1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in an INSN list, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
55 #include "coretypes.h"
59 #include "gensupport.h"
61 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
62 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
64 /* Holds an array of names indexed by insn_code_number. */
65 static char **insn_name_ptr
= 0;
66 static int insn_name_ptr_size
= 0;
68 /* A listhead of decision trees. The alternatives to a node are kept
69 in a doubly-linked list so we can easily add nodes to the proper
70 place when merging. */
74 struct decision
*first
;
75 struct decision
*last
;
78 /* A single test. The two accept types aren't tests per-se, but
79 their equality (or lack thereof) does affect tree merging so
80 it is convenient to keep them here. */
84 /* A linked list through the tests attached to a node. */
85 struct decision_test
*next
;
87 /* These types are roughly in the order in which we'd like to test them. */
91 DT_mode
, DT_code
, DT_veclen
,
92 DT_elt_zero_int
, DT_elt_one_int
, DT_elt_zero_wide
, DT_elt_zero_wide_safe
,
94 DT_veclen_ge
, DT_dup
, DT_pred
, DT_c_test
,
95 DT_accept_op
, DT_accept_insn
100 int num_insns
; /* Number if insn in a define_peephole2. */
101 enum machine_mode mode
; /* Machine mode of node. */
102 RTX_CODE code
; /* Code to test. */
106 const char *name
; /* Predicate to call. */
107 const struct pred_data
*data
;
108 /* Optimization hints for this predicate. */
109 enum machine_mode mode
; /* Machine mode for node. */
112 const char *c_test
; /* Additional test to perform. */
113 int veclen
; /* Length of vector. */
114 int dup
; /* Number of operand to compare against. */
115 HOST_WIDE_INT intval
; /* Value for XINT for XWINT. */
116 int opno
; /* Operand number matched. */
119 int code_number
; /* Insn number matched. */
120 int lineno
; /* Line number of the insn. */
121 int num_clobbers_to_add
; /* Number of CLOBBERs to be added. */
126 /* Data structure for decision tree for recognizing legitimate insns. */
130 struct decision_head success
; /* Nodes to test on success. */
131 struct decision
*next
; /* Node to test on failure. */
132 struct decision
*prev
; /* Node whose failure tests us. */
133 struct decision
*afterward
; /* Node to test on success,
134 but failure of successor nodes. */
136 const char *position
; /* String denoting position in pattern. */
138 struct decision_test
*tests
; /* The tests for this node. */
140 int number
; /* Node number, used for labels */
141 int subroutine_number
; /* Number of subroutine this node starts */
142 int need_label
; /* Label needs to be output. */
145 #define SUBROUTINE_THRESHOLD 100
147 static int next_subroutine_number
;
149 /* We can write three types of subroutines: One for insn recognition,
150 one to split insns, and one for peephole-type optimizations. This
151 defines which type is being written. */
154 RECOG
, SPLIT
, PEEPHOLE2
157 #define IS_SPLIT(X) ((X) != RECOG)
159 /* Next available node number for tree nodes. */
161 static int next_number
;
163 /* Next number to use as an insn_code. */
165 static int next_insn_code
;
167 /* Record the highest depth we ever have so we know how many variables to
168 allocate in each subroutine we make. */
170 static int max_depth
;
172 /* The line number of the start of the pattern currently being processed. */
173 static int pattern_lineno
;
175 /* Count of errors. */
176 static int error_count
;
178 /* Predicate handling.
180 We construct from the machine description a table mapping each
181 predicate to a list of the rtl codes it can possibly match. The
182 function 'maybe_both_true' uses it to deduce that there are no
183 expressions that can be matches by certain pairs of tree nodes.
184 Also, if a predicate can match only one code, we can hardwire that
185 code into the node testing the predicate.
187 Some predicates are flagged as special. validate_pattern will not
188 warn about modeless match_operand expressions if they have a
189 special predicate. Predicates that allow only constants are also
190 treated as special, for this purpose.
192 validate_pattern will warn about predicates that allow non-lvalues
193 when they appear in destination operands.
195 Calculating the set of rtx codes that can possibly be accepted by a
196 predicate expression EXP requires a three-state logic: any given
197 subexpression may definitively accept a code C (Y), definitively
198 reject a code C (N), or may have an indeterminate effect (I). N
199 and I is N; Y or I is Y; Y and I, N or I are both I. Here are full
210 We represent Y with 1, N with 0, I with 2. If any code is left in
211 an I state by the complete expression, we must assume that that
212 code can be accepted. */
218 #define TRISTATE_AND(a,b) \
219 ((a) == I ? ((b) == N ? N : I) : \
220 (b) == I ? ((a) == N ? N : I) : \
223 #define TRISTATE_OR(a,b) \
224 ((a) == I ? ((b) == Y ? Y : I) : \
225 (b) == I ? ((a) == Y ? Y : I) : \
228 #define TRISTATE_NOT(a) \
229 ((a) == I ? I : !(a))
231 /* 0 means no warning about that code yet, 1 means warned. */
232 static char did_you_mean_codes
[NUM_RTX_CODE
];
234 /* Recursively calculate the set of rtx codes accepted by the
235 predicate expression EXP, writing the result to CODES. */
237 compute_predicate_codes (rtx exp
, char codes
[NUM_RTX_CODE
])
239 char op0_codes
[NUM_RTX_CODE
];
240 char op1_codes
[NUM_RTX_CODE
];
241 char op2_codes
[NUM_RTX_CODE
];
244 switch (GET_CODE (exp
))
247 compute_predicate_codes (XEXP (exp
, 0), op0_codes
);
248 compute_predicate_codes (XEXP (exp
, 1), op1_codes
);
249 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
250 codes
[i
] = TRISTATE_AND (op0_codes
[i
], op1_codes
[i
]);
254 compute_predicate_codes (XEXP (exp
, 0), op0_codes
);
255 compute_predicate_codes (XEXP (exp
, 1), op1_codes
);
256 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
257 codes
[i
] = TRISTATE_OR (op0_codes
[i
], op1_codes
[i
]);
260 compute_predicate_codes (XEXP (exp
, 0), op0_codes
);
261 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
262 codes
[i
] = TRISTATE_NOT (op0_codes
[i
]);
266 /* a ? b : c accepts the same codes as (a & b) | (!a & c). */
267 compute_predicate_codes (XEXP (exp
, 0), op0_codes
);
268 compute_predicate_codes (XEXP (exp
, 1), op1_codes
);
269 compute_predicate_codes (XEXP (exp
, 2), op2_codes
);
270 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
271 codes
[i
] = TRISTATE_OR (TRISTATE_AND (op0_codes
[i
], op1_codes
[i
]),
272 TRISTATE_AND (TRISTATE_NOT (op0_codes
[i
]),
277 /* MATCH_CODE allows a specified list of codes. */
278 memset (codes
, N
, NUM_RTX_CODE
);
280 const char *next_code
= XSTR (exp
, 0);
283 if (*next_code
== '\0')
285 message_with_line (pattern_lineno
, "empty match_code expression");
290 while ((code
= scan_comma_elt (&next_code
)) != 0)
292 size_t n
= next_code
- code
;
295 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
296 if (!strncmp (code
, GET_RTX_NAME (i
), n
)
297 && GET_RTX_NAME (i
)[n
] == '\0')
305 message_with_line (pattern_lineno
, "match_code \"%.*s\" matches nothing",
308 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
309 if (!strncasecmp (code
, GET_RTX_NAME (i
), n
)
310 && GET_RTX_NAME (i
)[n
] == '\0'
311 && !did_you_mean_codes
[i
])
313 did_you_mean_codes
[i
] = 1;
314 message_with_line (pattern_lineno
, "(did you mean \"%s\"?)", GET_RTX_NAME (i
));
323 /* MATCH_OPERAND disallows the set of codes that the named predicate
324 disallows, and is indeterminate for the codes that it does allow. */
326 struct pred_data
*p
= lookup_predicate (XSTR (exp
, 1));
329 message_with_line (pattern_lineno
,
330 "reference to unknown predicate '%s'",
335 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
336 codes
[i
] = p
->codes
[i
] ? I
: N
;
342 /* (match_test WHATEVER) is completely indeterminate. */
343 memset (codes
, I
, NUM_RTX_CODE
);
347 message_with_line (pattern_lineno
,
348 "'%s' cannot be used in a define_predicate expression",
349 GET_RTX_NAME (GET_CODE (exp
)));
351 memset (codes
, I
, NUM_RTX_CODE
);
360 /* Process a define_predicate expression: compute the set of predicates
361 that can be matched, and record this as a known predicate. */
363 process_define_predicate (rtx desc
)
365 struct pred_data
*pred
= xcalloc (sizeof (struct pred_data
), 1);
366 char codes
[NUM_RTX_CODE
];
367 bool seen_one
= false;
370 pred
->name
= XSTR (desc
, 0);
371 if (GET_CODE (desc
) == DEFINE_SPECIAL_PREDICATE
)
374 compute_predicate_codes (XEXP (desc
, 1), codes
);
376 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
379 pred
->codes
[i
] = true;
380 if (GET_RTX_CLASS (i
) != RTX_CONST_OBJ
)
381 pred
->allows_non_const
= true;
387 && i
!= STRICT_LOW_PART
)
388 pred
->allows_non_lvalue
= true;
391 pred
->singleton
= UNKNOWN
;
398 add_predicate (pred
);
405 static struct decision
*new_decision
406 (const char *, struct decision_head
*);
407 static struct decision_test
*new_decision_test
408 (enum decision_type
, struct decision_test
***);
409 static rtx find_operand
411 static rtx find_matching_operand
413 static void validate_pattern
414 (rtx
, rtx
, rtx
, int);
415 static struct decision
*add_to_sequence
416 (rtx
, struct decision_head
*, const char *, enum routine_type
, int);
418 static int maybe_both_true_2
419 (struct decision_test
*, struct decision_test
*);
420 static int maybe_both_true_1
421 (struct decision_test
*, struct decision_test
*);
422 static int maybe_both_true
423 (struct decision
*, struct decision
*, int);
425 static int nodes_identical_1
426 (struct decision_test
*, struct decision_test
*);
427 static int nodes_identical
428 (struct decision
*, struct decision
*);
429 static void merge_accept_insn
430 (struct decision
*, struct decision
*);
431 static void merge_trees
