* config/i386/i386.h (TARGET_SUPPORTS_WIDE_INT): New define.
[official-gcc.git] / gcc / tree-vect-loop-manip.c
bloba344a49948b7f7e54b7d9d4c5c45492ebd3f130b
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "hash-set.h"
28 #include "machmode.h"
29 #include "vec.h"
30 #include "double-int.h"
31 #include "input.h"
32 #include "alias.h"
33 #include "symtab.h"
34 #include "wide-int.h"
35 #include "inchash.h"
36 #include "tree.h"
37 #include "fold-const.h"
38 #include "predict.h"
39 #include "hard-reg-set.h"
40 #include "input.h"
41 #include "function.h"
42 #include "dominance.h"
43 #include "cfg.h"
44 #include "cfganal.h"
45 #include "basic-block.h"
46 #include "gimple-pretty-print.h"
47 #include "tree-ssa-alias.h"
48 #include "internal-fn.h"
49 #include "gimple-expr.h"
50 #include "is-a.h"
51 #include "gimple.h"
52 #include "gimplify.h"
53 #include "gimple-iterator.h"
54 #include "gimplify-me.h"
55 #include "gimple-ssa.h"
56 #include "tree-cfg.h"
57 #include "tree-phinodes.h"
58 #include "ssa-iterators.h"
59 #include "stringpool.h"
60 #include "tree-ssanames.h"
61 #include "tree-ssa-loop-manip.h"
62 #include "tree-into-ssa.h"
63 #include "tree-ssa.h"
64 #include "tree-pass.h"
65 #include "cfgloop.h"
66 #include "diagnostic-core.h"
67 #include "tree-scalar-evolution.h"
68 #include "tree-vectorizer.h"
69 #include "langhooks.h"
71 /*************************************************************************
72 Simple Loop Peeling Utilities
74 Utilities to support loop peeling for vectorization purposes.
75 *************************************************************************/
78 /* Renames the use *OP_P. */
80 static void
81 rename_use_op (use_operand_p op_p)
83 tree new_name;
85 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
86 return;
88 new_name = get_current_def (USE_FROM_PTR (op_p));
90 /* Something defined outside of the loop. */
91 if (!new_name)
92 return;
94 /* An ordinary ssa name defined in the loop. */
96 SET_USE (op_p, new_name);
100 /* Renames the variables in basic block BB. */
102 static void
103 rename_variables_in_bb (basic_block bb)
105 gimple stmt;
106 use_operand_p use_p;
107 ssa_op_iter iter;
108 edge e;
109 edge_iterator ei;
110 struct loop *loop = bb->loop_father;
112 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
113 gsi_next (&gsi))
115 stmt = gsi_stmt (gsi);
116 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
117 rename_use_op (use_p);
120 FOR_EACH_EDGE (e, ei, bb->preds)
122 if (!flow_bb_inside_loop_p (loop, e->src))
123 continue;
124 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
125 gsi_next (&gsi))
126 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
131 typedef struct
133 tree from, to;
134 basic_block bb;
135 } adjust_info;
137 /* A stack of values to be adjusted in debug stmts. We have to
138 process them LIFO, so that the closest substitution applies. If we
139 processed them FIFO, without the stack, we might substitute uses
140 with a PHI DEF that would soon become non-dominant, and when we got
141 to the suitable one, it wouldn't have anything to substitute any
142 more. */
143 static vec<adjust_info, va_heap> adjust_vec;
145 /* Adjust any debug stmts that referenced AI->from values to use the
146 loop-closed AI->to, if the references are dominated by AI->bb and
147 not by the definition of AI->from. */
149 static void
150 adjust_debug_stmts_now (adjust_info *ai)
152 basic_block bbphi = ai->bb;
153 tree orig_def = ai->from;
154 tree new_def = ai->to;
155 imm_use_iterator imm_iter;
156 gimple stmt;
157 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
159 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
161 /* Adjust any debug stmts that held onto non-loop-closed
162 references. */
163 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
165 use_operand_p use_p;
166 basic_block bbuse;
168 if (!is_gimple_debug (stmt))
169 continue;
171 gcc_assert (gimple_debug_bind_p (stmt));
173 bbuse = gimple_bb (stmt);
175 if ((bbuse == bbphi
176 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
177 && !(bbuse == bbdef
178 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
180 if (new_def)
181 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
182 SET_USE (use_p, new_def);
183 else
185 gimple_debug_bind_reset_value (stmt);
186 update_stmt (stmt);
192 /* Adjust debug stmts as scheduled before. */
194 static void
195 adjust_vec_debug_stmts (void)
197 if (!MAY_HAVE_DEBUG_STMTS)
198 return;
200 gcc_assert (adjust_vec.exists ());
202 while (!adjust_vec.is_empty ())
204 adjust_debug_stmts_now (&adjust_vec.last ());
205 adjust_vec.pop ();
208 adjust_vec.release ();
211 /* Adjust any debug stmts that referenced FROM values to use the
212 loop-closed TO, if the references are dominated by BB and not by
213 the definition of FROM. If adjust_vec is non-NULL, adjustments
214 will be postponed until adjust_vec_debug_stmts is called. */
216 static void
217 adjust_debug_stmts (tree from, tree to, basic_block bb)
219 adjust_info ai;
221 if (MAY_HAVE_DEBUG_STMTS
222 && TREE_CODE (from) == SSA_NAME
223 && ! SSA_NAME_IS_DEFAULT_DEF (from)
224 && ! virtual_operand_p (from))
226 ai.from = from;
227 ai.to = to;
228 ai.bb = bb;
230 if (adjust_vec.exists ())
231 adjust_vec.safe_push (ai);
232 else
233 adjust_debug_stmts_now (&ai);
237 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
238 to adjust any debug stmts that referenced the old phi arg,
239 presumably non-loop-closed references left over from other
240 transformations. */
242 static void
243 adjust_phi_and_debug_stmts (gimple update_phi, edge e, tree new_def)
245 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
247 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
249 if (MAY_HAVE_DEBUG_STMTS)
250 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
251 gimple_bb (update_phi));
255 /* Update PHI nodes for a guard of the LOOP.
257 Input:
258 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
259 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
260 originates from the guard-bb, skips LOOP and reaches the (unique) exit
261 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
262 We denote this bb NEW_MERGE_BB because before the guard code was added
263 it had a single predecessor (the LOOP header), and now it became a merge
264 point of two paths - the path that ends with the LOOP exit-edge, and
265 the path that ends with GUARD_EDGE.
266 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
267 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
269 ===> The CFG before the guard-code was added:
270 LOOP_header_bb:
271 loop_body
272 if (exit_loop) goto update_bb
273 else goto LOOP_header_bb
274 update_bb:
276 ==> The CFG after the guard-code was added:
277 guard_bb:
278 if (LOOP_guard_condition) goto new_merge_bb
279 else goto LOOP_header_bb
280 LOOP_header_bb:
281 loop_body
282 if (exit_loop_condition) goto new_merge_bb
283 else goto LOOP_header_bb
284 new_merge_bb:
285 goto update_bb
286 update_bb:
288 ==> The CFG after this function:
289 guard_bb:
290 if (LOOP_guard_condition) goto new_merge_bb
291 else goto LOOP_header_bb
292 LOOP_header_bb:
293 loop_body
294 if (exit_loop_condition) goto new_exit_bb
295 else goto LOOP_header_bb
296 new_exit_bb:
297 new_merge_bb:
298 goto update_bb
299 update_bb:
301 This function:
302 1. creates and updates the relevant phi nodes to account for the new
303 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
304 1.1. Create phi nodes at NEW_MERGE_BB.
305 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
306 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
307 2. preserves loop-closed-ssa-form by creating the required phi nodes
308 at the exit of LOOP (i.e, in NEW_EXIT_BB).
310 There are two flavors to this function:
312 slpeel_update_phi_nodes_for_guard1:
313 Here the guard controls whether we enter or skip LOOP, where LOOP is a
314 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
315 for variables that have phis in the loop header.
317 slpeel_update_phi_nodes_for_guard2:
318 Here the guard controls whether we enter or skip LOOP, where LOOP is an
319 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
320 for variables that have phis in the loop exit.
322 I.E., the overall structure is:
324 loop1_preheader_bb:
325 guard1 (goto loop1/merge1_bb)
326 loop1
327 loop1_exit_bb:
328 guard2 (goto merge1_bb/merge2_bb)
329 merge1_bb
330 loop2
331 loop2_exit_bb
332 merge2_bb
333 next_bb
335 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
336 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
337 that have phis in loop1->header).
339 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
340 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
341 that have phis in next_bb). It also adds some of these phis to
342 loop1_exit_bb.
344 slpeel_update_phi_nodes_for_guard1 is always called before
345 slpeel_update_phi_nodes_for_guard2. They are both needed in order
346 to create correct data-flow and loop-closed-ssa-form.
348 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
349 that change between iterations of a loop (and therefore have a phi-node
350 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
351 phis for variables that are used out of the loop (and therefore have
352 loop-closed exit phis). Some variables may be both updated between
353 iterations and used after the loop. This is why in loop1_exit_bb we
354 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
355 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
357 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
358 an original loop. i.e., we have:
360 orig_loop
361 guard_bb (goto LOOP/new_merge)
362 new_loop <-- LOOP
363 new_exit
364 new_merge
365 next_bb
367 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
368 have:
370 new_loop
371 guard_bb (goto LOOP/new_merge)
372 orig_loop <-- LOOP
373 new_exit
374 new_merge
375 next_bb
377 The SSA names defined in the original loop have a current
378 reaching definition that that records the corresponding new
379 ssa-name used in the new duplicated loop copy.
