 else
6750 val_store (out, val, uloc, insn, false);
6752 if (VAL_HOLDS_TRACK_EXPR (loc))
6754 if (GET_CODE (uloc) == REG)
6755 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6756 NULL);
6757 else if (GET_CODE (uloc) == MEM)
6758 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6759 NULL);
6762 break;
6764 case MO_VAL_SET:
6766 rtx loc = mo->u.loc;
6767 rtx val, vloc, uloc;
6768 rtx dstv, srcv;
6770 vloc = loc;
6771 uloc = XEXP (vloc, 1);
6772 val = XEXP (vloc, 0);
6773 vloc = uloc;
6775 if (GET_CODE (uloc) == SET)
6777 dstv = SET_DEST (uloc);
6778 srcv = SET_SRC (uloc);
6780 else
6782 dstv = uloc;
6783 srcv = NULL;
6786 if (GET_CODE (val) == CONCAT)
6788 dstv = vloc = XEXP (val, 1);
6789 val = XEXP (val, 0);
6792 if (GET_CODE (vloc) == SET)
6794 srcv = SET_SRC (vloc);
6796 gcc_assert (val != srcv);
6797 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6799 dstv = vloc = SET_DEST (vloc);
6801 if (VAL_NEEDS_RESOLUTION (loc))
6802 val_resolve (out, val, srcv, insn);
6804 else if (VAL_NEEDS_RESOLUTION (loc))
6806 gcc_assert (GET_CODE (uloc) == SET
6807 && GET_CODE (SET_SRC (uloc)) == REG);
6808 val_resolve (out, val, SET_SRC (uloc), insn);
6811 if (VAL_HOLDS_TRACK_EXPR (loc))
6813 if (VAL_EXPR_IS_CLOBBERED (loc))
6815 if (REG_P (uloc))
6816 var_reg_delete (out, uloc, true);
6817 else if (MEM_P (uloc))
6819 gcc_assert (MEM_P (dstv));
6820 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6821 var_mem_delete (out, dstv, true);
6824 else
6826 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6827 rtx src = NULL, dst = uloc;
6828 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6830 if (GET_CODE (uloc) == SET)
6832 src = SET_SRC (uloc);
6833 dst = SET_DEST (uloc);
6836 if (copied_p)
6838 if (flag_var_tracking_uninit)
6840 status = find_src_status (in, src);
6842 if (status == VAR_INIT_STATUS_UNKNOWN)
6843 status = find_src_status (out, src);
6846 src = find_src_set_src (in, src);
6849 if (REG_P (dst))
6850 var_reg_delete_and_set (out, dst, !copied_p,
6851 status, srcv);
6852 else if (MEM_P (dst))
6854 gcc_assert (MEM_P (dstv));
6855 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6856 var_mem_delete_and_set (out, dstv, !copied_p,
6857 status, srcv);
6861 else if (REG_P (uloc))
6862 var_regno_delete (out, REGNO (uloc));
6863 else if (MEM_P (uloc))
6865 gcc_checking_assert (GET_CODE (vloc) == MEM);
6866 gcc_checking_assert (dstv == vloc);
6867 if (dstv != vloc)
6868 clobber_overlapping_mems (out, vloc);
6871 val_store (out, val, dstv, insn, true);
6873 break;
6875 case MO_SET:
6877 rtx loc = mo->u.loc;
6878 rtx set_src = NULL;
6880 if (GET_CODE (loc) == SET)
6882 set_src = SET_SRC (loc);
6883 loc = SET_DEST (loc);
6886 if (REG_P (loc))
6887 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6888 set_src);
6889 else if (MEM_P (loc))
6890 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6891 set_src);
6893 break;
6895 case MO_COPY:
6897 rtx loc = mo->u.loc;
6898 enum var_init_status src_status;
6899 rtx set_src = NULL;
6901 if (GET_CODE (loc) == SET)
6903 set_src = SET_SRC (loc);
6904 loc = SET_DEST (loc);
6907 if (! flag_var_tracking_uninit)
6908 src_status = VAR_INIT_STATUS_INITIALIZED;
6909 else
6911 src_status = find_src_status (in, set_src);
6913 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6914 src_status = find_src_status (out, set_src);
6917 set_src = find_src_set_src (in, set_src);
6919 if (REG_P (loc))
6920 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6921 else if (MEM_P (loc))
6922 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6924 break;
6926 case MO_USE_NO_VAR:
6928 rtx loc = mo->u.loc;
6930 if (REG_P (loc))
6931 var_reg_delete (out, loc, false);
6932 else if (MEM_P (loc))
6933 var_mem_delete (out, loc, false);
6935 break;
6937 case MO_CLOBBER:
6939 rtx loc = mo->u.loc;
6941 if (REG_P (loc))
6942 var_reg_delete (out, loc, true);
6943 else if (MEM_P (loc))
6944 var_mem_delete (out, loc, true);
6946 break;
6948 case MO_ADJUST:
6949 out->stack_adjust += mo->u.adjust;
6950 break;
6954 if (MAY_HAVE_DEBUG_INSNS)
6956 delete local_get_addr_cache;
6957 local_get_addr_cache = NULL;
6959 dataflow_set_equiv_regs (out);
6960 shared_hash_htab (out->vars)
6961 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
6962 shared_hash_htab (out->vars)
6963 ->traverse <dataflow_set *, canonicalize_values_star> (out);
6964 #if ENABLE_CHECKING
6965 shared_hash_htab (out->vars)
6966 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6967 #endif
6969 changed = dataflow_set_different (&old_out, out);
6970 dataflow_set_destroy (&old_out);
6971 return changed;
6974 /* Find the locations of variables in the whole function. */
6976 static bool
6977 vt_find_locations (void)
6979 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
6980 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
6981 bb_heap_t *fibheap_swap = NULL;
6982 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6983 basic_block bb;
6984 edge e;
6985 int *bb_order;
6986 int *rc_order;
6987 int i;
6988 int htabsz = 0;
6989 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6990 bool success = true;
6992 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6993 /* Compute reverse completion order of depth first search of the CFG
6994 so that the data-flow runs faster. */
6995 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
6996 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6997 pre_and_rev_post_order_compute (NULL, rc_order, false);
6998 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
6999 bb_order[rc_order[i]] = i;
7000 free (rc_order);
7002 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
7003 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
7004 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
7005 bitmap_clear (in_worklist);
7007 FOR_EACH_BB_FN (bb, cfun)
7008 pending->insert (bb_order[bb->index], bb);
7009 bitmap_ones (in_pending);
7011 while (success && !pending->empty ())
7013 fibheap_swap = pending;
7014 pending = worklist;
7015 worklist = fibheap_swap;
7016 sbitmap_swap = in_pending;
7017 in_pending = in_worklist;
7018 in_worklist = sbitmap_swap;
7020 bitmap_clear (visited);
7022 while (!worklist->empty ())
7024 bb = worklist->extract_min ();
7025 bitmap_clear_bit (in_worklist, bb->index);
7026 gcc_assert (!bitmap_bit_p (visited, bb->index));
7027 if (!bitmap_bit_p (visited, bb->index))
7029 bool changed;
7030 edge_iterator ei;
7031 int oldinsz, oldoutsz;
7033 bitmap_set_bit (visited, bb->index);
7035 if (VTI (bb)->in.vars)
7037 htabsz
7038 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7039 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7040 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7041 oldoutsz
7042 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7044 else
7045 oldinsz = oldoutsz = 0;
7047 if (MAY_HAVE_DEBUG_INSNS)
7049 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7050 bool first = true, adjust = false;
7052 /* Calculate the IN set as the intersection of
7053 predecessor OUT sets. */
7055 dataflow_set_clear (in);
7056 dst_can_be_shared = true;
7058 FOR_EACH_EDGE (e, ei, bb->preds)
7059 if (!VTI (e->src)->flooded)
7060 gcc_assert (bb_order[bb->index]
7061 <= bb_order[e->src->index]);
7062 else if (first)
7064 dataflow_set_copy (in, &VTI (e->src)->out);
7065 first_out = &VTI (e->src)->out;
7066 first = false;
7068 else
7070 dataflow_set_merge (in, &VTI (e->src)->out);
7071 adjust = true;
7074 if (adjust)
7076 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7077 #if ENABLE_CHECKING
7078 /* Merge and merge_adjust should keep entries in
7079 canonical order. */
7080 shared_hash_htab (in->vars)
7081 ->traverse <dataflow_set *,
7082 canonicalize_loc_order_check> (in);
7083 #endif
7084 if (dst_can_be_shared)
7086 shared_hash_destroy (in->vars);
7087 in->vars = shared_hash_copy (first_out->vars);
7091 VTI (bb)->flooded = true;
7093 else
7095 /* Calculate the IN set as union of predecessor OUT sets. */
7096 dataflow_set_clear (&VTI (bb)->in);
7097 FOR_EACH_EDGE (e, ei, bb->preds)
7098 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7101 changed = compute_bb_dataflow (bb);
7102 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7103 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7105 if (htabmax && htabsz > htabmax)
7107 if (MAY_HAVE_DEBUG_INSNS)
7108 inform (DECL_SOURCE_LOCATION (cfun->decl),
7109 "variable tracking size limit exceeded with "
7110 "-fvar-tracking-assignments, retrying without");
7111 else
7112 inform (DECL_SOURCE_LOCATION (cfun->decl),
7113 "variable tracking size limit exceeded");
7114 success = false;
7115 break;
7118 if (changed)
7120 FOR_EACH_EDGE (e, ei, bb->succs)
7122 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7123 continue;
7125 if (bitmap_bit_p (visited, e->dest->index))
7127 if (!bitmap_bit_p (in_pending, e->dest->index))
7129 /* Send E->DEST to next round. */
7130 bitmap_set_bit (in_pending, e->dest->index);
7131 pending->insert (bb_order[e->dest->index],
7132 e->dest);
7135 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7137 /* Add E->DEST to current round. */
7138 bitmap_set_bit (in_worklist, e->dest->index);
7139 worklist->insert (bb_order[e->dest->index],
7140 e->dest);
7145 if (dump_file)
7146 fprintf (dump_file,
7147 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7148 bb->index,
7149 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7150 oldinsz,
7151 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7152 oldoutsz,
7153 (int)worklist->nodes (), (int)pending->nodes (),
7154 htabsz);
7156 if (dump_file && (dump_flags & TDF_DETAILS))
7158 fprintf (dump_file, "BB %i IN:\n", bb->index);
7159 dump_dataflow_set (&VTI (bb)->in);
7160 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7161 dump_dataflow_set (&VTI (bb)->out);
7167 if (success && MAY_HAVE_DEBUG_INSNS)
7168 FOR_EACH_BB_FN (bb, cfun)
7169 gcc_assert (VTI (bb)->flooded);
7171 free (bb_order);
7172 delete worklist;
7173 delete pending;
7174 sbitmap_free (visited);
7175 sbitmap_free (in_worklist);
7176 sbitmap_free (in_pending);
7178 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7179 return success;
7182 /* Print the content of the LIST to dump file. */
7184 static void
7185 dump_attrs_list (attrs list)
7187 for (; list; list = list->next)
7189 if (dv_is_decl_p (list->dv))
7190 print_mem_expr (dump_file, dv_as_decl (list->dv));
7191 else
7192 print_rtl_single (dump_file, dv_as_value (list->dv));
7193 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7195 fprintf (dump_file, "\n");
7198 /* Print the information about variable *SLOT to dump file. */
7201 dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
7203 variable var = *slot;
7205 dump_var (var);
7207 /* Continue traversing the hash table. */
7208 return 1;
7211 /* Print the information about variable VAR to dump file. */
7213 static void
7214 dump_var (variable var)
7216 int i;
7217 location_chain node;
7219 if (dv_is_decl_p (var->dv))
7221 const_tree decl = dv_as_decl (var->dv);
7223 if (DECL_NAME (decl))
7225 fprintf (dump_file, " name: %s",
7226 IDENTIFIER_POINTER (DECL_NAME (decl)));
7227 if (dump_flags & TDF_UID)
7228 fprintf (dump_file, "D.%u", DECL_UID (decl));
7230 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7231 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7232 else
7233 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7234 fprintf (dump_file, "\n");
7236 else
7238 fputc (' ', dump_file);
7239 print_rtl_single (dump_file, dv_as_value (var->dv));
7242 for (i = 0; i < var->n_var_parts; i++)
7244 fprintf (dump_file, " offset %ld\n",
7245 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7246 for (node = var->var_part[i].loc_chain; node; node = node->next)
7248 fprintf (dump_file, " ");
7249 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7250 fprintf (dump_file, "[uninit]");
7251 print_rtl_single (dump_file, node->loc);
7256 /* Print the information about variables from hash table VARS to dump file. */
7258 static void
7259 dump_vars (variable_table_type *vars)
7261 if (vars->elements () > 0)
7263 fprintf (dump_file, "Variables:\n");
7264 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7268 /* Print the dataflow set SET to dump file. */
7270 static void
7271 dump_dataflow_set (dataflow_set *set)
7273 int i;
7275 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7276 set->stack_adjust);