432 (struct decision_head
*, struct decision_head
*);
434 static void factor_tests
435 (struct decision_head
*);
436 static void simplify_tests
437 (struct decision_head
*);
438 static int break_out_subroutines
439 (struct decision_head
*, int);
440 static void find_afterward
441 (struct decision_head
*, struct decision
*);
443 static void change_state
444 (const char *, const char *, const char *);
445 static void print_code
447 static void write_afterward
448 (struct decision
*, struct decision
*, const char *);
449 static struct decision
*write_switch
450 (struct decision
*, int);
451 static void write_cond
452 (struct decision_test
*, int, enum routine_type
);
453 static void write_action
454 (struct decision
*, struct decision_test
*, int, int,
455 struct decision
*, enum routine_type
);
456 static int is_unconditional
457 (struct decision_test
*, enum routine_type
);
458 static int write_node
459 (struct decision
*, int, enum routine_type
);
460 static void write_tree_1
461 (struct decision_head
*, int, enum routine_type
);
462 static void write_tree
463 (struct decision_head
*, const char *, enum routine_type
, int);
464 static void write_subroutine
465 (struct decision_head
*, enum routine_type
);
466 static void write_subroutines
467 (struct decision_head
*, enum routine_type
);
468 static void write_header
471 static struct decision_head make_insn_sequence
472 (rtx
, enum routine_type
);
473 static void process_tree
474 (struct decision_head
*, enum routine_type
);
476 static void record_insn_name
479 static void debug_decision_0
480 (struct decision
*, int, int);
481 static void debug_decision_1
482 (struct decision
*, int);
483 static void debug_decision_2
484 (struct decision_test
*);
485 extern void debug_decision
487 extern void debug_decision_list
490 /* Create a new node in sequence after LAST. */
492 static struct decision
*
493 new_decision (const char *position
, struct decision_head
*last
)
495 struct decision
*new = xcalloc (1, sizeof (struct decision
));
497 new->success
= *last
;
498 new->position
= xstrdup (position
);
499 new->number
= next_number
++;
501 last
->first
= last
->last
= new;
505 /* Create a new test and link it in at PLACE. */
507 static struct decision_test
*
508 new_decision_test (enum decision_type type
, struct decision_test
***pplace
)
510 struct decision_test
**place
= *pplace
;
511 struct decision_test
*test
;
513 test
= xmalloc (sizeof (*test
));
524 /* Search for and return operand N, stop when reaching node STOP. */
527 find_operand (rtx pattern
, int n
, rtx stop
)
537 code
= GET_CODE (pattern
);
538 if ((code
== MATCH_SCRATCH
539 || code
== MATCH_OPERAND
540 || code
== MATCH_OPERATOR
541 || code
== MATCH_PARALLEL
)
542 && XINT (pattern
, 0) == n
)
545 fmt
= GET_RTX_FORMAT (code
);
546 len
= GET_RTX_LENGTH (code
);
547 for (i
= 0; i
< len
; i
++)
552 if ((r
= find_operand (XEXP (pattern
, i
), n
, stop
)) != NULL_RTX
)
557 if (! XVEC (pattern
, i
))
562 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
563 if ((r
= find_operand (XVECEXP (pattern
, i
, j
), n
, stop
))
568 case 'i': case 'w': case '0': case 's':
579 /* Search for and return operand M, such that it has a matching
580 constraint for operand N. */
583 find_matching_operand (rtx pattern
, int n
)
590 code
= GET_CODE (pattern
);
591 if (code
== MATCH_OPERAND
592 && (XSTR (pattern
, 2)[0] == '0' + n
593 || (XSTR (pattern
, 2)[0] == '%'
594 && XSTR (pattern
, 2)[1] == '0' + n
)))
597 fmt
= GET_RTX_FORMAT (code
);
598 len
= GET_RTX_LENGTH (code
);
599 for (i
= 0; i
< len
; i
++)
604 if ((r
= find_matching_operand (XEXP (pattern
, i
), n
)))
609 if (! XVEC (pattern
, i
))
614 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
615 if ((r
= find_matching_operand (XVECEXP (pattern
, i
, j
), n
)))
619 case 'i': case 'w': case '0': case 's':
631 /* Check for various errors in patterns. SET is nonnull for a destination,
632 and is the complete set pattern. SET_CODE is '=' for normal sets, and
633 '+' within a context that requires in-out constraints. */
636 validate_pattern (rtx pattern
, rtx insn
, rtx set
, int set_code
)
643 code
= GET_CODE (pattern
);
651 if (find_operand (insn
, XINT (pattern
, 0), pattern
) == pattern
)
653 message_with_line (pattern_lineno
,
654 "operand %i duplicated before defined",
662 const char *pred_name
= XSTR (pattern
, 1);
663 const struct pred_data
*pred
;
666 if (GET_CODE (insn
) == DEFINE_INSN
)
667 c_test
= XSTR (insn
, 2);
669 c_test
= XSTR (insn
, 1);
671 if (pred_name
[0] != 0)
673 pred
= lookup_predicate (pred_name
);
675 message_with_line (pattern_lineno
,
676 "warning: unknown predicate '%s'",
682 if (code
== MATCH_OPERAND
)
684 const char constraints0
= XSTR (pattern
, 2)[0];
686 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
687 don't use the MATCH_OPERAND constraint, only the predicate.
688 This is confusing to folks doing new ports, so help them
689 not make the mistake. */
690 if (GET_CODE (insn
) == DEFINE_EXPAND
691 || GET_CODE (insn
) == DEFINE_SPLIT
692 || GET_CODE (insn
) == DEFINE_PEEPHOLE2
)
695 message_with_line (pattern_lineno
,
696 "warning: constraints not supported in %s",
697 rtx_name
[GET_CODE (insn
)]);
700 /* A MATCH_OPERAND that is a SET should have an output reload. */
701 else if (set
&& constraints0
)
705 if (constraints0
== '+')
707 /* If we've only got an output reload for this operand,
708 we'd better have a matching input operand. */
709 else if (constraints0
== '='
710 && find_matching_operand (insn
, XINT (pattern
, 0)))
714 message_with_line (pattern_lineno
,
715 "operand %d missing in-out reload",
720 else if (constraints0
!= '=' && constraints0
!= '+')
722 message_with_line (pattern_lineno
,
723 "operand %d missing output reload",
730 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
731 while not likely to occur at runtime, results in less efficient
732 code from insn-recog.c. */
733 if (set
&& pred
&& pred
->allows_non_lvalue
)
734 message_with_line (pattern_lineno
,
735 "warning: destination operand %d "
739 /* A modeless MATCH_OPERAND can be handy when we can check for
740 multiple modes in the c_test. In most other cases, it is a
741 mistake. Only DEFINE_INSN is eligible, since SPLIT and
742 PEEP2 can FAIL within the output pattern. Exclude special
743 predicates, which check the mode themselves. Also exclude
744 predicates that allow only constants. Exclude the SET_DEST
745 of a call instruction, as that is a common idiom. */
747 if (GET_MODE (pattern
) == VOIDmode
748 && code
== MATCH_OPERAND
749 && GET_CODE (insn
) == DEFINE_INSN
752 && pred
->allows_non_const
753 && strstr (c_test
, "operands") == NULL
755 && GET_CODE (set
) == SET
756 && GET_CODE (SET_SRC (set
)) == CALL
))
757 message_with_line (pattern_lineno
,
758 "warning: operand %d missing mode?",
765 enum machine_mode dmode
, smode
;
768 dest
= SET_DEST (pattern
);
769 src
= SET_SRC (pattern
);
771 /* STRICT_LOW_PART is a wrapper. Its argument is the real
772 destination, and it's mode should match the source. */
773 if (GET_CODE (dest
) == STRICT_LOW_PART
)
774 dest
= XEXP (dest
, 0);
776 /* Find the referent for a DUP. */
778 if (GET_CODE (dest
) == MATCH_DUP
779 || GET_CODE (dest
) == MATCH_OP_DUP
780 || GET_CODE (dest
) == MATCH_PAR_DUP
)
781 dest
= find_operand (insn
, XINT (dest
, 0), NULL
);
783 if (GET_CODE (src
) == MATCH_DUP
784 || GET_CODE (src
) == MATCH_OP_DUP
785 || GET_CODE (src
) == MATCH_PAR_DUP
)
786 src
= find_operand (insn
, XINT (src
, 0), NULL
);
788 dmode
= GET_MODE (dest
);
789 smode
= GET_MODE (src
);
791 /* The mode of an ADDRESS_OPERAND is the mode of the memory
792 reference, not the mode of the address. */
793 if (GET_CODE (src
) == MATCH_OPERAND
794 && ! strcmp (XSTR (src
, 1), "address_operand"))
797 /* The operands of a SET must have the same mode unless one
799 else if (dmode
!= VOIDmode
&& smode
!= VOIDmode
&& dmode
!= smode
)
801 message_with_line (pattern_lineno
,
802 "mode mismatch in set: %smode vs %smode",
803 GET_MODE_NAME (dmode
), GET_MODE_NAME (smode
));
807 /* If only one of the operands is VOIDmode, and PC or CC0 is
808 not involved, it's probably a mistake. */
809 else if (dmode
!= smode
810 && GET_CODE (dest
) != PC
811 && GET_CODE (dest
) != CC0
812 && GET_CODE (src
) != PC
813 && GET_CODE (src
) != CC0
814 && GET_CODE (src
) != CONST_INT
)
817 which
= (dmode
== VOIDmode
? "destination" : "source");
818 message_with_line (pattern_lineno
,
819 "warning: %s missing a mode?", which
);
822 if (dest
!= SET_DEST (pattern
))
823 validate_pattern (dest
, insn
, pattern
, '=');
824 validate_pattern (SET_DEST (pattern
), insn
, pattern
, '=');
825 validate_pattern (SET_SRC (pattern
), insn
, NULL_RTX
, 0);
830 validate_pattern (SET_DEST (pattern
), insn
, pattern
, '=');
834 validate_pattern (XEXP (pattern
, 0), insn
, set
, set
? '+' : 0);
835 validate_pattern (XEXP (pattern
, 1), insn
, NULL_RTX
, 0);
836 validate_pattern (XEXP (pattern
, 2), insn
, NULL_RTX
, 0);
839 case STRICT_LOW_PART
:
840 validate_pattern (XEXP (pattern
, 0), insn
, set
, set
? '+' : 0);
844 if (GET_MODE (XEXP (pattern
, 0)) != VOIDmode
)
846 message_with_line (pattern_lineno
,
847 "operand to label_ref %smode not VOIDmode",
848 GET_MODE_NAME (GET_MODE (XEXP (pattern
, 0))));
857 fmt
= GET_RTX_FORMAT (code
);
858 len
= GET_RTX_LENGTH (code
);
859 for (i
= 0; i
< len
; i
++)
864 validate_pattern (XEXP (pattern
, i
), insn
, NULL_RTX
, 0);
868 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
869 validate_pattern (XVECEXP (pattern
, i
, j
), insn
, NULL_RTX
, 0);
872 case 'i': case 'w': case '0': case 's':
881 /* Create a chain of nodes to verify that an rtl expression matches
884 LAST is a pointer to the listhead in the previous node in the chain (or
885 in the calling function, for the first node).