382 /* Function slpeel_update_phi_nodes_for_guard1
384 Input:
385 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
386 - DEFS - a bitmap of ssa names to mark new names for which we recorded
387 information.
389 In the context of the overall structure, we have:
391 loop1_preheader_bb:
392 guard1 (goto loop1/merge1_bb)
393 LOOP-> loop1
394 loop1_exit_bb:
395 guard2 (goto merge1_bb/merge2_bb)
396 merge1_bb
397 loop2
398 loop2_exit_bb
399 merge2_bb
400 next_bb
402 For each name updated between loop iterations (i.e - for each name that has
403 an entry (loop-header) phi in LOOP) we create a new phi in:
404 1. merge1_bb (to account for the edge from guard1)
405 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
408 static void
409 slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
410 bool is_new_loop, basic_block *new_exit_bb)
412 gphi *orig_phi, *new_phi;
413 gphi *update_phi, *update_phi2;
414 tree guard_arg, loop_arg;
415 basic_block new_merge_bb = guard_edge->dest;
416 edge e = EDGE_SUCC (new_merge_bb, 0);
417 basic_block update_bb = e->dest;
418 basic_block orig_bb = loop->header;
419 edge new_exit_e;
420 tree current_new_name;
421 gphi_iterator gsi_orig, gsi_update;
423 /* Create new bb between loop and new_merge_bb. */
424 *new_exit_bb = split_edge (single_exit (loop));
426 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
428 for (gsi_orig = gsi_start_phis (orig_bb),
429 gsi_update = gsi_start_phis (update_bb);
430 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
431 gsi_next (&gsi_orig), gsi_next (&gsi_update))
433 source_location loop_locus, guard_locus;
434 tree new_res;
435 orig_phi = gsi_orig.phi ();
436 update_phi = gsi_update.phi ();
438 /** 1. Handle new-merge-point phis **/
440 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
441 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
442 new_phi = create_phi_node (new_res, new_merge_bb);
444 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
445 of LOOP. Set the two phi args in NEW_PHI for these edges: */
446 loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
447 loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
448 EDGE_SUCC (loop->latch,
449 0));
450 guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
451 guard_locus
452 = gimple_phi_arg_location_from_edge (orig_phi,
453 loop_preheader_edge (loop));
455 add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
456 add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);
458 /* 1.3. Update phi in successor block. */
459 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
460 || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
461 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
462 update_phi2 = new_phi;
465 /** 2. Handle loop-closed-ssa-form phis **/
467 if (virtual_operand_p (PHI_RESULT (orig_phi)))
468 continue;
470 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
471 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
472 new_phi = create_phi_node (new_res, *new_exit_bb);
474 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
475 add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);
477 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
478 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
479 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
480 PHI_RESULT (new_phi));
482 /* 2.4. Record the newly created name with set_current_def.
483 We want to find a name such that
484 name = get_current_def (orig_loop_name)
485 and to set its current definition as follows:
486 set_current_def (name, new_phi_name)
488 If LOOP is a new loop then loop_arg is already the name we're
489 looking for. If LOOP is the original loop, then loop_arg is
490 the orig_loop_name and the relevant name is recorded in its
491 current reaching definition. */
492 if (is_new_loop)
493 current_new_name = loop_arg;
494 else
496 current_new_name = get_current_def (loop_arg);
497 /* current_def is not available only if the variable does not
498 change inside the loop, in which case we also don't care
499 about recording a current_def for it because we won't be
500 trying to create loop-exit-phis for it. */
501 if (!current_new_name)
502 continue;
504 tree new_name = get_current_def (current_new_name);
505 /* Because of peeled_chrec optimization it is possible that we have
506 set this earlier. Verify the PHI has the same value. */
507 if (new_name)
509 gimple phi = SSA_NAME_DEF_STMT (new_name);
510 gcc_assert (gimple_code (phi) == GIMPLE_PHI
511 && gimple_bb (phi) == *new_exit_bb
512 && (PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop))
513 == loop_arg));
514 continue;
517 set_current_def (current_new_name, PHI_RESULT (new_phi));
522 /* Function slpeel_update_phi_nodes_for_guard2
524 Input:
525 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
527 In the context of the overall structure, we have:
529 loop1_preheader_bb:
530 guard1 (goto loop1/merge1_bb)
531 loop1
532 loop1_exit_bb:
533 guard2 (goto merge1_bb/merge2_bb)
534 merge1_bb
535 LOOP-> loop2
536 loop2_exit_bb
537 merge2_bb
538 next_bb
540 For each name used out side the loop (i.e - for each name that has an exit
541 phi in next_bb) we create a new phi in:
542 1. merge2_bb (to account for the edge from guard_bb)
543 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
544 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
545 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
548 static void
549 slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
550 bool is_new_loop, basic_block *new_exit_bb)
552 gphi *orig_phi, *new_phi;
553 gphi *update_phi, *update_phi2;
554 tree guard_arg, loop_arg;
555 basic_block new_merge_bb = guard_edge->dest;
556 edge e = EDGE_SUCC (new_merge_bb, 0);
557 basic_block update_bb = e->dest;
558 edge new_exit_e;
559 tree orig_def, orig_def_new_name;
560 tree new_name, new_name2;
561 tree arg;
562 gphi_iterator gsi;
564 /* Create new bb between loop and new_merge_bb. */
565 *new_exit_bb = split_edge (single_exit (loop));
567 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
569 for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
571 tree new_res;
572 update_phi = gsi.phi ();
573 orig_phi = update_phi;
574 orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
575 /* This loop-closed-phi actually doesn't represent a use
576 out of the loop - the phi arg is a constant. */
577 if (TREE_CODE (orig_def) != SSA_NAME)
578 continue;
579 orig_def_new_name = get_current_def (orig_def);
580 arg = NULL_TREE;
582 /** 1. Handle new-merge-point phis **/
584 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
585 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
586 new_phi = create_phi_node (new_res, new_merge_bb);
588 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
589 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
590 new_name = orig_def;
591 new_name2 = NULL_TREE;
592 if (orig_def_new_name)
594 new_name = orig_def_new_name;
595 /* Some variables have both loop-entry-phis and loop-exit-phis.
596 Such variables were given yet newer names by phis placed in
597 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
598 new_name2 = get_current_def (get_current_def (orig_name)). */
599 new_name2 = get_current_def (new_name);
602 if (is_new_loop)
604 guard_arg = orig_def;
605 loop_arg = new_name;
607 else
609 guard_arg = new_name;
610 loop_arg = orig_def;
612 if (new_name2)
613 guard_arg = new_name2;
615 add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
616 add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
618 /* 1.3. Update phi in successor block. */
619 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
620 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
621 update_phi2 = new_phi;
624 /** 2. Handle loop-closed-ssa-form phis **/
626 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
627 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
628 new_phi = create_phi_node (new_res, *new_exit_bb);
630 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
631 add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);
633 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
634 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
635 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
636 PHI_RESULT (new_phi));
639 /** 3. Handle loop-closed-ssa-form phis for first loop **/
641 /* 3.1. Find the relevant names that need an exit-phi in
642 GUARD_BB, i.e. names for which
643 slpeel_update_phi_nodes_for_guard1 had not already created a
644 phi node. This is the case for names that are used outside
645 the loop (and therefore need an exit phi) but are not updated
646 across loop iterations (and therefore don't have a
647 loop-header-phi).
649 slpeel_update_phi_nodes_for_guard1 is responsible for
650 creating loop-exit phis in GUARD_BB for names that have a
651 loop-header-phi. When such a phi is created we also record
652 the new name in its current definition. If this new name
653 exists, then guard_arg was set to this new name (see 1.2
654 above). Therefore, if guard_arg is not this new name, this
655 is an indication that an exit-phi in GUARD_BB was not yet
656 created, so we take care of it here. */
657 if (guard_arg == new_name2)
658 continue;
659 arg = guard_arg;
661 /* 3.2. Generate new phi node in GUARD_BB: */
662 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
663 new_phi = create_phi_node (new_res, guard_edge->src);
665 /* 3.3. GUARD_BB has one incoming edge: */
666 gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
667 add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
668 UNKNOWN_LOCATION);
670 /* 3.4. Update phi in successor of GUARD_BB: */
671 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
672 == guard_arg);
673 adjust_phi_and_debug_stmts (update_phi2, guard_edge,
674 PHI_RESULT (new_phi));
679 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
680 that starts at zero, increases by one and its limit is NITERS.