7277 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7279 if (set->regs[i])
7281 fprintf (dump_file, "Reg %d:", i);
7282 dump_attrs_list (set->regs[i]);
7285 dump_vars (shared_hash_htab (set->vars));
7286 fprintf (dump_file, "\n");
7289 /* Print the IN and OUT sets for each basic block to dump file. */
7291 static void
7292 dump_dataflow_sets (void)
7294 basic_block bb;
7296 FOR_EACH_BB_FN (bb, cfun)
7298 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7299 fprintf (dump_file, "IN:\n");
7300 dump_dataflow_set (&VTI (bb)->in);
7301 fprintf (dump_file, "OUT:\n");
7302 dump_dataflow_set (&VTI (bb)->out);
7306 /* Return the variable for DV in dropped_values, inserting one if
7307 requested with INSERT. */
7309 static inline variable
7310 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7312 variable_def **slot;
7313 variable empty_var;
7314 onepart_enum_t onepart;
7316 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7318 if (!slot)
7319 return NULL;
7321 if (*slot)
7322 return *slot;
7324 gcc_checking_assert (insert == INSERT);
7326 onepart = dv_onepart_p (dv);
7328 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7330 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7331 empty_var->dv = dv;
7332 empty_var->refcount = 1;
7333 empty_var->n_var_parts = 0;
7334 empty_var->onepart = onepart;
7335 empty_var->in_changed_variables = false;
7336 empty_var->var_part[0].loc_chain = NULL;
7337 empty_var->var_part[0].cur_loc = NULL;
7338 VAR_LOC_1PAUX (empty_var) = NULL;
7339 set_dv_changed (dv, true);
7341 *slot = empty_var;
7343 return empty_var;
7346 /* Recover the one-part aux from dropped_values. */
7348 static struct onepart_aux *
7349 recover_dropped_1paux (variable var)
7351 variable dvar;
7353 gcc_checking_assert (var->onepart);
7355 if (VAR_LOC_1PAUX (var))
7356 return VAR_LOC_1PAUX (var);
7358 if (var->onepart == ONEPART_VDECL)
7359 return NULL;
7361 dvar = variable_from_dropped (var->dv, NO_INSERT);
7363 if (!dvar)
7364 return NULL;
7366 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7367 VAR_LOC_1PAUX (dvar) = NULL;
7369 return VAR_LOC_1PAUX (var);
7372 /* Add variable VAR to the hash table of changed variables and
7373 if it has no locations delete it from SET's hash table. */
7375 static void
7376 variable_was_changed (variable var, dataflow_set *set)
7378 hashval_t hash = dv_htab_hash (var->dv);
7380 if (emit_notes)
7382 variable_def **slot;
7384 /* Remember this decl or VALUE has been added to changed_variables. */
7385 set_dv_changed (var->dv, true);
7387 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7389 if (*slot)
7391 variable old_var = *slot;
7392 gcc_assert (old_var->in_changed_variables);
7393 old_var->in_changed_variables = false;
7394 if (var != old_var && var->onepart)
7396 /* Restore the auxiliary info from an empty variable
7397 previously created for changed_variables, so it is
7398 not lost. */
7399 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7400 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7401 VAR_LOC_1PAUX (old_var) = NULL;
7403 variable_htab_free (*slot);
7406 if (set && var->n_var_parts == 0)
7408 onepart_enum_t onepart = var->onepart;
7409 variable empty_var = NULL;
7410 variable_def **dslot = NULL;
7412 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7414 dslot = dropped_values->find_slot_with_hash (var->dv,
7415 dv_htab_hash (var->dv),
7416 INSERT);
7417 empty_var = *dslot;
7419 if (empty_var)
7421 gcc_checking_assert (!empty_var->in_changed_variables);
7422 if (!VAR_LOC_1PAUX (var))
7424 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7425 VAR_LOC_1PAUX (empty_var) = NULL;
7427 else
7428 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7432 if (!empty_var)
7434 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7435 empty_var->dv = var->dv;
7436 empty_var->refcount = 1;
7437 empty_var->n_var_parts = 0;
7438 empty_var->onepart = onepart;
7439 if (dslot)
7441 empty_var->refcount++;
7442 *dslot = empty_var;
7445 else
7446 empty_var->refcount++;
7447 empty_var->in_changed_variables = true;
7448 *slot = empty_var;
7449 if (onepart)
7451 empty_var->var_part[0].loc_chain = NULL;
7452 empty_var->var_part[0].cur_loc = NULL;
7453 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7454 VAR_LOC_1PAUX (var) = NULL;
7456 goto drop_var;
7458 else
7460 if (var->onepart && !VAR_LOC_1PAUX (var))
7461 recover_dropped_1paux (var);
7462 var->refcount++;
7463 var->in_changed_variables = true;
7464 *slot = var;
7467 else
7469 gcc_assert (set);
7470 if (var->n_var_parts == 0)
7472 variable_def **slot;
7474 drop_var:
7475 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7476 if (slot)
7478 if (shared_hash_shared (set->vars))
7479 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7480 NO_INSERT);
7481 shared_hash_htab (set->vars)->clear_slot (slot);
7487 /* Look for the index in VAR->var_part corresponding to OFFSET.
7488 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7489 referenced int will be set to the index that the part has or should
7490 have, if it should be inserted. */
7492 static inline int
7493 find_variable_location_part (variable var, HOST_WIDE_INT offset,
7494 int *insertion_point)
7496 int pos, low, high;
7498 if (var->onepart)
7500 if (offset != 0)
7501 return -1;
7503 if (insertion_point)
7504 *insertion_point = 0;
7506 return var->n_var_parts - 1;
7509 /* Find the location part. */
7510 low = 0;
7511 high = var->n_var_parts;
7512 while (low != high)
7514 pos = (low + high) / 2;
7515 if (VAR_PART_OFFSET (var, pos) < offset)
7516 low = pos + 1;
7517 else
7518 high = pos;
7520 pos = low;
7522 if (insertion_point)
7523 *insertion_point = pos;
7525 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7526 return pos;
7528 return -1;
7531 static variable_def **
7532 set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7533 decl_or_value dv, HOST_WIDE_INT offset,
7534 enum var_init_status initialized, rtx set_src)
7536 int pos;
7537 location_chain node, next;
7538 location_chain *nextp;
7539 variable var;
7540 onepart_enum_t onepart;
7542 var = *slot;
7544 if (var)
7545 onepart = var->onepart;
7546 else
7547 onepart = dv_onepart_p (dv);
7549 gcc_checking_assert (offset == 0 || !onepart);
7550 gcc_checking_assert (loc != dv_as_opaque (dv));
7552 if (! flag_var_tracking_uninit)
7553 initialized = VAR_INIT_STATUS_INITIALIZED;
7555 if (!var)
7557 /* Create new variable information. */
7558 var = (variable) pool_alloc (onepart_pool (onepart));
7559 var->dv = dv;
7560 var->refcount = 1;
7561 var->n_var_parts = 1;
7562 var->onepart = onepart;
7563 var->in_changed_variables = false;
7564 if (var->onepart)
7565 VAR_LOC_1PAUX (var) = NULL;
7566 else
7567 VAR_PART_OFFSET (var, 0) = offset;
7568 var->var_part[0].loc_chain = NULL;
7569 var->var_part[0].cur_loc = NULL;
7570 *slot = var;
7571 pos = 0;
7572 nextp = &var->var_part[0].loc_chain;
7574 else if (onepart)
7576 int r = -1, c = 0;
7578 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7580 pos = 0;
7582 if (GET_CODE (loc) == VALUE)
7584 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7585 nextp = &node->next)
7586 if (GET_CODE (node->loc) == VALUE)
7588 if (node->loc == loc)
7590 r = 0;
7591 break;
7593 if (canon_value_cmp (node->loc, loc))
7594 c++;
7595 else
7597 r = 1;
7598 break;
7601 else if (REG_P (node->loc) || MEM_P (node->loc))
7602 c++;
7603 else
7605 r = 1;
7606 break;
7609 else if (REG_P (loc))
7611 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7612 nextp = &node->next)
7613 if (REG_P (node->loc))
7615 if (REGNO (node->loc) < REGNO (loc))
7616 c++;
7617 else
7619 if (REGNO (node->loc) == REGNO (loc))
7620 r = 0;
7621 else
7622 r = 1;
7623 break;
7626 else
7628 r = 1;
7629 break;
7632 else if (MEM_P (loc))
7634 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7635 nextp = &node->next)
7636 if (REG_P (node->loc))
7637 c++;
7638 else if (MEM_P (node->loc))
7640 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7641 break;
7642 else
7643 c++;
7645 else
7647 r = 1;
7648 break;
7651 else
7652 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7653 nextp = &node->next)
7654 if ((r = loc_cmp (node->loc, loc)) >= 0)
7655 break;
7656 else
7657 c++;
7659 if (r == 0)
7660 return slot;
7662 if (shared_var_p (var, set->vars))
7664 slot = unshare_variable (set, slot, var, initialized);
7665 var = *slot;
7666 for (nextp = &var->var_part[0].loc_chain; c;
7667 nextp = &(*nextp)->next)
7668 c--;
7669 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7672 else
7674 int inspos = 0;
7676 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7678 pos = find_variable_location_part (var, offset, &inspos);
7680 if (pos >= 0)
7682 node = var->var_part[pos].loc_chain;
7684 if (node
7685 && ((REG_P (node->loc) && REG_P (loc)
7686 && REGNO (node->loc) == REGNO (loc))
7687 || rtx_equal_p (node->loc, loc)))
7689 /* LOC is in the beginning of the chain so we have nothing
7690 to do. */
7691 if (node->init < initialized)
7692 node->init = initialized;
7693 if (set_src != NULL)
7694 node->set_src = set_src;
7696 return slot;
7698 else
7700 /* We have to make a copy of a shared variable. */
7701 if (shared_var_p (var, set->vars))
7703 slot = unshare_variable (set, slot, var, initialized);
7704 var = *slot;
7708 else
7710 /* We have not found the location part, new one will be created. */
7712 /* We have to make a copy of the shared variable. */
7713 if (shared_var_p (var, set->vars))
7715 slot = unshare_variable (set, slot, var, initialized);
7716 var = *slot;
7719 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7720 thus there are at most MAX_VAR_PARTS different offsets. */
7721 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7722 && (!var->n_var_parts || !onepart));
7724 /* We have to move the elements of array starting at index
7725 inspos to the next position. */
7726 for (pos = var->n_var_parts; pos > inspos; pos--)
7727 var->var_part[pos] = var->var_part[pos - 1];
7729 var->n_var_parts++;
7730 gcc_checking_assert (!onepart);
7731 VAR_PART_OFFSET (var, pos) = offset;
7732 var->var_part[pos].loc_chain = NULL;
7733 var->var_part[pos].cur_loc = NULL;
7736 /* Delete the location from the list. */
7737 nextp = &var->var_part[pos].loc_chain;
7738 for (node = var->var_part[pos].loc_chain; node; node = next)
7740 next = node->next;
7741 if ((REG_P (node->loc) && REG_P (loc)
7742 && REGNO (node->loc) == REGNO (loc))
7743 || rtx_equal_p (node->loc, loc))
7745 /* Save these values, to assign to the new node, before
7746 deleting this one. */
7747 if (node->init > initialized)
7748 initialized = node->init;
7749 if (node->set_src != NULL && set_src == NULL)
7750 set_src = node->set_src;
7751 if (var->var_part[pos].cur_loc == node->loc)
7752 var->var_part[pos].cur_loc = NULL;
7753 pool_free (loc_chain_pool, node);
7754 *nextp = next;
7755 break;
7757 else
7758 nextp = &node->next;
7761 nextp = &var->var_part[pos].loc_chain;
7764 /* Add the location to the beginning. */
7765 node = (location_chain) pool_alloc (loc_chain_pool);
7766 node->loc = loc;
7767 node->init = initialized;
7768 node->set_src = set_src;
7769 node->next = *nextp;
7770 *nextp = node;
7772 /* If no location was emitted do so. */
7773 if (var->var_part[pos].cur_loc == NULL)
7774 variable_was_changed (var, set);
7776 return slot;
7779 /* Set the part of variable's location in the dataflow set SET. The
7780 variable part is specified by variable's declaration in DV and
7781 offset OFFSET and the part's location by LOC. IOPT should be
7782 NO_INSERT if the variable is known to be in SET already and the
7783 variable hash table must not be resized, and INSERT otherwise. */
7785 static void
7786 set_variable_part (dataflow_set *set, rtx loc,
7787 decl_or_value dv, HOST_WIDE_INT offset,
7788 enum var_init_status initialized, rtx set_src,
7789 enum insert_option iopt)
7791 variable_def **slot;
7793 if (iopt == NO_INSERT)
7794 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7795 else
7797 slot = shared_hash_find_slot (set->vars, dv);
7798 if (!slot)
7799 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7801 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7804 /* Remove all recorded register locations for the given variable part
7805 from dataflow set SET, except for those that are identical to loc.
