* config/alpha/alpha.md, arm/arm.c, darwin.c, frv/frv.md,
[official-gcc.git] / gcc / regmove.c
blob4bd5d1da9915b97ba7486cd8ad04877818522c22
1 /* Move registers around to reduce number of move instructions needed.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
23 /* This module looks for cases where matching constraints would force
24 an instruction to need a reload, and this reload would be a register
25 to register move. It then attempts to change the registers used by the
26 instruction to avoid the move instruction. */
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "rtl.h" /* stdio.h must precede rtl.h for FFS. */
33 #include "tm_p.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "output.h"
37 #include "regs.h"
38 #include "hard-reg-set.h"
39 #include "flags.h"
40 #include "function.h"
41 #include "expr.h"
42 #include "basic-block.h"
43 #include "except.h"
44 #include "toplev.h"
45 #include "reload.h"
46 #include "timevar.h"
47 #include "tree-pass.h"
50 /* Turn STACK_GROWS_DOWNWARD into a boolean. */
51 #ifdef STACK_GROWS_DOWNWARD
52 #undef STACK_GROWS_DOWNWARD
53 #define STACK_GROWS_DOWNWARD 1
54 #else
55 #define STACK_GROWS_DOWNWARD 0
56 #endif
58 static int perhaps_ends_bb_p (rtx);
59 static int optimize_reg_copy_1 (rtx, rtx, rtx);
60 static void optimize_reg_copy_2 (rtx, rtx, rtx);
61 static void optimize_reg_copy_3 (rtx, rtx, rtx);
62 static void copy_src_to_dest (rtx, rtx, rtx, int);
63 static int *regmove_bb_head;
65 struct match {
66 int with[MAX_RECOG_OPERANDS];
67 enum { READ, WRITE, READWRITE } use[MAX_RECOG_OPERANDS];
68 int commutative[MAX_RECOG_OPERANDS];
69 int early_clobber[MAX_RECOG_OPERANDS];
72 static rtx discover_flags_reg (void);
73 static void mark_flags_life_zones (rtx);
74 static void flags_set_1 (rtx, rtx, void *);
76 static int try_auto_increment (rtx, rtx, rtx, rtx, HOST_WIDE_INT, int);
77 static int find_matches (rtx, struct match *);
78 static void replace_in_call_usage (rtx *, unsigned int, rtx, rtx);
79 static int fixup_match_1 (rtx, rtx, rtx, rtx, rtx, int, int, int);
80 static int stable_and_no_regs_but_for_p (rtx, rtx, rtx);
81 static int regclass_compatible_p (int, int);
82 static int replacement_quality (rtx);
83 static int fixup_match_2 (rtx, rtx, rtx, rtx);
85 /* Return nonzero if registers with CLASS1 and CLASS2 can be merged without
86 causing too much register allocation problems. */
87 static int
88 regclass_compatible_p (int class0, int class1)
90 return (class0 == class1
91 || (reg_class_subset_p (class0, class1)
92 && ! CLASS_LIKELY_SPILLED_P (class0))
93 || (reg_class_subset_p (class1, class0)
94 && ! CLASS_LIKELY_SPILLED_P (class1)));
97 /* INC_INSN is an instruction that adds INCREMENT to REG.
98 Try to fold INC_INSN as a post/pre in/decrement into INSN.
99 Iff INC_INSN_SET is nonzero, inc_insn has a destination different from src.
100 Return nonzero for success. */
101 static int
102 try_auto_increment (rtx insn, rtx inc_insn, rtx inc_insn_set, rtx reg,
103 HOST_WIDE_INT increment, int pre)
105 enum rtx_code inc_code;
107 rtx pset = single_set (insn);
108 if (pset)
110 /* Can't use the size of SET_SRC, we might have something like
111 (sign_extend:SI (mem:QI ... */
112 rtx use = find_use_as_address (pset, reg, 0);
113 if (use != 0 && use != (rtx) (size_t) 1)
115 int size = GET_MODE_SIZE (GET_MODE (use));
116 if (0
117 || (HAVE_POST_INCREMENT
118 && pre == 0 && (inc_code = POST_INC, increment == size))
119 || (HAVE_PRE_INCREMENT
120 && pre == 1 && (inc_code = PRE_INC, increment == size))
121 || (HAVE_POST_DECREMENT
122 && pre == 0 && (inc_code = POST_DEC, increment == -size))
123 || (HAVE_PRE_DECREMENT
124 && pre == 1 && (inc_code = PRE_DEC, increment == -size))
127 if (inc_insn_set)
128 validate_change
129 (inc_insn,
130 &SET_SRC (inc_insn_set),
131 XEXP (SET_SRC (inc_insn_set), 0), 1);
132 validate_change (insn, &XEXP (use, 0),
133 gen_rtx_fmt_e (inc_code, Pmode, reg), 1);
134 if (apply_change_group ())
136 /* If there is a REG_DEAD note on this insn, we must
137 change this not to REG_UNUSED meaning that the register
138 is set, but the value is dead. Failure to do so will
139 result in a sched1 dieing -- when it recomputes lifetime
140 information, the number of REG_DEAD notes will have
141 changed. */
142 rtx note = find_reg_note (insn, REG_DEAD, reg);
143 if (note)
144 PUT_MODE (note, REG_UNUSED);
146 REG_NOTES (insn)
147 = gen_rtx_EXPR_LIST (REG_INC,
148 reg, REG_NOTES (insn));
149 if (! inc_insn_set)
150 delete_insn (inc_insn);
151 return 1;
156 return 0;
159 /* Determine if the pattern generated by add_optab has a clobber,
160 such as might be issued for a flags hard register. To make the
161 code elsewhere simpler, we handle cc0 in this same framework.
163 Return the register if one was discovered. Return NULL_RTX if
164 if no flags were found. Return pc_rtx if we got confused. */
166 static rtx
167 discover_flags_reg (void)
169 rtx tmp;
170 tmp = gen_rtx_REG (word_mode, 10000);
171 tmp = gen_add3_insn (tmp, tmp, const2_rtx);
173 /* If we get something that isn't a simple set, or a
174 [(set ..) (clobber ..)], this whole function will go wrong. */
175 if (GET_CODE (tmp) == SET)
176 return NULL_RTX;
177 else if (GET_CODE (tmp) == PARALLEL)
179 int found;
181 if (XVECLEN (tmp, 0) != 2)
182 return pc_rtx;
183 tmp = XVECEXP (tmp, 0, 1);
184 if (GET_CODE (tmp) != CLOBBER)
185 return pc_rtx;
186 tmp = XEXP (tmp, 0);
188 /* Don't do anything foolish if the md wanted to clobber a
189 scratch or something. We only care about hard regs.
190 Moreover we don't like the notion of subregs of hard regs. */
191 if (GET_CODE (tmp) == SUBREG
192 && REG_P (SUBREG_REG (tmp))
193 && REGNO (SUBREG_REG (tmp)) < FIRST_PSEUDO_REGISTER)
194 return pc_rtx;
195 found = (REG_P (tmp) && REGNO (tmp) < FIRST_PSEUDO_REGISTER);
197 return (found ? tmp : NULL_RTX);
200 return pc_rtx;
203 /* It is a tedious task identifying when the flags register is live and
204 when it is safe to optimize. Since we process the instruction stream
205 multiple times, locate and record these live zones by marking the
206 mode of the instructions --
208 QImode is used on the instruction at which the flags becomes live.
210 HImode is used within the range (exclusive) that the flags are
211 live. Thus the user of the flags is not marked.
213 All other instructions are cleared to VOIDmode. */
215 /* Used to communicate with flags_set_1. */
216 static rtx flags_set_1_rtx;
217 static int flags_set_1_set;
219 static void
220 mark_flags_life_zones (rtx flags)
222 int flags_regno;
223 int flags_nregs;
224 basic_block block;
226 #ifdef HAVE_cc0
227 /* If we found a flags register on a cc0 host, bail. */
228 if (flags == NULL_RTX)
229 flags = cc0_rtx;
230 else if (flags != cc0_rtx)
231 flags = pc_rtx;
232 #endif
234 /* Simple cases first: if no flags, clear all modes. If confusing,
235 mark the entire function as being in a flags shadow. */
236 if (flags == NULL_RTX || flags == pc_rtx)
238 enum machine_mode mode = (flags ? HImode : VOIDmode);
239 rtx insn;
240 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
241 PUT_MODE (insn, mode);
242 return;
245 #ifdef HAVE_cc0
246 flags_regno = -1;
247 flags_nregs = 1;
248 #else
249 flags_regno = REGNO (flags);
250 flags_nregs = hard_regno_nregs[flags_regno][GET_MODE (flags)];
251 #endif
252 flags_set_1_rtx = flags;
254 /* Process each basic block. */
255 FOR_EACH_BB_REVERSE (block)
257 rtx insn, end;
258 int live;
260 insn = BB_HEAD (block);
261 end = BB_END (block);
263 /* Look out for the (unlikely) case of flags being live across
264 basic block boundaries. */
265 live = 0;
266 #ifndef HAVE_cc0
268 int i;
269 for (i = 0; i < flags_nregs; ++i)
270 live |= REGNO_REG_SET_P (block->il.rtl->global_live_at_start,
271 flags_regno + i);
273 #endif
275 while (1)
277 /* Process liveness in reverse order of importance --
278 alive, death, birth. This lets more important info
279 overwrite the mode of lesser info. */
281 if (INSN_P (insn))
283 #ifdef HAVE_cc0
284 /* In the cc0 case, death is not marked in reg notes,
285 but is instead the mere use of cc0 when it is alive. */
286 if (live && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
287 live = 0;
288 #else
289 /* In the hard reg case, we watch death notes. */
290 if (live && find_regno_note (insn, REG_DEAD, flags_regno))
291 live = 0;
292 #endif
293 PUT_MODE (insn, (live ? HImode : VOIDmode));
295 /* In either case, birth is denoted simply by its presence
296 as the destination of a set. */
297 flags_set_1_set = 0;
298 note_stores (PATTERN (insn), flags_set_1, NULL);
299 if (flags_set_1_set)
301 live = 1;
302 PUT_MODE (insn, QImode);
305 else
306 PUT_MODE (insn, (live ? HImode : VOIDmode));
308 if (insn == end)
309 break;
310 insn = NEXT_INSN (insn);
315 /* A subroutine of mark_flags_life_zones, called through note_stores. */
317 static void
318 flags_set_1 (rtx x, rtx pat, void *data ATTRIBUTE_UNUSED)
320 if (GET_CODE (pat) == SET
321 && reg_overlap_mentioned_p (x, flags_set_1_rtx))
322 flags_set_1_set = 1;
325 static int *regno_src_regno;
327 /* Indicate how good a choice REG (which appears as a source) is to replace
328 a destination register with. The higher the returned value, the better
329 the choice. The main objective is to avoid using a register that is
330 a candidate for tying to a hard register, since the output might in
331 turn be a candidate to be tied to a different hard register. */
332 static int
333 replacement_quality (rtx reg)
335 int src_regno;
337 /* Bad if this isn't a register at all. */
338 if (!REG_P (reg))
339 return 0;
341 /* If this register is not meant to get a hard register,
342 it is a poor choice. */
343 if (REG_LIVE_LENGTH (REGNO (reg)) < 0)
344 return 0;
346 src_regno = regno_src_regno[REGNO (reg)];
348 /* If it was not copied from another register, it is fine. */
349 if (src_regno < 0)
350 return 3;
352 /* Copied from a hard register? */
353 if (src_regno < FIRST_PSEUDO_REGISTER)
354 return 1;
356 /* Copied from a pseudo register - not as bad as from a hard register,
357 yet still cumbersome, since the register live length will be lengthened
358 when the registers get tied. */
359 return 2;
362 /* Return 1 if INSN might end a basic block. */
364 static int perhaps_ends_bb_p (rtx insn)
366 switch (GET_CODE (insn))
368 case CODE_LABEL:
369 case JUMP_INSN:
370 /* These always end a basic block. */
371 return 1;
373 case CALL_INSN:
374 /* A CALL_INSN might be the last insn of a basic block, if it is inside
375 an EH region or if there are nonlocal gotos. Note that this test is
376 very conservative. */
377 if (nonlocal_goto_handler_labels)
378 return 1;
379 /* Fall through. */
380 default:
381 return can_throw_internal (insn);
385 /* INSN is a copy from SRC to DEST, both registers, and SRC does not die
386 in INSN.