682 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
684 void
685 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
687 tree indx_before_incr, indx_after_incr;
688 gcond *cond_stmt;
689 gcond *orig_cond;
690 edge exit_edge = single_exit (loop);
691 gimple_stmt_iterator loop_cond_gsi;
692 gimple_stmt_iterator incr_gsi;
693 bool insert_after;
694 tree init = build_int_cst (TREE_TYPE (niters), 0);
695 tree step = build_int_cst (TREE_TYPE (niters), 1);
696 source_location loop_loc;
697 enum tree_code code;
699 orig_cond = get_loop_exit_condition (loop);
700 gcc_assert (orig_cond);
701 loop_cond_gsi = gsi_for_stmt (orig_cond);
703 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
704 create_iv (init, step, NULL_TREE, loop,
705 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
707 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
708 true, NULL_TREE, true,
709 GSI_SAME_STMT);
710 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
711 true, GSI_SAME_STMT);
713 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
714 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
715 NULL_TREE);
717 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
719 /* Remove old loop exit test: */
720 gsi_remove (&loop_cond_gsi, true);
721 free_stmt_vec_info (orig_cond);
723 loop_loc = find_loop_location (loop);
724 if (dump_enabled_p ())
726 if (LOCATION_LOCUS (loop_loc) != UNKNOWN_LOCATION)
727 dump_printf (MSG_NOTE, "\nloop at %s:%d: ", LOCATION_FILE (loop_loc),
728 LOCATION_LINE (loop_loc));
729 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, cond_stmt, 0);
730 dump_printf (MSG_NOTE, "\n");
732 loop->nb_iterations = niters;
735 /* Helper routine of slpeel_tree_duplicate_loop_to_edge_cfg.
736 For all PHI arguments in FROM->dest and TO->dest from those
737 edges ensure that TO->dest PHI arguments have current_def
738 to that in from. */
740 static void
741 slpeel_duplicate_current_defs_from_edges (edge from, edge to)
743 gimple_stmt_iterator gsi_from, gsi_to;
745 for (gsi_from = gsi_start_phis (from->dest),
746 gsi_to = gsi_start_phis (to->dest);
747 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);
748 gsi_next (&gsi_from), gsi_next (&gsi_to))
750 gimple from_phi = gsi_stmt (gsi_from);
751 gimple to_phi = gsi_stmt (gsi_to);
752 tree from_arg = PHI_ARG_DEF_FROM_EDGE (from_phi, from);
753 tree to_arg = PHI_ARG_DEF_FROM_EDGE (to_phi, to);
754 if (TREE_CODE (from_arg) == SSA_NAME
755 && TREE_CODE (to_arg) == SSA_NAME
756 && get_current_def (to_arg) == NULL_TREE)
757 set_current_def (to_arg, get_current_def (from_arg));
762 /* Given LOOP this function generates a new copy of it and puts it
763 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
764 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
765 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
766 entry or exit of LOOP. */
768 struct loop *
769 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop,
770 struct loop *scalar_loop, edge e)
772 struct loop *new_loop;
773 basic_block *new_bbs, *bbs;
774 bool at_exit;
775 bool was_imm_dom;
776 basic_block exit_dest;
777 edge exit, new_exit;
779 exit = single_exit (loop);
780 at_exit = (e == exit);
781 if (!at_exit && e != loop_preheader_edge (loop))
782 return NULL;
784 if (scalar_loop == NULL)
785 scalar_loop = loop;
787 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
788 get_loop_body_with_size (scalar_loop, bbs, scalar_loop->num_nodes);
790 /* Check whether duplication is possible. */
791 if (!can_copy_bbs_p (bbs, scalar_loop->num_nodes))
793 free (bbs);
794 return NULL;
797 /* Generate new loop structure. */
798 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
799 duplicate_subloops (scalar_loop, new_loop);
801 exit_dest = exit->dest;
802 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
803 exit_dest) == loop->header ?
804 true : false);
806 /* Also copy the pre-header, this avoids jumping through hoops to
807 duplicate the loop entry PHI arguments. Create an empty
808 pre-header unconditionally for this. */
809 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
810 edge entry_e = single_pred_edge (preheader);
811 bbs[scalar_loop->num_nodes] = preheader;
812 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
814 exit = single_exit (scalar_loop);
815 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
816 &exit, 1, &new_exit, NULL,
817 e->src, true);
818 exit = single_exit (loop);
819 basic_block new_preheader = new_bbs[scalar_loop->num_nodes];
821 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
823 if (scalar_loop != loop)
825 /* If we copied from SCALAR_LOOP rather than LOOP, SSA_NAMEs from
826 SCALAR_LOOP will have current_def set to SSA_NAMEs in the new_loop,
827 but LOOP will not. slpeel_update_phi_nodes_for_guard{1,2} expects
828 the LOOP SSA_NAMEs (on the exit edge and edge from latch to
829 header) to have current_def set, so copy them over. */
830 slpeel_duplicate_current_defs_from_edges (single_exit (scalar_loop),
831 exit);
832 slpeel_duplicate_current_defs_from_edges (EDGE_SUCC (scalar_loop->latch,
834 EDGE_SUCC (loop->latch, 0));
837 if (at_exit) /* Add the loop copy at exit. */
839 if (scalar_loop != loop)
841 gphi_iterator gsi;
842 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
844 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi);
845 gsi_next (&gsi))
847 gphi *phi = gsi.phi ();
848 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
849 location_t orig_locus
850 = gimple_phi_arg_location_from_edge (phi, e);
852 add_phi_arg (phi, orig_arg, new_exit, orig_locus);
855 redirect_edge_and_branch_force (e, new_preheader);
856 flush_pending_stmts (e);
857 set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
858 if (was_imm_dom)
859 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
861 /* And remove the non-necessary forwarder again. Keep the other
862 one so we have a proper pre-header for the loop at the exit edge. */
863 redirect_edge_pred (single_succ_edge (preheader),
864 single_pred (preheader));
865 delete_basic_block (preheader);
866 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
867 loop_preheader_edge (scalar_loop)->src);
869 else /* Add the copy at entry. */
871 if (scalar_loop != loop)
873 /* Remove the non-necessary forwarder of scalar_loop again. */
874 redirect_edge_pred (single_succ_edge (preheader),
875 single_pred (preheader));
876 delete_basic_block (preheader);
877 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
878 loop_preheader_edge (scalar_loop)->src);
879 preheader = split_edge (loop_preheader_edge (loop));
880 entry_e = single_pred_edge (preheader);
883 redirect_edge_and_branch_force (entry_e, new_preheader);
884 flush_pending_stmts (entry_e);
885 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
887 redirect_edge_and_branch_force (new_exit, preheader);
888 flush_pending_stmts (new_exit);
889 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
891 /* And remove the non-necessary forwarder again. Keep the other
892 one so we have a proper pre-header for the loop at the exit edge. */
893 redirect_edge_pred (single_succ_edge (new_preheader),
894 single_pred (new_preheader));
895 delete_basic_block (new_preheader);
896 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
897 loop_preheader_edge (new_loop)->src);
900 for (unsigned i = 0; i < scalar_loop->num_nodes + 1; i++)
901 rename_variables_in_bb (new_bbs[i]);
903 if (scalar_loop != loop)
905 /* Update new_loop->header PHIs, so that on the preheader
906 edge they are the ones from loop rather than scalar_loop. */
907 gphi_iterator gsi_orig, gsi_new;
908 edge orig_e = loop_preheader_edge (loop);
909 edge new_e = loop_preheader_edge (new_loop);
911 for (gsi_orig = gsi_start_phis (loop->header),
912 gsi_new = gsi_start_phis (new_loop->header);
913 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_new);
914 gsi_next (&gsi_orig), gsi_next (&gsi_new))
916 gphi *orig_phi = gsi_orig.phi ();
917 gphi *new_phi = gsi_new.phi ();
918 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
919 location_t orig_locus
920 = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
922 add_phi_arg (new_phi, orig_arg, new_e, orig_locus);
926 free (new_bbs);
927 free (bbs);
929 #ifdef ENABLE_CHECKING
930 verify_dominators (CDI_DOMINATORS);
931 #endif
933 return new_loop;
937 /* Given the condition statement COND, put it as the last statement
938 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
939 Assumes that this is the single exit of the guarded loop.
940 Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
942 static edge
943 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
944 gimple_seq cond_expr_stmt_list,
945 basic_block exit_bb, basic_block dom_bb,
946 int probability)
948 gimple_stmt_iterator gsi;
949 edge new_e, enter_e;
950 gcond *cond_stmt;
951 gimple_seq gimplify_stmt_list = NULL;
953 enter_e = EDGE_SUCC (guard_bb, 0);
954 enter_e->flags &= ~EDGE_FALLTHRU;
955 enter_e->flags |= EDGE_FALSE_VALUE;
956 gsi = gsi_last_bb (guard_bb);
958 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list, is_gimple_condexpr,
959 NULL_TREE);
960 if (gimplify_stmt_list)
961 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
962 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
963 if (cond_expr_stmt_list)
964 gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);
966 gsi = gsi_last_bb (guard_bb);
967 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
969 /* Add new edge to connect guard block to the merge/loop-exit block. */
970 new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
972 new_e->count = guard_bb->count;
973 new_e->probability = probability;
974 new_e->count = apply_probability (enter_e->count, probability);
975 enter_e->count -= new_e->count;
976 enter_e->probability = inverse_probability (probability);
977 set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
978 return new_e;
982 /* This function verifies that the following restrictions apply to LOOP:
983 (1) it is innermost
984 (2) it consists of exactly 2 basic blocks - header, and an empty latch.
985 (3) it is single entry, single exit
986 (4) its exit condition is the last stmt in the header
987 (5) E is the entry/exit edge of LOOP.
