* config/i386/i386.h (TARGET_SUPPORTS_WIDE_INT): New define.
[official-gcc.git] / gcc / postreload.c
blob948fcbd8e0ceda6a39ef6a61430ae726a6404e8c
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "flags.h"
32 #include "hashtab.h"
33 #include "hash-set.h"
34 #include "vec.h"
35 #include "input.h"
36 #include "function.h"
37 #include "symtab.h"
38 #include "statistics.h"
39 #include "double-int.h"
40 #include "real.h"
41 #include "fixed-value.h"
42 #include "alias.h"
43 #include "wide-int.h"
44 #include "inchash.h"
45 #include "tree.h"
46 #include "expmed.h"
47 #include "dojump.h"
48 #include "explow.h"
49 #include "calls.h"
50 #include "emit-rtl.h"
51 #include "varasm.h"
52 #include "stmt.h"
53 #include "expr.h"
54 #include "insn-codes.h"
55 #include "optabs.h"
56 #include "regs.h"
57 #include "predict.h"
58 #include "dominance.h"
59 #include "cfg.h"
60 #include "cfgrtl.h"
61 #include "cfgbuild.h"
62 #include "cfgcleanup.h"
63 #include "basic-block.h"
64 #include "reload.h"
65 #include "recog.h"
66 #include "cselib.h"
67 #include "diagnostic-core.h"
68 #include "except.h"
69 #include "target.h"
70 #include "tree-pass.h"
71 #include "df.h"
72 #include "dbgcnt.h"
74 static int reload_cse_noop_set_p (rtx);
75 static bool reload_cse_simplify (rtx_insn *, rtx);
76 static void reload_cse_regs_1 (void);
77 static int reload_cse_simplify_set (rtx, rtx_insn *);
78 static int reload_cse_simplify_operands (rtx_insn *, rtx);
80 static void reload_combine (void);
81 static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
82 static void reload_combine_note_store (rtx, const_rtx, void *);
84 static bool reload_cse_move2add (rtx_insn *);
85 static void move2add_note_store (rtx, const_rtx, void *);
87 /* Call cse / combine like post-reload optimization phases.
88 FIRST is the first instruction. */
90 static void
91 reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
93 bool moves_converted;
94 reload_cse_regs_1 ();
95 reload_combine ();
96 moves_converted = reload_cse_move2add (first);
97 if (flag_expensive_optimizations)
99 if (moves_converted)
100 reload_combine ();
101 reload_cse_regs_1 ();
105 /* See whether a single set SET is a noop. */
106 static int
107 reload_cse_noop_set_p (rtx set)
109 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
110 return 0;
112 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
115 /* Try to simplify INSN. Return true if the CFG may have changed. */
116 static bool
117 reload_cse_simplify (rtx_insn *insn, rtx testreg)
119 rtx body = PATTERN (insn);
120 basic_block insn_bb = BLOCK_FOR_INSN (insn);
121 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
123 if (GET_CODE (body) == SET)
125 int count = 0;
127 /* Simplify even if we may think it is a no-op.
128 We may think a memory load of a value smaller than WORD_SIZE
129 is redundant because we haven't taken into account possible
130 implicit extension. reload_cse_simplify_set() will bring
131 this out, so it's safer to simplify before we delete. */
132 count += reload_cse_simplify_set (body, insn);
134 if (!count && reload_cse_noop_set_p (body))
136 rtx value = SET_DEST (body);
137 if (REG_P (value)
138 && ! REG_FUNCTION_VALUE_P (value))
139 value = 0;
140 if (check_for_inc_dec (insn))
141 delete_insn_and_edges (insn);
142 /* We're done with this insn. */
143 goto done;
146 if (count > 0)
147 apply_change_group ();
148 else
149 reload_cse_simplify_operands (insn, testreg);
151 else if (GET_CODE (body) == PARALLEL)
153 int i;
154 int count = 0;
155 rtx value = NULL_RTX;
157 /* Registers mentioned in the clobber list for an asm cannot be reused
158 within the body of the asm. Invalidate those registers now so that
159 we don't try to substitute values for them. */
160 if (asm_noperands (body) >= 0)
162 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
164 rtx part = XVECEXP (body, 0, i);
165 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
166 cselib_invalidate_rtx (XEXP (part, 0));
170 /* If every action in a PARALLEL is a noop, we can delete
171 the entire PARALLEL. */
172 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
174 rtx part = XVECEXP (body, 0, i);
175 if (GET_CODE (part) == SET)
177 if (! reload_cse_noop_set_p (part))
178 break;
179 if (REG_P (SET_DEST (part))
180 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
182 if (value)
183 break;
184 value = SET_DEST (part);
187 else if (GET_CODE (part) != CLOBBER)
188 break;
191 if (i < 0)
193 if (check_for_inc_dec (insn))
194 delete_insn_and_edges (insn);
195 /* We're done with this insn. */
196 goto done;
199 /* It's not a no-op, but we can try to simplify it. */
200 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
201 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
202 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
204 if (count > 0)
205 apply_change_group ();
206 else
207 reload_cse_simplify_operands (insn, testreg);
210 done:
211 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
214 /* Do a very simple CSE pass over the hard registers.
216 This function detects no-op moves where we happened to assign two
217 different pseudo-registers to the same hard register, and then
218 copied one to the other. Reload will generate a useless
219 instruction copying a register to itself.
221 This function also detects cases where we load a value from memory
222 into two different registers, and (if memory is more expensive than
223 registers) changes it to simply copy the first register into the
224 second register.
