1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
26 #include "coretypes.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
41 /* Information about a subreg of a hard register. */
44 /* Offset of first hard register involved in the subreg. */
46 /* Number of hard registers involved in the subreg. */
48 /* Whether this subreg can be represented as a hard reg with the new
53 /* Forward declarations */
54 static void set_of_1 (rtx
, rtx
, void *);
55 static bool covers_regno_p (rtx
, unsigned int);
56 static bool covers_regno_no_parallel_p (rtx
, unsigned int);
57 static int rtx_referenced_p_1 (rtx
*, void *);
58 static int computed_jump_p_1 (rtx
);
59 static void parms_set (rtx
, rtx
, void *);
60 static void subreg_get_info (unsigned int, enum machine_mode
,
61 unsigned int, enum machine_mode
,
62 struct subreg_info
*);
64 static unsigned HOST_WIDE_INT
cached_nonzero_bits (rtx
, enum machine_mode
,
65 rtx
, enum machine_mode
,
66 unsigned HOST_WIDE_INT
);
67 static unsigned HOST_WIDE_INT
nonzero_bits1 (rtx
, enum machine_mode
, rtx
,
69 unsigned HOST_WIDE_INT
);
70 static unsigned int cached_num_sign_bit_copies (rtx
, enum machine_mode
, rtx
,
73 static unsigned int num_sign_bit_copies1 (rtx
, enum machine_mode
, rtx
,
74 enum machine_mode
, unsigned int);
76 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
77 -1 if a code has no such operand. */
78 static int non_rtx_starting_operands
[NUM_RTX_CODE
];
80 /* Bit flags that specify the machine subtype we are compiling for.
81 Bits are tested using macros TARGET_... defined in the tm.h file
82 and set by `-m...' switches. Must be defined in rtlanal.c. */
86 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
87 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
88 SIGN_EXTEND then while narrowing we also have to enforce the
89 representation and sign-extend the value to mode DESTINATION_REP.
91 If the value is already sign-extended to DESTINATION_REP mode we
92 can just switch to DESTINATION mode on it. For each pair of
93 integral modes SOURCE and DESTINATION, when truncating from SOURCE
94 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
95 contains the number of high-order bits in SOURCE that have to be
96 copies of the sign-bit so that we can do this mode-switch to
100 num_sign_bit_copies_in_rep
[MAX_MODE_INT
+ 1][MAX_MODE_INT
+ 1];
102 /* Return 1 if the value of X is unstable
103 (would be different at a different point in the program).
104 The frame pointer, arg pointer, etc. are considered stable
105 (within one function) and so is anything marked `unchanging'. */
108 rtx_unstable_p (rtx x
)
110 RTX_CODE code
= GET_CODE (x
);
117 return !MEM_READONLY_P (x
) || rtx_unstable_p (XEXP (x
, 0));
128 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
129 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
130 /* The arg pointer varies if it is not a fixed register. */
131 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
133 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
134 /* ??? When call-clobbered, the value is stable modulo the restore
135 that must happen after a call. This currently screws up local-alloc
136 into believing that the restore is not needed. */
137 if (x
== pic_offset_table_rtx
)
143 if (MEM_VOLATILE_P (x
))
152 fmt
= GET_RTX_FORMAT (code
);
153 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
156 if (rtx_unstable_p (XEXP (x
, i
)))
159 else if (fmt
[i
] == 'E')
162 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
163 if (rtx_unstable_p (XVECEXP (x
, i
, j
)))
170 /* Return 1 if X has a value that can vary even between two
171 executions of the program. 0 means X can be compared reliably
172 against certain constants or near-constants.
173 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
174 zero, we are slightly more conservative.
175 The frame pointer and the arg pointer are considered constant. */
178 rtx_varies_p (rtx x
, int for_alias
)
191 return !MEM_READONLY_P (x
) || rtx_varies_p (XEXP (x
, 0), for_alias
);
202 /* Note that we have to test for the actual rtx used for the frame
203 and arg pointers and not just the register number in case we have
204 eliminated the frame and/or arg pointer and are using it
206 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
207 /* The arg pointer varies if it is not a fixed register. */
208 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
210 if (x
== pic_offset_table_rtx
211 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
212 /* ??? When call-clobbered, the value is stable modulo the restore
213 that must happen after a call. This currently screws up
214 local-alloc into believing that the restore is not needed, so we
215 must return 0 only if we are called from alias analysis. */
223 /* The operand 0 of a LO_SUM is considered constant
224 (in fact it is related specifically to operand 1)
225 during alias analysis. */
226 return (! for_alias
&& rtx_varies_p (XEXP (x
, 0), for_alias
))
227 || rtx_varies_p (XEXP (x
, 1), for_alias
);
230 if (MEM_VOLATILE_P (x
))
239 fmt
= GET_RTX_FORMAT (code
);
240 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
243 if (rtx_varies_p (XEXP (x
, i
), for_alias
))
246 else if (fmt
[i
] == 'E')
249 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
250 if (rtx_varies_p (XVECEXP (x
, i
, j
), for_alias
))
257 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
258 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
259 whether nonzero is returned for unaligned memory accesses on strict
260 alignment machines. */
263 rtx_addr_can_trap_p_1 (rtx x
, enum machine_mode mode
, bool unaligned_mems
)
265 enum rtx_code code
= GET_CODE (x
);
270 return SYMBOL_REF_WEAK (x
);
276 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
277 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
278 || x
== stack_pointer_rtx
279 /* The arg pointer varies if it is not a fixed register. */
280 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
282 /* All of the virtual frame registers are stack references. */
283 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
284 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
289 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), mode
, unaligned_mems
);
292 /* An address is assumed not to trap if:
293 - it is an address that can't trap plus a constant integer,
294 with the proper remainder modulo the mode size if we are
295 considering unaligned memory references. */
296 if (!rtx_addr_can_trap_p_1 (XEXP (x
, 0), mode
, unaligned_mems
)
297 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
299 HOST_WIDE_INT offset
;
301 if (!STRICT_ALIGNMENT
303 || GET_MODE_SIZE (mode
) == 0)
306 offset
= INTVAL (XEXP (x
, 1));
308 #ifdef SPARC_STACK_BOUNDARY_HACK
309 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
310 the real alignment of %sp. However, when it does this, the
311 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
312 if (SPARC_STACK_BOUNDARY_HACK
313 && (XEXP (x
, 0) == stack_pointer_rtx
314 || XEXP (x
, 0) == hard_frame_pointer_rtx
))
315 offset
-= STACK_POINTER_OFFSET
;
318 return offset
% GET_MODE_SIZE (mode
) != 0;
321 /* - or it is the pic register plus a constant. */
322 if (XEXP (x
, 0) == pic_offset_table_rtx
&& CONSTANT_P (XEXP (x
, 1)))
329 return rtx_addr_can_trap_p_1 (XEXP (x
, 1), mode
, unaligned_mems
);
336 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), mode
, unaligned_mems
);
342 /* If it isn't one of the case above, it can cause a trap. */
346 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
349 rtx_addr_can_trap_p (rtx x
)
351 return rtx_addr_can_trap_p_1 (x
, VOIDmode
, false);
354 /* Return true if X is an address that is known to not be zero. */
357 nonzero_address_p (rtx x
)
359 enum rtx_code code
= GET_CODE (x
);
364 return !SYMBOL_REF_WEAK (x
);
370 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
371 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
372 || x
== stack_pointer_rtx
373 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
375 /* All of the virtual frame registers are stack references. */
376 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
377 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
382 return nonzero_address_p (XEXP (x
, 0));
385 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
386 return nonzero_address_p (XEXP (x
, 0));
387 /* Handle PIC references. */
388 else if (XEXP (x
, 0) == pic_offset_table_rtx
389 && CONSTANT_P (XEXP (x
, 1)))
394 /* Similar to the above; allow positive offsets. Further, since
395 auto-inc is only allowed in memories, the register must be a
397 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
398 && INTVAL (XEXP (x
, 1)) > 0)
400 return nonzero_address_p (XEXP (x
, 0));
403 /* Similarly. Further, the offset is always positive. */
410 return nonzero_address_p (XEXP (x
, 0));
413 return nonzero_address_p (XEXP (x
, 1));
419 /* If it isn't one of the case above, might be zero. */
423 /* Return 1 if X refers to a memory location whose address
424 cannot be compared reliably with constant addresses,
425 or if X refers to a BLKmode memory object.
426 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
427 zero, we are slightly more conservative. */
430 rtx_addr_varies_p (rtx x
, int for_alias
)
441 return GET_MODE (x
) == BLKmode
|| rtx_varies_p (XEXP (x
, 0), for_alias
);
443 fmt
= GET_RTX_FORMAT (code
);
444 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
447 if (rtx_addr_varies_p (XEXP (x
, i
), for_alias
))
450 else if (fmt
[i
] == 'E')
453 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
454 if (rtx_addr_varies_p (XVECEXP (x
, i
, j
), for_alias
))
460 /* Return the value of the integer term in X, if one is apparent;
462 Only obvious integer terms are detected.
463 This is used in cse.c with the `related_value' field. */
466 get_integer_term (rtx x
)
468 if (GET_CODE (x
) == CONST
)
471 if (GET_CODE (x
) == MINUS
472 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
473 return - INTVAL (XEXP (x
, 1));
474 if (GET_CODE (x
) == PLUS
475 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
476 return INTVAL (XEXP (x
, 1));
480 /* If X is a constant, return the value sans apparent integer term;
482 Only obvious integer terms are detected. */
485 get_related_value (rtx x
)
487 if (GET_CODE (x
) != CONST
)
490 if (GET_CODE (x
) == PLUS
491 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
493 else if (GET_CODE (x
) == MINUS
494 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
499 /* Return the number of places FIND appears within X. If COUNT_DEST is
500 zero, we do not count occurrences inside the destination of a SET. */
503 count_occurrences (rtx x
, rtx find
, int count_dest
)
507 const char *format_ptr
;
528 count
= count_occurrences (XEXP (x
, 0), find
, count_dest
);
530 count
+= count_occurrences (XEXP (x
, 1), find
, count_dest
);
534 if (MEM_P (find
) && rtx_equal_p (x
, find
))
539 if (SET_DEST (x
) == find
&& ! count_dest
)
540 return count_occurrences (SET_SRC (x
), find
, count_dest
);
547 format_ptr
= GET_RTX_FORMAT (code
);
550 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
552 switch (*format_ptr
++)
555 count
+= count_occurrences (XEXP (x
, i
), find
, count_dest
);
559 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
560 count
+= count_occurrences (XVECEXP (x
, i
, j
), find
, count_dest
);
567 /* Nonzero if register REG appears somewhere within IN.
568 Also works if REG is not a register; in this case it checks
569 for a subexpression of IN that is Lisp "equal" to REG. */
572 reg_mentioned_p (rtx reg
, rtx in
)
584 if (GET_CODE (in
) == LABEL_REF
)
585 return reg
== XEXP (in
, 0);
587 code
= GET_CODE (in
);
591 /* Compare registers by number. */
593 return REG_P (reg
) && REGNO (in
) == REGNO (reg
);
595 /* These codes have no constituent expressions
605 /* These are kept unique for a given value. */
612 if (GET_CODE (reg
) == code
&& rtx_equal_p (reg
, in
))
615 fmt
= GET_RTX_FORMAT (code
);
617 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
622 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
623 if (reg_mentioned_p (reg
, XVECEXP (in
, i
, j
)))
626 else if (fmt
[i
] == 'e'
627 && reg_mentioned_p (reg
, XEXP (in
, i
)))
633 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
634 no CODE_LABEL insn. */
637 no_labels_between_p (rtx beg
, rtx end
)
642 for (p
= NEXT_INSN (beg
); p
!= end
; p
= NEXT_INSN (p
))
648 /* Nonzero if register REG is used in an insn between
649 FROM_INSN and TO_INSN (exclusive of those two). */
652 reg_used_between_p (rtx reg
, rtx from_insn
, rtx to_insn
)
656 if (from_insn
== to_insn
)
659 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
661 && (reg_overlap_mentioned_p (reg
, PATTERN (insn
))
662 || (CALL_P (insn
) && find_reg_fusage (insn
, USE
, reg
))))
667 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
668 is entirely replaced by a new value and the only use is as a SET_DEST,
669 we do not consider it a reference. */
672 reg_referenced_p (rtx x
, rtx body
)
676 switch (GET_CODE (body
))
679 if (reg_overlap_mentioned_p (x
, SET_SRC (body
)))
682 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
683 of a REG that occupies all of the REG, the insn references X if
684 it is mentioned in the destination. */
685 if (GET_CODE (SET_DEST (body
)) != CC0
686 && GET_CODE (SET_DEST (body
)) != PC
687 && !REG_P (SET_DEST (body
))
688 && ! (GET_CODE (SET_DEST (body
)) == SUBREG
689 && REG_P (SUBREG_REG (SET_DEST (body
)))
690 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body
))))
691 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
692 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body
)))
693 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
694 && reg_overlap_mentioned_p (x
, SET_DEST (body
)))
699 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
700 if (reg_overlap_mentioned_p (x
, ASM_OPERANDS_INPUT (body
, i
)))
707 return reg_overlap_mentioned_p (x
, body
);
710 return reg_overlap_mentioned_p (x
, TRAP_CONDITION (body
));
713 return reg_overlap_mentioned_p (x
, XEXP (body
, 0));
716 case UNSPEC_VOLATILE
:
717 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
718 if (reg_overlap_mentioned_p (x
, XVECEXP (body
, 0, i
)))
723 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
724 if (reg_referenced_p (x
, XVECEXP (body
, 0, i
)))
729 if (MEM_P (XEXP (body
, 0)))
730 if (reg_overlap_mentioned_p (x
, XEXP (XEXP (body
, 0), 0)))
735 if (reg_overlap_mentioned_p (x
, COND_EXEC_TEST (body
)))
737 return reg_referenced_p (x
, COND_EXEC_CODE (body
));
744 /* Nonzero if register REG is set or clobbered in an insn between
745 FROM_INSN and TO_INSN (exclusive of those two). */
748 reg_set_between_p (rtx reg
, rtx from_insn
, rtx to_insn
)
752 if (from_insn
== to_insn
)
755 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
756 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
761 /* Internals of reg_set_between_p. */
763 reg_set_p (rtx reg
, rtx insn
)
765 /* We can be passed an insn or part of one. If we are passed an insn,
766 check if a side-effect of the insn clobbers REG. */
768 && (FIND_REG_INC_NOTE (insn
, reg
)
771 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
772 && TEST_HARD_REG_BIT (regs_invalidated_by_call
,
775 || find_reg_fusage (insn
, CLOBBER
, reg
)))))
778 return set_of (reg
, insn
) != NULL_RTX
;
781 /* Similar to reg_set_between_p, but check all registers in X. Return 0
782 only if none of them are modified between START and END. Return 1 if
783 X contains a MEM; this routine does usememory aliasing. */
786 modified_between_p (rtx x
, rtx start
, rtx end
)
788 enum rtx_code code
= GET_CODE (x
);
811 if (modified_between_p (XEXP (x
, 0), start
, end
))
813 if (MEM_READONLY_P (x
))
815 for (insn
= NEXT_INSN (start
); insn
!= end
; insn
= NEXT_INSN (insn
))
816 if (memory_modified_in_insn_p (x
, insn
))
822 return reg_set_between_p (x
, start
, end
);
828 fmt
= GET_RTX_FORMAT (code
);
829 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
831 if (fmt
[i
] == 'e' && modified_between_p (XEXP (x
, i
), start
, end
))
834 else if (fmt
[i
] == 'E')
835 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
836 if (modified_between_p (XVECEXP (x
, i
, j
), start
, end
))
843 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
844 of them are modified in INSN. Return 1 if X contains a MEM; this routine
845 does use memory aliasing. */
848 modified_in_p (rtx x
, rtx insn
)
850 enum rtx_code code
= GET_CODE (x
);
869 if (modified_in_p (XEXP (x
, 0), insn
))
871 if (MEM_READONLY_P (x
))
873 if (memory_modified_in_insn_p (x
, insn
))
879 return reg_set_p (x
, insn
);
885 fmt
= GET_RTX_FORMAT (code
);
886 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
888 if (fmt
[i
] == 'e' && modified_in_p (XEXP (x
, i
), insn
))
891 else if (fmt
[i
] == 'E')
892 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
893 if (modified_in_p (XVECEXP (x
, i
, j
), insn
))
900 /* Helper function for set_of. */
908 set_of_1 (rtx x
, rtx pat
, void *data1
)
910 struct set_of_data
*data
= (struct set_of_data
*) (data1
);
911 if (rtx_equal_p (x
, data
->pat
)
912 || (!MEM_P (x
) && reg_overlap_mentioned_p (data
->pat
, x
)))
916 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
917 (either directly or via STRICT_LOW_PART and similar modifiers). */
919 set_of (rtx pat
, rtx insn
)
921 struct set_of_data data
;
922 data
.found
= NULL_RTX
;
924 note_stores (INSN_P (insn
) ? PATTERN (insn
) : insn
, set_of_1
, &data
);
928 /* Given an INSN, return a SET expression if this insn has only a single SET.