887 POSITION is the string representing the current position in the insn.
889 INSN_TYPE is the type of insn for which we are emitting code.
891 A pointer to the final node in the chain is returned. */
893 static struct decision
*
894 add_to_sequence (rtx pattern
, struct decision_head
*last
, const char *position
,
895 enum routine_type insn_type
, int top
)
898 struct decision
*this, *sub
;
899 struct decision_test
*test
;
900 struct decision_test
**place
;
904 int depth
= strlen (position
);
906 enum machine_mode mode
;
908 if (depth
> max_depth
)
911 subpos
= xmalloc (depth
+ 2);
912 strcpy (subpos
, position
);
913 subpos
[depth
+ 1] = 0;
915 sub
= this = new_decision (position
, last
);
916 place
= &this->tests
;
919 mode
= GET_MODE (pattern
);
920 code
= GET_CODE (pattern
);
925 /* Toplevel peephole pattern. */
926 if (insn_type
== PEEPHOLE2
&& top
)
930 /* Check we have sufficient insns. This avoids complications
931 because we then know peep2_next_insn never fails. */
932 num_insns
= XVECLEN (pattern
, 0);
935 test
= new_decision_test (DT_num_insns
, &place
);
936 test
->u
.num_insns
= num_insns
;
937 last
= &sub
->success
;
941 /* We don't need the node we just created -- unlink it. */
942 last
->first
= last
->last
= NULL
;
945 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 0); i
++)
947 /* Which insn we're looking at is represented by A-Z. We don't
948 ever use 'A', however; it is always implied. */
950 subpos
[depth
] = (i
> 0 ? 'A' + i
: 0);
951 sub
= add_to_sequence (XVECEXP (pattern
, 0, i
),
952 last
, subpos
, insn_type
, 0);
953 last
= &sub
->success
;
958 /* Else nothing special. */
962 /* The explicit patterns within a match_parallel enforce a minimum
963 length on the vector. The match_parallel predicate may allow
964 for more elements. We do need to check for this minimum here
965 or the code generated to match the internals may reference data
966 beyond the end of the vector. */
967 test
= new_decision_test (DT_veclen_ge
, &place
);
968 test
->u
.veclen
= XVECLEN (pattern
, 2);
975 RTX_CODE was_code
= code
;
976 const char *pred_name
;
977 bool allows_const_int
= true;
979 if (code
== MATCH_SCRATCH
)
981 pred_name
= "scratch_operand";
986 pred_name
= XSTR (pattern
, 1);
987 if (code
== MATCH_PARALLEL
)
993 if (pred_name
[0] != 0)
995 const struct pred_data
*pred
;
997 test
= new_decision_test (DT_pred
, &place
);
998 test
->u
.pred
.name
= pred_name
;
999 test
->u
.pred
.mode
= mode
;
1001 /* See if we know about this predicate.
1002 If we do, remember it for use below.
1004 We can optimize the generated code a little if either
1005 (a) the predicate only accepts one code, or (b) the
1006 predicate does not allow CONST_INT, in which case it
1007 can match only if the modes match. */
1008 pred
= lookup_predicate (pred_name
);
1011 test
->u
.pred
.data
= pred
;
1012 allows_const_int
= pred
->codes
[CONST_INT
];
1013 if (was_code
== MATCH_PARALLEL
1014 && pred
->singleton
!= PARALLEL
)
1015 message_with_line (pattern_lineno
,
1016 "predicate '%s' used in match_parallel "
1017 "does not allow only PARALLEL", pred
->name
);
1019 code
= pred
->singleton
;
1022 message_with_line (pattern_lineno
,
1023 "warning: unknown predicate '%s' in '%s' expression",
1024 pred_name
, GET_RTX_NAME (was_code
));
1027 /* Can't enforce a mode if we allow const_int. */
1028 if (allows_const_int
)
1031 /* Accept the operand, i.e. record it in `operands'. */
1032 test
= new_decision_test (DT_accept_op
, &place
);
1033 test
->u
.opno
= XINT (pattern
, 0);
1035 if (was_code
== MATCH_OPERATOR
|| was_code
== MATCH_PARALLEL
)
1037 char base
= (was_code
== MATCH_OPERATOR
? '0' : 'a');
1038 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 2); i
++)
1040 subpos
[depth
] = i
+ base
;
1041 sub
= add_to_sequence (XVECEXP (pattern
, 2, i
),
1042 &sub
->success
, subpos
, insn_type
, 0);
1051 test
= new_decision_test (DT_dup
, &place
);
1052 test
->u
.dup
= XINT (pattern
, 0);
1054 test
= new_decision_test (DT_accept_op
, &place
);
1055 test
->u
.opno
= XINT (pattern
, 0);
1057 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 1); i
++)
1059 subpos
[depth
] = i
+ '0';
1060 sub
= add_to_sequence (XVECEXP (pattern
, 1, i
),
1061 &sub
->success
, subpos
, insn_type
, 0);
1069 test
= new_decision_test (DT_dup
, &place
);
1070 test
->u
.dup
= XINT (pattern
, 0);
1074 pattern
= XEXP (pattern
, 0);
1081 fmt
= GET_RTX_FORMAT (code
);
1082 len
= GET_RTX_LENGTH (code
);
1084 /* Do tests against the current node first. */
1085 for (i
= 0; i
< (size_t) len
; i
++)
1093 test
= new_decision_test (DT_elt_zero_int
, &place
);
1094 test
->u
.intval
= XINT (pattern
, i
);
1098 test
= new_decision_test (DT_elt_one_int
, &place
);
1099 test
->u
.intval
= XINT (pattern
, i
);
1102 else if (fmt
[i
] == 'w')
1104 /* If this value actually fits in an int, we can use a switch
1105 statement here, so indicate that. */
1106 enum decision_type type
1107 = ((int) XWINT (pattern
, i
) == XWINT (pattern
, i
))
1108 ? DT_elt_zero_wide_safe
: DT_elt_zero_wide
;
1112 test
= new_decision_test (type
, &place
);
1113 test
->u
.intval
= XWINT (pattern
, i
);
1115 else if (fmt
[i
] == 'E')
1119 test
= new_decision_test (DT_veclen
, &place
);
1120 test
->u
.veclen
= XVECLEN (pattern
, i
);
1124 /* Now test our sub-patterns. */
1125 for (i
= 0; i
< (size_t) len
; i
++)
1130 subpos
[depth
] = '0' + i
;
1131 sub
= add_to_sequence (XEXP (pattern
, i
), &sub
->success
,
1132 subpos
, insn_type
, 0);
1138 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
1140 subpos
[depth
] = 'a' + j
;
1141 sub
= add_to_sequence (XVECEXP (pattern
, i
, j
),
1142 &sub
->success
, subpos
, insn_type
, 0);
1148 /* Handled above. */
1159 /* Insert nodes testing mode and code, if they're still relevant,
1160 before any of the nodes we may have added above. */
1161 if (code
!= UNKNOWN
)
1163 place
= &this->tests
;
1164 test
= new_decision_test (DT_code
, &place
);
1165 test
->u
.code
= code
;
1168 if (mode
!= VOIDmode
)
1170 place
= &this->tests
;
1171 test
= new_decision_test (DT_mode
, &place
);
1172 test
->u
.mode
= mode
;
1175 /* If we didn't insert any tests or accept nodes, hork. */
1176 gcc_assert (this->tests
);
1183 /* A subroutine of maybe_both_true; examines only one test.