7806 The variable part is specified by variable's declaration or value
7807 DV and offset OFFSET. */
7809 static variable_def **
7810 clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7811 HOST_WIDE_INT offset, rtx set_src)
7813 variable var = *slot;
7814 int pos = find_variable_location_part (var, offset, NULL);
7816 if (pos >= 0)
7818 location_chain node, next;
7820 /* Remove the register locations from the dataflow set. */
7821 next = var->var_part[pos].loc_chain;
7822 for (node = next; node; node = next)
7824 next = node->next;
7825 if (node->loc != loc
7826 && (!flag_var_tracking_uninit
7827 || !set_src
7828 || MEM_P (set_src)
7829 || !rtx_equal_p (set_src, node->set_src)))
7831 if (REG_P (node->loc))
7833 attrs anode, anext;
7834 attrs *anextp;
7836 /* Remove the variable part from the register's
7837 list, but preserve any other variable parts
7838 that might be regarded as live in that same
7839 register. */
7840 anextp = &set->regs[REGNO (node->loc)];
7841 for (anode = *anextp; anode; anode = anext)
7843 anext = anode->next;
7844 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7845 && anode->offset == offset)
7847 pool_free (attrs_pool, anode);
7848 *anextp = anext;
7850 else
7851 anextp = &anode->next;
7855 slot = delete_slot_part (set, node->loc, slot, offset);
7860 return slot;
7863 /* Remove all recorded register locations for the given variable part
7864 from dataflow set SET, except for those that are identical to loc.
7865 The variable part is specified by variable's declaration or value
7866 DV and offset OFFSET. */
7868 static void
7869 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7870 HOST_WIDE_INT offset, rtx set_src)
7872 variable_def **slot;
7874 if (!dv_as_opaque (dv)
7875 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7876 return;
7878 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7879 if (!slot)
7880 return;
7882 clobber_slot_part (set, loc, slot, offset, set_src);
7885 /* Delete the part of variable's location from dataflow set SET. The
7886 variable part is specified by its SET->vars slot SLOT and offset
7887 OFFSET and the part's location by LOC. */
7889 static variable_def **
7890 delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7891 HOST_WIDE_INT offset)
7893 variable var = *slot;
7894 int pos = find_variable_location_part (var, offset, NULL);
7896 if (pos >= 0)
7898 location_chain node, next;
7899 location_chain *nextp;
7900 bool changed;
7901 rtx cur_loc;
7903 if (shared_var_p (var, set->vars))
7905 /* If the variable contains the location part we have to
7906 make a copy of the variable. */
7907 for (node = var->var_part[pos].loc_chain; node;
7908 node = node->next)
7910 if ((REG_P (node->loc) && REG_P (loc)
7911 && REGNO (node->loc) == REGNO (loc))
7912 || rtx_equal_p (node->loc, loc))
7914 slot = unshare_variable (set, slot, var,
7915 VAR_INIT_STATUS_UNKNOWN);
7916 var = *slot;
7917 break;
7922 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7923 cur_loc = VAR_LOC_FROM (var);
7924 else
7925 cur_loc = var->var_part[pos].cur_loc;
7927 /* Delete the location part. */
7928 changed = false;
7929 nextp = &var->var_part[pos].loc_chain;
7930 for (node = *nextp; node; node = next)
7932 next = node->next;
7933 if ((REG_P (node->loc) && REG_P (loc)
7934 && REGNO (node->loc) == REGNO (loc))
7935 || rtx_equal_p (node->loc, loc))
7937 /* If we have deleted the location which was last emitted
7938 we have to emit new location so add the variable to set
7939 of changed variables. */
7940 if (cur_loc == node->loc)
7942 changed = true;
7943 var->var_part[pos].cur_loc = NULL;
7944 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7945 VAR_LOC_FROM (var) = NULL;
7947 pool_free (loc_chain_pool, node);
7948 *nextp = next;
7949 break;
7951 else
7952 nextp = &node->next;
7955 if (var->var_part[pos].loc_chain == NULL)
7957 changed = true;
7958 var->n_var_parts--;
7959 while (pos < var->n_var_parts)
7961 var->var_part[pos] = var->var_part[pos + 1];
7962 pos++;
7965 if (changed)
7966 variable_was_changed (var, set);
7969 return slot;
7972 /* Delete the part of variable's location from dataflow set SET. The
7973 variable part is specified by variable's declaration or value DV
7974 and offset OFFSET and the part's location by LOC. */
7976 static void
7977 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7978 HOST_WIDE_INT offset)
7980 variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7981 if (!slot)
7982 return;
7984 delete_slot_part (set, loc, slot, offset);
7988 /* Structure for passing some other parameters to function
7989 vt_expand_loc_callback. */
7990 struct expand_loc_callback_data
7992 /* The variables and values active at this point. */
7993 variable_table_type *vars;
7995 /* Stack of values and debug_exprs under expansion, and their
7996 children. */
7997 auto_vec<rtx, 4> expanding;
7999 /* Stack of values and debug_exprs whose expansion hit recursion
8000 cycles. They will have VALUE_RECURSED_INTO marked when added to
8001 this list. This flag will be cleared if any of its dependencies
8002 resolves to a valid location. So, if the flag remains set at the
8003 end of the search, we know no valid location for this one can
8004 possibly exist. */
8005 auto_vec<rtx, 4> pending;
8007 /* The maximum depth among the sub-expressions under expansion.
8008 Zero indicates no expansion so far. */
8009 expand_depth depth;
8012 /* Allocate the one-part auxiliary data structure for VAR, with enough
8013 room for COUNT dependencies. */
8015 static void
8016 loc_exp_dep_alloc (variable var, int count)
8018 size_t allocsize;
8020 gcc_checking_assert (var->onepart);
8022 /* We can be called with COUNT == 0 to allocate the data structure
8023 without any dependencies, e.g. for the backlinks only. However,
8024 if we are specifying a COUNT, then the dependency list must have
8025 been emptied before. It would be possible to adjust pointers or
8026 force it empty here, but this is better done at an earlier point
8027 in the algorithm, so we instead leave an assertion to catch
8028 errors. */
8029 gcc_checking_assert (!count
8030 || VAR_LOC_DEP_VEC (var) == NULL
8031 || VAR_LOC_DEP_VEC (var)->is_empty ());
8033 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8034 return;
8036 allocsize = offsetof (struct onepart_aux, deps)
8037 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8039 if (VAR_LOC_1PAUX (var))
8041 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8042 VAR_LOC_1PAUX (var), allocsize);
8043 /* If the reallocation moves the onepaux structure, the
8044 back-pointer to BACKLINKS in the first list member will still
8045 point to its old location. Adjust it. */
8046 if (VAR_LOC_DEP_LST (var))
8047 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8049 else
8051 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8052 *VAR_LOC_DEP_LSTP (var) = NULL;
8053 VAR_LOC_FROM (var) = NULL;
8054 VAR_LOC_DEPTH (var).complexity = 0;
8055 VAR_LOC_DEPTH (var).entryvals = 0;
8057 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8060 /* Remove all entries from the vector of active dependencies of VAR,
8061 removing them from the back-links lists too. */
8063 static void
8064 loc_exp_dep_clear (variable var)
8066 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8068 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8069 if (led->next)
8070 led->next->pprev = led->pprev;
8071 if (led->pprev)
8072 *led->pprev = led->next;
8073 VAR_LOC_DEP_VEC (var)->pop ();
8077 /* Insert an active dependency from VAR on X to the vector of
8078 dependencies, and add the corresponding back-link to X's list of
8079 back-links in VARS. */
8081 static void
8082 loc_exp_insert_dep (variable var, rtx x, variable_table_type *vars)
8084 decl_or_value dv;
8085 variable xvar;
8086 loc_exp_dep *led;
8088 dv = dv_from_rtx (x);
8090 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8091 an additional look up? */
8092 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8094 if (!xvar)
8096 xvar = variable_from_dropped (dv, NO_INSERT);
8097 gcc_checking_assert (xvar);
8100 /* No point in adding the same backlink more than once. This may
8101 arise if say the same value appears in two complex expressions in
8102 the same loc_list, or even more than once in a single
8103 expression. */
8104 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8105 return;
8107 if (var->onepart == NOT_ONEPART)
8108 led = (loc_exp_dep *) pool_alloc (loc_exp_dep_pool);
8109 else
8111 loc_exp_dep empty;
8112 memset (&empty, 0, sizeof (empty));
8113 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8114 led = &VAR_LOC_DEP_VEC (var)->last ();
8116 led->dv = var->dv;
8117 led->value = x;
8119 loc_exp_dep_alloc (xvar, 0);
8120 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8121 led->next = *led->pprev;
8122 if (led->next)
8123 led->next->pprev = &led->next;
8124 *led->pprev = led;
8127 /* Create active dependencies of VAR on COUNT values starting at
8128 VALUE, and corresponding back-links to the entries in VARS. Return
8129 true if we found any pending-recursion results. */
8131 static bool
8132 loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
8133 variable_table_type *vars)
8135 bool pending_recursion = false;
8137 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8138 || VAR_LOC_DEP_VEC (var)->is_empty ());
8140 /* Set up all dependencies from last_child (as set up at the end of
8141 the loop above) to the end. */
8142 loc_exp_dep_alloc (var, count);
8144 while (count--)
8146 rtx x = *value++;
8148 if (!pending_recursion)
8149 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8151 loc_exp_insert_dep (var, x, vars);
8154 return pending_recursion;
8157 /* Notify the back-links of IVAR that are pending recursion that we
8158 have found a non-NIL value for it, so they are cleared for another
8159 attempt to compute a current location. */
8161 static void
8162 notify_dependents_of_resolved_value (variable ivar, variable_table_type *vars)
8164 loc_exp_dep *led, *next;