929 It may also have CLOBBERs, USEs, or SET whose output
930 will not be used, which we ignore. */
933 single_set_2 (rtx insn
, rtx pat
)
936 int set_verified
= 1;
939 if (GET_CODE (pat
) == PARALLEL
)
941 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
943 rtx sub
= XVECEXP (pat
, 0, i
);
944 switch (GET_CODE (sub
))
951 /* We can consider insns having multiple sets, where all
952 but one are dead as single set insns. In common case
953 only single set is present in the pattern so we want
954 to avoid checking for REG_UNUSED notes unless necessary.
956 When we reach set first time, we just expect this is
957 the single set we are looking for and only when more
958 sets are found in the insn, we check them. */
961 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (set
))
962 && !side_effects_p (set
))
968 set
= sub
, set_verified
= 0;
969 else if (!find_reg_note (insn
, REG_UNUSED
, SET_DEST (sub
))
970 || side_effects_p (sub
))
982 /* Given an INSN, return nonzero if it has more than one SET, else return
986 multiple_sets (rtx insn
)
991 /* INSN must be an insn. */
995 /* Only a PARALLEL can have multiple SETs. */
996 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
998 for (i
= 0, found
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
999 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
1001 /* If we have already found a SET, then return now. */
1009 /* Either zero or one SET. */
1013 /* Return nonzero if the destination of SET equals the source
1014 and there are no side effects. */
1017 set_noop_p (rtx set
)
1019 rtx src
= SET_SRC (set
);
1020 rtx dst
= SET_DEST (set
);
1022 if (dst
== pc_rtx
&& src
== pc_rtx
)
1025 if (MEM_P (dst
) && MEM_P (src
))
1026 return rtx_equal_p (dst
, src
) && !side_effects_p (dst
);
1028 if (GET_CODE (dst
) == ZERO_EXTRACT
)
1029 return rtx_equal_p (XEXP (dst
, 0), src
)
1030 && ! BYTES_BIG_ENDIAN
&& XEXP (dst
, 2) == const0_rtx
1031 && !side_effects_p (src
);
1033 if (GET_CODE (dst
) == STRICT_LOW_PART
)
1034 dst
= XEXP (dst
, 0);
1036 if (GET_CODE (src
) == SUBREG
&& GET_CODE (dst
) == SUBREG
)
1038 if (SUBREG_BYTE (src
) != SUBREG_BYTE (dst
))
1040 src
= SUBREG_REG (src
);
1041 dst
= SUBREG_REG (dst
);
1044 return (REG_P (src
) && REG_P (dst
)
1045 && REGNO (src
) == REGNO (dst
));
1048 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1052 noop_move_p (rtx insn
)
1054 rtx pat
= PATTERN (insn
);
1056 if (INSN_CODE (insn
) == NOOP_MOVE_INSN_CODE
)
1059 /* Insns carrying these notes are useful later on. */
1060 if (find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1063 /* For now treat an insn with a REG_RETVAL note as a
1064 a special insn which should not be considered a no-op. */
1065 if (find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
1068 if (GET_CODE (pat
) == SET
&& set_noop_p (pat
))
1071 if (GET_CODE (pat
) == PARALLEL
)
1074 /* If nothing but SETs of registers to themselves,
1075 this insn can also be deleted. */
1076 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1078 rtx tem
= XVECEXP (pat
, 0, i
);
1080 if (GET_CODE (tem
) == USE
1081 || GET_CODE (tem
) == CLOBBER
)
1084 if (GET_CODE (tem
) != SET
|| ! set_noop_p (tem
))
1094 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1095 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1096 If the object was modified, if we hit a partial assignment to X, or hit a
1097 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1098 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1102 find_last_value (rtx x
, rtx
*pinsn
, rtx valid_to
, int allow_hwreg
)
1106 for (p
= PREV_INSN (*pinsn
); p
&& !LABEL_P (p
);
1110 rtx set
= single_set (p
);
1111 rtx note
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
);
1113 if (set
&& rtx_equal_p (x
, SET_DEST (set
)))
1115 rtx src
= SET_SRC (set
);
1117 if (note
&& GET_CODE (XEXP (note
, 0)) != EXPR_LIST
)
1118 src
= XEXP (note
, 0);
1120 if ((valid_to
== NULL_RTX
1121 || ! modified_between_p (src
, PREV_INSN (p
), valid_to
))
1122 /* Reject hard registers because we don't usually want
1123 to use them; we'd rather use a pseudo. */
1125 && REGNO (src
) < FIRST_PSEUDO_REGISTER
) || allow_hwreg
))
1132 /* If set in non-simple way, we don't have a value. */
1133 if (reg_set_p (x
, p
))
1140 /* Return nonzero if register in range [REGNO, ENDREGNO)
1141 appears either explicitly or implicitly in X
1142 other than being stored into.
1144 References contained within the substructure at LOC do not count.
1145 LOC may be zero, meaning don't ignore anything. */
1148 refers_to_regno_p (unsigned int regno
, unsigned int endregno
, rtx x
,
1152 unsigned int x_regno
;
1157 /* The contents of a REG_NONNEG note is always zero, so we must come here
1158 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1162 code
= GET_CODE (x
);
1167 x_regno
= REGNO (x
);
1169 /* If we modifying the stack, frame, or argument pointer, it will
1170 clobber a virtual register. In fact, we could be more precise,
1171 but it isn't worth it. */
1172 if ((x_regno
== STACK_POINTER_REGNUM
1173 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1174 || x_regno
== ARG_POINTER_REGNUM
1176 || x_regno
== FRAME_POINTER_REGNUM
)
1177 && regno
>= FIRST_VIRTUAL_REGISTER
&& regno
<= LAST_VIRTUAL_REGISTER
)
1180 return (endregno
> x_regno
1181 && regno
< x_regno
+ (x_regno
< FIRST_PSEUDO_REGISTER
1182 ? hard_regno_nregs
[x_regno
][GET_MODE (x
)]
1186 /* If this is a SUBREG of a hard reg, we can see exactly which
1187 registers are being modified. Otherwise, handle normally. */
1188 if (REG_P (SUBREG_REG (x
))
1189 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
1191 unsigned int inner_regno
= subreg_regno (x
);
1192 unsigned int inner_endregno
1193 = inner_regno
+ (inner_regno
< FIRST_PSEUDO_REGISTER
1194 ? subreg_nregs (x
) : 1);
1196 return endregno
> inner_regno
&& regno
< inner_endregno
;
1202 if (&SET_DEST (x
) != loc
1203 /* Note setting a SUBREG counts as referring to the REG it is in for
1204 a pseudo but not for hard registers since we can
1205 treat each word individually. */
1206 && ((GET_CODE (SET_DEST (x
)) == SUBREG
1207 && loc
!= &SUBREG_REG (SET_DEST (x
))
1208 && REG_P (SUBREG_REG (SET_DEST (x
)))
1209 && REGNO (SUBREG_REG (SET_DEST (x
))) >= FIRST_PSEUDO_REGISTER
1210 && refers_to_regno_p (regno
, endregno
,
1211 SUBREG_REG (SET_DEST (x
)), loc
))
1212 || (!REG_P (SET_DEST (x
))
1213 && refers_to_regno_p (regno
, endregno
, SET_DEST (x
), loc
))))
1216 if (code
== CLOBBER
|| loc
== &SET_SRC (x
))
1225 /* X does not match, so try its subexpressions. */
1227 fmt
= GET_RTX_FORMAT (code
);
1228 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1230 if (fmt
[i
] == 'e' && loc
!= &XEXP (x
, i
))
1238 if (refers_to_regno_p (regno
, endregno
, XEXP (x
, i
), loc
))
1241 else if (fmt
[i
] == 'E')
1244 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1245 if (loc
!= &XVECEXP (x
, i
, j
)
1246 && refers_to_regno_p (regno
, endregno
, XVECEXP (x
, i
, j
), loc
))
1253 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1254 we check if any register number in X conflicts with the relevant register
1255 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1256 contains a MEM (we don't bother checking for memory addresses that can't
1257 conflict because we expect this to be a rare case. */
1260 reg_overlap_mentioned_p (rtx x
, rtx in
)
1262 unsigned int regno
, endregno
;
1264 /* If either argument is a constant, then modifying X can not
1265 affect IN. Here we look at IN, we can profitably combine
1266 CONSTANT_P (x) with the switch statement below. */
1267 if (CONSTANT_P (in
))
1271 switch (GET_CODE (x
))
1273 case STRICT_LOW_PART
:
1276 /* Overly conservative. */
1281 regno
= REGNO (SUBREG_REG (x
));
1282 if (regno
< FIRST_PSEUDO_REGISTER
)
1283 regno
= subreg_regno (x
);
1284 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
1285 ? subreg_nregs (x
) : 1);
1290 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
1291 ? hard_regno_nregs
[regno
][GET_MODE (x
)] : 1);
1293 return refers_to_regno_p (regno
, endregno
, in
, (rtx
*) 0);
1303 fmt
= GET_RTX_FORMAT (GET_CODE (in
));
1304 for (i
= GET_RTX_LENGTH (GET_CODE (in
)) - 1; i
>= 0; i
--)
1307 if (reg_overlap_mentioned_p (x
, XEXP (in
, i
)))
1310 else if (fmt
[i
] == 'E')
1313 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; --j
)
1314 if (reg_overlap_mentioned_p (x
, XVECEXP (in
, i
, j
)))
1324 return reg_mentioned_p (x
, in
);
1330 /* If any register in here refers to it we return true. */
1331 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1332 if (XEXP (XVECEXP (x
, 0, i
), 0) != 0
1333 && reg_overlap_mentioned_p (XEXP (XVECEXP (x
, 0, i
), 0), in
))
1339 gcc_assert (CONSTANT_P (x
));
1344 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1345 (X would be the pattern of an insn).
1346 FUN receives two arguments:
1347 the REG, MEM, CC0 or PC being stored in or clobbered,
1348 the SET or CLOBBER rtx that does the store.
1350 If the item being stored in or clobbered is a SUBREG of a hard register,
1351 the SUBREG will be passed. */
1354 note_stores (rtx x
, void (*fun
) (rtx
, rtx
, void *), void *data
)
1358 if (GET_CODE (x
) == COND_EXEC
)
1359 x
= COND_EXEC_CODE (x
);
1361 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
1363 rtx dest
= SET_DEST (x
);
1365 while ((GET_CODE (dest
) == SUBREG
1366 && (!REG_P (SUBREG_REG (dest
))
1367 || REGNO (SUBREG_REG (dest
)) >= FIRST_PSEUDO_REGISTER
))
1368 || GET_CODE (dest
) == ZERO_EXTRACT
1369 || GET_CODE (dest
) == STRICT_LOW_PART
)
1370 dest
= XEXP (dest
, 0);
1372 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1373 each of whose first operand is a register. */
1374 if (GET_CODE (dest
) == PARALLEL
)
1376 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1377 if (XEXP (XVECEXP (dest
, 0, i
), 0) != 0)
1378 (*fun
) (XEXP (XVECEXP (dest
, 0, i
), 0), x
, data
);
1381 (*fun
) (dest
, x
, data
);
1384 else if (GET_CODE (x
) == PARALLEL
)
1385 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1386 note_stores (XVECEXP (x
, 0, i
), fun
, data
);
1389 /* Like notes_stores, but call FUN for each expression that is being
1390 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1391 FUN for each expression, not any interior subexpressions. FUN receives a
1392 pointer to the expression and the DATA passed to this function.
