* config/alpha/alpha.md, arm/arm.c, darwin.c, frv/frv.md,
[official-gcc.git] / gcc / cp / init.c
blob0ea68882ee9d4ffb892aa8e06eb1e9655f74f761
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
23 /* High-level class interface. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
37 #include "target.h"
39 static bool begin_init_stmts (tree *, tree *);
40 static tree finish_init_stmts (bool, tree, tree);
41 static void construct_virtual_base (tree, tree);
42 static void expand_aggr_init_1 (tree, tree, tree, tree, int);
43 static void expand_default_init (tree, tree, tree, tree, int);
44 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
45 static void perform_member_init (tree, tree);
46 static tree build_builtin_delete_call (tree);
47 static int member_init_ok_or_else (tree, tree, tree);
48 static void expand_virtual_init (tree, tree);
49 static tree sort_mem_initializers (tree, tree);
50 static tree initializing_context (tree);
51 static void expand_cleanup_for_base (tree, tree);
52 static tree get_temp_regvar (tree, tree);
53 static tree dfs_initialize_vtbl_ptrs (tree, void *);
54 static tree build_default_init (tree, tree);
55 static tree build_dtor_call (tree, special_function_kind, int);
56 static tree build_field_list (tree, tree, int *);
57 static tree build_vtbl_address (tree);
59 /* We are about to generate some complex initialization code.
60 Conceptually, it is all a single expression. However, we may want
61 to include conditionals, loops, and other such statement-level
62 constructs. Therefore, we build the initialization code inside a
63 statement-expression. This function starts such an expression.
64 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
65 pass them back to finish_init_stmts when the expression is
66 complete. */
68 static bool
69 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
71 bool is_global = !building_stmt_tree ();
73 *stmt_expr_p = begin_stmt_expr ();
74 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
76 return is_global;
79 /* Finish out the statement-expression begun by the previous call to
80 begin_init_stmts. Returns the statement-expression itself. */
82 static tree
83 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
85 finish_compound_stmt (compound_stmt);
87 stmt_expr = finish_stmt_expr (stmt_expr, true);
89 gcc_assert (!building_stmt_tree () == is_global);
91 return stmt_expr;
94 /* Constructors */
96 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
97 which we want to initialize the vtable pointer for, DATA is
98 TREE_LIST whose TREE_VALUE is the this ptr expression. */
100 static tree
101 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
103 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
104 return dfs_skip_bases;
106 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
108 tree base_ptr = TREE_VALUE ((tree) data);
110 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
112 expand_virtual_init (binfo, base_ptr);
115 return NULL_TREE;
118 /* Initialize all the vtable pointers in the object pointed to by
119 ADDR. */
121 void
122 initialize_vtbl_ptrs (tree addr)
124 tree list;
125 tree type;
127 type = TREE_TYPE (TREE_TYPE (addr));
128 list = build_tree_list (type, addr);
130 /* Walk through the hierarchy, initializing the vptr in each base
131 class. We do these in pre-order because we can't find the virtual
132 bases for a class until we've initialized the vtbl for that
133 class. */
134 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
137 /* Return an expression for the zero-initialization of an object with
138 type T. This expression will either be a constant (in the case
139 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
140 aggregate). In either case, the value can be used as DECL_INITIAL
141 for a decl of the indicated TYPE; it is a valid static initializer.
142 If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS is the
143 number of elements in the array. If STATIC_STORAGE_P is TRUE,
144 initializers are only generated for entities for which
145 zero-initialization does not simply mean filling the storage with
146 zero bytes. */
148 tree
149 build_zero_init (tree type, tree nelts, bool static_storage_p)
151 tree init = NULL_TREE;
153 /* [dcl.init]
155 To zero-initialization storage for an object of type T means:
157 -- if T is a scalar type, the storage is set to the value of zero
158 converted to T.
160 -- if T is a non-union class type, the storage for each nonstatic
161 data member and each base-class subobject is zero-initialized.
163 -- if T is a union type, the storage for its first data member is
164 zero-initialized.
166 -- if T is an array type, the storage for each element is
167 zero-initialized.
169 -- if T is a reference type, no initialization is performed. */
171 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
173 if (type == error_mark_node)
175 else if (static_storage_p && zero_init_p (type))
176 /* In order to save space, we do not explicitly build initializers
177 for items that do not need them. GCC's semantics are that
178 items with static storage duration that are not otherwise
179 initialized are initialized to zero. */
181 else if (SCALAR_TYPE_P (type)
182 || TREE_CODE (type) == COMPLEX_TYPE)
183 init = convert (type, integer_zero_node);
184 else if (CLASS_TYPE_P (type))
186 tree field;
187 VEC(constructor_elt,gc) *v = NULL;
189 /* Iterate over the fields, building initializations. */
190 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
192 if (TREE_CODE (field) != FIELD_DECL)
193 continue;
195 /* Note that for class types there will be FIELD_DECLs
196 corresponding to base classes as well. Thus, iterating
197 over TYPE_FIELDs will result in correct initialization of
198 all of the subobjects. */
199 if (static_storage_p && !zero_init_p (TREE_TYPE (field)))
201 tree value = build_zero_init (TREE_TYPE (field),
202 /*nelts=*/NULL_TREE,
203 static_storage_p);
204 CONSTRUCTOR_APPEND_ELT(v, field, value);
207 /* For unions, only the first field is initialized. */
208 if (TREE_CODE (type) == UNION_TYPE)
209 break;
212 /* Build a constructor to contain the initializations. */
213 init = build_constructor (type, v);
215 else if (TREE_CODE (type) == ARRAY_TYPE)
217 tree max_index;
218 VEC(constructor_elt,gc) *v = NULL;
220 /* Iterate over the array elements, building initializations. */
221 if (nelts)
222 max_index = fold_build2 (MINUS_EXPR, TREE_TYPE (nelts),
223 nelts, integer_one_node);
224 else
225 max_index = array_type_nelts (type);
227 /* If we have an error_mark here, we should just return error mark
228 as we don't know the size of the array yet. */
229 if (max_index == error_mark_node)
230 return error_mark_node;
231 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
233 /* A zero-sized array, which is accepted as an extension, will
234 have an upper bound of -1. */
235 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
237 constructor_elt *ce;
239 v = VEC_alloc (constructor_elt, gc, 1);
240 ce = VEC_quick_push (constructor_elt, v, NULL);
242 /* If this is a one element array, we just use a regular init. */
243 if (tree_int_cst_equal (size_zero_node, max_index))
244 ce->index = size_zero_node;
245 else
246 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
247 max_index);
249 ce->value = build_zero_init (TREE_TYPE (type),
250 /*nelts=*/NULL_TREE,
251 static_storage_p);
254 /* Build a constructor to contain the initializations. */
255 init = build_constructor (type, v);
257 else if (TREE_CODE (type) == VECTOR_TYPE)
258 init = fold_convert (type, integer_zero_node);
259 else
260 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
262 /* In all cases, the initializer is a constant. */
263 if (init)
265 TREE_CONSTANT (init) = 1;
266 TREE_INVARIANT (init) = 1;
269 return init;
272 /* Build an expression for the default-initialization of an object of
273 the indicated TYPE. If NELTS is non-NULL, and TYPE is an
274 ARRAY_TYPE, NELTS is the number of elements in the array. If
275 initialization of TYPE requires calling constructors, this function
276 returns NULL_TREE; the caller is responsible for arranging for the
277 constructors to be called. */
279 static tree
280 build_default_init (tree type, tree nelts)
282 /* [dcl.init]:
284 To default-initialize an object of type T means:
286 --if T is a non-POD class type (clause _class_), the default construc-
287 tor for T is called (and the initialization is ill-formed if T has
288 no accessible default constructor);
290 --if T is an array type, each element is default-initialized;
292 --otherwise, the storage for the object is zero-initialized.
294 A program that calls for default-initialization of an entity of refer-
295 ence type is ill-formed. */
297 /* If TYPE_NEEDS_CONSTRUCTING is true, the caller is responsible for
298 performing the initialization. This is confusing in that some
299 non-PODs do not have TYPE_NEEDS_CONSTRUCTING set. (For example,
300 a class with a pointer-to-data member as a non-static data member
301 does not have TYPE_NEEDS_CONSTRUCTING set.) Therefore, we end up
302 passing non-PODs to build_zero_init below, which is contrary to
303 the semantics quoted above from [dcl.init].
305 It happens, however, that the behavior of the constructor the
306 standard says we should have generated would be precisely the
307 same as that obtained by calling build_zero_init below, so things
308 work out OK. */
309 if (TYPE_NEEDS_CONSTRUCTING (type)
310 || (nelts && TREE_CODE (nelts) != INTEGER_CST))
311 return NULL_TREE;
313 /* At this point, TYPE is either a POD class type, an array of POD
314 classes, or something even more innocuous. */
315 return build_zero_init (type, nelts, /*static_storage_p=*/false);
318 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
319 arguments. If TREE_LIST is void_type_node, an empty initializer
320 list was given; if NULL_TREE no initializer was given. */
322 static void
323 perform_member_init (tree member, tree init)
325 tree decl;
326 tree type = TREE_TYPE (member);
327 bool explicit;
329 explicit = (init != NULL_TREE);
331 /* Effective C++ rule 12 requires that all data members be
332 initialized. */
333 if (warn_ecpp && !explicit && TREE_CODE (type) != ARRAY_TYPE)
334 warning (OPT_Weffc__, "%J%qD should be initialized in the member initialization "
335 "list", current_function_decl, member);
337 if (init == void_type_node)
338 init = NULL_TREE;
340 /* Get an lvalue for the data member. */
341 decl = build_class_member_access_expr (current_class_ref, member,
342 /*access_path=*/NULL_TREE,
343 /*preserve_reference=*/true);
344 if (decl == error_mark_node)
345 return;
347 /* Deal with this here, as we will get confused if we try to call the
348 assignment op for an anonymous union. This can happen in a
349 synthesized copy constructor. */
350 if (ANON_AGGR_TYPE_P (type))
352 if (init)
354 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
355 finish_expr_stmt (init);
358 else if (TYPE_NEEDS_CONSTRUCTING (type))
360 if (explicit
361 && TREE_CODE (type) == ARRAY_TYPE
362 && init != NULL_TREE
363 && TREE_CHAIN (init) == NULL_TREE
364 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
366 /* Initialization of one array from another. */
367 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
368 /*explicit_default_init_p=*/false,
369 /* from_array=*/1));
371 else
372 finish_expr_stmt (build_aggr_init (decl, init, 0));
374 else
376 if (init == NULL_TREE)
378 if (explicit)
380 init = build_default_init (type, /*nelts=*/NULL_TREE);
381 if (TREE_CODE (type) == REFERENCE_TYPE)
382 warning (0, "%Jdefault-initialization of %q#D, "
383 "which has reference type",
384 current_function_decl, member);
386 /* member traversal: note it leaves init NULL */
387 else if (TREE_CODE (type) == REFERENCE_TYPE)
388 pedwarn ("%Juninitialized reference member %qD",
389 current_function_decl, member);
390 else if (CP_TYPE_CONST_P (type))
391 pedwarn ("%Juninitialized member %qD with %<const%> type %qT",
392 current_function_decl, member, type);
394 else if (TREE_CODE (init) == TREE_LIST)
395 /* There was an explicit member initialization. Do some work
396 in that case. */
397 init = build_x_compound_expr_from_list (init, "member initializer");
399 if (init)
400 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
403 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
405 tree expr;
407 expr = build_class_member_access_expr (current_class_ref, member,
408 /*access_path=*/NULL_TREE,
409 /*preserve_reference=*/false);
410 expr = build_delete (type, expr, sfk_complete_destructor,
411 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
413 if (expr != error_mark_node)
414 finish_eh_cleanup (expr);
418 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
419 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
421 static tree
422 build_field_list (tree t, tree list, int *uses_unions_p)
424 tree fields;
426 *uses_unions_p = 0;
428 /* Note whether or not T is a union. */
429 if (TREE_CODE (t) == UNION_TYPE)
430 *uses_unions_p = 1;
432 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
434 /* Skip CONST_DECLs for enumeration constants and so forth. */
435 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
436 continue;
438 /* Keep track of whether or not any fields are unions. */
439 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
440 *uses_unions_p = 1;
442 /* For an anonymous struct or union, we must recursively
443 consider the fields of the anonymous type. They can be
444 directly initialized from the constructor. */
445 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
447 /* Add this field itself. Synthesized copy constructors
448 initialize the entire aggregate. */
449 list = tree_cons (fields, NULL_TREE, list);
450 /* And now add the fields in the anonymous aggregate. */
451 list = build_field_list (TREE_TYPE (fields), list,
452 uses_unions_p);
454 /* Add this field. */
455 else if (DECL_NAME (fields))
456 list = tree_cons (fields, NULL_TREE, list);
459 return list;