388 Search forward to see if SRC dies before either it or DEST is modified,
389 but don't scan past the end of a basic block. If so, we can replace SRC
390 with DEST and let SRC die in INSN.
392 This will reduce the number of registers live in that range and may enable
393 DEST to be tied to SRC, thus often saving one register in addition to a
394 register-register copy. */
396 static int
397 optimize_reg_copy_1 (rtx insn, rtx dest, rtx src)
399 rtx p, q;
400 rtx note;
401 rtx dest_death = 0;
402 int sregno = REGNO (src);
403 int dregno = REGNO (dest);
405 /* We don't want to mess with hard regs if register classes are small. */
406 if (sregno == dregno
407 || (SMALL_REGISTER_CLASSES
408 && (sregno < FIRST_PSEUDO_REGISTER
409 || dregno < FIRST_PSEUDO_REGISTER))
410 /* We don't see all updates to SP if they are in an auto-inc memory
411 reference, so we must disallow this optimization on them. */
412 || sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
413 return 0;
415 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
417 /* ??? We can't scan past the end of a basic block without updating
418 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
419 if (perhaps_ends_bb_p (p))
420 break;
421 else if (! INSN_P (p))
422 continue;
424 if (reg_set_p (src, p) || reg_set_p (dest, p)
425 /* If SRC is an asm-declared register, it must not be replaced
426 in any asm. Unfortunately, the REG_EXPR tree for the asm
427 variable may be absent in the SRC rtx, so we can't check the
428 actual register declaration easily (the asm operand will have
429 it, though). To avoid complicating the test for a rare case,
430 we just don't perform register replacement for a hard reg
431 mentioned in an asm. */
432 || (sregno < FIRST_PSEUDO_REGISTER
433 && asm_noperands (PATTERN (p)) >= 0
434 && reg_overlap_mentioned_p (src, PATTERN (p)))
435 /* Don't change hard registers used by a call. */
436 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
437 && find_reg_fusage (p, USE, src))
438 /* Don't change a USE of a register. */
439 || (GET_CODE (PATTERN (p)) == USE
440 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
441 break;
443 /* See if all of SRC dies in P. This test is slightly more
444 conservative than it needs to be. */
445 if ((note = find_regno_note (p, REG_DEAD, sregno)) != 0
446 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
448 int failed = 0;
449 int d_length = 0;
450 int s_length = 0;
451 int d_n_calls = 0;
452 int s_n_calls = 0;
454 /* We can do the optimization. Scan forward from INSN again,
455 replacing regs as we go. Set FAILED if a replacement can't
456 be done. In that case, we can't move the death note for SRC.
457 This should be rare. */
459 /* Set to stop at next insn. */
460 for (q = next_real_insn (insn);
461 q != next_real_insn (p);
462 q = next_real_insn (q))
464 if (reg_overlap_mentioned_p (src, PATTERN (q)))
466 /* If SRC is a hard register, we might miss some
467 overlapping registers with validate_replace_rtx,
468 so we would have to undo it. We can't if DEST is
469 present in the insn, so fail in that combination
470 of cases. */
471 if (sregno < FIRST_PSEUDO_REGISTER
472 && reg_mentioned_p (dest, PATTERN (q)))
473 failed = 1;
475 /* Replace all uses and make sure that the register
476 isn't still present. */
477 else if (validate_replace_rtx (src, dest, q)
478 && (sregno >= FIRST_PSEUDO_REGISTER
479 || ! reg_overlap_mentioned_p (src,
480 PATTERN (q))))
482 else
484 validate_replace_rtx (dest, src, q);
485 failed = 1;
489 /* For SREGNO, count the total number of insns scanned.
490 For DREGNO, count the total number of insns scanned after
491 passing the death note for DREGNO. */
492 s_length++;
493 if (dest_death)
494 d_length++;
496 /* If the insn in which SRC dies is a CALL_INSN, don't count it
497 as a call that has been crossed. Otherwise, count it. */
498 if (q != p && CALL_P (q))
500 /* Similarly, total calls for SREGNO, total calls beyond
501 the death note for DREGNO. */
502 s_n_calls++;
503 if (dest_death)
504 d_n_calls++;
507 /* If DEST dies here, remove the death note and save it for
508 later. Make sure ALL of DEST dies here; again, this is
509 overly conservative. */
510 if (dest_death == 0
511 && (dest_death = find_regno_note (q, REG_DEAD, dregno)) != 0)
513 if (GET_MODE (XEXP (dest_death, 0)) != GET_MODE (dest))
514 failed = 1, dest_death = 0;
515 else
516 remove_note (q, dest_death);
520 if (! failed)
522 /* These counters need to be updated if and only if we are
523 going to move the REG_DEAD note. */
524 if (sregno >= FIRST_PSEUDO_REGISTER)
526 if (REG_LIVE_LENGTH (sregno) >= 0)
528 REG_LIVE_LENGTH (sregno) -= s_length;
529 /* REG_LIVE_LENGTH is only an approximation after
530 combine if sched is not run, so make sure that we
531 still have a reasonable value. */
532 if (REG_LIVE_LENGTH (sregno) < 2)
533 REG_LIVE_LENGTH (sregno) = 2;
536 REG_N_CALLS_CROSSED (sregno) -= s_n_calls;
539 /* Move death note of SRC from P to INSN. */
540 remove_note (p, note);
541 XEXP (note, 1) = REG_NOTES (insn);
542 REG_NOTES (insn) = note;
545 /* DEST is also dead if INSN has a REG_UNUSED note for DEST. */
546 if (! dest_death
547 && (dest_death = find_regno_note (insn, REG_UNUSED, dregno)))
549 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
550 remove_note (insn, dest_death);
553 /* Put death note of DEST on P if we saw it die. */
554 if (dest_death)
556 XEXP (dest_death, 1) = REG_NOTES (p);
557 REG_NOTES (p) = dest_death;
559 if (dregno >= FIRST_PSEUDO_REGISTER)
561 /* If and only if we are moving the death note for DREGNO,
562 then we need to update its counters. */
563 if (REG_LIVE_LENGTH (dregno) >= 0)
564 REG_LIVE_LENGTH (dregno) += d_length;
565 REG_N_CALLS_CROSSED (dregno) += d_n_calls;
569 return ! failed;
572 /* If SRC is a hard register which is set or killed in some other
573 way, we can't do this optimization. */
574 else if (sregno < FIRST_PSEUDO_REGISTER
575 && dead_or_set_p (p, src))
576 break;
578 return 0;
581 /* INSN is a copy of SRC to DEST, in which SRC dies. See if we now have
582 a sequence of insns that modify DEST followed by an insn that sets
583 SRC to DEST in which DEST dies, with no prior modification of DEST.
584 (There is no need to check if the insns in between actually modify
585 DEST. We should not have cases where DEST is not modified, but
586 the optimization is safe if no such modification is detected.)
587 In that case, we can replace all uses of DEST, starting with INSN and
588 ending with the set of SRC to DEST, with SRC. We do not do this
589 optimization if a CALL_INSN is crossed unless SRC already crosses a
590 call or if DEST dies before the copy back to SRC.
592 It is assumed that DEST and SRC are pseudos; it is too complicated to do
593 this for hard registers since the substitutions we may make might fail. */
595 static void
596 optimize_reg_copy_2 (rtx insn, rtx dest, rtx src)
598 rtx p, q;
599 rtx set;
600 int sregno = REGNO (src);
601 int dregno = REGNO (dest);
603 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
605 /* ??? We can't scan past the end of a basic block without updating
606 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
607 if (perhaps_ends_bb_p (p))
608 break;
609 else if (! INSN_P (p))
610 continue;
612 set = single_set (p);
613 if (set && SET_SRC (set) == dest && SET_DEST (set) == src
614 && find_reg_note (p, REG_DEAD, dest))
616 /* We can do the optimization. Scan forward from INSN again,
617 replacing regs as we go. */
619 /* Set to stop at next insn. */
620 for (q = insn; q != NEXT_INSN (p); q = NEXT_INSN (q))
621 if (INSN_P (q))
623 if (reg_mentioned_p (dest, PATTERN (q)))
624 PATTERN (q) = replace_rtx (PATTERN (q), dest, src);
627 if (CALL_P (q))
629 REG_N_CALLS_CROSSED (dregno)--;
630 REG_N_CALLS_CROSSED (sregno)++;
634 remove_note (p, find_reg_note (p, REG_DEAD, dest));
635 REG_N_DEATHS (dregno)--;
636 remove_note (insn, find_reg_note (insn, REG_DEAD, src));
637 REG_N_DEATHS (sregno)--;
638 return;
641 if (reg_set_p (src, p)
642 || find_reg_note (p, REG_DEAD, dest)
643 || (CALL_P (p) && REG_N_CALLS_CROSSED (sregno) == 0))
644 break;
647 /* INSN is a ZERO_EXTEND or SIGN_EXTEND of SRC to DEST.
