1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 #include "coretypes.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
39 #include "basic-block.h"
43 #ifndef STACK_PUSH_CODE
44 #ifdef STACK_GROWS_DOWNWARD
45 #define STACK_PUSH_CODE PRE_DEC
47 #define STACK_PUSH_CODE PRE_INC
51 #ifndef STACK_POP_CODE
52 #ifdef STACK_GROWS_DOWNWARD
53 #define STACK_POP_CODE POST_INC
55 #define STACK_POP_CODE POST_DEC
59 static void validate_replace_rtx_1 (rtx
*, rtx
, rtx
, rtx
);
60 static rtx
*find_single_use_1 (rtx
, rtx
*);
61 static void validate_replace_src_1 (rtx
*, void *);
62 static rtx
split_insn (rtx
);
64 /* Nonzero means allow operands to be volatile.
65 This should be 0 if you are generating rtl, such as if you are calling
66 the functions in optabs.c and expmed.c (most of the time).
67 This should be 1 if all valid insns need to be recognized,
68 such as in regclass.c and final.c and reload.c.
70 init_recog and init_recog_no_volatile are responsible for setting this. */
74 struct recog_data recog_data
;
76 /* Contains a vector of operand_alternative structures for every operand.
77 Set up by preprocess_constraints. */
78 struct operand_alternative recog_op_alt
[MAX_RECOG_OPERANDS
][MAX_RECOG_ALTERNATIVES
];
80 /* On return from `constrain_operands', indicate which alternative
83 int which_alternative
;
85 /* Nonzero after end of reload pass.
86 Set to 1 or 0 by toplev.c.
87 Controls the significance of (SUBREG (MEM)). */
91 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
92 int epilogue_completed
;
94 /* Initialize data used by the function `recog'.
95 This must be called once in the compilation of a function
96 before any insn recognition may be done in the function. */
99 init_recog_no_volatile (void)
110 /* Try recognizing the instruction INSN,
111 and return the code number that results.
112 Remember the code so that repeated calls do not
113 need to spend the time for actual rerecognition.
115 This function is the normal interface to instruction recognition.
116 The automatically-generated function `recog' is normally called
117 through this one. (The only exception is in combine.c.) */
120 recog_memoized_1 (rtx insn
)
122 if (INSN_CODE (insn
) < 0)
123 INSN_CODE (insn
) = recog (PATTERN (insn
), insn
, 0);
124 return INSN_CODE (insn
);
127 /* Check that X is an insn-body for an `asm' with operands
128 and that the operands mentioned in it are legitimate. */
131 check_asm_operands (rtx x
)
135 const char **constraints
;
138 /* Post-reload, be more strict with things. */
139 if (reload_completed
)
141 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
142 extract_insn (make_insn_raw (x
));
143 constrain_operands (1);
144 return which_alternative
>= 0;
147 noperands
= asm_noperands (x
);
153 operands
= alloca (noperands
* sizeof (rtx
));
154 constraints
= alloca (noperands
* sizeof (char *));
156 decode_asm_operands (x
, operands
, NULL
, constraints
, NULL
);
158 for (i
= 0; i
< noperands
; i
++)
160 const char *c
= constraints
[i
];
163 if (ISDIGIT ((unsigned char) c
[0]) && c
[1] == '\0')
164 c
= constraints
[c
[0] - '0'];
166 if (! asm_operand_ok (operands
[i
], c
))
173 /* Static data for the next two routines. */
175 typedef struct change_t
183 static change_t
*changes
;
184 static int changes_allocated
;
186 static int num_changes
= 0;
188 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
189 at which NEW will be placed. If OBJECT is zero, no validation is done,
190 the change is simply made.
192 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
193 will be called with the address and mode as parameters. If OBJECT is
194 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
197 IN_GROUP is nonzero if this is part of a group of changes that must be
198 performed as a group. In that case, the changes will be stored. The
199 function `apply_change_group' will validate and apply the changes.
201 If IN_GROUP is zero, this is a single change. Try to recognize the insn
202 or validate the memory reference with the change applied. If the result
203 is not valid for the machine, suppress the change and return zero.
204 Otherwise, perform the change and return 1. */
207 validate_change (rtx object
, rtx
*loc
, rtx
new, int in_group
)
211 if (old
== new || rtx_equal_p (old
, new))
214 if (in_group
== 0 && num_changes
!= 0)
219 /* Save the information describing this change. */
220 if (num_changes
>= changes_allocated
)
222 if (changes_allocated
== 0)
223 /* This value allows for repeated substitutions inside complex
224 indexed addresses, or changes in up to 5 insns. */
225 changes_allocated
= MAX_RECOG_OPERANDS
* 5;
227 changes_allocated
*= 2;
229 changes
= xrealloc (changes
, sizeof (change_t
) * changes_allocated
);
232 changes
[num_changes
].object
= object
;
233 changes
[num_changes
].loc
= loc
;
234 changes
[num_changes
].old
= old
;
236 if (object
&& !MEM_P (object
))
238 /* Set INSN_CODE to force rerecognition of insn. Save old code in
240 changes
[num_changes
].old_code
= INSN_CODE (object
);
241 INSN_CODE (object
) = -1;
246 /* If we are making a group of changes, return 1. Otherwise, validate the
247 change group we made. */
252 return apply_change_group ();
255 /* This subroutine of apply_change_group verifies whether the changes to INSN
256 were valid; i.e. whether INSN can still be recognized. */
259 insn_invalid_p (rtx insn
)
261 rtx pat
= PATTERN (insn
);
262 int num_clobbers
= 0;
263 /* If we are before reload and the pattern is a SET, see if we can add
265 int icode
= recog (pat
, insn
,
266 (GET_CODE (pat
) == SET
267 && ! reload_completed
&& ! reload_in_progress
)
268 ? &num_clobbers
: 0);
269 int is_asm
= icode
< 0 && asm_noperands (PATTERN (insn
)) >= 0;
272 /* If this is an asm and the operand aren't legal, then fail. Likewise if
273 this is not an asm and the insn wasn't recognized. */
274 if ((is_asm
&& ! check_asm_operands (PATTERN (insn
)))
275 || (!is_asm
&& icode
< 0))
278 /* If we have to add CLOBBERs, fail if we have to add ones that reference
279 hard registers since our callers can't know if they are live or not.
280 Otherwise, add them. */
281 if (num_clobbers
> 0)
285 if (added_clobbers_hard_reg_p (icode
))
288 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (num_clobbers
+ 1));
289 XVECEXP (newpat
, 0, 0) = pat
;
290 add_clobbers (newpat
, icode
);
291 PATTERN (insn
) = pat
= newpat
;
294 /* After reload, verify that all constraints are satisfied. */
295 if (reload_completed
)
299 if (! constrain_operands (1))
303 INSN_CODE (insn
) = icode
;
307 /* Return number of changes made and not validated yet. */
309 num_changes_pending (void)
314 /* Apply a group of changes previously issued with `validate_change'.
315 Return 1 if all changes are valid, zero otherwise. */
318 apply_change_group (void)
321 rtx last_validated
= NULL_RTX
;
323 /* The changes have been applied and all INSN_CODEs have been reset to force
326 The changes are valid if we aren't given an object, or if we are
327 given a MEM and it still is a valid address, or if this is in insn
328 and it is recognized. In the latter case, if reload has completed,
329 we also require that the operands meet the constraints for
332 for (i
= 0; i
< num_changes
; i
++)
334 rtx object
= changes
[i
].object
;
336 /* If there is no object to test or if it is the same as the one we
337 already tested, ignore it. */
338 if (object
== 0 || object
== last_validated
)
343 if (! memory_address_p (GET_MODE (object
), XEXP (object
, 0)))
346 else if (insn_invalid_p (object
))
348 rtx pat
= PATTERN (object
);
350 /* Perhaps we couldn't recognize the insn because there were
351 extra CLOBBERs at the end. If so, try to re-recognize
352 without the last CLOBBER (later iterations will cause each of
353 them to be eliminated, in turn). But don't do this if we
354 have an ASM_OPERAND. */
355 if (GET_CODE (pat
) == PARALLEL
356 && GET_CODE (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1)) == CLOBBER
357 && asm_noperands (PATTERN (object
)) < 0)
361 if (XVECLEN (pat
, 0) == 2)
362 newpat
= XVECEXP (pat
, 0, 0);
368 = gen_rtx_PARALLEL (VOIDmode
,
369 rtvec_alloc (XVECLEN (pat
, 0) - 1));
370 for (j
= 0; j
< XVECLEN (newpat
, 0); j
++)
371 XVECEXP (newpat
, 0, j
) = XVECEXP (pat
, 0, j
);
374 /* Add a new change to this group to replace the pattern
375 with this new pattern. Then consider this change
376 as having succeeded. The change we added will
377 cause the entire call to fail if things remain invalid.
379 Note that this can lose if a later change than the one
380 we are processing specified &XVECEXP (PATTERN (object), 0, X)
381 but this shouldn't occur. */
383 validate_change (object
, &PATTERN (object
), newpat
, 1);
386 else if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
387 /* If this insn is a CLOBBER or USE, it is always valid, but is
393 last_validated
= object
;
396 if (i
== num_changes
)
400 for (i
= 0; i
< num_changes
; i
++)
401 if (changes
[i
].object
402 && INSN_P (changes
[i
].object
)
403 && (bb
= BLOCK_FOR_INSN (changes
[i
].object
)))
404 bb
->flags
|= BB_DIRTY
;
416 /* Return the number of changes so far in the current group. */
419 num_validated_changes (void)
424 /* Retract the changes numbered NUM and up. */
427 cancel_changes (int num
)
431 /* Back out all the changes. Do this in the opposite order in which
433 for (i
= num_changes
- 1; i
>= num
; i
--)
435 *changes
[i
].loc
= changes
[i
].old
;
436 if (changes
[i
].object
&& !MEM_P (changes
[i
].object
))
437 INSN_CODE (changes
[i
].object
) = changes
[i
].old_code
;
442 /* Replace every occurrence of FROM in X with TO. Mark each change with
443 validate_change passing OBJECT. */
446 validate_replace_rtx_1 (rtx
*loc
, rtx from
, rtx to
, rtx object
)
452 enum machine_mode op0_mode
= VOIDmode
;
453 int prev_changes
= num_changes
;
460 fmt
= GET_RTX_FORMAT (code
);
462 op0_mode
= GET_MODE (XEXP (x
, 0));
464 /* X matches FROM if it is the same rtx or they are both referring to the
465 same register in the same mode. Avoid calling rtx_equal_p unless the
466 operands look similar. */
469 || (REG_P (x
) && REG_P (from
)
470 && GET_MODE (x
) == GET_MODE (from
)
471 && REGNO (x
) == REGNO (from
))
472 || (GET_CODE (x
) == GET_CODE (from
) && GET_MODE (x
) == GET_MODE (from
)
473 && rtx_equal_p (x
, from
)))
475 validate_change (object
, loc
, to
, 1);
479 /* Call ourself recursively to perform the replacements.