990 bool
991 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
993 edge exit_e = single_exit (loop);
994 edge entry_e = loop_preheader_edge (loop);
995 gcond *orig_cond = get_loop_exit_condition (loop);
996 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
998 if (loop->inner
999 /* All loops have an outer scope; the only case loop->outer is NULL is for
1000 the function itself. */
1001 || !loop_outer (loop)
1002 || loop->num_nodes != 2
1003 || !empty_block_p (loop->latch)
1004 || !single_exit (loop)
1005 /* Verify that new loop exit condition can be trivially modified. */
1006 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
1007 || (e != exit_e && e != entry_e))
1008 return false;
1010 return true;
1013 #ifdef ENABLE_CHECKING
1014 static void
1015 slpeel_verify_cfg_after_peeling (struct loop *first_loop,
1016 struct loop *second_loop)
1018 basic_block loop1_exit_bb = single_exit (first_loop)->dest;
1019 basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
1020 basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
1022 /* A guard that controls whether the second_loop is to be executed or skipped
1023 is placed in first_loop->exit. first_loop->exit therefore has two
1024 successors - one is the preheader of second_loop, and the other is a bb
1025 after second_loop.
1027 gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
1029 /* 1. Verify that one of the successors of first_loop->exit is the preheader
1030 of second_loop. */
1032 /* The preheader of new_loop is expected to have two predecessors:
1033 first_loop->exit and the block that precedes first_loop. */
1035 gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
1036 && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
1037 && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
1038 || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
1039 && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
1041 /* Verify that the other successor of first_loop->exit is after the
1042 second_loop. */
1043 /* TODO */
1045 #endif
1047 /* If the run time cost model check determines that vectorization is
1048 not profitable and hence scalar loop should be generated then set
1049 FIRST_NITERS to prologue peeled iterations. This will allow all the
1050 iterations to be executed in the prologue peeled scalar loop. */
1052 static void
1053 set_prologue_iterations (basic_block bb_before_first_loop,
1054 tree *first_niters,
1055 struct loop *loop,
1056 unsigned int th,
1057 int probability)
1059 edge e;
1060 basic_block cond_bb, then_bb;
1061 tree var, prologue_after_cost_adjust_name;
1062 gimple_stmt_iterator gsi;
1063 gphi *newphi;
1064 edge e_true, e_false, e_fallthru;
1065 gcond *cond_stmt;
1066 gimple_seq stmts = NULL;
1067 tree cost_pre_condition = NULL_TREE;
1068 tree scalar_loop_iters =
1069 unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
1071 e = single_pred_edge (bb_before_first_loop);
1072 cond_bb = split_edge (e);
1074 e = single_pred_edge (bb_before_first_loop);
1075 then_bb = split_edge (e);
1076 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1078 e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
1079 EDGE_FALSE_VALUE);
1080 set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
1082 e_true = EDGE_PRED (then_bb, 0);
1083 e_true->flags &= ~EDGE_FALLTHRU;
1084 e_true->flags |= EDGE_TRUE_VALUE;
1086 e_true->probability = probability;
1087 e_false->probability = inverse_probability (probability);
1088 e_true->count = apply_probability (cond_bb->count, probability);
1089 e_false->count = cond_bb->count - e_true->count;
1090 then_bb->frequency = EDGE_FREQUENCY (e_true);
1091 then_bb->count = e_true->count;
1093 e_fallthru = EDGE_SUCC (then_bb, 0);
1094 e_fallthru->count = then_bb->count;
1096 gsi = gsi_last_bb (cond_bb);
1097 cost_pre_condition =
1098 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1099 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1100 cost_pre_condition =
1101 force_gimple_operand_gsi_1 (&gsi, cost_pre_condition, is_gimple_condexpr,
1102 NULL_TREE, false, GSI_CONTINUE_LINKING);
1103 cond_stmt = gimple_build_cond_from_tree (cost_pre_condition,
1104 NULL_TREE, NULL_TREE);
1105 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1107 var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
1108 "prologue_after_cost_adjust");
1109 prologue_after_cost_adjust_name =
1110 force_gimple_operand (scalar_loop_iters, &stmts, false, var);
1112 gsi = gsi_last_bb (then_bb);
1113 if (stmts)
1114 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
1116 newphi = create_phi_node (var, bb_before_first_loop);
1117 add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
1118 UNKNOWN_LOCATION);
1119 add_phi_arg (newphi, *first_niters, e_false, UNKNOWN_LOCATION);
1121 *first_niters = PHI_RESULT (newphi);
1124 /* Function slpeel_tree_peel_loop_to_edge.
1126 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
1127 that is placed on the entry (exit) edge E of LOOP. After this transformation
1128 we have two loops one after the other - first-loop iterates FIRST_NITERS
1129 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
1130 If the cost model indicates that it is profitable to emit a scalar
1131 loop instead of the vector one, then the prolog (epilog) loop will iterate
1132 for the entire unchanged scalar iterations of the loop.
1134 Input:
1135 - LOOP: the loop to be peeled.
1136 - SCALAR_LOOP: if non-NULL, the alternate loop from which basic blocks
1137 should be copied.
1138 - E: the exit or entry edge of LOOP.
1139 If it is the entry edge, we peel the first iterations of LOOP. In this
1140 case first-loop is LOOP, and second-loop is the newly created loop.
1141 If it is the exit edge, we peel the last iterations of LOOP. In this
1142 case, first-loop is the newly created loop, and second-loop is LOOP.
1143 - NITERS: the number of iterations that LOOP iterates.
1144 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1145 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
1146 for updating the loop bound of the first-loop to FIRST_NITERS. If it
1147 is false, the caller of this function may want to take care of this
1148 (this can be useful if we don't want new stmts added to first-loop).
1149 - TH: cost model profitability threshold of iterations for vectorization.
1150 - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1151 during versioning and hence needs to occur during
1152 prologue generation or whether cost model check
1153 has not occurred during prologue generation and hence
1154 needs to occur during epilogue generation.
1155 - BOUND1 is the upper bound on number of iterations of the first loop (if known)
1156 - BOUND2 is the upper bound on number of iterations of the second loop (if known)
1159 Output:
1160 The function returns a pointer to the new loop-copy, or NULL if it failed
1161 to perform the transformation.
1163 The function generates two if-then-else guards: one before the first loop,
1164 and the other before the second loop:
1165 The first guard is:
1166 if (FIRST_NITERS == 0) then skip the first loop,
1167 and go directly to the second loop.
1168 The second guard is:
1169 if (FIRST_NITERS == NITERS) then skip the second loop.
1171 If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
1172 then the generated condition is combined with COND_EXPR and the
1173 statements in COND_EXPR_STMT_LIST are emitted together with it.
1175 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1176 FORNOW the resulting code will not be in loop-closed-ssa form.
1179 static struct loop *
1180 slpeel_tree_peel_loop_to_edge (struct loop *loop, struct loop *scalar_loop,
1181 edge e, tree *first_niters,
1182 tree niters, bool update_first_loop_count,
1183 unsigned int th, bool check_profitability,
1184 tree cond_expr, gimple_seq cond_expr_stmt_list,
1185 int bound1, int bound2)
1187 struct loop *new_loop = NULL, *first_loop, *second_loop;
1188 edge skip_e;
1189 tree pre_condition = NULL_TREE;
1190 basic_block bb_before_second_loop, bb_after_second_loop;
1191 basic_block bb_before_first_loop;
1192 basic_block bb_between_loops;
1193 basic_block new_exit_bb;
1194 gphi_iterator gsi;
1195 edge exit_e = single_exit (loop);
1196 source_location loop_loc;
1197 /* There are many aspects to how likely the first loop is going to be executed.
1198 Without histogram we can't really do good job. Simply set it to
1199 2/3, so the first loop is not reordered to the end of function and
1200 the hot path through stays short. */
1201 int first_guard_probability = 2 * REG_BR_PROB_BASE / 3;
1202 int second_guard_probability = 2 * REG_BR_PROB_BASE / 3;
1203 int probability_of_second_loop;
1205 if (!slpeel_can_duplicate_loop_p (loop, e))
1206 return NULL;
1208 /* We might have a queued need to update virtual SSA form. As we
1209 delete the update SSA machinery below after doing a regular
1210 incremental SSA update during loop copying make sure we don't
1211 lose that fact.
1212 ??? Needing to update virtual SSA form by renaming is unfortunate
1213 but not all of the vectorizer code inserting new loads / stores
1214 properly assigns virtual operands to those statements. */
1215 update_ssa (TODO_update_ssa_only_virtuals);
1217 /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
1218 in the exit bb and rename all the uses after the loop. This simplifies
1219 the *guard[12] routines, which assume loop closed SSA form for all PHIs
1220 (but normally loop closed SSA form doesn't require virtual PHIs to be
1221 in the same form). Doing this early simplifies the checking what
1222 uses should be renamed. */
1223 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1224 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1226 gphi *phi = gsi.phi ();
1227 for (gsi = gsi_start_phis (exit_e->dest);
1228 !gsi_end_p (gsi); gsi_next (&gsi))
1229 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1230 break;
1231 if (gsi_end_p (gsi))
1233 tree new_vop = copy_ssa_name (PHI_RESULT (phi));
1234 gphi *new_phi = create_phi_node (new_vop, exit_e->dest);
1235 tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
1236 imm_use_iterator imm_iter;
1237 gimple stmt;
1238 use_operand_p use_p;
1240 add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
1241 gimple_phi_set_result (new_phi, new_vop);
1242 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
1243 if (stmt != new_phi && gimple_bb (stmt) != loop->header)
1244 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1245 SET_USE (use_p, new_vop);
1247 break;
1250 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1251 Resulting CFG would be:
1253 first_loop:
1254 do {
1255 } while ...