648 Look if SRC dies there, and if it is only set once, by loading
649 it from memory. If so, try to incorporate the zero/sign extension
650 into the memory read, change SRC to the mode of DEST, and alter
651 the remaining accesses to use the appropriate SUBREG. This allows
652 SRC and DEST to be tied later. */
653 static void
654 optimize_reg_copy_3 (rtx insn, rtx dest, rtx src)
656 rtx src_reg = XEXP (src, 0);
657 int src_no = REGNO (src_reg);
658 int dst_no = REGNO (dest);
659 rtx p, set;
660 enum machine_mode old_mode;
662 if (src_no < FIRST_PSEUDO_REGISTER
663 || dst_no < FIRST_PSEUDO_REGISTER
664 || ! find_reg_note (insn, REG_DEAD, src_reg)
665 || REG_N_DEATHS (src_no) != 1
666 || REG_N_SETS (src_no) != 1)
667 return;
668 for (p = PREV_INSN (insn); p && ! reg_set_p (src_reg, p); p = PREV_INSN (p))
669 /* ??? We can't scan past the end of a basic block without updating
670 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
671 if (perhaps_ends_bb_p (p))
672 break;
674 if (! p)
675 return;
677 if (! (set = single_set (p))
678 || !MEM_P (SET_SRC (set))
679 /* If there's a REG_EQUIV note, this must be an insn that loads an
680 argument. Prefer keeping the note over doing this optimization. */
681 || find_reg_note (p, REG_EQUIV, NULL_RTX)
682 || SET_DEST (set) != src_reg)
683 return;
685 /* Be conservative: although this optimization is also valid for
686 volatile memory references, that could cause trouble in later passes. */
687 if (MEM_VOLATILE_P (SET_SRC (set)))
688 return;
690 /* Do not use a SUBREG to truncate from one mode to another if truncation
691 is not a nop. */
692 if (GET_MODE_BITSIZE (GET_MODE (src_reg)) <= GET_MODE_BITSIZE (GET_MODE (src))
693 && !TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (src)),
694 GET_MODE_BITSIZE (GET_MODE (src_reg))))
695 return;
697 old_mode = GET_MODE (src_reg);
698 PUT_MODE (src_reg, GET_MODE (src));
699 XEXP (src, 0) = SET_SRC (set);
701 /* Include this change in the group so that it's easily undone if
702 one of the changes in the group is invalid. */
703 validate_change (p, &SET_SRC (set), src, 1);
705 /* Now walk forward making additional replacements. We want to be able
706 to undo all the changes if a later substitution fails. */
707 while (p = NEXT_INSN (p), p != insn)
709 if (! INSN_P (p))
710 continue;
712 /* Make a tentative change. */
713 validate_replace_rtx_group (src_reg,
714 gen_lowpart_SUBREG (old_mode, src_reg),
718 validate_replace_rtx_group (src, src_reg, insn);
720 /* Now see if all the changes are valid. */
721 if (! apply_change_group ())
723 /* One or more changes were no good. Back out everything. */
724 PUT_MODE (src_reg, old_mode);
725 XEXP (src, 0) = src_reg;
727 else
729 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
730 if (note)
731 remove_note (p, note);
736 /* If we were not able to update the users of src to use dest directly, try
737 instead moving the value to dest directly before the operation. */
739 static void
740 copy_src_to_dest (rtx insn, rtx src, rtx dest, int old_max_uid)
742 rtx seq;
743 rtx link;
744 rtx next;
745 rtx set;
746 rtx move_insn;
747 rtx *p_insn_notes;
748 rtx *p_move_notes;
749 int src_regno;
750 int dest_regno;
751 int bb;
752 int insn_uid;
753 int move_uid;
755 /* A REG_LIVE_LENGTH of -1 indicates the register is equivalent to a constant
756 or memory location and is used infrequently; a REG_LIVE_LENGTH of -2 is
757 parameter when there is no frame pointer that is not allocated a register.
758 For now, we just reject them, rather than incrementing the live length. */
760 if (REG_P (src)
761 && REG_LIVE_LENGTH (REGNO (src)) > 0
762 && REG_P (dest)
763 && REG_LIVE_LENGTH (REGNO (dest)) > 0
764 && (set = single_set (insn)) != NULL_RTX
765 && !reg_mentioned_p (dest, SET_SRC (set))
766 && GET_MODE (src) == GET_MODE (dest))
768 int old_num_regs = reg_rtx_no;
770 /* Generate the src->dest move. */
771 start_sequence ();
772 emit_move_insn (dest, src);
773 seq = get_insns ();
774 end_sequence ();
775 /* If this sequence uses new registers, we may not use it. */
776 if (old_num_regs != reg_rtx_no
777 || ! validate_replace_rtx (src, dest, insn))
779 /* We have to restore reg_rtx_no to its old value, lest
780 recompute_reg_usage will try to compute the usage of the
781 new regs, yet reg_n_info is not valid for them. */
782 reg_rtx_no = old_num_regs;
783 return;
785 emit_insn_before (seq, insn);
786 move_insn = PREV_INSN (insn);
787 p_move_notes = &REG_NOTES (move_insn);
788 p_insn_notes = &REG_NOTES (insn);
790 /* Move any notes mentioning src to the move instruction. */
791 for (link = REG_NOTES (insn); link != NULL_RTX; link = next)
793 next = XEXP (link, 1);
794 if (XEXP (link, 0) == src)
796 *p_move_notes = link;
797 p_move_notes = &XEXP (link, 1);
799 else
801 *p_insn_notes = link;
802 p_insn_notes = &XEXP (link, 1);
806 *p_move_notes = NULL_RTX;
807 *p_insn_notes = NULL_RTX;
809 /* Is the insn the head of a basic block? If so extend it. */
810 insn_uid = INSN_UID (insn);
811 move_uid = INSN_UID (move_insn);
812 if (insn_uid < old_max_uid)
814 bb = regmove_bb_head[insn_uid];
815 if (bb >= 0)
817 BB_HEAD (BASIC_BLOCK (bb)) = move_insn;
818 regmove_bb_head[insn_uid] = -1;
822 /* Update the various register tables. */
823 dest_regno = REGNO (dest);
824 REG_N_SETS (dest_regno) ++;
825 REG_LIVE_LENGTH (dest_regno)++;
826 if (REGNO_FIRST_UID (dest_regno) == insn_uid)
827 REGNO_FIRST_UID (dest_regno) = move_uid;
829 src_regno = REGNO (src);
830 if (! find_reg_note (move_insn, REG_DEAD, src))
831 REG_LIVE_LENGTH (src_regno)++;
833 if (REGNO_FIRST_UID (src_regno) == insn_uid)
834 REGNO_FIRST_UID (src_regno) = move_uid;
836 if (REGNO_LAST_UID (src_regno) == insn_uid)
837 REGNO_LAST_UID (src_regno) = move_uid;
841 /* reg_set_in_bb[REGNO] points to basic block iff the register is set
842 only once in the given block and has REG_EQUAL note. */
844 basic_block *reg_set_in_bb;
846 /* Size of reg_set_in_bb array. */
847 static unsigned int max_reg_computed;
850 /* Return whether REG is set in only one location, and is set to a
851 constant, but is set in a different basic block from INSN (an
852 instructions which uses REG). In this case REG is equivalent to a
853 constant, and we don't want to break that equivalence, because that
854 may increase register pressure and make reload harder. If REG is
855 set in the same basic block as INSN, we don't worry about it,
856 because we'll probably need a register anyhow (??? but what if REG
857 is used in a different basic block as well as this one?). FIRST is
858 the first insn in the function. */
860 static bool
861 reg_is_remote_constant_p (rtx reg, rtx insn)
863 basic_block bb;
864 rtx p;
865 int max;
867 if (!reg_set_in_bb)
869 max_reg_computed = max = max_reg_num ();
870 reg_set_in_bb = xcalloc (max, sizeof (*reg_set_in_bb));
872 FOR_EACH_BB (bb)
873 for (p = BB_HEAD (bb); p != NEXT_INSN (BB_END (bb));
874 p = NEXT_INSN (p))
876 rtx s;
878 if (!INSN_P (p))
879 continue;
880 s = single_set (p);
881 /* This is the instruction which sets REG. If there is a
882 REG_EQUAL note, then REG is equivalent to a constant. */
883 if (s != 0
884 && REG_P (SET_DEST (s))
885 && REG_N_SETS (REGNO (SET_DEST (s))) == 1
886 && find_reg_note (p, REG_EQUAL, NULL_RTX))
887 reg_set_in_bb[REGNO (SET_DEST (s))] = bb;
890 gcc_assert (REGNO (reg) < max_reg_computed);
891 if (reg_set_in_bb[REGNO (reg)] == NULL)
892 return false;
893 if (reg_set_in_bb[REGNO (reg)] != BLOCK_FOR_INSN (insn))
894 return true;
895 /* Look for the set. */
896 for (p = BB_HEAD (BLOCK_FOR_INSN (insn)); p != insn; p = NEXT_INSN (p))
898 rtx s;
900 if (!INSN_P (p))
901 continue;
902 s = single_set (p);
903 if (s != 0
904 && REG_P (SET_DEST (s)) && REGNO (SET_DEST (s)) == REGNO (reg))
906 /* The register is set in the same basic block. */
907 return false;
910 return true;
913 /* INSN is adding a CONST_INT to a REG. We search backwards looking for
914 another add immediate instruction with the same source and dest registers,
915 and if we find one, we change INSN to an increment, and return 1. If
916 no changes are made, we return 0.