8166 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8168 decl_or_value dv = led->dv;
8169 variable var;
8171 next = led->next;
8173 if (dv_is_value_p (dv))
8175 rtx value = dv_as_value (dv);
8177 /* If we have already resolved it, leave it alone. */
8178 if (!VALUE_RECURSED_INTO (value))
8179 continue;
8181 /* Check that VALUE_RECURSED_INTO, true from the test above,
8182 implies NO_LOC_P. */
8183 gcc_checking_assert (NO_LOC_P (value));
8185 /* We won't notify variables that are being expanded,
8186 because their dependency list is cleared before
8187 recursing. */
8188 NO_LOC_P (value) = false;
8189 VALUE_RECURSED_INTO (value) = false;
8191 gcc_checking_assert (dv_changed_p (dv));
8193 else
8195 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8196 if (!dv_changed_p (dv))
8197 continue;
8200 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8202 if (!var)
8203 var = variable_from_dropped (dv, NO_INSERT);
8205 if (var)
8206 notify_dependents_of_resolved_value (var, vars);
8208 if (next)
8209 next->pprev = led->pprev;
8210 if (led->pprev)
8211 *led->pprev = next;
8212 led->next = NULL;
8213 led->pprev = NULL;
8217 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8218 int max_depth, void *data);
8220 /* Return the combined depth, when one sub-expression evaluated to
8221 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8223 static inline expand_depth
8224 update_depth (expand_depth saved_depth, expand_depth best_depth)
8226 /* If we didn't find anything, stick with what we had. */
8227 if (!best_depth.complexity)
8228 return saved_depth;
8230 /* If we found hadn't found anything, use the depth of the current
8231 expression. Do NOT add one extra level, we want to compute the
8232 maximum depth among sub-expressions. We'll increment it later,
8233 if appropriate. */
8234 if (!saved_depth.complexity)
8235 return best_depth;
8237 /* Combine the entryval count so that regardless of which one we
8238 return, the entryval count is accurate. */
8239 best_depth.entryvals = saved_depth.entryvals
8240 = best_depth.entryvals + saved_depth.entryvals;
8242 if (saved_depth.complexity < best_depth.complexity)
8243 return best_depth;
8244 else
8245 return saved_depth;
8248 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8249 DATA for cselib expand callback. If PENDRECP is given, indicate in
8250 it whether any sub-expression couldn't be fully evaluated because
8251 it is pending recursion resolution. */
8253 static inline rtx
8254 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8256 struct expand_loc_callback_data *elcd
8257 = (struct expand_loc_callback_data *) data;
8258 location_chain loc, next;
8259 rtx result = NULL;
8260 int first_child, result_first_child, last_child;
8261 bool pending_recursion;
8262 rtx loc_from = NULL;
8263 struct elt_loc_list *cloc = NULL;
8264 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8265 int wanted_entryvals, found_entryvals = 0;
8267 /* Clear all backlinks pointing at this, so that we're not notified
8268 while we're active. */
8269 loc_exp_dep_clear (var);
8271 retry:
8272 if (var->onepart == ONEPART_VALUE)
8274 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8276 gcc_checking_assert (cselib_preserved_value_p (val));
8278 cloc = val->locs;
8281 first_child = result_first_child = last_child
8282 = elcd->expanding.length ();
8284 wanted_entryvals = found_entryvals;
8286 /* Attempt to expand each available location in turn. */
8287 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8288 loc || cloc; loc = next)
8290 result_first_child = last_child;
8292 if (!loc)
8294 loc_from = cloc->loc;
8295 next = loc;
8296 cloc = cloc->next;
8297 if (unsuitable_loc (loc_from))
8298 continue;
8300 else
8302 loc_from = loc->loc;
8303 next = loc->next;
8306 gcc_checking_assert (!unsuitable_loc (loc_from));
8308 elcd->depth.complexity = elcd->depth.entryvals = 0;
8309 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8310 vt_expand_loc_callback, data);
8311 last_child = elcd->expanding.length ();
8313 if (result)
8315 depth = elcd->depth;
8317 gcc_checking_assert (depth.complexity
8318 || result_first_child == last_child);
8320 if (last_child - result_first_child != 1)
8322 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8323 depth.entryvals++;
8324 depth.complexity++;
8327 if (depth.complexity <= EXPR_USE_DEPTH)
8329 if (depth.entryvals <= wanted_entryvals)
8330 break;
8331 else if (!found_entryvals || depth.entryvals < found_entryvals)
8332 found_entryvals = depth.entryvals;
8335 result = NULL;
8338 /* Set it up in case we leave the loop. */
8339 depth.complexity = depth.entryvals = 0;
8340 loc_from = NULL;
8341 result_first_child = first_child;
8344 if (!loc_from && wanted_entryvals < found_entryvals)
8346 /* We found entries with ENTRY_VALUEs and skipped them. Since
8347 we could not find any expansions without ENTRY_VALUEs, but we
8348 found at least one with them, go back and get an entry with
8349 the minimum number ENTRY_VALUE count that we found. We could
8350 avoid looping, but since each sub-loc is already resolved,
8351 the re-expansion should be trivial. ??? Should we record all
8352 attempted locs as dependencies, so that we retry the
8353 expansion should any of them change, in the hope it can give
8354 us a new entry without an ENTRY_VALUE? */
8355 elcd->expanding.truncate (first_child);
8356 goto retry;
8359 /* Register all encountered dependencies as active. */
8360 pending_recursion = loc_exp_dep_set
8361 (var, result, elcd->expanding.address () + result_first_child,
8362 last_child - result_first_child, elcd->vars);
8364 elcd->expanding.truncate (first_child);
8366 /* Record where the expansion came from. */
8367 gcc_checking_assert (!result || !pending_recursion);
8368 VAR_LOC_FROM (var) = loc_from;
8369 VAR_LOC_DEPTH (var) = depth;
8371 gcc_checking_assert (!depth.complexity == !result);
8373 elcd->depth = update_depth (saved_depth, depth);
8375 /* Indicate whether any of the dependencies are pending recursion
8376 resolution. */
8377 if (pendrecp)
8378 *pendrecp = pending_recursion;
8380 if (!pendrecp || !pending_recursion)
8381 var->var_part[0].cur_loc = result;
8383 return result;
8386 /* Callback for cselib_expand_value, that looks for expressions
8387 holding the value in the var-tracking hash tables. Return X for
8388 standard processing, anything else is to be used as-is. */
8390 static rtx
8391 vt_expand_loc_callback (rtx x, bitmap regs,
8392 int max_depth ATTRIBUTE_UNUSED,
8393 void *data)
8395 struct expand_loc_callback_data *elcd
8396 = (struct expand_loc_callback_data *) data;
8397 decl_or_value dv;
8398 variable var;
8399 rtx result, subreg;
8400 bool pending_recursion = false;
8401 bool from_empty = false;
8403 switch (GET_CODE (x))
8405 case SUBREG:
8406 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8407 EXPR_DEPTH,
8408 vt_expand_loc_callback, data);
8410 if (!subreg)
8411 return NULL;
8413 result = simplify_gen_subreg (GET_MODE (x), subreg,
8414 GET_MODE (SUBREG_REG (x)),
8415 SUBREG_BYTE (x));
8417 /* Invalid SUBREGs are ok in debug info. ??? We could try
8418 alternate expansions for the VALUE as well. */
8419 if (!result)
8420 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8422 return result;
8424 case DEBUG_EXPR:
8425 case VALUE:
8426 dv = dv_from_rtx (x);
8427 break;
8429 default:
8430 return x;
8433 elcd->expanding.safe_push (x);
8435 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8436 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8438 if (NO_LOC_P (x))
8440 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8441 return NULL;
8444 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8446 if (!var)
8448 from_empty = true;
8449 var = variable_from_dropped (dv, INSERT);
8452 gcc_checking_assert (var);
8454 if (!dv_changed_p (dv))
8456 gcc_checking_assert (!NO_LOC_P (x));
8457 gcc_checking_assert (var->var_part[0].cur_loc);
8458 gcc_checking_assert (VAR_LOC_1PAUX (var));
8459 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8461 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8463 return var->var_part[0].cur_loc;
8466 VALUE_RECURSED_INTO (x) = true;
8467 /* This is tentative, but it makes some tests simpler. */
8468 NO_LOC_P (x) = true;
8470 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8472 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8474 if (pending_recursion)
8476 gcc_checking_assert (!result);
8477 elcd->pending.safe_push (x);
8479 else
8481 NO_LOC_P (x) = !result;
8482 VALUE_RECURSED_INTO (x) = false;
8483 set_dv_changed (dv, false);
8485 if (result)
8486 notify_dependents_of_resolved_value (var, elcd->vars);
8489 return result;
8492 /* While expanding variables, we may encounter recursion cycles
8493 because of mutual (possibly indirect) dependencies between two
8494 particular variables (or values), say A and B. If we're trying to
8495 expand A when we get to B, which in turn attempts to expand A, if
8496 we can't find any other expansion for B, we'll add B to this
8497 pending-recursion stack, and tentatively return NULL for its
8498 location. This tentative value will be used for any other
8499 occurrences of B, unless A gets some other location, in which case
8500 it will notify B that it is worth another try at computing a
8501 location for it, and it will use the location computed for A then.
8502 At the end of the expansion, the tentative NULL locations become
8503 final for all members of PENDING that didn't get a notification.
8504 This function performs this finalization of NULL locations. */
8506 static void
8507 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8509 while (!pending->is_empty ())
8511 rtx x = pending->pop ();
8512 decl_or_value dv;
8514 if (!VALUE_RECURSED_INTO (x))
8515 continue;
8517 gcc_checking_assert (NO_LOC_P (x));
8518 VALUE_RECURSED_INTO (x) = false;
8519 dv = dv_from_rtx (x);
8520 gcc_checking_assert (dv_changed_p (dv));
8521 set_dv_changed (dv, false);
8525 /* Initialize expand_loc_callback_data D with variable hash table V.