1257 second_loop:
1258 do {
1259 } while ...
1261 orig_exit_bb:
1264 if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop,
1265 e)))
1267 loop_loc = find_loop_location (loop);
1268 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1269 "tree_duplicate_loop_to_edge_cfg failed.\n");
1270 return NULL;
1273 if (MAY_HAVE_DEBUG_STMTS)
1275 gcc_assert (!adjust_vec.exists ());
1276 adjust_vec.create (32);
1279 if (e == exit_e)
1281 /* NEW_LOOP was placed after LOOP. */
1282 first_loop = loop;
1283 second_loop = new_loop;
1285 else
1287 /* NEW_LOOP was placed before LOOP. */
1288 first_loop = new_loop;
1289 second_loop = loop;
1292 /* 2. Add the guard code in one of the following ways:
1294 2.a Add the guard that controls whether the first loop is executed.
1295 This occurs when this function is invoked for prologue or epilogue
1296 generation and when the cost model check can be done at compile time.
1298 Resulting CFG would be:
1300 bb_before_first_loop:
1301 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1302 GOTO first-loop
1304 first_loop:
1305 do {
1306 } while ...
1308 bb_before_second_loop:
1310 second_loop:
1311 do {
1312 } while ...
1314 orig_exit_bb:
1316 2.b Add the cost model check that allows the prologue
1317 to iterate for the entire unchanged scalar
1318 iterations of the loop in the event that the cost
1319 model indicates that the scalar loop is more
1320 profitable than the vector one. This occurs when
1321 this function is invoked for prologue generation
1322 and the cost model check needs to be done at run
1323 time.
1325 Resulting CFG after prologue peeling would be:
1327 if (scalar_loop_iterations <= th)
1328 FIRST_NITERS = scalar_loop_iterations
1330 bb_before_first_loop:
1331 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1332 GOTO first-loop
1334 first_loop:
1335 do {
1336 } while ...
1338 bb_before_second_loop:
1340 second_loop:
1341 do {
1342 } while ...
1344 orig_exit_bb:
1346 2.c Add the cost model check that allows the epilogue
1347 to iterate for the entire unchanged scalar
1348 iterations of the loop in the event that the cost
1349 model indicates that the scalar loop is more
1350 profitable than the vector one. This occurs when
1351 this function is invoked for epilogue generation
1352 and the cost model check needs to be done at run
1353 time. This check is combined with any pre-existing
1354 check in COND_EXPR to avoid versioning.
1356 Resulting CFG after prologue peeling would be:
1358 bb_before_first_loop:
1359 if ((scalar_loop_iterations <= th)
1361 FIRST_NITERS == 0) GOTO bb_before_second_loop
1362 GOTO first-loop
1364 first_loop:
1365 do {
1366 } while ...
1368 bb_before_second_loop:
1370 second_loop:
1371 do {
1372 } while ...
1374 orig_exit_bb:
1377 bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
1378 /* Loop copying insterted a forwarder block for us here. */
1379 bb_before_second_loop = single_exit (first_loop)->dest;
1381 probability_of_second_loop = (inverse_probability (first_guard_probability)
1382 + combine_probabilities (second_guard_probability,
1383 first_guard_probability));
1384 /* Theoretically preheader edge of first loop and exit edge should have
1385 same frequencies. Loop exit probablities are however easy to get wrong.
1386 It is safer to copy value from original loop entry. */
1387 bb_before_second_loop->frequency
1388 = combine_probabilities (bb_before_first_loop->frequency,
1389 probability_of_second_loop);
1390 bb_before_second_loop->count
1391 = apply_probability (bb_before_first_loop->count,
1392 probability_of_second_loop);
1393 single_succ_edge (bb_before_second_loop)->count
1394 = bb_before_second_loop->count;
1396 /* Epilogue peeling. */
1397 if (!update_first_loop_count)
1399 loop_vec_info loop_vinfo = loop_vec_info_for_loop (loop);
1400 tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
1401 unsigned limit = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1;
1402 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1403 limit = limit + 1;
1404 if (check_profitability
1405 && th > limit)
1406 limit = th;
1407 pre_condition =
1408 fold_build2 (LT_EXPR, boolean_type_node, scalar_loop_iters,
1409 build_int_cst (TREE_TYPE (scalar_loop_iters), limit));
1410 if (cond_expr)
1412 pre_condition =
1413 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1414 pre_condition,
1415 fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
1416 cond_expr));
1420 /* Prologue peeling. */
1421 else
1423 if (check_profitability)
1424 set_prologue_iterations (bb_before_first_loop, first_niters,
1425 loop, th, first_guard_probability);
1427 pre_condition =
1428 fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
1429 build_int_cst (TREE_TYPE (*first_niters), 0));
1432 skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
1433 cond_expr_stmt_list,
1434 bb_before_second_loop, bb_before_first_loop,
1435 inverse_probability (first_guard_probability));
1436 scale_loop_profile (first_loop, first_guard_probability,
1437 check_profitability && (int)th > bound1 ? th : bound1);
1438 slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1439 first_loop == new_loop,
1440 &new_exit_bb);
1443 /* 3. Add the guard that controls whether the second loop is executed.
1444 Resulting CFG would be:
1446 bb_before_first_loop:
1447 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1448 GOTO first-loop
1450 first_loop:
1451 do {
1452 } while ...
1454 bb_between_loops:
1455 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1456 GOTO bb_before_second_loop
1458 bb_before_second_loop:
1460 second_loop:
1461 do {
1462 } while ...
1464 bb_after_second_loop:
1466 orig_exit_bb:
1469 bb_between_loops = new_exit_bb;
1470 bb_after_second_loop = split_edge (single_exit (second_loop));
1472 pre_condition =
1473 fold_build2 (EQ_EXPR, boolean_type_node, *first_niters, niters);
1474 skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
1475 bb_after_second_loop, bb_before_first_loop,
1476 inverse_probability (second_guard_probability));
1477 scale_loop_profile (second_loop, probability_of_second_loop, bound2);
1478 slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1479 second_loop == new_loop, &new_exit_bb);
1481 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1483 if (update_first_loop_count)
1484 slpeel_make_loop_iterate_ntimes (first_loop, *first_niters);
1486 delete_update_ssa ();
1488 adjust_vec_debug_stmts ();
1490 return new_loop;
1493 /* Function vect_get_loop_location.
1495 Extract the location of the loop in the source code.
1496 If the loop is not well formed for vectorization, an estimated
1497 location is calculated.
1498 Return the loop location if succeed and NULL if not. */
1500 source_location
1501 find_loop_location (struct loop *loop)
1503 gimple stmt = NULL;
1504 basic_block bb;
1505 gimple_stmt_iterator si;
1507 if (!loop)
1508 return UNKNOWN_LOCATION;
1510 stmt = get_loop_exit_condition (loop);
1512 if (stmt
1513 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1514 return gimple_location (stmt);
1516 /* If we got here the loop is probably not "well formed",
1517 try to estimate the loop location */
1519 if (!loop->header)
1520 return UNKNOWN_LOCATION;
1522 bb = loop->header;
1524 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1526 stmt = gsi_stmt (si);
1527 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1528 return gimple_location (stmt);
1531 return UNKNOWN_LOCATION;
1535 /* Function vect_can_advance_ivs_p
1537 In case the number of iterations that LOOP iterates is unknown at compile
1538 time, an epilog loop will be generated, and the loop induction variables
1539 (IVs) will be "advanced" to the value they are supposed to take just before
1540 the epilog loop. Here we check that the access function of the loop IVs
1541 and the expression that represents the loop bound are simple enough.
1542 These restrictions will be relaxed in the future. */
1544 bool
1545 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1547 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1548 basic_block bb = loop->header;
1549 gimple phi;
1550 gphi_iterator gsi;
1552 /* Analyze phi functions of the loop header. */
1554 if (dump_enabled_p ())
1555 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
1556 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1558 tree evolution_part;
1560 phi = gsi.phi ();
1561 if (dump_enabled_p ())
1563 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
1564 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1565 dump_printf (MSG_NOTE, "\n");
1568 /* Skip virtual phi's. The data dependences that are associated with
1569 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
1571 if (virtual_operand_p (PHI_RESULT (phi)))
1573 if (dump_enabled_p ())
1574 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1575 "virtual phi. skip.\n");
1576 continue;
1579 /* Skip reduction phis. */
1581 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1583 if (dump_enabled_p ())
1584 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1585 "reduc phi. skip.\n");
1586 continue;
1589 /* Analyze the evolution function. */
1591 evolution_part
1592 = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
1593 if (evolution_part == NULL_TREE)
1595 if (dump_enabled_p ())
1596 dump_printf (MSG_MISSED_OPTIMIZATION,
1597 "No access function or evolution.\n");
1598 return false;
1601 /* FORNOW: We do not transform initial conditions of IVs
1602 which evolution functions are a polynomial of degree >= 2. */
1604 if (tree_is_chrec (evolution_part))
1605 return false;
1608 return true;
1612 /* Function vect_update_ivs_after_vectorizer.
1614 "Advance" the induction variables of LOOP to the value they should take
1615 after the execution of LOOP. This is currently necessary because the
1616 vectorizer does not handle induction variables that are used after the
1617 loop. Such a situation occurs when the last iterations of LOOP are
1618 peeled, because:
1619 1. We introduced new uses after LOOP for IVs that were not originally used
1620 after LOOP: the IVs of LOOP are now used by an epilog loop.