462 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
463 a FIELD_DECL or BINFO in T that needs initialization. The
464 TREE_VALUE gives the initializer, or list of initializer arguments.
466 Return a TREE_LIST containing all of the initializations required
467 for T, in the order in which they should be performed. The output
468 list has the same format as the input. */
470 static tree
471 sort_mem_initializers (tree t, tree mem_inits)
473 tree init;
474 tree base, binfo, base_binfo;
475 tree sorted_inits;
476 tree next_subobject;
477 VEC(tree,gc) *vbases;
478 int i;
479 int uses_unions_p;
481 /* Build up a list of initializations. The TREE_PURPOSE of entry
482 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
483 TREE_VALUE will be the constructor arguments, or NULL if no
484 explicit initialization was provided. */
485 sorted_inits = NULL_TREE;
487 /* Process the virtual bases. */
488 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
489 VEC_iterate (tree, vbases, i, base); i++)
490 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
492 /* Process the direct bases. */
493 for (binfo = TYPE_BINFO (t), i = 0;
494 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
495 if (!BINFO_VIRTUAL_P (base_binfo))
496 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
498 /* Process the non-static data members. */
499 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
500 /* Reverse the entire list of initializations, so that they are in
501 the order that they will actually be performed. */
502 sorted_inits = nreverse (sorted_inits);
504 /* If the user presented the initializers in an order different from
505 that in which they will actually occur, we issue a warning. Keep
506 track of the next subobject which can be explicitly initialized
507 without issuing a warning. */
508 next_subobject = sorted_inits;
510 /* Go through the explicit initializers, filling in TREE_PURPOSE in
511 the SORTED_INITS. */
512 for (init = mem_inits; init; init = TREE_CHAIN (init))
514 tree subobject;
515 tree subobject_init;
517 subobject = TREE_PURPOSE (init);
519 /* If the explicit initializers are in sorted order, then
520 SUBOBJECT will be NEXT_SUBOBJECT, or something following
521 it. */
522 for (subobject_init = next_subobject;
523 subobject_init;
524 subobject_init = TREE_CHAIN (subobject_init))
525 if (TREE_PURPOSE (subobject_init) == subobject)
526 break;
528 /* Issue a warning if the explicit initializer order does not
529 match that which will actually occur.
530 ??? Are all these on the correct lines? */
531 if (warn_reorder && !subobject_init)
533 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
534 warning (OPT_Wreorder, "%q+D will be initialized after",
535 TREE_PURPOSE (next_subobject));
536 else
537 warning (OPT_Wreorder, "base %qT will be initialized after",
538 TREE_PURPOSE (next_subobject));
539 if (TREE_CODE (subobject) == FIELD_DECL)
540 warning (OPT_Wreorder, " %q+#D", subobject);
541 else
542 warning (OPT_Wreorder, " base %qT", subobject);
543 warning (OPT_Wreorder, "%J when initialized here", current_function_decl);
546 /* Look again, from the beginning of the list. */
547 if (!subobject_init)
549 subobject_init = sorted_inits;
550 while (TREE_PURPOSE (subobject_init) != subobject)
551 subobject_init = TREE_CHAIN (subobject_init);
554 /* It is invalid to initialize the same subobject more than
555 once. */
556 if (TREE_VALUE (subobject_init))
558 if (TREE_CODE (subobject) == FIELD_DECL)
559 error ("%Jmultiple initializations given for %qD",
560 current_function_decl, subobject);
561 else
562 error ("%Jmultiple initializations given for base %qT",
563 current_function_decl, subobject);
566 /* Record the initialization. */
567 TREE_VALUE (subobject_init) = TREE_VALUE (init);
568 next_subobject = subobject_init;
571 /* [class.base.init]
573 If a ctor-initializer specifies more than one mem-initializer for
574 multiple members of the same union (including members of
575 anonymous unions), the ctor-initializer is ill-formed. */
576 if (uses_unions_p)
578 tree last_field = NULL_TREE;
579 for (init = sorted_inits; init; init = TREE_CHAIN (init))
581 tree field;
582 tree field_type;
583 int done;
585 /* Skip uninitialized members and base classes. */
586 if (!TREE_VALUE (init)
587 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
588 continue;
589 /* See if this field is a member of a union, or a member of a
590 structure contained in a union, etc. */
591 field = TREE_PURPOSE (init);
592 for (field_type = DECL_CONTEXT (field);
593 !same_type_p (field_type, t);
594 field_type = TYPE_CONTEXT (field_type))
595 if (TREE_CODE (field_type) == UNION_TYPE)
596 break;
597 /* If this field is not a member of a union, skip it. */
598 if (TREE_CODE (field_type) != UNION_TYPE)
599 continue;
601 /* It's only an error if we have two initializers for the same
602 union type. */
603 if (!last_field)
605 last_field = field;
606 continue;
609 /* See if LAST_FIELD and the field initialized by INIT are
610 members of the same union. If so, there's a problem,
611 unless they're actually members of the same structure
612 which is itself a member of a union. For example, given:
614 union { struct { int i; int j; }; };
616 initializing both `i' and `j' makes sense. */
617 field_type = DECL_CONTEXT (field);
618 done = 0;
621 tree last_field_type;
623 last_field_type = DECL_CONTEXT (last_field);
624 while (1)
626 if (same_type_p (last_field_type, field_type))
628 if (TREE_CODE (field_type) == UNION_TYPE)
629 error ("%Jinitializations for multiple members of %qT",
630 current_function_decl, last_field_type);
631 done = 1;
632 break;
635 if (same_type_p (last_field_type, t))
636 break;
638 last_field_type = TYPE_CONTEXT (last_field_type);
641 /* If we've reached the outermost class, then we're
642 done. */
643 if (same_type_p (field_type, t))
644 break;
646 field_type = TYPE_CONTEXT (field_type);
648 while (!done);
650 last_field = field;
654 return sorted_inits;
657 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
658 is a TREE_LIST giving the explicit mem-initializer-list for the
659 constructor. The TREE_PURPOSE of each entry is a subobject (a
660 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
661 is a TREE_LIST giving the arguments to the constructor or
662 void_type_node for an empty list of arguments. */
664 void
665 emit_mem_initializers (tree mem_inits)
667 /* We will already have issued an error message about the fact that
668 the type is incomplete. */
669 if (!COMPLETE_TYPE_P (current_class_type))
670 return;
672 /* Sort the mem-initializers into the order in which the
673 initializations should be performed. */
674 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
676 in_base_initializer = 1;
678 /* Initialize base classes. */
679 while (mem_inits
680 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
682 tree subobject = TREE_PURPOSE (mem_inits);
683 tree arguments = TREE_VALUE (mem_inits);
685 /* If these initializations are taking place in a copy
686 constructor, the base class should probably be explicitly
687 initialized. */
688 if (extra_warnings && !arguments
689 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
690 && TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (subobject)))
691 warning (OPT_Wextra, "%Jbase class %q#T should be explicitly initialized in the "
692 "copy constructor",
693 current_function_decl, BINFO_TYPE (subobject));
695 /* If an explicit -- but empty -- initializer list was present,
696 treat it just like default initialization at this point. */
697 if (arguments == void_type_node)
698 arguments = NULL_TREE;
700 /* Initialize the base. */
701 if (BINFO_VIRTUAL_P (subobject))
702 construct_virtual_base (subobject, arguments);
703 else
705 tree base_addr;
707 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
708 subobject, 1);
709 expand_aggr_init_1 (subobject, NULL_TREE,
710 build_indirect_ref (base_addr, NULL),
711 arguments,
712 LOOKUP_NORMAL);
713 expand_cleanup_for_base (subobject, NULL_TREE);
716 mem_inits = TREE_CHAIN (mem_inits);
718 in_base_initializer = 0;
720 /* Initialize the vptrs. */
721 initialize_vtbl_ptrs (current_class_ptr);
723 /* Initialize the data members. */
724 while (mem_inits)
726 perform_member_init (TREE_PURPOSE (mem_inits),
727 TREE_VALUE (mem_inits));
728 mem_inits = TREE_CHAIN (mem_inits);
732 /* Returns the address of the vtable (i.e., the value that should be
733 assigned to the vptr) for BINFO. */
735 static tree
736 build_vtbl_address (tree binfo)
738 tree binfo_for = binfo;
739 tree vtbl;
741 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
742 /* If this is a virtual primary base, then the vtable we want to store
743 is that for the base this is being used as the primary base of. We
744 can't simply skip the initialization, because we may be expanding the
745 inits of a subobject constructor where the virtual base layout
746 can be different. */
747 while (BINFO_PRIMARY_P (binfo_for))
748 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
750 /* Figure out what vtable BINFO's vtable is based on, and mark it as
751 used. */
752 vtbl = get_vtbl_decl_for_binfo (binfo_for);
753 assemble_external (vtbl);
754 TREE_USED (vtbl) = 1;
756 /* Now compute the address to use when initializing the vptr. */
757 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
758 if (TREE_CODE (vtbl) == VAR_DECL)
759 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
761 return vtbl;
764 /* This code sets up the virtual function tables appropriate for
765 the pointer DECL. It is a one-ply initialization.
