* rtl.h (insn_note): Remove NOTE_INSN_PREDICTION.
[official-gcc.git] / gcc / recog.c
blob9c9d0382ee10894ade7350668bc8a2f6f7550fc2
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
32 #include "recog.h"
33 #include "regs.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "flags.h"
37 #include "real.h"
38 #include "toplev.h"
39 #include "basic-block.h"
40 #include "output.h"
41 #include "reload.h"
43 #ifndef STACK_PUSH_CODE
44 #ifdef STACK_GROWS_DOWNWARD
45 #define STACK_PUSH_CODE PRE_DEC
46 #else
47 #define STACK_PUSH_CODE PRE_INC
48 #endif
49 #endif
51 #ifndef STACK_POP_CODE
52 #ifdef STACK_GROWS_DOWNWARD
53 #define STACK_POP_CODE POST_INC
54 #else
55 #define STACK_POP_CODE POST_DEC
56 #endif
57 #endif
59 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx);
60 static rtx *find_single_use_1 (rtx, rtx *);
61 static void validate_replace_src_1 (rtx *, void *);
62 static rtx split_insn (rtx);
64 /* Nonzero means allow operands to be volatile.
65 This should be 0 if you are generating rtl, such as if you are calling
66 the functions in optabs.c and expmed.c (most of the time).
67 This should be 1 if all valid insns need to be recognized,
68 such as in regclass.c and final.c and reload.c.
70 init_recog and init_recog_no_volatile are responsible for setting this. */
72 int volatile_ok;
74 struct recog_data recog_data;
76 /* Contains a vector of operand_alternative structures for every operand.
77 Set up by preprocess_constraints. */
78 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
80 /* On return from `constrain_operands', indicate which alternative
81 was satisfied. */
83 int which_alternative;
85 /* Nonzero after end of reload pass.
86 Set to 1 or 0 by toplev.c.
87 Controls the significance of (SUBREG (MEM)). */
89 int reload_completed;
91 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
92 int epilogue_completed;
94 /* Initialize data used by the function `recog'.
95 This must be called once in the compilation of a function
96 before any insn recognition may be done in the function. */
98 void
99 init_recog_no_volatile (void)
101 volatile_ok = 0;
104 void
105 init_recog (void)
107 volatile_ok = 1;
110 /* Try recognizing the instruction INSN,
111 and return the code number that results.
112 Remember the code so that repeated calls do not
113 need to spend the time for actual rerecognition.
115 This function is the normal interface to instruction recognition.
116 The automatically-generated function `recog' is normally called
117 through this one. (The only exception is in combine.c.) */
120 recog_memoized_1 (rtx insn)
122 if (INSN_CODE (insn) < 0)
123 INSN_CODE (insn) = recog (PATTERN (insn), insn, 0);
124 return INSN_CODE (insn);
127 /* Check that X is an insn-body for an `asm' with operands
128 and that the operands mentioned in it are legitimate. */
131 check_asm_operands (rtx x)
133 int noperands;
134 rtx *operands;
135 const char **constraints;
136 int i;
138 /* Post-reload, be more strict with things. */
139 if (reload_completed)
141 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
142 extract_insn (make_insn_raw (x));
143 constrain_operands (1);
144 return which_alternative >= 0;
147 noperands = asm_noperands (x);
148 if (noperands < 0)
149 return 0;
150 if (noperands == 0)
151 return 1;
153 operands = alloca (noperands * sizeof (rtx));
154 constraints = alloca (noperands * sizeof (char *));
156 decode_asm_operands (x, operands, NULL, constraints, NULL);
158 for (i = 0; i < noperands; i++)
160 const char *c = constraints[i];
161 if (c[0] == '%')
162 c++;
163 if (ISDIGIT ((unsigned char) c[0]) && c[1] == '\0')
164 c = constraints[c[0] - '0'];
166 if (! asm_operand_ok (operands[i], c))
167 return 0;
170 return 1;
173 /* Static data for the next two routines. */
175 typedef struct change_t
177 rtx object;
178 int old_code;
179 rtx *loc;
180 rtx old;
181 } change_t;
183 static change_t *changes;
184 static int changes_allocated;
186 static int num_changes = 0;
188 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
189 at which NEW will be placed. If OBJECT is zero, no validation is done,
190 the change is simply made.
192 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
193 will be called with the address and mode as parameters. If OBJECT is
194 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
195 the change in place.
197 IN_GROUP is nonzero if this is part of a group of changes that must be
198 performed as a group. In that case, the changes will be stored. The
199 function `apply_change_group' will validate and apply the changes.
201 If IN_GROUP is zero, this is a single change. Try to recognize the insn
202 or validate the memory reference with the change applied. If the result
203 is not valid for the machine, suppress the change and return zero.
204 Otherwise, perform the change and return 1. */
207 validate_change (rtx object, rtx *loc, rtx new, int in_group)
209 rtx old = *loc;
211 if (old == new || rtx_equal_p (old, new))
212 return 1;
214 if (in_group == 0 && num_changes != 0)
215 abort ();
217 *loc = new;
219 /* Save the information describing this change. */
220 if (num_changes >= changes_allocated)
222 if (changes_allocated == 0)
223 /* This value allows for repeated substitutions inside complex
224 indexed addresses, or changes in up to 5 insns. */
225 changes_allocated = MAX_RECOG_OPERANDS * 5;
226 else
227 changes_allocated *= 2;
229 changes = xrealloc (changes, sizeof (change_t) * changes_allocated);
232 changes[num_changes].object = object;
233 changes[num_changes].loc = loc;
234 changes[num_changes].old = old;
236 if (object && !MEM_P (object))
238 /* Set INSN_CODE to force rerecognition of insn. Save old code in
239 case invalid. */
240 changes[num_changes].old_code = INSN_CODE (object);
241 INSN_CODE (object) = -1;
244 num_changes++;
246 /* If we are making a group of changes, return 1. Otherwise, validate the
247 change group we made. */
249 if (in_group)
250 return 1;
251 else
252 return apply_change_group ();
255 /* This subroutine of apply_change_group verifies whether the changes to INSN
256 were valid; i.e. whether INSN can still be recognized. */
259 insn_invalid_p (rtx insn)
261 rtx pat = PATTERN (insn);
262 int num_clobbers = 0;
263 /* If we are before reload and the pattern is a SET, see if we can add
264 clobbers. */
265 int icode = recog (pat, insn,
266 (GET_CODE (pat) == SET
267 && ! reload_completed && ! reload_in_progress)
268 ? &num_clobbers : 0);
269 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
272 /* If this is an asm and the operand aren't legal, then fail. Likewise if
273 this is not an asm and the insn wasn't recognized. */
274 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
275 || (!is_asm && icode < 0))
276 return 1;
278 /* If we have to add CLOBBERs, fail if we have to add ones that reference
279 hard registers since our callers can't know if they are live or not.
280 Otherwise, add them. */
281 if (num_clobbers > 0)
283 rtx newpat;
285 if (added_clobbers_hard_reg_p (icode))
286 return 1;
288 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
289 XVECEXP (newpat, 0, 0) = pat;
290 add_clobbers (newpat, icode);
291 PATTERN (insn) = pat = newpat;
294 /* After reload, verify that all constraints are satisfied. */
295 if (reload_completed)
297 extract_insn (insn);
299 if (! constrain_operands (1))
300 return 1;
303 INSN_CODE (insn) = icode;
304 return 0;
307 /* Return number of changes made and not validated yet. */
309 num_changes_pending (void)
311 return num_changes;
314 /* Apply a group of changes previously issued with `validate_change'.
315 Return 1 if all changes are valid, zero otherwise. */
318 apply_change_group (void)
320 int i;
321 rtx last_validated = NULL_RTX;
323 /* The changes have been applied and all INSN_CODEs have been reset to force
324 rerecognition.
326 The changes are valid if we aren't given an object, or if we are
327 given a MEM and it still is a valid address, or if this is in insn
328 and it is recognized. In the latter case, if reload has completed,
329 we also require that the operands meet the constraints for
330 the insn. */
332 for (i = 0; i < num_changes; i++)
334 rtx object = changes[i].object;
336 /* If there is no object to test or if it is the same as the one we
337 already tested, ignore it. */
338 if (object == 0 || object == last_validated)
339 continue;
341 if (MEM_P (object))
343 if (! memory_address_p (GET_MODE (object), XEXP (object, 0)))
344 break;
346 else if (insn_invalid_p (object))
348 rtx pat = PATTERN (object);
350 /* Perhaps we couldn't recognize the insn because there were
351 extra CLOBBERs at the end. If so, try to re-recognize
352 without the last CLOBBER (later iterations will cause each of
353 them to be eliminated, in turn). But don't do this if we
354 have an ASM_OPERAND. */
355 if (GET_CODE (pat) == PARALLEL
356 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
357 && asm_noperands (PATTERN (object)) < 0)
359 rtx newpat;
361 if (XVECLEN (pat, 0) == 2)
362 newpat = XVECEXP (pat, 0, 0);
363 else
365 int j;
367 newpat
368 = gen_rtx_PARALLEL (VOIDmode,
369 rtvec_alloc (XVECLEN (pat, 0) - 1));
370 for (j = 0; j < XVECLEN (newpat, 0); j++)
371 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
374 /* Add a new change to this group to replace the pattern
375 with this new pattern. Then consider this change
376 as having succeeded. The change we added will
377 cause the entire call to fail if things remain invalid.
379 Note that this can lose if a later change than the one
380 we are processing specified &XVECEXP (PATTERN (object), 0, X)
381 but this shouldn't occur. */
383 validate_change (object, &PATTERN (object), newpat, 1);
384 continue;
386 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
387 /* If this insn is a CLOBBER or USE, it is always valid, but is
388 never recognized. */
389 continue;
390 else
391 break;
393 last_validated = object;
396 if (i == num_changes)
398 basic_block bb;
400 for (i = 0; i < num_changes; i++)
401 if (changes[i].object
402 && INSN_P (changes[i].object)
403 && (bb = BLOCK_FOR_INSN (changes[i].object)))
404 bb->flags |= BB_DIRTY;
406 num_changes = 0;
407 return 1;
409 else
411 cancel_changes (0);
412 return 0;
416 /* Return the number of changes so far in the current group. */
419 num_validated_changes (void)
421 return num_changes;
424 /* Retract the changes numbered NUM and up. */
426 void
427 cancel_changes (int num)
429 int i;
431 /* Back out all the changes. Do this in the opposite order in which
432 they were made. */
433 for (i = num_changes - 1; i >= num; i--)
435 *changes[i].loc = changes[i].old;
436 if (changes[i].object && !MEM_P (changes[i].object))
437 INSN_CODE (changes[i].object) = changes[i].old_code;
439 num_changes = num;
442 /* Replace every occurrence of FROM in X with TO. Mark each change with
443 validate_change passing OBJECT. */
445 static void
446 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object)
448 int i, j;
449 const char *fmt;
450 rtx x = *loc;
451 enum rtx_code code;
452 enum machine_mode op0_mode = VOIDmode;
453 int prev_changes = num_changes;
454 rtx new;
456 if (!x)
457 return;
459 code = GET_CODE (x);
460 fmt = GET_RTX_FORMAT (code);
461 if (fmt[0] == 'e')
462 op0_mode = GET_MODE (XEXP (x, 0));
464 /* X matches FROM if it is the same rtx or they are both referring to the
465 same register in the same mode. Avoid calling rtx_equal_p unless the
466 operands look similar. */
468 if (x == from
469 || (REG_P (x) && REG_P (from)
470 && GET_MODE (x) == GET_MODE (from)
471 && REGNO (x) == REGNO (from))
472 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
473 && rtx_equal_p (x, from)))
475 validate_change (object, loc, to, 1);
476 return;
479 /* Call ourself recursively to perform the replacements.