8526 It must be a macro because of alloca (vec stack). */
8527 #define INIT_ELCD(d, v) \
8528 do \
8530 (d).vars = (v); \
8531 (d).depth.complexity = (d).depth.entryvals = 0; \
8533 while (0)
8534 /* Finalize expand_loc_callback_data D, resolved to location L. */
8535 #define FINI_ELCD(d, l) \
8536 do \
8538 resolve_expansions_pending_recursion (&(d).pending); \
8539 (d).pending.release (); \
8540 (d).expanding.release (); \
8542 if ((l) && MEM_P (l)) \
8543 (l) = targetm.delegitimize_address (l); \
8545 while (0)
8547 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8548 equivalences in VARS, updating their CUR_LOCs in the process. */
8550 static rtx
8551 vt_expand_loc (rtx loc, variable_table_type *vars)
8553 struct expand_loc_callback_data data;
8554 rtx result;
8556 if (!MAY_HAVE_DEBUG_INSNS)
8557 return loc;
8559 INIT_ELCD (data, vars);
8561 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8562 vt_expand_loc_callback, &data);
8564 FINI_ELCD (data, result);
8566 return result;
8569 /* Expand the one-part VARiable to a location, using the equivalences
8570 in VARS, updating their CUR_LOCs in the process. */
8572 static rtx
8573 vt_expand_1pvar (variable var, variable_table_type *vars)
8575 struct expand_loc_callback_data data;
8576 rtx loc;
8578 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8580 if (!dv_changed_p (var->dv))
8581 return var->var_part[0].cur_loc;
8583 INIT_ELCD (data, vars);
8585 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8587 gcc_checking_assert (data.expanding.is_empty ());
8589 FINI_ELCD (data, loc);
8591 return loc;
8594 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8595 additional parameters: WHERE specifies whether the note shall be emitted
8596 before or after instruction INSN. */
8599 emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
8601 variable var = *varp;
8602 rtx_insn *insn = data->insn;
8603 enum emit_note_where where = data->where;
8604 variable_table_type *vars = data->vars;
8605 rtx_note *note;
8606 rtx note_vl;
8607 int i, j, n_var_parts;
8608 bool complete;
8609 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8610 HOST_WIDE_INT last_limit;
8611 tree type_size_unit;
8612 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8613 rtx loc[MAX_VAR_PARTS];
8614 tree decl;
8615 location_chain lc;
8617 gcc_checking_assert (var->onepart == NOT_ONEPART
8618 || var->onepart == ONEPART_VDECL);
8620 decl = dv_as_decl (var->dv);
8622 complete = true;
8623 last_limit = 0;
8624 n_var_parts = 0;
8625 if (!var->onepart)
8626 for (i = 0; i < var->n_var_parts; i++)
8627 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8628 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8629 for (i = 0; i < var->n_var_parts; i++)
8631 machine_mode mode, wider_mode;
8632 rtx loc2;
8633 HOST_WIDE_INT offset;
8635 if (i == 0 && var->onepart)
8637 gcc_checking_assert (var->n_var_parts == 1);
8638 offset = 0;
8639 initialized = VAR_INIT_STATUS_INITIALIZED;
8640 loc2 = vt_expand_1pvar (var, vars);
8642 else
8644 if (last_limit < VAR_PART_OFFSET (var, i))
8646 complete = false;
8647 break;
8649 else if (last_limit > VAR_PART_OFFSET (var, i))
8650 continue;
8651 offset = VAR_PART_OFFSET (var, i);
8652 loc2 = var->var_part[i].cur_loc;
8653 if (loc2 && GET_CODE (loc2) == MEM
8654 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8656 rtx depval = XEXP (loc2, 0);
8658 loc2 = vt_expand_loc (loc2, vars);
8660 if (loc2)
8661 loc_exp_insert_dep (var, depval, vars);
8663 if (!loc2)
8665 complete = false;
8666 continue;
8668 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8669 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8670 if (var->var_part[i].cur_loc == lc->loc)
8672 initialized = lc->init;
8673 break;
8675 gcc_assert (lc);
8678 offsets[n_var_parts] = offset;
8679 if (!loc2)
8681 complete = false;
8682 continue;
8684 loc[n_var_parts] = loc2;
8685 mode = GET_MODE (var->var_part[i].cur_loc);
8686 if (mode == VOIDmode && var->onepart)
8687 mode = DECL_MODE (decl);
8688 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8690 /* Attempt to merge adjacent registers or memory. */
8691 wider_mode = GET_MODE_WIDER_MODE (mode);
8692 for (j = i + 1; j < var->n_var_parts; j++)
8693 if (last_limit <= VAR_PART_OFFSET (var, j))
8694 break;
8695 if (j < var->n_var_parts
8696 && wider_mode != VOIDmode
8697 && var->var_part[j].cur_loc
8698 && mode == GET_MODE (var->var_part[j].cur_loc)
8699 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8700 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8701 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8702 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8704 rtx new_loc = NULL;
8706 if (REG_P (loc[n_var_parts])
8707 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8708 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8709 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8710 == REGNO (loc2))
8712 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8713 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8714 mode, 0);
8715 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8716 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8717 if (new_loc)
8719 if (!REG_P (new_loc)
8720 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8721 new_loc = NULL;
8722 else
8723 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8726 else if (MEM_P (loc[n_var_parts])
8727 && GET_CODE (XEXP (loc2, 0)) == PLUS
8728 && REG_P (XEXP (XEXP (loc2, 0), 0))
8729 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8731 if ((REG_P (XEXP (loc[n_var_parts], 0))
8732 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8733 XEXP (XEXP (loc2, 0), 0))
8734 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8735 == GET_MODE_SIZE (mode))
8736 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8737 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8738 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8739 XEXP (XEXP (loc2, 0), 0))
8740 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8741 + GET_MODE_SIZE (mode)
8742 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8743 new_loc = adjust_address_nv (loc[n_var_parts],
8744 wider_mode, 0);
8747 if (new_loc)
8749 loc[n_var_parts] = new_loc;
8750 mode = wider_mode;
8751 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8752 i = j;
8755 ++n_var_parts;
8757 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8758 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8759 complete = false;
8761 if (! flag_var_tracking_uninit)
8762 initialized = VAR_INIT_STATUS_INITIALIZED;
8764 note_vl = NULL_RTX;
8765 if (!complete)
8766 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8767 else if (n_var_parts == 1)
8769 rtx expr_list;
8771 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8772 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8773 else
8774 expr_list = loc[0];
8776 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8778 else if (n_var_parts)
8780 rtx parallel;
8782 for (i = 0; i < n_var_parts; i++)
8783 loc[i]
8784 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8786 parallel = gen_rtx_PARALLEL (VOIDmode,
8787 gen_rtvec_v (n_var_parts, loc));
8788 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8789 parallel, initialized);
8792 if (where != EMIT_NOTE_BEFORE_INSN)
8794 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8795 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8796 NOTE_DURING_CALL_P (note) = true;
8798 else
8800 /* Make sure that the call related notes come first. */
8801 while (NEXT_INSN (insn)
8802 && NOTE_P (insn)
8803 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8804 && NOTE_DURING_CALL_P (insn))
8805 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8806 insn = NEXT_INSN (insn);
8807 if (NOTE_P (insn)
8808 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8809 && NOTE_DURING_CALL_P (insn))
8810 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8811 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8812 else
8813 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8815 NOTE_VAR_LOCATION (note) = note_vl;
8817 set_dv_changed (var->dv, false);
8818 gcc_assert (var->in_changed_variables);
8819 var->in_changed_variables = false;
8820 changed_variables->clear_slot (varp);
8822 /* Continue traversing the hash table. */
8823 return 1;
8826 /* While traversing changed_variables, push onto DATA (a stack of RTX
8827 values) entries that aren't user variables. */
8830 var_track_values_to_stack (variable_def **slot,
8831 vec<rtx, va_heap> *changed_values_stack)
8833 variable var = *slot;
8835 if (var->onepart == ONEPART_VALUE)
8836 changed_values_stack->safe_push (dv_as_value (var->dv));
8837 else if (var->onepart == ONEPART_DEXPR)
8838 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8840 return 1;
8843 /* Remove from changed_variables the entry whose DV corresponds to
8844 value or debug_expr VAL. */
8845 static void
8846 remove_value_from_changed_variables (rtx val)
8848 decl_or_value dv = dv_from_rtx (val);
8849 variable_def **slot;
8850 variable var;
8852 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8853 NO_INSERT);
8854 var = *slot;
8855 var->in_changed_variables = false;
8856 changed_variables->clear_slot (slot);
8859 /* If VAL (a value or debug_expr) has backlinks to variables actively
8860 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8861 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8862 have dependencies of their own to notify. */
8864 static void
8865 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8866 vec<rtx, va_heap> *changed_values_stack)
8868 variable_def **slot;
8869 variable var;
8870 loc_exp_dep *led;
8871 decl_or_value dv = dv_from_rtx (val);
8873 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8874 NO_INSERT);
8875 if (!slot)
8876 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8877 if (!slot)
8878 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8879 NO_INSERT);
8880 var = *slot;
8882 while ((led = VAR_LOC_DEP_LST (var)))
8884 decl_or_value ldv = led->dv;
8885 variable ivar;
8887 /* Deactivate and remove the backlink, as it was “used up”. It
8888 makes no sense to attempt to notify the same entity again:
8889 either it will be recomputed and re-register an active
8890 dependency, or it will still have the changed mark. */
8891 if (led->next)
8892 led->next->pprev = led->pprev;
8893 if (led->pprev)
8894 *led->pprev = led->next;
8895 led->next = NULL;
8896 led->pprev = NULL;
8898 if (dv_changed_p (ldv))
8899 continue;
8901 switch (dv_onepart_p (ldv))
8903 case ONEPART_VALUE:
8904 case ONEPART_DEXPR:
8905 set_dv_changed (ldv, true);
8906 changed_values_stack->safe_push (dv_as_rtx (ldv));
8907 break;
8909 case ONEPART_VDECL:
8910 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8911 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8912 variable_was_changed (ivar, NULL);
8913 break;
8915 case NOT_ONEPART:
8916 pool_free (loc_exp_dep_pool, led);
8917 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8918 if (ivar)
8920 int i = ivar->n_var_parts;
8921 while (i--)
8923 rtx loc = ivar->var_part[i].cur_loc;
8925 if (loc && GET_CODE (loc) == MEM
8926 && XEXP (loc, 0) == val)
8928 variable_was_changed (ivar, NULL);
8929 break;
8933 break;
8935 default:
8936 gcc_unreachable ();
8941 /* Take out of changed_variables any entries that don't refer to use
8942 variables. Back-propagate change notifications from values and
8943 debug_exprs to their active dependencies in HTAB or in
8944 CHANGED_VARIABLES. */
8946 static void
8947 process_changed_values (variable_table_type *htab)
8949 int i, n;
8950 rtx val;
8951 auto_vec<rtx, 20> changed_values_stack;
8953 /* Move values from changed_variables to changed_values_stack. */
8954 changed_variables
8955 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8956 (&changed_values_stack);
8958 /* Back-propagate change notifications in values while popping
8959 them from the stack. */
8960 for (n = i = changed_values_stack.length ();
8961 i > 0; i = changed_values_stack.length ())
8963 val = changed_values_stack.pop ();
8964 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8966 /* This condition will hold when visiting each of the entries
8967 originally in changed_variables. We can't remove them
8968 earlier because this could drop the backlinks before we got a
8969 chance to use them. */
8970 if (i == n)
8972 remove_value_from_changed_variables (val);
8973 n--;
8978 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8979 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8980 the notes shall be emitted before of after instruction INSN. */
8982 static void
8983 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
8984 shared_hash vars)
8986 emit_note_data data;