480 We must not replace inside already replaced expression, otherwise we
481 get infinite recursion for replacements like (reg X)->(subreg (reg X))
482 done by regmove, so we must special case shared ASM_OPERANDS. */
484 if (GET_CODE (x
) == PARALLEL
)
486 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
488 if (j
&& GET_CODE (XVECEXP (x
, 0, j
)) == SET
489 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == ASM_OPERANDS
)
491 /* Verify that operands are really shared. */
492 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x
, 0, 0))) !=
493 ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x
, 0, j
))))
495 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x
, 0, j
)),
499 validate_replace_rtx_1 (&XVECEXP (x
, 0, j
), from
, to
, object
);
503 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
506 validate_replace_rtx_1 (&XEXP (x
, i
), from
, to
, object
);
507 else if (fmt
[i
] == 'E')
508 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
509 validate_replace_rtx_1 (&XVECEXP (x
, i
, j
), from
, to
, object
);
512 /* If we didn't substitute, there is nothing more to do. */
513 if (num_changes
== prev_changes
)
516 /* Allow substituted expression to have different mode. This is used by
517 regmove to change mode of pseudo register. */
518 if (fmt
[0] == 'e' && GET_MODE (XEXP (x
, 0)) != VOIDmode
)
519 op0_mode
= GET_MODE (XEXP (x
, 0));
521 /* Do changes needed to keep rtx consistent. Don't do any other
522 simplifications, as it is not our job. */
524 if (SWAPPABLE_OPERANDS_P (x
)
525 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
527 validate_change (object
, loc
,
528 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x
) ? code
529 : swap_condition (code
),
530 GET_MODE (x
), XEXP (x
, 1),
539 /* If we have a PLUS whose second operand is now a CONST_INT, use
540 simplify_gen_binary to try to simplify it.
541 ??? We may want later to remove this, once simplification is
542 separated from this function. */
543 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
&& XEXP (x
, 1) == to
)
544 validate_change (object
, loc
,
546 (PLUS
, GET_MODE (x
), XEXP (x
, 0), XEXP (x
, 1)), 1);
549 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
550 || GET_CODE (XEXP (x
, 1)) == CONST_DOUBLE
)
551 validate_change (object
, loc
,
553 (PLUS
, GET_MODE (x
), XEXP (x
, 0),
554 simplify_gen_unary (NEG
,
555 GET_MODE (x
), XEXP (x
, 1),
560 if (GET_MODE (XEXP (x
, 0)) == VOIDmode
)
562 new = simplify_gen_unary (code
, GET_MODE (x
), XEXP (x
, 0),
564 /* If any of the above failed, substitute in something that
565 we know won't be recognized. */
567 new = gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
568 validate_change (object
, loc
, new, 1);
572 /* All subregs possible to simplify should be simplified. */
573 new = simplify_subreg (GET_MODE (x
), SUBREG_REG (x
), op0_mode
,
576 /* Subregs of VOIDmode operands are incorrect. */
577 if (!new && GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
578 new = gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
580 validate_change (object
, loc
, new, 1);
584 /* If we are replacing a register with memory, try to change the memory
585 to be the mode required for memory in extract operations (this isn't
586 likely to be an insertion operation; if it was, nothing bad will
587 happen, we might just fail in some cases). */
589 if (MEM_P (XEXP (x
, 0))
590 && GET_CODE (XEXP (x
, 1)) == CONST_INT
591 && GET_CODE (XEXP (x
, 2)) == CONST_INT
592 && !mode_dependent_address_p (XEXP (XEXP (x
, 0), 0))
593 && !MEM_VOLATILE_P (XEXP (x
, 0)))
595 enum machine_mode wanted_mode
= VOIDmode
;
596 enum machine_mode is_mode
= GET_MODE (XEXP (x
, 0));
597 int pos
= INTVAL (XEXP (x
, 2));
599 if (GET_CODE (x
) == ZERO_EXTRACT
)
601 enum machine_mode new_mode
602 = mode_for_extraction (EP_extzv
, 1);
603 if (new_mode
!= MAX_MACHINE_MODE
)
604 wanted_mode
= new_mode
;
606 else if (GET_CODE (x
) == SIGN_EXTRACT
)
608 enum machine_mode new_mode
609 = mode_for_extraction (EP_extv
, 1);
610 if (new_mode
!= MAX_MACHINE_MODE
)
611 wanted_mode
= new_mode
;
614 /* If we have a narrower mode, we can do something. */
615 if (wanted_mode
!= VOIDmode
616 && GET_MODE_SIZE (wanted_mode
) < GET_MODE_SIZE (is_mode
))
618 int offset
= pos
/ BITS_PER_UNIT
;
621 /* If the bytes and bits are counted differently, we
622 must adjust the offset. */
623 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
)
625 (GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (wanted_mode
) -
628 pos
%= GET_MODE_BITSIZE (wanted_mode
);
630 newmem
= adjust_address_nv (XEXP (x
, 0), wanted_mode
, offset
);
632 validate_change (object
, &XEXP (x
, 2), GEN_INT (pos
), 1);
633 validate_change (object
, &XEXP (x
, 0), newmem
, 1);
644 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
645 with TO. After all changes have been made, validate by seeing
646 if INSN is still valid. */
649 validate_replace_rtx_subexp (rtx from
, rtx to
, rtx insn
, rtx
*loc
)
651 validate_replace_rtx_1 (loc
, from
, to
, insn
);
652 return apply_change_group ();
655 /* Try replacing every occurrence of FROM in INSN with TO. After all
656 changes have been made, validate by seeing if INSN is still valid. */
659 validate_replace_rtx (rtx from
, rtx to
, rtx insn
)
661 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
);
662 return apply_change_group ();
665 /* Try replacing every occurrence of FROM in INSN with TO. */
668 validate_replace_rtx_group (rtx from
, rtx to
, rtx insn
)
670 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
);
673 /* Function called by note_uses to replace used subexpressions. */
674 struct validate_replace_src_data
676 rtx from
; /* Old RTX */
677 rtx to
; /* New RTX */
678 rtx insn
; /* Insn in which substitution is occurring. */
682 validate_replace_src_1 (rtx
*x
, void *data
)
684 struct validate_replace_src_data
*d
685 = (struct validate_replace_src_data
*) data
;
687 validate_replace_rtx_1 (x
, d
->from
, d
->to
, d
->insn
);
690 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
694 validate_replace_src_group (rtx from
, rtx to
, rtx insn
)
696 struct validate_replace_src_data d
;
701 note_uses (&PATTERN (insn
), validate_replace_src_1
, &d
);
705 /* Return 1 if the insn using CC0 set by INSN does not contain
706 any ordered tests applied to the condition codes.
707 EQ and NE tests do not count. */
710 next_insn_tests_no_inequality (rtx insn
)
712 rtx next
= next_cc0_user (insn
);
714 /* If there is no next insn, we have to take the conservative choice. */
718 return (INSN_P (next
)
719 && ! inequality_comparisons_p (PATTERN (next
)));
723 /* This is used by find_single_use to locate an rtx that contains exactly one
724 use of DEST, which is typically either a REG or CC0. It returns a
725 pointer to the innermost rtx expression containing DEST. Appearances of
726 DEST that are being used to totally replace it are not counted. */
729 find_single_use_1 (rtx dest
, rtx
*loc
)
732 enum rtx_code code
= GET_CODE (x
);
750 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
751 of a REG that occupies all of the REG, the insn uses DEST if
752 it is mentioned in the destination or the source. Otherwise, we
753 need just check the source. */
754 if (GET_CODE (SET_DEST (x
)) != CC0
755 && GET_CODE (SET_DEST (x
)) != PC
756 && !REG_P (SET_DEST (x
))
757 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
758 && REG_P (SUBREG_REG (SET_DEST (x
)))
759 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
760 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
761 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
762 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
765 return find_single_use_1 (dest
, &SET_SRC (x
));
769 return find_single_use_1 (dest
, &XEXP (x
, 0));
775 /* If it wasn't one of the common cases above, check each expression and
776 vector of this code. Look for a unique usage of DEST. */
778 fmt
= GET_RTX_FORMAT (code
);
779 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
783 if (dest
== XEXP (x
, i
)
784 || (REG_P (dest
) && REG_P (XEXP (x
, i
))
785 && REGNO (dest
) == REGNO (XEXP (x
, i
))))
788 this_result
= find_single_use_1 (dest
, &XEXP (x
, i
));
791 result
= this_result
;
792 else if (this_result
)
793 /* Duplicate usage. */
796 else if (fmt
[i
] == 'E')
800 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
802 if (XVECEXP (x
, i
, j
) == dest
804 && REG_P (XVECEXP (x
, i
, j
))
805 && REGNO (XVECEXP (x
, i
, j
)) == REGNO (dest
)))
808 this_result
= find_single_use_1 (dest
, &XVECEXP (x
, i
, j
));
811 result
= this_result
;
812 else if (this_result
)
821 /* See if DEST, produced in INSN, is used only a single time in the
822 sequel. If so, return a pointer to the innermost rtx expression in which
825 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
827 This routine will return usually zero either before flow is called (because
828 there will be no LOG_LINKS notes) or after reload (because the REG_DEAD
829 note can't be trusted).
831 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
832 care about REG_DEAD notes or LOG_LINKS.
834 Otherwise, we find the single use by finding an insn that has a
835 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
836 only referenced once in that insn, we know that it must be the first
837 and last insn referencing DEST. */
840 find_single_use (rtx dest
, rtx insn
, rtx
*ploc
)
849 next
= NEXT_INSN (insn
);
851 || (!NONJUMP_INSN_P (next
) && !JUMP_P (next
)))
854 result
= find_single_use_1 (dest
, &PATTERN (next
));
861 if (reload_completed
|| reload_in_progress
|| !REG_P (dest
))
864 for (next
= next_nonnote_insn (insn
);
865 next
!= 0 && !LABEL_P (next
);
866 next
= next_nonnote_insn (next
))
867 if (INSN_P (next
) && dead_or_set_p (next
, dest
))
869 for (link
= LOG_LINKS (next
); link
; link
= XEXP (link
, 1))
870 if (XEXP (link
, 0) == insn
)
875 result
= find_single_use_1 (dest
, &PATTERN (next
));
885 /* Return 1 if OP is a valid general operand for machine mode MODE.