480 We must not replace inside already replaced expression, otherwise we
481 get infinite recursion for replacements like (reg X)->(subreg (reg X))
482 done by regmove, so we must special case shared ASM_OPERANDS. */
484 if (GET_CODE (x) == PARALLEL)
486 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
488 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
489 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
491 /* Verify that operands are really shared. */
492 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0))) !=
493 ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, j))))
494 abort ();
495 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
496 from, to, object);
498 else
499 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object);
502 else
503 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
505 if (fmt[i] == 'e')
506 validate_replace_rtx_1 (&XEXP (x, i), from, to, object);
507 else if (fmt[i] == 'E')
508 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
509 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object);
512 /* If we didn't substitute, there is nothing more to do. */
513 if (num_changes == prev_changes)
514 return;
516 /* Allow substituted expression to have different mode. This is used by
517 regmove to change mode of pseudo register. */
518 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
519 op0_mode = GET_MODE (XEXP (x, 0));
521 /* Do changes needed to keep rtx consistent. Don't do any other
522 simplifications, as it is not our job. */
524 if (SWAPPABLE_OPERANDS_P (x)
525 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
527 validate_change (object, loc,
528 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
529 : swap_condition (code),
530 GET_MODE (x), XEXP (x, 1),
531 XEXP (x, 0)), 1);
532 x = *loc;
533 code = GET_CODE (x);
536 switch (code)
538 case PLUS:
539 /* If we have a PLUS whose second operand is now a CONST_INT, use
540 simplify_gen_binary to try to simplify it.
541 ??? We may want later to remove this, once simplification is
542 separated from this function. */
543 if (GET_CODE (XEXP (x, 1)) == CONST_INT && XEXP (x, 1) == to)
544 validate_change (object, loc,
545 simplify_gen_binary
546 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
547 break;
548 case MINUS:
549 if (GET_CODE (XEXP (x, 1)) == CONST_INT
550 || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
551 validate_change (object, loc,
552 simplify_gen_binary
553 (PLUS, GET_MODE (x), XEXP (x, 0),
554 simplify_gen_unary (NEG,
555 GET_MODE (x), XEXP (x, 1),
556 GET_MODE (x))), 1);
557 break;
558 case ZERO_EXTEND:
559 case SIGN_EXTEND:
560 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
562 new = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
563 op0_mode);
564 /* If any of the above failed, substitute in something that
565 we know won't be recognized. */
566 if (!new)
567 new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
568 validate_change (object, loc, new, 1);
570 break;
571 case SUBREG:
572 /* All subregs possible to simplify should be simplified. */
573 new = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
574 SUBREG_BYTE (x));
576 /* Subregs of VOIDmode operands are incorrect. */
577 if (!new && GET_MODE (SUBREG_REG (x)) == VOIDmode)
578 new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
579 if (new)
580 validate_change (object, loc, new, 1);
581 break;
582 case ZERO_EXTRACT:
583 case SIGN_EXTRACT:
584 /* If we are replacing a register with memory, try to change the memory
585 to be the mode required for memory in extract operations (this isn't
586 likely to be an insertion operation; if it was, nothing bad will
587 happen, we might just fail in some cases). */
589 if (MEM_P (XEXP (x, 0))
590 && GET_CODE (XEXP (x, 1)) == CONST_INT
591 && GET_CODE (XEXP (x, 2)) == CONST_INT
592 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
593 && !MEM_VOLATILE_P (XEXP (x, 0)))
595 enum machine_mode wanted_mode = VOIDmode;
596 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
597 int pos = INTVAL (XEXP (x, 2));
599 if (GET_CODE (x) == ZERO_EXTRACT)
601 enum machine_mode new_mode
602 = mode_for_extraction (EP_extzv, 1);
603 if (new_mode != MAX_MACHINE_MODE)
604 wanted_mode = new_mode;
606 else if (GET_CODE (x) == SIGN_EXTRACT)
608 enum machine_mode new_mode
609 = mode_for_extraction (EP_extv, 1);
610 if (new_mode != MAX_MACHINE_MODE)
611 wanted_mode = new_mode;
614 /* If we have a narrower mode, we can do something. */
615 if (wanted_mode != VOIDmode
616 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
618 int offset = pos / BITS_PER_UNIT;
619 rtx newmem;
621 /* If the bytes and bits are counted differently, we
622 must adjust the offset. */
623 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
624 offset =
625 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
626 offset);
628 pos %= GET_MODE_BITSIZE (wanted_mode);
630 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
632 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
633 validate_change (object, &XEXP (x, 0), newmem, 1);
637 break;
639 default:
640 break;
644 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
645 with TO. After all changes have been made, validate by seeing
646 if INSN is still valid. */
649 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
651 validate_replace_rtx_1 (loc, from, to, insn);
652 return apply_change_group ();
655 /* Try replacing every occurrence of FROM in INSN with TO. After all
656 changes have been made, validate by seeing if INSN is still valid. */
659 validate_replace_rtx (rtx from, rtx to, rtx insn)
661 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
662 return apply_change_group ();
665 /* Try replacing every occurrence of FROM in INSN with TO. */
667 void
668 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
670 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
673 /* Function called by note_uses to replace used subexpressions. */
674 struct validate_replace_src_data
676 rtx from; /* Old RTX */
677 rtx to; /* New RTX */
678 rtx insn; /* Insn in which substitution is occurring. */
681 static void
682 validate_replace_src_1 (rtx *x, void *data)
684 struct validate_replace_src_data *d
685 = (struct validate_replace_src_data *) data;
687 validate_replace_rtx_1 (x, d->from, d->to, d->insn);
690 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
691 SET_DESTs. */
693 void
694 validate_replace_src_group (rtx from, rtx to, rtx insn)
696 struct validate_replace_src_data d;
698 d.from = from;
699 d.to = to;
700 d.insn = insn;
701 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
704 #ifdef HAVE_cc0
705 /* Return 1 if the insn using CC0 set by INSN does not contain
706 any ordered tests applied to the condition codes.
707 EQ and NE tests do not count. */
710 next_insn_tests_no_inequality (rtx insn)
712 rtx next = next_cc0_user (insn);
714 /* If there is no next insn, we have to take the conservative choice. */
715 if (next == 0)
716 return 0;
718 return (INSN_P (next)
719 && ! inequality_comparisons_p (PATTERN (next)));
721 #endif
723 /* This is used by find_single_use to locate an rtx that contains exactly one
724 use of DEST, which is typically either a REG or CC0. It returns a
725 pointer to the innermost rtx expression containing DEST. Appearances of
726 DEST that are being used to totally replace it are not counted. */
728 static rtx *
729 find_single_use_1 (rtx dest, rtx *loc)
731 rtx x = *loc;
732 enum rtx_code code = GET_CODE (x);
733 rtx *result = 0;
734 rtx *this_result;
735 int i;
736 const char *fmt;
738 switch (code)
740 case CONST_INT:
741 case CONST:
742 case LABEL_REF:
743 case SYMBOL_REF:
744 case CONST_DOUBLE:
745 case CONST_VECTOR:
746 case CLOBBER:
747 return 0;
749 case SET:
750 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
751 of a REG that occupies all of the REG, the insn uses DEST if
752 it is mentioned in the destination or the source. Otherwise, we
753 need just check the source. */
754 if (GET_CODE (SET_DEST (x)) != CC0
755 && GET_CODE (SET_DEST (x)) != PC
756 && !REG_P (SET_DEST (x))
757 && ! (GET_CODE (SET_DEST (x)) == SUBREG
758 && REG_P (SUBREG_REG (SET_DEST (x)))
759 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
760 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
761 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
762 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
763 break;
765 return find_single_use_1 (dest, &SET_SRC (x));
767 case MEM:
768 case SUBREG:
769 return find_single_use_1 (dest, &XEXP (x, 0));
771 default:
772 break;
775 /* If it wasn't one of the common cases above, check each expression and
776 vector of this code. Look for a unique usage of DEST. */
778 fmt = GET_RTX_FORMAT (code);
779 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
781 if (fmt[i] == 'e')
783 if (dest == XEXP (x, i)
784 || (REG_P (dest) && REG_P (XEXP (x, i))
785 && REGNO (dest) == REGNO (XEXP (x, i))))
786 this_result = loc;
787 else
788 this_result = find_single_use_1 (dest, &XEXP (x, i));
790 if (result == 0)
791 result = this_result;
792 else if (this_result)
793 /* Duplicate usage. */
794 return 0;
796 else if (fmt[i] == 'E')
798 int j;
800 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
802 if (XVECEXP (x, i, j) == dest
803 || (REG_P (dest)
804 && REG_P (XVECEXP (x, i, j))
805 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
806 this_result = loc;
807 else
808 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
810 if (result == 0)
811 result = this_result;
812 else if (this_result)
813 return 0;
818 return result;
821 /* See if DEST, produced in INSN, is used only a single time in the
822 sequel. If so, return a pointer to the innermost rtx expression in which
823 it is used.
825 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
827 This routine will return usually zero either before flow is called (because
828 there will be no LOG_LINKS notes) or after reload (because the REG_DEAD
829 note can't be trusted).
831 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
832 care about REG_DEAD notes or LOG_LINKS.
834 Otherwise, we find the single use by finding an insn that has a
835 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
836 only referenced once in that insn, we know that it must be the first
837 and last insn referencing DEST. */
839 rtx *
840 find_single_use (rtx dest, rtx insn, rtx *ploc)
842 rtx next;
843 rtx *result;
844 rtx link;
846 #ifdef HAVE_cc0
847 if (dest == cc0_rtx)
849 next = NEXT_INSN (insn);
850 if (next == 0
851 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
852 return 0;
854 result = find_single_use_1 (dest, &PATTERN (next));
855 if (result && ploc)
856 *ploc = next;
857 return result;
859 #endif
861 if (reload_completed || reload_in_progress || !REG_P (dest))
862 return 0;
864 for (next = next_nonnote_insn (insn);
865 next != 0 && !LABEL_P (next);
866 next = next_nonnote_insn (next))
867 if (INSN_P (next) && dead_or_set_p (next, dest))
869 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
870 if (XEXP (link, 0) == insn)
871 break;
873 if (link)
875 result = find_single_use_1 (dest, &PATTERN (next));
876 if (ploc)
877 *ploc = next;
878 return result;
882 return 0;
885 /* Return 1 if OP is a valid general operand for machine mode MODE.
886 This is either a register reference, a memory reference,
887 or a constant. In the case of a memory reference, the address
888 is checked for general validity for the target machine.
890 Register and memory references must have mode MODE in order to be valid,
891 but some constants have no machine mode and are valid for any mode.
893 If MODE is VOIDmode, OP is checked for validity for whatever mode
894 it has.
896 The main use of this function is as a predicate in match_operand
897 expressions in the machine description.