918 This changes
919 (set (reg100) (plus reg1 offset1))
921 (set (reg100) (plus reg1 offset2))
923 (set (reg100) (plus reg1 offset1))
925 (set (reg100) (plus reg100 offset2-offset1)) */
927 /* ??? What does this comment mean? */
928 /* cse disrupts preincrement / postdecrement sequences when it finds a
929 hard register as ultimate source, like the frame pointer. */
931 static int
932 fixup_match_2 (rtx insn, rtx dst, rtx src, rtx offset)
934 rtx p, dst_death = 0;
935 int length, num_calls = 0;
937 /* If SRC dies in INSN, we'd have to move the death note. This is
938 considered to be very unlikely, so we just skip the optimization
939 in this case. */
940 if (find_regno_note (insn, REG_DEAD, REGNO (src)))
941 return 0;
943 /* Scan backward to find the first instruction that sets DST. */
945 for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
947 rtx pset;
949 /* ??? We can't scan past the end of a basic block without updating
950 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
951 if (perhaps_ends_bb_p (p))
952 break;
953 else if (! INSN_P (p))
954 continue;
956 if (find_regno_note (p, REG_DEAD, REGNO (dst)))
957 dst_death = p;
958 if (! dst_death)
959 length++;
961 pset = single_set (p);
962 if (pset && SET_DEST (pset) == dst
963 && GET_CODE (SET_SRC (pset)) == PLUS
964 && XEXP (SET_SRC (pset), 0) == src
965 && GET_CODE (XEXP (SET_SRC (pset), 1)) == CONST_INT)
967 HOST_WIDE_INT newconst
968 = INTVAL (offset) - INTVAL (XEXP (SET_SRC (pset), 1));
969 rtx add = gen_add3_insn (dst, dst, GEN_INT (newconst));
971 if (add && validate_change (insn, &PATTERN (insn), add, 0))
973 /* Remove the death note for DST from DST_DEATH. */
974 if (dst_death)
976 remove_death (REGNO (dst), dst_death);
977 REG_LIVE_LENGTH (REGNO (dst)) += length;
978 REG_N_CALLS_CROSSED (REGNO (dst)) += num_calls;
981 if (dump_file)
982 fprintf (dump_file,
983 "Fixed operand of insn %d.\n",
984 INSN_UID (insn));
986 #ifdef AUTO_INC_DEC
987 for (p = PREV_INSN (insn); p; p = PREV_INSN (p))
989 if (LABEL_P (p)
990 || JUMP_P (p))
991 break;
992 if (! INSN_P (p))
993 continue;
994 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
996 if (try_auto_increment (p, insn, 0, dst, newconst, 0))
997 return 1;
998 break;
1001 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
1003 if (LABEL_P (p)
1004 || JUMP_P (p))
1005 break;
1006 if (! INSN_P (p))
1007 continue;
1008 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
1010 try_auto_increment (p, insn, 0, dst, newconst, 1);
1011 break;
1014 #endif
1015 return 1;
1019 if (reg_set_p (dst, PATTERN (p)))
1020 break;
1022 /* If we have passed a call instruction, and the
1023 pseudo-reg SRC is not already live across a call,
1024 then don't perform the optimization. */
1025 /* reg_set_p is overly conservative for CALL_INSNS, thinks that all
1026 hard regs are clobbered. Thus, we only use it for src for
1027 non-call insns. */
1028 if (CALL_P (p))
1030 if (! dst_death)
1031 num_calls++;
1033 if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
1034 break;
1036 if (call_used_regs [REGNO (dst)]
1037 || find_reg_fusage (p, CLOBBER, dst))
1038 break;
1040 else if (reg_set_p (src, PATTERN (p)))
1041 break;
1044 return 0;
1047 /* Main entry for the register move optimization.
1048 F is the first instruction.
1049 NREGS is one plus the highest pseudo-reg number used in the instruction.
1050 REGMOVE_DUMP_FILE is a stream for output of a trace of actions taken
1051 (or 0 if none should be output). */
1053 static void
1054 regmove_optimize (rtx f, int nregs)
1056 int old_max_uid = get_max_uid ();
1057 rtx insn;
1058 struct match match;
1059 int pass;
1060 int i;
1061 rtx copy_src, copy_dst;
1062 basic_block bb;
1064 /* ??? Hack. Regmove doesn't examine the CFG, and gets mightily
1065 confused by non-call exceptions ending blocks. */
1066 if (flag_non_call_exceptions)
1067 return;
1069 /* Find out where a potential flags register is live, and so that we
1070 can suppress some optimizations in those zones. */
1071 mark_flags_life_zones (discover_flags_reg ());
1073 regno_src_regno = XNEWVEC (int, nregs);
1074 for (i = nregs; --i >= 0; ) regno_src_regno[i] = -1;
1076 regmove_bb_head = XNEWVEC (int, old_max_uid + 1);
1077 for (i = old_max_uid; i >= 0; i--) regmove_bb_head[i] = -1;
1078 FOR_EACH_BB (bb)
1079 regmove_bb_head[INSN_UID (BB_HEAD (bb))] = bb->index;
1081 /* A forward/backward pass. Replace output operands with input operands. */
1083 for (pass = 0; pass <= 2; pass++)
1085 if (! flag_regmove && pass >= flag_expensive_optimizations)
1086 goto done;
1088 if (dump_file)
1089 fprintf (dump_file, "Starting %s pass...\n",
1090 pass ? "backward" : "forward");
1092 for (insn = pass ? get_last_insn () : f; insn;
1093 insn = pass ? PREV_INSN (insn) : NEXT_INSN (insn))
1095 rtx set;
1096 int op_no, match_no;
1098 set = single_set (insn);
1099 if (! set)
1100 continue;
1102 if (flag_expensive_optimizations && ! pass
1103 && (GET_CODE (SET_SRC (set)) == SIGN_EXTEND
1104 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND)
1105 && REG_P (XEXP (SET_SRC (set), 0))
1106 && REG_P (SET_DEST (set)))
1107 optimize_reg_copy_3 (insn, SET_DEST (set), SET_SRC (set));
1109 if (flag_expensive_optimizations && ! pass
1110 && REG_P (SET_SRC (set))
1111 && REG_P (SET_DEST (set)))
1113 /* If this is a register-register copy where SRC is not dead,
1114 see if we can optimize it. If this optimization succeeds,
1115 it will become a copy where SRC is dead. */
1116 if ((find_reg_note (insn, REG_DEAD, SET_SRC (set))
1117 || optimize_reg_copy_1 (insn, SET_DEST (set), SET_SRC (set)))
1118 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
1120 /* Similarly for a pseudo-pseudo copy when SRC is dead. */
1121 if (REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1122 optimize_reg_copy_2 (insn, SET_DEST (set), SET_SRC (set));
1123 if (regno_src_regno[REGNO (SET_DEST (set))] < 0
1124 && SET_SRC (set) != SET_DEST (set))
1126 int srcregno = REGNO (SET_SRC (set));
1127 if (regno_src_regno[srcregno] >= 0)
1128 srcregno = regno_src_regno[srcregno];
1129 regno_src_regno[REGNO (SET_DEST (set))] = srcregno;
1133 if (! flag_regmove)
1134 continue;
1136 if (! find_matches (insn, &match))
1137 continue;
1139 /* Now scan through the operands looking for a source operand
1140 which is supposed to match the destination operand.
1141 Then scan forward for an instruction which uses the dest
1142 operand.
1143 If it dies there, then replace the dest in both operands with
1144 the source operand. */
1146 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1148 rtx src, dst, src_subreg;
1149 enum reg_class src_class, dst_class;
1151 match_no = match.with[op_no];
1153 /* Nothing to do if the two operands aren't supposed to match. */
1154 if (match_no < 0)
1155 continue;
1157 src = recog_data.operand[op_no];
1158 dst = recog_data.operand[match_no];
1160 if (!REG_P (src))
1161 continue;
1163 src_subreg = src;
1164 if (GET_CODE (dst) == SUBREG
1165 && GET_MODE_SIZE (GET_MODE (dst))
1166 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dst))))
1168 dst = SUBREG_REG (dst);
1169 src_subreg = lowpart_subreg (GET_MODE (dst),
1170 src, GET_MODE (src));
1171 if (!src_subreg)
1172 continue;
1174 if (!REG_P (dst)
1175 || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1176 continue;
1178 if (REGNO (src) < FIRST_PSEUDO_REGISTER)
1180 if (match.commutative[op_no] < op_no)
1181 regno_src_regno[REGNO (dst)] = REGNO (src);
1182 continue;
1185 if (REG_LIVE_LENGTH (REGNO (src)) < 0)
1186 continue;
1188 /* op_no/src must be a read-only operand, and
1189 match_operand/dst must be a write-only operand. */
1190 if (match.use[op_no] != READ
1191 || match.use[match_no] != WRITE)
1192 continue;
1194 if (match.early_clobber[match_no]
1195 && count_occurrences (PATTERN (insn), src, 0) > 1)
1196 continue;
1198 /* Make sure match_operand is the destination. */
1199 if (recog_data.operand[match_no] != SET_DEST (set))
1200 continue;
1202 /* If the operands already match, then there is nothing to do. */
1203 if (operands_match_p (src, dst))
1204 continue;
1206 /* But in the commutative case, we might find a better match. */
1207 if (match.commutative[op_no] >= 0)
1209 rtx comm = recog_data.operand[match.commutative[op_no]];
1210 if (operands_match_p (comm, dst)
1211 && (replacement_quality (comm)
1212 >= replacement_quality (src)))
1213 continue;
1216 src_class = reg_preferred_class (REGNO (src));
1217 dst_class = reg_preferred_class (REGNO (dst));
1218 if (! regclass_compatible_p (src_class, dst_class))
1219 continue;
1221 if (GET_MODE (src) != GET_MODE (dst))
1222 continue;
1224 if (fixup_match_1 (insn, set, src, src_subreg, dst, pass,
1225 op_no, match_no))
1226 break;
1231 /* A backward pass. Replace input operands with output operands. */
1233 if (dump_file)
1234 fprintf (dump_file, "Starting backward pass...\n");
1236 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
1238 if (INSN_P (insn))
1240 int op_no, match_no;
1241 int success = 0;
1243 if (! find_matches (insn, &match))
1244 continue;
1246 /* Now scan through the operands looking for a destination operand
1247 which is supposed to match a source operand.