886 This is either a register reference, a memory reference,
887 or a constant. In the case of a memory reference, the address
888 is checked for general validity for the target machine.
890 Register and memory references must have mode MODE in order to be valid,
891 but some constants have no machine mode and are valid for any mode.
893 If MODE is VOIDmode, OP is checked for validity for whatever mode
896 The main use of this function is as a predicate in match_operand
897 expressions in the machine description.
899 For an explanation of this function's behavior for registers of
900 class NO_REGS, see the comment for `register_operand'. */
903 general_operand (rtx op
, enum machine_mode mode
)
905 enum rtx_code code
= GET_CODE (op
);
907 if (mode
== VOIDmode
)
908 mode
= GET_MODE (op
);
910 /* Don't accept CONST_INT or anything similar
911 if the caller wants something floating. */
912 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
913 && GET_MODE_CLASS (mode
) != MODE_INT
914 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
917 if (GET_CODE (op
) == CONST_INT
919 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
923 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
925 #ifdef LEGITIMATE_PIC_OPERAND_P
926 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
928 && LEGITIMATE_CONSTANT_P (op
));
930 /* Except for certain constants with VOIDmode, already checked for,
931 OP's mode must match MODE if MODE specifies a mode. */
933 if (GET_MODE (op
) != mode
)
938 rtx sub
= SUBREG_REG (op
);
940 #ifdef INSN_SCHEDULING
941 /* On machines that have insn scheduling, we want all memory
942 reference to be explicit, so outlaw paradoxical SUBREGs. */
944 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (sub
)))
947 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
948 may result in incorrect reference. We should simplify all valid
949 subregs of MEM anyway. But allow this after reload because we
950 might be called from cleanup_subreg_operands.
952 ??? This is a kludge. */
953 if (!reload_completed
&& SUBREG_BYTE (op
) != 0
957 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
958 create such rtl, and we must reject it. */
959 if (GET_MODE_CLASS (GET_MODE (op
)) == MODE_FLOAT
960 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
964 code
= GET_CODE (op
);
968 /* A register whose class is NO_REGS is not a general operand. */
969 return (REGNO (op
) >= FIRST_PSEUDO_REGISTER
970 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
);
974 rtx y
= XEXP (op
, 0);
976 if (! volatile_ok
&& MEM_VOLATILE_P (op
))
979 /* Use the mem's mode, since it will be reloaded thus. */
980 mode
= GET_MODE (op
);
981 GO_IF_LEGITIMATE_ADDRESS (mode
, y
, win
);
990 /* Return 1 if OP is a valid memory address for a memory reference
993 The main use of this function is as a predicate in match_operand
994 expressions in the machine description. */
997 address_operand (rtx op
, enum machine_mode mode
)
999 return memory_address_p (mode
, op
);
1002 /* Return 1 if OP is a register reference of mode MODE.
1003 If MODE is VOIDmode, accept a register in any mode.
1005 The main use of this function is as a predicate in match_operand
1006 expressions in the machine description.
1008 As a special exception, registers whose class is NO_REGS are
1009 not accepted by `register_operand'. The reason for this change
1010 is to allow the representation of special architecture artifacts
1011 (such as a condition code register) without extending the rtl
1012 definitions. Since registers of class NO_REGS cannot be used
1013 as registers in any case where register classes are examined,
1014 it is most consistent to keep this function from accepting them. */
1017 register_operand (rtx op
, enum machine_mode mode
)
1019 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1022 if (GET_CODE (op
) == SUBREG
)
1024 rtx sub
= SUBREG_REG (op
);
1026 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1027 because it is guaranteed to be reloaded into one.
1028 Just make sure the MEM is valid in itself.
1029 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1030 but currently it does result from (SUBREG (REG)...) where the
1031 reg went on the stack.) */
1032 if (! reload_completed
&& MEM_P (sub
))
1033 return general_operand (op
, mode
);
1035 #ifdef CANNOT_CHANGE_MODE_CLASS
1037 && REGNO (sub
) < FIRST_PSEUDO_REGISTER
1038 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub
), GET_MODE (sub
), mode
)
1039 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_INT
1040 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_FLOAT
)
1044 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1045 create such rtl, and we must reject it. */
1046 if (GET_MODE_CLASS (GET_MODE (op
)) == MODE_FLOAT
1047 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
1053 /* We don't consider registers whose class is NO_REGS
1054 to be a register operand. */
1056 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1057 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
));
1060 /* Return 1 for a register in Pmode; ignore the tested mode. */
1063 pmode_register_operand (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
1065 return register_operand (op
, Pmode
);
1068 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1069 or a hard register. */
1072 scratch_operand (rtx op
, enum machine_mode mode
)
1074 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1077 return (GET_CODE (op
) == SCRATCH
1079 && REGNO (op
) < FIRST_PSEUDO_REGISTER
));
1082 /* Return 1 if OP is a valid immediate operand for mode MODE.
1084 The main use of this function is as a predicate in match_operand
1085 expressions in the machine description. */
1088 immediate_operand (rtx op
, enum machine_mode mode
)
1090 /* Don't accept CONST_INT or anything similar
1091 if the caller wants something floating. */
1092 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1093 && GET_MODE_CLASS (mode
) != MODE_INT
1094 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1097 if (GET_CODE (op
) == CONST_INT
1099 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1102 return (CONSTANT_P (op
)
1103 && (GET_MODE (op
) == mode
|| mode
== VOIDmode
1104 || GET_MODE (op
) == VOIDmode
)
1105 #ifdef LEGITIMATE_PIC_OPERAND_P
1106 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1108 && LEGITIMATE_CONSTANT_P (op
));
1111 /* Returns 1 if OP is an operand that is a CONST_INT. */
1114 const_int_operand (rtx op
, enum machine_mode mode
)
1116 if (GET_CODE (op
) != CONST_INT
)
1119 if (mode
!= VOIDmode
1120 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1126 /* Returns 1 if OP is an operand that is a constant integer or constant
1127 floating-point number. */
1130 const_double_operand (rtx op
, enum machine_mode mode
)
1132 /* Don't accept CONST_INT or anything similar
1133 if the caller wants something floating. */
1134 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1135 && GET_MODE_CLASS (mode
) != MODE_INT
1136 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1139 return ((GET_CODE (op
) == CONST_DOUBLE
|| GET_CODE (op
) == CONST_INT
)
1140 && (mode
== VOIDmode
|| GET_MODE (op
) == mode
1141 || GET_MODE (op
) == VOIDmode
));
1144 /* Return 1 if OP is a general operand that is not an immediate operand. */
1147 nonimmediate_operand (rtx op
, enum machine_mode mode
)
1149 return (general_operand (op
, mode
) && ! CONSTANT_P (op
));
1152 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1155 nonmemory_operand (rtx op
, enum machine_mode mode
)
1157 if (CONSTANT_P (op
))
1159 /* Don't accept CONST_INT or anything similar
1160 if the caller wants something floating. */
1161 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1162 && GET_MODE_CLASS (mode
) != MODE_INT
1163 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1166 if (GET_CODE (op
) == CONST_INT
1168 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1171 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
1172 || mode
== VOIDmode
)
1173 #ifdef LEGITIMATE_PIC_OPERAND_P
1174 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1176 && LEGITIMATE_CONSTANT_P (op
));
1179 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1182 if (GET_CODE (op
) == SUBREG
)
1184 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1185 because it is guaranteed to be reloaded into one.
1186 Just make sure the MEM is valid in itself.
1187 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1188 but currently it does result from (SUBREG (REG)...) where the
1189 reg went on the stack.) */
1190 if (! reload_completed
&& MEM_P (SUBREG_REG (op
)))
1191 return general_operand (op
, mode
);
1192 op
= SUBREG_REG (op
);
1195 /* We don't consider registers whose class is NO_REGS
1196 to be a register operand. */
1198 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1199 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
));
1202 /* Return 1 if OP is a valid operand that stands for pushing a
1203 value of mode MODE onto the stack.
1205 The main use of this function is as a predicate in match_operand
1206 expressions in the machine description. */
1209 push_operand (rtx op
, enum machine_mode mode
)
1211 unsigned int rounded_size
= GET_MODE_SIZE (mode
);
1213 #ifdef PUSH_ROUNDING
1214 rounded_size
= PUSH_ROUNDING (rounded_size
);
1220 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1225 if (rounded_size
== GET_MODE_SIZE (mode
))
1227 if (GET_CODE (op
) != STACK_PUSH_CODE
)
1232 if (GET_CODE (op
) != PRE_MODIFY
1233 || GET_CODE (XEXP (op
, 1)) != PLUS
1234 || XEXP (XEXP (op
, 1), 0) != XEXP (op
, 0)
1235 || GET_CODE (XEXP (XEXP (op
, 1), 1)) != CONST_INT
1236 #ifdef STACK_GROWS_DOWNWARD
1237 || INTVAL (XEXP (XEXP (op
, 1), 1)) != - (int) rounded_size
1239 || INTVAL (XEXP (XEXP (op
, 1), 1)) != (int) rounded_size
1245 return XEXP (op
, 0) == stack_pointer_rtx
;
1248 /* Return 1 if OP is a valid operand that stands for popping a
1249 value of mode MODE off the stack.
1251 The main use of this function is as a predicate in match_operand
1252 expressions in the machine description. */
1255 pop_operand (rtx op
, enum machine_mode mode
)
1260 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1265 if (GET_CODE (op
) != STACK_POP_CODE
)
1268 return XEXP (op
, 0) == stack_pointer_rtx
;
1271 /* Return 1 if ADDR is a valid memory address for mode MODE. */
1274 memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED
, rtx addr
)
1276 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
1283 /* Return 1 if OP is a valid memory reference with mode MODE,
1284 including a valid address.