1184 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1187 maybe_both_true_2 (struct decision_test
*d1
, struct decision_test
*d2
)
1189 if (d1
->type
== d2
->type
)
1194 if (d1
->u
.num_insns
== d2
->u
.num_insns
)
1200 return d1
->u
.mode
== d2
->u
.mode
;
1203 return d1
->u
.code
== d2
->u
.code
;
1206 return d1
->u
.veclen
== d2
->u
.veclen
;
1208 case DT_elt_zero_int
:
1209 case DT_elt_one_int
:
1210 case DT_elt_zero_wide
:
1211 case DT_elt_zero_wide_safe
:
1212 return d1
->u
.intval
== d2
->u
.intval
;
1219 /* If either has a predicate that we know something about, set
1220 things up so that D1 is the one that always has a known
1221 predicate. Then see if they have any codes in common. */
1223 if (d1
->type
== DT_pred
|| d2
->type
== DT_pred
)
1225 if (d2
->type
== DT_pred
)
1227 struct decision_test
*tmp
;
1228 tmp
= d1
, d1
= d2
, d2
= tmp
;
1231 /* If D2 tests a mode, see if it matches D1. */
1232 if (d1
->u
.pred
.mode
!= VOIDmode
)
1234 if (d2
->type
== DT_mode
)
1236 if (d1
->u
.pred
.mode
!= d2
->u
.mode
1237 /* The mode of an address_operand predicate is the
1238 mode of the memory, not the operand. It can only
1239 be used for testing the predicate, so we must
1241 && strcmp (d1
->u
.pred
.name
, "address_operand") != 0)
1244 /* Don't check two predicate modes here, because if both predicates
1245 accept CONST_INT, then both can still be true even if the modes
1246 are different. If they don't accept CONST_INT, there will be a
1247 separate DT_mode that will make maybe_both_true_1 return 0. */
1250 if (d1
->u
.pred
.data
)
1252 /* If D2 tests a code, see if it is in the list of valid
1253 codes for D1's predicate. */
1254 if (d2
->type
== DT_code
)
1256 if (!d1
->u
.pred
.data
->codes
[d2
->u
.code
])
1260 /* Otherwise see if the predicates have any codes in common. */
1261 else if (d2
->type
== DT_pred
&& d2
->u
.pred
.data
)
1263 bool common
= false;
1266 for (c
= 0; c
< NUM_RTX_CODE
; c
++)
1267 if (d1
->u
.pred
.data
->codes
[c
] && d2
->u
.pred
.data
->codes
[c
])
1279 /* Tests vs veclen may be known when strict equality is involved. */
1280 if (d1
->type
== DT_veclen
&& d2
->type
== DT_veclen_ge
)
1281 return d1
->u
.veclen
>= d2
->u
.veclen
;
1282 if (d1
->type
== DT_veclen_ge
&& d2
->type
== DT_veclen
)
1283 return d2
->u
.veclen
>= d1
->u
.veclen
;
1288 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1289 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1292 maybe_both_true_1 (struct decision_test
*d1
, struct decision_test
*d2
)
1294 struct decision_test
*t1
, *t2
;
1296 /* A match_operand with no predicate can match anything. Recognize
1297 this by the existence of a lone DT_accept_op test. */
1298 if (d1
->type
== DT_accept_op
|| d2
->type
== DT_accept_op
)
1301 /* Eliminate pairs of tests while they can exactly match. */
1302 while (d1
&& d2
&& d1
->type
== d2
->type
)
1304 if (maybe_both_true_2 (d1
, d2
) == 0)
1306 d1
= d1
->next
, d2
= d2
->next
;
1309 /* After that, consider all pairs. */
1310 for (t1
= d1
; t1
; t1
= t1
->next
)
1311 for (t2
= d2
; t2
; t2
= t2
->next
)
1312 if (maybe_both_true_2 (t1
, t2
) == 0)
1318 /* Return 0 if we can prove that there is no RTL that can match both
1319 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1320 can match both or just that we couldn't prove there wasn't such an RTL).
1322 TOPLEVEL is nonzero if we are to only look at the top level and not
1323 recursively descend. */
1326 maybe_both_true (struct decision
*d1
, struct decision
*d2
,
1329 struct decision
*p1
, *p2
;
1332 /* Don't compare strings on the different positions in insn. Doing so
1333 is incorrect and results in false matches from constructs like
1335 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1336 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1338 [(set (match_operand:HI "register_operand" "r")
1339 (match_operand:HI "register_operand" "r"))]
1341 If we are presented with such, we are recursing through the remainder
1342 of a node's success nodes (from the loop at the end of this function).
1343 Skip forward until we come to a position that matches.
1345 Due to the way position strings are constructed, we know that iterating
1346 forward from the lexically lower position (e.g. "00") will run into
1347 the lexically higher position (e.g. "1") and not the other way around.
1348 This saves a bit of effort. */
1350 cmp
= strcmp (d1
->position
, d2
->position
);
1353 gcc_assert (!toplevel
);
1355 /* If the d2->position was lexically lower, swap. */
1357 p1
= d1
, d1
= d2
, d2
= p1
;
1359 if (d1
->success
.first
== 0)
1361 for (p1
= d1
->success
.first
; p1
; p1
= p1
->next
)
1362 if (maybe_both_true (p1
, d2
, 0))
1368 /* Test the current level. */
1369 cmp
= maybe_both_true_1 (d1
->tests
, d2
->tests
);
1373 /* We can't prove that D1 and D2 cannot both be true. If we are only
1374 to check the top level, return 1. Otherwise, see if we can prove
1375 that all choices in both successors are mutually exclusive. If
1376 either does not have any successors, we can't prove they can't both
1379 if (toplevel
|| d1
->success
.first
== 0 || d2
->success
.first
== 0)
1382 for (p1
= d1
->success
.first
; p1
; p1
= p1
->next
)
1383 for (p2
= d2
->success
.first
; p2
; p2
= p2
->next
)
1384 if (maybe_both_true (p1
, p2
, 0))
1390 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1393 nodes_identical_1 (struct decision_test
*d1
, struct decision_test
*d2
)
1398 return d1
->u
.num_insns
== d2
->u
.num_insns
;
1401 return d1
->u
.mode
== d2
->u
.mode
;
1404 return d1
->u
.code
== d2
->u
.code
;
1407 return (d1
->u
.pred
.mode
== d2
->u
.pred
.mode
1408 && strcmp (d1
->u
.pred
.name
, d2
->u
.pred
.name
) == 0);
1411 return strcmp (d1
->u
.c_test
, d2
->u
.c_test
) == 0;
1415 return d1
->u
.veclen
== d2
->u
.veclen
;
1418 return d1
->u
.dup
== d2
->u
.dup
;
1420 case DT_elt_zero_int
:
1421 case DT_elt_one_int
:
1422 case DT_elt_zero_wide
:
1423 case DT_elt_zero_wide_safe
:
1424 return d1
->u
.intval
== d2
->u
.intval
;
1427 return d1
->u
.opno
== d2
->u
.opno
;
1429 case DT_accept_insn
:
1430 /* Differences will be handled in merge_accept_insn. */
1438 /* True iff the two nodes are identical (on one level only). Due
1439 to the way these lists are constructed, we shouldn't have to
1440 consider different orderings on the tests. */
1443 nodes_identical (struct decision
*d1
, struct decision
*d2
)
1445 struct decision_test
*t1
, *t2
;
1447 for (t1
= d1
->tests
, t2
= d2
->tests
; t1
&& t2
; t1
= t1
->next
, t2
= t2
->next
)
1449 if (t1
->type
!= t2
->type
)
1451 if (! nodes_identical_1 (t1
, t2
))
1455 /* For success, they should now both be null. */
1459 /* Check that their subnodes are at the same position, as any one set
1460 of sibling decisions must be at the same position. Allowing this
1461 requires complications to find_afterward and when change_state is
1463 if (d1
->success
.first
1464 && d2
->success
.first
1465 && strcmp (d1
->success
.first
->position
, d2
->success
.first
->position
))
1471 /* A subroutine of merge_trees; given two nodes that have been declared
1472 identical, cope with two insn accept states. If they differ in the
1473 number of clobbers, then the conflict was created by make_insn_sequence
1474 and we can drop the with-clobbers version on the floor. If both
1475 nodes have no additional clobbers, we have found an ambiguity in the
1476 source machine description. */
1479 merge_accept_insn (struct decision
*oldd
, struct decision
*addd
)
1481 struct decision_test
*old
, *add
;
1483 for (old
= oldd
->tests
; old
; old
= old
->next
)
1484 if (old
->type
== DT_accept_insn
)
1489 for (add
= addd
->tests
; add
; add
= add
->next
)
1490 if (add
->type
== DT_accept_insn
)
1495 /* If one node is for a normal insn and the second is for the base
1496 insn with clobbers stripped off, the second node should be ignored. */
1498 if (old
->u
.insn
.num_clobbers_to_add
== 0
1499 && add
->u
.insn
.num_clobbers_to_add
> 0)
1501 /* Nothing to do here. */
1503 else if (old
->u
.insn
.num_clobbers_to_add
> 0
1504 && add
->u
.insn
.num_clobbers_to_add
== 0)
1506 /* In this case, replace OLD with ADD. */
1507 old
->u
.insn
= add
->u
.insn
;
1511 message_with_line (add
->u
.insn
.lineno
, "`%s' matches `%s'",
1512 get_insn_name (add
->u
.insn
.code_number
),
1513 get_insn_name (old
->u
.insn
.code_number
));
1514 message_with_line (old
->u
.insn
.lineno
, "previous definition of `%s'",
1515 get_insn_name (old
->u
.insn
.code_number
));
1520 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1523 merge_trees (struct decision_head
*oldh
, struct decision_head
*addh
)
1525 struct decision
*next
, *add
;
1527 if (addh
->first
== 0)
1529 if (oldh
->first
== 0)
1535 /* Trying to merge bits at different positions isn't possible. */
1536 gcc_assert (!strcmp (oldh
->first
->position
, addh
->first
->position
));
1538 for (add
= addh
->first
; add
; add
= next
)
1540 struct decision
*old
, *insert_before
= NULL
;
1544 /* The semantics of pattern matching state that the tests are
1545 done in the order given in the MD file so that if an insn
1546 matches two patterns, the first one will be used. However,
1547 in practice, most, if not all, patterns are unambiguous so
1548 that their order is independent. In that case, we can merge
1549 identical tests and group all similar modes and codes together.