899 For an explanation of this function's behavior for registers of
900 class NO_REGS, see the comment for `register_operand'. */
903 general_operand (rtx op, enum machine_mode mode)
905 enum rtx_code code = GET_CODE (op);
907 if (mode == VOIDmode)
908 mode = GET_MODE (op);
910 /* Don't accept CONST_INT or anything similar
911 if the caller wants something floating. */
912 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
913 && GET_MODE_CLASS (mode) != MODE_INT
914 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
915 return 0;
917 if (GET_CODE (op) == CONST_INT
918 && mode != VOIDmode
919 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
920 return 0;
922 if (CONSTANT_P (op))
923 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
924 || mode == VOIDmode)
925 #ifdef LEGITIMATE_PIC_OPERAND_P
926 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
927 #endif
928 && LEGITIMATE_CONSTANT_P (op));
930 /* Except for certain constants with VOIDmode, already checked for,
931 OP's mode must match MODE if MODE specifies a mode. */
933 if (GET_MODE (op) != mode)
934 return 0;
936 if (code == SUBREG)
938 rtx sub = SUBREG_REG (op);
940 #ifdef INSN_SCHEDULING
941 /* On machines that have insn scheduling, we want all memory
942 reference to be explicit, so outlaw paradoxical SUBREGs. */
943 if (MEM_P (sub)
944 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
945 return 0;
946 #endif
947 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
948 may result in incorrect reference. We should simplify all valid
949 subregs of MEM anyway. But allow this after reload because we
950 might be called from cleanup_subreg_operands.
952 ??? This is a kludge. */
953 if (!reload_completed && SUBREG_BYTE (op) != 0
954 && MEM_P (sub))
955 return 0;
957 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
958 create such rtl, and we must reject it. */
959 if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
960 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
961 return 0;
963 op = sub;
964 code = GET_CODE (op);
967 if (code == REG)
968 /* A register whose class is NO_REGS is not a general operand. */
969 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
970 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS);
972 if (code == MEM)
974 rtx y = XEXP (op, 0);
976 if (! volatile_ok && MEM_VOLATILE_P (op))
977 return 0;
979 /* Use the mem's mode, since it will be reloaded thus. */
980 mode = GET_MODE (op);
981 GO_IF_LEGITIMATE_ADDRESS (mode, y, win);
984 return 0;
986 win:
987 return 1;
990 /* Return 1 if OP is a valid memory address for a memory reference
991 of mode MODE.
993 The main use of this function is as a predicate in match_operand
994 expressions in the machine description. */
997 address_operand (rtx op, enum machine_mode mode)
999 return memory_address_p (mode, op);
1002 /* Return 1 if OP is a register reference of mode MODE.
1003 If MODE is VOIDmode, accept a register in any mode.
1005 The main use of this function is as a predicate in match_operand
1006 expressions in the machine description.
1008 As a special exception, registers whose class is NO_REGS are
1009 not accepted by `register_operand'. The reason for this change
1010 is to allow the representation of special architecture artifacts
1011 (such as a condition code register) without extending the rtl
1012 definitions. Since registers of class NO_REGS cannot be used
1013 as registers in any case where register classes are examined,
1014 it is most consistent to keep this function from accepting them. */
1017 register_operand (rtx op, enum machine_mode mode)
1019 if (GET_MODE (op) != mode && mode != VOIDmode)
1020 return 0;
1022 if (GET_CODE (op) == SUBREG)
1024 rtx sub = SUBREG_REG (op);
1026 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1027 because it is guaranteed to be reloaded into one.
1028 Just make sure the MEM is valid in itself.
1029 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1030 but currently it does result from (SUBREG (REG)...) where the
1031 reg went on the stack.) */
1032 if (! reload_completed && MEM_P (sub))
1033 return general_operand (op, mode);
1035 #ifdef CANNOT_CHANGE_MODE_CLASS
1036 if (REG_P (sub)
1037 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1038 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1039 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1040 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1041 return 0;
1042 #endif
1044 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1045 create such rtl, and we must reject it. */
1046 if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
1047 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1048 return 0;
1050 op = sub;
1053 /* We don't consider registers whose class is NO_REGS
1054 to be a register operand. */
1055 return (REG_P (op)
1056 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1057 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1060 /* Return 1 for a register in Pmode; ignore the tested mode. */
1063 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1065 return register_operand (op, Pmode);
1068 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1069 or a hard register. */
1072 scratch_operand (rtx op, enum machine_mode mode)
1074 if (GET_MODE (op) != mode && mode != VOIDmode)
1075 return 0;
1077 return (GET_CODE (op) == SCRATCH
1078 || (REG_P (op)
1079 && REGNO (op) < FIRST_PSEUDO_REGISTER));
1082 /* Return 1 if OP is a valid immediate operand for mode MODE.
1084 The main use of this function is as a predicate in match_operand
1085 expressions in the machine description. */
1088 immediate_operand (rtx op, enum machine_mode mode)
1090 /* Don't accept CONST_INT or anything similar
1091 if the caller wants something floating. */
1092 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1093 && GET_MODE_CLASS (mode) != MODE_INT
1094 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1095 return 0;
1097 if (GET_CODE (op) == CONST_INT
1098 && mode != VOIDmode
1099 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1100 return 0;
1102 return (CONSTANT_P (op)
1103 && (GET_MODE (op) == mode || mode == VOIDmode
1104 || GET_MODE (op) == VOIDmode)
1105 #ifdef LEGITIMATE_PIC_OPERAND_P
1106 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1107 #endif
1108 && LEGITIMATE_CONSTANT_P (op));
1111 /* Returns 1 if OP is an operand that is a CONST_INT. */
1114 const_int_operand (rtx op, enum machine_mode mode)
1116 if (GET_CODE (op) != CONST_INT)
1117 return 0;
1119 if (mode != VOIDmode
1120 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1121 return 0;
1123 return 1;
1126 /* Returns 1 if OP is an operand that is a constant integer or constant
1127 floating-point number. */
1130 const_double_operand (rtx op, enum machine_mode mode)
1132 /* Don't accept CONST_INT or anything similar
1133 if the caller wants something floating. */
1134 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1135 && GET_MODE_CLASS (mode) != MODE_INT
1136 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1137 return 0;
1139 return ((GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT)
1140 && (mode == VOIDmode || GET_MODE (op) == mode
1141 || GET_MODE (op) == VOIDmode));
1144 /* Return 1 if OP is a general operand that is not an immediate operand. */
1147 nonimmediate_operand (rtx op, enum machine_mode mode)
1149 return (general_operand (op, mode) && ! CONSTANT_P (op));
1152 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1155 nonmemory_operand (rtx op, enum machine_mode mode)
1157 if (CONSTANT_P (op))
1159 /* Don't accept CONST_INT or anything similar
1160 if the caller wants something floating. */
1161 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1162 && GET_MODE_CLASS (mode) != MODE_INT
1163 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1164 return 0;
1166 if (GET_CODE (op) == CONST_INT
1167 && mode != VOIDmode
1168 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1169 return 0;
1171 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
1172 || mode == VOIDmode)
1173 #ifdef LEGITIMATE_PIC_OPERAND_P
1174 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1175 #endif
1176 && LEGITIMATE_CONSTANT_P (op));
1179 if (GET_MODE (op) != mode && mode != VOIDmode)
1180 return 0;
1182 if (GET_CODE (op) == SUBREG)
1184 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1185 because it is guaranteed to be reloaded into one.
1186 Just make sure the MEM is valid in itself.
1187 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1188 but currently it does result from (SUBREG (REG)...) where the
1189 reg went on the stack.) */
1190 if (! reload_completed && MEM_P (SUBREG_REG (op)))
1191 return general_operand (op, mode);
1192 op = SUBREG_REG (op);
1195 /* We don't consider registers whose class is NO_REGS
1196 to be a register operand. */
1197 return (REG_P (op)
1198 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1199 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1202 /* Return 1 if OP is a valid operand that stands for pushing a
1203 value of mode MODE onto the stack.
1205 The main use of this function is as a predicate in match_operand
1206 expressions in the machine description. */
1209 push_operand (rtx op, enum machine_mode mode)
1211 unsigned int rounded_size = GET_MODE_SIZE (mode);
1213 #ifdef PUSH_ROUNDING
1214 rounded_size = PUSH_ROUNDING (rounded_size);
1215 #endif
1217 if (!MEM_P (op))
1218 return 0;
1220 if (mode != VOIDmode && GET_MODE (op) != mode)
1221 return 0;
1223 op = XEXP (op, 0);
1225 if (rounded_size == GET_MODE_SIZE (mode))
1227 if (GET_CODE (op) != STACK_PUSH_CODE)
1228 return 0;
1230 else
1232 if (GET_CODE (op) != PRE_MODIFY
1233 || GET_CODE (XEXP (op, 1)) != PLUS
1234 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1235 || GET_CODE (XEXP (XEXP (op, 1), 1)) != CONST_INT
1236 #ifdef STACK_GROWS_DOWNWARD
1237 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1238 #else
1239 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1240 #endif
1242 return 0;
1245 return XEXP (op, 0) == stack_pointer_rtx;
1248 /* Return 1 if OP is a valid operand that stands for popping a
1249 value of mode MODE off the stack.
1251 The main use of this function is as a predicate in match_operand
1252 expressions in the machine description. */
1255 pop_operand (rtx op, enum machine_mode mode)
1257 if (!MEM_P (op))
1258 return 0;
1260 if (mode != VOIDmode && GET_MODE (op) != mode)
1261 return 0;
1263 op = XEXP (op, 0);
1265 if (GET_CODE (op) != STACK_POP_CODE)
1266 return 0;
1268 return XEXP (op, 0) == stack_pointer_rtx;
1271 /* Return 1 if ADDR is a valid memory address for mode MODE. */
1274 memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
1276 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1277 return 0;
1279 win:
1280 return 1;
1283 /* Return 1 if OP is a valid memory reference with mode MODE,
1284 including a valid address.
1286 The main use of this function is as a predicate in match_operand
1287 expressions in the machine description. */
1290 memory_operand (rtx op, enum machine_mode mode)
1292 rtx inner;
1294 if (! reload_completed)
1295 /* Note that no SUBREG is a memory operand before end of reload pass,
1296 because (SUBREG (MEM...)) forces reloading into a register. */
1297 return MEM_P (op) && general_operand (op, mode);
1299 if (mode != VOIDmode && GET_MODE (op) != mode)
1300 return 0;
1302 inner = op;
1303 if (GET_CODE (inner) == SUBREG)
1304 inner = SUBREG_REG (inner);
1306 return (MEM_P (inner) && general_operand (op, mode));
1309 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1310 that is, a memory reference whose address is a general_operand. */
1313 indirect_operand (rtx op, enum machine_mode mode)
1315 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1316 if (! reload_completed
1317 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1319 int offset = SUBREG_BYTE (op);
1320 rtx inner = SUBREG_REG (op);
1322 if (mode != VOIDmode && GET_MODE (op) != mode)
1323 return 0;
1325 /* The only way that we can have a general_operand as the resulting
1326 address is if OFFSET is zero and the address already is an operand
1327 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1328 operand. */
1330 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1331 || (GET_CODE (XEXP (inner, 0)) == PLUS
1332 && GET_CODE (XEXP (XEXP (inner, 0), 1)) == CONST_INT
1333 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1334 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1337 return (MEM_P (op)
1338 && memory_operand (op, mode)
1339 && general_operand (XEXP (op, 0), Pmode));
1342 /* Return 1 if this is a comparison operator. This allows the use of
1343 MATCH_OPERATOR to recognize all the branch insns. */
1346 comparison_operator (rtx op, enum machine_mode mode)
1348 return ((mode == VOIDmode || GET_MODE (op) == mode)
1349 && COMPARISON_P (op));
1352 /* If BODY is an insn body that uses ASM_OPERANDS,
1353 return the number of operands (both input and output) in the insn.