1286 The main use of this function is as a predicate in match_operand
1287 expressions in the machine description. */
1290 memory_operand (rtx op
, enum machine_mode mode
)
1294 if (! reload_completed
)
1295 /* Note that no SUBREG is a memory operand before end of reload pass,
1296 because (SUBREG (MEM...)) forces reloading into a register. */
1297 return MEM_P (op
) && general_operand (op
, mode
);
1299 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1303 if (GET_CODE (inner
) == SUBREG
)
1304 inner
= SUBREG_REG (inner
);
1306 return (MEM_P (inner
) && general_operand (op
, mode
));
1309 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1310 that is, a memory reference whose address is a general_operand. */
1313 indirect_operand (rtx op
, enum machine_mode mode
)
1315 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1316 if (! reload_completed
1317 && GET_CODE (op
) == SUBREG
&& MEM_P (SUBREG_REG (op
)))
1319 int offset
= SUBREG_BYTE (op
);
1320 rtx inner
= SUBREG_REG (op
);
1322 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1325 /* The only way that we can have a general_operand as the resulting
1326 address is if OFFSET is zero and the address already is an operand
1327 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1330 return ((offset
== 0 && general_operand (XEXP (inner
, 0), Pmode
))
1331 || (GET_CODE (XEXP (inner
, 0)) == PLUS
1332 && GET_CODE (XEXP (XEXP (inner
, 0), 1)) == CONST_INT
1333 && INTVAL (XEXP (XEXP (inner
, 0), 1)) == -offset
1334 && general_operand (XEXP (XEXP (inner
, 0), 0), Pmode
)));
1338 && memory_operand (op
, mode
)
1339 && general_operand (XEXP (op
, 0), Pmode
));
1342 /* Return 1 if this is a comparison operator. This allows the use of
1343 MATCH_OPERATOR to recognize all the branch insns. */
1346 comparison_operator (rtx op
, enum machine_mode mode
)
1348 return ((mode
== VOIDmode
|| GET_MODE (op
) == mode
)
1349 && COMPARISON_P (op
));
1352 /* If BODY is an insn body that uses ASM_OPERANDS,
1353 return the number of operands (both input and output) in the insn.
1354 Otherwise return -1. */
1357 asm_noperands (rtx body
)
1359 switch (GET_CODE (body
))
1362 /* No output operands: return number of input operands. */
1363 return ASM_OPERANDS_INPUT_LENGTH (body
);
1365 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
1366 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1367 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body
)) + 1;
1371 if (GET_CODE (XVECEXP (body
, 0, 0)) == SET
1372 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
1374 /* Multiple output operands, or 1 output plus some clobbers:
1375 body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1379 /* Count backwards through CLOBBERs to determine number of SETs. */
1380 for (i
= XVECLEN (body
, 0); i
> 0; i
--)
1382 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) == SET
)
1384 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) != CLOBBER
)
1388 /* N_SETS is now number of output operands. */
1391 /* Verify that all the SETs we have
1392 came from a single original asm_operands insn
1393 (so that invalid combinations are blocked). */
1394 for (i
= 0; i
< n_sets
; i
++)
1396 rtx elt
= XVECEXP (body
, 0, i
);
1397 if (GET_CODE (elt
) != SET
)
1399 if (GET_CODE (SET_SRC (elt
)) != ASM_OPERANDS
)
1401 /* If these ASM_OPERANDS rtx's came from different original insns
1402 then they aren't allowed together. */
1403 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt
))
1404 != ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body
, 0, 0))))
1407 return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body
, 0, 0)))
1410 else if (GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
1412 /* 0 outputs, but some clobbers:
1413 body is [(asm_operands ...) (clobber (reg ...))...]. */
1416 /* Make sure all the other parallel things really are clobbers. */
1417 for (i
= XVECLEN (body
, 0) - 1; i
> 0; i
--)
1418 if (GET_CODE (XVECEXP (body
, 0, i
)) != CLOBBER
)
1421 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body
, 0, 0));
1430 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1431 copy its operands (both input and output) into the vector OPERANDS,
1432 the locations of the operands within the insn into the vector OPERAND_LOCS,
1433 and the constraints for the operands into CONSTRAINTS.
1434 Write the modes of the operands into MODES.
1435 Return the assembler-template.
1437 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1438 we don't store that info. */
1441 decode_asm_operands (rtx body
, rtx
*operands
, rtx
**operand_locs
,
1442 const char **constraints
, enum machine_mode
*modes
)
1446 const char *template = 0;
1448 if (GET_CODE (body
) == SET
&& GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
1450 rtx asmop
= SET_SRC (body
);
1451 /* Single output operand: BODY is (set OUTPUT (asm_operands ....)). */
1453 noperands
= ASM_OPERANDS_INPUT_LENGTH (asmop
) + 1;
1455 for (i
= 1; i
< noperands
; i
++)
1458 operand_locs
[i
] = &ASM_OPERANDS_INPUT (asmop
, i
- 1);
1460 operands
[i
] = ASM_OPERANDS_INPUT (asmop
, i
- 1);
1462 constraints
[i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
- 1);
1464 modes
[i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
- 1);
1467 /* The output is in the SET.
1468 Its constraint is in the ASM_OPERANDS itself. */
1470 operands
[0] = SET_DEST (body
);
1472 operand_locs
[0] = &SET_DEST (body
);
1474 constraints
[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop
);
1476 modes
[0] = GET_MODE (SET_DEST (body
));
1477 template = ASM_OPERANDS_TEMPLATE (asmop
);
1479 else if (GET_CODE (body
) == ASM_OPERANDS
)
1482 /* No output operands: BODY is (asm_operands ....). */
1484 noperands
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1486 /* The input operands are found in the 1st element vector. */
1487 /* Constraints for inputs are in the 2nd element vector. */
1488 for (i
= 0; i
< noperands
; i
++)
1491 operand_locs
[i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1493 operands
[i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1495 constraints
[i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1497 modes
[i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1499 template = ASM_OPERANDS_TEMPLATE (asmop
);
1501 else if (GET_CODE (body
) == PARALLEL
1502 && GET_CODE (XVECEXP (body
, 0, 0)) == SET
1503 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
1505 rtx asmop
= SET_SRC (XVECEXP (body
, 0, 0));
1506 int nparallel
= XVECLEN (body
, 0); /* Includes CLOBBERs. */
1507 int nin
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1508 int nout
= 0; /* Does not include CLOBBERs. */
1510 /* At least one output, plus some CLOBBERs. */
1512 /* The outputs are in the SETs.
1513 Their constraints are in the ASM_OPERANDS itself. */
1514 for (i
= 0; i
< nparallel
; i
++)
1516 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
1517 break; /* Past last SET */
1520 operands
[i
] = SET_DEST (XVECEXP (body
, 0, i
));
1522 operand_locs
[i
] = &SET_DEST (XVECEXP (body
, 0, i
));
1524 constraints
[i
] = XSTR (SET_SRC (XVECEXP (body
, 0, i
)), 1);
1526 modes
[i
] = GET_MODE (SET_DEST (XVECEXP (body
, 0, i
)));
1530 for (i
= 0; i
< nin
; i
++)
1533 operand_locs
[i
+ nout
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1535 operands
[i
+ nout
] = ASM_OPERANDS_INPUT (asmop
, i
);
1537 constraints
[i
+ nout
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1539 modes
[i
+ nout
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1542 template = ASM_OPERANDS_TEMPLATE (asmop
);
1544 else if (GET_CODE (body
) == PARALLEL
1545 && GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
1547 /* No outputs, but some CLOBBERs. */
1549 rtx asmop
= XVECEXP (body
, 0, 0);
1550 int nin
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1552 for (i
= 0; i
< nin
; i
++)
1555 operand_locs
[i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1557 operands
[i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1559 constraints
[i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1561 modes
[i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1564 template = ASM_OPERANDS_TEMPLATE (asmop
);
1570 /* Check if an asm_operand matches its constraints.
1571 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1574 asm_operand_ok (rtx op
, const char *constraint
)
1578 /* Use constrain_operands after reload. */
1579 if (reload_completed
)
1584 char c
= *constraint
;
1601 case '0': case '1': case '2': case '3': case '4':
1602 case '5': case '6': case '7': case '8': case '9':
1603 /* For best results, our caller should have given us the
1604 proper matching constraint, but we can't actually fail
1605 the check if they didn't. Indicate that results are
1609 while (ISDIGIT (*constraint
));
1615 if (address_operand (op
, VOIDmode
))
1620 case 'V': /* non-offsettable */
1621 if (memory_operand (op
, VOIDmode
))
1625 case 'o': /* offsettable */
1626 if (offsettable_nonstrict_memref_p (op
))
1631 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
1632 excepting those that expand_call created. Further, on some
1633 machines which do not have generalized auto inc/dec, an inc/dec
1634 is not a memory_operand.
1636 Match any memory and hope things are resolved after reload. */
1640 || GET_CODE (XEXP (op
, 0)) == PRE_DEC
1641 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
1648 || GET_CODE (XEXP (op
, 0)) == PRE_INC
1649 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
1655 if (GET_CODE (op
) == CONST_DOUBLE
1656 || (GET_CODE (op
) == CONST_VECTOR
1657 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_VECTOR_FLOAT
))
1662 if (GET_CODE (op
) == CONST_DOUBLE
1663 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, 'G', constraint
))
1667 if (GET_CODE (op
) == CONST_DOUBLE
1668 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, 'H', constraint
))
1673 if (GET_CODE (op
) == CONST_INT
1674 || (GET_CODE (op
) == CONST_DOUBLE
1675 && GET_MODE (op
) == VOIDmode
))
1681 #ifdef LEGITIMATE_PIC_OPERAND_P
1682 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1689 if (GET_CODE (op
) == CONST_INT
1690 || (GET_CODE (op
) == CONST_DOUBLE
1691 && GET_MODE (op
) == VOIDmode
))
1696 if (GET_CODE (op
) == CONST_INT
1697 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'I', constraint
))
1701 if (GET_CODE (op
) == CONST_INT
1702 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'J', constraint
))
1706 if (GET_CODE (op
) == CONST_INT
1707 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'K', constraint
))
1711 if (GET_CODE (op
) == CONST_INT
1712 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'L', constraint
))
1716 if (GET_CODE (op
) == CONST_INT
1717 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'M', constraint
))
1721 if (GET_CODE (op
) == CONST_INT
1722 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'N', constraint
))
1726 if (GET_CODE (op
) == CONST_INT
1727 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'O', constraint
))
1731 if (GET_CODE (op
) == CONST_INT
1732 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'P', constraint
))
1741 if (general_operand (op
, VOIDmode
))
1746 /* For all other letters, we first check for a register class,
1747 otherwise it is an EXTRA_CONSTRAINT. */
1748 if (REG_CLASS_FROM_CONSTRAINT (c
, constraint
) != NO_REGS
)
1751 if (GET_MODE (op
) == BLKmode
)
1753 if (register_operand (op
, VOIDmode
))
1756 #ifdef EXTRA_CONSTRAINT_STR
1757 else if (EXTRA_CONSTRAINT_STR (op
, c
, constraint
))
1759 else if (EXTRA_MEMORY_CONSTRAINT (c
, constraint
)
1760 /* Every memory operand can be reloaded to fit. */
1761 && memory_operand (op
, VOIDmode
))
1763 else if (EXTRA_ADDRESS_CONSTRAINT (c
, constraint
)
1764 /* Every address operand can be reloaded to fit. */
1765 && address_operand (op
, VOIDmode
))
1770 len
= CONSTRAINT_LEN (c
, constraint
);
1773 while (--len
&& *constraint
);
1781 /* Given an rtx *P, if it is a sum containing an integer constant term,
1782 return the location (type rtx *) of the pointer to that constant term.