8987 variable_table_type *htab = shared_hash_htab (vars);
8989 if (!changed_variables->elements ())
8990 return;
8992 if (MAY_HAVE_DEBUG_INSNS)
8993 process_changed_values (htab);
8995 data.insn = insn;
8996 data.where = where;
8997 data.vars = htab;
8999 changed_variables
9000 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
9003 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9004 same variable in hash table DATA or is not there at all. */
9007 emit_notes_for_differences_1 (variable_def **slot, variable_table_type *new_vars)
9009 variable old_var, new_var;
9011 old_var = *slot;
9012 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
9014 if (!new_var)
9016 /* Variable has disappeared. */
9017 variable empty_var = NULL;
9019 if (old_var->onepart == ONEPART_VALUE
9020 || old_var->onepart == ONEPART_DEXPR)
9022 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9023 if (empty_var)
9025 gcc_checking_assert (!empty_var->in_changed_variables);
9026 if (!VAR_LOC_1PAUX (old_var))
9028 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9029 VAR_LOC_1PAUX (empty_var) = NULL;
9031 else
9032 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9036 if (!empty_var)
9038 empty_var = (variable) pool_alloc (onepart_pool (old_var->onepart));
9039 empty_var->dv = old_var->dv;
9040 empty_var->refcount = 0;
9041 empty_var->n_var_parts = 0;
9042 empty_var->onepart = old_var->onepart;
9043 empty_var->in_changed_variables = false;
9046 if (empty_var->onepart)
9048 /* Propagate the auxiliary data to (ultimately)
9049 changed_variables. */
9050 empty_var->var_part[0].loc_chain = NULL;
9051 empty_var->var_part[0].cur_loc = NULL;
9052 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9053 VAR_LOC_1PAUX (old_var) = NULL;
9055 variable_was_changed (empty_var, NULL);
9056 /* Continue traversing the hash table. */
9057 return 1;
9059 /* Update cur_loc and one-part auxiliary data, before new_var goes
9060 through variable_was_changed. */
9061 if (old_var != new_var && new_var->onepart)
9063 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9064 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9065 VAR_LOC_1PAUX (old_var) = NULL;
9066 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9068 if (variable_different_p (old_var, new_var))
9069 variable_was_changed (new_var, NULL);
9071 /* Continue traversing the hash table. */
9072 return 1;
9075 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9076 table DATA. */
9079 emit_notes_for_differences_2 (variable_def **slot, variable_table_type *old_vars)
9081 variable old_var, new_var;
9083 new_var = *slot;
9084 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9085 if (!old_var)
9087 int i;
9088 for (i = 0; i < new_var->n_var_parts; i++)
9089 new_var->var_part[i].cur_loc = NULL;
9090 variable_was_changed (new_var, NULL);
9093 /* Continue traversing the hash table. */
9094 return 1;
9097 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9098 NEW_SET. */
9100 static void
9101 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9102 dataflow_set *new_set)
9104 shared_hash_htab (old_set->vars)
9105 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9106 (shared_hash_htab (new_set->vars));
9107 shared_hash_htab (new_set->vars)
9108 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9109 (shared_hash_htab (old_set->vars));
9110 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9113 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9115 static rtx_insn *
9116 next_non_note_insn_var_location (rtx_insn *insn)
9118 while (insn)
9120 insn = NEXT_INSN (insn);
9121 if (insn == 0
9122 || !NOTE_P (insn)
9123 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9124 break;
9127 return insn;
9130 /* Emit the notes for changes of location parts in the basic block BB. */
9132 static void
9133 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9135 unsigned int i;
9136 micro_operation *mo;
9138 dataflow_set_clear (set);
9139 dataflow_set_copy (set, &VTI (bb)->in);
9141 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9143 rtx_insn *insn = mo->insn;
9144 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9146 switch (mo->type)
9148 case MO_CALL:
9149 dataflow_set_clear_at_call (set);
9150 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9152 rtx arguments = mo->u.loc, *p = &arguments;
9153 rtx_note *note;
9154 while (*p)
9156 XEXP (XEXP (*p, 0), 1)
9157 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9158 shared_hash_htab (set->vars));
9159 /* If expansion is successful, keep it in the list. */
9160 if (XEXP (XEXP (*p, 0), 1))
9161 p = &XEXP (*p, 1);
9162 /* Otherwise, if the following item is data_value for it,
9163 drop it too too. */
9164 else if (XEXP (*p, 1)
9165 && REG_P (XEXP (XEXP (*p, 0), 0))
9166 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9167 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9169 && REGNO (XEXP (XEXP (*p, 0), 0))
9170 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9171 0), 0)))
9172 *p = XEXP (XEXP (*p, 1), 1);
9173 /* Just drop this item. */
9174 else
9175 *p = XEXP (*p, 1);
9177 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9178 NOTE_VAR_LOCATION (note) = arguments;
9180 break;
9182 case MO_USE:
9184 rtx loc = mo->u.loc;
9186 if (REG_P (loc))
9187 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9188 else
9189 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9191 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9193 break;
9195 case MO_VAL_LOC:
9197 rtx loc = mo->u.loc;
9198 rtx val, vloc;
9199 tree var;
9201 if (GET_CODE (loc) == CONCAT)
9203 val = XEXP (loc, 0);
9204 vloc = XEXP (loc, 1);
9206 else
9208 val = NULL_RTX;
9209 vloc = loc;
9212 var = PAT_VAR_LOCATION_DECL (vloc);
9214 clobber_variable_part (set, NULL_RTX,
9215 dv_from_decl (var), 0, NULL_RTX);
9216 if (val)
9218 if (VAL_NEEDS_RESOLUTION (loc))
9219 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9220 set_variable_part (set, val, dv_from_decl (var), 0,
9221 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9222 INSERT);
9224 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9225 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9226 dv_from_decl (var), 0,
9227 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9228 INSERT);
9230 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9232 break;
9234 case MO_VAL_USE:
9236 rtx loc = mo->u.loc;
9237 rtx val, vloc, uloc;
9239 vloc = uloc = XEXP (loc, 1);
9240 val = XEXP (loc, 0);
9242 if (GET_CODE (val) == CONCAT)
9244 uloc = XEXP (val, 1);
9245 val = XEXP (val, 0);
9248 if (VAL_NEEDS_RESOLUTION (loc))
9249 val_resolve (set, val, vloc, insn);
9250 else
9251 val_store (set, val, uloc, insn, false);
9253 if (VAL_HOLDS_TRACK_EXPR (loc))
9255 if (GET_CODE (uloc) == REG)
9256 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9257 NULL);
9258 else if (GET_CODE (uloc) == MEM)
9259 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9260 NULL);
9263 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9265 break;
9267 case MO_VAL_SET:
9269 rtx loc = mo->u.loc;
9270 rtx val, vloc, uloc;
9271 rtx dstv, srcv;
9273 vloc = loc;
9274 uloc = XEXP (vloc, 1);
9275 val = XEXP (vloc, 0);
9276 vloc = uloc;
9278 if (GET_CODE (uloc) == SET)
9280 dstv = SET_DEST (uloc);
9281 srcv = SET_SRC (uloc);
9283 else
9285 dstv = uloc;
9286 srcv = NULL;
9289 if (GET_CODE (val) == CONCAT)
9291 dstv = vloc = XEXP (val, 1);
9292 val = XEXP (val, 0);
9295 if (GET_CODE (vloc) == SET)
9297 srcv = SET_SRC (vloc);
9299 gcc_assert (val != srcv);
9300 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9302 dstv = vloc = SET_DEST (vloc);
9304 if (VAL_NEEDS_RESOLUTION (loc))
9305 val_resolve (set, val, srcv, insn);
9307 else if (VAL_NEEDS_RESOLUTION (loc))
9309 gcc_assert (GET_CODE (uloc) == SET
9310 && GET_CODE (SET_SRC (uloc)) == REG);
9311 val_resolve (set, val, SET_SRC (uloc), insn);
9314 if (VAL_HOLDS_TRACK_EXPR (loc))
9316 if (VAL_EXPR_IS_CLOBBERED (loc))
9318 if (REG_P (uloc))
9319 var_reg_delete (set, uloc, true);
9320 else if (MEM_P (uloc))
9322 gcc_assert (MEM_P (dstv));
9323 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9324 var_mem_delete (set, dstv, true);
9327 else
9329 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9330 rtx src = NULL, dst = uloc;
9331 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9333 if (GET_CODE (uloc) == SET)
9335 src = SET_SRC (uloc);
9336 dst = SET_DEST (uloc);
9339 if (copied_p)
9341 status = find_src_status (set, src);
9343 src = find_src_set_src (set, src);
9346 if (REG_P (dst))
9347 var_reg_delete_and_set (set, dst, !copied_p,
9348 status, srcv);
9349 else if (MEM_P (dst))
9351 gcc_assert (MEM_P (dstv));
9352 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9353 var_mem_delete_and_set (set, dstv, !copied_p,
9354 status, srcv);
9358 else if (REG_P (uloc))
9359 var_regno_delete (set, REGNO (uloc));
9360 else if (MEM_P (uloc))
9362 gcc_checking_assert (GET_CODE (vloc) == MEM);
9363 gcc_checking_assert (vloc == dstv);
9364 if (vloc != dstv)
9365 clobber_overlapping_mems (set, vloc);
9368 val_store (set, val, dstv, insn, true);
9370 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9371 set->vars);
9373 break;
9375 case MO_SET:
9377 rtx loc = mo->u.loc;
9378 rtx set_src = NULL;
9380 if (GET_CODE (loc) == SET)
9382 set_src = SET_SRC (loc);
9383 loc = SET_DEST (loc);
9386 if (REG_P (loc))
9387 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9388 set_src);
9389 else
9390 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9391 set_src);
9393 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9394 set->vars);
9396 break;
9398 case MO_COPY:
9400 rtx loc = mo->u.loc;
9401 enum var_init_status src_status;
9402 rtx set_src = NULL;
9404 if (GET_CODE (loc) == SET)
9406 set_src = SET_SRC (loc);
9407 loc = SET_DEST (loc);
9410 src_status = find_src_status (set, set_src);
9411 set_src = find_src_set_src (set, set_src);
9413 if (REG_P (loc))
9414 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9415 else
9416 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9418 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9419 set->vars);
9421 break;
9423 case MO_USE_NO_VAR:
9425 rtx loc = mo->u.loc;
9427 if (REG_P (loc))
9428 var_reg_delete (set, loc, false);
9429 else
9430 var_mem_delete (set, loc, false);
9432 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9434 break;
9436 case MO_CLOBBER:
9438 rtx loc = mo->u.loc;
9440 if (REG_P (loc))
9441 var_reg_delete (set, loc, true);
9442 else
9443 var_mem_delete (set, loc, true);
9445 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9446 set->vars);
9448 break;
9450 case MO_ADJUST:
9451 set->stack_adjust += mo->u.adjust;
9452 break;
9457 /* Emit notes for the whole function. */
9459 static void
9460 vt_emit_notes (void)
9462 basic_block bb;
9463 dataflow_set cur;
9465 gcc_assert (!changed_variables->elements ());
9467 /* Free memory occupied by the out hash tables, as they aren't used
9468 anymore. */
9469 FOR_EACH_BB_FN (bb, cfun)
9470 dataflow_set_clear (&VTI (bb)->out);
9472 /* Enable emitting notes by functions (mainly by set_variable_part and
9473 delete_variable_part). */
9474 emit_notes = true;
9476 if (MAY_HAVE_DEBUG_INSNS)
9478 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9479 loc_exp_dep_pool = create_alloc_pool ("loc_exp_dep pool",
9480 sizeof (loc_exp_dep), 64);
9483 dataflow_set_init (&cur);
9485 FOR_EACH_BB_FN (bb, cfun)
9487 /* Emit the notes for changes of variable locations between two
9488 subsequent basic blocks. */
9489 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9491 if (MAY_HAVE_DEBUG_INSNS)
9492 local_get_addr_cache = new hash_map<rtx, rtx>;
9494 /* Emit the notes for the changes in the basic block itself. */
9495 emit_notes_in_bb (bb, &cur);
9497 if (MAY_HAVE_DEBUG_INSNS)
9498 delete local_get_addr_cache;
9499 local_get_addr_cache = NULL;
9501 /* Free memory occupied by the in hash table, we won't need it
9502 again. */
9503 dataflow_set_clear (&VTI (bb)->in);
9505 #ifdef ENABLE_CHECKING
9506 shared_hash_htab (cur.vars)
9507 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9508 (shared_hash_htab (empty_shared_hash));
9509 #endif
9510 dataflow_set_destroy (&cur);
9512 if (MAY_HAVE_DEBUG_INSNS)
9513 delete dropped_values;
9514 dropped_values = NULL;
9516 emit_notes = false;
9519 /* If there is a declaration and offset associated with register/memory RTL
9520 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9522 static bool
9523 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9525 if (REG_P (rtl))
9527 if (REG_ATTRS (rtl))
9529 *declp = REG_EXPR (rtl);
9530 *offsetp = REG_OFFSET (rtl);
9531 return true;
9534 else if (GET_CODE (rtl) == PARALLEL)
9536 tree decl = NULL_TREE;