1354 Otherwise return -1. */
1357 asm_noperands (rtx body)
1359 switch (GET_CODE (body))
1361 case ASM_OPERANDS:
1362 /* No output operands: return number of input operands. */
1363 return ASM_OPERANDS_INPUT_LENGTH (body);
1364 case SET:
1365 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
1366 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1367 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body)) + 1;
1368 else
1369 return -1;
1370 case PARALLEL:
1371 if (GET_CODE (XVECEXP (body, 0, 0)) == SET
1372 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
1374 /* Multiple output operands, or 1 output plus some clobbers:
1375 body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1376 int i;
1377 int n_sets;
1379 /* Count backwards through CLOBBERs to determine number of SETs. */
1380 for (i = XVECLEN (body, 0); i > 0; i--)
1382 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1383 break;
1384 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1385 return -1;
1388 /* N_SETS is now number of output operands. */
1389 n_sets = i;
1391 /* Verify that all the SETs we have
1392 came from a single original asm_operands insn
1393 (so that invalid combinations are blocked). */
1394 for (i = 0; i < n_sets; i++)
1396 rtx elt = XVECEXP (body, 0, i);
1397 if (GET_CODE (elt) != SET)
1398 return -1;
1399 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1400 return -1;
1401 /* If these ASM_OPERANDS rtx's came from different original insns
1402 then they aren't allowed together. */
1403 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1404 != ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body, 0, 0))))
1405 return -1;
1407 return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)))
1408 + n_sets);
1410 else if (GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
1412 /* 0 outputs, but some clobbers:
1413 body is [(asm_operands ...) (clobber (reg ...))...]. */
1414 int i;
1416 /* Make sure all the other parallel things really are clobbers. */
1417 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1418 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1419 return -1;
1421 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
1423 else
1424 return -1;
1425 default:
1426 return -1;
1430 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1431 copy its operands (both input and output) into the vector OPERANDS,
1432 the locations of the operands within the insn into the vector OPERAND_LOCS,
1433 and the constraints for the operands into CONSTRAINTS.
1434 Write the modes of the operands into MODES.
1435 Return the assembler-template.
1437 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1438 we don't store that info. */
1440 const char *
1441 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1442 const char **constraints, enum machine_mode *modes)
1444 int i;
1445 int noperands;
1446 const char *template = 0;
1448 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
1450 rtx asmop = SET_SRC (body);
1451 /* Single output operand: BODY is (set OUTPUT (asm_operands ....)). */
1453 noperands = ASM_OPERANDS_INPUT_LENGTH (asmop) + 1;
1455 for (i = 1; i < noperands; i++)
1457 if (operand_locs)
1458 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i - 1);
1459 if (operands)
1460 operands[i] = ASM_OPERANDS_INPUT (asmop, i - 1);
1461 if (constraints)
1462 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i - 1);
1463 if (modes)
1464 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i - 1);
1467 /* The output is in the SET.
1468 Its constraint is in the ASM_OPERANDS itself. */
1469 if (operands)
1470 operands[0] = SET_DEST (body);
1471 if (operand_locs)
1472 operand_locs[0] = &SET_DEST (body);
1473 if (constraints)
1474 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1475 if (modes)
1476 modes[0] = GET_MODE (SET_DEST (body));
1477 template = ASM_OPERANDS_TEMPLATE (asmop);
1479 else if (GET_CODE (body) == ASM_OPERANDS)
1481 rtx asmop = body;
1482 /* No output operands: BODY is (asm_operands ....). */
1484 noperands = ASM_OPERANDS_INPUT_LENGTH (asmop);
1486 /* The input operands are found in the 1st element vector. */
1487 /* Constraints for inputs are in the 2nd element vector. */
1488 for (i = 0; i < noperands; i++)
1490 if (operand_locs)
1491 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
1492 if (operands)
1493 operands[i] = ASM_OPERANDS_INPUT (asmop, i);
1494 if (constraints)
1495 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1496 if (modes)
1497 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1499 template = ASM_OPERANDS_TEMPLATE (asmop);
1501 else if (GET_CODE (body) == PARALLEL
1502 && GET_CODE (XVECEXP (body, 0, 0)) == SET
1503 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
1505 rtx asmop = SET_SRC (XVECEXP (body, 0, 0));
1506 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1507 int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
1508 int nout = 0; /* Does not include CLOBBERs. */
1510 /* At least one output, plus some CLOBBERs. */
1512 /* The outputs are in the SETs.
1513 Their constraints are in the ASM_OPERANDS itself. */
1514 for (i = 0; i < nparallel; i++)
1516 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1517 break; /* Past last SET */
1519 if (operands)
1520 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1521 if (operand_locs)
1522 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1523 if (constraints)
1524 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1525 if (modes)
1526 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1527 nout++;
1530 for (i = 0; i < nin; i++)
1532 if (operand_locs)
1533 operand_locs[i + nout] = &ASM_OPERANDS_INPUT (asmop, i);
1534 if (operands)
1535 operands[i + nout] = ASM_OPERANDS_INPUT (asmop, i);
1536 if (constraints)
1537 constraints[i + nout] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1538 if (modes)
1539 modes[i + nout] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1542 template = ASM_OPERANDS_TEMPLATE (asmop);
1544 else if (GET_CODE (body) == PARALLEL
1545 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
1547 /* No outputs, but some CLOBBERs. */
1549 rtx asmop = XVECEXP (body, 0, 0);
1550 int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
1552 for (i = 0; i < nin; i++)
1554 if (operand_locs)
1555 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
1556 if (operands)
1557 operands[i] = ASM_OPERANDS_INPUT (asmop, i);
1558 if (constraints)
1559 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1560 if (modes)
1561 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1564 template = ASM_OPERANDS_TEMPLATE (asmop);
1567 return template;
1570 /* Check if an asm_operand matches its constraints.
1571 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1574 asm_operand_ok (rtx op, const char *constraint)
1576 int result = 0;
1578 /* Use constrain_operands after reload. */
1579 if (reload_completed)
1580 abort ();
1582 while (*constraint)
1584 char c = *constraint;
1585 int len;
1586 switch (c)
1588 case ',':
1589 constraint++;
1590 continue;
1591 case '=':
1592 case '+':
1593 case '*':
1594 case '%':
1595 case '!':
1596 case '#':
1597 case '&':
1598 case '?':
1599 break;
1601 case '0': case '1': case '2': case '3': case '4':
1602 case '5': case '6': case '7': case '8': case '9':
1603 /* For best results, our caller should have given us the
1604 proper matching constraint, but we can't actually fail
1605 the check if they didn't. Indicate that results are
1606 inconclusive. */
1608 constraint++;
1609 while (ISDIGIT (*constraint));
1610 if (! result)
1611 result = -1;
1612 continue;
1614 case 'p':
1615 if (address_operand (op, VOIDmode))
1616 result = 1;
1617 break;
1619 case 'm':
1620 case 'V': /* non-offsettable */
1621 if (memory_operand (op, VOIDmode))
1622 result = 1;
1623 break;
1625 case 'o': /* offsettable */
1626 if (offsettable_nonstrict_memref_p (op))
1627 result = 1;
1628 break;
1630 case '<':
1631 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
1632 excepting those that expand_call created. Further, on some
1633 machines which do not have generalized auto inc/dec, an inc/dec
1634 is not a memory_operand.
1636 Match any memory and hope things are resolved after reload. */
1638 if (MEM_P (op)
1639 && (1
1640 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1641 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1642 result = 1;
1643 break;
1645 case '>':
1646 if (MEM_P (op)
1647 && (1
1648 || GET_CODE (XEXP (op, 0)) == PRE_INC
1649 || GET_CODE (XEXP (op, 0)) == POST_INC))
1650 result = 1;
1651 break;
1653 case 'E':
1654 case 'F':
1655 if (GET_CODE (op) == CONST_DOUBLE
1656 || (GET_CODE (op) == CONST_VECTOR
1657 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1658 result = 1;
1659 break;
1661 case 'G':
1662 if (GET_CODE (op) == CONST_DOUBLE
1663 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1664 result = 1;
1665 break;
1666 case 'H':
1667 if (GET_CODE (op) == CONST_DOUBLE
1668 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1669 result = 1;
1670 break;
1672 case 's':
1673 if (GET_CODE (op) == CONST_INT
1674 || (GET_CODE (op) == CONST_DOUBLE
1675 && GET_MODE (op) == VOIDmode))
1676 break;
1677 /* Fall through. */
1679 case 'i':
1680 if (CONSTANT_P (op)
1681 #ifdef LEGITIMATE_PIC_OPERAND_P
1682 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1683 #endif
1685 result = 1;
1686 break;
1688 case 'n':
1689 if (GET_CODE (op) == CONST_INT
1690 || (GET_CODE (op) == CONST_DOUBLE
1691 && GET_MODE (op) == VOIDmode))
1692 result = 1;
1693 break;
1695 case 'I':
1696 if (GET_CODE (op) == CONST_INT
1697 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1698 result = 1;
1699 break;
1700 case 'J':
1701 if (GET_CODE (op) == CONST_INT
1702 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1703 result = 1;
1704 break;
1705 case 'K':
1706 if (GET_CODE (op) == CONST_INT
1707 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1708 result = 1;
1709 break;
1710 case 'L':
1711 if (GET_CODE (op) == CONST_INT
1712 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1713 result = 1;
1714 break;
1715 case 'M':
1716 if (GET_CODE (op) == CONST_INT
1717 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1718 result = 1;
1719 break;
1720 case 'N':
1721 if (GET_CODE (op) == CONST_INT
1722 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1723 result = 1;
1724 break;
1725 case 'O':
1726 if (GET_CODE (op) == CONST_INT
1727 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1728 result = 1;
1729 break;
1730 case 'P':
1731 if (GET_CODE (op) == CONST_INT
1732 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1733 result = 1;
1734 break;
1736 case 'X':
1737 result = 1;
1738 break;
1740 case 'g':
1741 if (general_operand (op, VOIDmode))
1742 result = 1;
1743 break;
1745 default:
1746 /* For all other letters, we first check for a register class,
1747 otherwise it is an EXTRA_CONSTRAINT. */
1748 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1750 case 'r':
1751 if (GET_MODE (op) == BLKmode)
1752 break;
1753 if (register_operand (op, VOIDmode))
1754 result = 1;
1756 #ifdef EXTRA_CONSTRAINT_STR
1757 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1758 result = 1;
1759 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
1760 /* Every memory operand can be reloaded to fit. */
1761 && memory_operand (op, VOIDmode))
1762 result = 1;
1763 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint)
1764 /* Every address operand can be reloaded to fit. */
1765 && address_operand (op, VOIDmode))
1766 result = 1;
1767 #endif
1768 break;
1770 len = CONSTRAINT_LEN (c, constraint);
1772 constraint++;
1773 while (--len && *constraint);
1774 if (len)
1775 return 0;
1778 return result;
1781 /* Given an rtx *P, if it is a sum containing an integer constant term,
1782 return the location (type rtx *) of the pointer to that constant term.