1783 Otherwise, return a null pointer. */
1786 find_constant_term_loc (rtx
*p
)
1789 enum rtx_code code
= GET_CODE (*p
);
1791 /* If *P IS such a constant term, P is its location. */
1793 if (code
== CONST_INT
|| code
== SYMBOL_REF
|| code
== LABEL_REF
1797 /* Otherwise, if not a sum, it has no constant term. */
1799 if (GET_CODE (*p
) != PLUS
)
1802 /* If one of the summands is constant, return its location. */
1804 if (XEXP (*p
, 0) && CONSTANT_P (XEXP (*p
, 0))
1805 && XEXP (*p
, 1) && CONSTANT_P (XEXP (*p
, 1)))
1808 /* Otherwise, check each summand for containing a constant term. */
1810 if (XEXP (*p
, 0) != 0)
1812 tem
= find_constant_term_loc (&XEXP (*p
, 0));
1817 if (XEXP (*p
, 1) != 0)
1819 tem
= find_constant_term_loc (&XEXP (*p
, 1));
1827 /* Return 1 if OP is a memory reference
1828 whose address contains no side effects
1829 and remains valid after the addition
1830 of a positive integer less than the
1831 size of the object being referenced.
1833 We assume that the original address is valid and do not check it.
1835 This uses strict_memory_address_p as a subroutine, so
1836 don't use it before reload. */
1839 offsettable_memref_p (rtx op
)
1841 return ((MEM_P (op
))
1842 && offsettable_address_p (1, GET_MODE (op
), XEXP (op
, 0)));
1845 /* Similar, but don't require a strictly valid mem ref:
1846 consider pseudo-regs valid as index or base regs. */
1849 offsettable_nonstrict_memref_p (rtx op
)
1851 return ((MEM_P (op
))
1852 && offsettable_address_p (0, GET_MODE (op
), XEXP (op
, 0)));
1855 /* Return 1 if Y is a memory address which contains no side effects
1856 and would remain valid after the addition of a positive integer
1857 less than the size of that mode.
1859 We assume that the original address is valid and do not check it.
1860 We do check that it is valid for narrower modes.
1862 If STRICTP is nonzero, we require a strictly valid address,
1863 for the sake of use in reload.c. */
1866 offsettable_address_p (int strictp
, enum machine_mode mode
, rtx y
)
1868 enum rtx_code ycode
= GET_CODE (y
);
1872 int (*addressp
) (enum machine_mode
, rtx
) =
1873 (strictp
? strict_memory_address_p
: memory_address_p
);
1874 unsigned int mode_sz
= GET_MODE_SIZE (mode
);
1876 if (CONSTANT_ADDRESS_P (y
))
1879 /* Adjusting an offsettable address involves changing to a narrower mode.
1880 Make sure that's OK. */
1882 if (mode_dependent_address_p (y
))
1885 /* ??? How much offset does an offsettable BLKmode reference need?
1886 Clearly that depends on the situation in which it's being used.
1887 However, the current situation in which we test 0xffffffff is
1888 less than ideal. Caveat user. */
1890 mode_sz
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
1892 /* If the expression contains a constant term,
1893 see if it remains valid when max possible offset is added. */
1895 if ((ycode
== PLUS
) && (y2
= find_constant_term_loc (&y1
)))
1900 *y2
= plus_constant (*y2
, mode_sz
- 1);
1901 /* Use QImode because an odd displacement may be automatically invalid
1902 for any wider mode. But it should be valid for a single byte. */
1903 good
= (*addressp
) (QImode
, y
);
1905 /* In any case, restore old contents of memory. */
1910 if (GET_RTX_CLASS (ycode
) == RTX_AUTOINC
)
1913 /* The offset added here is chosen as the maximum offset that
1914 any instruction could need to add when operating on something
1915 of the specified mode. We assume that if Y and Y+c are
1916 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1917 go inside a LO_SUM here, so we do so as well. */
1918 if (GET_CODE (y
) == LO_SUM
1920 && mode_sz
<= GET_MODE_ALIGNMENT (mode
) / BITS_PER_UNIT
)
1921 z
= gen_rtx_LO_SUM (GET_MODE (y
), XEXP (y
, 0),
1922 plus_constant (XEXP (y
, 1), mode_sz
- 1));
1924 z
= plus_constant (y
, mode_sz
- 1);
1926 /* Use QImode because an odd displacement may be automatically invalid
1927 for any wider mode. But it should be valid for a single byte. */
1928 return (*addressp
) (QImode
, z
);
1931 /* Return 1 if ADDR is an address-expression whose effect depends
1932 on the mode of the memory reference it is used in.
1934 Autoincrement addressing is a typical example of mode-dependence
1935 because the amount of the increment depends on the mode. */
1938 mode_dependent_address_p (rtx addr ATTRIBUTE_UNUSED
/* Maybe used in GO_IF_MODE_DEPENDENT_ADDRESS. */)
1940 GO_IF_MODE_DEPENDENT_ADDRESS (addr
, win
);
1942 /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
1943 win
: ATTRIBUTE_UNUSED_LABEL
1947 /* Like extract_insn, but save insn extracted and don't extract again, when
1948 called again for the same insn expecting that recog_data still contain the
1949 valid information. This is used primary by gen_attr infrastructure that
1950 often does extract insn again and again. */
1952 extract_insn_cached (rtx insn
)
1954 if (recog_data
.insn
== insn
&& INSN_CODE (insn
) >= 0)
1956 extract_insn (insn
);
1957 recog_data
.insn
= insn
;
1959 /* Do cached extract_insn, constrain_operands and complain about failures.
1960 Used by insn_attrtab. */
1962 extract_constrain_insn_cached (rtx insn
)
1964 extract_insn_cached (insn
);
1965 if (which_alternative
== -1
1966 && !constrain_operands (reload_completed
))
1967 fatal_insn_not_found (insn
);
1969 /* Do cached constrain_operands and complain about failures. */
1971 constrain_operands_cached (int strict
)
1973 if (which_alternative
== -1)
1974 return constrain_operands (strict
);
1979 /* Analyze INSN and fill in recog_data. */
1982 extract_insn (rtx insn
)
1987 rtx body
= PATTERN (insn
);
1989 recog_data
.insn
= NULL
;
1990 recog_data
.n_operands
= 0;
1991 recog_data
.n_alternatives
= 0;
1992 recog_data
.n_dups
= 0;
1993 which_alternative
= -1;
1995 switch (GET_CODE (body
))
2005 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
2010 if ((GET_CODE (XVECEXP (body
, 0, 0)) == SET
2011 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
2012 || GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
2018 recog_data
.n_operands
= noperands
= asm_noperands (body
);
2021 /* This insn is an `asm' with operands. */
2023 /* expand_asm_operands makes sure there aren't too many operands. */
2024 if (noperands
> MAX_RECOG_OPERANDS
)
2027 /* Now get the operand values and constraints out of the insn. */
2028 decode_asm_operands (body
, recog_data
.operand
,
2029 recog_data
.operand_loc
,
2030 recog_data
.constraints
,
2031 recog_data
.operand_mode
);
2034 const char *p
= recog_data
.constraints
[0];
2035 recog_data
.n_alternatives
= 1;
2037 recog_data
.n_alternatives
+= (*p
++ == ',');
2041 fatal_insn_not_found (insn
);
2045 /* Ordinary insn: recognize it, get the operands via insn_extract
2046 and get the constraints. */
2048 icode
= recog_memoized (insn
);
2050 fatal_insn_not_found (insn
);
2052 recog_data
.n_operands
= noperands
= insn_data
[icode
].n_operands
;
2053 recog_data
.n_alternatives
= insn_data
[icode
].n_alternatives
;
2054 recog_data
.n_dups
= insn_data
[icode
].n_dups
;
2056 insn_extract (insn
);
2058 for (i
= 0; i
< noperands
; i
++)
2060 recog_data
.constraints
[i
] = insn_data
[icode
].operand
[i
].constraint
;
2061 recog_data
.operand_mode
[i
] = insn_data
[icode
].operand
[i
].mode
;
2062 /* VOIDmode match_operands gets mode from their real operand. */
2063 if (recog_data
.operand_mode
[i
] == VOIDmode
)
2064 recog_data
.operand_mode
[i
] = GET_MODE (recog_data
.operand
[i
]);
2067 for (i
= 0; i
< noperands
; i
++)
2068 recog_data
.operand_type
[i
]
2069 = (recog_data
.constraints
[i
][0] == '=' ? OP_OUT
2070 : recog_data
.constraints
[i
][0] == '+' ? OP_INOUT
2073 if (recog_data
.n_alternatives
> MAX_RECOG_ALTERNATIVES
)
2077 /* After calling extract_insn, you can use this function to extract some
2078 information from the constraint strings into a more usable form.
2079 The collected data is stored in recog_op_alt. */
2081 preprocess_constraints (void)
2085 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2086 memset (recog_op_alt
[i
], 0, (recog_data
.n_alternatives
2087 * sizeof (struct operand_alternative
)));
2089 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2092 struct operand_alternative
*op_alt
;
2093 const char *p
= recog_data
.constraints
[i
];
2095 op_alt
= recog_op_alt
[i
];
2097 for (j
= 0; j
< recog_data
.n_alternatives
; j
++)
2099 op_alt
[j
].class = NO_REGS
;
2100 op_alt
[j
].constraint
= p
;
2101 op_alt
[j
].matches
= -1;
2102 op_alt
[j
].matched
= -1;
2104 if (*p
== '\0' || *p
== ',')
2106 op_alt
[j
].anything_ok
= 1;
2116 while (c
!= ',' && c
!= '\0');
2117 if (c
== ',' || c
== '\0')
2125 case '=': case '+': case '*': case '%':
2126 case 'E': case 'F': case 'G': case 'H':
2127 case 's': case 'i': case 'n':
2128 case 'I': case 'J': case 'K': case 'L':
2129 case 'M': case 'N': case 'O': case 'P':
2130 /* These don't say anything we care about. */
2134 op_alt
[j
].reject
+= 6;
2137 op_alt
[j
].reject
+= 600;
2140 op_alt
[j
].earlyclobber
= 1;
2143 case '0': case '1': case '2': case '3': case '4':
2144 case '5': case '6': case '7': case '8': case '9':
2147 op_alt
[j
].matches
= strtoul (p
, &end
, 10);
2148 recog_op_alt
[op_alt
[j
].matches
][j
].matched
= i
;
2154 op_alt
[j
].memory_ok
= 1;
2157 op_alt
[j
].decmem_ok
= 1;
2160 op_alt
[j
].incmem_ok
= 1;
2163 op_alt
[j
].nonoffmem_ok
= 1;
2166 op_alt
[j
].offmem_ok
= 1;
2169 op_alt
[j
].anything_ok
= 1;
2173 op_alt
[j
].is_address
= 1;
2174 op_alt
[j
].class = reg_class_subunion
[(int) op_alt
[j
].class]
2175 [(int) MODE_BASE_REG_CLASS (VOIDmode
)];
2179 op_alt
[j
].class = reg_class_subunion
[(int) op_alt
[j
].class][(int) GENERAL_REGS
];
2183 if (EXTRA_MEMORY_CONSTRAINT (c
, p
))
2185 op_alt
[j
].memory_ok
= 1;
2188 if (EXTRA_ADDRESS_CONSTRAINT (c
, p
))
2190 op_alt
[j
].is_address
= 1;
2192 = (reg_class_subunion
2193 [(int) op_alt
[j
].class]
2194 [(int) MODE_BASE_REG_CLASS (VOIDmode
)]);
2199 = (reg_class_subunion
2200 [(int) op_alt
[j
].class]
2201 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c
, p
)]);
2204 p
+= CONSTRAINT_LEN (c
, p
);
2210 /* Check the operands of an insn against the insn's operand constraints
2211 and return 1 if they are valid.