767 BINFO is the exact type that DECL is supposed to be. In
768 multiple inheritance, this might mean "C's A" if C : A, B. */
770 static void
771 expand_virtual_init (tree binfo, tree decl)
773 tree vtbl, vtbl_ptr;
774 tree vtt_index;
776 /* Compute the initializer for vptr. */
777 vtbl = build_vtbl_address (binfo);
779 /* We may get this vptr from a VTT, if this is a subobject
780 constructor or subobject destructor. */
781 vtt_index = BINFO_VPTR_INDEX (binfo);
782 if (vtt_index)
784 tree vtbl2;
785 tree vtt_parm;
787 /* Compute the value to use, when there's a VTT. */
788 vtt_parm = current_vtt_parm;
789 vtbl2 = build2 (PLUS_EXPR,
790 TREE_TYPE (vtt_parm),
791 vtt_parm,
792 vtt_index);
793 vtbl2 = build_indirect_ref (vtbl2, NULL);
794 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
796 /* The actual initializer is the VTT value only in the subobject
797 constructor. In maybe_clone_body we'll substitute NULL for
798 the vtt_parm in the case of the non-subobject constructor. */
799 vtbl = build3 (COND_EXPR,
800 TREE_TYPE (vtbl),
801 build2 (EQ_EXPR, boolean_type_node,
802 current_in_charge_parm, integer_zero_node),
803 vtbl2,
804 vtbl);
807 /* Compute the location of the vtpr. */
808 vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL),
809 TREE_TYPE (binfo));
810 gcc_assert (vtbl_ptr != error_mark_node);
812 /* Assign the vtable to the vptr. */
813 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
814 finish_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
817 /* If an exception is thrown in a constructor, those base classes already
818 constructed must be destroyed. This function creates the cleanup
819 for BINFO, which has just been constructed. If FLAG is non-NULL,
820 it is a DECL which is nonzero when this base needs to be
821 destroyed. */
823 static void
824 expand_cleanup_for_base (tree binfo, tree flag)
826 tree expr;
828 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
829 return;
831 /* Call the destructor. */
832 expr = build_special_member_call (current_class_ref,
833 base_dtor_identifier,
834 NULL_TREE,
835 binfo,
836 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
837 if (flag)
838 expr = fold_build3 (COND_EXPR, void_type_node,
839 c_common_truthvalue_conversion (flag),
840 expr, integer_zero_node);
842 finish_eh_cleanup (expr);
845 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
846 constructor. */
848 static void
849 construct_virtual_base (tree vbase, tree arguments)
851 tree inner_if_stmt;
852 tree exp;
853 tree flag;
855 /* If there are virtual base classes with destructors, we need to
856 emit cleanups to destroy them if an exception is thrown during
857 the construction process. These exception regions (i.e., the
858 period during which the cleanups must occur) begin from the time
859 the construction is complete to the end of the function. If we
860 create a conditional block in which to initialize the
861 base-classes, then the cleanup region for the virtual base begins
862 inside a block, and ends outside of that block. This situation
863 confuses the sjlj exception-handling code. Therefore, we do not
864 create a single conditional block, but one for each
865 initialization. (That way the cleanup regions always begin
866 in the outer block.) We trust the back-end to figure out
867 that the FLAG will not change across initializations, and
868 avoid doing multiple tests. */
869 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
870 inner_if_stmt = begin_if_stmt ();
871 finish_if_stmt_cond (flag, inner_if_stmt);
873 /* Compute the location of the virtual base. If we're
874 constructing virtual bases, then we must be the most derived
875 class. Therefore, we don't have to look up the virtual base;
876 we already know where it is. */
877 exp = convert_to_base_statically (current_class_ref, vbase);
879 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
880 LOOKUP_COMPLAIN);
881 finish_then_clause (inner_if_stmt);
882 finish_if_stmt (inner_if_stmt);
884 expand_cleanup_for_base (vbase, flag);
887 /* Find the context in which this FIELD can be initialized. */
889 static tree
890 initializing_context (tree field)
892 tree t = DECL_CONTEXT (field);
894 /* Anonymous union members can be initialized in the first enclosing
895 non-anonymous union context. */
896 while (t && ANON_AGGR_TYPE_P (t))
897 t = TYPE_CONTEXT (t);
898 return t;
901 /* Function to give error message if member initialization specification
902 is erroneous. FIELD is the member we decided to initialize.
903 TYPE is the type for which the initialization is being performed.
904 FIELD must be a member of TYPE.
906 MEMBER_NAME is the name of the member. */
908 static int
909 member_init_ok_or_else (tree field, tree type, tree member_name)
911 if (field == error_mark_node)
912 return 0;
913 if (!field)
915 error ("class %qT does not have any field named %qD", type,
916 member_name);
917 return 0;
919 if (TREE_CODE (field) == VAR_DECL)
921 error ("%q#D is a static data member; it can only be "
922 "initialized at its definition",
923 field);
924 return 0;
926 if (TREE_CODE (field) != FIELD_DECL)
928 error ("%q#D is not a non-static data member of %qT",
929 field, type);
930 return 0;
932 if (initializing_context (field) != type)
934 error ("class %qT does not have any field named %qD", type,
935 member_name);
936 return 0;
939 return 1;
942 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
943 is a _TYPE node or TYPE_DECL which names a base for that type.
944 Check the validity of NAME, and return either the base _TYPE, base
945 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
946 NULL_TREE and issue a diagnostic.
948 An old style unnamed direct single base construction is permitted,
949 where NAME is NULL. */
951 tree
952 expand_member_init (tree name)
954 tree basetype;
955 tree field;
957 if (!current_class_ref)
958 return NULL_TREE;
960 if (!name)
962 /* This is an obsolete unnamed base class initializer. The
963 parser will already have warned about its use. */
964 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
966 case 0:
967 error ("unnamed initializer for %qT, which has no base classes",
968 current_class_type);
969 return NULL_TREE;
970 case 1:
971 basetype = BINFO_TYPE
972 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
973 break;
974 default:
975 error ("unnamed initializer for %qT, which uses multiple inheritance",
976 current_class_type);
977 return NULL_TREE;
980 else if (TYPE_P (name))
982 basetype = TYPE_MAIN_VARIANT (name);
983 name = TYPE_NAME (name);
985 else if (TREE_CODE (name) == TYPE_DECL)
986 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
987 else
988 basetype = NULL_TREE;
990 if (basetype)
992 tree class_binfo;
993 tree direct_binfo;
994 tree virtual_binfo;
995 int i;
997 if (current_template_parms)
998 return basetype;
1000 class_binfo = TYPE_BINFO (current_class_type);
1001 direct_binfo = NULL_TREE;
1002 virtual_binfo = NULL_TREE;
1004 /* Look for a direct base. */
1005 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1006 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1007 break;
1009 /* Look for a virtual base -- unless the direct base is itself
1010 virtual. */
1011 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1012 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1014 /* [class.base.init]
1016 If a mem-initializer-id is ambiguous because it designates
1017 both a direct non-virtual base class and an inherited virtual
1018 base class, the mem-initializer is ill-formed. */
1019 if (direct_binfo && virtual_binfo)
1021 error ("%qD is both a direct base and an indirect virtual base",
1022 basetype);
1023 return NULL_TREE;
1026 if (!direct_binfo && !virtual_binfo)
1028 if (CLASSTYPE_VBASECLASSES (current_class_type))
1029 error ("type %qT is not a direct or virtual base of %qT",
1030 basetype, current_class_type);
1031 else
1032 error ("type %qT is not a direct base of %qT",
1033 basetype, current_class_type);
1034 return NULL_TREE;
1037 return direct_binfo ? direct_binfo : virtual_binfo;
1039 else
1041 if (TREE_CODE (name) == IDENTIFIER_NODE)
1042 field = lookup_field (current_class_type, name, 1, false);
1043 else
1044 field = name;
1046 if (member_init_ok_or_else (field, current_class_type, name))
1047 return field;
1050 return NULL_TREE;
1053 /* This is like `expand_member_init', only it stores one aggregate
1054 value into another.
1056 INIT comes in two flavors: it is either a value which
1057 is to be stored in EXP, or it is a parameter list
1058 to go to a constructor, which will operate on EXP.
1059 If INIT is not a parameter list for a constructor, then set
1060 LOOKUP_ONLYCONVERTING.
1061 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1062 the initializer, if FLAGS is 0, then it is the (init) form.
1063 If `init' is a CONSTRUCTOR, then we emit a warning message,
1064 explaining that such initializations are invalid.
1066 If INIT resolves to a CALL_EXPR which happens to return
1067 something of the type we are looking for, then we know
1068 that we can safely use that call to perform the
1069 initialization.
1071 The virtual function table pointer cannot be set up here, because
1072 we do not really know its type.
1074 This never calls operator=().
1076 When initializing, nothing is CONST.
1078 A default copy constructor may have to be used to perform the
1079 initialization.
1081 A constructor or a conversion operator may have to be used to
1082 perform the initialization, but not both, as it would be ambiguous. */
1084 tree
1085 build_aggr_init (tree exp, tree init, int flags)
1087 tree stmt_expr;
1088 tree compound_stmt;
1089 int destroy_temps;
1090 tree type = TREE_TYPE (exp);
1091 int was_const = TREE_READONLY (exp);
1092 int was_volatile = TREE_THIS_VOLATILE (exp);
1093 int is_global;
1095 if (init == error_mark_node)
1096 return error_mark_node;
1098 TREE_READONLY (exp) = 0;
1099 TREE_THIS_VOLATILE (exp) = 0;
1101 if (init && TREE_CODE (init) != TREE_LIST)
1102 flags |= LOOKUP_ONLYCONVERTING;
1104 if (TREE_CODE (type) == ARRAY_TYPE)
1106 tree itype;
1108 /* An array may not be initialized use the parenthesized
1109 initialization form -- unless the initializer is "()". */
1110 if (init && TREE_CODE (init) == TREE_LIST)
1112 error ("bad array initializer");
1113 return error_mark_node;
1115 /* Must arrange to initialize each element of EXP
1116 from elements of INIT. */
1117 itype = init ? TREE_TYPE (init) : NULL_TREE;
1118 if (cp_type_quals (type) != TYPE_UNQUALIFIED)
1119 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1120 if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
1121 itype = TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1122 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1123 /*explicit_default_init_p=*/false,
1124 itype && same_type_p (itype,
1125 TREE_TYPE (exp)));
1126 TREE_READONLY (exp) = was_const;
1127 TREE_THIS_VOLATILE (exp) = was_volatile;
1128 TREE_TYPE (exp) = type;
1129 if (init)
1130 TREE_TYPE (init) = itype;
1131 return stmt_expr;
1134 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1135 /* Just know that we've seen something for this node. */
1136 TREE_USED (exp) = 1;
1138 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1139 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1140 destroy_temps = stmts_are_full_exprs_p ();
1141 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1142 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1143 init, LOOKUP_NORMAL|flags);
1144 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1145 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1146 TREE_TYPE (exp) = type;
1147 TREE_READONLY (exp) = was_const;
1148 TREE_THIS_VOLATILE (exp) = was_volatile;
1150 return stmt_expr;
1153 static void
1154 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags)
1156 tree type = TREE_TYPE (exp);
1157 tree ctor_name;
1159 /* It fails because there may not be a constructor which takes
1160 its own type as the first (or only parameter), but which does
1161 take other types via a conversion. So, if the thing initializing
1162 the expression is a unit element of type X, first try X(X&),
1163 followed by initialization by X. If neither of these work
1164 out, then look hard. */
1165 tree rval;
1166 tree parms;
1168 if (init && TREE_CODE (init) != TREE_LIST
1169 && (flags & LOOKUP_ONLYCONVERTING))
1171 /* Base subobjects should only get direct-initialization. */
1172 gcc_assert (true_exp == exp);
1174 if (flags & DIRECT_BIND)
1175 /* Do nothing. We hit this in two cases: Reference initialization,
1176 where we aren't initializing a real variable, so we don't want
1177 to run a new constructor; and catching an exception, where we
1178 have already built up the constructor call so we could wrap it
1179 in an exception region. */;
1180 else if (BRACE_ENCLOSED_INITIALIZER_P (init))
1182 /* A brace-enclosed initializer for an aggregate. */
1183 gcc_assert (CP_AGGREGATE_TYPE_P (type));
1184 init = digest_init (type, init);
1186 else
1187 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1189 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1190 /* We need to protect the initialization of a catch parm with a
1191 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1192 around the TARGET_EXPR for the copy constructor. See
1193 initialize_handler_parm. */
1195 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1196 TREE_OPERAND (init, 0));
1197 TREE_TYPE (init) = void_type_node;
1199 else
1200 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1201 TREE_SIDE_EFFECTS (init) = 1;
1202 finish_expr_stmt (init);
1203 return;
1206 if (init == NULL_TREE
1207 || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
1209 parms = init;
1210 if (parms)
1211 init = TREE_VALUE (parms);
1213 else
1214 parms = build_tree_list (NULL_TREE, init);
1216 if (true_exp == exp)
1217 ctor_name = complete_ctor_identifier;
1218 else
1219 ctor_name = base_ctor_identifier;
1221 rval = build_special_member_call (exp, ctor_name, parms, binfo, flags);
1222 if (TREE_SIDE_EFFECTS (rval))
1223 finish_expr_stmt (convert_to_void (rval, NULL));
1226 /* This function is responsible for initializing EXP with INIT
1227 (if any).