1783 Otherwise, return a null pointer. */
1785 rtx *
1786 find_constant_term_loc (rtx *p)
1788 rtx *tem;
1789 enum rtx_code code = GET_CODE (*p);
1791 /* If *P IS such a constant term, P is its location. */
1793 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1794 || code == CONST)
1795 return p;
1797 /* Otherwise, if not a sum, it has no constant term. */
1799 if (GET_CODE (*p) != PLUS)
1800 return 0;
1802 /* If one of the summands is constant, return its location. */
1804 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1805 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1806 return p;
1808 /* Otherwise, check each summand for containing a constant term. */
1810 if (XEXP (*p, 0) != 0)
1812 tem = find_constant_term_loc (&XEXP (*p, 0));
1813 if (tem != 0)
1814 return tem;
1817 if (XEXP (*p, 1) != 0)
1819 tem = find_constant_term_loc (&XEXP (*p, 1));
1820 if (tem != 0)
1821 return tem;
1824 return 0;
1827 /* Return 1 if OP is a memory reference
1828 whose address contains no side effects
1829 and remains valid after the addition
1830 of a positive integer less than the
1831 size of the object being referenced.
1833 We assume that the original address is valid and do not check it.
1835 This uses strict_memory_address_p as a subroutine, so
1836 don't use it before reload. */
1839 offsettable_memref_p (rtx op)
1841 return ((MEM_P (op))
1842 && offsettable_address_p (1, GET_MODE (op), XEXP (op, 0)));
1845 /* Similar, but don't require a strictly valid mem ref:
1846 consider pseudo-regs valid as index or base regs. */
1849 offsettable_nonstrict_memref_p (rtx op)
1851 return ((MEM_P (op))
1852 && offsettable_address_p (0, GET_MODE (op), XEXP (op, 0)));
1855 /* Return 1 if Y is a memory address which contains no side effects
1856 and would remain valid after the addition of a positive integer
1857 less than the size of that mode.
1859 We assume that the original address is valid and do not check it.
1860 We do check that it is valid for narrower modes.
1862 If STRICTP is nonzero, we require a strictly valid address,
1863 for the sake of use in reload.c. */
1866 offsettable_address_p (int strictp, enum machine_mode mode, rtx y)
1868 enum rtx_code ycode = GET_CODE (y);
1869 rtx z;
1870 rtx y1 = y;
1871 rtx *y2;
1872 int (*addressp) (enum machine_mode, rtx) =
1873 (strictp ? strict_memory_address_p : memory_address_p);
1874 unsigned int mode_sz = GET_MODE_SIZE (mode);
1876 if (CONSTANT_ADDRESS_P (y))
1877 return 1;
1879 /* Adjusting an offsettable address involves changing to a narrower mode.
1880 Make sure that's OK. */
1882 if (mode_dependent_address_p (y))
1883 return 0;
1885 /* ??? How much offset does an offsettable BLKmode reference need?
1886 Clearly that depends on the situation in which it's being used.
1887 However, the current situation in which we test 0xffffffff is
1888 less than ideal. Caveat user. */
1889 if (mode_sz == 0)
1890 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1892 /* If the expression contains a constant term,
1893 see if it remains valid when max possible offset is added. */
1895 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1897 int good;
1899 y1 = *y2;
1900 *y2 = plus_constant (*y2, mode_sz - 1);
1901 /* Use QImode because an odd displacement may be automatically invalid
1902 for any wider mode. But it should be valid for a single byte. */
1903 good = (*addressp) (QImode, y);
1905 /* In any case, restore old contents of memory. */
1906 *y2 = y1;
1907 return good;
1910 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1911 return 0;
1913 /* The offset added here is chosen as the maximum offset that
1914 any instruction could need to add when operating on something
1915 of the specified mode. We assume that if Y and Y+c are
1916 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1917 go inside a LO_SUM here, so we do so as well. */
1918 if (GET_CODE (y) == LO_SUM
1919 && mode != BLKmode
1920 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
1921 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
1922 plus_constant (XEXP (y, 1), mode_sz - 1));
1923 else
1924 z = plus_constant (y, mode_sz - 1);
1926 /* Use QImode because an odd displacement may be automatically invalid
1927 for any wider mode. But it should be valid for a single byte. */
1928 return (*addressp) (QImode, z);
1931 /* Return 1 if ADDR is an address-expression whose effect depends
1932 on the mode of the memory reference it is used in.
1934 Autoincrement addressing is a typical example of mode-dependence
1935 because the amount of the increment depends on the mode. */
1938 mode_dependent_address_p (rtx addr ATTRIBUTE_UNUSED /* Maybe used in GO_IF_MODE_DEPENDENT_ADDRESS. */)
1940 GO_IF_MODE_DEPENDENT_ADDRESS (addr, win);
1941 return 0;
1942 /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
1943 win: ATTRIBUTE_UNUSED_LABEL
1944 return 1;
1947 /* Like extract_insn, but save insn extracted and don't extract again, when
1948 called again for the same insn expecting that recog_data still contain the
1949 valid information. This is used primary by gen_attr infrastructure that
1950 often does extract insn again and again. */
1951 void
1952 extract_insn_cached (rtx insn)
1954 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
1955 return;
1956 extract_insn (insn);
1957 recog_data.insn = insn;
1959 /* Do cached extract_insn, constrain_operands and complain about failures.
1960 Used by insn_attrtab. */
1961 void
1962 extract_constrain_insn_cached (rtx insn)
1964 extract_insn_cached (insn);
1965 if (which_alternative == -1
1966 && !constrain_operands (reload_completed))
1967 fatal_insn_not_found (insn);
1969 /* Do cached constrain_operands and complain about failures. */
1971 constrain_operands_cached (int strict)
1973 if (which_alternative == -1)
1974 return constrain_operands (strict);
1975 else
1976 return 1;
1979 /* Analyze INSN and fill in recog_data. */
1981 void
1982 extract_insn (rtx insn)
1984 int i;
1985 int icode;
1986 int noperands;
1987 rtx body = PATTERN (insn);
1989 recog_data.insn = NULL;
1990 recog_data.n_operands = 0;
1991 recog_data.n_alternatives = 0;
1992 recog_data.n_dups = 0;
1993 which_alternative = -1;
1995 switch (GET_CODE (body))
1997 case USE:
1998 case CLOBBER:
1999 case ASM_INPUT:
2000 case ADDR_VEC:
2001 case ADDR_DIFF_VEC:
2002 return;
2004 case SET:
2005 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2006 goto asm_insn;
2007 else
2008 goto normal_insn;
2009 case PARALLEL:
2010 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2011 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2012 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2013 goto asm_insn;
2014 else
2015 goto normal_insn;
2016 case ASM_OPERANDS:
2017 asm_insn:
2018 recog_data.n_operands = noperands = asm_noperands (body);
2019 if (noperands >= 0)
2021 /* This insn is an `asm' with operands. */
2023 /* expand_asm_operands makes sure there aren't too many operands. */
2024 if (noperands > MAX_RECOG_OPERANDS)
2025 abort ();
2027 /* Now get the operand values and constraints out of the insn. */
2028 decode_asm_operands (body, recog_data.operand,
2029 recog_data.operand_loc,
2030 recog_data.constraints,
2031 recog_data.operand_mode);
2032 if (noperands > 0)
2034 const char *p = recog_data.constraints[0];
2035 recog_data.n_alternatives = 1;
2036 while (*p)
2037 recog_data.n_alternatives += (*p++ == ',');
2039 break;
2041 fatal_insn_not_found (insn);
2043 default:
2044 normal_insn:
2045 /* Ordinary insn: recognize it, get the operands via insn_extract
2046 and get the constraints. */
2048 icode = recog_memoized (insn);
2049 if (icode < 0)
2050 fatal_insn_not_found (insn);
2052 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2053 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2054 recog_data.n_dups = insn_data[icode].n_dups;
2056 insn_extract (insn);
2058 for (i = 0; i < noperands; i++)
2060 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2061 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2062 /* VOIDmode match_operands gets mode from their real operand. */
2063 if (recog_data.operand_mode[i] == VOIDmode)
2064 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2067 for (i = 0; i < noperands; i++)
2068 recog_data.operand_type[i]
2069 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2070 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2071 : OP_IN);
2073 if (recog_data.n_alternatives > MAX_RECOG_ALTERNATIVES)
2074 abort ();
2077 /* After calling extract_insn, you can use this function to extract some
2078 information from the constraint strings into a more usable form.
2079 The collected data is stored in recog_op_alt. */
2080 void
2081 preprocess_constraints (void)
2083 int i;
2085 for (i = 0; i < recog_data.n_operands; i++)
2086 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2087 * sizeof (struct operand_alternative)));
2089 for (i = 0; i < recog_data.n_operands; i++)
2091 int j;
2092 struct operand_alternative *op_alt;
2093 const char *p = recog_data.constraints[i];
2095 op_alt = recog_op_alt[i];
2097 for (j = 0; j < recog_data.n_alternatives; j++)
2099 op_alt[j].class = NO_REGS;
2100 op_alt[j].constraint = p;
2101 op_alt[j].matches = -1;
2102 op_alt[j].matched = -1;
2104 if (*p == '\0' || *p == ',')
2106 op_alt[j].anything_ok = 1;
2107 continue;
2110 for (;;)
2112 char c = *p;
2113 if (c == '#')
2115 c = *++p;
2116 while (c != ',' && c != '\0');
2117 if (c == ',' || c == '\0')
2119 p++;
2120 break;
2123 switch (c)
2125 case '=': case '+': case '*': case '%':
2126 case 'E': case 'F': case 'G': case 'H':
2127 case 's': case 'i': case 'n':
2128 case 'I': case 'J': case 'K': case 'L':
2129 case 'M': case 'N': case 'O': case 'P':
2130 /* These don't say anything we care about. */
2131 break;
2133 case '?':
2134 op_alt[j].reject += 6;
2135 break;
2136 case '!':
2137 op_alt[j].reject += 600;
2138 break;
2139 case '&':
2140 op_alt[j].earlyclobber = 1;
2141 break;
2143 case '0': case '1': case '2': case '3': case '4':
2144 case '5': case '6': case '7': case '8': case '9':
2146 char *end;
2147 op_alt[j].matches = strtoul (p, &end, 10);
2148 recog_op_alt[op_alt[j].matches][j].matched = i;
2149 p = end;
2151 continue;
2153 case 'm':
2154 op_alt[j].memory_ok = 1;
2155 break;
2156 case '<':
2157 op_alt[j].decmem_ok = 1;
2158 break;
2159 case '>':
2160 op_alt[j].incmem_ok = 1;
2161 break;
2162 case 'V':
2163 op_alt[j].nonoffmem_ok = 1;
2164 break;
2165 case 'o':
2166 op_alt[j].offmem_ok = 1;
2167 break;
2168 case 'X':
2169 op_alt[j].anything_ok = 1;
2170 break;
2172 case 'p':
2173 op_alt[j].is_address = 1;
2174 op_alt[j].class = reg_class_subunion[(int) op_alt[j].class]
2175 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
2176 break;
2178 case 'g': case 'r':
2179 op_alt[j].class = reg_class_subunion[(int) op_alt[j].class][(int) GENERAL_REGS];
2180 break;
2182 default:
2183 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2185 op_alt[j].memory_ok = 1;
2186 break;
2188 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2190 op_alt[j].is_address = 1;
2191 op_alt[j].class
2192 = (reg_class_subunion
2193 [(int) op_alt[j].class]
2194 [(int) MODE_BASE_REG_CLASS (VOIDmode)]);
2195 break;
2198 op_alt[j].class
2199 = (reg_class_subunion
2200 [(int) op_alt[j].class]
2201 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2202 break;
2204 p += CONSTRAINT_LEN (c, p);
2210 /* Check the operands of an insn against the insn's operand constraints
2211 and return 1 if they are valid.