2212 The information about the insn's operands, constraints, operand modes
2213 etc. is obtained from the global variables set up by extract_insn.
2215 WHICH_ALTERNATIVE is set to a number which indicates which
2216 alternative of constraints was matched: 0 for the first alternative,
2217 1 for the next, etc.
2219 In addition, when two operands are required to match
2220 and it happens that the output operand is (reg) while the
2221 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2222 make the output operand look like the input.
2223 This is because the output operand is the one the template will print.
2225 This is used in final, just before printing the assembler code and by
2226 the routines that determine an insn's attribute.
2228 If STRICT is a positive nonzero value, it means that we have been
2229 called after reload has been completed. In that case, we must
2230 do all checks strictly. If it is zero, it means that we have been called
2231 before reload has completed. In that case, we first try to see if we can
2232 find an alternative that matches strictly. If not, we try again, this
2233 time assuming that reload will fix up the insn. This provides a "best
2234 guess" for the alternative and is used to compute attributes of insns prior
2235 to reload. A negative value of STRICT is used for this internal call. */
2243 constrain_operands (int strict
)
2245 const char *constraints
[MAX_RECOG_OPERANDS
];
2246 int matching_operands
[MAX_RECOG_OPERANDS
];
2247 int earlyclobber
[MAX_RECOG_OPERANDS
];
2250 struct funny_match funny_match
[MAX_RECOG_OPERANDS
];
2251 int funny_match_index
;
2253 which_alternative
= 0;
2254 if (recog_data
.n_operands
== 0 || recog_data
.n_alternatives
== 0)
2257 for (c
= 0; c
< recog_data
.n_operands
; c
++)
2259 constraints
[c
] = recog_data
.constraints
[c
];
2260 matching_operands
[c
] = -1;
2267 funny_match_index
= 0;
2269 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2271 rtx op
= recog_data
.operand
[opno
];
2272 enum machine_mode mode
= GET_MODE (op
);
2273 const char *p
= constraints
[opno
];
2279 earlyclobber
[opno
] = 0;
2281 /* A unary operator may be accepted by the predicate, but it
2282 is irrelevant for matching constraints. */
2286 if (GET_CODE (op
) == SUBREG
)
2288 if (REG_P (SUBREG_REG (op
))
2289 && REGNO (SUBREG_REG (op
)) < FIRST_PSEUDO_REGISTER
)
2290 offset
= subreg_regno_offset (REGNO (SUBREG_REG (op
)),
2291 GET_MODE (SUBREG_REG (op
)),
2294 op
= SUBREG_REG (op
);
2297 /* An empty constraint or empty alternative
2298 allows anything which matched the pattern. */
2299 if (*p
== 0 || *p
== ',')
2303 switch (c
= *p
, len
= CONSTRAINT_LEN (c
, p
), c
)
2312 case '?': case '!': case '*': case '%':
2317 /* Ignore rest of this alternative as far as
2318 constraint checking is concerned. */
2321 while (*p
&& *p
!= ',');
2326 earlyclobber
[opno
] = 1;
2329 case '0': case '1': case '2': case '3': case '4':
2330 case '5': case '6': case '7': case '8': case '9':
2332 /* This operand must be the same as a previous one.
2333 This kind of constraint is used for instructions such
2334 as add when they take only two operands.
2336 Note that the lower-numbered operand is passed first.
2338 If we are not testing strictly, assume that this
2339 constraint will be satisfied. */
2344 match
= strtoul (p
, &end
, 10);
2351 rtx op1
= recog_data
.operand
[match
];
2352 rtx op2
= recog_data
.operand
[opno
];
2354 /* A unary operator may be accepted by the predicate,
2355 but it is irrelevant for matching constraints. */
2357 op1
= XEXP (op1
, 0);
2359 op2
= XEXP (op2
, 0);
2361 val
= operands_match_p (op1
, op2
);
2364 matching_operands
[opno
] = match
;
2365 matching_operands
[match
] = opno
;
2370 /* If output is *x and input is *--x, arrange later
2371 to change the output to *--x as well, since the
2372 output op is the one that will be printed. */
2373 if (val
== 2 && strict
> 0)
2375 funny_match
[funny_match_index
].this = opno
;
2376 funny_match
[funny_match_index
++].other
= match
;
2383 /* p is used for address_operands. When we are called by
2384 gen_reload, no one will have checked that the address is
2385 strictly valid, i.e., that all pseudos requiring hard regs
2386 have gotten them. */
2388 || (strict_memory_address_p (recog_data
.operand_mode
[opno
],
2393 /* No need to check general_operand again;
2394 it was done in insn-recog.c. */
2396 /* Anything goes unless it is a REG and really has a hard reg
2397 but the hard reg is not in the class GENERAL_REGS. */
2399 || GENERAL_REGS
== ALL_REGS
2401 || (reload_in_progress
2402 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2403 || reg_fits_class_p (op
, GENERAL_REGS
, offset
, mode
))
2408 /* This is used for a MATCH_SCRATCH in the cases when
2409 we don't actually need anything. So anything goes
2415 /* Memory operands must be valid, to the extent
2416 required by STRICT. */
2420 && !strict_memory_address_p (GET_MODE (op
),
2424 && !memory_address_p (GET_MODE (op
), XEXP (op
, 0)))
2428 /* Before reload, accept what reload can turn into mem. */
2429 else if (strict
< 0 && CONSTANT_P (op
))
2431 /* During reload, accept a pseudo */
2432 else if (reload_in_progress
&& REG_P (op
)
2433 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2439 && (GET_CODE (XEXP (op
, 0)) == PRE_DEC
2440 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
2446 && (GET_CODE (XEXP (op
, 0)) == PRE_INC
2447 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
2453 if (GET_CODE (op
) == CONST_DOUBLE
2454 || (GET_CODE (op
) == CONST_VECTOR
2455 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_VECTOR_FLOAT
))
2461 if (GET_CODE (op
) == CONST_DOUBLE
2462 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, c
, p
))
2467 if (GET_CODE (op
) == CONST_INT
2468 || (GET_CODE (op
) == CONST_DOUBLE
2469 && GET_MODE (op
) == VOIDmode
))
2472 if (CONSTANT_P (op
))
2477 if (GET_CODE (op
) == CONST_INT
2478 || (GET_CODE (op
) == CONST_DOUBLE
2479 && GET_MODE (op
) == VOIDmode
))
2491 if (GET_CODE (op
) == CONST_INT
2492 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), c
, p
))
2498 && ((strict
> 0 && ! offsettable_memref_p (op
))
2500 && !(CONSTANT_P (op
) || MEM_P (op
)))
2501 || (reload_in_progress
2503 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))))
2508 if ((strict
> 0 && offsettable_memref_p (op
))
2509 || (strict
== 0 && offsettable_nonstrict_memref_p (op
))
2510 /* Before reload, accept what reload can handle. */
2512 && (CONSTANT_P (op
) || MEM_P (op
)))
2513 /* During reload, accept a pseudo */
2514 || (reload_in_progress
&& REG_P (op
)
2515 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))
2521 enum reg_class
class;
2524 ? GENERAL_REGS
: REG_CLASS_FROM_CONSTRAINT (c
, p
));
2525 if (class != NO_REGS
)
2530 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2531 || (strict
== 0 && GET_CODE (op
) == SCRATCH
)
2533 && reg_fits_class_p (op
, class, offset
, mode
)))
2536 #ifdef EXTRA_CONSTRAINT_STR
2537 else if (EXTRA_CONSTRAINT_STR (op
, c
, p
))
2540 else if (EXTRA_MEMORY_CONSTRAINT (c
, p
)
2541 /* Every memory operand can be reloaded to fit. */
2542 && ((strict
< 0 && MEM_P (op
))
2543 /* Before reload, accept what reload can turn
2545 || (strict
< 0 && CONSTANT_P (op
))
2546 /* During reload, accept a pseudo */
2547 || (reload_in_progress
&& REG_P (op
)
2548 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)))
2550 else if (EXTRA_ADDRESS_CONSTRAINT (c
, p
)
2551 /* Every address operand can be reloaded to fit. */
2558 while (p
+= len
, c
);
2560 constraints
[opno
] = p
;
2561 /* If this operand did not win somehow,
2562 this alternative loses. */
2566 /* This alternative won; the operands are ok.
2567 Change whichever operands this alternative says to change. */
2572 /* See if any earlyclobber operand conflicts with some other
2576 for (eopno
= 0; eopno
< recog_data
.n_operands
; eopno
++)
2577 /* Ignore earlyclobber operands now in memory,
2578 because we would often report failure when we have
2579 two memory operands, one of which was formerly a REG. */
2580 if (earlyclobber
[eopno
]
2581 && REG_P (recog_data
.operand
[eopno
]))
2582 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2583 if ((MEM_P (recog_data
.operand
[opno
])
2584 || recog_data
.operand_type
[opno
] != OP_OUT
)
2586 /* Ignore things like match_operator operands. */
2587 && *recog_data
.constraints
[opno
] != 0
2588 && ! (matching_operands
[opno
] == eopno
2589 && operands_match_p (recog_data
.operand
[opno
],
2590 recog_data
.operand
[eopno
]))
2591 && ! safe_from_earlyclobber (recog_data
.operand
[opno
],
2592 recog_data
.operand
[eopno
]))
2597 while (--funny_match_index
>= 0)
2599 recog_data
.operand
[funny_match
[funny_match_index
].other
]
2600 = recog_data
.operand
[funny_match
[funny_match_index
].this];
2607 which_alternative
++;
2609 while (which_alternative
< recog_data
.n_alternatives
);
2611 which_alternative
= -1;
2612 /* If we are about to reject this, but we are not to test strictly,
2613 try a very loose test. Only return failure if it fails also. */
2615 return constrain_operands (-1);
2620 /* Return 1 iff OPERAND (assumed to be a REG rtx)
2621 is a hard reg in class CLASS when its regno is offset by OFFSET
2622 and changed to mode MODE.