1621 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1622 times, whereas the loop IVs should be bumped N times.
1624 Input:
1625 - LOOP - a loop that is going to be vectorized. The last few iterations
1626 of LOOP were peeled.
1627 - NITERS - the number of iterations that LOOP executes (before it is
1628 vectorized). i.e, the number of times the ivs should be bumped.
1629 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1630 coming out from LOOP on which there are uses of the LOOP ivs
1631 (this is the path from LOOP->exit to epilog_loop->preheader).
1633 The new definitions of the ivs are placed in LOOP->exit.
1634 The phi args associated with the edge UPDATE_E in the bb
1635 UPDATE_E->dest are updated accordingly.
1637 Assumption 1: Like the rest of the vectorizer, this function assumes
1638 a single loop exit that has a single predecessor.
1640 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1641 organized in the same order.
1643 Assumption 3: The access function of the ivs is simple enough (see
1644 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1646 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1647 coming out of LOOP on which the ivs of LOOP are used (this is the path
1648 that leads to the epilog loop; other paths skip the epilog loop). This
1649 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1650 needs to have its phis updated.
1653 static void
1654 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
1655 edge update_e)
1657 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1658 basic_block exit_bb = single_exit (loop)->dest;
1659 gphi *phi, *phi1;
1660 gphi_iterator gsi, gsi1;
1661 basic_block update_bb = update_e->dest;
1663 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
1665 /* Make sure there exists a single-predecessor exit bb: */
1666 gcc_assert (single_pred_p (exit_bb));
1668 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1669 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1670 gsi_next (&gsi), gsi_next (&gsi1))
1672 tree init_expr;
1673 tree step_expr, off;
1674 tree type;
1675 tree var, ni, ni_name;
1676 gimple_stmt_iterator last_gsi;
1677 stmt_vec_info stmt_info;
1679 phi = gsi.phi ();
1680 phi1 = gsi1.phi ();
1681 if (dump_enabled_p ())
1683 dump_printf_loc (MSG_NOTE, vect_location,
1684 "vect_update_ivs_after_vectorizer: phi: ");
1685 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1686 dump_printf (MSG_NOTE, "\n");
1689 /* Skip virtual phi's. */
1690 if (virtual_operand_p (PHI_RESULT (phi)))
1692 if (dump_enabled_p ())
1693 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1694 "virtual phi. skip.\n");
1695 continue;
1698 /* Skip reduction phis. */
1699 stmt_info = vinfo_for_stmt (phi);
1700 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
1702 if (dump_enabled_p ())
1703 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1704 "reduc phi. skip.\n");
1705 continue;
1708 type = TREE_TYPE (gimple_phi_result (phi));
1709 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
1710 step_expr = unshare_expr (step_expr);
1712 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1713 of degree >= 2 or exponential. */
1714 gcc_assert (!tree_is_chrec (step_expr));
1716 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1718 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1719 fold_convert (TREE_TYPE (step_expr), niters),
1720 step_expr);
1721 if (POINTER_TYPE_P (type))
1722 ni = fold_build_pointer_plus (init_expr, off);
1723 else
1724 ni = fold_build2 (PLUS_EXPR, type,
1725 init_expr, fold_convert (type, off));
1727 var = create_tmp_var (type, "tmp");
1729 last_gsi = gsi_last_bb (exit_bb);
1730 ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
1731 true, GSI_SAME_STMT);
1733 /* Fix phi expressions in the successor bb. */
1734 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
1738 /* Function vect_do_peeling_for_loop_bound
1740 Peel the last iterations of the loop represented by LOOP_VINFO.
1741 The peeled iterations form a new epilog loop. Given that the loop now
1742 iterates NITERS times, the new epilog loop iterates
1743 NITERS % VECTORIZATION_FACTOR times.
1745 The original loop will later be made to iterate
1746 NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
1748 COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
1749 test. */
1751 void
1752 vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo,
1753 tree ni_name, tree ratio_mult_vf_name,
1754 unsigned int th, bool check_profitability)
1756 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1757 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
1758 struct loop *new_loop;
1759 edge update_e;
1760 basic_block preheader;
1761 int loop_num;
1762 int max_iter;
1763 tree cond_expr = NULL_TREE;
1764 gimple_seq cond_expr_stmt_list = NULL;
1766 if (dump_enabled_p ())
1767 dump_printf_loc (MSG_NOTE, vect_location,
1768 "=== vect_do_peeling_for_loop_bound ===\n");
1770 initialize_original_copy_tables ();
1772 loop_num = loop->num;
1774 new_loop
1775 = slpeel_tree_peel_loop_to_edge (loop, scalar_loop, single_exit (loop),
1776 &ratio_mult_vf_name, ni_name, false,
1777 th, check_profitability,
1778 cond_expr, cond_expr_stmt_list,
1779 0, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1780 gcc_assert (new_loop);
1781 gcc_assert (loop_num == loop->num);
1782 #ifdef ENABLE_CHECKING
1783 slpeel_verify_cfg_after_peeling (loop, new_loop);
1784 #endif
1786 /* A guard that controls whether the new_loop is to be executed or skipped
1787 is placed in LOOP->exit. LOOP->exit therefore has two successors - one
1788 is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
1789 is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
1790 is on the path where the LOOP IVs are used and need to be updated. */
1792 preheader = loop_preheader_edge (new_loop)->src;
1793 if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
1794 update_e = EDGE_PRED (preheader, 0);
1795 else
1796 update_e = EDGE_PRED (preheader, 1);
1798 /* Update IVs of original loop as if they were advanced
1799 by ratio_mult_vf_name steps. */
1800 vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
1802 /* For vectorization factor N, we need to copy last N-1 values in epilogue
1803 and this means N-2 loopback edge executions.
1805 PEELING_FOR_GAPS works by subtracting last iteration and thus the epilogue
1806 will execute at least LOOP_VINFO_VECT_FACTOR times. */
1807 max_iter = (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
1808 ? LOOP_VINFO_VECT_FACTOR (loop_vinfo) * 2
1809 : LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 2;
1810 if (check_profitability)
1811 max_iter = MAX (max_iter, (int) th - 1);
1812 record_niter_bound (new_loop, max_iter, false, true);
1813 dump_printf (MSG_NOTE,
1814 "Setting upper bound of nb iterations for epilogue "
1815 "loop to %d\n", max_iter);
1817 /* After peeling we have to reset scalar evolution analyzer. */
1818 scev_reset ();
1820 free_original_copy_tables ();
1824 /* Function vect_gen_niters_for_prolog_loop
1826 Set the number of iterations for the loop represented by LOOP_VINFO
1827 to the minimum between LOOP_NITERS (the original iteration count of the loop)
1828 and the misalignment of DR - the data reference recorded in
1829 LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
1830 this loop, the data reference DR will refer to an aligned location.
1832 The following computation is generated:
1834 If the misalignment of DR is known at compile time:
1835 addr_mis = int mis = DR_MISALIGNMENT (dr);
1836 Else, compute address misalignment in bytes:
1837 addr_mis = addr & (vectype_align - 1)
1839 prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
1841 (elem_size = element type size; an element is the scalar element whose type
1842 is the inner type of the vectype)
1844 When the step of the data-ref in the loop is not 1 (as in interleaved data
1845 and SLP), the number of iterations of the prolog must be divided by the step
1846 (which is equal to the size of interleaved group).
1848 The above formulas assume that VF == number of elements in the vector. This
1849 may not hold when there are multiple-types in the loop.