2212 The information about the insn's operands, constraints, operand modes
2213 etc. is obtained from the global variables set up by extract_insn.
2215 WHICH_ALTERNATIVE is set to a number which indicates which
2216 alternative of constraints was matched: 0 for the first alternative,
2217 1 for the next, etc.
2219 In addition, when two operands are required to match
2220 and it happens that the output operand is (reg) while the
2221 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2222 make the output operand look like the input.
2223 This is because the output operand is the one the template will print.
2225 This is used in final, just before printing the assembler code and by
2226 the routines that determine an insn's attribute.
2228 If STRICT is a positive nonzero value, it means that we have been
2229 called after reload has been completed. In that case, we must
2230 do all checks strictly. If it is zero, it means that we have been called
2231 before reload has completed. In that case, we first try to see if we can
2232 find an alternative that matches strictly. If not, we try again, this
2233 time assuming that reload will fix up the insn. This provides a "best
2234 guess" for the alternative and is used to compute attributes of insns prior
2235 to reload. A negative value of STRICT is used for this internal call. */
2237 struct funny_match
2239 int this, other;
2243 constrain_operands (int strict)
2245 const char *constraints[MAX_RECOG_OPERANDS];
2246 int matching_operands[MAX_RECOG_OPERANDS];
2247 int earlyclobber[MAX_RECOG_OPERANDS];
2248 int c;
2250 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2251 int funny_match_index;
2253 which_alternative = 0;
2254 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2255 return 1;
2257 for (c = 0; c < recog_data.n_operands; c++)
2259 constraints[c] = recog_data.constraints[c];
2260 matching_operands[c] = -1;
2265 int opno;
2266 int lose = 0;
2267 funny_match_index = 0;
2269 for (opno = 0; opno < recog_data.n_operands; opno++)
2271 rtx op = recog_data.operand[opno];
2272 enum machine_mode mode = GET_MODE (op);
2273 const char *p = constraints[opno];
2274 int offset = 0;
2275 int win = 0;
2276 int val;
2277 int len;
2279 earlyclobber[opno] = 0;
2281 /* A unary operator may be accepted by the predicate, but it
2282 is irrelevant for matching constraints. */
2283 if (UNARY_P (op))
2284 op = XEXP (op, 0);
2286 if (GET_CODE (op) == SUBREG)
2288 if (REG_P (SUBREG_REG (op))
2289 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2290 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2291 GET_MODE (SUBREG_REG (op)),
2292 SUBREG_BYTE (op),
2293 GET_MODE (op));
2294 op = SUBREG_REG (op);
2297 /* An empty constraint or empty alternative
2298 allows anything which matched the pattern. */
2299 if (*p == 0 || *p == ',')
2300 win = 1;
2303 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2305 case '\0':
2306 len = 0;
2307 break;
2308 case ',':
2309 c = '\0';
2310 break;
2312 case '?': case '!': case '*': case '%':
2313 case '=': case '+':
2314 break;
2316 case '#':
2317 /* Ignore rest of this alternative as far as
2318 constraint checking is concerned. */
2320 p++;
2321 while (*p && *p != ',');
2322 len = 0;
2323 break;
2325 case '&':
2326 earlyclobber[opno] = 1;
2327 break;
2329 case '0': case '1': case '2': case '3': case '4':
2330 case '5': case '6': case '7': case '8': case '9':
2332 /* This operand must be the same as a previous one.
2333 This kind of constraint is used for instructions such
2334 as add when they take only two operands.
2336 Note that the lower-numbered operand is passed first.
2338 If we are not testing strictly, assume that this
2339 constraint will be satisfied. */
2341 char *end;
2342 int match;
2344 match = strtoul (p, &end, 10);
2345 p = end;
2347 if (strict < 0)
2348 val = 1;
2349 else
2351 rtx op1 = recog_data.operand[match];
2352 rtx op2 = recog_data.operand[opno];
2354 /* A unary operator may be accepted by the predicate,
2355 but it is irrelevant for matching constraints. */
2356 if (UNARY_P (op1))
2357 op1 = XEXP (op1, 0);
2358 if (UNARY_P (op2))
2359 op2 = XEXP (op2, 0);
2361 val = operands_match_p (op1, op2);
2364 matching_operands[opno] = match;
2365 matching_operands[match] = opno;
2367 if (val != 0)
2368 win = 1;
2370 /* If output is *x and input is *--x, arrange later
2371 to change the output to *--x as well, since the
2372 output op is the one that will be printed. */
2373 if (val == 2 && strict > 0)
2375 funny_match[funny_match_index].this = opno;
2376 funny_match[funny_match_index++].other = match;
2379 len = 0;
2380 break;
2382 case 'p':
2383 /* p is used for address_operands. When we are called by
2384 gen_reload, no one will have checked that the address is
2385 strictly valid, i.e., that all pseudos requiring hard regs
2386 have gotten them. */
2387 if (strict <= 0
2388 || (strict_memory_address_p (recog_data.operand_mode[opno],
2389 op)))
2390 win = 1;
2391 break;
2393 /* No need to check general_operand again;
2394 it was done in insn-recog.c. */
2395 case 'g':
2396 /* Anything goes unless it is a REG and really has a hard reg
2397 but the hard reg is not in the class GENERAL_REGS. */
2398 if (strict < 0
2399 || GENERAL_REGS == ALL_REGS
2400 || !REG_P (op)
2401 || (reload_in_progress
2402 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2403 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2404 win = 1;
2405 break;
2407 case 'X':
2408 /* This is used for a MATCH_SCRATCH in the cases when
2409 we don't actually need anything. So anything goes
2410 any time. */
2411 win = 1;
2412 break;
2414 case 'm':
2415 /* Memory operands must be valid, to the extent
2416 required by STRICT. */
2417 if (MEM_P (op))
2419 if (strict > 0
2420 && !strict_memory_address_p (GET_MODE (op),
2421 XEXP (op, 0)))
2422 break;
2423 if (strict == 0
2424 && !memory_address_p (GET_MODE (op), XEXP (op, 0)))
2425 break;
2426 win = 1;
2428 /* Before reload, accept what reload can turn into mem. */
2429 else if (strict < 0 && CONSTANT_P (op))
2430 win = 1;
2431 /* During reload, accept a pseudo */
2432 else if (reload_in_progress && REG_P (op)
2433 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2434 win = 1;
2435 break;
2437 case '<':
2438 if (MEM_P (op)
2439 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2440 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2441 win = 1;
2442 break;
2444 case '>':
2445 if (MEM_P (op)
2446 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2447 || GET_CODE (XEXP (op, 0)) == POST_INC))
2448 win = 1;
2449 break;
2451 case 'E':
2452 case 'F':
2453 if (GET_CODE (op) == CONST_DOUBLE
2454 || (GET_CODE (op) == CONST_VECTOR
2455 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2456 win = 1;
2457 break;
2459 case 'G':
2460 case 'H':
2461 if (GET_CODE (op) == CONST_DOUBLE
2462 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2463 win = 1;
2464 break;
2466 case 's':
2467 if (GET_CODE (op) == CONST_INT
2468 || (GET_CODE (op) == CONST_DOUBLE
2469 && GET_MODE (op) == VOIDmode))
2470 break;
2471 case 'i':
2472 if (CONSTANT_P (op))
2473 win = 1;
2474 break;
2476 case 'n':
2477 if (GET_CODE (op) == CONST_INT
2478 || (GET_CODE (op) == CONST_DOUBLE
2479 && GET_MODE (op) == VOIDmode))
2480 win = 1;
2481 break;
2483 case 'I':
2484 case 'J':
2485 case 'K':
2486 case 'L':
2487 case 'M':
2488 case 'N':
2489 case 'O':
2490 case 'P':
2491 if (GET_CODE (op) == CONST_INT
2492 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2493 win = 1;
2494 break;
2496 case 'V':
2497 if (MEM_P (op)
2498 && ((strict > 0 && ! offsettable_memref_p (op))
2499 || (strict < 0
2500 && !(CONSTANT_P (op) || MEM_P (op)))
2501 || (reload_in_progress
2502 && !(REG_P (op)
2503 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2504 win = 1;
2505 break;
2507 case 'o':
2508 if ((strict > 0 && offsettable_memref_p (op))
2509 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2510 /* Before reload, accept what reload can handle. */
2511 || (strict < 0
2512 && (CONSTANT_P (op) || MEM_P (op)))
2513 /* During reload, accept a pseudo */
2514 || (reload_in_progress && REG_P (op)
2515 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2516 win = 1;
2517 break;
2519 default:
2521 enum reg_class class;
2523 class = (c == 'r'
2524 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2525 if (class != NO_REGS)
2527 if (strict < 0
2528 || (strict == 0
2529 && REG_P (op)
2530 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2531 || (strict == 0 && GET_CODE (op) == SCRATCH)
2532 || (REG_P (op)
2533 && reg_fits_class_p (op, class, offset, mode)))
2534 win = 1;
2536 #ifdef EXTRA_CONSTRAINT_STR
2537 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2538 win = 1;
2540 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2541 /* Every memory operand can be reloaded to fit. */
2542 && ((strict < 0 && MEM_P (op))
2543 /* Before reload, accept what reload can turn
2544 into mem. */
2545 || (strict < 0 && CONSTANT_P (op))
2546 /* During reload, accept a pseudo */
2547 || (reload_in_progress && REG_P (op)
2548 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2549 win = 1;
2550 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2551 /* Every address operand can be reloaded to fit. */
2552 && strict < 0)
2553 win = 1;
2554 #endif
2555 break;
2558 while (p += len, c);
2560 constraints[opno] = p;
2561 /* If this operand did not win somehow,
2562 this alternative loses. */
2563 if (! win)
2564 lose = 1;
2566 /* This alternative won; the operands are ok.