1394 Note that this is not quite the same test as that done in reg_referenced_p
1395 since that considers something as being referenced if it is being
1396 partially set, while we do not. */
1399 note_uses (rtx
*pbody
, void (*fun
) (rtx
*, void *), void *data
)
1404 switch (GET_CODE (body
))
1407 (*fun
) (&COND_EXEC_TEST (body
), data
);
1408 note_uses (&COND_EXEC_CODE (body
), fun
, data
);
1412 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1413 note_uses (&XVECEXP (body
, 0, i
), fun
, data
);
1417 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1418 note_uses (&PATTERN (XVECEXP (body
, 0, i
)), fun
, data
);
1422 (*fun
) (&XEXP (body
, 0), data
);
1426 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
1427 (*fun
) (&ASM_OPERANDS_INPUT (body
, i
), data
);
1431 (*fun
) (&TRAP_CONDITION (body
), data
);
1435 (*fun
) (&XEXP (body
, 0), data
);
1439 case UNSPEC_VOLATILE
:
1440 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1441 (*fun
) (&XVECEXP (body
, 0, i
), data
);
1445 if (MEM_P (XEXP (body
, 0)))
1446 (*fun
) (&XEXP (XEXP (body
, 0), 0), data
);
1451 rtx dest
= SET_DEST (body
);
1453 /* For sets we replace everything in source plus registers in memory
1454 expression in store and operands of a ZERO_EXTRACT. */
1455 (*fun
) (&SET_SRC (body
), data
);
1457 if (GET_CODE (dest
) == ZERO_EXTRACT
)
1459 (*fun
) (&XEXP (dest
, 1), data
);
1460 (*fun
) (&XEXP (dest
, 2), data
);
1463 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
)
1464 dest
= XEXP (dest
, 0);
1467 (*fun
) (&XEXP (dest
, 0), data
);
1472 /* All the other possibilities never store. */
1473 (*fun
) (pbody
, data
);
1478 /* Return nonzero if X's old contents don't survive after INSN.
1479 This will be true if X is (cc0) or if X is a register and
1480 X dies in INSN or because INSN entirely sets X.
1482 "Entirely set" means set directly and not through a SUBREG, or
1483 ZERO_EXTRACT, so no trace of the old contents remains.
1484 Likewise, REG_INC does not count.
1486 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1487 but for this use that makes no difference, since regs don't overlap
1488 during their lifetimes. Therefore, this function may be used
1489 at any time after deaths have been computed (in flow.c).
1491 If REG is a hard reg that occupies multiple machine registers, this
1492 function will only return 1 if each of those registers will be replaced
1496 dead_or_set_p (rtx insn
, rtx x
)
1498 unsigned int regno
, last_regno
;
1501 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1502 if (GET_CODE (x
) == CC0
)
1505 gcc_assert (REG_P (x
));
1508 last_regno
= (regno
>= FIRST_PSEUDO_REGISTER
? regno
1509 : regno
+ hard_regno_nregs
[regno
][GET_MODE (x
)] - 1);
1511 for (i
= regno
; i
<= last_regno
; i
++)
1512 if (! dead_or_set_regno_p (insn
, i
))
1518 /* Return TRUE iff DEST is a register or subreg of a register and
1519 doesn't change the number of words of the inner register, and any
1520 part of the register is TEST_REGNO. */
1523 covers_regno_no_parallel_p (rtx dest
, unsigned int test_regno
)
1525 unsigned int regno
, endregno
;
1527 if (GET_CODE (dest
) == SUBREG
1528 && (((GET_MODE_SIZE (GET_MODE (dest
))
1529 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
1530 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
1531 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)))
1532 dest
= SUBREG_REG (dest
);
1537 regno
= REGNO (dest
);
1538 endregno
= (regno
>= FIRST_PSEUDO_REGISTER
? regno
+ 1
1539 : regno
+ hard_regno_nregs
[regno
][GET_MODE (dest
)]);
1540 return (test_regno
>= regno
&& test_regno
< endregno
);
1543 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1544 any member matches the covers_regno_no_parallel_p criteria. */
1547 covers_regno_p (rtx dest
, unsigned int test_regno
)
1549 if (GET_CODE (dest
) == PARALLEL
)
1551 /* Some targets place small structures in registers for return
1552 values of functions, and those registers are wrapped in
1553 PARALLELs that we may see as the destination of a SET. */
1556 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1558 rtx inner
= XEXP (XVECEXP (dest
, 0, i
), 0);
1559 if (inner
!= NULL_RTX
1560 && covers_regno_no_parallel_p (inner
, test_regno
))
1567 return covers_regno_no_parallel_p (dest
, test_regno
);
1570 /* Utility function for dead_or_set_p to check an individual register. Also
1571 called from flow.c. */
1574 dead_or_set_regno_p (rtx insn
, unsigned int test_regno
)
1578 /* See if there is a death note for something that includes TEST_REGNO. */
1579 if (find_regno_note (insn
, REG_DEAD
, test_regno
))
1583 && find_regno_fusage (insn
, CLOBBER
, test_regno
))
1586 pattern
= PATTERN (insn
);
1588 if (GET_CODE (pattern
) == COND_EXEC
)
1589 pattern
= COND_EXEC_CODE (pattern
);
1591 if (GET_CODE (pattern
) == SET
)
1592 return covers_regno_p (SET_DEST (pattern
), test_regno
);
1593 else if (GET_CODE (pattern
) == PARALLEL
)
1597 for (i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
1599 rtx body
= XVECEXP (pattern
, 0, i
);
1601 if (GET_CODE (body
) == COND_EXEC
)
1602 body
= COND_EXEC_CODE (body
);
1604 if ((GET_CODE (body
) == SET
|| GET_CODE (body
) == CLOBBER
)
1605 && covers_regno_p (SET_DEST (body
), test_regno
))
1613 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1614 If DATUM is nonzero, look for one whose datum is DATUM. */
1617 find_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
1623 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1624 if (! INSN_P (insn
))
1628 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1629 if (REG_NOTE_KIND (link
) == kind
)
1634 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1635 if (REG_NOTE_KIND (link
) == kind
&& datum
== XEXP (link
, 0))
1640 /* Return the reg-note of kind KIND in insn INSN which applies to register
1641 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1642 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1643 it might be the case that the note overlaps REGNO. */
1646 find_regno_note (rtx insn
, enum reg_note kind
, unsigned int regno
)
1650 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1651 if (! INSN_P (insn
))
1654 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1655 if (REG_NOTE_KIND (link
) == kind
1656 /* Verify that it is a register, so that scratch and MEM won't cause a
1658 && REG_P (XEXP (link
, 0))
1659 && REGNO (XEXP (link
, 0)) <= regno
1660 && ((REGNO (XEXP (link
, 0))
1661 + (REGNO (XEXP (link
, 0)) >= FIRST_PSEUDO_REGISTER
? 1
1662 : hard_regno_nregs
[REGNO (XEXP (link
, 0))]
1663 [GET_MODE (XEXP (link
, 0))]))
1669 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1673 find_reg_equal_equiv_note (rtx insn
)
1679 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1680 if (REG_NOTE_KIND (link
) == REG_EQUAL
1681 || REG_NOTE_KIND (link
) == REG_EQUIV
)
1683 if (single_set (insn
) == 0)
1690 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1691 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1694 find_reg_fusage (rtx insn
, enum rtx_code code
, rtx datum
)
1696 /* If it's not a CALL_INSN, it can't possibly have a
1697 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1707 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
1709 link
= XEXP (link
, 1))
1710 if (GET_CODE (XEXP (link
, 0)) == code
1711 && rtx_equal_p (datum
, XEXP (XEXP (link
, 0), 0)))
1716 unsigned int regno
= REGNO (datum
);
1718 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1719 to pseudo registers, so don't bother checking. */
1721 if (regno
< FIRST_PSEUDO_REGISTER
)
1723 unsigned int end_regno
1724 = regno
+ hard_regno_nregs
[regno
][GET_MODE (datum
)];
1727 for (i
= regno
; i
< end_regno
; i
++)
1728 if (find_regno_fusage (insn
, code
, i
))
1736 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1737 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1740 find_regno_fusage (rtx insn
, enum rtx_code code
, unsigned int regno
)
1744 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1745 to pseudo registers, so don't bother checking. */
1747 if (regno
>= FIRST_PSEUDO_REGISTER
1751 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
1753 unsigned int regnote
;
1756 if (GET_CODE (op
= XEXP (link
, 0)) == code
1757 && REG_P (reg
= XEXP (op
, 0))
1758 && (regnote
= REGNO (reg
)) <= regno
1759 && regnote
+ hard_regno_nregs
[regnote
][GET_MODE (reg
)] > regno
)
1766 /* Return true if INSN is a call to a pure function. */
1769 pure_call_p (rtx insn
)
1773 if (!CALL_P (insn
) || ! CONST_OR_PURE_CALL_P (insn
))
1776 /* Look for the note that differentiates const and pure functions. */
1777 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
1781 if (GET_CODE (u
= XEXP (link
, 0)) == USE
1782 && MEM_P (m
= XEXP (u
, 0)) && GET_MODE (m
) == BLKmode
1783 && GET_CODE (XEXP (m
, 0)) == SCRATCH
)
1790 /* Remove register note NOTE from the REG_NOTES of INSN. */
1793 remove_note (rtx insn
, rtx note
)
1797 if (note
== NULL_RTX
)
1800 if (REG_NOTES (insn
) == note
)
1802 REG_NOTES (insn
) = XEXP (note
, 1);
1806 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1807 if (XEXP (link
, 1) == note
)
1809 XEXP (link
, 1) = XEXP (note
, 1);
1816 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1817 return 1 if it is found. A simple equality test is used to determine if
1821 in_expr_list_p (rtx listp
, rtx node
)
1825 for (x
= listp
; x
; x
= XEXP (x
, 1))
1826 if (node
== XEXP (x
, 0))
1832 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1833 remove that entry from the list if it is found.
1835 A simple equality test is used to determine if NODE matches. */
1838 remove_node_from_expr_list (rtx node
, rtx
*listp
)
1841 rtx prev
= NULL_RTX
;
1845 if (node
== XEXP (temp
, 0))
1847 /* Splice the node out of the list. */
1849 XEXP (prev
, 1) = XEXP (temp
, 1);
1851 *listp
= XEXP (temp
, 1);
1857 temp
= XEXP (temp
, 1);
1861 /* Nonzero if X contains any volatile instructions. These are instructions
1862 which may cause unpredictable machine state instructions, and thus no
1863 instructions should be moved or combined across them. This includes
1864 only volatile asms and UNSPEC_VOLATILE instructions. */
1867 volatile_insn_p (rtx x
)
1871 code
= GET_CODE (x
);
1891 case UNSPEC_VOLATILE
:
1892 /* case TRAP_IF: This isn't clear yet. */
1897 if (MEM_VOLATILE_P (x
))
1904 /* Recursively scan the operands of this expression. */
1907 const char *fmt
= GET_RTX_FORMAT (code
);
1910 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1914 if (volatile_insn_p (XEXP (x
, i
)))
1917 else if (fmt
[i
] == 'E')
1920 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1921 if (volatile_insn_p (XVECEXP (x
, i
, j
)))
1929 /* Nonzero if X contains any volatile memory references
1930 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
1933 volatile_refs_p (rtx x
)
1937 code
= GET_CODE (x
);
1955 case UNSPEC_VOLATILE
:
1961 if (MEM_VOLATILE_P (x
))
1968 /* Recursively scan the operands of this expression. */
1971 const char *fmt
= GET_RTX_FORMAT (code
);
1974 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1978 if (volatile_refs_p (XEXP (x
, i
)))
1981 else if (fmt
[i
] == 'E')
1984 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1985 if (volatile_refs_p (XVECEXP (x
, i
, j
)))
1993 /* Similar to above, except that it also rejects register pre- and post-
1997 side_effects_p (rtx x
)
2001 code
= GET_CODE (x
);
2019 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2020 when some combination can't be done. If we see one, don't think
2021 that we can simplify the expression. */
2022 return (GET_MODE (x
) != VOIDmode
);
2031 case UNSPEC_VOLATILE
:
2032 /* case TRAP_IF: This isn't clear yet. */
2038 if (MEM_VOLATILE_P (x
))
2045 /* Recursively scan the operands of this expression. */
2048 const char *fmt
= GET_RTX_FORMAT (code
);
2051 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2055 if (side_effects_p (XEXP (x
, i
)))
2058 else if (fmt
[i
] == 'E')
2061 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2062 if (side_effects_p (XVECEXP (x
, i
, j
)))
2070 enum may_trap_p_flags
2072 MTP_UNALIGNED_MEMS
= 1,
2075 /* Return nonzero if evaluating rtx X might cause a trap.
2076 (FLAGS & MTP_UNALIGNED_MEMS) controls whether nonzero is returned for
2077 unaligned memory accesses on strict alignment machines. If
2078 (FLAGS & AFTER_MOVE) is true, returns nonzero even in case the expression
2079 cannot trap at its current location, but it might become trapping if moved
2083 may_trap_p_1 (rtx x
, unsigned flags
)
2088 bool unaligned_mems
= (flags
& MTP_UNALIGNED_MEMS
) != 0;
2092 code
= GET_CODE (x
);
2095 /* Handle these cases quickly. */
2109 case UNSPEC_VOLATILE
:
2114 return MEM_VOLATILE_P (x
);
2116 /* Memory ref can trap unless it's a static var or a stack slot. */
2118 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2119 reference; moving it out of condition might cause its address
2121 !(flags
& MTP_AFTER_MOVE
)
2123 && (!STRICT_ALIGNMENT
|| !unaligned_mems
))
2126 rtx_addr_can_trap_p_1 (XEXP (x
, 0), GET_MODE (x
), unaligned_mems
);
2128 /* Division by a non-constant might trap. */
2133 if (HONOR_SNANS (GET_MODE (x
)))
2135 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
)))
2136 return flag_trapping_math
;
2137 if (!CONSTANT_P (XEXP (x
, 1)) || (XEXP (x
, 1) == const0_rtx
))
2142 /* An EXPR_LIST is used to represent a function call. This
2143 certainly may trap. */
2152 /* Some floating point comparisons may trap. */
2153 if (!flag_trapping_math
)
2155 /* ??? There is no machine independent way to check for tests that trap
2156 when COMPARE is used, though many targets do make this distinction.