1248 Then scan backward for an instruction which sets the source
1249 operand. If safe, then replace the source operand with the
1250 dest operand in both instructions. */
1252 copy_src = NULL_RTX;
1253 copy_dst = NULL_RTX;
1254 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1256 rtx set, p, src, dst;
1257 rtx src_note, dst_note;
1258 int num_calls = 0;
1259 enum reg_class src_class, dst_class;
1260 int length;
1262 match_no = match.with[op_no];
1264 /* Nothing to do if the two operands aren't supposed to match. */
1265 if (match_no < 0)
1266 continue;
1268 dst = recog_data.operand[match_no];
1269 src = recog_data.operand[op_no];
1271 if (!REG_P (src))
1272 continue;
1274 if (!REG_P (dst)
1275 || REGNO (dst) < FIRST_PSEUDO_REGISTER
1276 || REG_LIVE_LENGTH (REGNO (dst)) < 0
1277 || GET_MODE (src) != GET_MODE (dst))
1278 continue;
1280 /* If the operands already match, then there is nothing to do. */
1281 if (operands_match_p (src, dst))
1282 continue;
1284 if (match.commutative[op_no] >= 0)
1286 rtx comm = recog_data.operand[match.commutative[op_no]];
1287 if (operands_match_p (comm, dst))
1288 continue;
1291 set = single_set (insn);
1292 if (! set)
1293 continue;
1295 /* Note that single_set ignores parts of a parallel set for
1296 which one of the destinations is REG_UNUSED. We can't
1297 handle that here, since we can wind up rewriting things
1298 such that a single register is set twice within a single
1299 parallel. */
1300 if (reg_set_p (src, insn))
1301 continue;
1303 /* match_no/dst must be a write-only operand, and
1304 operand_operand/src must be a read-only operand. */
1305 if (match.use[op_no] != READ
1306 || match.use[match_no] != WRITE)
1307 continue;
1309 if (match.early_clobber[match_no]
1310 && count_occurrences (PATTERN (insn), src, 0) > 1)
1311 continue;
1313 /* Make sure match_no is the destination. */
1314 if (recog_data.operand[match_no] != SET_DEST (set))
1315 continue;
1317 if (REGNO (src) < FIRST_PSEUDO_REGISTER)
1319 if (GET_CODE (SET_SRC (set)) == PLUS
1320 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT
1321 && XEXP (SET_SRC (set), 0) == src
1322 && fixup_match_2 (insn, dst, src,
1323 XEXP (SET_SRC (set), 1)))
1324 break;
1325 continue;
1327 src_class = reg_preferred_class (REGNO (src));
1328 dst_class = reg_preferred_class (REGNO (dst));
1330 if (! (src_note = find_reg_note (insn, REG_DEAD, src)))
1332 /* We used to force the copy here like in other cases, but
1333 it produces worse code, as it eliminates no copy
1334 instructions and the copy emitted will be produced by
1335 reload anyway. On patterns with multiple alternatives,
1336 there may be better solution available.
1338 In particular this change produced slower code for numeric
1339 i387 programs. */
1341 continue;
1344 if (! regclass_compatible_p (src_class, dst_class))
1346 if (!copy_src)
1348 copy_src = src;
1349 copy_dst = dst;
1351 continue;
1354 /* Can not modify an earlier insn to set dst if this insn
1355 uses an old value in the source. */
1356 if (reg_overlap_mentioned_p (dst, SET_SRC (set)))
1358 if (!copy_src)
1360 copy_src = src;
1361 copy_dst = dst;
1363 continue;
1366 /* If src is set once in a different basic block,
1367 and is set equal to a constant, then do not use
1368 it for this optimization, as this would make it
1369 no longer equivalent to a constant. */
1371 if (reg_is_remote_constant_p (src, insn))
1373 if (!copy_src)
1375 copy_src = src;
1376 copy_dst = dst;
1378 continue;
1382 if (dump_file)
1383 fprintf (dump_file,
1384 "Could fix operand %d of insn %d matching operand %d.\n",
1385 op_no, INSN_UID (insn), match_no);
1387 /* Scan backward to find the first instruction that uses
1388 the input operand. If the operand is set here, then
1389 replace it in both instructions with match_no. */
1391 for (length = 0, p = PREV_INSN (insn); p; p = PREV_INSN (p))
1393 rtx pset;
1395 /* ??? We can't scan past the end of a basic block without
1396 updating the register lifetime info
1397 (REG_DEAD/basic_block_live_at_start). */
1398 if (perhaps_ends_bb_p (p))
1399 break;
1400 else if (! INSN_P (p))
1401 continue;
1403 length++;
1405 /* ??? See if all of SRC is set in P. This test is much
1406 more conservative than it needs to be. */
1407 pset = single_set (p);
1408 if (pset && SET_DEST (pset) == src)
1410 /* We use validate_replace_rtx, in case there
1411 are multiple identical source operands. All of
1412 them have to be changed at the same time. */
1413 if (validate_replace_rtx (src, dst, insn))
1415 if (validate_change (p, &SET_DEST (pset),
1416 dst, 0))
1417 success = 1;
1418 else
1420 /* Change all source operands back.
1421 This modifies the dst as a side-effect. */
1422 validate_replace_rtx (dst, src, insn);
1423 /* Now make sure the dst is right. */
1424 validate_change (insn,
1425 recog_data.operand_loc[match_no],
1426 dst, 0);
1429 break;
1432 if (reg_overlap_mentioned_p (src, PATTERN (p))
1433 || reg_overlap_mentioned_p (dst, PATTERN (p)))
1434 break;
1436 /* If we have passed a call instruction, and the
1437 pseudo-reg DST is not already live across a call,
1438 then don't perform the optimization. */
1439 if (CALL_P (p))
1441 num_calls++;
1443 if (REG_N_CALLS_CROSSED (REGNO (dst)) == 0)
1444 break;
1448 if (success)
1450 int dstno, srcno;
1452 /* Remove the death note for SRC from INSN. */
1453 remove_note (insn, src_note);
1454 /* Move the death note for SRC to P if it is used
1455 there. */
1456 if (reg_overlap_mentioned_p (src, PATTERN (p)))
1458 XEXP (src_note, 1) = REG_NOTES (p);
1459 REG_NOTES (p) = src_note;
1461 /* If there is a REG_DEAD note for DST on P, then remove
1462 it, because DST is now set there. */
1463 if ((dst_note = find_reg_note (p, REG_DEAD, dst)))
1464 remove_note (p, dst_note);
1466 dstno = REGNO (dst);
1467 srcno = REGNO (src);
1469 REG_N_SETS (dstno)++;
1470 REG_N_SETS (srcno)--;
1472 REG_N_CALLS_CROSSED (dstno) += num_calls;
1473 REG_N_CALLS_CROSSED (srcno) -= num_calls;
1475 REG_LIVE_LENGTH (dstno) += length;
1476 if (REG_LIVE_LENGTH (srcno) >= 0)
1478 REG_LIVE_LENGTH (srcno) -= length;
1479 /* REG_LIVE_LENGTH is only an approximation after
1480 combine if sched is not run, so make sure that we
1481 still have a reasonable value. */
1482 if (REG_LIVE_LENGTH (srcno) < 2)
1483 REG_LIVE_LENGTH (srcno) = 2;
1486 if (dump_file)
1487 fprintf (dump_file,
1488 "Fixed operand %d of insn %d matching operand %d.\n",
1489 op_no, INSN_UID (insn), match_no);
1491 break;
1495 /* If we weren't able to replace any of the alternatives, try an
1496 alternative approach of copying the source to the destination. */
1497 if (!success && copy_src != NULL_RTX)
1498 copy_src_to_dest (insn, copy_src, copy_dst, old_max_uid);
1503 /* In fixup_match_1, some insns may have been inserted after basic block
1504 ends. Fix that here. */
1505 FOR_EACH_BB (bb)
1507 rtx end = BB_END (bb);
1508 rtx new = end;
1509 rtx next = NEXT_INSN (new);
1510 while (next != 0 && INSN_UID (next) >= old_max_uid
1511 && (bb->next_bb == EXIT_BLOCK_PTR || BB_HEAD (bb->next_bb) != next))
1512 new = next, next = NEXT_INSN (new);
1513 BB_END (bb) = new;
1516 done:
1517 /* Clean up. */
1518 free (regno_src_regno);
1519 free (regmove_bb_head);
1520 if (reg_set_in_bb)
1522 free (reg_set_in_bb);
1523 reg_set_in_bb = NULL;
1527 /* Returns nonzero if INSN's pattern has matching constraints for any operand.
1528 Returns 0 if INSN can't be recognized, or if the alternative can't be
1529 determined.
1531 Initialize the info in MATCHP based on the constraints. */
1533 static int
1534 find_matches (rtx insn, struct match *matchp)
1536 int likely_spilled[MAX_RECOG_OPERANDS];
1537 int op_no;
1538 int any_matches = 0;
1540 extract_insn (insn);
1541 if (! constrain_operands (0))
1542 return 0;
1544 /* Must initialize this before main loop, because the code for
1545 the commutative case may set matches for operands other than
1546 the current one. */
1547 for (op_no = recog_data.n_operands; --op_no >= 0; )
1548 matchp->with[op_no] = matchp->commutative[op_no] = -1;
1550 for (op_no = 0; op_no < recog_data.n_operands; op_no++)
1552 const char *p;
1553 char c;
1554 int i = 0;
1556 p = recog_data.constraints[op_no];
1558 likely_spilled[op_no] = 0;
1559 matchp->use[op_no] = READ;
1560 matchp->early_clobber[op_no] = 0;
1561 if (*p == '=')
1562 matchp->use[op_no] = WRITE;
1563 else if (*p == '+')
1564 matchp->use[op_no] = READWRITE;
1566 for (;*p && i < which_alternative; p++)
1567 if (*p == ',')
1568 i++;
1570 while ((c = *p) != '\0' && c != ',')
1572 switch (c)
1574 case '=':
1575 break;
1576 case '+':
1577 break;
1578 case '&':
1579 matchp->early_clobber[op_no] = 1;
1580 break;
1581 case '%':
1582 matchp->commutative[op_no] = op_no + 1;
1583 matchp->commutative[op_no + 1] = op_no;
1584 break;
1586 case '0': case '1': case '2': case '3': case '4':
1587 case '5': case '6': case '7': case '8': case '9':
1589 char *end;
1590 unsigned long match_ul = strtoul (p, &end, 10);
1591 int match = match_ul;
1593 p = end;
1595 if (match < op_no && likely_spilled[match])
1596 continue;
1597 matchp->with[op_no] = match;
1598 any_matches = 1;
1599 if (matchp->commutative[op_no] >= 0)
1600 matchp->with[matchp->commutative[op_no]] = match;
1602 continue;
1604 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'h':
1605 case 'j': case 'k': case 'l': case 'p': case 'q': case 't': case 'u':
1606 case 'v': case 'w': case 'x': case 'y': case 'z': case 'A': case 'B':
1607 case 'C': case 'D': case 'W': case 'Y': case 'Z':
1608 if (CLASS_LIKELY_SPILLED_P (REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p) ))
1609 likely_spilled[op_no] = 1;
1610 break;
1612 p += CONSTRAINT_LEN (c, p);
1615 return any_matches;
1618 /* Try to replace all occurrences of DST_REG with SRC in LOC, that is
1619 assumed to be in INSN. */
1621 static void
1622 replace_in_call_usage (rtx *loc, unsigned int dst_reg, rtx src, rtx insn)
1624 rtx x = *loc;
1625 enum rtx_code code;
1626 const char *fmt;
1627 int i, j;
1629 if (! x)
1630 return;
1632 code = GET_CODE (x);
1633 if (code == REG)
1635 if (REGNO (x) != dst_reg)
1636 return;
1638 validate_change (insn, loc, src, 1);
1640 return;
1643 /* Process each of our operands recursively. */
1644 fmt = GET_RTX_FORMAT (code);
1645 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1646 if (*fmt == 'e')
1647 replace_in_call_usage (&XEXP (x, i), dst_reg, src, insn);
1648 else if (*fmt == 'E')
1649 for (j = 0; j < XVECLEN (x, i); j++)
1650 replace_in_call_usage (& XVECEXP (x, i, j), dst_reg, src, insn);
1653 /* Try to replace output operand DST in SET, with input operand SRC. SET is
1654 the only set in INSN. INSN has just been recognized and constrained.