2567 Change whichever operands this alternative says to change. */
2568 if (! lose)
2570 int opno, eopno;
2572 /* See if any earlyclobber operand conflicts with some other
2573 operand. */
2575 if (strict > 0)
2576 for (eopno = 0; eopno < recog_data.n_operands; eopno++)
2577 /* Ignore earlyclobber operands now in memory,
2578 because we would often report failure when we have
2579 two memory operands, one of which was formerly a REG. */
2580 if (earlyclobber[eopno]
2581 && REG_P (recog_data.operand[eopno]))
2582 for (opno = 0; opno < recog_data.n_operands; opno++)
2583 if ((MEM_P (recog_data.operand[opno])
2584 || recog_data.operand_type[opno] != OP_OUT)
2585 && opno != eopno
2586 /* Ignore things like match_operator operands. */
2587 && *recog_data.constraints[opno] != 0
2588 && ! (matching_operands[opno] == eopno
2589 && operands_match_p (recog_data.operand[opno],
2590 recog_data.operand[eopno]))
2591 && ! safe_from_earlyclobber (recog_data.operand[opno],
2592 recog_data.operand[eopno]))
2593 lose = 1;
2595 if (! lose)
2597 while (--funny_match_index >= 0)
2599 recog_data.operand[funny_match[funny_match_index].other]
2600 = recog_data.operand[funny_match[funny_match_index].this];
2603 return 1;
2607 which_alternative++;
2609 while (which_alternative < recog_data.n_alternatives);
2611 which_alternative = -1;
2612 /* If we are about to reject this, but we are not to test strictly,
2613 try a very loose test. Only return failure if it fails also. */
2614 if (strict == 0)
2615 return constrain_operands (-1);
2616 else
2617 return 0;
2620 /* Return 1 iff OPERAND (assumed to be a REG rtx)
2621 is a hard reg in class CLASS when its regno is offset by OFFSET
2622 and changed to mode MODE.
2623 If REG occupies multiple hard regs, all of them must be in CLASS. */
2626 reg_fits_class_p (rtx operand, enum reg_class class, int offset,
2627 enum machine_mode mode)
2629 int regno = REGNO (operand);
2630 if (regno < FIRST_PSEUDO_REGISTER
2631 && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2632 regno + offset))
2634 int sr;
2635 regno += offset;
2636 for (sr = hard_regno_nregs[regno][mode] - 1;
2637 sr > 0; sr--)
2638 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2639 regno + sr))
2640 break;
2641 return sr == 0;
2644 return 0;
2647 /* Split single instruction. Helper function for split_all_insns and
2648 split_all_insns_noflow. Return last insn in the sequence if successful,
2649 or NULL if unsuccessful. */
2651 static rtx
2652 split_insn (rtx insn)
2654 /* Split insns here to get max fine-grain parallelism. */
2655 rtx first = PREV_INSN (insn);
2656 rtx last = try_split (PATTERN (insn), insn, 1);
2658 if (last == insn)
2659 return NULL_RTX;
2661 /* try_split returns the NOTE that INSN became. */
2662 SET_INSN_DELETED (insn);
2664 /* ??? Coddle to md files that generate subregs in post-reload
2665 splitters instead of computing the proper hard register. */
2666 if (reload_completed && first != last)
2668 first = NEXT_INSN (first);
2669 for (;;)
2671 if (INSN_P (first))
2672 cleanup_subreg_operands (first);
2673 if (first == last)
2674 break;
2675 first = NEXT_INSN (first);
2678 return last;
2681 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2683 void
2684 split_all_insns (int upd_life)
2686 sbitmap blocks;
2687 bool changed;
2688 basic_block bb;
2690 blocks = sbitmap_alloc (last_basic_block);
2691 sbitmap_zero (blocks);
2692 changed = false;
2694 FOR_EACH_BB_REVERSE (bb)
2696 rtx insn, next;
2697 bool finish = false;
2699 for (insn = BB_HEAD (bb); !finish ; insn = next)
2701 /* Can't use `next_real_insn' because that might go across
2702 CODE_LABELS and short-out basic blocks. */
2703 next = NEXT_INSN (insn);
2704 finish = (insn == BB_END (bb));
2705 if (INSN_P (insn))
2707 rtx set = single_set (insn);
2709 /* Don't split no-op move insns. These should silently
2710 disappear later in final. Splitting such insns would
2711 break the code that handles REG_NO_CONFLICT blocks. */
2712 if (set && set_noop_p (set))
2714 /* Nops get in the way while scheduling, so delete them
2715 now if register allocation has already been done. It
2716 is too risky to try to do this before register
2717 allocation, and there are unlikely to be very many
2718 nops then anyways. */
2719 if (reload_completed)
2721 /* If the no-op set has a REG_UNUSED note, we need
2722 to update liveness information. */
2723 if (find_reg_note (insn, REG_UNUSED, NULL_RTX))
2725 SET_BIT (blocks, bb->index);
2726 changed = true;
2728 /* ??? Is life info affected by deleting edges? */
2729 delete_insn_and_edges (insn);
2732 else
2734 rtx last = split_insn (insn);
2735 if (last)
2737 /* The split sequence may include barrier, but the
2738 BB boundary we are interested in will be set to
2739 previous one. */
2741 while (BARRIER_P (last))
2742 last = PREV_INSN (last);
2743 SET_BIT (blocks, bb->index);
2744 changed = true;
2751 if (changed)
2753 int old_last_basic_block = last_basic_block;
2755 find_many_sub_basic_blocks (blocks);
2757 if (old_last_basic_block != last_basic_block && upd_life)
2758 blocks = sbitmap_resize (blocks, last_basic_block, 1);
2761 if (changed && upd_life)
2762 update_life_info (blocks, UPDATE_LIFE_GLOBAL_RM_NOTES,
2763 PROP_DEATH_NOTES);
2765 #ifdef ENABLE_CHECKING
2766 verify_flow_info ();
2767 #endif
2769 sbitmap_free (blocks);
2772 /* Same as split_all_insns, but do not expect CFG to be available.
2773 Used by machine dependent reorg passes. */
2775 void
2776 split_all_insns_noflow (void)
2778 rtx next, insn;
2780 for (insn = get_insns (); insn; insn = next)
2782 next = NEXT_INSN (insn);
2783 if (INSN_P (insn))
2785 /* Don't split no-op move insns. These should silently
2786 disappear later in final. Splitting such insns would
2787 break the code that handles REG_NO_CONFLICT blocks. */
2788 rtx set = single_set (insn);
2789 if (set && set_noop_p (set))
2791 /* Nops get in the way while scheduling, so delete them
2792 now if register allocation has already been done. It
2793 is too risky to try to do this before register
2794 allocation, and there are unlikely to be very many
2795 nops then anyways.
2797 ??? Should we use delete_insn when the CFG isn't valid? */
2798 if (reload_completed)
2799 delete_insn_and_edges (insn);
2801 else
2802 split_insn (insn);
2807 #ifdef HAVE_peephole2
2808 struct peep2_insn_data
2810 rtx insn;
2811 regset live_before;
2814 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2815 static int peep2_current;
2817 /* A non-insn marker indicating the last insn of the block.
2818 The live_before regset for this element is correct, indicating
2819 global_live_at_end for the block. */
2820 #define PEEP2_EOB pc_rtx
2822 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2823 does not exist. Used by the recognizer to find the next insn to match
2824 in a multi-insn pattern. */
2827 peep2_next_insn (int n)
2829 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2830 abort ();
2832 n += peep2_current;
2833 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2834 n -= MAX_INSNS_PER_PEEP2 + 1;
2836 if (peep2_insn_data[n].insn == PEEP2_EOB)
2837 return NULL_RTX;
2838 return peep2_insn_data[n].insn;
2841 /* Return true if REGNO is dead before the Nth non-note insn
2842 after `current'. */
2845 peep2_regno_dead_p (int ofs, int regno)
2847 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2848 abort ();
2850 ofs += peep2_current;
2851 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2852 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2854 if (peep2_insn_data[ofs].insn == NULL_RTX)
2855 abort ();
2857 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
2860 /* Similarly for a REG. */
2863 peep2_reg_dead_p (int ofs, rtx reg)
2865 int regno, n;
2867 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2868 abort ();
2870 ofs += peep2_current;
2871 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2872 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2874 if (peep2_insn_data[ofs].insn == NULL_RTX)
2875 abort ();
2877 regno = REGNO (reg);
2878 n = hard_regno_nregs[regno][GET_MODE (reg)];
2879 while (--n >= 0)
2880 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
2881 return 0;
2882 return 1;
2885 /* Try to find a hard register of mode MODE, matching the register class in
2886 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
2887 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
2888 in which case the only condition is that the register must be available
2889 before CURRENT_INSN.