1229 BINFO is the binfo of the type for who we are performing the
1230 initialization. For example, if W is a virtual base class of A and B,
1231 and C : A, B.
1232 If we are initializing B, then W must contain B's W vtable, whereas
1233 were we initializing C, W must contain C's W vtable.
1235 TRUE_EXP is nonzero if it is the true expression being initialized.
1236 In this case, it may be EXP, or may just contain EXP. The reason we
1237 need this is because if EXP is a base element of TRUE_EXP, we
1238 don't necessarily know by looking at EXP where its virtual
1239 baseclass fields should really be pointing. But we do know
1240 from TRUE_EXP. In constructors, we don't know anything about
1241 the value being initialized.
1243 FLAGS is just passed to `build_new_method_call'. See that function
1244 for its description. */
1246 static void
1247 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags)
1249 tree type = TREE_TYPE (exp);
1251 gcc_assert (init != error_mark_node && type != error_mark_node);
1252 gcc_assert (building_stmt_tree ());
1254 /* Use a function returning the desired type to initialize EXP for us.
1255 If the function is a constructor, and its first argument is
1256 NULL_TREE, know that it was meant for us--just slide exp on
1257 in and expand the constructor. Constructors now come
1258 as TARGET_EXPRs. */
1260 if (init && TREE_CODE (exp) == VAR_DECL
1261 && COMPOUND_LITERAL_P (init))
1263 /* If store_init_value returns NULL_TREE, the INIT has been
1264 recorded as the DECL_INITIAL for EXP. That means there's
1265 nothing more we have to do. */
1266 init = store_init_value (exp, init);
1267 if (init)
1268 finish_expr_stmt (init);
1269 return;
1272 /* We know that expand_default_init can handle everything we want
1273 at this point. */
1274 expand_default_init (binfo, true_exp, exp, init, flags);
1277 /* Report an error if TYPE is not a user-defined, aggregate type. If
1278 OR_ELSE is nonzero, give an error message. */
1281 is_aggr_type (tree type, int or_else)
1283 if (type == error_mark_node)
1284 return 0;
1286 if (! IS_AGGR_TYPE (type)
1287 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1288 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1290 if (or_else)
1291 error ("%qT is not an aggregate type", type);
1292 return 0;
1294 return 1;
1297 tree
1298 get_type_value (tree name)
1300 if (name == error_mark_node)
1301 return NULL_TREE;
1303 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1304 return IDENTIFIER_TYPE_VALUE (name);
1305 else
1306 return NULL_TREE;
1309 /* Build a reference to a member of an aggregate. This is not a C++
1310 `&', but really something which can have its address taken, and
1311 then act as a pointer to member, for example TYPE :: FIELD can have
1312 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1313 this expression is the operand of "&".
1315 @@ Prints out lousy diagnostics for operator <typename>
1316 @@ fields.
1318 @@ This function should be rewritten and placed in search.c. */
1320 tree
1321 build_offset_ref (tree type, tree member, bool address_p)
1323 tree decl;
1324 tree basebinfo = NULL_TREE;
1326 /* class templates can come in as TEMPLATE_DECLs here. */
1327 if (TREE_CODE (member) == TEMPLATE_DECL)
1328 return member;
1330 if (dependent_type_p (type) || type_dependent_expression_p (member))
1331 return build_qualified_name (NULL_TREE, type, member,
1332 /*template_p=*/false);
1334 gcc_assert (TYPE_P (type));
1335 if (! is_aggr_type (type, 1))
1336 return error_mark_node;
1338 gcc_assert (DECL_P (member) || BASELINK_P (member));
1339 /* Callers should call mark_used before this point. */
1340 gcc_assert (!DECL_P (member) || TREE_USED (member));
1342 if (!COMPLETE_TYPE_P (complete_type (type))
1343 && !TYPE_BEING_DEFINED (type))
1345 error ("incomplete type %qT does not have member %qD", type, member);
1346 return error_mark_node;
1349 /* Entities other than non-static members need no further
1350 processing. */
1351 if (TREE_CODE (member) == TYPE_DECL)
1352 return member;
1353 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1354 return convert_from_reference (member);
1356 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1358 error ("invalid pointer to bit-field %qD", member);
1359 return error_mark_node;
1362 /* Set up BASEBINFO for member lookup. */
1363 decl = maybe_dummy_object (type, &basebinfo);
1365 /* A lot of this logic is now handled in lookup_member. */
1366 if (BASELINK_P (member))
1368 /* Go from the TREE_BASELINK to the member function info. */
1369 tree t = BASELINK_FUNCTIONS (member);
1371 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1373 /* Get rid of a potential OVERLOAD around it. */
1374 t = OVL_CURRENT (t);
1376 /* Unique functions are handled easily. */
1378 /* For non-static member of base class, we need a special rule
1379 for access checking [class.protected]:
1381 If the access is to form a pointer to member, the
1382 nested-name-specifier shall name the derived class
1383 (or any class derived from that class). */
1384 if (address_p && DECL_P (t)
1385 && DECL_NONSTATIC_MEMBER_P (t))
1386 perform_or_defer_access_check (TYPE_BINFO (type), t, t);
1387 else
1388 perform_or_defer_access_check (basebinfo, t, t);
1390 if (DECL_STATIC_FUNCTION_P (t))
1391 return t;
1392 member = t;
1394 else
1395 TREE_TYPE (member) = unknown_type_node;
1397 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1398 /* We need additional test besides the one in
1399 check_accessibility_of_qualified_id in case it is
1400 a pointer to non-static member. */
1401 perform_or_defer_access_check (TYPE_BINFO (type), member, member);
1403 if (!address_p)
1405 /* If MEMBER is non-static, then the program has fallen afoul of
1406 [expr.prim]:
1408 An id-expression that denotes a nonstatic data member or
1409 nonstatic member function of a class can only be used:
1411 -- as part of a class member access (_expr.ref_) in which the
1412 object-expression refers to the member's class or a class
1413 derived from that class, or
1415 -- to form a pointer to member (_expr.unary.op_), or
1417 -- in the body of a nonstatic member function of that class or
1418 of a class derived from that class (_class.mfct.nonstatic_), or
1420 -- in a mem-initializer for a constructor for that class or for
1421 a class derived from that class (_class.base.init_). */
1422 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1424 /* Build a representation of a the qualified name suitable
1425 for use as the operand to "&" -- even though the "&" is
1426 not actually present. */
1427 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1428 /* In Microsoft mode, treat a non-static member function as if
1429 it were a pointer-to-member. */
1430 if (flag_ms_extensions)
1432 PTRMEM_OK_P (member) = 1;
1433 return build_unary_op (ADDR_EXPR, member, 0);
1435 error ("invalid use of non-static member function %qD",
1436 TREE_OPERAND (member, 1));
1437 return error_mark_node;
1439 else if (TREE_CODE (member) == FIELD_DECL)
1441 error ("invalid use of non-static data member %qD", member);
1442 return error_mark_node;
1444 return member;
1447 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1448 PTRMEM_OK_P (member) = 1;
1449 return member;
1452 /* If DECL is a scalar enumeration constant or variable with a
1453 constant initializer, return the initializer (or, its initializers,
1454 recursively); otherwise, return DECL. If INTEGRAL_P, the
1455 initializer is only returned if DECL is an integral
1456 constant-expression. */
1458 static tree
1459 constant_value_1 (tree decl, bool integral_p)
1461 while (TREE_CODE (decl) == CONST_DECL
1462 || (integral_p
1463 ? DECL_INTEGRAL_CONSTANT_VAR_P (decl)
1464 : (TREE_CODE (decl) == VAR_DECL
1465 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1467 tree init;
1468 /* Static data members in template classes may have
1469 non-dependent initializers. References to such non-static
1470 data members are not value-dependent, so we must retrieve the
1471 initializer here. The DECL_INITIAL will have the right type,
1472 but will not have been folded because that would prevent us
1473 from performing all appropriate semantic checks at
1474 instantiation time. */
1475 if (DECL_CLASS_SCOPE_P (decl)
1476 && CLASSTYPE_TEMPLATE_INFO (DECL_CONTEXT (decl))
1477 && uses_template_parms (CLASSTYPE_TI_ARGS
1478 (DECL_CONTEXT (decl))))
1480 ++processing_template_decl;
1481 init = fold_non_dependent_expr (DECL_INITIAL (decl));
1482 --processing_template_decl;
1484 else
1486 /* If DECL is a static data member in a template
1487 specialization, we must instantiate it here. The
1488 initializer for the static data member is not processed
1489 until needed; we need it now. */
1490 mark_used (decl);
1491 init = DECL_INITIAL (decl);
1493 if (init == error_mark_node)
1494 return decl;
1495 if (!init
1496 || !TREE_TYPE (init)
1497 || (integral_p
1498 ? !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (init))
1499 : (!TREE_CONSTANT (init)
1500 /* Do not return an aggregate constant (of which
1501 string literals are a special case), as we do not
1502 want to make inadvertent copies of such entities,
1503 and we must be sure that their addresses are the
1504 same everywhere. */
1505 || TREE_CODE (init) == CONSTRUCTOR
1506 || TREE_CODE (init) == STRING_CST)))
1507 break;
1508 decl = unshare_expr (init);
1510 return decl;
1513 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
1514 constant of integral or enumeration type, then return that value.
1515 These are those variables permitted in constant expressions by
1516 [5.19/1]. */
1518 tree
1519 integral_constant_value (tree decl)
1521 return constant_value_1 (decl, /*integral_p=*/true);
1524 /* A more relaxed version of integral_constant_value, used by the
1525 common C/C++ code and by the C++ front-end for optimization
1526 purposes. */
1528 tree
1529 decl_constant_value (tree decl)
1531 return constant_value_1 (decl,
1532 /*integral_p=*/processing_template_decl);
1535 /* Common subroutines of build_new and build_vec_delete. */
1537 /* Call the global __builtin_delete to delete ADDR. */
1539 static tree
1540 build_builtin_delete_call (tree addr)
1542 mark_used (global_delete_fndecl);
1543 return build_call (global_delete_fndecl, build_tree_list (NULL_TREE, addr));
1546 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
1547 the type of the object being allocated; otherwise, it's just TYPE.