1551 Scan starting from the end of OLDH until we reach a point
1552 where we reach the head of the list or where we pass a
1553 pattern that could also be true if NEW is true. If we find
1554 an identical pattern, we can merge them. Also, record the
1555 last node that tests the same code and mode and the last one
1556 that tests just the same mode.
1558 If we have no match, place NEW after the closest match we found. */
1560 for (old
= oldh
->last
; old
; old
= old
->prev
)
1562 if (nodes_identical (old
, add
))
1564 merge_accept_insn (old
, add
);
1565 merge_trees (&old
->success
, &add
->success
);
1569 if (maybe_both_true (old
, add
, 0))
1572 /* Insert the nodes in DT test type order, which is roughly
1573 how expensive/important the test is. Given that the tests
1574 are also ordered within the list, examining the first is
1576 if ((int) add
->tests
->type
< (int) old
->tests
->type
)
1577 insert_before
= old
;
1580 if (insert_before
== NULL
)
1583 add
->prev
= oldh
->last
;
1584 oldh
->last
->next
= add
;
1589 if ((add
->prev
= insert_before
->prev
) != NULL
)
1590 add
->prev
->next
= add
;
1593 add
->next
= insert_before
;
1594 insert_before
->prev
= add
;
1601 /* Walk the tree looking for sub-nodes that perform common tests.
1602 Factor out the common test into a new node. This enables us
1603 (depending on the test type) to emit switch statements later. */
1606 factor_tests (struct decision_head
*head
)
1608 struct decision
*first
, *next
;
1610 for (first
= head
->first
; first
&& first
->next
; first
= next
)
1612 enum decision_type type
;
1613 struct decision
*new, *old_last
;
1615 type
= first
->tests
->type
;
1618 /* Want at least two compatible sequential nodes. */
1619 if (next
->tests
->type
!= type
)
1622 /* Don't want all node types, just those we can turn into
1623 switch statements. */
1626 && type
!= DT_veclen
1627 && type
!= DT_elt_zero_int
1628 && type
!= DT_elt_one_int
1629 && type
!= DT_elt_zero_wide_safe
)
1632 /* If we'd been performing more than one test, create a new node
1633 below our first test. */
1634 if (first
->tests
->next
!= NULL
)
1636 new = new_decision (first
->position
, &first
->success
);
1637 new->tests
= first
->tests
->next
;
1638 first
->tests
->next
= NULL
;
1641 /* Crop the node tree off after our first test. */
1643 old_last
= head
->last
;
1646 /* For each compatible test, adjust to perform only one test in
1647 the top level node, then merge the node back into the tree. */
1650 struct decision_head h
;
1652 if (next
->tests
->next
!= NULL
)
1654 new = new_decision (next
->position
, &next
->success
);
1655 new->tests
= next
->tests
->next
;
1656 next
->tests
->next
= NULL
;
1661 h
.first
= h
.last
= new;
1663 merge_trees (head
, &h
);
1665 while (next
&& next
->tests
->type
== type
);
1667 /* After we run out of compatible tests, graft the remaining nodes
1668 back onto the tree. */
1671 next
->prev
= head
->last
;
1672 head
->last
->next
= next
;
1673 head
->last
= old_last
;
1678 for (first
= head
->first
; first
; first
= first
->next
)
1679 factor_tests (&first
->success
);
1682 /* After factoring, try to simplify the tests on any one node.
1683 Tests that are useful for switch statements are recognizable
1684 by having only a single test on a node -- we'll be manipulating
1685 nodes with multiple tests:
1687 If we have mode tests or code tests that are redundant with
1688 predicates, remove them. */
1691 simplify_tests (struct decision_head
*head
)
1693 struct decision
*tree
;
1695 for (tree
= head
->first
; tree
; tree
= tree
->next
)
1697 struct decision_test
*a
, *b
;
1704 /* Find a predicate node. */
1705 while (b
&& b
->type
!= DT_pred
)
1709 /* Due to how these tests are constructed, we don't even need
1710 to check that the mode and code are compatible -- they were
1711 generated from the predicate in the first place. */
1712 while (a
->type
== DT_mode
|| a
->type
== DT_code
)
1719 for (tree
= head
->first
; tree
; tree
= tree
->next
)
1720 simplify_tests (&tree
->success
);
1723 /* Count the number of subnodes of HEAD. If the number is high enough,
1724 make the first node in HEAD start a separate subroutine in the C code
1725 that is generated. */
1728 break_out_subroutines (struct decision_head
*head
, int initial
)
1731 struct decision
*sub
;
1733 for (sub
= head
->first
; sub
; sub
= sub
->next
)
1734 size
+= 1 + break_out_subroutines (&sub
->success
, 0);
1736 if (size
> SUBROUTINE_THRESHOLD
&& ! initial
)
1738 head
->first
->subroutine_number
= ++next_subroutine_number
;
1744 /* For each node p, find the next alternative that might be true
1748 find_afterward (struct decision_head
*head
, struct decision
*real_afterward
)
1750 struct decision
*p
, *q
, *afterward
;
1752 /* We can't propagate alternatives across subroutine boundaries.
1753 This is not incorrect, merely a minor optimization loss. */
1756 afterward
= (p
->subroutine_number
> 0 ? NULL
: real_afterward
);
1758 for ( ; p
; p
= p
->next
)
1760 /* Find the next node that might be true if this one fails. */
1761 for (q
= p
->next
; q
; q
= q
->next
)
1762 if (maybe_both_true (p
, q
, 1))
1765 /* If we reached the end of the list without finding one,
1766 use the incoming afterward position. */
1775 for (p
= head
->first
; p
; p
= p
->next
)
1776 if (p
->success
.first
)
1777 find_afterward (&p
->success
, p
->afterward
);
1779 /* When we are generating a subroutine, record the real afterward
1780 position in the first node where write_tree can find it, and we
1781 can do the right thing at the subroutine call site. */
1783 if (p
->subroutine_number
> 0)
1784 p
->afterward
= real_afterward
;
1787 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1788 actions are necessary to move to NEWPOS. If we fail to move to the
1789 new state, branch to node AFTERWARD if nonzero, otherwise return.
1791 Failure to move to the new state can only occur if we are trying to
1792 match multiple insns and we try to step past the end of the stream. */
1795 change_state (const char *oldpos
, const char *newpos
, const char *indent
)
1797 int odepth
= strlen (oldpos
);
1798 int ndepth
= strlen (newpos
);
1800 int old_has_insn
, new_has_insn
;
1802 /* Pop up as many levels as necessary. */
1803 for (depth
= odepth
; strncmp (oldpos
, newpos
, depth
) != 0; --depth
)
1806 /* Hunt for the last [A-Z] in both strings. */
1807 for (old_has_insn
= odepth
- 1; old_has_insn
>= 0; --old_has_insn
)
1808 if (ISUPPER (oldpos
[old_has_insn
]))
1810 for (new_has_insn
= ndepth
- 1; new_has_insn
>= 0; --new_has_insn
)
1811 if (ISUPPER (newpos
[new_has_insn
]))
1814 /* Go down to desired level. */
1815 while (depth
< ndepth
)
1817 /* It's a different insn from the first one. */
1818 if (ISUPPER (newpos
[depth
]))
1820 printf ("%stem = peep2_next_insn (%d);\n",
1821 indent
, newpos
[depth
] - 'A');
1822 printf ("%sx%d = PATTERN (tem);\n", indent
, depth
+ 1);
1824 else if (ISLOWER (newpos
[depth
]))
1825 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1826 indent
, depth
+ 1, depth
, newpos
[depth
] - 'a');
1828 printf ("%sx%d = XEXP (x%d, %c);\n",
1829 indent
, depth
+ 1, depth
, newpos
[depth
]);
1834 /* Print the enumerator constant for CODE -- the upcase version of
1838 print_code (enum rtx_code code
)
1841 for (p
= GET_RTX_NAME (code
); *p
; p
++)
1842 putchar (TOUPPER (*p
));
1845 /* Emit code to cross an afterward link -- change state and branch. */
1848 write_afterward (struct decision
*start
, struct decision
*afterward
,
1851 if (!afterward
|| start
->subroutine_number
> 0)
1852 printf("%sgoto ret0;\n", indent
);
1855 change_state (start
->position
, afterward
->position
, indent
);
1856 printf ("%sgoto L%d;\n", indent
, afterward
->number
);
1860 /* Emit a HOST_WIDE_INT as an integer constant expression. We need to take
1861 special care to avoid "decimal constant is so large that it is unsigned"
1862 warnings in the resulting code. */
1865 print_host_wide_int (HOST_WIDE_INT val
)
1867 HOST_WIDE_INT min
= (unsigned HOST_WIDE_INT
)1 << (HOST_BITS_PER_WIDE_INT
-1);
1869 printf ("(" HOST_WIDE_INT_PRINT_DEC_C
"-1)", val
+ 1);
1871 printf (HOST_WIDE_INT_PRINT_DEC_C
, val
);
1874 /* Emit a switch statement, if possible, for an initial sequence of
1875 nodes at START. Return the first node yet untested. */
1877 static struct decision
*
1878 write_switch (struct decision
*start
, int depth
)
1880 struct decision
*p
= start
;
1881 enum decision_type type
= p
->tests
->type
;
1882 struct decision
*needs_label
= NULL
;
1884 /* If we have two or more nodes in sequence that test the same one
1885 thing, we may be able to use a switch statement. */
1889 || p
->next
->tests
->type
!= type
1890 || p
->next
->tests
->next
1891 || nodes_identical_1 (p
->tests
, p
->next
->tests
))
1894 /* DT_code is special in that we can do interesting things with
1895 known predicates at the same time. */
1896 if (type
== DT_code
)
1898 char codemap
[NUM_RTX_CODE
];
1899 struct decision
*ret
;
1902 memset (codemap
, 0, sizeof(codemap
));
1904 printf (" switch (GET_CODE (x%d))\n {\n", depth
);
1905 code
= p
->tests
->u
.code
;
1908 if (p
!= start
&& p
->need_label
&& needs_label
== NULL
)
1913 printf (":\n goto L%d;\n", p
->success
.first
->number
);
1914 p
->success
.first
->need_label
= 1;
1921 && p
->tests
->type
== DT_code
1922 && ! codemap
[code
= p
->tests
->u
.code
]);
1924 /* If P is testing a predicate that we know about and we haven't
1925 seen any of the codes that are valid for the predicate, we can
1926 write a series of "case" statement, one for each possible code.