1655 SRC is operand number OPERAND_NUMBER in INSN.
1656 DST is operand number MATCH_NUMBER in INSN.
1657 If BACKWARD is nonzero, we have been called in a backward pass.
1658 Return nonzero for success. */
1660 static int
1661 fixup_match_1 (rtx insn, rtx set, rtx src, rtx src_subreg, rtx dst,
1662 int backward, int operand_number, int match_number)
1664 rtx p;
1665 rtx post_inc = 0, post_inc_set = 0, search_end = 0;
1666 int success = 0;
1667 int num_calls = 0, s_num_calls = 0;
1668 enum rtx_code code = NOTE;
1669 HOST_WIDE_INT insn_const = 0, newconst = 0;
1670 rtx overlap = 0; /* need to move insn ? */
1671 rtx src_note = find_reg_note (insn, REG_DEAD, src), dst_note = NULL_RTX;
1672 int length, s_length;
1674 if (! src_note)
1676 /* Look for (set (regX) (op regA constX))
1677 (set (regY) (op regA constY))
1678 and change that to
1679 (set (regA) (op regA constX)).
1680 (set (regY) (op regA constY-constX)).
1681 This works for add and shift operations, if
1682 regA is dead after or set by the second insn. */
1684 code = GET_CODE (SET_SRC (set));
1685 if ((code == PLUS || code == LSHIFTRT
1686 || code == ASHIFT || code == ASHIFTRT)
1687 && XEXP (SET_SRC (set), 0) == src
1688 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
1689 insn_const = INTVAL (XEXP (SET_SRC (set), 1));
1690 else if (! stable_and_no_regs_but_for_p (SET_SRC (set), src, dst))
1691 return 0;
1692 else
1693 /* We might find a src_note while scanning. */
1694 code = NOTE;
1697 if (dump_file)
1698 fprintf (dump_file,
1699 "Could fix operand %d of insn %d matching operand %d.\n",
1700 operand_number, INSN_UID (insn), match_number);
1702 /* If SRC is equivalent to a constant set in a different basic block,
1703 then do not use it for this optimization. We want the equivalence
1704 so that if we have to reload this register, we can reload the
1705 constant, rather than extending the lifespan of the register. */
1706 if (reg_is_remote_constant_p (src, insn))
1707 return 0;
1709 /* Scan forward to find the next instruction that
1710 uses the output operand. If the operand dies here,
1711 then replace it in both instructions with
1712 operand_number. */
1714 for (length = s_length = 0, p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
1716 if (CALL_P (p))
1717 replace_in_call_usage (& CALL_INSN_FUNCTION_USAGE (p),
1718 REGNO (dst), src, p);
1720 /* ??? We can't scan past the end of a basic block without updating
1721 the register lifetime info (REG_DEAD/basic_block_live_at_start). */
1722 if (perhaps_ends_bb_p (p))
1723 break;
1724 else if (! INSN_P (p))
1725 continue;
1727 length++;
1728 if (src_note)
1729 s_length++;
1731 if (reg_set_p (src, p) || reg_set_p (dst, p)
1732 || (GET_CODE (PATTERN (p)) == USE
1733 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
1734 break;
1736 /* See if all of DST dies in P. This test is
1737 slightly more conservative than it needs to be. */
1738 if ((dst_note = find_regno_note (p, REG_DEAD, REGNO (dst)))
1739 && (GET_MODE (XEXP (dst_note, 0)) == GET_MODE (dst)))
1741 /* If we would be moving INSN, check that we won't move it
1742 into the shadow of a live a live flags register. */
1743 /* ??? We only try to move it in front of P, although
1744 we could move it anywhere between OVERLAP and P. */
1745 if (overlap && GET_MODE (PREV_INSN (p)) != VOIDmode)
1746 break;
1748 if (! src_note)
1750 rtx q;
1751 rtx set2 = NULL_RTX;
1753 /* If an optimization is done, the value of SRC while P
1754 is executed will be changed. Check that this is OK. */
1755 if (reg_overlap_mentioned_p (src, PATTERN (p)))
1756 break;
1757 for (q = p; q; q = NEXT_INSN (q))
1759 /* ??? We can't scan past the end of a basic block without
1760 updating the register lifetime info
1761 (REG_DEAD/basic_block_live_at_start). */
1762 if (perhaps_ends_bb_p (q))
1764 q = 0;
1765 break;
1767 else if (! INSN_P (q))
1768 continue;
1769 else if (reg_overlap_mentioned_p (src, PATTERN (q))
1770 || reg_set_p (src, q))
1771 break;
1773 if (q)
1774 set2 = single_set (q);
1775 if (! q || ! set2 || GET_CODE (SET_SRC (set2)) != code
1776 || XEXP (SET_SRC (set2), 0) != src
1777 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT
1778 || (SET_DEST (set2) != src
1779 && ! find_reg_note (q, REG_DEAD, src)))
1781 /* If this is a PLUS, we can still save a register by doing
1782 src += insn_const;
1784 src -= insn_const; .
1785 This also gives opportunities for subsequent
1786 optimizations in the backward pass, so do it there. */
1787 if (code == PLUS && backward
1788 /* Don't do this if we can likely tie DST to SET_DEST
1789 of P later; we can't do this tying here if we got a
1790 hard register. */
1791 && ! (dst_note && ! REG_N_CALLS_CROSSED (REGNO (dst))
1792 && single_set (p)
1793 && REG_P (SET_DEST (single_set (p)))
1794 && (REGNO (SET_DEST (single_set (p)))
1795 < FIRST_PSEUDO_REGISTER))
1796 /* We may only emit an insn directly after P if we
1797 are not in the shadow of a live flags register. */
1798 && GET_MODE (p) == VOIDmode)
1800 search_end = q;
1801 q = insn;
1802 set2 = set;
1803 newconst = -insn_const;
1804 code = MINUS;
1806 else
1807 break;
1809 else
1811 newconst = INTVAL (XEXP (SET_SRC (set2), 1)) - insn_const;
1812 /* Reject out of range shifts. */
1813 if (code != PLUS
1814 && (newconst < 0
1815 || ((unsigned HOST_WIDE_INT) newconst
1816 >= (GET_MODE_BITSIZE (GET_MODE
1817 (SET_SRC (set2)))))))
1818 break;
1819 if (code == PLUS)
1821 post_inc = q;
1822 if (SET_DEST (set2) != src)
1823 post_inc_set = set2;
1826 /* We use 1 as last argument to validate_change so that all
1827 changes are accepted or rejected together by apply_change_group
1828 when it is called by validate_replace_rtx . */
1829 validate_change (q, &XEXP (SET_SRC (set2), 1),
1830 GEN_INT (newconst), 1);
1832 validate_change (insn, recog_data.operand_loc[match_number], src, 1);
1833 if (validate_replace_rtx (dst, src_subreg, p))
1834 success = 1;
1835 break;
1838 if (reg_overlap_mentioned_p (dst, PATTERN (p)))
1839 break;
1840 if (! src_note && reg_overlap_mentioned_p (src, PATTERN (p)))
1842 /* INSN was already checked to be movable wrt. the registers that it
1843 sets / uses when we found no REG_DEAD note for src on it, but it
1844 still might clobber the flags register. We'll have to check that
1845 we won't insert it into the shadow of a live flags register when
1846 we finally know where we are to move it. */
1847 overlap = p;
1848 src_note = find_reg_note (p, REG_DEAD, src);
1851 /* If we have passed a call instruction, and the pseudo-reg SRC is not
1852 already live across a call, then don't perform the optimization. */
1853 if (CALL_P (p))
1855 if (REG_N_CALLS_CROSSED (REGNO (src)) == 0)
1856 break;
1858 num_calls++;
1860 if (src_note)
1861 s_num_calls++;
1866 if (! success)
1867 return 0;
1869 /* Remove the death note for DST from P. */
1870 remove_note (p, dst_note);
1871 if (code == MINUS)
1873 post_inc = emit_insn_after (copy_rtx (PATTERN (insn)), p);
1874 if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
1875 && search_end
1876 && try_auto_increment (search_end, post_inc, 0, src, newconst, 1))
1877 post_inc = 0;
1878 validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (insn_const), 0);
1879 REG_N_SETS (REGNO (src))++;
1880 REG_LIVE_LENGTH (REGNO (src))++;
1882 if (overlap)
1884 /* The lifetime of src and dest overlap,
1885 but we can change this by moving insn. */
1886 rtx pat = PATTERN (insn);
1887 if (src_note)
1888 remove_note (overlap, src_note);
1889 if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
1890 && code == PLUS
1891 && try_auto_increment (overlap, insn, 0, src, insn_const, 0))
1892 insn = overlap;
1893 else
1895 rtx notes = REG_NOTES (insn);
1897 p = emit_insn_after_setloc (pat, PREV_INSN (p), INSN_LOCATOR (insn));
1898 delete_insn (insn);
1899 REG_NOTES (p) = notes;
1902 /* Sometimes we'd generate src = const; src += n;
1903 if so, replace the instruction that set src
1904 in the first place. */
1906 if (! overlap && (code == PLUS || code == MINUS))
1908 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
1909 rtx q, set2 = NULL_RTX;
1910 int num_calls2 = 0, s_length2 = 0;
1912 if (note && CONSTANT_P (XEXP (note, 0)))
1914 for (q = PREV_INSN (insn); q; q = PREV_INSN (q))
1916 /* ??? We can't scan past the end of a basic block without
1917 updating the register lifetime info
1918 (REG_DEAD/basic_block_live_at_start). */
1919 if (perhaps_ends_bb_p (q))
1921 q = 0;
1922 break;
1924 else if (! INSN_P (q))
1925 continue;
1927 s_length2++;
1928 if (reg_set_p (src, q))
1930 set2 = single_set (q);
1931 break;
1933 if (reg_overlap_mentioned_p (src, PATTERN (q)))
1935 q = 0;
1936 break;
1938 if (CALL_P (p))
1939 num_calls2++;
1941 if (q && set2 && SET_DEST (set2) == src && CONSTANT_P (SET_SRC (set2))
1942 && validate_change (insn, &SET_SRC (set), XEXP (note, 0), 0))
1944 delete_insn (q);
1945 REG_N_SETS (REGNO (src))--;
1946 REG_N_CALLS_CROSSED (REGNO (src)) -= num_calls2;
1947 REG_LIVE_LENGTH (REGNO (src)) -= s_length2;
1948 insn_const = 0;
1953 if ((HAVE_PRE_INCREMENT || HAVE_PRE_DECREMENT)
1954 && (code == PLUS || code == MINUS) && insn_const
1955 && try_auto_increment (p, insn, 0, src, insn_const, 1))
1956 insn = p;
1957 else if ((HAVE_POST_INCREMENT || HAVE_POST_DECREMENT)
1958 && post_inc
1959 && try_auto_increment (p, post_inc, post_inc_set, src, newconst, 0))
1960 post_inc = 0;
1961 /* If post_inc still prevails, try to find an
1962 insn where it can be used as a pre-in/decrement.