2157 For instance, sparc uses CCFPE for compares which generate exceptions
2158 and CCFP for compares which do not generate exceptions. */
2159 if (HONOR_NANS (GET_MODE (x
)))
2161 /* But often the compare has some CC mode, so check operand
2163 if (HONOR_NANS (GET_MODE (XEXP (x
, 0)))
2164 || HONOR_NANS (GET_MODE (XEXP (x
, 1))))
2170 if (HONOR_SNANS (GET_MODE (x
)))
2172 /* Often comparison is CC mode, so check operand modes. */
2173 if (HONOR_SNANS (GET_MODE (XEXP (x
, 0)))
2174 || HONOR_SNANS (GET_MODE (XEXP (x
, 1))))
2179 /* Conversion of floating point might trap. */
2180 if (flag_trapping_math
&& HONOR_NANS (GET_MODE (XEXP (x
, 0))))
2187 /* These operations don't trap even with floating point. */
2191 /* Any floating arithmetic may trap. */
2192 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
))
2193 && flag_trapping_math
)
2197 fmt
= GET_RTX_FORMAT (code
);
2198 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2202 if (may_trap_p_1 (XEXP (x
, i
), flags
))
2205 else if (fmt
[i
] == 'E')
2208 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2209 if (may_trap_p_1 (XVECEXP (x
, i
, j
), flags
))
2216 /* Return nonzero if evaluating rtx X might cause a trap. */
2221 return may_trap_p_1 (x
, 0);
2224 /* Return nonzero if evaluating rtx X might cause a trap, when the expression
2225 is moved from its current location by some optimization. */
2228 may_trap_after_code_motion_p (rtx x
)
2230 return may_trap_p_1 (x
, MTP_AFTER_MOVE
);
2233 /* Same as above, but additionally return nonzero if evaluating rtx X might
2234 cause a fault. We define a fault for the purpose of this function as a
2235 erroneous execution condition that cannot be encountered during the normal
2236 execution of a valid program; the typical example is an unaligned memory
2237 access on a strict alignment machine. The compiler guarantees that it
2238 doesn't generate code that will fault from a valid program, but this
2239 guarantee doesn't mean anything for individual instructions. Consider
2240 the following example:
2242 struct S { int d; union { char *cp; int *ip; }; };
2244 int foo(struct S *s)
2252 on a strict alignment machine. In a valid program, foo will never be
2253 invoked on a structure for which d is equal to 1 and the underlying
2254 unique field of the union not aligned on a 4-byte boundary, but the
2255 expression *s->ip might cause a fault if considered individually.
2257 At the RTL level, potentially problematic expressions will almost always
2258 verify may_trap_p; for example, the above dereference can be emitted as
2259 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2260 However, suppose that foo is inlined in a caller that causes s->cp to
2261 point to a local character variable and guarantees that s->d is not set
2262 to 1; foo may have been effectively translated into pseudo-RTL as:
2265 (set (reg:SI) (mem:SI (%fp - 7)))
2267 (set (reg:QI) (mem:QI (%fp - 7)))
2269 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2270 memory reference to a stack slot, but it will certainly cause a fault
2271 on a strict alignment machine. */
2274 may_trap_or_fault_p (rtx x
)
2276 return may_trap_p_1 (x
, MTP_UNALIGNED_MEMS
);
2279 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2280 i.e., an inequality. */
2283 inequality_comparisons_p (rtx x
)
2287 enum rtx_code code
= GET_CODE (x
);
2317 len
= GET_RTX_LENGTH (code
);
2318 fmt
= GET_RTX_FORMAT (code
);
2320 for (i
= 0; i
< len
; i
++)
2324 if (inequality_comparisons_p (XEXP (x
, i
)))
2327 else if (fmt
[i
] == 'E')
2330 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2331 if (inequality_comparisons_p (XVECEXP (x
, i
, j
)))
2339 /* Replace any occurrence of FROM in X with TO. The function does
2340 not enter into CONST_DOUBLE for the replace.
2342 Note that copying is not done so X must not be shared unless all copies
2343 are to be modified. */
2346 replace_rtx (rtx x
, rtx from
, rtx to
)
2351 /* The following prevents loops occurrence when we change MEM in
2352 CONST_DOUBLE onto the same CONST_DOUBLE. */
2353 if (x
!= 0 && GET_CODE (x
) == CONST_DOUBLE
)
2359 /* Allow this function to make replacements in EXPR_LISTs. */
2363 if (GET_CODE (x
) == SUBREG
)
2365 rtx
new = replace_rtx (SUBREG_REG (x
), from
, to
);
2367 if (GET_CODE (new) == CONST_INT
)
2369 x
= simplify_subreg (GET_MODE (x
), new,
2370 GET_MODE (SUBREG_REG (x
)),
2375 SUBREG_REG (x
) = new;
2379 else if (GET_CODE (x
) == ZERO_EXTEND
)
2381 rtx
new = replace_rtx (XEXP (x
, 0), from
, to
);
2383 if (GET_CODE (new) == CONST_INT
)
2385 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
2386 new, GET_MODE (XEXP (x
, 0)));
2395 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
2396 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
2399 XEXP (x
, i
) = replace_rtx (XEXP (x
, i
), from
, to
);
2400 else if (fmt
[i
] == 'E')
2401 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2402 XVECEXP (x
, i
, j
) = replace_rtx (XVECEXP (x
, i
, j
), from
, to
);
2408 /* Replace occurrences of the old label in *X with the new one.
2409 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2412 replace_label (rtx
*x
, void *data
)
2415 rtx old_label
= ((replace_label_data
*) data
)->r1
;
2416 rtx new_label
= ((replace_label_data
*) data
)->r2
;
2417 bool update_label_nuses
= ((replace_label_data
*) data
)->update_label_nuses
;
2422 if (GET_CODE (l
) == SYMBOL_REF
2423 && CONSTANT_POOL_ADDRESS_P (l
))
2425 rtx c
= get_pool_constant (l
);
2426 if (rtx_referenced_p (old_label
, c
))
2429 replace_label_data
*d
= (replace_label_data
*) data
;
2431 /* Create a copy of constant C; replace the label inside
2432 but do not update LABEL_NUSES because uses in constant pool
2434 new_c
= copy_rtx (c
);
2435 d
->update_label_nuses
= false;
2436 for_each_rtx (&new_c
, replace_label
, data
);
2437 d
->update_label_nuses
= update_label_nuses
;
2439 /* Add the new constant NEW_C to constant pool and replace
2440 the old reference to constant by new reference. */
2441 new_l
= XEXP (force_const_mem (get_pool_mode (l
), new_c
), 0);
2442 *x
= replace_rtx (l
, l
, new_l
);
2447 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2448 field. This is not handled by for_each_rtx because it doesn't
2449 handle unprinted ('0') fields. */
2450 if (JUMP_P (l
) && JUMP_LABEL (l
) == old_label
)
2451 JUMP_LABEL (l
) = new_label
;
2453 if ((GET_CODE (l
) == LABEL_REF
2454 || GET_CODE (l
) == INSN_LIST
)
2455 && XEXP (l
, 0) == old_label
)
2457 XEXP (l
, 0) = new_label
;
2458 if (update_label_nuses
)
2460 ++LABEL_NUSES (new_label
);
2461 --LABEL_NUSES (old_label
);
2469 /* When *BODY is equal to X or X is directly referenced by *BODY
2470 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2471 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2474 rtx_referenced_p_1 (rtx
*body
, void *x
)
2478 if (*body
== NULL_RTX
)
2479 return y
== NULL_RTX
;
2481 /* Return true if a label_ref *BODY refers to label Y. */
2482 if (GET_CODE (*body
) == LABEL_REF
&& LABEL_P (y
))
2483 return XEXP (*body
, 0) == y
;
2485 /* If *BODY is a reference to pool constant traverse the constant. */
2486 if (GET_CODE (*body
) == SYMBOL_REF
2487 && CONSTANT_POOL_ADDRESS_P (*body
))
2488 return rtx_referenced_p (y
, get_pool_constant (*body
));
2490 /* By default, compare the RTL expressions. */
2491 return rtx_equal_p (*body
, y
);
2494 /* Return true if X is referenced in BODY. */
2497 rtx_referenced_p (rtx x
, rtx body
)
2499 return for_each_rtx (&body
, rtx_referenced_p_1
, x
);
2502 /* If INSN is a tablejump return true and store the label (before jump table) to
2503 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2506 tablejump_p (rtx insn
, rtx
*labelp
, rtx
*tablep
)
2511 && (label
= JUMP_LABEL (insn
)) != NULL_RTX
2512 && (table
= next_active_insn (label
)) != NULL_RTX
2514 && (GET_CODE (PATTERN (table
)) == ADDR_VEC
2515 || GET_CODE (PATTERN (table
)) == ADDR_DIFF_VEC
))
2526 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2527 constant that is not in the constant pool and not in the condition
2528 of an IF_THEN_ELSE. */
2531 computed_jump_p_1 (rtx x
)
2533 enum rtx_code code
= GET_CODE (x
);
2552 return ! (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
2553 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)));
2556 return (computed_jump_p_1 (XEXP (x
, 1))
2557 || computed_jump_p_1 (XEXP (x
, 2)));
2563 fmt
= GET_RTX_FORMAT (code
);
2564 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2567 && computed_jump_p_1 (XEXP (x
, i
)))
2570 else if (fmt
[i
] == 'E')
2571 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2572 if (computed_jump_p_1 (XVECEXP (x
, i
, j
)))
2579 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2581 Tablejumps and casesi insns are not considered indirect jumps;
2582 we can recognize them by a (use (label_ref)). */
2585 computed_jump_p (rtx insn
)
2590 rtx pat
= PATTERN (insn
);
2592 if (find_reg_note (insn
, REG_LABEL
, NULL_RTX
))
2594 else if (GET_CODE (pat
) == PARALLEL
)
2596 int len
= XVECLEN (pat
, 0);
2597 int has_use_labelref
= 0;
2599 for (i
= len
- 1; i
>= 0; i
--)
2600 if (GET_CODE (XVECEXP (pat
, 0, i
)) == USE
2601 && (GET_CODE (XEXP (XVECEXP (pat
, 0, i
), 0))
2603 has_use_labelref
= 1;
2605 if (! has_use_labelref
)
2606 for (i
= len
- 1; i
>= 0; i
--)
2607 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
2608 && SET_DEST (XVECEXP (pat
, 0, i
)) == pc_rtx
2609 && computed_jump_p_1 (SET_SRC (XVECEXP (pat
, 0, i
))))
2612 else if (GET_CODE (pat
) == SET
2613 && SET_DEST (pat
) == pc_rtx
2614 && computed_jump_p_1 (SET_SRC (pat
)))
2620 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2621 calls. Processes the subexpressions of EXP and passes them to F. */
2623 for_each_rtx_1 (rtx exp
, int n
, rtx_function f
, void *data
)
2626 const char *format
= GET_RTX_FORMAT (GET_CODE (exp
));
2629 for (; format
[n
] != '\0'; n
++)
2636 result
= (*f
) (x
, data
);
2638 /* Do not traverse sub-expressions. */
2640 else if (result
!= 0)
2641 /* Stop the traversal. */
2645 /* There are no sub-expressions. */
2648 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2651 result
= for_each_rtx_1 (*x
, i
, f
, data
);
2659 if (XVEC (exp
, n
) == 0)
2661 for (j
= 0; j
< XVECLEN (exp
, n
); ++j
)
2664 x
= &XVECEXP (exp
, n
, j
);
2665 result
= (*f
) (x
, data
);
2667 /* Do not traverse sub-expressions. */
2669 else if (result
!= 0)
2670 /* Stop the traversal. */
2674 /* There are no sub-expressions. */
2677 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2680 result
= for_each_rtx_1 (*x
, i
, f
, data
);
2688 /* Nothing to do. */
2696 /* Traverse X via depth-first search, calling F for each
2697 sub-expression (including X itself). F is also passed the DATA.
2698 If F returns -1, do not traverse sub-expressions, but continue
2699 traversing the rest of the tree. If F ever returns any other
2700 nonzero value, stop the traversal, and return the value returned
2701 by F. Otherwise, return 0. This function does not traverse inside
2702 tree structure that contains RTX_EXPRs, or into sub-expressions
2703 whose format code is `0' since it is not known whether or not those
2704 codes are actually RTL.
2706 This routine is very general, and could (should?) be used to
2707 implement many of the other routines in this file. */
2710 for_each_rtx (rtx
*x
, rtx_function f
, void *data
)
2716 result
= (*f
) (x
, data
);
2718 /* Do not traverse sub-expressions. */
2720 else if (result
!= 0)
2721 /* Stop the traversal. */
2725 /* There are no sub-expressions. */
2728 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2732 return for_each_rtx_1 (*x
, i
, f
, data
);
2736 /* Searches X for any reference to REGNO, returning the rtx of the
2737 reference found if any. Otherwise, returns NULL_RTX. */
2740 regno_use_in (unsigned int regno
, rtx x
)
2746 if (REG_P (x
) && REGNO (x
) == regno
)
2749 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
2750 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
2754 if ((tem
= regno_use_in (regno
, XEXP (x
, i
))))
2757 else if (fmt
[i
] == 'E')
2758 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2759 if ((tem
= regno_use_in (regno
, XVECEXP (x
, i
, j
))))
2766 /* Return a value indicating whether OP, an operand of a commutative
2767 operation, is preferred as the first or second operand. The higher
2768 the value, the stronger the preference for being the first operand.
2769 We use negative values to indicate a preference for the first operand
2770 and positive values for the second operand. */
2773 commutative_operand_precedence (rtx op
)
2775 enum rtx_code code
= GET_CODE (op
);
2777 /* Constants always come the second operand. Prefer "nice" constants. */
2778 if (code
== CONST_INT
)
2780 if (code
== CONST_DOUBLE
)
2782 op
= avoid_constant_pool_reference (op
);
2783 code
= GET_CODE (op
);
2785 switch (GET_RTX_CLASS (code
))
2788 if (code
== CONST_INT
)
2790 if (code
== CONST_DOUBLE
)
2795 /* SUBREGs of objects should come second. */
2796 if (code
== SUBREG
&& OBJECT_P (SUBREG_REG (op
)))
2799 if (!CONSTANT_P (op
))
2802 /* As for RTX_CONST_OBJ. */
2806 /* Complex expressions should be the first, so decrease priority
2810 case RTX_COMM_ARITH
:
2811 /* Prefer operands that are themselves commutative to be first.