1927 Since we are already in a switch, these redundant tests are very
1928 cheap and will reduce the number of predicates called. */
1930 /* Note that while we write out cases for these predicates here,
1931 we don't actually write the test here, as it gets kinda messy.
1932 It is trivial to leave this to later by telling our caller that
1933 we only processed the CODE tests. */
1934 if (needs_label
!= NULL
)
1939 while (p
&& p
->tests
->type
== DT_pred
&& p
->tests
->u
.pred
.data
)
1941 const struct pred_data
*data
= p
->tests
->u
.pred
.data
;
1943 for (c
= 0; c
< NUM_RTX_CODE
; c
++)
1944 if (codemap
[c
] && data
->codes
[c
])
1947 for (c
= 0; c
< NUM_RTX_CODE
; c
++)
1950 fputs (" case ", stdout
);
1952 fputs (":\n", stdout
);
1956 printf (" goto L%d;\n", p
->number
);
1962 /* Make the default case skip the predicates we managed to match. */
1964 printf (" default:\n");
1969 printf (" goto L%d;\n", p
->number
);
1973 write_afterward (start
, start
->afterward
, " ");
1976 printf (" break;\n");
1981 else if (type
== DT_mode
1982 || type
== DT_veclen
1983 || type
== DT_elt_zero_int
1984 || type
== DT_elt_one_int
1985 || type
== DT_elt_zero_wide_safe
)
1987 const char *indent
= "";
1989 /* We cast switch parameter to integer, so we must ensure that the value
1991 if (type
== DT_elt_zero_wide_safe
)
1994 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth
, depth
);
1996 printf ("%s switch (", indent
);
2000 printf ("GET_MODE (x%d)", depth
);
2003 printf ("XVECLEN (x%d, 0)", depth
);
2005 case DT_elt_zero_int
:
2006 printf ("XINT (x%d, 0)", depth
);
2008 case DT_elt_one_int
:
2009 printf ("XINT (x%d, 1)", depth
);
2011 case DT_elt_zero_wide_safe
:
2012 /* Convert result of XWINT to int for portability since some C
2013 compilers won't do it and some will. */
2014 printf ("(int) XWINT (x%d, 0)", depth
);
2019 printf (")\n%s {\n", indent
);
2023 /* Merge trees will not unify identical nodes if their
2024 sub-nodes are at different levels. Thus we must check
2025 for duplicate cases. */
2027 for (q
= start
; q
!= p
; q
= q
->next
)
2028 if (nodes_identical_1 (p
->tests
, q
->tests
))
2031 if (p
!= start
&& p
->need_label
&& needs_label
== NULL
)
2034 printf ("%s case ", indent
);
2038 printf ("%smode", GET_MODE_NAME (p
->tests
->u
.mode
));
2041 printf ("%d", p
->tests
->u
.veclen
);
2043 case DT_elt_zero_int
:
2044 case DT_elt_one_int
:
2045 case DT_elt_zero_wide
:
2046 case DT_elt_zero_wide_safe
:
2047 print_host_wide_int (p
->tests
->u
.intval
);
2052 printf (":\n%s goto L%d;\n", indent
, p
->success
.first
->number
);
2053 p
->success
.first
->need_label
= 1;
2057 while (p
&& p
->tests
->type
== type
&& !p
->tests
->next
);
2060 printf ("%s default:\n%s break;\n%s }\n",
2061 indent
, indent
, indent
);
2063 return needs_label
!= NULL
? needs_label
: p
;
2067 /* None of the other tests are amenable. */
2072 /* Emit code for one test. */
2075 write_cond (struct decision_test
*p
, int depth
,
2076 enum routine_type subroutine_type
)
2081 printf ("peep2_current_count >= %d", p
->u
.num_insns
);
2085 printf ("GET_MODE (x%d) == %smode", depth
, GET_MODE_NAME (p
->u
.mode
));
2089 printf ("GET_CODE (x%d) == ", depth
);
2090 print_code (p
->u
.code
);
2094 printf ("XVECLEN (x%d, 0) == %d", depth
, p
->u
.veclen
);
2097 case DT_elt_zero_int
:
2098 printf ("XINT (x%d, 0) == %d", depth
, (int) p
->u
.intval
);
2101 case DT_elt_one_int
:
2102 printf ("XINT (x%d, 1) == %d", depth
, (int) p
->u
.intval
);
2105 case DT_elt_zero_wide
:
2106 case DT_elt_zero_wide_safe
:
2107 printf ("XWINT (x%d, 0) == ", depth
);
2108 print_host_wide_int (p
->u
.intval
);
2112 printf ("x%d == const_int_rtx[MAX_SAVED_CONST_INT + (%d)]",
2113 depth
, (int) p
->u
.intval
);
2117 printf ("XVECLEN (x%d, 0) >= %d", depth
, p
->u
.veclen
);
2121 printf ("rtx_equal_p (x%d, operands[%d])", depth
, p
->u
.dup
);
2125 printf ("%s (x%d, %smode)", p
->u
.pred
.name
, depth
,
2126 GET_MODE_NAME (p
->u
.pred
.mode
));
2130 print_c_condition (p
->u
.c_test
);
2133 case DT_accept_insn
:
2134 gcc_assert (subroutine_type
== RECOG
);
2135 gcc_assert (p
->u
.insn
.num_clobbers_to_add
);
2136 printf ("pnum_clobbers != NULL");
2144 /* Emit code for one action. The previous tests have succeeded;
2145 TEST is the last of the chain. In the normal case we simply
2146 perform a state change. For the `accept' tests we must do more work. */
2149 write_action (struct decision
*p
, struct decision_test
*test
,
2150 int depth
, int uncond
, struct decision
*success
,
2151 enum routine_type subroutine_type
)
2158 else if (test
->type
== DT_accept_op
|| test
->type
== DT_accept_insn
)
2160 fputs (" {\n", stdout
);
2167 if (test
->type
== DT_accept_op
)
2169 printf("%soperands[%d] = x%d;\n", indent
, test
->u
.opno
, depth
);
2171 /* Only allow DT_accept_insn to follow. */
2175 gcc_assert (test
->type
== DT_accept_insn
);
2179 /* Sanity check that we're now at the end of the list of tests. */
2180 gcc_assert (!test
->next
);
2182 if (test
->type
== DT_accept_insn
)
2184 switch (subroutine_type
)
2187 if (test
->u
.insn
.num_clobbers_to_add
!= 0)
2188 printf ("%s*pnum_clobbers = %d;\n",
2189 indent
, test
->u
.insn
.num_clobbers_to_add
);
2190 printf ("%sreturn %d; /* %s */\n", indent
,
2191 test
->u
.insn
.code_number
,
2192 insn_name_ptr
[test
->u
.insn
.code_number
]);
2196 printf ("%sreturn gen_split_%d (insn, operands);\n",
2197 indent
, test
->u
.insn
.code_number
);
2202 int match_len
= 0, i
;
2204 for (i
= strlen (p
->position
) - 1; i
>= 0; --i
)
2205 if (ISUPPER (p
->position
[i
]))
2207 match_len
= p
->position
[i
] - 'A';
2210 printf ("%s*_pmatch_len = %d;\n", indent
, match_len
);
2211 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2212 indent
, test
->u
.insn
.code_number
);
2213 printf ("%sif (tem != 0)\n%s return tem;\n", indent
, indent
);
2223 printf("%sgoto L%d;\n", indent
, success
->number
);
2224 success
->need_label
= 1;
2228 fputs (" }\n", stdout
);
2231 /* Return 1 if the test is always true and has no fallthru path. Return -1
2232 if the test does have a fallthru path, but requires that the condition be
2233 terminated. Otherwise return 0 for a normal test. */
2234 /* ??? is_unconditional is a stupid name for a tri-state function. */
2237 is_unconditional (struct decision_test
*t
, enum routine_type subroutine_type
)
2239 if (t
->type
== DT_accept_op
)
2242 if (t
->type
== DT_accept_insn
)
2244 switch (subroutine_type
)
2247 return (t
->u
.insn
.num_clobbers_to_add
== 0);
2260 /* Emit code for one node -- the conditional and the accompanying action.