1963 If code is MINUS, this was already tried. */
1964 if (post_inc && code == PLUS
1965 /* Check that newconst is likely to be usable
1966 in a pre-in/decrement before starting the search. */
1967 && ((HAVE_PRE_INCREMENT && newconst > 0 && newconst <= MOVE_MAX)
1968 || (HAVE_PRE_DECREMENT && newconst < 0 && newconst >= -MOVE_MAX))
1969 && exact_log2 (newconst))
1971 rtx q, inc_dest;
1973 inc_dest = post_inc_set ? SET_DEST (post_inc_set) : src;
1974 for (q = post_inc; (q = NEXT_INSN (q)); )
1976 /* ??? We can't scan past the end of a basic block without updating
1977 the register lifetime info
1978 (REG_DEAD/basic_block_live_at_start). */
1979 if (perhaps_ends_bb_p (q))
1980 break;
1981 else if (! INSN_P (q))
1982 continue;
1983 else if (src != inc_dest
1984 && (reg_overlap_mentioned_p (src, PATTERN (q))
1985 || reg_set_p (src, q)))
1986 break;
1987 else if (reg_set_p (inc_dest, q))
1988 break;
1989 else if (reg_overlap_mentioned_p (inc_dest, PATTERN (q)))
1991 try_auto_increment (q, post_inc,
1992 post_inc_set, inc_dest, newconst, 1);
1993 break;
1998 /* Move the death note for DST to INSN if it is used
1999 there. */
2000 if (reg_overlap_mentioned_p (dst, PATTERN (insn)))
2002 XEXP (dst_note, 1) = REG_NOTES (insn);
2003 REG_NOTES (insn) = dst_note;
2006 if (src_note)
2008 /* Move the death note for SRC from INSN to P. */
2009 if (! overlap)
2010 remove_note (insn, src_note);
2011 XEXP (src_note, 1) = REG_NOTES (p);
2012 REG_NOTES (p) = src_note;
2014 REG_N_CALLS_CROSSED (REGNO (src)) += s_num_calls;
2017 REG_N_SETS (REGNO (src))++;
2018 REG_N_SETS (REGNO (dst))--;
2020 REG_N_CALLS_CROSSED (REGNO (dst)) -= num_calls;
2022 REG_LIVE_LENGTH (REGNO (src)) += s_length;
2023 if (REG_LIVE_LENGTH (REGNO (dst)) >= 0)
2025 REG_LIVE_LENGTH (REGNO (dst)) -= length;
2026 /* REG_LIVE_LENGTH is only an approximation after
2027 combine if sched is not run, so make sure that we
2028 still have a reasonable value. */
2029 if (REG_LIVE_LENGTH (REGNO (dst)) < 2)
2030 REG_LIVE_LENGTH (REGNO (dst)) = 2;
2032 if (dump_file)
2033 fprintf (dump_file,
2034 "Fixed operand %d of insn %d matching operand %d.\n",
2035 operand_number, INSN_UID (insn), match_number);
2036 return 1;
2040 /* Return nonzero if X is stable and mentions no registers but for
2041 mentioning SRC or mentioning / changing DST . If in doubt, presume
2042 it is unstable.
2043 The rationale is that we want to check if we can move an insn easily
2044 while just paying attention to SRC and DST. */
2045 static int
2046 stable_and_no_regs_but_for_p (rtx x, rtx src, rtx dst)
2048 RTX_CODE code = GET_CODE (x);
2049 switch (GET_RTX_CLASS (code))
2051 case RTX_UNARY:
2052 case RTX_BIN_ARITH:
2053 case RTX_COMM_ARITH:
2054 case RTX_COMPARE:
2055 case RTX_COMM_COMPARE:
2056 case RTX_TERNARY:
2057 case RTX_BITFIELD_OPS:
2059 int i;
2060 const char *fmt = GET_RTX_FORMAT (code);
2061 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2062 if (fmt[i] == 'e'
2063 && ! stable_and_no_regs_but_for_p (XEXP (x, i), src, dst))
2064 return 0;
2065 return 1;
2067 case RTX_OBJ:
2068 if (code == REG)
2069 return x == src || x == dst;
2070 /* If this is a MEM, look inside - there might be a register hidden in
2071 the address of an unchanging MEM. */
2072 if (code == MEM
2073 && ! stable_and_no_regs_but_for_p (XEXP (x, 0), src, dst))
2074 return 0;
2075 /* Fall through. */
2076 default:
2077 return ! rtx_unstable_p (x);
2081 /* Track stack adjustments and stack memory references. Attempt to
2082 reduce the number of stack adjustments by back-propagating across
2083 the memory references.
2085 This is intended primarily for use with targets that do not define
2086 ACCUMULATE_OUTGOING_ARGS. It is of significantly more value to
2087 targets that define PREFERRED_STACK_BOUNDARY more aligned than
2088 STACK_BOUNDARY (e.g. x86), or if not all registers can be pushed
2089 (e.g. x86 fp regs) which would ordinarily have to be implemented
2090 as a sub/mov pair due to restrictions in calls.c.
2092 Propagation stops when any of the insns that need adjusting are
2093 (a) no longer valid because we've exceeded their range, (b) a
2094 non-trivial push instruction, or (c) a call instruction.
2096 Restriction B is based on the assumption that push instructions
2097 are smaller or faster. If a port really wants to remove all
2098 pushes, it should have defined ACCUMULATE_OUTGOING_ARGS. The
2099 one exception that is made is for an add immediately followed
2100 by a push. */
2102 /* This structure records stack memory references between stack adjusting
2103 instructions. */
2105 struct csa_memlist
2107 HOST_WIDE_INT sp_offset;
2108 rtx insn, *mem;
2109 struct csa_memlist *next;
2112 static int stack_memref_p (rtx);
2113 static rtx single_set_for_csa (rtx);
2114 static void free_csa_memlist (struct csa_memlist *);
2115 static struct csa_memlist *record_one_stack_memref (rtx, rtx *,
2116 struct csa_memlist *);
2117 static int try_apply_stack_adjustment (rtx, struct csa_memlist *,
2118 HOST_WIDE_INT, HOST_WIDE_INT);
2119 static void combine_stack_adjustments_for_block (basic_block);
2120 static int record_stack_memrefs (rtx *, void *);
2123 /* Main entry point for stack adjustment combination. */
2125 static void
2126 combine_stack_adjustments (void)
2128 basic_block bb;
2130 FOR_EACH_BB (bb)
2131 combine_stack_adjustments_for_block (bb);
2134 /* Recognize a MEM of the form (sp) or (plus sp const). */
2136 static int
2137 stack_memref_p (rtx x)
2139 if (!MEM_P (x))
2140 return 0;
2141 x = XEXP (x, 0);
2143 if (x == stack_pointer_rtx)
2144 return 1;
2145 if (GET_CODE (x) == PLUS
2146 && XEXP (x, 0) == stack_pointer_rtx
2147 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2148 return 1;
2150 return 0;
2153 /* Recognize either normal single_set or the hack in i386.md for
2154 tying fp and sp adjustments. */
2156 static rtx
2157 single_set_for_csa (rtx insn)
2159 int i;
2160 rtx tmp = single_set (insn);
2161 if (tmp)
2162 return tmp;
2164 if (!NONJUMP_INSN_P (insn)
2165 || GET_CODE (PATTERN (insn)) != PARALLEL)
2166 return NULL_RTX;
2168 tmp = PATTERN (insn);
2169 if (GET_CODE (XVECEXP (tmp, 0, 0)) != SET)
2170 return NULL_RTX;
2172 for (i = 1; i < XVECLEN (tmp, 0); ++i)
2174 rtx this = XVECEXP (tmp, 0, i);
2176 /* The special case is allowing a no-op set. */
2177 if (GET_CODE (this) == SET
2178 && SET_SRC (this) == SET_DEST (this))
2180 else if (GET_CODE (this) != CLOBBER
2181 && GET_CODE (this) != USE)
2182 return NULL_RTX;
2185 return XVECEXP (tmp, 0, 0);
2188 /* Free the list of csa_memlist nodes. */
2190 static void
2191 free_csa_memlist (struct csa_memlist *memlist)
2193 struct csa_memlist *next;
2194 for (; memlist ; memlist = next)
2196 next = memlist->next;
2197 free (memlist);
2201 /* Create a new csa_memlist node from the given memory reference.