2623 If REG occupies multiple hard regs, all of them must be in CLASS. */
2626 reg_fits_class_p (rtx operand
, enum reg_class
class, int offset
,
2627 enum machine_mode mode
)
2629 int regno
= REGNO (operand
);
2630 if (regno
< FIRST_PSEUDO_REGISTER
2631 && TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
2636 for (sr
= hard_regno_nregs
[regno
][mode
] - 1;
2638 if (! TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
2647 /* Split single instruction. Helper function for split_all_insns and
2648 split_all_insns_noflow. Return last insn in the sequence if successful,
2649 or NULL if unsuccessful. */
2652 split_insn (rtx insn
)
2654 /* Split insns here to get max fine-grain parallelism. */
2655 rtx first
= PREV_INSN (insn
);
2656 rtx last
= try_split (PATTERN (insn
), insn
, 1);
2661 /* try_split returns the NOTE that INSN became. */
2662 SET_INSN_DELETED (insn
);
2664 /* ??? Coddle to md files that generate subregs in post-reload
2665 splitters instead of computing the proper hard register. */
2666 if (reload_completed
&& first
!= last
)
2668 first
= NEXT_INSN (first
);
2672 cleanup_subreg_operands (first
);
2675 first
= NEXT_INSN (first
);
2681 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2684 split_all_insns (int upd_life
)
2690 blocks
= sbitmap_alloc (last_basic_block
);
2691 sbitmap_zero (blocks
);
2694 FOR_EACH_BB_REVERSE (bb
)
2697 bool finish
= false;
2699 for (insn
= BB_HEAD (bb
); !finish
; insn
= next
)
2701 /* Can't use `next_real_insn' because that might go across
2702 CODE_LABELS and short-out basic blocks. */
2703 next
= NEXT_INSN (insn
);
2704 finish
= (insn
== BB_END (bb
));
2707 rtx set
= single_set (insn
);
2709 /* Don't split no-op move insns. These should silently
2710 disappear later in final. Splitting such insns would
2711 break the code that handles REG_NO_CONFLICT blocks. */
2712 if (set
&& set_noop_p (set
))
2714 /* Nops get in the way while scheduling, so delete them
2715 now if register allocation has already been done. It
2716 is too risky to try to do this before register
2717 allocation, and there are unlikely to be very many
2718 nops then anyways. */
2719 if (reload_completed
)
2721 /* If the no-op set has a REG_UNUSED note, we need
2722 to update liveness information. */
2723 if (find_reg_note (insn
, REG_UNUSED
, NULL_RTX
))
2725 SET_BIT (blocks
, bb
->index
);
2728 /* ??? Is life info affected by deleting edges? */
2729 delete_insn_and_edges (insn
);
2734 rtx last
= split_insn (insn
);
2737 /* The split sequence may include barrier, but the
2738 BB boundary we are interested in will be set to
2741 while (BARRIER_P (last
))
2742 last
= PREV_INSN (last
);
2743 SET_BIT (blocks
, bb
->index
);
2753 int old_last_basic_block
= last_basic_block
;
2755 find_many_sub_basic_blocks (blocks
);
2757 if (old_last_basic_block
!= last_basic_block
&& upd_life
)
2758 blocks
= sbitmap_resize (blocks
, last_basic_block
, 1);
2761 if (changed
&& upd_life
)
2762 update_life_info (blocks
, UPDATE_LIFE_GLOBAL_RM_NOTES
,
2765 #ifdef ENABLE_CHECKING
2766 verify_flow_info ();
2769 sbitmap_free (blocks
);
2772 /* Same as split_all_insns, but do not expect CFG to be available.
2773 Used by machine dependent reorg passes. */
2776 split_all_insns_noflow (void)
2780 for (insn
= get_insns (); insn
; insn
= next
)
2782 next
= NEXT_INSN (insn
);
2785 /* Don't split no-op move insns. These should silently
2786 disappear later in final. Splitting such insns would
2787 break the code that handles REG_NO_CONFLICT blocks. */
2788 rtx set
= single_set (insn
);
2789 if (set
&& set_noop_p (set
))
2791 /* Nops get in the way while scheduling, so delete them
2792 now if register allocation has already been done. It
2793 is too risky to try to do this before register
2794 allocation, and there are unlikely to be very many
2797 ??? Should we use delete_insn when the CFG isn't valid? */
2798 if (reload_completed
)
2799 delete_insn_and_edges (insn
);
2807 #ifdef HAVE_peephole2
2808 struct peep2_insn_data
2814 static struct peep2_insn_data peep2_insn_data
[MAX_INSNS_PER_PEEP2
+ 1];
2815 static int peep2_current
;
2817 /* A non-insn marker indicating the last insn of the block.
2818 The live_before regset for this element is correct, indicating
2819 global_live_at_end for the block. */
2820 #define PEEP2_EOB pc_rtx
2822 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2823 does not exist. Used by the recognizer to find the next insn to match
2824 in a multi-insn pattern. */
2827 peep2_next_insn (int n
)
2829 if (n
>= MAX_INSNS_PER_PEEP2
+ 1)
2833 if (n
>= MAX_INSNS_PER_PEEP2
+ 1)
2834 n
-= MAX_INSNS_PER_PEEP2
+ 1;
2836 if (peep2_insn_data
[n
].insn
== PEEP2_EOB
)
2838 return peep2_insn_data
[n
].insn
;
2841 /* Return true if REGNO is dead before the Nth non-note insn
2845 peep2_regno_dead_p (int ofs
, int regno
)
2847 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2850 ofs
+= peep2_current
;
2851 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2852 ofs
-= MAX_INSNS_PER_PEEP2
+ 1;
2854 if (peep2_insn_data
[ofs
].insn
== NULL_RTX
)
2857 return ! REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
);
2860 /* Similarly for a REG. */
2863 peep2_reg_dead_p (int ofs
, rtx reg
)
2867 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2870 ofs
+= peep2_current
;
2871 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2872 ofs
-= MAX_INSNS_PER_PEEP2
+ 1;
2874 if (peep2_insn_data
[ofs
].insn
== NULL_RTX
)
2877 regno
= REGNO (reg
);
2878 n
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
2880 if (REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
+ n
))
2885 /* Try to find a hard register of mode MODE, matching the register class in
2886 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
2887 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
2888 in which case the only condition is that the register must be available
2889 before CURRENT_INSN.
2890 Registers that already have bits set in REG_SET will not be considered.
2892 If an appropriate register is available, it will be returned and the
2893 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
2897 peep2_find_free_register (int from
, int to
, const char *class_str
,
2898 enum machine_mode mode
, HARD_REG_SET
*reg_set
)
2900 static int search_ofs
;
2901 enum reg_class
class;
2905 if (from
>= MAX_INSNS_PER_PEEP2
+ 1 || to
>= MAX_INSNS_PER_PEEP2
+ 1)
2908 from
+= peep2_current
;
2909 if (from
>= MAX_INSNS_PER_PEEP2
+ 1)
2910 from
-= MAX_INSNS_PER_PEEP2
+ 1;
2911 to
+= peep2_current
;
2912 if (to
>= MAX_INSNS_PER_PEEP2
+ 1)
2913 to
-= MAX_INSNS_PER_PEEP2
+ 1;
2915 if (peep2_insn_data
[from
].insn
== NULL_RTX
)
2917 REG_SET_TO_HARD_REG_SET (live
, peep2_insn_data
[from
].live_before
);
2921 HARD_REG_SET this_live
;
2923 if (++from
>= MAX_INSNS_PER_PEEP2
+ 1)
2925 if (peep2_insn_data
[from
].insn
== NULL_RTX
)
2927 REG_SET_TO_HARD_REG_SET (this_live
, peep2_insn_data
[from
].live_before
);
2928 IOR_HARD_REG_SET (live
, this_live
);
2931 class = (class_str
[0] == 'r' ? GENERAL_REGS
2932 : REG_CLASS_FROM_CONSTRAINT (class_str
[0], class_str
));
2934 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2936 int raw_regno
, regno
, success
, j
;
2938 /* Distribute the free registers as much as possible. */
2939 raw_regno
= search_ofs
+ i
;
2940 if (raw_regno
>= FIRST_PSEUDO_REGISTER
)
2941 raw_regno
-= FIRST_PSEUDO_REGISTER
;
2942 #ifdef REG_ALLOC_ORDER
2943 regno
= reg_alloc_order
[raw_regno
];
2948 /* Don't allocate fixed registers. */
2949 if (fixed_regs
[regno
])
2951 /* Make sure the register is of the right class. */
2952 if (! TEST_HARD_REG_BIT (reg_class_contents
[class], regno
))
2954 /* And can support the mode we need. */
2955 if (! HARD_REGNO_MODE_OK (regno
, mode
))
2957 /* And that we don't create an extra save/restore. */
2958 if (! call_used_regs
[regno
] && ! regs_ever_live
[regno
])
2960 /* And we don't clobber traceback for noreturn functions. */
2961 if ((regno
== FRAME_POINTER_REGNUM
|| regno
== HARD_FRAME_POINTER_REGNUM
)
2962 && (! reload_completed
|| frame_pointer_needed
))
2966 for (j
= hard_regno_nregs
[regno
][mode
] - 1; j
>= 0; j
--)
2968 if (TEST_HARD_REG_BIT (*reg_set
, regno
+ j
)
2969 || TEST_HARD_REG_BIT (live
, regno
+ j
))
2977 for (j
= hard_regno_nregs
[regno
][mode
] - 1; j
>= 0; j
--)
2978 SET_HARD_REG_BIT (*reg_set
, regno
+ j
);
2980 /* Start the next search with the next register. */
2981 if (++raw_regno
>= FIRST_PSEUDO_REGISTER
)
2983 search_ofs
= raw_regno
;
2985 return gen_rtx_REG (mode
, regno
);