2261 Return true if there is no fallthru path. */
2264 write_node (struct decision
*p
, int depth
,
2265 enum routine_type subroutine_type
)
2267 struct decision_test
*test
, *last_test
;
2270 /* Scan the tests and simplify comparisons against small
2272 for (test
= p
->tests
; test
; test
= test
->next
)
2274 if (test
->type
== DT_code
2275 && test
->u
.code
== CONST_INT
2277 && test
->next
->type
== DT_elt_zero_wide_safe
2278 && -MAX_SAVED_CONST_INT
<= test
->next
->u
.intval
2279 && test
->next
->u
.intval
<= MAX_SAVED_CONST_INT
)
2281 test
->type
= DT_const_int
;
2282 test
->u
.intval
= test
->next
->u
.intval
;
2283 test
->next
= test
->next
->next
;
2287 last_test
= test
= p
->tests
;
2288 uncond
= is_unconditional (test
, subroutine_type
);
2292 write_cond (test
, depth
, subroutine_type
);
2294 while ((test
= test
->next
) != NULL
)
2297 if (is_unconditional (test
, subroutine_type
))
2301 write_cond (test
, depth
, subroutine_type
);
2307 write_action (p
, last_test
, depth
, uncond
, p
->success
.first
, subroutine_type
);
2312 /* Emit code for all of the sibling nodes of HEAD. */
2315 write_tree_1 (struct decision_head
*head
, int depth
,
2316 enum routine_type subroutine_type
)
2318 struct decision
*p
, *next
;
2321 for (p
= head
->first
; p
; p
= next
)
2323 /* The label for the first element was printed in write_tree. */
2324 if (p
!= head
->first
&& p
->need_label
)
2325 OUTPUT_LABEL (" ", p
->number
);
2327 /* Attempt to write a switch statement for a whole sequence. */
2328 next
= write_switch (p
, depth
);
2333 /* Failed -- fall back and write one node. */
2334 uncond
= write_node (p
, depth
, subroutine_type
);
2339 /* Finished with this chain. Close a fallthru path by branching
2340 to the afterward node. */
2342 write_afterward (head
->last
, head
->last
->afterward
, " ");
2345 /* Write out the decision tree starting at HEAD. PREVPOS is the
2346 position at the node that branched to this node. */
2349 write_tree (struct decision_head
*head
, const char *prevpos
,
2350 enum routine_type type
, int initial
)
2352 struct decision
*p
= head
->first
;
2356 OUTPUT_LABEL (" ", p
->number
);
2358 if (! initial
&& p
->subroutine_number
> 0)
2360 static const char * const name_prefix
[] = {
2361 "recog", "split", "peephole2"
2364 static const char * const call_suffix
[] = {
2365 ", pnum_clobbers", "", ", _pmatch_len"
2368 /* This node has been broken out into a separate subroutine.
2369 Call it, test the result, and branch accordingly. */
2373 printf (" tem = %s_%d (x0, insn%s);\n",
2374 name_prefix
[type
], p
->subroutine_number
, call_suffix
[type
]);
2375 if (IS_SPLIT (type
))
2376 printf (" if (tem != 0)\n return tem;\n");
2378 printf (" if (tem >= 0)\n return tem;\n");
2380 change_state (p
->position
, p
->afterward
->position
, " ");
2381 printf (" goto L%d;\n", p
->afterward
->number
);
2385 printf (" return %s_%d (x0, insn%s);\n",
2386 name_prefix
[type
], p
->subroutine_number
, call_suffix
[type
]);
2391 int depth
= strlen (p
->position
);
2393 change_state (prevpos
, p
->position
, " ");
2394 write_tree_1 (head
, depth
, type
);
2396 for (p
= head
->first
; p
; p
= p
->next
)
2397 if (p
->success
.first
)
2398 write_tree (&p
->success
, p
->position
, type
, 0);
2402 /* Write out a subroutine of type TYPE to do comparisons starting at
2406 write_subroutine (struct decision_head
*head
, enum routine_type type
)
2408 int subfunction
= head
->first
? head
->first
->subroutine_number
: 0;
2413 s_or_e
= subfunction
? "static " : "";
2416 sprintf (extension
, "_%d", subfunction
);
2417 else if (type
== RECOG
)
2418 extension
[0] = '\0';
2420 strcpy (extension
, "_insns");
2426 recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e
, extension
);
2430 split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2435 peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2440 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2441 for (i
= 1; i
<= max_depth
; i
++)
2442 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i
);
2444 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type
) ? "rtx" : "int");
2447 printf (" recog_data.insn = NULL_RTX;\n");
2450 write_tree (head
, "", type
, 1);
2452 printf (" goto ret0;\n");
2454 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type
) ? 0 : -1);
2457 /* In break_out_subroutines, we discovered the boundaries for the
2458 subroutines, but did not write them out. Do so now. */
2461 write_subroutines (struct decision_head
*head
, enum routine_type type
)
2465 for (p
= head
->first
; p
; p
= p
->next
)
2466 if (p
->success
.first
)
2467 write_subroutines (&p
->success
, type
);
2469 if (head
->first
->subroutine_number
> 0)
2470 write_subroutine (head
, type
);
2473 /* Begin the output file. */
2479 /* Generated automatically by the program `genrecog' from the target\n\
2480 machine description file. */\n\
2482 #include \"config.h\"\n\
2483 #include \"system.h\"\n\
2484 #include \"coretypes.h\"\n\
2485 #include \"tm.h\"\n\
2486 #include \"rtl.h\"\n\
2487 #include \"tm_p.h\"\n\
2488 #include \"function.h\"\n\
2489 #include \"insn-config.h\"\n\
2490 #include \"recog.h\"\n\
2491 #include \"real.h\"\n\
2492 #include \"output.h\"\n\
2493 #include \"flags.h\"\n\
2494 #include \"hard-reg-set.h\"\n\
2495 #include \"resource.h\"\n\
2496 #include \"toplev.h\"\n\
2497 #include \"reload.h\"\n\
2501 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2502 X0 is a valid instruction.\n\
2504 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2505 returns a nonnegative number which is the insn code number for the\n\
2506 pattern that matched. This is the same as the order in the machine\n\
2507 description of the entry that matched. This number can be used as an\n\
2508 index into `insn_data' and other tables.\n");
2510 The third argument to recog is an optional pointer to an int. If\n\
2511 present, recog will accept a pattern if it matches except for missing\n\
2512 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2513 the optional pointer will be set to the number of CLOBBERs that need\n\
2514 to be added (it should be initialized to zero by the caller). If it");
2516 is set nonzero, the caller should allocate a PARALLEL of the\n\
2517 appropriate size, copy the initial entries, and call add_clobbers\n\
2518 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2522 The function split_insns returns 0 if the rtl could not\n\
2523 be split or the split rtl as an INSN list if it can be.\n\
2525 The function peephole2_insns returns 0 if the rtl could not\n\
2526 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
2527 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2532 /* Construct and return a sequence of decisions
2533 that will recognize INSN.