2890 Registers that already have bits set in REG_SET will not be considered.
2892 If an appropriate register is available, it will be returned and the
2893 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
2894 returned. */
2897 peep2_find_free_register (int from, int to, const char *class_str,
2898 enum machine_mode mode, HARD_REG_SET *reg_set)
2900 static int search_ofs;
2901 enum reg_class class;
2902 HARD_REG_SET live;
2903 int i;
2905 if (from >= MAX_INSNS_PER_PEEP2 + 1 || to >= MAX_INSNS_PER_PEEP2 + 1)
2906 abort ();
2908 from += peep2_current;
2909 if (from >= MAX_INSNS_PER_PEEP2 + 1)
2910 from -= MAX_INSNS_PER_PEEP2 + 1;
2911 to += peep2_current;
2912 if (to >= MAX_INSNS_PER_PEEP2 + 1)
2913 to -= MAX_INSNS_PER_PEEP2 + 1;
2915 if (peep2_insn_data[from].insn == NULL_RTX)
2916 abort ();
2917 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
2919 while (from != to)
2921 HARD_REG_SET this_live;
2923 if (++from >= MAX_INSNS_PER_PEEP2 + 1)
2924 from = 0;
2925 if (peep2_insn_data[from].insn == NULL_RTX)
2926 abort ();
2927 REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before);
2928 IOR_HARD_REG_SET (live, this_live);
2931 class = (class_str[0] == 'r' ? GENERAL_REGS
2932 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
2934 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2936 int raw_regno, regno, success, j;
2938 /* Distribute the free registers as much as possible. */
2939 raw_regno = search_ofs + i;
2940 if (raw_regno >= FIRST_PSEUDO_REGISTER)
2941 raw_regno -= FIRST_PSEUDO_REGISTER;
2942 #ifdef REG_ALLOC_ORDER
2943 regno = reg_alloc_order[raw_regno];
2944 #else
2945 regno = raw_regno;
2946 #endif
2948 /* Don't allocate fixed registers. */
2949 if (fixed_regs[regno])
2950 continue;
2951 /* Make sure the register is of the right class. */
2952 if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno))
2953 continue;
2954 /* And can support the mode we need. */
2955 if (! HARD_REGNO_MODE_OK (regno, mode))
2956 continue;
2957 /* And that we don't create an extra save/restore. */
2958 if (! call_used_regs[regno] && ! regs_ever_live[regno])
2959 continue;
2960 /* And we don't clobber traceback for noreturn functions. */
2961 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
2962 && (! reload_completed || frame_pointer_needed))
2963 continue;
2965 success = 1;
2966 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
2968 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
2969 || TEST_HARD_REG_BIT (live, regno + j))
2971 success = 0;
2972 break;
2975 if (success)
2977 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
2978 SET_HARD_REG_BIT (*reg_set, regno + j);
2980 /* Start the next search with the next register. */
2981 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
2982 raw_regno = 0;
2983 search_ofs = raw_regno;
2985 return gen_rtx_REG (mode, regno);
2989 search_ofs = 0;
2990 return NULL_RTX;
2993 /* Perform the peephole2 optimization pass. */
2995 void
2996 peephole2_optimize (FILE *dump_file ATTRIBUTE_UNUSED)
2998 regset_head rs_heads[MAX_INSNS_PER_PEEP2 + 2];
2999 rtx insn, prev;
3000 regset live;
3001 int i;
3002 basic_block bb;
3003 #ifdef HAVE_conditional_execution
3004 sbitmap blocks;
3005 bool changed;
3006 #endif
3007 bool do_cleanup_cfg = false;
3008 bool do_rebuild_jump_labels = false;
3010 /* Initialize the regsets we're going to use. */
3011 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3012 peep2_insn_data[i].live_before = INITIALIZE_REG_SET (rs_heads[i]);
3013 live = INITIALIZE_REG_SET (rs_heads[i]);
3015 #ifdef HAVE_conditional_execution
3016 blocks = sbitmap_alloc (last_basic_block);
3017 sbitmap_zero (blocks);
3018 changed = false;
3019 #else
3020 count_or_remove_death_notes (NULL, 1);
3021 #endif
3023 FOR_EACH_BB_REVERSE (bb)
3025 struct propagate_block_info *pbi;
3027 /* Indicate that all slots except the last holds invalid data. */
3028 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3029 peep2_insn_data[i].insn = NULL_RTX;
3031 /* Indicate that the last slot contains live_after data. */
3032 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3033 peep2_current = MAX_INSNS_PER_PEEP2;
3035 /* Start up propagation. */
3036 COPY_REG_SET (live, bb->global_live_at_end);
3037 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3039 #ifdef HAVE_conditional_execution
3040 pbi = init_propagate_block_info (bb, live, NULL, NULL, 0);
3041 #else
3042 pbi = init_propagate_block_info (bb, live, NULL, NULL, PROP_DEATH_NOTES);
3043 #endif
3045 for (insn = BB_END (bb); ; insn = prev)
3047 prev = PREV_INSN (insn);
3048 if (INSN_P (insn))
3050 rtx try, before_try, x;
3051 int match_len;
3052 rtx note;
3053 bool was_call = false;
3055 /* Record this insn. */
3056 if (--peep2_current < 0)
3057 peep2_current = MAX_INSNS_PER_PEEP2;
3058 peep2_insn_data[peep2_current].insn = insn;
3059 propagate_one_insn (pbi, insn);
3060 COPY_REG_SET (peep2_insn_data[peep2_current].live_before, live);
3062 /* Match the peephole. */
3063 try = peephole2_insns (PATTERN (insn), insn, &match_len);
3064 if (try != NULL)
3066 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3067 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3068 cfg-related call notes. */
3069 for (i = 0; i <= match_len; ++i)
3071 int j;
3072 rtx old_insn, new_insn, note;
3074 j = i + peep2_current;
3075 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3076 j -= MAX_INSNS_PER_PEEP2 + 1;
3077 old_insn = peep2_insn_data[j].insn;
3078 if (!CALL_P (old_insn))
3079 continue;
3080 was_call = true;
3082 new_insn = try;
3083 while (new_insn != NULL_RTX)
3085 if (CALL_P (new_insn))
3086 break;
3087 new_insn = NEXT_INSN (new_insn);
3090 if (new_insn == NULL_RTX)
3091 abort ();
3093 CALL_INSN_FUNCTION_USAGE (new_insn)
3094 = CALL_INSN_FUNCTION_USAGE (old_insn);
3096 for (note = REG_NOTES (old_insn);
3097 note;
3098 note = XEXP (note, 1))
3099 switch (REG_NOTE_KIND (note))
3101 case REG_NORETURN:
3102 case REG_SETJMP:
3103 case REG_ALWAYS_RETURN:
3104 REG_NOTES (new_insn)
3105 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3106 XEXP (note, 0),
3107 REG_NOTES (new_insn));
3108 default:
3109 /* Discard all other reg notes. */
3110 break;
3113 /* Croak if there is another call in the sequence. */
3114 while (++i <= match_len)
3116 j = i + peep2_current;
3117 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3118 j -= MAX_INSNS_PER_PEEP2 + 1;
3119 old_insn = peep2_insn_data[j].insn;
3120 if (CALL_P (old_insn))
3121 abort ();
3123 break;
3126 i = match_len + peep2_current;
3127 if (i >= MAX_INSNS_PER_PEEP2 + 1)
3128 i -= MAX_INSNS_PER_PEEP2 + 1;
3130 note = find_reg_note (peep2_insn_data[i].insn,
3131 REG_EH_REGION, NULL_RTX);
3133 /* Replace the old sequence with the new. */
3134 try = emit_insn_after_setloc (try, peep2_insn_data[i].insn,
3135 INSN_LOCATOR (peep2_insn_data[i].insn));
3136 before_try = PREV_INSN (insn);
3137 delete_insn_chain (insn, peep2_insn_data[i].insn);
3139 /* Re-insert the EH_REGION notes. */
3140 if (note || (was_call && nonlocal_goto_handler_labels))
3142 edge eh_edge;
3144 for (eh_edge = bb->succ; eh_edge
3145 ; eh_edge = eh_edge->succ_next)
3146 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3147 break;
3149 for (x = try ; x != before_try ; x = PREV_INSN (x))
3150 if (CALL_P (x)
3151 || (flag_non_call_exceptions
3152 && may_trap_p (PATTERN (x))
3153 && !find_reg_note (x, REG_EH_REGION, NULL)))
3155 if (note)
3156 REG_NOTES (x)
3157 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3158 XEXP (note, 0),
3159 REG_NOTES (x));
3161 if (x != BB_END (bb) && eh_edge)
3163 edge nfte, nehe;
3164 int flags;
3166 nfte = split_block (bb, x);
3167 flags = (eh_edge->flags
3168 & (EDGE_EH | EDGE_ABNORMAL));
3169 if (CALL_P (x))
3170 flags |= EDGE_ABNORMAL_CALL;
3171 nehe = make_edge (nfte->src, eh_edge->dest,
3172 flags);
3174 nehe->probability = eh_edge->probability;
3175 nfte->probability
3176 = REG_BR_PROB_BASE - nehe->probability;
3178 do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3179 #ifdef HAVE_conditional_execution
3180 SET_BIT (blocks, nfte->dest->index);
3181 changed = true;
3182 #endif
3183 bb = nfte->src;
3184 eh_edge = nehe;
3188 /* Converting possibly trapping insn to non-trapping is
3189 possible. Zap dummy outgoing edges. */
3190 do_cleanup_cfg |= purge_dead_edges (bb);
3193 #ifdef HAVE_conditional_execution
3194 /* With conditional execution, we cannot back up the
3195 live information so easily, since the conditional
3196 death data structures are not so self-contained.
3197 So record that we've made a modification to this
3198 block and update life information at the end. */
3199 SET_BIT (blocks, bb->index);
3200 changed = true;
3202 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3203 peep2_insn_data[i].insn = NULL_RTX;
3204 peep2_insn_data[peep2_current].insn = PEEP2_EOB;
3205 #else
3206 /* Back up lifetime information past the end of the
3207 newly created sequence. */
3208 if (++i >= MAX_INSNS_PER_PEEP2 + 1)
3209 i = 0;
3210 COPY_REG_SET (live, peep2_insn_data[i].live_before);
3212 /* Update life information for the new sequence. */
3213 x = try;
3216 if (INSN_P (x))
3218 if (--i < 0)
3219 i = MAX_INSNS_PER_PEEP2;
3220 peep2_insn_data[i].insn = x;
3221 propagate_one_insn (pbi, x);
3222 COPY_REG_SET (peep2_insn_data[i].live_before, live);
3224 x = PREV_INSN (x);
3226 while (x != prev);
3228 /* ??? Should verify that LIVE now matches what we
3229 had before the new sequence. */
3231 peep2_current = i;
3232 #endif
3234 /* If we generated a jump instruction, it won't have
3235 JUMP_LABEL set. Recompute after we're done. */
3236 for (x = try; x != before_try; x = PREV_INSN (x))
3237 if (JUMP_P (x))
3239 do_rebuild_jump_labels = true;
3240 break;
3245 if (insn == BB_HEAD (bb))
3246 break;
3249 free_propagate_block_info (pbi);
3252 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3253 FREE_REG_SET (peep2_insn_data[i].live_before);
3254 FREE_REG_SET (live);
3256 if (do_rebuild_jump_labels)
3257 rebuild_jump_labels (get_insns ());
3259 /* If we eliminated EH edges, we may be able to merge blocks. Further,
3260 we've changed global life since exception handlers are no longer
3261 reachable. */
3262 if (do_cleanup_cfg)
3264 cleanup_cfg (0);
3265 update_life_info (0, UPDATE_LIFE_GLOBAL_RM_NOTES, PROP_DEATH_NOTES);
3267 #ifdef HAVE_conditional_execution
3268 else
3270 count_or_remove_death_notes (blocks, 1);
3271 update_life_info (blocks, UPDATE_LIFE_LOCAL, PROP_DEATH_NOTES);
3273 sbitmap_free (blocks);
3274 #endif
3276 #endif /* HAVE_peephole2 */
3278 /* Common predicates for use with define_bypass. */
3280 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3281 data not the address operand(s) of the store. IN_INSN must be
3282 single_set. OUT_INSN must be either a single_set or a PARALLEL with
3283 SETs inside. */
3286 store_data_bypass_p (rtx out_insn, rtx in_insn)
3288 rtx out_set, in_set;
3290 in_set = single_set (in_insn);
3291 if (! in_set)
3292 abort ();
3294 if (!MEM_P (SET_DEST (in_set)))
3295 return false;
3297 out_set = single_set (out_insn);
3298 if (out_set)
3300 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3301 return false;
3303 else
3305 rtx out_pat;
3306 int i;
3308 out_pat = PATTERN (out_insn);
3309 if (GET_CODE (out_pat) != PARALLEL)
3310 abort ();
3312 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3314 rtx exp = XVECEXP (out_pat, 0, i);
3316 if (GET_CODE (exp) == CLOBBER)
3317 continue;
3319 if (GET_CODE (exp) != SET)
3320 abort ();
3322 if (reg_mentioned_p (SET_DEST (exp), SET_DEST (in_set)))
3323 return false;
3327 return true;
3330 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3331 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3332 or multiple set; IN_INSN should be single_set for truth, but for convenience
3333 of insn categorization may be any JUMP or CALL insn. */
3336 if_test_bypass_p (rtx out_insn, rtx in_insn)
3338 rtx out_set, in_set;
3340 in_set = single_set (in_insn);
3341 if (! in_set)
3343 if (JUMP_P (in_insn) || CALL_P (in_insn))
3344 return false;
3345 abort ();
3348 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3349 return false;
3350 in_set = SET_SRC (in_set);
3352 out_set = single_set (out_insn);
3353 if (out_set)
3355 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3356 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3357 return false;
3359 else
3361 rtx out_pat;
3362 int i;
3364 out_pat = PATTERN (out_insn);
3365 if (GET_CODE (out_pat) != PARALLEL)
3366 abort ();
3368 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3370 rtx exp = XVECEXP (out_pat, 0, i);
3372 if (GET_CODE (exp) == CLOBBER)
3373 continue;
3375 if (GET_CODE (exp) != SET)
3376 abort ();
3378 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3379 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3380 return false;
3384 return true;