1850 In this case, for some data-references in the loop the VF does not represent
1851 the number of elements that fit in the vector. Therefore, instead of VF we
1852 use TYPE_VECTOR_SUBPARTS. */
1854 static tree
1855 vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters, int *bound)
1857 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1858 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1859 tree var;
1860 gimple_seq stmts;
1861 tree iters, iters_name;
1862 edge pe;
1863 basic_block new_bb;
1864 gimple dr_stmt = DR_STMT (dr);
1865 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
1866 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1867 int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
1868 tree niters_type = TREE_TYPE (loop_niters);
1869 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
1871 pe = loop_preheader_edge (loop);
1873 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1875 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1877 if (dump_enabled_p ())
1878 dump_printf_loc (MSG_NOTE, vect_location,
1879 "known peeling = %d.\n", npeel);
1881 iters = build_int_cst (niters_type, npeel);
1882 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1884 else
1886 gimple_seq new_stmts = NULL;
1887 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
1888 tree offset = negative
1889 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
1890 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
1891 &new_stmts, offset, loop);
1892 tree type = unsigned_type_for (TREE_TYPE (start_addr));
1893 tree vectype_align_minus_1 = build_int_cst (type, vectype_align - 1);
1894 HOST_WIDE_INT elem_size =
1895 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1896 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
1897 tree nelements_minus_1 = build_int_cst (type, nelements - 1);
1898 tree nelements_tree = build_int_cst (type, nelements);
1899 tree byte_misalign;
1900 tree elem_misalign;
1902 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
1903 gcc_assert (!new_bb);
1905 /* Create: byte_misalign = addr & (vectype_align - 1) */
1906 byte_misalign =
1907 fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
1908 vectype_align_minus_1);
1910 /* Create: elem_misalign = byte_misalign / element_size */
1911 elem_misalign =
1912 fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
1914 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
1915 if (negative)
1916 iters = fold_build2 (MINUS_EXPR, type, elem_misalign, nelements_tree);
1917 else
1918 iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
1919 iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
1920 iters = fold_convert (niters_type, iters);
1921 *bound = nelements;
1924 /* Create: prolog_loop_niters = min (iters, loop_niters) */
1925 /* If the loop bound is known at compile time we already verified that it is
1926 greater than vf; since the misalignment ('iters') is at most vf, there's
1927 no need to generate the MIN_EXPR in this case. */
1928 if (TREE_CODE (loop_niters) != INTEGER_CST)
1929 iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
1931 if (dump_enabled_p ())
1933 dump_printf_loc (MSG_NOTE, vect_location,
1934 "niters for prolog loop: ");
1935 dump_generic_expr (MSG_NOTE, TDF_SLIM, iters);
1936 dump_printf (MSG_NOTE, "\n");
1939 var = create_tmp_var (niters_type, "prolog_loop_niters");
1940 stmts = NULL;
1941 iters_name = force_gimple_operand (iters, &stmts, false, var);
1943 /* Insert stmt on loop preheader edge. */
1944 if (stmts)
1946 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1947 gcc_assert (!new_bb);
1950 return iters_name;
1954 /* Function vect_update_init_of_dr
1956 NITERS iterations were peeled from LOOP. DR represents a data reference
1957 in LOOP. This function updates the information recorded in DR to
1958 account for the fact that the first NITERS iterations had already been
1959 executed. Specifically, it updates the OFFSET field of DR. */
1961 static void
1962 vect_update_init_of_dr (struct data_reference *dr, tree niters)
1964 tree offset = DR_OFFSET (dr);
1966 niters = fold_build2 (MULT_EXPR, sizetype,
1967 fold_convert (sizetype, niters),
1968 fold_convert (sizetype, DR_STEP (dr)));
1969 offset = fold_build2 (PLUS_EXPR, sizetype,
1970 fold_convert (sizetype, offset), niters);
1971 DR_OFFSET (dr) = offset;
1975 /* Function vect_update_inits_of_drs
1977 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
1978 This function updates the information recorded for the data references in
1979 the loop to account for the fact that the first NITERS iterations had
1980 already been executed. Specifically, it updates the initial_condition of
1981 the access_function of all the data_references in the loop. */
1983 static void
1984 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
1986 unsigned int i;
1987 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1988 struct data_reference *dr;
1990 if (dump_enabled_p ())
1991 dump_printf_loc (MSG_NOTE, vect_location,
1992 "=== vect_update_inits_of_dr ===\n");
1994 FOR_EACH_VEC_ELT (datarefs, i, dr)
1995 vect_update_init_of_dr (dr, niters);
1999 /* Function vect_do_peeling_for_alignment
2001 Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
2002 'niters' is set to the misalignment of one of the data references in the
2003 loop, thereby forcing it to refer to an aligned location at the beginning
2004 of the execution of this loop. The data reference for which we are
2005 peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
2007 void
2008 vect_do_peeling_for_alignment (loop_vec_info loop_vinfo, tree ni_name,
2009 unsigned int th, bool check_profitability)
2011 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2012 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2013 tree niters_of_prolog_loop;
2014 tree wide_prolog_niters;
2015 struct loop *new_loop;
2016 int max_iter;
2017 int bound = 0;
2019 if (dump_enabled_p ())
2020 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2021 "loop peeled for vectorization to enhance"
2022 " alignment\n");
2024 initialize_original_copy_tables ();
2026 gimple_seq stmts = NULL;
2027 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2028 niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo,
2029 ni_name,
2030 &bound);
2032 /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
2033 new_loop =
2034 slpeel_tree_peel_loop_to_edge (loop, scalar_loop,
2035 loop_preheader_edge (loop),
2036 &niters_of_prolog_loop, ni_name, true,
2037 th, check_profitability, NULL_TREE, NULL,
2038 bound, 0);
2040 gcc_assert (new_loop);
2041 #ifdef ENABLE_CHECKING
2042 slpeel_verify_cfg_after_peeling (new_loop, loop);
2043 #endif
2044 /* For vectorization factor N, we need to copy at most N-1 values
2045 for alignment and this means N-2 loopback edge executions. */
2046 max_iter = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 2;
2047 if (check_profitability)
2048 max_iter = MAX (max_iter, (int) th - 1);
2049 record_niter_bound (new_loop, max_iter, false, true);
2050 dump_printf (MSG_NOTE,
2051 "Setting upper bound of nb iterations for prologue "
2052 "loop to %d\n", max_iter);
2054 /* Update number of times loop executes. */
2055 LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
2056 TREE_TYPE (ni_name), ni_name, niters_of_prolog_loop);
2057 LOOP_VINFO_NITERSM1 (loop_vinfo) = fold_build2 (MINUS_EXPR,
2058 TREE_TYPE (ni_name),
2059 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_of_prolog_loop);
2061 if (types_compatible_p (sizetype, TREE_TYPE (niters_of_prolog_loop)))
2062 wide_prolog_niters = niters_of_prolog_loop;
2063 else
2065 gimple_seq seq = NULL;
2066 edge pe = loop_preheader_edge (loop);
2067 tree wide_iters = fold_convert (sizetype, niters_of_prolog_loop);
2068 tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
2069 wide_prolog_niters = force_gimple_operand (wide_iters, &seq, false,
2070 var);
2071 if (seq)
2073 /* Insert stmt on loop preheader edge. */
2074 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
2075 gcc_assert (!new_bb);
2079 /* Update the init conditions of the access functions of all data refs. */
2080 vect_update_inits_of_drs (loop_vinfo, wide_prolog_niters);
2082 /* After peeling we have to reset scalar evolution analyzer. */
2083 scev_reset ();
2085 free_original_copy_tables ();
2089 /* Function vect_create_cond_for_align_checks.
2091 Create a conditional expression that represents the alignment checks for
2092 all of data references (array element references) whose alignment must be
2093 checked at runtime.
2095 Input:
2096 COND_EXPR - input conditional expression. New conditions will be chained
2097 with logical AND operation.
2098 LOOP_VINFO - two fields of the loop information are used.
2099 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2100 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2102 Output:
2103 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2104 expression.
2105 The returned value is the conditional expression to be used in the if
2106 statement that controls which version of the loop gets executed at runtime.
2108 The algorithm makes two assumptions:
2109 1) The number of bytes "n" in a vector is a power of 2.
2110 2) An address "a" is aligned if a%n is zero and that this
2111 test can be done as a&(n-1) == 0. For example, for 16
2112 byte vectors the test is a&0xf == 0. */
2114 static void
2115 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2116 tree *cond_expr,
2117 gimple_seq *cond_expr_stmt_list)
2119 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2120 vec<gimple> may_misalign_stmts
2121 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2122 gimple ref_stmt;
2123 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2124 tree mask_cst;
2125 unsigned int i;
2126 tree int_ptrsize_type;
2127 char tmp_name[20];
2128 tree or_tmp_name = NULL_TREE;
2129 tree and_tmp_name;
2130 gimple and_stmt;
2131 tree ptrsize_zero;
2132 tree part_cond_expr;
2134 /* Check that mask is one less than a power of 2, i.e., mask is
2135 all zeros followed by all ones. */
2136 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2138 int_ptrsize_type = signed_type_for (ptr_type_node);
2140 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2141 of the first vector of the i'th data reference. */
2143 FOR_EACH_VEC_ELT (may_misalign_stmts, i, ref_stmt)
2145 gimple_seq new_stmt_list = NULL;
2146 tree addr_base;
2147 tree addr_tmp_name;
2148 tree new_or_tmp_name;
2149 gimple addr_stmt, or_stmt;
2150 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2151 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2152 bool negative = tree_int_cst_compare
2153 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2154 tree offset = negative
2155 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
2157 /* create: addr_tmp = (int)(address_of_first_vector) */
2158 addr_base =
2159 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2160 offset, loop);
2161 if (new_stmt_list != NULL)
2162 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2164 sprintf (tmp_name, "addr2int%d", i);
2165 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2166 addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
2167 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2169 /* The addresses are OR together. */
2171 if (or_tmp_name != NULL_TREE)
2173 /* create: or_tmp = or_tmp | addr_tmp */
2174 sprintf (tmp_name, "orptrs%d", i);
2175 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2176 or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
2177 or_tmp_name, addr_tmp_name);
2178 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2179 or_tmp_name = new_or_tmp_name;
2181 else
2182 or_tmp_name = addr_tmp_name;
2184 } /* end for i */
2186 mask_cst = build_int_cst (int_ptrsize_type, mask);
2188 /* create: and_tmp = or_tmp & mask */
2189 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
2191 and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
2192 or_tmp_name, mask_cst);
2193 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2195 /* Make and_tmp the left operand of the conditional test against zero.
2196 if and_tmp has a nonzero bit then some address is unaligned. */
2197 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2198 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2199 and_tmp_name, ptrsize_zero);
2200 if (*cond_expr)
2201 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2202 *cond_expr, part_cond_expr);
2203 else
2204 *cond_expr = part_cond_expr;
2207 /* Function vect_create_cond_for_alias_checks.
2209 Create a conditional expression that represents the run-time checks for
2210 overlapping of address ranges represented by a list of data references
2211 relations passed as input.