1548 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
1549 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
1550 the TREE_LIST of arguments to be provided as arguments to a
1551 placement new operator. This routine performs no semantic checks;
1552 it just creates and returns a NEW_EXPR. */
1554 static tree
1555 build_raw_new_expr (tree placement, tree type, tree nelts, tree init,
1556 int use_global_new)
1558 tree new_expr;
1560 new_expr = build4 (NEW_EXPR, build_pointer_type (type), placement, type,
1561 nelts, init);
1562 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
1563 TREE_SIDE_EFFECTS (new_expr) = 1;
1565 return new_expr;
1568 /* Generate code for a new-expression, including calling the "operator
1569 new" function, initializing the object, and, if an exception occurs
1570 during construction, cleaning up. The arguments are as for
1571 build_raw_new_expr. */
1573 static tree
1574 build_new_1 (tree placement, tree type, tree nelts, tree init,
1575 bool globally_qualified_p)
1577 tree size, rval;
1578 /* True iff this is a call to "operator new[]" instead of just
1579 "operator new". */
1580 bool array_p = false;
1581 /* True iff ARRAY_P is true and the bound of the array type is
1582 not necessarily a compile time constant. For example, VLA_P is
1583 true for "new int[f()]". */
1584 bool vla_p = false;
1585 /* The type being allocated. If ARRAY_P is true, this will be an
1586 ARRAY_TYPE. */
1587 tree full_type;
1588 /* If ARRAY_P is true, the element type of the array. This is an
1589 never ARRAY_TYPE; for something like "new int[3][4]", the
1590 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
1591 FULL_TYPE. */
1592 tree elt_type;
1593 /* The type of the new-expression. (This type is always a pointer
1594 type.) */
1595 tree pointer_type;
1596 /* A pointer type pointing to the FULL_TYPE. */
1597 tree full_pointer_type;
1598 tree outer_nelts = NULL_TREE;
1599 tree alloc_call, alloc_expr;
1600 /* The address returned by the call to "operator new". This node is
1601 a VAR_DECL and is therefore reusable. */
1602 tree alloc_node;
1603 tree alloc_fn;
1604 tree cookie_expr, init_expr;
1605 int nothrow, check_new;
1606 int use_java_new = 0;
1607 /* If non-NULL, the number of extra bytes to allocate at the
1608 beginning of the storage allocated for an array-new expression in
1609 order to store the number of elements. */
1610 tree cookie_size = NULL_TREE;
1611 /* True if the function we are calling is a placement allocation
1612 function. */
1613 bool placement_allocation_fn_p;
1614 tree args = NULL_TREE;
1615 /* True if the storage must be initialized, either by a constructor
1616 or due to an explicit new-initializer. */
1617 bool is_initialized;
1618 /* The address of the thing allocated, not including any cookie. In
1619 particular, if an array cookie is in use, DATA_ADDR is the
1620 address of the first array element. This node is a VAR_DECL, and
1621 is therefore reusable. */
1622 tree data_addr;
1623 tree init_preeval_expr = NULL_TREE;
1625 if (nelts)
1627 tree index;
1629 outer_nelts = nelts;
1630 array_p = true;
1632 /* ??? The middle-end will error on us for building a VLA outside a
1633 function context. Methinks that's not it's purvey. So we'll do
1634 our own VLA layout later. */
1635 vla_p = true;
1636 index = convert (sizetype, nelts);
1637 index = size_binop (MINUS_EXPR, index, size_one_node);
1638 index = build_index_type (index);
1639 full_type = build_cplus_array_type (type, NULL_TREE);
1640 /* We need a copy of the type as build_array_type will return a shared copy
1641 of the incomplete array type. */
1642 full_type = build_distinct_type_copy (full_type);
1643 TYPE_DOMAIN (full_type) = index;
1645 else
1647 full_type = type;
1648 if (TREE_CODE (type) == ARRAY_TYPE)
1650 array_p = true;
1651 nelts = array_type_nelts_top (type);
1652 outer_nelts = nelts;
1653 type = TREE_TYPE (type);
1657 if (!complete_type_or_else (type, NULL_TREE))
1658 return error_mark_node;
1660 /* If our base type is an array, then make sure we know how many elements
1661 it has. */
1662 for (elt_type = type;
1663 TREE_CODE (elt_type) == ARRAY_TYPE;
1664 elt_type = TREE_TYPE (elt_type))
1665 nelts = cp_build_binary_op (MULT_EXPR, nelts,
1666 array_type_nelts_top (elt_type));
1668 if (TREE_CODE (elt_type) == VOID_TYPE)
1670 error ("invalid type %<void%> for new");
1671 return error_mark_node;
1674 if (abstract_virtuals_error (NULL_TREE, elt_type))
1675 return error_mark_node;
1677 is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || init);
1678 if (CP_TYPE_CONST_P (elt_type) && !is_initialized)
1680 error ("uninitialized const in %<new%> of %q#T", elt_type);
1681 return error_mark_node;
1684 size = size_in_bytes (elt_type);
1685 if (array_p)
1687 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
1688 if (vla_p)
1690 tree n, bitsize;
1692 /* Do our own VLA layout. Setting TYPE_SIZE/_UNIT is
1693 necessary in order for the <INIT_EXPR <*foo> <CONSTRUCTOR
1694 ...>> to be valid. */
1695 TYPE_SIZE_UNIT (full_type) = size;
1696 n = convert (bitsizetype, nelts);
1697 bitsize = size_binop (MULT_EXPR, TYPE_SIZE (elt_type), n);
1698 TYPE_SIZE (full_type) = bitsize;
1702 alloc_fn = NULL_TREE;
1704 /* Allocate the object. */
1705 if (! placement && TYPE_FOR_JAVA (elt_type))
1707 tree class_addr;
1708 tree class_decl = build_java_class_ref (elt_type);
1709 static const char alloc_name[] = "_Jv_AllocObject";
1711 if (class_decl == error_mark_node)
1712 return error_mark_node;
1714 use_java_new = 1;
1715 if (!get_global_value_if_present (get_identifier (alloc_name),
1716 &alloc_fn))
1718 error ("call to Java constructor with %qs undefined", alloc_name);
1719 return error_mark_node;
1721 else if (really_overloaded_fn (alloc_fn))
1723 error ("%qD should never be overloaded", alloc_fn);
1724 return error_mark_node;
1726 alloc_fn = OVL_CURRENT (alloc_fn);
1727 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
1728 alloc_call = (build_function_call
1729 (alloc_fn,
1730 build_tree_list (NULL_TREE, class_addr)));
1732 else
1734 tree fnname;
1735 tree fns;
1737 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
1739 if (!globally_qualified_p
1740 && CLASS_TYPE_P (elt_type)
1741 && (array_p
1742 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
1743 : TYPE_HAS_NEW_OPERATOR (elt_type)))
1745 /* Use a class-specific operator new. */
1746 /* If a cookie is required, add some extra space. */
1747 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1749 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1750 size = size_binop (PLUS_EXPR, size, cookie_size);
1752 /* Create the argument list. */
1753 args = tree_cons (NULL_TREE, size, placement);
1754 /* Do name-lookup to find the appropriate operator. */
1755 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
1756 if (fns == NULL_TREE)
1758 error ("no suitable %qD found in class %qT", fnname, elt_type);
1759 return error_mark_node;
1761 if (TREE_CODE (fns) == TREE_LIST)
1763 error ("request for member %qD is ambiguous", fnname);
1764 print_candidates (fns);
1765 return error_mark_node;
1767 alloc_call = build_new_method_call (build_dummy_object (elt_type),
1768 fns, args,
1769 /*conversion_path=*/NULL_TREE,
1770 LOOKUP_NORMAL,
1771 &alloc_fn);
1773 else
1775 /* Use a global operator new. */
1776 /* See if a cookie might be required. */
1777 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1778 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1779 else
1780 cookie_size = NULL_TREE;
1782 alloc_call = build_operator_new_call (fnname, placement,
1783 &size, &cookie_size,
1784 &alloc_fn);
1788 if (alloc_call == error_mark_node)
1789 return error_mark_node;
1791 gcc_assert (alloc_fn != NULL_TREE);
1793 /* In the simple case, we can stop now. */
1794 pointer_type = build_pointer_type (type);
1795 if (!cookie_size && !is_initialized)
1796 return build_nop (pointer_type, alloc_call);
1798 /* While we're working, use a pointer to the type we've actually
1799 allocated. Store the result of the call in a variable so that we
1800 can use it more than once. */
1801 full_pointer_type = build_pointer_type (full_type);
1802 alloc_expr = get_target_expr (build_nop (full_pointer_type, alloc_call));
1803 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
1805 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
1806 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
1807 alloc_call = TREE_OPERAND (alloc_call, 1);
1809 /* Now, check to see if this function is actually a placement
1810 allocation function. This can happen even when PLACEMENT is NULL
1811 because we might have something like:
1813 struct S { void* operator new (size_t, int i = 0); };
1815 A call to `new S' will get this allocation function, even though
1816 there is no explicit placement argument. If there is more than
1817 one argument, or there are variable arguments, then this is a
1818 placement allocation function. */
1819 placement_allocation_fn_p
1820 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
1821 || varargs_function_p (alloc_fn));
1823 /* Preevaluate the placement args so that we don't reevaluate them for a
1824 placement delete. */
1825 if (placement_allocation_fn_p)
1827 tree inits;
1828 stabilize_call (alloc_call, &inits);
1829 if (inits)
1830 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
1831 alloc_expr);
1834 /* unless an allocation function is declared with an empty excep-
1835 tion-specification (_except.spec_), throw(), it indicates failure to
1836 allocate storage by throwing a bad_alloc exception (clause _except_,
1837 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
1838 cation function is declared with an empty exception-specification,
1839 throw(), it returns null to indicate failure to allocate storage and a
1840 non-null pointer otherwise.