2535 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2537 static struct decision_head
2538 make_insn_sequence (rtx insn
, enum routine_type type
)
2541 const char *c_test
= XSTR (insn
, type
== RECOG
? 2 : 1);
2542 int truth
= maybe_eval_c_test (c_test
);
2543 struct decision
*last
;
2544 struct decision_test
*test
, **place
;
2545 struct decision_head head
;
2548 /* We should never see an insn whose C test is false at compile time. */
2551 record_insn_name (next_insn_code
, (type
== RECOG
? XSTR (insn
, 0) : NULL
));
2553 c_test_pos
[0] = '\0';
2554 if (type
== PEEPHOLE2
)
2558 /* peephole2 gets special treatment:
2559 - X always gets an outer parallel even if it's only one entry
2560 - we remove all traces of outer-level match_scratch and match_dup
2561 expressions here. */
2562 x
= rtx_alloc (PARALLEL
);
2563 PUT_MODE (x
, VOIDmode
);
2564 XVEC (x
, 0) = rtvec_alloc (XVECLEN (insn
, 0));
2565 for (i
= j
= 0; i
< XVECLEN (insn
, 0); i
++)
2567 rtx tmp
= XVECEXP (insn
, 0, i
);
2568 if (GET_CODE (tmp
) != MATCH_SCRATCH
&& GET_CODE (tmp
) != MATCH_DUP
)
2570 XVECEXP (x
, 0, j
) = tmp
;
2576 c_test_pos
[0] = 'A' + j
- 1;
2577 c_test_pos
[1] = '\0';
2579 else if (XVECLEN (insn
, type
== RECOG
) == 1)
2580 x
= XVECEXP (insn
, type
== RECOG
, 0);
2583 x
= rtx_alloc (PARALLEL
);
2584 XVEC (x
, 0) = XVEC (insn
, type
== RECOG
);
2585 PUT_MODE (x
, VOIDmode
);
2588 validate_pattern (x
, insn
, NULL_RTX
, 0);
2590 memset(&head
, 0, sizeof(head
));
2591 last
= add_to_sequence (x
, &head
, "", type
, 1);
2593 /* Find the end of the test chain on the last node. */
2594 for (test
= last
->tests
; test
->next
; test
= test
->next
)
2596 place
= &test
->next
;
2598 /* Skip the C test if it's known to be true at compile time. */
2601 /* Need a new node if we have another test to add. */
2602 if (test
->type
== DT_accept_op
)
2604 last
= new_decision (c_test_pos
, &last
->success
);
2605 place
= &last
->tests
;
2607 test
= new_decision_test (DT_c_test
, &place
);
2608 test
->u
.c_test
= c_test
;
2611 test
= new_decision_test (DT_accept_insn
, &place
);
2612 test
->u
.insn
.code_number
= next_insn_code
;
2613 test
->u
.insn
.lineno
= pattern_lineno
;
2614 test
->u
.insn
.num_clobbers_to_add
= 0;
2619 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
2620 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2621 If so, set up to recognize the pattern without these CLOBBERs. */
2623 if (GET_CODE (x
) == PARALLEL
)
2627 /* Find the last non-clobber in the parallel. */
2628 for (i
= XVECLEN (x
, 0); i
> 0; i
--)
2630 rtx y
= XVECEXP (x
, 0, i
- 1);
2631 if (GET_CODE (y
) != CLOBBER
2632 || (!REG_P (XEXP (y
, 0))
2633 && GET_CODE (XEXP (y
, 0)) != MATCH_SCRATCH
))
2637 if (i
!= XVECLEN (x
, 0))
2640 struct decision_head clobber_head
;
2642 /* Build a similar insn without the clobbers. */
2644 new = XVECEXP (x
, 0, 0);
2649 new = rtx_alloc (PARALLEL
);
2650 XVEC (new, 0) = rtvec_alloc (i
);
2651 for (j
= i
- 1; j
>= 0; j
--)
2652 XVECEXP (new, 0, j
) = XVECEXP (x
, 0, j
);
2656 memset (&clobber_head
, 0, sizeof(clobber_head
));
2657 last
= add_to_sequence (new, &clobber_head
, "", type
, 1);
2659 /* Find the end of the test chain on the last node. */
2660 for (test
= last
->tests
; test
->next
; test
= test
->next
)
2663 /* We definitely have a new test to add -- create a new
2665 place
= &test
->next
;
2666 if (test
->type
== DT_accept_op
)
2668 last
= new_decision ("", &last
->success
);
2669 place
= &last
->tests
;
2672 /* Skip the C test if it's known to be true at compile
2676 test
= new_decision_test (DT_c_test
, &place
);
2677 test
->u
.c_test
= c_test
;
2680 test
= new_decision_test (DT_accept_insn
, &place
);
2681 test
->u
.insn
.code_number
= next_insn_code
;
2682 test
->u
.insn
.lineno
= pattern_lineno
;
2683 test
->u
.insn
.num_clobbers_to_add
= XVECLEN (x
, 0) - i
;
2685 merge_trees (&head
, &clobber_head
);
2691 /* Define the subroutine we will call below and emit in genemit. */
2692 printf ("extern rtx gen_split_%d (rtx, rtx *);\n", next_insn_code
);
2696 /* Define the subroutine we will call below and emit in genemit. */
2697 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
2706 process_tree (struct decision_head
*head
, enum routine_type subroutine_type
)
2708 if (head
->first
== NULL
)
2710 /* We can elide peephole2_insns, but not recog or split_insns. */
2711 if (subroutine_type
== PEEPHOLE2
)
2716 factor_tests (head
);
2718 next_subroutine_number
= 0;
2719 break_out_subroutines (head
, 1);
2720 find_afterward (head
, NULL
);
2722 /* We run this after find_afterward, because find_afterward needs
2723 the redundant DT_mode tests on predicates to determine whether
2724 two tests can both be true or not. */
2725 simplify_tests(head
);
2727 write_subroutines (head
, subroutine_type
);
2730 write_subroutine (head
, subroutine_type
);
2733 extern int main (int, char **);
2736 main (int argc
, char **argv
)
2739 struct decision_head recog_tree
, split_tree
, peephole2_tree
, h
;
2741 progname
= "genrecog";
2743 memset (&recog_tree
, 0, sizeof recog_tree
);
2744 memset (&split_tree
, 0, sizeof split_tree
);
2745 memset (&peephole2_tree
, 0, sizeof peephole2_tree
);
2747 if (init_md_reader_args (argc
, argv
) != SUCCESS_EXIT_CODE
)
2748 return (FATAL_EXIT_CODE
);
2754 /* Read the machine description. */
2758 desc
= read_md_rtx (&pattern_lineno
, &next_insn_code
);
2762 switch (GET_CODE (desc
))
2764 case DEFINE_PREDICATE
:
2765 case DEFINE_SPECIAL_PREDICATE
:
2766 process_define_predicate (desc
);
2770 h
= make_insn_sequence (desc
, RECOG
);
2771 merge_trees (&recog_tree
, &h
);
2775 h
= make_insn_sequence (desc
, SPLIT
);
2776 merge_trees (&split_tree
, &h
);
2779 case DEFINE_PEEPHOLE2
:
2780 h
= make_insn_sequence (desc
, PEEPHOLE2
);
2781 merge_trees (&peephole2_tree
, &h
);
2788 if (error_count
|| have_error
)
2789 return FATAL_EXIT_CODE
;
2793 process_tree (&recog_tree
, RECOG
);
2794 process_tree (&split_tree
, SPLIT
);
2795 process_tree (&peephole2_tree
, PEEPHOLE2
);
2798 return (ferror (stdout
) != 0 ? FATAL_EXIT_CODE
: SUCCESS_EXIT_CODE
);
2801 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
2803 get_insn_name (int code
)
2805 if (code
< insn_name_ptr_size
)
2806 return insn_name_ptr
[code
];
2812 record_insn_name (int code
, const char *name
)
2814 static const char *last_real_name
= "insn";
2815 static int last_real_code
= 0;
2818 if (insn_name_ptr_size
<= code
)
2821 new_size
= (insn_name_ptr_size
? insn_name_ptr_size
* 2 : 512);
2822 insn_name_ptr
= xrealloc (insn_name_ptr
, sizeof(char *) * new_size
);
2823 memset (insn_name_ptr
+ insn_name_ptr_size
, 0,
2824 sizeof(char *) * (new_size
- insn_name_ptr_size
));
2825 insn_name_ptr_size
= new_size
;
2828 if (!name
|| name
[0] == '\0')
2830 new = xmalloc (strlen (last_real_name
) + 10);
2831 sprintf (new, "%s+%d", last_real_name
, code
- last_real_code
);
2835 last_real_name
= new = xstrdup (name
);
2836 last_real_code
= code
;
2839 insn_name_ptr
[code
] = new;
2843 debug_decision_2 (struct decision_test
*test
)
2848 fprintf (stderr
, "num_insns=%d", test
->u
.num_insns
);
2851 fprintf (stderr
, "mode=%s", GET_MODE_NAME (test
->u
.mode
));
2854 fprintf (stderr
, "code=%s", GET_RTX_NAME (test
->u
.code
));
2857 fprintf (stderr
, "veclen=%d", test
->u
.veclen
);
2859 case DT_elt_zero_int
:
2860 fprintf (stderr
, "elt0_i=%d", (int) test
->u
.intval
);
2862 case DT_elt_one_int
:
2863 fprintf (stderr
, "elt1_i=%d", (int) test
->u
.intval
);
2865 case DT_elt_zero_wide
:
2866 fprintf (stderr
, "elt0_w=" HOST_WIDE_INT_PRINT_DEC
, test
->u
.intval
);
2868 case DT_elt_zero_wide_safe
:
2869 fprintf (stderr
, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC
, test
->u
.intval
);
2872 fprintf (stderr
, "veclen>=%d", test
->u
.veclen
);
2875 fprintf (stderr
, "dup=%d", test
->u
.dup
);
2878 fprintf (stderr
, "pred=(%s,%s)",
2879 test
->u
.pred
.name
, GET_MODE_NAME(test
->u
.pred
.mode
));
2884 strncpy (sub
, test
->u
.c_test
, sizeof(sub
));
2885 memcpy (sub
+16, "...", 4);
2886 fprintf (stderr
, "c_test=\"%s\"", sub
);
2890 fprintf (stderr
, "A_op=%d", test
->u
.opno
);
2892 case DT_accept_insn
:
2893 fprintf (stderr
, "A_insn=(%d,%d)",
2894 test
->u
.insn
.code_number
, test
->u
.insn
.num_clobbers_to_add
);
2903 debug_decision_1 (struct decision
*d
, int indent
)
2906 struct decision_test
*test
;
2910 for (i
= 0; i
< indent
; ++i
)
2912 fputs ("(nil)\n", stderr
);
2916 for (i
= 0; i
< indent
; ++i
)
2923 debug_decision_2 (test
);
2924 while ((test
= test
->next
) != NULL
)
2926 fputs (" + ", stderr
);
2927 debug_decision_2 (test
);
2930 fprintf (stderr
, "} %d n %d a %d\n", d
->number
,
2931 (d
->next
? d
->next
->number
: -1),
2932 (d
->afterward
? d
->afterward
->number
: -1));
2936 debug_decision_0 (struct decision
*d
, int indent
, int maxdepth
)
2945 for (i
= 0; i
< indent
; ++i
)
2947 fputs ("(nil)\n", stderr
);
2951 debug_decision_1 (d
, indent
);
2952 for (n
= d
->success
.first
; n
; n
= n
->next
)
2953 debug_decision_0 (n
, indent
+ 2, maxdepth
- 1);
2957 debug_decision (struct decision
*d
)
2959 debug_decision_0 (d
, 0, 1000000);
2963 debug_decision_list (struct decision
*d
)
2967 debug_decision_0 (d
, 0, 0);