2213 Input:
2214 COND_EXPR - input conditional expression. New conditions will be chained
2215 with logical AND operation. If it is NULL, then the function
2216 is used to return the number of alias checks.
2217 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2218 to be checked.
2220 Output:
2221 COND_EXPR - conditional expression.
2223 The returned COND_EXPR is the conditional expression to be used in the if
2224 statement that controls which version of the loop gets executed at runtime.
2227 void
2228 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
2230 vec<dr_with_seg_len_pair_t> comp_alias_ddrs =
2231 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
2232 tree part_cond_expr;
2234 /* Create expression
2235 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2236 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2240 ((store_ptr_n + store_segment_length_n) <= load_ptr_n)
2241 || (load_ptr_n + load_segment_length_n) <= store_ptr_n)) */
2243 if (comp_alias_ddrs.is_empty ())
2244 return;
2246 for (size_t i = 0, s = comp_alias_ddrs.length (); i < s; ++i)
2248 const dr_with_seg_len& dr_a = comp_alias_ddrs[i].first;
2249 const dr_with_seg_len& dr_b = comp_alias_ddrs[i].second;
2250 tree segment_length_a = dr_a.seg_len;
2251 tree segment_length_b = dr_b.seg_len;
2253 tree addr_base_a
2254 = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_a.dr), dr_a.offset);
2255 tree addr_base_b
2256 = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_b.dr), dr_b.offset);
2258 if (dump_enabled_p ())
2260 dump_printf_loc (MSG_NOTE, vect_location,
2261 "create runtime check for data references ");
2262 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a.dr));
2263 dump_printf (MSG_NOTE, " and ");
2264 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b.dr));
2265 dump_printf (MSG_NOTE, "\n");
2268 tree seg_a_min = addr_base_a;
2269 tree seg_a_max = fold_build_pointer_plus (addr_base_a, segment_length_a);
2270 /* For negative step, we need to adjust address range by TYPE_SIZE_UNIT
2271 bytes, e.g., int a[3] -> a[1] range is [a+4, a+16) instead of
2272 [a, a+12) */
2273 if (tree_int_cst_compare (DR_STEP (dr_a.dr), size_zero_node) < 0)
2275 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_a.dr)));
2276 seg_a_min = fold_build_pointer_plus (seg_a_max, unit_size);
2277 seg_a_max = fold_build_pointer_plus (addr_base_a, unit_size);
2280 tree seg_b_min = addr_base_b;
2281 tree seg_b_max = fold_build_pointer_plus (addr_base_b, segment_length_b);
2282 if (tree_int_cst_compare (DR_STEP (dr_b.dr), size_zero_node) < 0)
2284 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_b.dr)));
2285 seg_b_min = fold_build_pointer_plus (seg_b_max, unit_size);
2286 seg_b_max = fold_build_pointer_plus (addr_base_b, unit_size);
2289 part_cond_expr =
2290 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
2291 fold_build2 (LE_EXPR, boolean_type_node, seg_a_max, seg_b_min),
2292 fold_build2 (LE_EXPR, boolean_type_node, seg_b_max, seg_a_min));
2294 if (*cond_expr)
2295 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2296 *cond_expr, part_cond_expr);
2297 else
2298 *cond_expr = part_cond_expr;
2301 if (dump_enabled_p ())
2302 dump_printf_loc (MSG_NOTE, vect_location,
2303 "created %u versioning for alias checks.\n",
2304 comp_alias_ddrs.length ());
2306 comp_alias_ddrs.release ();
2310 /* Function vect_loop_versioning.
2312 If the loop has data references that may or may not be aligned or/and
2313 has data reference relations whose independence was not proven then
2314 two versions of the loop need to be generated, one which is vectorized
2315 and one which isn't. A test is then generated to control which of the
2316 loops is executed. The test checks for the alignment of all of the
2317 data references that may or may not be aligned. An additional
2318 sequence of runtime tests is generated for each pairs of DDRs whose
2319 independence was not proven. The vectorized version of loop is
2320 executed only if both alias and alignment tests are passed.
2322 The test generated to check which version of loop is executed
2323 is modified to also check for profitability as indicated by the
2324 cost model initially.
2326 The versioning precondition(s) are placed in *COND_EXPR and
2327 *COND_EXPR_STMT_LIST. */
2329 void
2330 vect_loop_versioning (loop_vec_info loop_vinfo,
2331 unsigned int th, bool check_profitability)
2333 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2334 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2335 basic_block condition_bb;
2336 gphi_iterator gsi;
2337 gimple_stmt_iterator cond_exp_gsi;
2338 basic_block merge_bb;
2339 basic_block new_exit_bb;
2340 edge new_exit_e, e;
2341 gphi *orig_phi, *new_phi;
2342 tree cond_expr = NULL_TREE;
2343 gimple_seq cond_expr_stmt_list = NULL;
2344 tree arg;
2345 unsigned prob = 4 * REG_BR_PROB_BASE / 5;
2346 gimple_seq gimplify_stmt_list = NULL;
2347 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2348 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
2349 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
2351 if (check_profitability)
2353 cond_expr = fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
2354 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
2355 cond_expr = force_gimple_operand_1 (cond_expr, &cond_expr_stmt_list,
2356 is_gimple_condexpr, NULL_TREE);
2359 if (version_align)
2360 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
2361 &cond_expr_stmt_list);
2363 if (version_alias)
2364 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
2366 cond_expr = force_gimple_operand_1 (cond_expr, &gimplify_stmt_list,
2367 is_gimple_condexpr, NULL_TREE);
2368 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
2370 initialize_original_copy_tables ();
2371 if (scalar_loop)
2373 edge scalar_e;
2374 basic_block preheader, scalar_preheader;
2376 /* We don't want to scale SCALAR_LOOP's frequencies, we need to
2377 scale LOOP's frequencies instead. */
2378 loop_version (scalar_loop, cond_expr, &condition_bb,
2379 prob, REG_BR_PROB_BASE, REG_BR_PROB_BASE - prob, true);
2380 scale_loop_frequencies (loop, prob, REG_BR_PROB_BASE);
2381 /* CONDITION_BB was created above SCALAR_LOOP's preheader,
2382 while we need to move it above LOOP's preheader. */
2383 e = loop_preheader_edge (loop);
2384 scalar_e = loop_preheader_edge (scalar_loop);
2385 gcc_assert (empty_block_p (e->src)
2386 && single_pred_p (e->src));
2387 gcc_assert (empty_block_p (scalar_e->src)
2388 && single_pred_p (scalar_e->src));
2389 gcc_assert (single_pred_p (condition_bb));
2390 preheader = e->src;
2391 scalar_preheader = scalar_e->src;
2392 scalar_e = find_edge (condition_bb, scalar_preheader);
2393 e = single_pred_edge (preheader);
2394 redirect_edge_and_branch_force (single_pred_edge (condition_bb),
2395 scalar_preheader);
2396 redirect_edge_and_branch_force (scalar_e, preheader);
2397 redirect_edge_and_branch_force (e, condition_bb);
2398 set_immediate_dominator (CDI_DOMINATORS, condition_bb,
2399 single_pred (condition_bb));
2400 set_immediate_dominator (CDI_DOMINATORS, scalar_preheader,
2401 single_pred (scalar_preheader));
2402 set_immediate_dominator (CDI_DOMINATORS, preheader,
2403 condition_bb);
2405 else
2406 loop_version (loop, cond_expr, &condition_bb,
2407 prob, prob, REG_BR_PROB_BASE - prob, true);
2409 if (LOCATION_LOCUS (vect_location) != UNKNOWN_LOCATION
2410 && dump_enabled_p ())
2412 if (version_alias)
2413 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2414 "loop versioned for vectorization because of "
2415 "possible aliasing\n");
2416 if (version_align)
2417 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2418 "loop versioned for vectorization to enhance "
2419 "alignment\n");
2422 free_original_copy_tables ();
2424 /* Loop versioning violates an assumption we try to maintain during
2425 vectorization - that the loop exit block has a single predecessor.
2426 After versioning, the exit block of both loop versions is the same
2427 basic block (i.e. it has two predecessors). Just in order to simplify
2428 following transformations in the vectorizer, we fix this situation
2429 here by adding a new (empty) block on the exit-edge of the loop,
2430 with the proper loop-exit phis to maintain loop-closed-form.
2431 If loop versioning wasn't done from loop, but scalar_loop instead,
2432 merge_bb will have already just a single successor. */
2434 merge_bb = single_exit (loop)->dest;
2435 if (scalar_loop == NULL || EDGE_COUNT (merge_bb->preds) >= 2)
2437 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
2438 new_exit_bb = split_edge (single_exit (loop));
2439 new_exit_e = single_exit (loop);
2440 e = EDGE_SUCC (new_exit_bb, 0);
2442 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2444 tree new_res;
2445 orig_phi = gsi.phi ();
2446 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2447 new_phi = create_phi_node (new_res, new_exit_bb);
2448 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
2449 add_phi_arg (new_phi, arg, new_exit_e,
2450 gimple_phi_arg_location_from_edge (orig_phi, e));
2451 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
2455 /* End loop-exit-fixes after versioning. */
2457 if (cond_expr_stmt_list)
2459 cond_exp_gsi = gsi_last_bb (condition_bb);
2460 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
2461 GSI_SAME_STMT);
2463 update_ssa (TODO_update_ssa);