1842 So check for a null exception spec on the op new we just called. */
1844 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
1845 check_new = (flag_check_new || nothrow) && ! use_java_new;
1847 if (cookie_size)
1849 tree cookie;
1850 tree cookie_ptr;
1852 /* Adjust so we're pointing to the start of the object. */
1853 data_addr = get_target_expr (build2 (PLUS_EXPR, full_pointer_type,
1854 alloc_node, cookie_size));
1856 /* Store the number of bytes allocated so that we can know how
1857 many elements to destroy later. We use the last sizeof
1858 (size_t) bytes to store the number of elements. */
1859 cookie_ptr = build2 (MINUS_EXPR, build_pointer_type (sizetype),
1860 data_addr, size_in_bytes (sizetype));
1861 cookie = build_indirect_ref (cookie_ptr, NULL);
1863 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
1865 if (targetm.cxx.cookie_has_size ())
1867 /* Also store the element size. */
1868 cookie_ptr = build2 (MINUS_EXPR, build_pointer_type (sizetype),
1869 cookie_ptr, size_in_bytes (sizetype));
1870 cookie = build_indirect_ref (cookie_ptr, NULL);
1871 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
1872 size_in_bytes(elt_type));
1873 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
1874 cookie, cookie_expr);
1876 data_addr = TARGET_EXPR_SLOT (data_addr);
1878 else
1880 cookie_expr = NULL_TREE;
1881 data_addr = alloc_node;
1884 /* Now initialize the allocated object. Note that we preevaluate the
1885 initialization expression, apart from the actual constructor call or
1886 assignment--we do this because we want to delay the allocation as long
1887 as possible in order to minimize the size of the exception region for
1888 placement delete. */
1889 if (is_initialized)
1891 bool stable;
1893 init_expr = build_indirect_ref (data_addr, NULL);
1895 if (array_p)
1897 bool explicit_default_init_p = false;
1899 if (init == void_zero_node)
1901 init = NULL_TREE;
1902 explicit_default_init_p = true;
1904 else if (init)
1905 pedwarn ("ISO C++ forbids initialization in array new");
1907 init_expr
1908 = build_vec_init (init_expr,
1909 cp_build_binary_op (MINUS_EXPR, outer_nelts,
1910 integer_one_node),
1911 init,
1912 explicit_default_init_p,
1913 /*from_array=*/0);
1915 /* An array initialization is stable because the initialization
1916 of each element is a full-expression, so the temporaries don't
1917 leak out. */
1918 stable = true;
1920 else
1922 if (init == void_zero_node)
1923 init = build_default_init (full_type, nelts);
1925 if (TYPE_NEEDS_CONSTRUCTING (type))
1927 init_expr = build_special_member_call (init_expr,
1928 complete_ctor_identifier,
1929 init, elt_type,
1930 LOOKUP_NORMAL);
1931 stable = stabilize_init (init_expr, &init_preeval_expr);
1933 else
1935 /* We are processing something like `new int (10)', which
1936 means allocate an int, and initialize it with 10. */
1938 if (TREE_CODE (init) == TREE_LIST)
1939 init = build_x_compound_expr_from_list (init,
1940 "new initializer");
1941 else
1942 gcc_assert (TREE_CODE (init) != CONSTRUCTOR
1943 || TREE_TYPE (init) != NULL_TREE);
1945 init_expr = build_modify_expr (init_expr, INIT_EXPR, init);
1946 stable = stabilize_init (init_expr, &init_preeval_expr);
1950 if (init_expr == error_mark_node)
1951 return error_mark_node;
1953 /* If any part of the object initialization terminates by throwing an
1954 exception and a suitable deallocation function can be found, the
1955 deallocation function is called to free the memory in which the
1956 object was being constructed, after which the exception continues
1957 to propagate in the context of the new-expression. If no
1958 unambiguous matching deallocation function can be found,
1959 propagating the exception does not cause the object's memory to be
1960 freed. */
1961 if (flag_exceptions && ! use_java_new)
1963 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
1964 tree cleanup;
1966 /* The Standard is unclear here, but the right thing to do
1967 is to use the same method for finding deallocation
1968 functions that we use for finding allocation functions. */
1969 cleanup = build_op_delete_call (dcode, alloc_node, size,
1970 globally_qualified_p,
1971 (placement_allocation_fn_p
1972 ? alloc_call : NULL_TREE),
1973 (placement_allocation_fn_p
1974 ? alloc_fn : NULL_TREE));
1976 if (!cleanup)
1977 /* We're done. */;
1978 else if (stable)
1979 /* This is much simpler if we were able to preevaluate all of
1980 the arguments to the constructor call. */
1981 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
1982 init_expr, cleanup);
1983 else
1984 /* Ack! First we allocate the memory. Then we set our sentry
1985 variable to true, and expand a cleanup that deletes the
1986 memory if sentry is true. Then we run the constructor, and
1987 finally clear the sentry.
1989 We need to do this because we allocate the space first, so
1990 if there are any temporaries with cleanups in the
1991 constructor args and we weren't able to preevaluate them, we
1992 need this EH region to extend until end of full-expression
1993 to preserve nesting. */
1995 tree end, sentry, begin;
1997 begin = get_target_expr (boolean_true_node);
1998 CLEANUP_EH_ONLY (begin) = 1;
2000 sentry = TARGET_EXPR_SLOT (begin);
2002 TARGET_EXPR_CLEANUP (begin)
2003 = build3 (COND_EXPR, void_type_node, sentry,
2004 cleanup, void_zero_node);
2006 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2007 sentry, boolean_false_node);
2009 init_expr
2010 = build2 (COMPOUND_EXPR, void_type_node, begin,
2011 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2012 end));
2017 else
2018 init_expr = NULL_TREE;
2020 /* Now build up the return value in reverse order. */
2022 rval = data_addr;
2024 if (init_expr)
2025 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2026 if (cookie_expr)
2027 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2029 if (rval == alloc_node)
2030 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2031 and return the call (which doesn't need to be adjusted). */
2032 rval = TARGET_EXPR_INITIAL (alloc_expr);
2033 else
2035 if (check_new)
2037 tree ifexp = cp_build_binary_op (NE_EXPR, alloc_node,
2038 integer_zero_node);
2039 rval = build_conditional_expr (ifexp, rval, alloc_node);
2042 /* Perform the allocation before anything else, so that ALLOC_NODE
2043 has been initialized before we start using it. */
2044 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2047 if (init_preeval_expr)
2048 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2050 /* Convert to the final type. */
2051 rval = build_nop (pointer_type, rval);
2053 /* A new-expression is never an lvalue. */
2054 gcc_assert (!lvalue_p (rval));
2056 return rval;
2059 /* Generate a representation for a C++ "new" expression. PLACEMENT is
2060 a TREE_LIST of placement-new arguments (or NULL_TREE if none). If
2061 NELTS is NULL, TYPE is the type of the storage to be allocated. If
2062 NELTS is not NULL, then this is an array-new allocation; TYPE is
2063 the type of the elements in the array and NELTS is the number of
2064 elements in the array. INIT, if non-NULL, is the initializer for
2065 the new object, or void_zero_node to indicate an initializer of
2066 "()". If USE_GLOBAL_NEW is true, then the user explicitly wrote
2067 "::new" rather than just "new". */
2069 tree
2070 build_new (tree placement, tree type, tree nelts, tree init,
2071 int use_global_new)
2073 tree rval;
2074 tree orig_placement;
2075 tree orig_nelts;
2076 tree orig_init;
2078 if (placement == error_mark_node || type == error_mark_node
2079 || init == error_mark_node)
2080 return error_mark_node;
2082 orig_placement = placement;
2083 orig_nelts = nelts;
2084 orig_init = init;
2086 if (processing_template_decl)
2088 if (dependent_type_p (type)
2089 || any_type_dependent_arguments_p (placement)
2090 || (nelts && type_dependent_expression_p (nelts))
2091 || (init != void_zero_node
2092 && any_type_dependent_arguments_p (init)))
2093 return build_raw_new_expr (placement, type, nelts, init,
2094 use_global_new);
2095 placement = build_non_dependent_args (placement);
2096 if (nelts)
2097 nelts = build_non_dependent_expr (nelts);
2098 if (init != void_zero_node)
2099 init = build_non_dependent_args (init);
2102 if (nelts)
2104 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
2105 pedwarn ("size in array new must have integral type");
2106 nelts = cp_save_expr (cp_convert (sizetype, nelts));
2107 /* It is valid to allocate a zero-element array:
2109 [expr.new]
2111 When the value of the expression in a direct-new-declarator
2112 is zero, the allocation function is called to allocate an
2113 array with no elements. The pointer returned by the
2114 new-expression is non-null. [Note: If the library allocation
2115 function is called, the pointer returned is distinct from the
2116 pointer to any other object.]
2118 However, that is not generally useful, so we issue a
2119 warning. */
2120 if (integer_zerop (nelts))
2121 warning (0, "allocating zero-element array");
2124 /* ``A reference cannot be created by the new operator. A reference
2125 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2126 returned by new.'' ARM 5.3.3 */
2127 if (TREE_CODE (type) == REFERENCE_TYPE)
2129 error ("new cannot be applied to a reference type");
2130 type = TREE_TYPE (type);
2133 if (TREE_CODE (type) == FUNCTION_TYPE)
2135 error ("new cannot be applied to a function type");
2136 return error_mark_node;
2139 rval = build_new_1 (placement, type, nelts, init, use_global_new);
2140 if (rval == error_mark_node)
2141 return error_mark_node;
2143 if (processing_template_decl)
2144 return build_raw_new_expr (orig_placement, type, orig_nelts, orig_init,
2145 use_global_new);
2147 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
2148 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2149 TREE_NO_WARNING (rval) = 1;
2151 return rval;
2154 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
2156 tree
2157 build_java_class_ref (tree type)
2159 tree name = NULL_TREE, class_decl;
2160 static tree CL_suffix = NULL_TREE;
2161 if (CL_suffix == NULL_TREE)
2162 CL_suffix = get_identifier("class$");
2163 if (jclass_node == NULL_TREE)
2165 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2166 if (jclass_node == NULL_TREE)
2168 error ("call to Java constructor, while %<jclass%> undefined");
2169 return error_mark_node;
2171 jclass_node = TREE_TYPE (jclass_node);
2174 /* Mangle the class$ field. */
2176 tree field;
2177 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2178 if (DECL_NAME (field) == CL_suffix)
2180 mangle_decl (field);
2181 name = DECL_ASSEMBLER_NAME (field);
2182 break;
2184 if (!field)
2186 error ("can't find %<class$%> in %qT", type);
2187 return error_mark_node;
2191 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2192 if (class_decl == NULL_TREE)
2194 class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
2195 TREE_STATIC (class_decl) = 1;
2196 DECL_EXTERNAL (class_decl) = 1;
2197 TREE_PUBLIC (class_decl) = 1;
2198 DECL_ARTIFICIAL (class_decl) = 1;
2199 DECL_IGNORED_P (class_decl) = 1;
2200 pushdecl_top_level (class_decl);
2201 make_decl_rtl (class_decl);
2203 return class_decl;
2206 static tree
2207 build_vec_delete_1 (tree base, tree maxindex, tree type,
2208 special_function_kind auto_delete_vec, int use_global_delete)
2210 tree virtual_size;
2211 tree ptype = build_pointer_type (type = complete_type (type));
2212 tree size_exp = size_in_bytes (type);
2214 /* Temporary variables used by the loop. */
2215 tree tbase, tbase_init;
2217 /* This is the body of the loop that implements the deletion of a
2218 single element, and moves temp variables to next elements. */
2219 tree body;
2221 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2222 tree loop = 0;
2224 /* This is the thing that governs what to do after the loop has run. */
2225 tree deallocate_expr = 0;
2227 /* This is the BIND_EXPR which holds the outermost iterator of the
2228 loop. It is convenient to set this variable up and test it before
2229 executing any other code in the loop.