2202 It is already known that the memory is stack_memref_p. */
2204 static struct csa_memlist *
2205 record_one_stack_memref (rtx insn, rtx *mem, struct csa_memlist *next_memlist)
2207 struct csa_memlist *ml;
2209 ml = XNEW (struct csa_memlist);
2211 if (XEXP (*mem, 0) == stack_pointer_rtx)
2212 ml->sp_offset = 0;
2213 else
2214 ml->sp_offset = INTVAL (XEXP (XEXP (*mem, 0), 1));
2216 ml->insn = insn;
2217 ml->mem = mem;
2218 ml->next = next_memlist;
2220 return ml;
2223 /* Attempt to apply ADJUST to the stack adjusting insn INSN, as well
2224 as each of the memories in MEMLIST. Return true on success. */
2226 static int
2227 try_apply_stack_adjustment (rtx insn, struct csa_memlist *memlist, HOST_WIDE_INT new_adjust,
2228 HOST_WIDE_INT delta)
2230 struct csa_memlist *ml;
2231 rtx set;
2233 set = single_set_for_csa (insn);
2234 validate_change (insn, &XEXP (SET_SRC (set), 1), GEN_INT (new_adjust), 1);
2236 for (ml = memlist; ml ; ml = ml->next)
2237 validate_change
2238 (ml->insn, ml->mem,
2239 replace_equiv_address_nv (*ml->mem,
2240 plus_constant (stack_pointer_rtx,
2241 ml->sp_offset - delta)), 1);
2243 if (apply_change_group ())
2245 /* Succeeded. Update our knowledge of the memory references. */
2246 for (ml = memlist; ml ; ml = ml->next)
2247 ml->sp_offset -= delta;
2249 return 1;
2251 else
2252 return 0;
2255 /* Called via for_each_rtx and used to record all stack memory references in
2256 the insn and discard all other stack pointer references. */
2257 struct record_stack_memrefs_data
2259 rtx insn;
2260 struct csa_memlist *memlist;
2263 static int
2264 record_stack_memrefs (rtx *xp, void *data)
2266 rtx x = *xp;
2267 struct record_stack_memrefs_data *d =
2268 (struct record_stack_memrefs_data *) data;
2269 if (!x)
2270 return 0;
2271 switch (GET_CODE (x))
2273 case MEM:
2274 if (!reg_mentioned_p (stack_pointer_rtx, x))
2275 return -1;
2276 /* We are not able to handle correctly all possible memrefs containing
2277 stack pointer, so this check is necessary. */
2278 if (stack_memref_p (x))
2280 d->memlist = record_one_stack_memref (d->insn, xp, d->memlist);
2281 return -1;
2283 return 1;
2284 case REG:
2285 /* ??? We want be able to handle non-memory stack pointer
2286 references later. For now just discard all insns referring to
2287 stack pointer outside mem expressions. We would probably
2288 want to teach validate_replace to simplify expressions first.
2290 We can't just compare with STACK_POINTER_RTX because the
2291 reference to the stack pointer might be in some other mode.
2292 In particular, an explicit clobber in an asm statement will
2293 result in a QImode clobber. */
2294 if (REGNO (x) == STACK_POINTER_REGNUM)
2295 return 1;
2296 break;
2297 default:
2298 break;
2300 return 0;
2303 /* Subroutine of combine_stack_adjustments, called for each basic block. */
2305 static void
2306 combine_stack_adjustments_for_block (basic_block bb)
2308 HOST_WIDE_INT last_sp_adjust = 0;
2309 rtx last_sp_set = NULL_RTX;
2310 struct csa_memlist *memlist = NULL;
2311 rtx insn, next, set;
2312 struct record_stack_memrefs_data data;
2313 bool end_of_block = false;
2315 for (insn = BB_HEAD (bb); !end_of_block ; insn = next)
2317 end_of_block = insn == BB_END (bb);
2318 next = NEXT_INSN (insn);
2320 if (! INSN_P (insn))
2321 continue;
2323 set = single_set_for_csa (insn);
2324 if (set)
2326 rtx dest = SET_DEST (set);
2327 rtx src = SET_SRC (set);
2329 /* Find constant additions to the stack pointer. */
2330 if (dest == stack_pointer_rtx
2331 && GET_CODE (src) == PLUS
2332 && XEXP (src, 0) == stack_pointer_rtx
2333 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2335 HOST_WIDE_INT this_adjust = INTVAL (XEXP (src, 1));
2337 /* If we've not seen an adjustment previously, record
2338 it now and continue. */
2339 if (! last_sp_set)
2341 last_sp_set = insn;
2342 last_sp_adjust = this_adjust;
2343 continue;
2346 /* If not all recorded memrefs can be adjusted, or the
2347 adjustment is now too large for a constant addition,
2348 we cannot merge the two stack adjustments.
2350 Also we need to be careful to not move stack pointer
2351 such that we create stack accesses outside the allocated
2352 area. We can combine an allocation into the first insn,
2353 or a deallocation into the second insn. We can not
2354 combine an allocation followed by a deallocation.
2356 The only somewhat frequent occurrence of the later is when
2357 a function allocates a stack frame but does not use it.
2358 For this case, we would need to analyze rtl stream to be
2359 sure that allocated area is really unused. This means not
2360 only checking the memory references, but also all registers
2361 or global memory references possibly containing a stack
2362 frame address.
2364 Perhaps the best way to address this problem is to teach
2365 gcc not to allocate stack for objects never used. */
2367 /* Combine an allocation into the first instruction. */
2368 if (STACK_GROWS_DOWNWARD ? this_adjust <= 0 : this_adjust >= 0)
2370 if (try_apply_stack_adjustment (last_sp_set, memlist,
2371 last_sp_adjust + this_adjust,
2372 this_adjust))
2374 /* It worked! */
2375 delete_insn (insn);
2376 last_sp_adjust += this_adjust;
2377 continue;
2381 /* Otherwise we have a deallocation. Do not combine with
2382 a previous allocation. Combine into the second insn. */
2383 else if (STACK_GROWS_DOWNWARD
2384 ? last_sp_adjust >= 0 : last_sp_adjust <= 0)
2386 if (try_apply_stack_adjustment (insn, memlist,
2387 last_sp_adjust + this_adjust,
2388 -last_sp_adjust))
2390 /* It worked! */
2391 delete_insn (last_sp_set);
2392 last_sp_set = insn;
2393 last_sp_adjust += this_adjust;
2394 free_csa_memlist (memlist);
2395 memlist = NULL;
2396 continue;
2400 /* Combination failed. Restart processing from here. If
2401 deallocation+allocation conspired to cancel, we can
2402 delete the old deallocation insn. */
2403 if (last_sp_set && last_sp_adjust == 0)
2404 delete_insn (insn);
2405 free_csa_memlist (memlist);
2406 memlist = NULL;
2407 last_sp_set = insn;
2408 last_sp_adjust = this_adjust;
2409 continue;
2412 /* Find a predecrement of exactly the previous adjustment and
2413 turn it into a direct store. Obviously we can't do this if
2414 there were any intervening uses of the stack pointer. */
2415 if (memlist == NULL
2416 && MEM_P (dest)
2417 && ((GET_CODE (XEXP (dest, 0)) == PRE_DEC
2418 && (last_sp_adjust
2419 == (HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (dest))))
2420 || (GET_CODE (XEXP (dest, 0)) == PRE_MODIFY
2421 && GET_CODE (XEXP (XEXP (dest, 0), 1)) == PLUS
2422 && XEXP (XEXP (XEXP (dest, 0), 1), 0) == stack_pointer_rtx
2423 && (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
2424 == CONST_INT)
2425 && (INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1))
2426 == -last_sp_adjust)))
2427 && XEXP (XEXP (dest, 0), 0) == stack_pointer_rtx
2428 && ! reg_mentioned_p (stack_pointer_rtx, src)
2429 && memory_address_p (GET_MODE (dest), stack_pointer_rtx)
2430 && validate_change (insn, &SET_DEST (set),
2431 replace_equiv_address (dest,
2432 stack_pointer_rtx),
2435 delete_insn (last_sp_set);
2436 free_csa_memlist (memlist);
2437 memlist = NULL;
2438 last_sp_set = NULL_RTX;
2439 last_sp_adjust = 0;
2440 continue;
2444 data.insn = insn;
2445 data.memlist = memlist;
2446 if (!CALL_P (insn) && last_sp_set
2447 && !for_each_rtx (&PATTERN (insn), record_stack_memrefs, &data))
2449 memlist = data.memlist;
2450 continue;
2452 memlist = data.memlist;
2454 /* Otherwise, we were not able to process the instruction.
2455 Do not continue collecting data across such a one. */
2456 if (last_sp_set
2457 && (CALL_P (insn)
2458 || reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))))
2460 if (last_sp_set && last_sp_adjust == 0)
2461 delete_insn (last_sp_set);
2462 free_csa_memlist (memlist);
2463 memlist = NULL;
2464 last_sp_set = NULL_RTX;
2465 last_sp_adjust = 0;
2469 if (last_sp_set && last_sp_adjust == 0)
2470 delete_insn (last_sp_set);
2472 if (memlist)
2473 free_csa_memlist (memlist);
2476 static bool
2477 gate_handle_regmove (void)
2479 return (optimize > 0 && flag_regmove);
2483 /* Register allocation pre-pass, to reduce number of moves necessary
2484 for two-address machines. */
2485 static unsigned int
2486 rest_of_handle_regmove (void)
2488 regmove_optimize (get_insns (), max_reg_num ());
2489 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE);
2490 return 0;
2493 struct tree_opt_pass pass_regmove =
2495 "regmove", /* name */
2496 gate_handle_regmove, /* gate */
2497 rest_of_handle_regmove, /* execute */
2498 NULL, /* sub */
2499 NULL, /* next */
2500 0, /* static_pass_number */
2501 TV_REGMOVE, /* tv_id */
2502 0, /* properties_required */
2503 0, /* properties_provided */
2504 0, /* properties_destroyed */
2505 0, /* todo_flags_start */
2506 TODO_dump_func |
2507 TODO_ggc_collect, /* todo_flags_finish */
2508 'N' /* letter */
2512 static bool
2513 gate_handle_stack_adjustments (void)
2515 return (optimize > 0);
2518 static unsigned int
2519 rest_of_handle_stack_adjustments (void)
2521 life_analysis (PROP_POSTRELOAD);
2522 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE
2523 | (flag_crossjumping ? CLEANUP_CROSSJUMP : 0));
2525 /* This is kind of a heuristic. We need to run combine_stack_adjustments
2526 even for machines with possibly nonzero RETURN_POPS_ARGS
2527 and ACCUMULATE_OUTGOING_ARGS. We expect that only ports having
2528 push instructions will have popping returns. */
2529 #ifndef PUSH_ROUNDING
2530 if (!ACCUMULATE_OUTGOING_ARGS)
2531 #endif
2532 combine_stack_adjustments ();
2533 return 0;
2536 struct tree_opt_pass pass_stack_adjustments =
2538 "csa", /* name */
2539 gate_handle_stack_adjustments, /* gate */
2540 rest_of_handle_stack_adjustments, /* execute */
2541 NULL, /* sub */
2542 NULL, /* next */
2543 0, /* static_pass_number */
2544 0, /* tv_id */
2545 0, /* properties_required */
2546 0, /* properties_provided */
2547 0, /* properties_destroyed */
2548 0, /* todo_flags_start */
2549 TODO_dump_func |
2550 TODO_ggc_collect, /* todo_flags_finish */
2551 0 /* letter */