9537 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9538 int len = XVECLEN (rtl, 0), i;
9540 for (i = 0; i < len; i++)
9542 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9543 if (!REG_P (reg) || !REG_ATTRS (reg))
9544 break;
9545 if (!decl)
9546 decl = REG_EXPR (reg);
9547 if (REG_EXPR (reg) != decl)
9548 break;
9549 if (REG_OFFSET (reg) < offset)
9550 offset = REG_OFFSET (reg);
9553 if (i == len)
9555 *declp = decl;
9556 *offsetp = offset;
9557 return true;
9560 else if (MEM_P (rtl))
9562 if (MEM_ATTRS (rtl))
9564 *declp = MEM_EXPR (rtl);
9565 *offsetp = INT_MEM_OFFSET (rtl);
9566 return true;
9569 return false;
9572 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9573 of VAL. */
9575 static void
9576 record_entry_value (cselib_val *val, rtx rtl)
9578 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9580 ENTRY_VALUE_EXP (ev) = rtl;
9582 cselib_add_permanent_equiv (val, ev, get_insns ());
9585 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9587 static void
9588 vt_add_function_parameter (tree parm)
9590 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9591 rtx incoming = DECL_INCOMING_RTL (parm);
9592 tree decl;
9593 machine_mode mode;
9594 HOST_WIDE_INT offset;
9595 dataflow_set *out;
9596 decl_or_value dv;
9598 if (TREE_CODE (parm) != PARM_DECL)
9599 return;
9601 if (!decl_rtl || !incoming)
9602 return;
9604 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9605 return;
9607 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9608 rewrite the incoming location of parameters passed on the stack
9609 into MEMs based on the argument pointer, so that incoming doesn't
9610 depend on a pseudo. */
9611 if (MEM_P (incoming)
9612 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9613 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9614 && XEXP (XEXP (incoming, 0), 0)
9615 == crtl->args.internal_arg_pointer
9616 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9618 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9619 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9620 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9621 incoming
9622 = replace_equiv_address_nv (incoming,
9623 plus_constant (Pmode,
9624 arg_pointer_rtx, off));
9627 #ifdef HAVE_window_save
9628 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9629 If the target machine has an explicit window save instruction, the
9630 actual entry value is the corresponding OUTGOING_REGNO instead. */
9631 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9633 if (REG_P (incoming)
9634 && HARD_REGISTER_P (incoming)
9635 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9637 parm_reg_t p;
9638 p.incoming = incoming;
9639 incoming
9640 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9641 OUTGOING_REGNO (REGNO (incoming)), 0);
9642 p.outgoing = incoming;
9643 vec_safe_push (windowed_parm_regs, p);
9645 else if (GET_CODE (incoming) == PARALLEL)
9647 rtx outgoing
9648 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9649 int i;
9651 for (i = 0; i < XVECLEN (incoming, 0); i++)
9653 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9654 parm_reg_t p;
9655 p.incoming = reg;
9656 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9657 OUTGOING_REGNO (REGNO (reg)), 0);
9658 p.outgoing = reg;
9659 XVECEXP (outgoing, 0, i)
9660 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9661 XEXP (XVECEXP (incoming, 0, i), 1));
9662 vec_safe_push (windowed_parm_regs, p);
9665 incoming = outgoing;
9667 else if (MEM_P (incoming)
9668 && REG_P (XEXP (incoming, 0))
9669 && HARD_REGISTER_P (XEXP (incoming, 0)))
9671 rtx reg = XEXP (incoming, 0);
9672 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9674 parm_reg_t p;
9675 p.incoming = reg;
9676 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9677 p.outgoing = reg;
9678 vec_safe_push (windowed_parm_regs, p);
9679 incoming = replace_equiv_address_nv (incoming, reg);
9683 #endif
9685 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9687 if (MEM_P (incoming))
9689 /* This means argument is passed by invisible reference. */
9690 offset = 0;
9691 decl = parm;
9693 else
9695 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9696 return;
9697 offset += byte_lowpart_offset (GET_MODE (incoming),
9698 GET_MODE (decl_rtl));
9702 if (!decl)
9703 return;
9705 if (parm != decl)
9707 /* If that DECL_RTL wasn't a pseudo that got spilled to
9708 memory, bail out. Otherwise, the spill slot sharing code
9709 will force the memory to reference spill_slot_decl (%sfp),
9710 so we don't match above. That's ok, the pseudo must have
9711 referenced the entire parameter, so just reset OFFSET. */
9712 if (decl != get_spill_slot_decl (false))
9713 return;
9714 offset = 0;
9717 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9718 return;
9720 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9722 dv = dv_from_decl (parm);
9724 if (target_for_debug_bind (parm)
9725 /* We can't deal with these right now, because this kind of
9726 variable is single-part. ??? We could handle parallels
9727 that describe multiple locations for the same single
9728 value, but ATM we don't. */
9729 && GET_CODE (incoming) != PARALLEL)
9731 cselib_val *val;
9732 rtx lowpart;
9734 /* ??? We shouldn't ever hit this, but it may happen because
9735 arguments passed by invisible reference aren't dealt with
9736 above: incoming-rtl will have Pmode rather than the
9737 expected mode for the type. */
9738 if (offset)
9739 return;
9741 lowpart = var_lowpart (mode, incoming);
9742 if (!lowpart)
9743 return;
9745 val = cselib_lookup_from_insn (lowpart, mode, true,
9746 VOIDmode, get_insns ());
9748 /* ??? Float-typed values in memory are not handled by
9749 cselib. */
9750 if (val)
9752 preserve_value (val);
9753 set_variable_part (out, val->val_rtx, dv, offset,
9754 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9755 dv = dv_from_value (val->val_rtx);
9758 if (MEM_P (incoming))
9760 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9761 VOIDmode, get_insns ());
9762 if (val)
9764 preserve_value (val);
9765 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9770 if (REG_P (incoming))
9772 incoming = var_lowpart (mode, incoming);
9773 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9774 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9775 incoming);
9776 set_variable_part (out, incoming, dv, offset,
9777 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9778 if (dv_is_value_p (dv))
9780 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9781 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9782 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9784 machine_mode indmode
9785 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9786 rtx mem = gen_rtx_MEM (indmode, incoming);
9787 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9788 VOIDmode,
9789 get_insns ());
9790 if (val)
9792 preserve_value (val);
9793 record_entry_value (val, mem);
9794 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9795 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9800 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9802 int i;
9804 for (i = 0; i < XVECLEN (incoming, 0); i++)
9806 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9807 offset = REG_OFFSET (reg);
9808 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9809 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9810 set_variable_part (out, reg, dv, offset,
9811 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9814 else if (MEM_P (incoming))
9816 incoming = var_lowpart (mode, incoming);
9817 set_variable_part (out, incoming, dv, offset,
9818 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9822 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9824 static void
9825 vt_add_function_parameters (void)
9827 tree parm;
9829 for (parm = DECL_ARGUMENTS (current_function_decl);
9830 parm; parm = DECL_CHAIN (parm))
9831 if (!POINTER_BOUNDS_P (parm))
9832 vt_add_function_parameter (parm);
9834 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9836 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9838 if (TREE_CODE (vexpr) == INDIRECT_REF)
9839 vexpr = TREE_OPERAND (vexpr, 0);
9841 if (TREE_CODE (vexpr) == PARM_DECL
9842 && DECL_ARTIFICIAL (vexpr)
9843 && !DECL_IGNORED_P (vexpr)
9844 && DECL_NAMELESS (vexpr))
9845 vt_add_function_parameter (vexpr);
9849 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9850 ensure it isn't flushed during cselib_reset_table.
9851 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9852 has been eliminated. */
9854 static void
9855 vt_init_cfa_base (void)
9857 cselib_val *val;
9859 #ifdef FRAME_POINTER_CFA_OFFSET
9860 cfa_base_rtx = frame_pointer_rtx;
9861 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9862 #else
9863 cfa_base_rtx = arg_pointer_rtx;
9864 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9865 #endif
9866 if (cfa_base_rtx == hard_frame_pointer_rtx
9867 || !fixed_regs[REGNO (cfa_base_rtx)])
9869 cfa_base_rtx = NULL_RTX;
9870 return;
9872 if (!MAY_HAVE_DEBUG_INSNS)
9873 return;
9875 /* Tell alias analysis that cfa_base_rtx should share
9876 find_base_term value with stack pointer or hard frame pointer. */
9877 if (!frame_pointer_needed)
9878 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9879 else if (!crtl->stack_realign_tried)
9880 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9882 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9883 VOIDmode, get_insns ());
9884 preserve_value (val);
9885 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9888 /* Allocate and initialize the data structures for variable tracking
9889 and parse the RTL to get the micro operations. */
9891 static bool
9892 vt_initialize (void)
9894 basic_block bb;
9895 HOST_WIDE_INT fp_cfa_offset = -1;
9897 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9899 attrs_pool = create_alloc_pool ("attrs_def pool",
9900 sizeof (struct attrs_def), 1024);
9901 var_pool = create_alloc_pool ("variable_def pool",
9902 sizeof (struct variable_def)
9903 + (MAX_VAR_PARTS - 1)
9904 * sizeof (((variable)NULL)->var_part[0]), 64);
9905 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
9906 sizeof (struct location_chain_def),
9907 1024);
9908 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
9909 sizeof (struct shared_hash_def), 256);
9910 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
9911 empty_shared_hash->refcount = 1;
9912 empty_shared_hash->htab = new variable_table_type (1);
9913 changed_variables = new variable_table_type (10);
9915 /* Init the IN and OUT sets. */
9916 FOR_ALL_BB_FN (bb, cfun)
9918 VTI (bb)->visited = false;
9919 VTI (bb)->flooded = false;
9920 dataflow_set_init (&VTI (bb)->in);
9921 dataflow_set_init (&VTI (bb)->out);
9922 VTI (bb)->permp = NULL;
9925 if (MAY_HAVE_DEBUG_INSNS)
9927 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9928 scratch_regs = BITMAP_ALLOC (NULL);
9929 valvar_pool = create_alloc_pool ("small variable_def pool",
9930 sizeof (struct variable_def), 256);
9931 preserved_values.create (256);
9932 global_get_addr_cache = new hash_map<rtx, rtx>;
9934 else
9936 scratch_regs = NULL;
9937 valvar_pool = NULL;
9938 global_get_addr_cache = NULL;
9941 if (MAY_HAVE_DEBUG_INSNS)
9943 rtx reg, expr;
9944 int ofst;
9945 cselib_val *val;
9947 #ifdef FRAME_POINTER_CFA_OFFSET
9948 reg = frame_pointer_rtx;
9949 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9950 #else
9951 reg = arg_pointer_rtx;
9952 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9953 #endif
9955 ofst -= INCOMING_FRAME_SP_OFFSET;
9957 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9958 VOIDmode, get_insns ());
9959 preserve_value (val);
9960 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9961 cselib_preserve_cfa_base_value (val, REGNO (reg));
9962 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9963 stack_pointer_rtx, -ofst);
9964 cselib_add_permanent_equiv (val, expr, get_insns ());
9966 if (ofst)
9968 val = cselib_lookup_from_insn (stack_pointer_rtx,
9969 GET_MODE (stack_pointer_rtx), 1,
9970 VOIDmode, get_insns ());
9971 preserve_value (val);
9972 expr = plus_constant (GET_MODE (reg), reg, ofst);
9973 cselib_add_permanent_equiv (val, expr, get_insns ());
9977 /* In order to factor out the adjustments made to the stack pointer or to
9978 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9979 instead of individual location lists, we're going to rewrite MEMs based
9980 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9981 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9982 resp. arg_pointer_rtx. We can do this either when there is no frame
9983 pointer in the function and stack adjustments are consistent for all
9984 basic blocks or when there is a frame pointer and no stack realignment.