2812 This helps to make things linear. In particular,
2813 (and (and (reg) (reg)) (not (reg))) is canonical. */
2817 /* If only one operand is a binary expression, it will be the first
2818 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2819 is canonical, although it will usually be further simplified. */
2823 /* Then prefer NEG and NOT. */
2824 if (code
== NEG
|| code
== NOT
)
2832 /* Return 1 iff it is necessary to swap operands of commutative operation
2833 in order to canonicalize expression. */
2836 swap_commutative_operands_p (rtx x
, rtx y
)
2838 return (commutative_operand_precedence (x
)
2839 < commutative_operand_precedence (y
));
2842 /* Return 1 if X is an autoincrement side effect and the register is
2843 not the stack pointer. */
2847 switch (GET_CODE (x
))
2855 /* There are no REG_INC notes for SP. */
2856 if (XEXP (x
, 0) != stack_pointer_rtx
)
2864 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2866 loc_mentioned_in_p (rtx
*loc
, rtx in
)
2875 code
= GET_CODE (in
);
2876 fmt
= GET_RTX_FORMAT (code
);
2877 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2879 if (loc
== &in
->u
.fld
[i
].rt_rtx
)
2883 if (loc_mentioned_in_p (loc
, XEXP (in
, i
)))
2886 else if (fmt
[i
] == 'E')
2887 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
2888 if (loc_mentioned_in_p (loc
, XVECEXP (in
, i
, j
)))
2894 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
2895 and SUBREG_BYTE, return the bit offset where the subreg begins
2896 (counting from the least significant bit of the operand). */
2899 subreg_lsb_1 (enum machine_mode outer_mode
,
2900 enum machine_mode inner_mode
,
2901 unsigned int subreg_byte
)
2903 unsigned int bitpos
;
2907 /* A paradoxical subreg begins at bit position 0. */
2908 if (GET_MODE_BITSIZE (outer_mode
) > GET_MODE_BITSIZE (inner_mode
))
2911 if (WORDS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
2912 /* If the subreg crosses a word boundary ensure that
2913 it also begins and ends on a word boundary. */
2914 gcc_assert (!((subreg_byte
% UNITS_PER_WORD
2915 + GET_MODE_SIZE (outer_mode
)) > UNITS_PER_WORD
2916 && (subreg_byte
% UNITS_PER_WORD
2917 || GET_MODE_SIZE (outer_mode
) % UNITS_PER_WORD
)));
2919 if (WORDS_BIG_ENDIAN
)
2920 word
= (GET_MODE_SIZE (inner_mode
)
2921 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) / UNITS_PER_WORD
;
2923 word
= subreg_byte
/ UNITS_PER_WORD
;
2924 bitpos
= word
* BITS_PER_WORD
;
2926 if (BYTES_BIG_ENDIAN
)
2927 byte
= (GET_MODE_SIZE (inner_mode
)
2928 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) % UNITS_PER_WORD
;
2930 byte
= subreg_byte
% UNITS_PER_WORD
;
2931 bitpos
+= byte
* BITS_PER_UNIT
;
2936 /* Given a subreg X, return the bit offset where the subreg begins
2937 (counting from the least significant bit of the reg). */
2942 return subreg_lsb_1 (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)),
2946 /* Fill in information about a subreg of a hard register.
2947 xregno - A regno of an inner hard subreg_reg (or what will become one).
2948 xmode - The mode of xregno.
2949 offset - The byte offset.
2950 ymode - The mode of a top level SUBREG (or what may become one).
2951 info - Pointer to structure to fill in. */
2953 subreg_get_info (unsigned int xregno
, enum machine_mode xmode
,
2954 unsigned int offset
, enum machine_mode ymode
,
2955 struct subreg_info
*info
)
2957 int nregs_xmode
, nregs_ymode
;
2958 int mode_multiple
, nregs_multiple
;
2959 int offset_adj
, y_offset
, y_offset_adj
;
2960 int regsize_xmode
, regsize_ymode
;
2963 gcc_assert (xregno
< FIRST_PSEUDO_REGISTER
);
2967 /* If there are holes in a non-scalar mode in registers, we expect
2968 that it is made up of its units concatenated together. */
2969 if (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
))
2971 enum machine_mode xmode_unit
;
2973 nregs_xmode
= HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode
);
2974 if (GET_MODE_INNER (xmode
) == VOIDmode
)
2977 xmode_unit
= GET_MODE_INNER (xmode
);
2978 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode_unit
));
2979 gcc_assert (nregs_xmode
2980 == (GET_MODE_NUNITS (xmode
)
2981 * HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode_unit
)));
2982 gcc_assert (hard_regno_nregs
[xregno
][xmode
]
2983 == (hard_regno_nregs
[xregno
][xmode_unit
]
2984 * GET_MODE_NUNITS (xmode
)));
2986 /* You can only ask for a SUBREG of a value with holes in the middle
2987 if you don't cross the holes. (Such a SUBREG should be done by
2988 picking a different register class, or doing it in memory if
2989 necessary.) An example of a value with holes is XCmode on 32-bit
2990 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
2991 3 for each part, but in memory it's two 128-bit parts.
2992 Padding is assumed to be at the end (not necessarily the 'high part')
2994 if ((offset
/ GET_MODE_SIZE (xmode_unit
) + 1
2995 < GET_MODE_NUNITS (xmode
))
2996 && (offset
/ GET_MODE_SIZE (xmode_unit
)
2997 != ((offset
+ GET_MODE_SIZE (ymode
) - 1)
2998 / GET_MODE_SIZE (xmode_unit
))))
3000 info
->representable_p
= false;
3005 nregs_xmode
= hard_regno_nregs
[xregno
][xmode
];
3007 nregs_ymode
= hard_regno_nregs
[xregno
][ymode
];
3009 /* Paradoxical subregs are otherwise valid. */
3012 && GET_MODE_SIZE (ymode
) > GET_MODE_SIZE (xmode
))
3014 info
->representable_p
= true;
3015 /* If this is a big endian paradoxical subreg, which uses more
3016 actual hard registers than the original register, we must
3017 return a negative offset so that we find the proper highpart
3019 if (GET_MODE_SIZE (ymode
) > UNITS_PER_WORD
3020 ? WORDS_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
3021 info
->offset
= nregs_xmode
- nregs_ymode
;
3024 info
->nregs
= nregs_ymode
;
3028 /* If registers store different numbers of bits in the different
3029 modes, we cannot generally form this subreg. */
3030 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
)
3031 && !HARD_REGNO_NREGS_HAS_PADDING (xregno
, ymode
)
3032 && (GET_MODE_SIZE (xmode
) % nregs_xmode
) == 0
3033 && (GET_MODE_SIZE (ymode
) % nregs_ymode
) == 0)
3035 regsize_xmode
= GET_MODE_SIZE (xmode
) / nregs_xmode
;
3036 regsize_ymode
= GET_MODE_SIZE (ymode
) / nregs_ymode
;
3037 if (!rknown
&& regsize_xmode
> regsize_ymode
&& nregs_ymode
> 1)
3039 info
->representable_p
= false;
3041 = (GET_MODE_SIZE (ymode
) + regsize_xmode
- 1) / regsize_xmode
;
3042 info
->offset
= offset
/ regsize_xmode
;
3045 if (!rknown
&& regsize_ymode
> regsize_xmode
&& nregs_xmode
> 1)
3047 info
->representable_p
= false;
3049 = (GET_MODE_SIZE (ymode
) + regsize_xmode
- 1) / regsize_xmode
;
3050 info
->offset
= offset
/ regsize_xmode
;
3055 /* Lowpart subregs are otherwise valid. */
3056 if (!rknown
&& offset
== subreg_lowpart_offset (ymode
, xmode
))
3058 info
->representable_p
= true;
3061 if (offset
== 0 || nregs_xmode
== nregs_ymode
)
3064 info
->nregs
= nregs_ymode
;
3069 /* This should always pass, otherwise we don't know how to verify
3070 the constraint. These conditions may be relaxed but
3071 subreg_regno_offset would need to be redesigned. */
3072 gcc_assert ((GET_MODE_SIZE (xmode
) % GET_MODE_SIZE (ymode
)) == 0);
3073 gcc_assert ((nregs_xmode
% nregs_ymode
) == 0);
3075 /* The XMODE value can be seen as a vector of NREGS_XMODE
3076 values. The subreg must represent a lowpart of given field.
3077 Compute what field it is. */
3078 offset_adj
= offset
;
3079 offset_adj
-= subreg_lowpart_offset (ymode
,
3080 mode_for_size (GET_MODE_BITSIZE (xmode
)
3084 /* Size of ymode must not be greater than the size of xmode. */
3085 mode_multiple
= GET_MODE_SIZE (xmode
) / GET_MODE_SIZE (ymode
);
3086 gcc_assert (mode_multiple
!= 0);
3088 y_offset
= offset
/ GET_MODE_SIZE (ymode
);
3089 y_offset_adj
= offset_adj
/ GET_MODE_SIZE (ymode
);
3090 nregs_multiple
= nregs_xmode
/ nregs_ymode
;
3092 gcc_assert ((offset_adj
% GET_MODE_SIZE (ymode
)) == 0);
3093 gcc_assert ((mode_multiple
% nregs_multiple
) == 0);
3097 info
->representable_p
= (!(y_offset_adj
% (mode_multiple
/ nregs_multiple
)));
3100 info
->offset
= (y_offset
/ (mode_multiple
/ nregs_multiple
)) * nregs_ymode
;
3101 info
->nregs
= nregs_ymode
;
3104 /* This function returns the regno offset of a subreg expression.
3105 xregno - A regno of an inner hard subreg_reg (or what will become one).
3106 xmode - The mode of xregno.
3107 offset - The byte offset.
3108 ymode - The mode of a top level SUBREG (or what may become one).
3109 RETURN - The regno offset which would be used. */
3111 subreg_regno_offset (unsigned int xregno
, enum machine_mode xmode
,
3112 unsigned int offset
, enum machine_mode ymode
)
3114 struct subreg_info info
;
3115 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3119 /* This function returns true when the offset is representable via
3120 subreg_offset in the given regno.
3121 xregno - A regno of an inner hard subreg_reg (or what will become one).
3122 xmode - The mode of xregno.
3123 offset - The byte offset.
3124 ymode - The mode of a top level SUBREG (or what may become one).
3125 RETURN - Whether the offset is representable. */
3127 subreg_offset_representable_p (unsigned int xregno
, enum machine_mode xmode
,
3128 unsigned int offset
, enum machine_mode ymode
)
3130 struct subreg_info info
;
3131 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3132 return info
.representable_p
;
3135 /* Return the final regno that a subreg expression refers to. */
3137 subreg_regno (rtx x
)
3140 rtx subreg
= SUBREG_REG (x
);
3141 int regno
= REGNO (subreg
);
3143 ret
= regno
+ subreg_regno_offset (regno
,
3151 /* Return the number of registers that a subreg expression refers
3154 subreg_nregs (rtx x
)
3156 struct subreg_info info
;
3157 rtx subreg
= SUBREG_REG (x
);
3158 int regno
= REGNO (subreg
);
3160 subreg_get_info (regno
, GET_MODE (subreg
), SUBREG_BYTE (x
), GET_MODE (x
),
3165 struct parms_set_data
3171 /* Helper function for noticing stores to parameter registers. */
3173 parms_set (rtx x
, rtx pat ATTRIBUTE_UNUSED
, void *data
)
3175 struct parms_set_data
*d
= data
;
3176 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3177 && TEST_HARD_REG_BIT (d
->regs
, REGNO (x
)))
3179 CLEAR_HARD_REG_BIT (d
->regs
, REGNO (x
));
3184 /* Look backward for first parameter to be loaded.
3185 Note that loads of all parameters will not necessarily be
3186 found if CSE has eliminated some of them (e.g., an argument
3187 to the outer function is passed down as a parameter).
3188 Do not skip BOUNDARY. */
3190 find_first_parameter_load (rtx call_insn
, rtx boundary
)
3192 struct parms_set_data parm
;
3193 rtx p
, before
, first_set
;
3195 /* Since different machines initialize their parameter registers
3196 in different orders, assume nothing. Collect the set of all
3197 parameter registers. */
3198 CLEAR_HARD_REG_SET (parm
.regs
);
3200 for (p
= CALL_INSN_FUNCTION_USAGE (call_insn
); p
; p
= XEXP (p
, 1))
3201 if (GET_CODE (XEXP (p
, 0)) == USE
3202 && REG_P (XEXP (XEXP (p
, 0), 0)))
3204 gcc_assert (REGNO (XEXP (XEXP (p
, 0), 0)) < FIRST_PSEUDO_REGISTER
);
3206 /* We only care about registers which can hold function
3208 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p
, 0), 0))))
3211 SET_HARD_REG_BIT (parm
.regs
, REGNO (XEXP (XEXP (p
, 0), 0)));
3215 first_set
= call_insn
;
3217 /* Search backward for the first set of a register in this set. */
3218 while (parm
.nregs
&& before
!= boundary
)
3220 before
= PREV_INSN (before
);
3222 /* It is possible that some loads got CSEed from one call to
3223 another. Stop in that case. */
3224 if (CALL_P (before
))
3227 /* Our caller needs either ensure that we will find all sets
3228 (in case code has not been optimized yet), or take care
3229 for possible labels in a way by setting boundary to preceding
3231 if (LABEL_P (before
))
3233 gcc_assert (before
== boundary
);
3237 if (INSN_P (before
))
3239 int nregs_old
= parm
.nregs
;
3240 note_stores (PATTERN (before
), parms_set
, &parm
);
3241 /* If we found something that did not set a parameter reg,
3242 we're done. Do not keep going, as that might result
3243 in hoisting an insn before the setting of a pseudo
3244 that is used by the hoisted insn. */
3245 if (nregs_old
!= parm
.nregs
)
3254 /* Return true if we should avoid inserting code between INSN and preceding
3255 call instruction. */
3258 keep_with_call_p (rtx insn
)
3262 if (INSN_P (insn
) && (set
= single_set (insn
)) != NULL
)
3264 if (REG_P (SET_DEST (set
))
3265 && REGNO (SET_DEST (set
)) < FIRST_PSEUDO_REGISTER
3266 && fixed_regs
[REGNO (SET_DEST (set
))]
3267 && general_operand (SET_SRC (set
), VOIDmode
))
3269 if (REG_P (SET_SRC (set
))
3270 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set
)))
3271 && REG_P (SET_DEST (set
))
3272 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3274 /* There may be a stack pop just after the call and before the store
3275 of the return register. Search for the actual store when deciding
3276 if we can break or not. */
3277 if (SET_DEST (set
) == stack_pointer_rtx
)
3279 rtx i2
= next_nonnote_insn (insn
);
3280 if (i2
&& keep_with_call_p (i2
))
3287 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3288 to non-complex jumps. That is, direct unconditional, conditional,
3289 and tablejumps, but not computed jumps or returns. It also does
3290 not apply to the fallthru case of a conditional jump. */
3293 label_is_jump_target_p (rtx label
, rtx jump_insn
)
3295 rtx tmp
= JUMP_LABEL (jump_insn
);
3300 if (tablejump_p (jump_insn
, NULL
, &tmp
))
3302 rtvec vec
= XVEC (PATTERN (tmp
),
3303 GET_CODE (PATTERN (tmp
)) == ADDR_DIFF_VEC
);
3304 int i
, veclen
= GET_NUM_ELEM (vec
);
3306 for (i
= 0; i
< veclen
; ++i
)
3307 if (XEXP (RTVEC_ELT (vec
, i
), 0) == label
)
3315 /* Return an estimate of the cost of computing rtx X.
3316 One use is in cse, to decide which expression to keep in the hash table.
3317 Another is in rtl generation, to pick the cheapest way to multiply.
3318 Other uses like the latter are expected in the future. */
3321 rtx_cost (rtx x
, enum rtx_code outer_code ATTRIBUTE_UNUSED
)
3331 /* Compute the default costs of certain things.