2230 This is also the containing expression returned by this function. */
2231 tree controller = NULL_TREE;
2233 /* We should only have 1-D arrays here. */
2234 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2236 if (! IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2237 goto no_destructor;
2239 /* The below is short by the cookie size. */
2240 virtual_size = size_binop (MULT_EXPR, size_exp,
2241 convert (sizetype, maxindex));
2243 tbase = create_temporary_var (ptype);
2244 tbase_init = build_modify_expr (tbase, NOP_EXPR,
2245 fold_build2 (PLUS_EXPR, ptype,
2246 base,
2247 virtual_size));
2248 DECL_REGISTER (tbase) = 1;
2249 controller = build3 (BIND_EXPR, void_type_node, tbase,
2250 NULL_TREE, NULL_TREE);
2251 TREE_SIDE_EFFECTS (controller) = 1;
2253 body = build1 (EXIT_EXPR, void_type_node,
2254 build2 (EQ_EXPR, boolean_type_node, tbase,
2255 fold_convert (ptype, base)));
2256 body = build_compound_expr
2257 (body, build_modify_expr (tbase, NOP_EXPR,
2258 build2 (MINUS_EXPR, ptype, tbase, size_exp)));
2259 body = build_compound_expr
2260 (body, build_delete (ptype, tbase, sfk_complete_destructor,
2261 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2263 loop = build1 (LOOP_EXPR, void_type_node, body);
2264 loop = build_compound_expr (tbase_init, loop);
2266 no_destructor:
2267 /* If the delete flag is one, or anything else with the low bit set,
2268 delete the storage. */
2269 if (auto_delete_vec != sfk_base_destructor)
2271 tree base_tbd;
2273 /* The below is short by the cookie size. */
2274 virtual_size = size_binop (MULT_EXPR, size_exp,
2275 convert (sizetype, maxindex));
2277 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2278 /* no header */
2279 base_tbd = base;
2280 else
2282 tree cookie_size;
2284 cookie_size = targetm.cxx.get_cookie_size (type);
2285 base_tbd
2286 = cp_convert (ptype,
2287 cp_build_binary_op (MINUS_EXPR,
2288 cp_convert (string_type_node,
2289 base),
2290 cookie_size));
2291 /* True size with header. */
2292 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2295 if (auto_delete_vec == sfk_deleting_destructor)
2296 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
2297 base_tbd, virtual_size,
2298 use_global_delete & 1,
2299 /*placement=*/NULL_TREE,
2300 /*alloc_fn=*/NULL_TREE);
2303 body = loop;
2304 if (!deallocate_expr)
2306 else if (!body)
2307 body = deallocate_expr;
2308 else
2309 body = build_compound_expr (body, deallocate_expr);
2311 if (!body)
2312 body = integer_zero_node;
2314 /* Outermost wrapper: If pointer is null, punt. */
2315 body = fold_build3 (COND_EXPR, void_type_node,
2316 fold_build2 (NE_EXPR, boolean_type_node, base,
2317 convert (TREE_TYPE (base),
2318 integer_zero_node)),
2319 body, integer_zero_node);
2320 body = build1 (NOP_EXPR, void_type_node, body);
2322 if (controller)
2324 TREE_OPERAND (controller, 1) = body;
2325 body = controller;
2328 if (TREE_CODE (base) == SAVE_EXPR)
2329 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2330 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
2332 return convert_to_void (body, /*implicit=*/NULL);
2335 /* Create an unnamed variable of the indicated TYPE. */
2337 tree
2338 create_temporary_var (tree type)
2340 tree decl;
2342 decl = build_decl (VAR_DECL, NULL_TREE, type);
2343 TREE_USED (decl) = 1;
2344 DECL_ARTIFICIAL (decl) = 1;
2345 DECL_IGNORED_P (decl) = 1;
2346 DECL_SOURCE_LOCATION (decl) = input_location;
2347 DECL_CONTEXT (decl) = current_function_decl;
2349 return decl;
2352 /* Create a new temporary variable of the indicated TYPE, initialized
2353 to INIT.
2355 It is not entered into current_binding_level, because that breaks
2356 things when it comes time to do final cleanups (which take place
2357 "outside" the binding contour of the function). */
2359 static tree
2360 get_temp_regvar (tree type, tree init)
2362 tree decl;
2364 decl = create_temporary_var (type);
2365 add_decl_expr (decl);
2367 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
2369 return decl;
2372 /* `build_vec_init' returns tree structure that performs
2373 initialization of a vector of aggregate types.
2375 BASE is a reference to the vector, of ARRAY_TYPE.
2376 MAXINDEX is the maximum index of the array (one less than the
2377 number of elements). It is only used if
2378 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2380 INIT is the (possibly NULL) initializer.
2382 If EXPLICIT_DEFAULT_INIT_P is true, then INIT must be NULL. All
2383 elements in the array are default-initialized.
2385 FROM_ARRAY is 0 if we should init everything with INIT
2386 (i.e., every element initialized from INIT).
2387 FROM_ARRAY is 1 if we should index into INIT in parallel
2388 with initialization of DECL.
2389 FROM_ARRAY is 2 if we should index into INIT in parallel,
2390 but use assignment instead of initialization. */
2392 tree
2393 build_vec_init (tree base, tree maxindex, tree init,
2394 bool explicit_default_init_p,
2395 int from_array)
2397 tree rval;
2398 tree base2 = NULL_TREE;
2399 tree size;
2400 tree itype = NULL_TREE;
2401 tree iterator;
2402 /* The type of the array. */
2403 tree atype = TREE_TYPE (base);
2404 /* The type of an element in the array. */
2405 tree type = TREE_TYPE (atype);
2406 /* The element type reached after removing all outer array
2407 types. */
2408 tree inner_elt_type;
2409 /* The type of a pointer to an element in the array. */
2410 tree ptype;
2411 tree stmt_expr;
2412 tree compound_stmt;
2413 int destroy_temps;
2414 tree try_block = NULL_TREE;
2415 int num_initialized_elts = 0;
2416 bool is_global;
2418 if (TYPE_DOMAIN (atype))
2419 maxindex = array_type_nelts (atype);
2421 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2422 return error_mark_node;
2424 if (explicit_default_init_p)
2425 gcc_assert (!init);
2427 inner_elt_type = strip_array_types (atype);
2428 if (init
2429 && (from_array == 2
2430 ? (!CLASS_TYPE_P (inner_elt_type)
2431 || !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
2432 : !TYPE_NEEDS_CONSTRUCTING (type))
2433 && ((TREE_CODE (init) == CONSTRUCTOR
2434 /* Don't do this if the CONSTRUCTOR might contain something
2435 that might throw and require us to clean up. */
2436 && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
2437 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
2438 || from_array))
2440 /* Do non-default initialization of POD arrays resulting from
2441 brace-enclosed initializers. In this case, digest_init and
2442 store_constructor will handle the semantics for us. */
2444 stmt_expr = build2 (INIT_EXPR, atype, base, init);
2445 return stmt_expr;
2448 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2449 ptype = build_pointer_type (type);
2450 size = size_in_bytes (type);
2451 if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
2452 base = cp_convert (ptype, decay_conversion (base));
2454 /* The code we are generating looks like:
2456 T* t1 = (T*) base;
2457 T* rval = t1;
2458 ptrdiff_t iterator = maxindex;
2459 try {
2460 for (; iterator != -1; --iterator) {
2461 ... initialize *t1 ...
2462 ++t1;
2464 } catch (...) {
2465 ... destroy elements that were constructed ...
2467 rval;
2470 We can omit the try and catch blocks if we know that the
2471 initialization will never throw an exception, or if the array
2472 elements do not have destructors. We can omit the loop completely if
2473 the elements of the array do not have constructors.
2475 We actually wrap the entire body of the above in a STMT_EXPR, for
2476 tidiness.
2478 When copying from array to another, when the array elements have
2479 only trivial copy constructors, we should use __builtin_memcpy
2480 rather than generating a loop. That way, we could take advantage
2481 of whatever cleverness the back-end has for dealing with copies
2482 of blocks of memory. */
2484 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2485 destroy_temps = stmts_are_full_exprs_p ();
2486 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2487 rval = get_temp_regvar (ptype, base);
2488 base = get_temp_regvar (ptype, rval);
2489 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2491 /* Protect the entire array initialization so that we can destroy
2492 the partially constructed array if an exception is thrown.
2493 But don't do this if we're assigning. */
2494 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2495 && from_array != 2)
2497 try_block = begin_try_block ();
2500 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2502 /* Do non-default initialization of non-POD arrays resulting from
2503 brace-enclosed initializers. */
2504 unsigned HOST_WIDE_INT idx;
2505 tree elt;
2506 from_array = 0;
2508 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
2510 tree baseref = build1 (INDIRECT_REF, type, base);
2512 num_initialized_elts++;
2514 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2515 if (IS_AGGR_TYPE (type) || TREE_CODE (type) == ARRAY_TYPE)
2516 finish_expr_stmt (build_aggr_init (baseref, elt, 0));
2517 else
2518 finish_expr_stmt (build_modify_expr (baseref, NOP_EXPR,
2519 elt));
2520 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2522 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2523 finish_expr_stmt (build_unary_op (PREDECREMENT_EXPR, iterator, 0));
2526 /* Clear out INIT so that we don't get confused below. */
2527 init = NULL_TREE;
2529 else if (from_array)
2531 /* If initializing one array from another, initialize element by
2532 element. We rely upon the below calls the do argument
2533 checking. */
2534 if (init)
2536 base2 = decay_conversion (init);
2537 itype = TREE_TYPE (base2);
2538 base2 = get_temp_regvar (itype, base2);
2539 itype = TREE_TYPE (itype);
2541 else if (TYPE_LANG_SPECIFIC (type)
2542 && TYPE_NEEDS_CONSTRUCTING (type)
2543 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2545 error ("initializer ends prematurely");
2546 return error_mark_node;
2550 /* Now, default-initialize any remaining elements. We don't need to
2551 do that if a) the type does not need constructing, or b) we've
2552 already initialized all the elements.
2554 We do need to keep going if we're copying an array. */
2556 if (from_array
2557 || ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_default_init_p)
2558 && ! (host_integerp (maxindex, 0)
2559 && (num_initialized_elts
2560 == tree_low_cst (maxindex, 0) + 1))))
2562 /* If the ITERATOR is equal to -1, then we don't have to loop;
2563 we've already initialized all the elements. */
2564 tree for_stmt;
2565 tree elt_init;
2566 tree to;
2568 for_stmt = begin_for_stmt ();
2569 finish_for_init_stmt (for_stmt);
2570 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
2571 build_int_cst (TREE_TYPE (iterator), -1)),
2572 for_stmt);
2573 finish_for_expr (build_unary_op (PREDECREMENT_EXPR, iterator, 0),
2574 for_stmt);
2576 to = build1 (INDIRECT_REF, type, base);
2578 if (from_array)
2580 tree from;
2582 if (base2)
2583 from = build1 (INDIRECT_REF, itype, base2);
2584 else
2585 from = NULL_TREE;
2587 if (from_array == 2)
2588 elt_init = build_modify_expr (to, NOP_EXPR, from);
2589 else if (TYPE_NEEDS_CONSTRUCTING (type))
2590 elt_init = build_aggr_init (to, from, 0);
2591 else if (from)
2592 elt_init = build_modify_expr (to, NOP_EXPR, from);
2593 else
2594 gcc_unreachable ();
2596 else if (TREE_CODE (type) == ARRAY_TYPE)
2598 if (init != 0)
2599 sorry
2600 ("cannot initialize multi-dimensional array with initializer");
2601 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2602 0, 0,
2603 /*explicit_default_init_p=*/false,
2606 else if (!TYPE_NEEDS_CONSTRUCTING (type))
2607 elt_init = (build_modify_expr
2608 (to, INIT_EXPR,
2609 build_zero_init (type, size_one_node,
2610 /*static_storage_p=*/false)));
2611 else
2612 elt_init = build_aggr_init (to, init, 0);
2614 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2615 finish_expr_stmt (elt_init);
2616 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2618 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2619 if (base2)
2620 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base2, 0));
2622 finish_for_stmt (for_stmt);
2625 /* Make sure to cleanup any partially constructed elements. */
2626 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2627 && from_array != 2)
2629 tree e;
2630 tree m = cp_build_binary_op (MINUS_EXPR, maxindex, iterator);
2632 /* Flatten multi-dimensional array since build_vec_delete only
2633 expects one-dimensional array. */
2634 if (TREE_CODE (type) == ARRAY_TYPE)
2635 m = cp_build_binary_op (MULT_EXPR, m,
2636 array_type_nelts_total (type));
2638 finish_cleanup_try_block (try_block);
2639 e = build_vec_delete_1 (rval, m,
2640 inner_elt_type, sfk_base_destructor,
2641 /*use_global_delete=*/0);
2642 finish_cleanup (e, try_block);
2645 /* The value of the array initialization is the array itself, RVAL
2646 is a pointer to the first element. */
2647 finish_stmt_expr_expr (rval, stmt_expr);
2649 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
2651 /* Now convert make the result have the correct type. */
2652 atype = build_pointer_type (atype);
2653 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
2654 stmt_expr = build_indirect_ref (stmt_expr, NULL);
2656 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
2657 return stmt_expr;
2660 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
2661 build_delete. */
2663 static tree
2664 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
2666 tree name;
2667 tree fn;
2668 switch (dtor_kind)
2670 case sfk_complete_destructor:
2671 name = complete_dtor_identifier;
2672 break;
2674 case sfk_base_destructor:
2675 name = base_dtor_identifier;
2676 break;
2678 case sfk_deleting_destructor:
2679 name = deleting_dtor_identifier;
2680 break;
2682 default:
2683 gcc_unreachable ();
2685 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
2686 return build_new_method_call (exp, fn,
2687 /*args=*/NULL_TREE,
2688 /*conversion_path=*/NULL_TREE,
2689 flags,
2690 /*fn_p=*/NULL);
2693 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
2694 ADDR is an expression which yields the store to be destroyed.
2695 AUTO_DELETE is the name of the destructor to call, i.e., either
2696 sfk_complete_destructor, sfk_base_destructor, or
2697 sfk_deleting_destructor.