9985 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9986 has been eliminated. */
9987 if (!frame_pointer_needed)
9989 rtx reg, elim;
9991 if (!vt_stack_adjustments ())
9992 return false;
9994 #ifdef FRAME_POINTER_CFA_OFFSET
9995 reg = frame_pointer_rtx;
9996 #else
9997 reg = arg_pointer_rtx;
9998 #endif
9999 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10000 if (elim != reg)
10002 if (GET_CODE (elim) == PLUS)
10003 elim = XEXP (elim, 0);
10004 if (elim == stack_pointer_rtx)
10005 vt_init_cfa_base ();
10008 else if (!crtl->stack_realign_tried)
10010 rtx reg, elim;
10012 #ifdef FRAME_POINTER_CFA_OFFSET
10013 reg = frame_pointer_rtx;
10014 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10015 #else
10016 reg = arg_pointer_rtx;
10017 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10018 #endif
10019 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10020 if (elim != reg)
10022 if (GET_CODE (elim) == PLUS)
10024 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
10025 elim = XEXP (elim, 0);
10027 if (elim != hard_frame_pointer_rtx)
10028 fp_cfa_offset = -1;
10030 else
10031 fp_cfa_offset = -1;
10034 /* If the stack is realigned and a DRAP register is used, we're going to
10035 rewrite MEMs based on it representing incoming locations of parameters
10036 passed on the stack into MEMs based on the argument pointer. Although
10037 we aren't going to rewrite other MEMs, we still need to initialize the
10038 virtual CFA pointer in order to ensure that the argument pointer will
10039 be seen as a constant throughout the function.
10041 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10042 else if (stack_realign_drap)
10044 rtx reg, elim;
10046 #ifdef FRAME_POINTER_CFA_OFFSET
10047 reg = frame_pointer_rtx;
10048 #else
10049 reg = arg_pointer_rtx;
10050 #endif
10051 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10052 if (elim != reg)
10054 if (GET_CODE (elim) == PLUS)
10055 elim = XEXP (elim, 0);
10056 if (elim == hard_frame_pointer_rtx)
10057 vt_init_cfa_base ();
10061 hard_frame_pointer_adjustment = -1;
10063 vt_add_function_parameters ();
10065 FOR_EACH_BB_FN (bb, cfun)
10067 rtx_insn *insn;
10068 HOST_WIDE_INT pre, post = 0;
10069 basic_block first_bb, last_bb;
10071 if (MAY_HAVE_DEBUG_INSNS)
10073 cselib_record_sets_hook = add_with_sets;
10074 if (dump_file && (dump_flags & TDF_DETAILS))
10075 fprintf (dump_file, "first value: %i\n",
10076 cselib_get_next_uid ());
10079 first_bb = bb;
10080 for (;;)
10082 edge e;
10083 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10084 || ! single_pred_p (bb->next_bb))
10085 break;
10086 e = find_edge (bb, bb->next_bb);
10087 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10088 break;
10089 bb = bb->next_bb;
10091 last_bb = bb;
10093 /* Add the micro-operations to the vector. */
10094 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10096 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10097 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10098 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10099 insn = NEXT_INSN (insn))
10101 if (INSN_P (insn))
10103 if (!frame_pointer_needed)
10105 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10106 if (pre)
10108 micro_operation mo;
10109 mo.type = MO_ADJUST;
10110 mo.u.adjust = pre;
10111 mo.insn = insn;
10112 if (dump_file && (dump_flags & TDF_DETAILS))
10113 log_op_type (PATTERN (insn), bb, insn,
10114 MO_ADJUST, dump_file);
10115 VTI (bb)->mos.safe_push (mo);
10116 VTI (bb)->out.stack_adjust += pre;
10120 cselib_hook_called = false;
10121 adjust_insn (bb, insn);
10122 if (MAY_HAVE_DEBUG_INSNS)
10124 if (CALL_P (insn))
10125 prepare_call_arguments (bb, insn);
10126 cselib_process_insn (insn);
10127 if (dump_file && (dump_flags & TDF_DETAILS))
10129 print_rtl_single (dump_file, insn);
10130 dump_cselib_table (dump_file);
10133 if (!cselib_hook_called)
10134 add_with_sets (insn, 0, 0);
10135 cancel_changes (0);
10137 if (!frame_pointer_needed && post)
10139 micro_operation mo;
10140 mo.type = MO_ADJUST;
10141 mo.u.adjust = post;
10142 mo.insn = insn;
10143 if (dump_file && (dump_flags & TDF_DETAILS))
10144 log_op_type (PATTERN (insn), bb, insn,
10145 MO_ADJUST, dump_file);
10146 VTI (bb)->mos.safe_push (mo);
10147 VTI (bb)->out.stack_adjust += post;
10150 if (fp_cfa_offset != -1
10151 && hard_frame_pointer_adjustment == -1
10152 && fp_setter_insn (insn))
10154 vt_init_cfa_base ();
10155 hard_frame_pointer_adjustment = fp_cfa_offset;
10156 /* Disassociate sp from fp now. */
10157 if (MAY_HAVE_DEBUG_INSNS)
10159 cselib_val *v;
10160 cselib_invalidate_rtx (stack_pointer_rtx);
10161 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10162 VOIDmode);
10163 if (v && !cselib_preserved_value_p (v))
10165 cselib_set_value_sp_based (v);
10166 preserve_value (v);
10172 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10175 bb = last_bb;
10177 if (MAY_HAVE_DEBUG_INSNS)
10179 cselib_preserve_only_values ();
10180 cselib_reset_table (cselib_get_next_uid ());
10181 cselib_record_sets_hook = NULL;
10185 hard_frame_pointer_adjustment = -1;
10186 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10187 cfa_base_rtx = NULL_RTX;
10188 return true;
10191 /* This is *not* reset after each function. It gives each
10192 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10193 a unique label number. */
10195 static int debug_label_num = 1;
10197 /* Get rid of all debug insns from the insn stream. */
10199 static void
10200 delete_debug_insns (void)
10202 basic_block bb;
10203 rtx_insn *insn, *next;
10205 if (!MAY_HAVE_DEBUG_INSNS)
10206 return;
10208 FOR_EACH_BB_FN (bb, cfun)
10210 FOR_BB_INSNS_SAFE (bb, insn, next)
10211 if (DEBUG_INSN_P (insn))
10213 tree decl = INSN_VAR_LOCATION_DECL (insn);
10214 if (TREE_CODE (decl) == LABEL_DECL
10215 && DECL_NAME (decl)
10216 && !DECL_RTL_SET_P (decl))
10218 PUT_CODE (insn, NOTE);
10219 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10220 NOTE_DELETED_LABEL_NAME (insn)
10221 = IDENTIFIER_POINTER (DECL_NAME (decl));
10222 SET_DECL_RTL (decl, insn);
10223 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10225 else
10226 delete_insn (insn);
10231 /* Run a fast, BB-local only version of var tracking, to take care of
10232 information that we don't do global analysis on, such that not all
10233 information is lost. If SKIPPED holds, we're skipping the global
10234 pass entirely, so we should try to use information it would have
10235 handled as well.. */
10237 static void
10238 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10240 /* ??? Just skip it all for now. */
10241 delete_debug_insns ();
10244 /* Free the data structures needed for variable tracking. */
10246 static void
10247 vt_finalize (void)
10249 basic_block bb;
10251 FOR_EACH_BB_FN (bb, cfun)
10253 VTI (bb)->mos.release ();
10256 FOR_ALL_BB_FN (bb, cfun)
10258 dataflow_set_destroy (&VTI (bb)->in);
10259 dataflow_set_destroy (&VTI (bb)->out);
10260 if (VTI (bb)->permp)
10262 dataflow_set_destroy (VTI (bb)->permp);
10263 XDELETE (VTI (bb)->permp);
10266 free_aux_for_blocks ();
10267 delete empty_shared_hash->htab;
10268 empty_shared_hash->htab = NULL;
10269 delete changed_variables;
10270 changed_variables = NULL;
10271 free_alloc_pool (attrs_pool);
10272 free_alloc_pool (var_pool);
10273 free_alloc_pool (loc_chain_pool);
10274 free_alloc_pool (shared_hash_pool);
10276 if (MAY_HAVE_DEBUG_INSNS)
10278 if (global_get_addr_cache)
10279 delete global_get_addr_cache;
10280 global_get_addr_cache = NULL;
10281 if (loc_exp_dep_pool)
10282 free_alloc_pool (loc_exp_dep_pool);
10283 loc_exp_dep_pool = NULL;
10284 free_alloc_pool (valvar_pool);
10285 preserved_values.release ();
10286 cselib_finish ();
10287 BITMAP_FREE (scratch_regs);
10288 scratch_regs = NULL;
10291 #ifdef HAVE_window_save
10292 vec_free (windowed_parm_regs);
10293 #endif
10295 if (vui_vec)
10296 XDELETEVEC (vui_vec);
10297 vui_vec = NULL;
10298 vui_allocated = 0;
10301 /* The entry point to variable tracking pass. */
10303 static inline unsigned int
10304 variable_tracking_main_1 (void)
10306 bool success;
10308 if (flag_var_tracking_assignments < 0)
10310 delete_debug_insns ();
10311 return 0;
10314 if (n_basic_blocks_for_fn (cfun) > 500 &&
10315 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10317 vt_debug_insns_local (true);
10318 return 0;
10321 mark_dfs_back_edges ();
10322 if (!vt_initialize ())
10324 vt_finalize ();
10325 vt_debug_insns_local (true);
10326 return 0;
10329 success = vt_find_locations ();
10331 if (!success && flag_var_tracking_assignments > 0)
10333 vt_finalize ();
10335 delete_debug_insns ();
10337 /* This is later restored by our caller. */
10338 flag_var_tracking_assignments = 0;
10340 success = vt_initialize ();
10341 gcc_assert (success);
10343 success = vt_find_locations ();
10346 if (!success)
10348 vt_finalize ();
10349 vt_debug_insns_local (false);
10350 return 0;
10353 if (dump_file && (dump_flags & TDF_DETAILS))
10355 dump_dataflow_sets ();
10356 dump_reg_info (dump_file);
10357 dump_flow_info (dump_file, dump_flags);
10360 timevar_push (TV_VAR_TRACKING_EMIT);
10361 vt_emit_notes ();
10362 timevar_pop (TV_VAR_TRACKING_EMIT);
10364 vt_finalize ();
10365 vt_debug_insns_local (false);
10366 return 0;
10369 unsigned int
10370 variable_tracking_main (void)
10372 unsigned int ret;
10373 int save = flag_var_tracking_assignments;
10375 ret = variable_tracking_main_1 ();
10377 flag_var_tracking_assignments = save;
10379 return ret;
10382 namespace {
10384 const pass_data pass_data_variable_tracking =
10386 RTL_PASS, /* type */
10387 "vartrack", /* name */
10388 OPTGROUP_NONE, /* optinfo_flags */
10389 TV_VAR_TRACKING, /* tv_id */
10390 0, /* properties_required */
10391 0, /* properties_provided */
10392 0, /* properties_destroyed */
10393 0, /* todo_flags_start */
10394 0, /* todo_flags_finish */
10397 class pass_variable_tracking : public rtl_opt_pass
10399 public:
10400 pass_variable_tracking (gcc::context *ctxt)
10401 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10404 /* opt_pass methods: */
10405 virtual bool gate (function *)
10407 return (flag_var_tracking && !targetm.delay_vartrack);
10410 virtual unsigned int execute (function *)
10412 return variable_tracking_main ();
10415 }; // class pass_variable_tracking
10417 } // anon namespace
10419 rtl_opt_pass *
10420 make_pass_variable_tracking (gcc::context *ctxt)
10422 return new pass_variable_tracking (ctxt);