3332 Note that targetm.rtx_costs can override the defaults. */
3334 code
= GET_CODE (x
);
3338 total
= COSTS_N_INSNS (5);
3344 total
= COSTS_N_INSNS (7);
3347 /* Used in combine.c as a marker. */
3351 total
= COSTS_N_INSNS (1);
3361 /* If we can't tie these modes, make this expensive. The larger
3362 the mode, the more expensive it is. */
3363 if (! MODES_TIEABLE_P (GET_MODE (x
), GET_MODE (SUBREG_REG (x
))))
3364 return COSTS_N_INSNS (2
3365 + GET_MODE_SIZE (GET_MODE (x
)) / UNITS_PER_WORD
);
3369 if (targetm
.rtx_costs (x
, code
, outer_code
, &total
))
3374 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3375 which is already in total. */
3377 fmt
= GET_RTX_FORMAT (code
);
3378 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3380 total
+= rtx_cost (XEXP (x
, i
), code
);
3381 else if (fmt
[i
] == 'E')
3382 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3383 total
+= rtx_cost (XVECEXP (x
, i
, j
), code
);
3388 /* Return cost of address expression X.
3389 Expect that X is properly formed address reference. */
3392 address_cost (rtx x
, enum machine_mode mode
)
3394 /* We may be asked for cost of various unusual addresses, such as operands
3395 of push instruction. It is not worthwhile to complicate writing
3396 of the target hook by such cases. */
3398 if (!memory_address_p (mode
, x
))
3401 return targetm
.address_cost (x
);
3404 /* If the target doesn't override, compute the cost as with arithmetic. */
3407 default_address_cost (rtx x
)
3409 return rtx_cost (x
, MEM
);
3413 unsigned HOST_WIDE_INT
3414 nonzero_bits (rtx x
, enum machine_mode mode
)
3416 return cached_nonzero_bits (x
, mode
, NULL_RTX
, VOIDmode
, 0);
3420 num_sign_bit_copies (rtx x
, enum machine_mode mode
)
3422 return cached_num_sign_bit_copies (x
, mode
, NULL_RTX
, VOIDmode
, 0);
3425 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3426 It avoids exponential behavior in nonzero_bits1 when X has
3427 identical subexpressions on the first or the second level. */
3429 static unsigned HOST_WIDE_INT
3430 cached_nonzero_bits (rtx x
, enum machine_mode mode
, rtx known_x
,
3431 enum machine_mode known_mode
,
3432 unsigned HOST_WIDE_INT known_ret
)
3434 if (x
== known_x
&& mode
== known_mode
)
3437 /* Try to find identical subexpressions. If found call
3438 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3439 precomputed value for the subexpression as KNOWN_RET. */
3441 if (ARITHMETIC_P (x
))
3443 rtx x0
= XEXP (x
, 0);
3444 rtx x1
= XEXP (x
, 1);
3446 /* Check the first level. */
3448 return nonzero_bits1 (x
, mode
, x0
, mode
,
3449 cached_nonzero_bits (x0
, mode
, known_x
,
3450 known_mode
, known_ret
));
3452 /* Check the second level. */
3453 if (ARITHMETIC_P (x0
)
3454 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
3455 return nonzero_bits1 (x
, mode
, x1
, mode
,
3456 cached_nonzero_bits (x1
, mode
, known_x
,
3457 known_mode
, known_ret
));
3459 if (ARITHMETIC_P (x1
)
3460 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
3461 return nonzero_bits1 (x
, mode
, x0
, mode
,
3462 cached_nonzero_bits (x0
, mode
, known_x
,
3463 known_mode
, known_ret
));
3466 return nonzero_bits1 (x
, mode
, known_x
, known_mode
, known_ret
);
3469 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3470 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3471 is less useful. We can't allow both, because that results in exponential
3472 run time recursion. There is a nullstone testcase that triggered
3473 this. This macro avoids accidental uses of num_sign_bit_copies. */
3474 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3476 /* Given an expression, X, compute which bits in X can be nonzero.
3477 We don't care about bits outside of those defined in MODE.
3479 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3480 an arithmetic operation, we can do better. */
3482 static unsigned HOST_WIDE_INT
3483 nonzero_bits1 (rtx x
, enum machine_mode mode
, rtx known_x
,
3484 enum machine_mode known_mode
,
3485 unsigned HOST_WIDE_INT known_ret
)
3487 unsigned HOST_WIDE_INT nonzero
= GET_MODE_MASK (mode
);
3488 unsigned HOST_WIDE_INT inner_nz
;
3490 unsigned int mode_width
= GET_MODE_BITSIZE (mode
);
3492 /* For floating-point values, assume all bits are needed. */
3493 if (FLOAT_MODE_P (GET_MODE (x
)) || FLOAT_MODE_P (mode
))
3496 /* If X is wider than MODE, use its mode instead. */
3497 if (GET_MODE_BITSIZE (GET_MODE (x
)) > mode_width
)
3499 mode
= GET_MODE (x
);
3500 nonzero
= GET_MODE_MASK (mode
);
3501 mode_width
= GET_MODE_BITSIZE (mode
);
3504 if (mode_width
> HOST_BITS_PER_WIDE_INT
)
3505 /* Our only callers in this case look for single bit values. So
3506 just return the mode mask. Those tests will then be false. */
3509 #ifndef WORD_REGISTER_OPERATIONS
3510 /* If MODE is wider than X, but both are a single word for both the host
3511 and target machines, we can compute this from which bits of the
3512 object might be nonzero in its own mode, taking into account the fact
3513 that on many CISC machines, accessing an object in a wider mode
3514 causes the high-order bits to become undefined. So they are
3515 not known to be zero. */
3517 if (GET_MODE (x
) != VOIDmode
&& GET_MODE (x
) != mode
3518 && GET_MODE_BITSIZE (GET_MODE (x
)) <= BITS_PER_WORD
3519 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
3520 && GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (GET_MODE (x
)))
3522 nonzero
&= cached_nonzero_bits (x
, GET_MODE (x
),
3523 known_x
, known_mode
, known_ret
);
3524 nonzero
|= GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
));
3529 code
= GET_CODE (x
);
3533 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3534 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3535 all the bits above ptr_mode are known to be zero. */
3536 if (POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
3538 nonzero
&= GET_MODE_MASK (ptr_mode
);
3541 /* Include declared information about alignment of pointers. */
3542 /* ??? We don't properly preserve REG_POINTER changes across
3543 pointer-to-integer casts, so we can't trust it except for
3544 things that we know must be pointers. See execute/960116-1.c. */
3545 if ((x
== stack_pointer_rtx
3546 || x
== frame_pointer_rtx
3547 || x
== arg_pointer_rtx
)
3548 && REGNO_POINTER_ALIGN (REGNO (x
)))
3550 unsigned HOST_WIDE_INT alignment
3551 = REGNO_POINTER_ALIGN (REGNO (x
)) / BITS_PER_UNIT
;
3553 #ifdef PUSH_ROUNDING
3554 /* If PUSH_ROUNDING is defined, it is possible for the
3555 stack to be momentarily aligned only to that amount,
3556 so we pick the least alignment. */
3557 if (x
== stack_pointer_rtx
&& PUSH_ARGS
)
3558 alignment
= MIN ((unsigned HOST_WIDE_INT
) PUSH_ROUNDING (1),
3562 nonzero
&= ~(alignment
- 1);
3566 unsigned HOST_WIDE_INT nonzero_for_hook
= nonzero
;
3567 rtx
new = rtl_hooks
.reg_nonzero_bits (x
, mode
, known_x
,
3568 known_mode
, known_ret
,
3572 nonzero_for_hook
&= cached_nonzero_bits (new, mode
, known_x
,
3573 known_mode
, known_ret
);
3575 return nonzero_for_hook
;
3579 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3580 /* If X is negative in MODE, sign-extend the value. */
3581 if (INTVAL (x
) > 0 && mode_width
< BITS_PER_WORD
3582 && 0 != (INTVAL (x
) & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))))
3583 return (INTVAL (x
) | ((HOST_WIDE_INT
) (-1) << mode_width
));
3589 #ifdef LOAD_EXTEND_OP
3590 /* In many, if not most, RISC machines, reading a byte from memory
3591 zeros the rest of the register. Noticing that fact saves a lot
3592 of extra zero-extends. */
3593 if (LOAD_EXTEND_OP (GET_MODE (x
)) == ZERO_EXTEND
)
3594 nonzero
&= GET_MODE_MASK (GET_MODE (x
));
3599 case UNEQ
: case LTGT
:
3600 case GT
: case GTU
: case UNGT
:
3601 case LT
: case LTU
: case UNLT
:
3602 case GE
: case GEU
: case UNGE
:
3603 case LE
: case LEU
: case UNLE
:
3604 case UNORDERED
: case ORDERED
:
3605 /* If this produces an integer result, we know which bits are set.
3606 Code here used to clear bits outside the mode of X, but that is
3608 /* Mind that MODE is the mode the caller wants to look at this
3609 operation in, and not the actual operation mode. We can wind
3610 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3611 that describes the results of a vector compare. */
3612 if (GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
3613 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
3614 nonzero
= STORE_FLAG_VALUE
;
3619 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3620 and num_sign_bit_copies. */
3621 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
3622 == GET_MODE_BITSIZE (GET_MODE (x
)))
3626 if (GET_MODE_SIZE (GET_MODE (x
)) < mode_width
)
3627 nonzero
|= (GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
)));
3632 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3633 and num_sign_bit_copies. */
3634 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
3635 == GET_MODE_BITSIZE (GET_MODE (x
)))
3641 nonzero
&= (cached_nonzero_bits (XEXP (x
, 0), mode
,
3642 known_x
, known_mode
, known_ret
)
3643 & GET_MODE_MASK (mode
));
3647 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
3648 known_x
, known_mode
, known_ret
);
3649 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
3650 nonzero
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
3654 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3655 Otherwise, show all the bits in the outer mode but not the inner
3657 inner_nz
= cached_nonzero_bits (XEXP (x
, 0), mode
,
3658 known_x
, known_mode
, known_ret
);
3659 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
3661 inner_nz
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
3663 & (((HOST_WIDE_INT
) 1
3664 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))) - 1))))
3665 inner_nz
|= (GET_MODE_MASK (mode
)
3666 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0))));
3669 nonzero
&= inner_nz
;
3673 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
3674 known_x
, known_mode
, known_ret
)
3675 & cached_nonzero_bits (XEXP (x
, 1), mode
,
3676 known_x
, known_mode
, known_ret
);
3680 case UMIN
: case UMAX
: case SMIN
: case SMAX
:
3682 unsigned HOST_WIDE_INT nonzero0
=
3683 cached_nonzero_bits (XEXP (x
, 0), mode
,
3684 known_x
, known_mode
, known_ret
);
3686 /* Don't call nonzero_bits for the second time if it cannot change
3688 if ((nonzero
& nonzero0
) != nonzero
)
3690 | cached_nonzero_bits (XEXP (x
, 1), mode
,
3691 known_x
, known_mode
, known_ret
);
3695 case PLUS
: case MINUS
:
3697 case DIV
: case UDIV
:
3698 case MOD
: case UMOD
:
3699 /* We can apply the rules of arithmetic to compute the number of
3700 high- and low-order zero bits of these operations. We start by
3701 computing the width (position of the highest-order nonzero bit)
3702 and the number of low-order zero bits for each value. */
3704 unsigned HOST_WIDE_INT nz0
=
3705 cached_nonzero_bits (XEXP (x
, 0), mode
,
3706 known_x
, known_mode
, known_ret
);
3707 unsigned HOST_WIDE_INT nz1
=
3708 cached_nonzero_bits (XEXP (x
, 1), mode
,
3709 known_x
, known_mode
, known_ret
);
3710 int sign_index
= GET_MODE_BITSIZE (GET_MODE (x
)) - 1;
3711 int width0
= floor_log2 (nz0
) + 1;
3712 int width1
= floor_log2 (nz1
) + 1;
3713 int low0
= floor_log2 (nz0
& -nz0
);
3714 int low1
= floor_log2 (nz1
& -nz1
);
3715 HOST_WIDE_INT op0_maybe_minusp
3716 = (nz0
& ((HOST_WIDE_INT
) 1 << sign_index
));
3717 HOST_WIDE_INT op1_maybe_minusp
3718 = (nz1
& ((HOST_WIDE_INT
) 1 << sign_index
));
3719 unsigned int result_width
= mode_width
;
3725 result_width
= MAX (width0
, width1
) + 1;
3726 result_low
= MIN (low0
, low1
);
3729 result_low
= MIN (low0
, low1
);
3732 result_width
= width0
+ width1
;
3733 result_low
= low0
+ low1
;
3738 if (! op0_maybe_minusp
&& ! op1_maybe_minusp
)
3739 result_width
= width0
;
3744 result_width
= width0
;
3749 if (! op0_maybe_minusp
&& ! op1_maybe_minusp
)
3750 result_width
= MIN (width0
, width1
);
3751 result_low
= MIN (low0
, low1
);
3756 result_width
= MIN (width0
, width1
);
3757 result_low
= MIN (low0
, low1
);
3763 if (result_width
< mode_width
)
3764 nonzero
&= ((HOST_WIDE_INT
) 1 << result_width
) - 1;
3767 nonzero
&= ~(((HOST_WIDE_INT
) 1 << result_low
) - 1);
3769 #ifdef POINTERS_EXTEND_UNSIGNED
3770 /* If pointers extend unsigned and this is an addition or subtraction
3771 to a pointer in Pmode, all the bits above ptr_mode are known to be
3773 if (POINTERS_EXTEND_UNSIGNED
> 0 && GET_MODE (x
) == Pmode
3774 && (code
== PLUS
|| code
== MINUS
)
3775 && REG_P (XEXP (x
, 0)) && REG_POINTER (XEXP (x
, 0)))
3776 nonzero
&= GET_MODE_MASK (ptr_mode
);
3782 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
3783 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
3784 nonzero
&= ((HOST_WIDE_INT
) 1 << INTVAL (XEXP (x
, 1))) - 1;
3788 /* If this is a SUBREG formed for a promoted variable that has
3789 been zero-extended, we know that at least the high-order bits
3790 are zero, though others might be too. */
3792 if (SUBREG_PROMOTED_VAR_P (x
) && SUBREG_PROMOTED_UNSIGNED_P (x
) > 0)
3793 nonzero
= GET_MODE_MASK (GET_MODE (x
))
3794 & cached_nonzero_bits (SUBREG_REG (x
), GET_MODE (x
),
3795 known_x
, known_mode
, known_ret
);
3797 /* If the inner mode is a single word for both the host and target
3798 machines, we can compute this from which bits of the inner
3799 object might be nonzero. */
3800 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) <= BITS_PER_WORD
3801 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))
3802 <= HOST_BITS_PER_WIDE_INT
))
3804 nonzero
&= cached_nonzero_bits (SUBREG_REG (x
), mode
,
3805 known_x
, known_mode
, known_ret
);
3807 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3808 /* If this is a typical RISC machine, we only have to worry
3809 about the way loads are extended. */
3810 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
3812 & (((unsigned HOST_WIDE_INT
) 1
3813 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) - 1))))
3815 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) != ZERO_EXTEND
)
3816 || !MEM_P (SUBREG_REG (x
)))
3819 /* On many CISC machines, accessing an object in a wider mode
3820 causes the high-order bits to become undefined. So they are
3821 not known to be zero. */
3822 if (GET_MODE_SIZE (GET_MODE (x
))
3823 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
3824 nonzero
|= (GET_MODE_MASK (GET_MODE (x
))
3825 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
))));
3834 /* The nonzero bits are in two classes: any bits within MODE
3835 that aren't in GET_MODE (x) are always significant. The rest of the
3836 nonzero bits are those that are significant in the operand of
3837 the shift when shifted the appropriate number of bits. This
3838 shows that high-order bits are cleared by the right shift and
3839 low-order bits by left shifts. */
3840 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
3841 && INTVAL (XEXP (x
, 1)) >= 0
3842 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
3844 enum machine_mode inner_mode
= GET_MODE (x
);
3845 unsigned int width
= GET_MODE_BITSIZE (inner_mode
);
3846 int count
= INTVAL (XEXP (x
, 1));