2993 /* Perform the peephole2 optimization pass. */
2996 peephole2_optimize (FILE *dump_file ATTRIBUTE_UNUSED
)
2998 regset_head rs_heads
[MAX_INSNS_PER_PEEP2
+ 2];
3003 #ifdef HAVE_conditional_execution
3007 bool do_cleanup_cfg
= false;
3008 bool do_rebuild_jump_labels
= false;
3010 /* Initialize the regsets we're going to use. */
3011 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3012 peep2_insn_data
[i
].live_before
= INITIALIZE_REG_SET (rs_heads
[i
]);
3013 live
= INITIALIZE_REG_SET (rs_heads
[i
]);
3015 #ifdef HAVE_conditional_execution
3016 blocks
= sbitmap_alloc (last_basic_block
);
3017 sbitmap_zero (blocks
);
3020 count_or_remove_death_notes (NULL
, 1);
3023 FOR_EACH_BB_REVERSE (bb
)
3025 struct propagate_block_info
*pbi
;
3027 /* Indicate that all slots except the last holds invalid data. */
3028 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
; ++i
)
3029 peep2_insn_data
[i
].insn
= NULL_RTX
;
3031 /* Indicate that the last slot contains live_after data. */
3032 peep2_insn_data
[MAX_INSNS_PER_PEEP2
].insn
= PEEP2_EOB
;
3033 peep2_current
= MAX_INSNS_PER_PEEP2
;
3035 /* Start up propagation. */
3036 COPY_REG_SET (live
, bb
->global_live_at_end
);
3037 COPY_REG_SET (peep2_insn_data
[MAX_INSNS_PER_PEEP2
].live_before
, live
);
3039 #ifdef HAVE_conditional_execution
3040 pbi
= init_propagate_block_info (bb
, live
, NULL
, NULL
, 0);
3042 pbi
= init_propagate_block_info (bb
, live
, NULL
, NULL
, PROP_DEATH_NOTES
);
3045 for (insn
= BB_END (bb
); ; insn
= prev
)
3047 prev
= PREV_INSN (insn
);
3050 rtx
try, before_try
, x
;
3053 bool was_call
= false;
3055 /* Record this insn. */
3056 if (--peep2_current
< 0)
3057 peep2_current
= MAX_INSNS_PER_PEEP2
;
3058 peep2_insn_data
[peep2_current
].insn
= insn
;
3059 propagate_one_insn (pbi
, insn
);
3060 COPY_REG_SET (peep2_insn_data
[peep2_current
].live_before
, live
);
3062 /* Match the peephole. */
3063 try = peephole2_insns (PATTERN (insn
), insn
, &match_len
);
3066 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3067 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3068 cfg-related call notes. */
3069 for (i
= 0; i
<= match_len
; ++i
)
3072 rtx old_insn
, new_insn
, note
;
3074 j
= i
+ peep2_current
;
3075 if (j
>= MAX_INSNS_PER_PEEP2
+ 1)
3076 j
-= MAX_INSNS_PER_PEEP2
+ 1;
3077 old_insn
= peep2_insn_data
[j
].insn
;
3078 if (!CALL_P (old_insn
))
3083 while (new_insn
!= NULL_RTX
)
3085 if (CALL_P (new_insn
))
3087 new_insn
= NEXT_INSN (new_insn
);
3090 if (new_insn
== NULL_RTX
)
3093 CALL_INSN_FUNCTION_USAGE (new_insn
)
3094 = CALL_INSN_FUNCTION_USAGE (old_insn
);
3096 for (note
= REG_NOTES (old_insn
);
3098 note
= XEXP (note
, 1))
3099 switch (REG_NOTE_KIND (note
))
3103 case REG_ALWAYS_RETURN
:
3104 REG_NOTES (new_insn
)
3105 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note
),
3107 REG_NOTES (new_insn
));
3109 /* Discard all other reg notes. */
3113 /* Croak if there is another call in the sequence. */
3114 while (++i
<= match_len
)
3116 j
= i
+ peep2_current
;
3117 if (j
>= MAX_INSNS_PER_PEEP2
+ 1)
3118 j
-= MAX_INSNS_PER_PEEP2
+ 1;
3119 old_insn
= peep2_insn_data
[j
].insn
;
3120 if (CALL_P (old_insn
))
3126 i
= match_len
+ peep2_current
;
3127 if (i
>= MAX_INSNS_PER_PEEP2
+ 1)
3128 i
-= MAX_INSNS_PER_PEEP2
+ 1;
3130 note
= find_reg_note (peep2_insn_data
[i
].insn
,
3131 REG_EH_REGION
, NULL_RTX
);
3133 /* Replace the old sequence with the new. */
3134 try = emit_insn_after_setloc (try, peep2_insn_data
[i
].insn
,
3135 INSN_LOCATOR (peep2_insn_data
[i
].insn
));
3136 before_try
= PREV_INSN (insn
);
3137 delete_insn_chain (insn
, peep2_insn_data
[i
].insn
);
3139 /* Re-insert the EH_REGION notes. */
3140 if (note
|| (was_call
&& nonlocal_goto_handler_labels
))
3144 for (eh_edge
= bb
->succ
; eh_edge
3145 ; eh_edge
= eh_edge
->succ_next
)
3146 if (eh_edge
->flags
& (EDGE_EH
| EDGE_ABNORMAL_CALL
))
3149 for (x
= try ; x
!= before_try
; x
= PREV_INSN (x
))
3151 || (flag_non_call_exceptions
3152 && may_trap_p (PATTERN (x
))
3153 && !find_reg_note (x
, REG_EH_REGION
, NULL
)))
3157 = gen_rtx_EXPR_LIST (REG_EH_REGION
,
3161 if (x
!= BB_END (bb
) && eh_edge
)
3166 nfte
= split_block (bb
, x
);
3167 flags
= (eh_edge
->flags
3168 & (EDGE_EH
| EDGE_ABNORMAL
));
3170 flags
|= EDGE_ABNORMAL_CALL
;
3171 nehe
= make_edge (nfte
->src
, eh_edge
->dest
,
3174 nehe
->probability
= eh_edge
->probability
;
3176 = REG_BR_PROB_BASE
- nehe
->probability
;
3178 do_cleanup_cfg
|= purge_dead_edges (nfte
->dest
);
3179 #ifdef HAVE_conditional_execution
3180 SET_BIT (blocks
, nfte
->dest
->index
);
3188 /* Converting possibly trapping insn to non-trapping is
3189 possible. Zap dummy outgoing edges. */
3190 do_cleanup_cfg
|= purge_dead_edges (bb
);
3193 #ifdef HAVE_conditional_execution
3194 /* With conditional execution, we cannot back up the
3195 live information so easily, since the conditional
3196 death data structures are not so self-contained.
3197 So record that we've made a modification to this
3198 block and update life information at the end. */
3199 SET_BIT (blocks
, bb
->index
);
3202 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3203 peep2_insn_data
[i
].insn
= NULL_RTX
;
3204 peep2_insn_data
[peep2_current
].insn
= PEEP2_EOB
;
3206 /* Back up lifetime information past the end of the
3207 newly created sequence. */
3208 if (++i
>= MAX_INSNS_PER_PEEP2
+ 1)
3210 COPY_REG_SET (live
, peep2_insn_data
[i
].live_before
);
3212 /* Update life information for the new sequence. */
3219 i
= MAX_INSNS_PER_PEEP2
;
3220 peep2_insn_data
[i
].insn
= x
;
3221 propagate_one_insn (pbi
, x
);
3222 COPY_REG_SET (peep2_insn_data
[i
].live_before
, live
);
3228 /* ??? Should verify that LIVE now matches what we
3229 had before the new sequence. */
3234 /* If we generated a jump instruction, it won't have
3235 JUMP_LABEL set. Recompute after we're done. */
3236 for (x
= try; x
!= before_try
; x
= PREV_INSN (x
))
3239 do_rebuild_jump_labels
= true;
3245 if (insn
== BB_HEAD (bb
))
3249 free_propagate_block_info (pbi
);
3252 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3253 FREE_REG_SET (peep2_insn_data
[i
].live_before
);
3254 FREE_REG_SET (live
);
3256 if (do_rebuild_jump_labels
)
3257 rebuild_jump_labels (get_insns ());
3259 /* If we eliminated EH edges, we may be able to merge blocks. Further,
3260 we've changed global life since exception handlers are no longer
3265 update_life_info (0, UPDATE_LIFE_GLOBAL_RM_NOTES
, PROP_DEATH_NOTES
);
3267 #ifdef HAVE_conditional_execution
3270 count_or_remove_death_notes (blocks
, 1);
3271 update_life_info (blocks
, UPDATE_LIFE_LOCAL
, PROP_DEATH_NOTES
);
3273 sbitmap_free (blocks
);
3276 #endif /* HAVE_peephole2 */
3278 /* Common predicates for use with define_bypass. */
3280 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3281 data not the address operand(s) of the store. IN_INSN must be
3282 single_set. OUT_INSN must be either a single_set or a PARALLEL with
3286 store_data_bypass_p (rtx out_insn
, rtx in_insn
)
3288 rtx out_set
, in_set
;
3290 in_set
= single_set (in_insn
);
3294 if (!MEM_P (SET_DEST (in_set
)))
3297 out_set
= single_set (out_insn
);
3300 if (reg_mentioned_p (SET_DEST (out_set
), SET_DEST (in_set
)))
3308 out_pat
= PATTERN (out_insn
);
3309 if (GET_CODE (out_pat
) != PARALLEL
)
3312 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3314 rtx exp
= XVECEXP (out_pat
, 0, i
);
3316 if (GET_CODE (exp
) == CLOBBER
)
3319 if (GET_CODE (exp
) != SET
)
3322 if (reg_mentioned_p (SET_DEST (exp
), SET_DEST (in_set
)))
3330 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3331 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3332 or multiple set; IN_INSN should be single_set for truth, but for convenience
3333 of insn categorization may be any JUMP or CALL insn. */
3336 if_test_bypass_p (rtx out_insn
, rtx in_insn
)
3338 rtx out_set
, in_set
;
3340 in_set
= single_set (in_insn
);
3343 if (JUMP_P (in_insn
) || CALL_P (in_insn
))
3348 if (GET_CODE (SET_SRC (in_set
)) != IF_THEN_ELSE
)
3350 in_set
= SET_SRC (in_set
);
3352 out_set
= single_set (out_insn
);
3355 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3356 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3364 out_pat
= PATTERN (out_insn
);
3365 if (GET_CODE (out_pat
) != PARALLEL
)
3368 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3370 rtx exp
= XVECEXP (out_pat
, 0, i
);
3372 if (GET_CODE (exp
) == CLOBBER
)
3375 if (GET_CODE (exp
) != SET
)
3378 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3379 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))