2699 FLAGS is the logical disjunction of zero or more LOOKUP_
2700 flags. See cp-tree.h for more info. */
2702 tree
2703 build_delete (tree type, tree addr, special_function_kind auto_delete,
2704 int flags, int use_global_delete)
2706 tree expr;
2708 if (addr == error_mark_node)
2709 return error_mark_node;
2711 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
2712 set to `error_mark_node' before it gets properly cleaned up. */
2713 if (type == error_mark_node)
2714 return error_mark_node;
2716 type = TYPE_MAIN_VARIANT (type);
2718 if (TREE_CODE (type) == POINTER_TYPE)
2720 bool complete_p = true;
2722 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
2723 if (TREE_CODE (type) == ARRAY_TYPE)
2724 goto handle_array;
2726 /* We don't want to warn about delete of void*, only other
2727 incomplete types. Deleting other incomplete types
2728 invokes undefined behavior, but it is not ill-formed, so
2729 compile to something that would even do The Right Thing
2730 (TM) should the type have a trivial dtor and no delete
2731 operator. */
2732 if (!VOID_TYPE_P (type))
2734 complete_type (type);
2735 if (!COMPLETE_TYPE_P (type))
2737 warning (0, "possible problem detected in invocation of "
2738 "delete operator:");
2739 cxx_incomplete_type_diagnostic (addr, type, 1);
2740 inform ("neither the destructor nor the class-specific "
2741 "operator delete will be called, even if they are "
2742 "declared when the class is defined.");
2743 complete_p = false;
2746 if (VOID_TYPE_P (type) || !complete_p || !IS_AGGR_TYPE (type))
2747 /* Call the builtin operator delete. */
2748 return build_builtin_delete_call (addr);
2749 if (TREE_SIDE_EFFECTS (addr))
2750 addr = save_expr (addr);
2752 /* Throw away const and volatile on target type of addr. */
2753 addr = convert_force (build_pointer_type (type), addr, 0);
2755 else if (TREE_CODE (type) == ARRAY_TYPE)
2757 handle_array:
2759 if (TYPE_DOMAIN (type) == NULL_TREE)
2761 error ("unknown array size in delete");
2762 return error_mark_node;
2764 return build_vec_delete (addr, array_type_nelts (type),
2765 auto_delete, use_global_delete);
2767 else
2769 /* Don't check PROTECT here; leave that decision to the
2770 destructor. If the destructor is accessible, call it,
2771 else report error. */
2772 addr = build_unary_op (ADDR_EXPR, addr, 0);
2773 if (TREE_SIDE_EFFECTS (addr))
2774 addr = save_expr (addr);
2776 addr = convert_force (build_pointer_type (type), addr, 0);
2779 gcc_assert (IS_AGGR_TYPE (type));
2781 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2783 if (auto_delete != sfk_deleting_destructor)
2784 return void_zero_node;
2786 return build_op_delete_call (DELETE_EXPR, addr,
2787 cxx_sizeof_nowarn (type),
2788 use_global_delete,
2789 /*placement=*/NULL_TREE,
2790 /*alloc_fn=*/NULL_TREE);
2792 else
2794 tree do_delete = NULL_TREE;
2795 tree ifexp;
2797 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
2798 lazily_declare_fn (sfk_destructor, type);
2800 /* For `::delete x', we must not use the deleting destructor
2801 since then we would not be sure to get the global `operator
2802 delete'. */
2803 if (use_global_delete && auto_delete == sfk_deleting_destructor)
2805 /* We will use ADDR multiple times so we must save it. */
2806 addr = save_expr (addr);
2807 /* Delete the object. */
2808 do_delete = build_builtin_delete_call (addr);
2809 /* Otherwise, treat this like a complete object destructor
2810 call. */
2811 auto_delete = sfk_complete_destructor;
2813 /* If the destructor is non-virtual, there is no deleting
2814 variant. Instead, we must explicitly call the appropriate
2815 `operator delete' here. */
2816 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
2817 && auto_delete == sfk_deleting_destructor)
2819 /* We will use ADDR multiple times so we must save it. */
2820 addr = save_expr (addr);
2821 /* Build the call. */
2822 do_delete = build_op_delete_call (DELETE_EXPR,
2823 addr,
2824 cxx_sizeof_nowarn (type),
2825 /*global_p=*/false,
2826 /*placement=*/NULL_TREE,
2827 /*alloc_fn=*/NULL_TREE);
2828 /* Call the complete object destructor. */
2829 auto_delete = sfk_complete_destructor;
2831 else if (auto_delete == sfk_deleting_destructor
2832 && TYPE_GETS_REG_DELETE (type))
2834 /* Make sure we have access to the member op delete, even though
2835 we'll actually be calling it from the destructor. */
2836 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
2837 /*global_p=*/false,
2838 /*placement=*/NULL_TREE,
2839 /*alloc_fn=*/NULL_TREE);
2842 expr = build_dtor_call (build_indirect_ref (addr, NULL),
2843 auto_delete, flags);
2844 if (do_delete)
2845 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
2847 if (flags & LOOKUP_DESTRUCTOR)
2848 /* Explicit destructor call; don't check for null pointer. */
2849 ifexp = integer_one_node;
2850 else
2851 /* Handle deleting a null pointer. */
2852 ifexp = fold (cp_build_binary_op (NE_EXPR, addr, integer_zero_node));
2854 if (ifexp != integer_one_node)
2855 expr = build3 (COND_EXPR, void_type_node,
2856 ifexp, expr, void_zero_node);
2858 return expr;
2862 /* At the beginning of a destructor, push cleanups that will call the
2863 destructors for our base classes and members.
2865 Called from begin_destructor_body. */
2867 void
2868 push_base_cleanups (void)
2870 tree binfo, base_binfo;
2871 int i;
2872 tree member;
2873 tree expr;
2874 VEC(tree,gc) *vbases;
2876 /* Run destructors for all virtual baseclasses. */
2877 if (CLASSTYPE_VBASECLASSES (current_class_type))
2879 tree cond = (condition_conversion
2880 (build2 (BIT_AND_EXPR, integer_type_node,
2881 current_in_charge_parm,
2882 integer_two_node)));
2884 /* The CLASSTYPE_VBASECLASSES vector is in initialization
2885 order, which is also the right order for pushing cleanups. */
2886 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
2887 VEC_iterate (tree, vbases, i, base_binfo); i++)
2889 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
2891 expr = build_special_member_call (current_class_ref,
2892 base_dtor_identifier,
2893 NULL_TREE,
2894 base_binfo,
2895 (LOOKUP_NORMAL
2896 | LOOKUP_NONVIRTUAL));
2897 expr = build3 (COND_EXPR, void_type_node, cond,
2898 expr, void_zero_node);
2899 finish_decl_cleanup (NULL_TREE, expr);
2904 /* Take care of the remaining baseclasses. */
2905 for (binfo = TYPE_BINFO (current_class_type), i = 0;
2906 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2908 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
2909 || BINFO_VIRTUAL_P (base_binfo))
2910 continue;
2912 expr = build_special_member_call (current_class_ref,
2913 base_dtor_identifier,
2914 NULL_TREE, base_binfo,
2915 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
2916 finish_decl_cleanup (NULL_TREE, expr);
2919 for (member = TYPE_FIELDS (current_class_type); member;
2920 member = TREE_CHAIN (member))
2922 if (TREE_TYPE (member) == error_mark_node
2923 || TREE_CODE (member) != FIELD_DECL
2924 || DECL_ARTIFICIAL (member))
2925 continue;
2926 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
2928 tree this_member = (build_class_member_access_expr
2929 (current_class_ref, member,
2930 /*access_path=*/NULL_TREE,
2931 /*preserve_reference=*/false));
2932 tree this_type = TREE_TYPE (member);
2933 expr = build_delete (this_type, this_member,
2934 sfk_complete_destructor,
2935 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
2937 finish_decl_cleanup (NULL_TREE, expr);
2942 /* Build a C++ vector delete expression.
2943 MAXINDEX is the number of elements to be deleted.
2944 ELT_SIZE is the nominal size of each element in the vector.
2945 BASE is the expression that should yield the store to be deleted.
2946 This function expands (or synthesizes) these calls itself.
2947 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
2949 This also calls delete for virtual baseclasses of elements of the vector.
2951 Update: MAXINDEX is no longer needed. The size can be extracted from the
2952 start of the vector for pointers, and from the type for arrays. We still
2953 use MAXINDEX for arrays because it happens to already have one of the
2954 values we'd have to extract. (We could use MAXINDEX with pointers to
2955 confirm the size, and trap if the numbers differ; not clear that it'd
2956 be worth bothering.) */
2958 tree
2959 build_vec_delete (tree base, tree maxindex,
2960 special_function_kind auto_delete_vec, int use_global_delete)
2962 tree type;
2963 tree rval;
2964 tree base_init = NULL_TREE;
2966 type = TREE_TYPE (base);
2968 if (TREE_CODE (type) == POINTER_TYPE)
2970 /* Step back one from start of vector, and read dimension. */
2971 tree cookie_addr;
2973 if (TREE_SIDE_EFFECTS (base))
2975 base_init = get_target_expr (base);
2976 base = TARGET_EXPR_SLOT (base_init);
2978 type = strip_array_types (TREE_TYPE (type));
2979 cookie_addr = build2 (MINUS_EXPR,
2980 build_pointer_type (sizetype),
2981 base,
2982 TYPE_SIZE_UNIT (sizetype));
2983 maxindex = build_indirect_ref (cookie_addr, NULL);
2985 else if (TREE_CODE (type) == ARRAY_TYPE)
2987 /* Get the total number of things in the array, maxindex is a
2988 bad name. */
2989 maxindex = array_type_nelts_total (type);
2990 type = strip_array_types (type);
2991 base = build_unary_op (ADDR_EXPR, base, 1);
2992 if (TREE_SIDE_EFFECTS (base))
2994 base_init = get_target_expr (base);
2995 base = TARGET_EXPR_SLOT (base_init);
2998 else
3000 if (base != error_mark_node)
3001 error ("type to vector delete is neither pointer or array type");
3002 return error_mark_node;
3005 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3006 use_global_delete);
3007 if (base_init)
3008 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
3010 return rval;