3847 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (inner_mode
);
3848 unsigned HOST_WIDE_INT op_nonzero
=
3849 cached_nonzero_bits (XEXP (x
, 0), mode
,
3850 known_x
, known_mode
, known_ret
);
3851 unsigned HOST_WIDE_INT inner
= op_nonzero
& mode_mask
;
3852 unsigned HOST_WIDE_INT outer
= 0;
3854 if (mode_width
> width
)
3855 outer
= (op_nonzero
& nonzero
& ~mode_mask
);
3857 if (code
== LSHIFTRT
)
3859 else if (code
== ASHIFTRT
)
3863 /* If the sign bit may have been nonzero before the shift, we
3864 need to mark all the places it could have been copied to
3865 by the shift as possibly nonzero. */
3866 if (inner
& ((HOST_WIDE_INT
) 1 << (width
- 1 - count
)))
3867 inner
|= (((HOST_WIDE_INT
) 1 << count
) - 1) << (width
- count
);
3869 else if (code
== ASHIFT
)
3872 inner
= ((inner
<< (count
% width
)
3873 | (inner
>> (width
- (count
% width
)))) & mode_mask
);
3875 nonzero
&= (outer
| inner
);
3881 /* This is at most the number of bits in the mode. */
3882 nonzero
= ((HOST_WIDE_INT
) 2 << (floor_log2 (mode_width
))) - 1;
3886 /* If CLZ has a known value at zero, then the nonzero bits are
3887 that value, plus the number of bits in the mode minus one. */
3888 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
3889 nonzero
|= ((HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
3895 /* If CTZ has a known value at zero, then the nonzero bits are
3896 that value, plus the number of bits in the mode minus one. */
3897 if (CTZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
3898 nonzero
|= ((HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
3909 unsigned HOST_WIDE_INT nonzero_true
=
3910 cached_nonzero_bits (XEXP (x
, 1), mode
,
3911 known_x
, known_mode
, known_ret
);
3913 /* Don't call nonzero_bits for the second time if it cannot change
3915 if ((nonzero
& nonzero_true
) != nonzero
)
3916 nonzero
&= nonzero_true
3917 | cached_nonzero_bits (XEXP (x
, 2), mode
,
3918 known_x
, known_mode
, known_ret
);
3929 /* See the macro definition above. */
3930 #undef cached_num_sign_bit_copies
3933 /* The function cached_num_sign_bit_copies is a wrapper around
3934 num_sign_bit_copies1. It avoids exponential behavior in
3935 num_sign_bit_copies1 when X has identical subexpressions on the
3936 first or the second level. */
3939 cached_num_sign_bit_copies (rtx x
, enum machine_mode mode
, rtx known_x
,
3940 enum machine_mode known_mode
,
3941 unsigned int known_ret
)
3943 if (x
== known_x
&& mode
== known_mode
)
3946 /* Try to find identical subexpressions. If found call
3947 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
3948 the precomputed value for the subexpression as KNOWN_RET. */
3950 if (ARITHMETIC_P (x
))
3952 rtx x0
= XEXP (x
, 0);
3953 rtx x1
= XEXP (x
, 1);
3955 /* Check the first level. */
3958 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
3959 cached_num_sign_bit_copies (x0
, mode
, known_x
,
3963 /* Check the second level. */
3964 if (ARITHMETIC_P (x0
)
3965 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
3967 num_sign_bit_copies1 (x
, mode
, x1
, mode
,
3968 cached_num_sign_bit_copies (x1
, mode
, known_x
,
3972 if (ARITHMETIC_P (x1
)
3973 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
3975 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
3976 cached_num_sign_bit_copies (x0
, mode
, known_x
,
3981 return num_sign_bit_copies1 (x
, mode
, known_x
, known_mode
, known_ret
);
3984 /* Return the number of bits at the high-order end of X that are known to
3985 be equal to the sign bit. X will be used in mode MODE; if MODE is
3986 VOIDmode, X will be used in its own mode. The returned value will always
3987 be between 1 and the number of bits in MODE. */
3990 num_sign_bit_copies1 (rtx x
, enum machine_mode mode
, rtx known_x
,
3991 enum machine_mode known_mode
,
3992 unsigned int known_ret
)
3994 enum rtx_code code
= GET_CODE (x
);
3995 unsigned int bitwidth
= GET_MODE_BITSIZE (mode
);
3996 int num0
, num1
, result
;
3997 unsigned HOST_WIDE_INT nonzero
;
3999 /* If we weren't given a mode, use the mode of X. If the mode is still
4000 VOIDmode, we don't know anything. Likewise if one of the modes is
4003 if (mode
== VOIDmode
)
4004 mode
= GET_MODE (x
);
4006 if (mode
== VOIDmode
|| FLOAT_MODE_P (mode
) || FLOAT_MODE_P (GET_MODE (x
)))
4009 /* For a smaller object, just ignore the high bits. */
4010 if (bitwidth
< GET_MODE_BITSIZE (GET_MODE (x
)))
4012 num0
= cached_num_sign_bit_copies (x
, GET_MODE (x
),
4013 known_x
, known_mode
, known_ret
);
4015 num0
- (int) (GET_MODE_BITSIZE (GET_MODE (x
)) - bitwidth
));
4018 if (GET_MODE (x
) != VOIDmode
&& bitwidth
> GET_MODE_BITSIZE (GET_MODE (x
)))
4020 #ifndef WORD_REGISTER_OPERATIONS
4021 /* If this machine does not do all register operations on the entire
4022 register and MODE is wider than the mode of X, we can say nothing
4023 at all about the high-order bits. */
4026 /* Likewise on machines that do, if the mode of the object is smaller
4027 than a word and loads of that size don't sign extend, we can say
4028 nothing about the high order bits. */
4029 if (GET_MODE_BITSIZE (GET_MODE (x
)) < BITS_PER_WORD
4030 #ifdef LOAD_EXTEND_OP
4031 && LOAD_EXTEND_OP (GET_MODE (x
)) != SIGN_EXTEND
4042 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4043 /* If pointers extend signed and this is a pointer in Pmode, say that
4044 all the bits above ptr_mode are known to be sign bit copies. */
4045 if (! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
&& mode
== Pmode
4047 return GET_MODE_BITSIZE (Pmode
) - GET_MODE_BITSIZE (ptr_mode
) + 1;
4051 unsigned int copies_for_hook
= 1, copies
= 1;
4052 rtx
new = rtl_hooks
.reg_num_sign_bit_copies (x
, mode
, known_x
,
4053 known_mode
, known_ret
,
4057 copies
= cached_num_sign_bit_copies (new, mode
, known_x
,
4058 known_mode
, known_ret
);
4060 if (copies
> 1 || copies_for_hook
> 1)
4061 return MAX (copies
, copies_for_hook
);
4063 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4068 #ifdef LOAD_EXTEND_OP
4069 /* Some RISC machines sign-extend all loads of smaller than a word. */
4070 if (LOAD_EXTEND_OP (GET_MODE (x
)) == SIGN_EXTEND
)
4071 return MAX (1, ((int) bitwidth
4072 - (int) GET_MODE_BITSIZE (GET_MODE (x
)) + 1));
4077 /* If the constant is negative, take its 1's complement and remask.
4078 Then see how many zero bits we have. */
4079 nonzero
= INTVAL (x
) & GET_MODE_MASK (mode
);
4080 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4081 && (nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4082 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4084 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4087 /* If this is a SUBREG for a promoted object that is sign-extended
4088 and we are looking at it in a wider mode, we know that at least the
4089 high-order bits are known to be sign bit copies. */
4091 if (SUBREG_PROMOTED_VAR_P (x
) && ! SUBREG_PROMOTED_UNSIGNED_P (x
))
4093 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4094 known_x
, known_mode
, known_ret
);
4095 return MAX ((int) bitwidth
4096 - (int) GET_MODE_BITSIZE (GET_MODE (x
)) + 1,
4100 /* For a smaller object, just ignore the high bits. */
4101 if (bitwidth
<= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))))
4103 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), VOIDmode
,
4104 known_x
, known_mode
, known_ret
);
4105 return MAX (1, (num0
4106 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))
4110 #ifdef WORD_REGISTER_OPERATIONS
4111 #ifdef LOAD_EXTEND_OP
4112 /* For paradoxical SUBREGs on machines where all register operations
4113 affect the entire register, just look inside. Note that we are
4114 passing MODE to the recursive call, so the number of sign bit copies
4115 will remain relative to that mode, not the inner mode. */
4117 /* This works only if loads sign extend. Otherwise, if we get a
4118 reload for the inner part, it may be loaded from the stack, and
4119 then we lose all sign bit copies that existed before the store
4122 if ((GET_MODE_SIZE (GET_MODE (x
))
4123 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
4124 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
4125 && MEM_P (SUBREG_REG (x
)))
4126 return cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4127 known_x
, known_mode
, known_ret
);
4133 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
4134 return MAX (1, (int) bitwidth
- INTVAL (XEXP (x
, 1)));
4138 return (bitwidth
- GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
4139 + cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4140 known_x
, known_mode
, known_ret
));
4143 /* For a smaller object, just ignore the high bits. */
4144 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4145 known_x
, known_mode
, known_ret
);
4146 return MAX (1, (num0
- (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
4150 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4151 known_x
, known_mode
, known_ret
);
4153 case ROTATE
: case ROTATERT
:
4154 /* If we are rotating left by a number of bits less than the number
4155 of sign bit copies, we can just subtract that amount from the
4157 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
4158 && INTVAL (XEXP (x
, 1)) >= 0
4159 && INTVAL (XEXP (x
, 1)) < (int) bitwidth
)
4161 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4162 known_x
, known_mode
, known_ret
);
4163 return MAX (1, num0
- (code
== ROTATE
? INTVAL (XEXP (x
, 1))
4164 : (int) bitwidth
- INTVAL (XEXP (x
, 1))));
4169 /* In general, this subtracts one sign bit copy. But if the value
4170 is known to be positive, the number of sign bit copies is the
4171 same as that of the input. Finally, if the input has just one bit
4172 that might be nonzero, all the bits are copies of the sign bit. */
4173 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4174 known_x
, known_mode
, known_ret
);
4175 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4176 return num0
> 1 ? num0
- 1 : 1;
4178 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
4183 && (((HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
))
4188 case IOR
: case AND
: case XOR
:
4189 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
4190 /* Logical operations will preserve the number of sign-bit copies.
4191 MIN and MAX operations always return one of the operands. */
4192 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4193 known_x
, known_mode
, known_ret
);
4194 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4195 known_x
, known_mode
, known_ret
);
4196 return MIN (num0
, num1
);
4198 case PLUS
: case MINUS
:
4199 /* For addition and subtraction, we can have a 1-bit carry. However,
4200 if we are subtracting 1 from a positive number, there will not
4201 be such a carry. Furthermore, if the positive number is known to
4202 be 0 or 1, we know the result is either -1 or 0. */
4204 if (code
== PLUS
&& XEXP (x
, 1) == constm1_rtx
4205 && bitwidth
<= HOST_BITS_PER_WIDE_INT
)
4207 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
4208 if ((((HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
) == 0)
4209 return (nonzero
== 1 || nonzero
== 0 ? bitwidth
4210 : bitwidth
- floor_log2 (nonzero
) - 1);
4213 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4214 known_x
, known_mode
, known_ret
);
4215 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4216 known_x
, known_mode
, known_ret
);
4217 result
= MAX (1, MIN (num0
, num1
) - 1);
4219 #ifdef POINTERS_EXTEND_UNSIGNED
4220 /* If pointers extend signed and this is an addition or subtraction
4221 to a pointer in Pmode, all the bits above ptr_mode are known to be
4223 if (! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
4224 && (code
== PLUS
|| code
== MINUS
)
4225 && REG_P (XEXP (x
, 0)) && REG_POINTER (XEXP (x
, 0)))
4226 result
= MAX ((int) (GET_MODE_BITSIZE (Pmode
)
4227 - GET_MODE_BITSIZE (ptr_mode
) + 1),
4233 /* The number of bits of the product is the sum of the number of
4234 bits of both terms. However, unless one of the terms if known
4235 to be positive, we must allow for an additional bit since negating
4236 a negative number can remove one sign bit copy. */
4238 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4239 known_x
, known_mode
, known_ret
);
4240 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4241 known_x
, known_mode
, known_ret
);
4243 result
= bitwidth
- (bitwidth
- num0
) - (bitwidth
- num1
);
4245 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4246 || (((nonzero_bits (XEXP (x
, 0), mode
)
4247 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4248 && ((nonzero_bits (XEXP (x
, 1), mode
)
4249 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))))
4252 return MAX (1, result
);
4255 /* The result must be <= the first operand. If the first operand
4256 has the high bit set, we know nothing about the number of sign
4258 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4260 else if ((nonzero_bits (XEXP (x
, 0), mode
)
4261 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4264 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4265 known_x
, known_mode
, known_ret
);
4268 /* The result must be <= the second operand. */
4269 return cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4270 known_x
, known_mode
, known_ret
);
4273 /* Similar to unsigned division, except that we have to worry about
4274 the case where the divisor is negative, in which case we have
4276 result
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4277 known_x
, known_mode
, known_ret
);
4279 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4280 || (nonzero_bits (XEXP (x
, 1), mode
)
4281 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
4287 result
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4288 known_x
, known_mode
, known_ret
);
4290 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4291 || (nonzero_bits (XEXP (x
, 1), mode
)
4292 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
4298 /* Shifts by a constant add to the number of bits equal to the
4300 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4301 known_x
, known_mode
, known_ret
);
4302 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
4303 && INTVAL (XEXP (x
, 1)) > 0)
4304 num0
= MIN ((int) bitwidth
, num0
+ INTVAL (XEXP (x
, 1)));
4309 /* Left shifts destroy copies. */
4310 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
4311 || INTVAL (XEXP (x
, 1)) < 0
4312 || INTVAL (XEXP (x
, 1)) >= (int) bitwidth
)
4315 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4316 known_x
, known_mode
, known_ret
);
4317 return MAX (1, num0
- INTVAL (XEXP (x
, 1)));
4320 num0
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4321 known_x
, known_mode
, known_ret
);
4322 num1
= cached_num_sign_bit_copies (XEXP (x
, 2), mode
,
4323 known_x
, known_mode
, known_ret
);
4324 return MIN (num0
, num1
);
4326 case EQ
: case NE
: case GE
: case GT
: case LE
: case LT
:
4327 case UNEQ
: case LTGT
: case UNGE
: case UNGT
: case UNLE
: case UNLT
:
4328 case GEU
: case GTU
: case LEU
: case LTU
:
4329 case UNORDERED
: case ORDERED
:
4330 /* If the constant is negative, take its 1's complement and remask.
4331 Then see how many zero bits we have. */
4332 nonzero
= STORE_FLAG_VALUE
;
4333 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4334 && (nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4335 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4337 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4343 /* If we haven't been able to figure it out by one of the above rules,
4344 see if some of the high-order bits are known to be zero. If so,
4345 count those bits and return one less than that amount. If we can't
4346 safely compute the mask for this mode, always return BITWIDTH. */
4348 bitwidth
= GET_MODE_BITSIZE (mode
);
4349 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4352 nonzero
= nonzero_bits (x
, mode
);
4353 return nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))
4354 ? 1 : bitwidth
- floor_log2 (nonzero
) - 1;
4357 /* Calculate the rtx_cost of a single instruction. A return value of
4358 zero indicates an instruction pattern without a known cost. */
4361 insn_rtx_cost (rtx pat
)
4366 /* Extract the single set rtx from the instruction pattern.
4367 We can't use single_set since we only have the pattern. */
4368 if (GET_CODE (pat
) == SET
)
4370 else if (GET_CODE (pat
) == PARALLEL
)
4373 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
4375 rtx x
= XVECEXP (pat
, 0, i
);
4376 if (GET_CODE (x
) == SET
)
4389 cost
= rtx_cost (SET_SRC (set
), SET
);
4390 return cost
> 0 ? cost
: COSTS_N_INSNS (1);
4393 /* Given an insn INSN and condition COND, return the condition in a
4394 canonical form to simplify testing by callers. Specifically:
4396 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4397 (2) Both operands will be machine operands; (cc0) will have been replaced.
4398 (3) If an operand is a constant, it will be the second operand.
4399 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4400 for GE, GEU, and LEU.
4402 If the condition cannot be understood, or is an inequality floating-point
4403 comparison which needs to be reversed, 0 will be returned.
4405 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4407 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4408 insn used in locating the condition was found. If a replacement test
4409 of the condition is desired, it should be placed in front of that
4410 insn and we will be sure that the inputs are still valid.
4412 If WANT_REG is nonzero, we wish the condition to be relative to that
4413 register, if possible. Therefore, do not canonicalize the condition
4414 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4415 to be a compare to a CC mode register.
4417 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4421 canonicalize_condition (rtx insn
, rtx cond
, int reverse
, rtx
*earliest
,
4422 rtx want_reg
, int allow_cc_mode
, int valid_at_insn_p
)
4429 int reverse_code
= 0;
4430 enum machine_mode mode
;
4431 basic_block bb
= BLOCK_FOR_INSN (insn
);
4433 code
= GET_CODE (cond
);
4434 mode
= GET_MODE (cond
);
4435 op0
= XEXP (cond
, 0);
4436 op1
= XEXP (cond
, 1);
4439 code
= reversed_comparison_code (cond
, insn
);
4440 if (code
== UNKNOWN
)
4446 /* If we are comparing a register with zero, see if the register is set
4447 in the previous insn to a COMPARE or a comparison operation. Perform
4448 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4451 while ((GET_RTX_CLASS (code
) == RTX_COMPARE
4452 || GET_RTX_CLASS (code
) == RTX_COMM_COMPARE
)
4453 && op1
== CONST0_RTX (GET_MODE (op0
))
4456 /* Set nonzero when we find something of interest. */
4460 /* If comparison with cc0, import actual comparison from compare
4464 if ((prev
= prev_nonnote_insn (prev
)) == 0
4465 || !NONJUMP_INSN_P (prev
)
4466 || (set
= single_set (prev
)) == 0
4467 || SET_DEST (set
) != cc0_rtx
)
4470 op0
= SET_SRC (set
);
4471 op1
= CONST0_RTX (GET_MODE (op0
));
4477 /* If this is a COMPARE, pick up the two things being compared. */
4478 if (GET_CODE (op0
) == COMPARE
)
4480 op1
= XEXP (op0
, 1);
4481 op0
= XEXP (op0
, 0);
4484 else if (!REG_P (op0
))
4487 /* Go back to the previous insn. Stop if it is not an INSN. We also
4488 stop if it isn't a single set or if it has a REG_INC note because
4489 we don't want to bother dealing with it. */
4491 if ((prev
= prev_nonnote_insn (prev
)) == 0
4492 || !NONJUMP_INSN_P (prev
)
4493 || FIND_REG_INC_NOTE (prev
, NULL_RTX
)
4494 /* In cfglayout mode, there do not have to be labels at the
4495 beginning of a block, or jumps at the end, so the previous
4496 conditions would not stop us when we reach bb boundary. */
4497 || BLOCK_FOR_INSN (prev
) != bb
)
4500 set
= set_of (op0
, prev
);
4503 && (GET_CODE (set
) != SET
4504 || !rtx_equal_p (SET_DEST (set
), op0
)))
4507 /* If this is setting OP0, get what it sets it to if it looks
4511 enum machine_mode inner_mode
= GET_MODE (SET_DEST (set
));
4512 #ifdef FLOAT_STORE_FLAG_VALUE
4513 REAL_VALUE_TYPE fsfv
;
4516 /* ??? We may not combine comparisons done in a CCmode with
4517 comparisons not done in a CCmode. This is to aid targets
4518 like Alpha that have an IEEE compliant EQ instruction, and
4519 a non-IEEE compliant BEQ instruction. The use of CCmode is
4520 actually artificial, simply to prevent the combination, but
4521 should not affect other platforms.
4523 However, we must allow VOIDmode comparisons to match either
4524 CCmode or non-CCmode comparison, because some ports have
4525 modeless comparisons inside branch patterns.
4527 ??? This mode check should perhaps look more like the mode check
4528 in simplify_comparison in combine. */
4530 if ((GET_CODE (SET_SRC (set
)) == COMPARE
4533 && GET_MODE_CLASS (inner_mode
) == MODE_INT
4534 && (GET_MODE_BITSIZE (inner_mode
)
4535 <= HOST_BITS_PER_WIDE_INT
)
4536 && (STORE_FLAG_VALUE
4537 & ((HOST_WIDE_INT
) 1
4538 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
4539 #ifdef FLOAT_STORE_FLAG_VALUE
4541 && SCALAR_FLOAT_MODE_P (inner_mode
)
4542 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
4543 REAL_VALUE_NEGATIVE (fsfv
)))
4546 && COMPARISON_P (SET_SRC (set
))))
4547 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
4548 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
4549 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
4551 else if (((code
== EQ
4553 && (GET_MODE_BITSIZE (inner_mode
)
4554 <= HOST_BITS_PER_WIDE_INT
)
4555 && GET_MODE_CLASS (inner_mode
) == MODE_INT
4556 && (STORE_FLAG_VALUE
4557 & ((HOST_WIDE_INT
) 1
4558 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
4559 #ifdef FLOAT_STORE_FLAG_VALUE
4561 && SCALAR_FLOAT_MODE_P (inner_mode
)
4562 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
4563 REAL_VALUE_NEGATIVE (fsfv
)))
4566 && COMPARISON_P (SET_SRC (set
))
4567 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
4568 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
4569 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
4579 else if (reg_set_p (op0
, prev
))
4580 /* If this sets OP0, but not directly, we have to give up. */
4585 /* If the caller is expecting the condition to be valid at INSN,
4586 make sure X doesn't change before INSN. */
4587 if (valid_at_insn_p
)
4588 if (modified_in_p (x
, prev
) || modified_between_p (x
, prev
, insn
))
4590 if (COMPARISON_P (x
))
4591 code
= GET_CODE (x
);
4594 code
= reversed_comparison_code (x
, prev
);
4595 if (code
== UNKNOWN
)
4600 op0
= XEXP (x
, 0), op1
= XEXP (x
, 1);
4606 /* If constant is first, put it last. */
4607 if (CONSTANT_P (op0
))
4608 code
= swap_condition (code
), tem
= op0
, op0
= op1
, op1
= tem
;
4610 /* If OP0 is the result of a comparison, we weren't able to find what
4611 was really being compared, so fail. */
4613 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
4616 /* Canonicalize any ordered comparison with integers involving equality
4617 if we can do computations in the relevant mode and we do not
4620 if (GET_MODE_CLASS (GET_MODE (op0
)) != MODE_CC
4621 && GET_CODE (op1
) == CONST_INT
4622 && GET_MODE (op0
) != VOIDmode
4623 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
)
4625 HOST_WIDE_INT const_val
= INTVAL (op1
);
4626 unsigned HOST_WIDE_INT uconst_val
= const_val
;
4627 unsigned HOST_WIDE_INT max_val
4628 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (GET_MODE (op0
));
4633 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
4634 code
= LT
, op1
= gen_int_mode (const_val
+ 1, GET_MODE (op0
));
4637 /* When cross-compiling, const_val might be sign-extended from
4638 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4640 if ((HOST_WIDE_INT
) (const_val
& max_val
)
4641 != (((HOST_WIDE_INT
) 1
4642 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1))))
4643 code
= GT
, op1
= gen_int_mode (const_val
- 1, GET_MODE (op0
));
4647 if (uconst_val
< max_val
)
4648 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, GET_MODE (op0
));
4652 if (uconst_val
!= 0)
4653 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, GET_MODE (op0
));
4661 /* Never return CC0; return zero instead. */
4665 return gen_rtx_fmt_ee (code
, VOIDmode
, op0
, op1
);
4668 /* Given a jump insn JUMP, return the condition that will cause it to branch
4669 to its JUMP_LABEL. If the condition cannot be understood, or is an
4670 inequality floating-point comparison which needs to be reversed, 0 will
4673 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4674 insn used in locating the condition was found. If a replacement test
4675 of the condition is desired, it should be placed in front of that
4676 insn and we will be sure that the inputs are still valid. If EARLIEST
4677 is null, the returned condition will be valid at INSN.
4679 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4680 compare CC mode register.
4682 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4685 get_condition (rtx jump
, rtx
*earliest
, int allow_cc_mode
, int valid_at_insn_p
)
4691 /* If this is not a standard conditional jump, we can't parse it. */
4693 || ! any_condjump_p (jump
))
4695 set
= pc_set (jump
);
4697 cond
= XEXP (SET_SRC (set
), 0);
4699 /* If this branches to JUMP_LABEL when the condition is false, reverse
4702 = GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
4703 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (jump
);
4705 return canonicalize_condition (jump
, cond
, reverse
, earliest
, NULL_RTX
,
4706 allow_cc_mode
, valid_at_insn_p
);
4709 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4710 TARGET_MODE_REP_EXTENDED.
4712 Note that we assume that the property of
4713 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4714 narrower than mode B. I.e., if A is a mode narrower than B then in
4715 order to be able to operate on it in mode B, mode A needs to
4716 satisfy the requirements set by the representation of mode B. */
4719 init_num_sign_bit_copies_in_rep (void)
4721 enum machine_mode mode
, in_mode
;
4723 for (in_mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); in_mode
!= VOIDmode
;
4724 in_mode
= GET_MODE_WIDER_MODE (mode
))
4725 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= in_mode
;
4726 mode
= GET_MODE_WIDER_MODE (mode
))
4728 enum machine_mode i
;
4730 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
4731 extends to the next widest mode. */
4732 gcc_assert (targetm
.mode_rep_extended (mode
, in_mode
) == UNKNOWN
4733 || GET_MODE_WIDER_MODE (mode
) == in_mode
);
4735 /* We are in in_mode. Count how many bits outside of mode
4736 have to be copies of the sign-bit. */
4737 for (i
= mode
; i
!= in_mode
; i
= GET_MODE_WIDER_MODE (i
))
4739 enum machine_mode wider
= GET_MODE_WIDER_MODE (i
);
4741 if (targetm
.mode_rep_extended (i
, wider
) == SIGN_EXTEND
4742 /* We can only check sign-bit copies starting from the
4743 top-bit. In order to be able to check the bits we
4744 have already seen we pretend that subsequent bits
4745 have to be sign-bit copies too. */
4746 || num_sign_bit_copies_in_rep
[in_mode
][mode
])
4747 num_sign_bit_copies_in_rep
[in_mode
][mode
]
4748 += GET_MODE_BITSIZE (wider
) - GET_MODE_BITSIZE (i
);
4753 /* Suppose that truncation from the machine mode of X to MODE is not a
4754 no-op. See if there is anything special about X so that we can
4755 assume it already contains a truncated value of MODE. */
4758 truncated_to_mode (enum machine_mode mode
, rtx x
)
4760 /* This register has already been used in MODE without explicit
4762 if (REG_P (x
) && rtl_hooks
.reg_truncated_to_mode (mode
, x
))
4765 /* See if we already satisfy the requirements of MODE. If yes we
4766 can just switch to MODE. */
4767 if (num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
]
4768 && (num_sign_bit_copies (x
, GET_MODE (x
))
4769 >= num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
] + 1))
4775 /* Initialize non_rtx_starting_operands, which is used to speed up
4781 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
4783 const char *format
= GET_RTX_FORMAT (i
);
4784 const char *first
= strpbrk (format
, "eEV");
4785 non_rtx_starting_operands
[i
] = first
? first
- format
: -1;
4788 init_num_sign_bit_copies_in_rep ();
4791 /* Check whether this is a constant pool constant. */
4793 constant_pool_constant_p (rtx x
)
4795 x
= avoid_constant_pool_reference (x
);
4796 return GET_CODE (x
) == CONST_DOUBLE
;