226 Another optimization is performed that scans the operands of each
227 instruction to see whether the value is already available in a
228 hard register. It then replaces the operand with the hard register
229 if possible, much like an optional reload would. */
231 static void
232 reload_cse_regs_1 (void)
234 bool cfg_changed = false;
235 basic_block bb;
236 rtx_insn *insn;
237 rtx testreg = gen_rtx_REG (VOIDmode, -1);
239 cselib_init (CSELIB_RECORD_MEMORY);
240 init_alias_analysis ();
242 FOR_EACH_BB_FN (bb, cfun)
243 FOR_BB_INSNS (bb, insn)
245 if (INSN_P (insn))
246 cfg_changed |= reload_cse_simplify (insn, testreg);
248 cselib_process_insn (insn);
251 /* Clean up. */
252 end_alias_analysis ();
253 cselib_finish ();
254 if (cfg_changed)
255 cleanup_cfg (0);
258 /* Try to simplify a single SET instruction. SET is the set pattern.
259 INSN is the instruction it came from.
260 This function only handles one case: if we set a register to a value
261 which is not a register, we try to find that value in some other register
262 and change the set into a register copy. */
264 static int
265 reload_cse_simplify_set (rtx set, rtx_insn *insn)
267 int did_change = 0;
268 int dreg;
269 rtx src;
270 reg_class_t dclass;
271 int old_cost;
272 cselib_val *val;
273 struct elt_loc_list *l;
274 #ifdef LOAD_EXTEND_OP
275 enum rtx_code extend_op = UNKNOWN;
276 #endif
277 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
279 dreg = true_regnum (SET_DEST (set));
280 if (dreg < 0)
281 return 0;
283 src = SET_SRC (set);
284 if (side_effects_p (src) || true_regnum (src) >= 0)
285 return 0;
287 dclass = REGNO_REG_CLASS (dreg);
289 #ifdef LOAD_EXTEND_OP
290 /* When replacing a memory with a register, we need to honor assumptions
291 that combine made wrt the contents of sign bits. We'll do this by
292 generating an extend instruction instead of a reg->reg copy. Thus
293 the destination must be a register that we can widen. */
294 if (MEM_P (src)
295 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
296 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != UNKNOWN
297 && !REG_P (SET_DEST (set)))
298 return 0;
299 #endif
301 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
302 if (! val)
303 return 0;
305 /* If memory loads are cheaper than register copies, don't change them. */
306 if (MEM_P (src))
307 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
308 else if (REG_P (src))
309 old_cost = register_move_cost (GET_MODE (src),
310 REGNO_REG_CLASS (REGNO (src)), dclass);
311 else
312 old_cost = set_src_cost (src, speed);
314 for (l = val->locs; l; l = l->next)
316 rtx this_rtx = l->loc;
317 int this_cost;
319 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
321 #ifdef LOAD_EXTEND_OP
322 if (extend_op != UNKNOWN)
324 wide_int result;
326 if (!CONST_SCALAR_INT_P (this_rtx))
327 continue;
329 switch (extend_op)
331 case ZERO_EXTEND:
332 result = wide_int::from (std::make_pair (this_rtx,
333 GET_MODE (src)),
334 BITS_PER_WORD, UNSIGNED);
335 break;
336 case SIGN_EXTEND:
337 result = wide_int::from (std::make_pair (this_rtx,
338 GET_MODE (src)),
339 BITS_PER_WORD, SIGNED);
340 break;
341 default:
342 gcc_unreachable ();
344 this_rtx = immed_wide_int_const (result, word_mode);
346 #endif
347 this_cost = set_src_cost (this_rtx, speed);
349 else if (REG_P (this_rtx))
351 #ifdef LOAD_EXTEND_OP
352 if (extend_op != UNKNOWN)
354 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
355 this_cost = set_src_cost (this_rtx, speed);
357 else
358 #endif
359 this_cost = register_move_cost (GET_MODE (this_rtx),
360 REGNO_REG_CLASS (REGNO (this_rtx)),
361 dclass);
363 else
364 continue;
366 /* If equal costs, prefer registers over anything else. That
367 tends to lead to smaller instructions on some machines. */
368 if (this_cost < old_cost
369 || (this_cost == old_cost
370 && REG_P (this_rtx)
371 && !REG_P (SET_SRC (set))))
373 #ifdef LOAD_EXTEND_OP
374 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
375 && extend_op != UNKNOWN
376 #ifdef CANNOT_CHANGE_MODE_CLASS
377 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
378 word_mode,
379 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
380 #endif
383 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
384 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
385 validate_change (insn, &SET_DEST (set), wide_dest, 1);
387 #endif
389 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
390 old_cost = this_cost, did_change = 1;
394 return did_change;
397 /* Try to replace operands in INSN with equivalent values that are already
398 in registers. This can be viewed as optional reloading.
400 For each non-register operand in the insn, see if any hard regs are
401 known to be equivalent to that operand. Record the alternatives which
402 can accept these hard registers. Among all alternatives, select the
403 ones which are better or equal to the one currently matching, where
404 "better" is in terms of '?' and '!' constraints. Among the remaining
405 alternatives, select the one which replaces most operands with
406 hard registers. */
408 static int
409 reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
411 int i, j;
413 /* For each operand, all registers that are equivalent to it. */
414 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
416 const char *constraints[MAX_RECOG_OPERANDS];
418 /* Vector recording how bad an alternative is. */
419 int *alternative_reject;
420 /* Vector recording how many registers can be introduced by choosing
421 this alternative. */
422 int *alternative_nregs;
423 /* Array of vectors recording, for each operand and each alternative,
424 which hard register to substitute, or -1 if the operand should be
425 left as it is. */
426 int *op_alt_regno[MAX_RECOG_OPERANDS];
427 /* Array of alternatives, sorted in order of decreasing desirability. */
428 int *alternative_order;
430 extract_constrain_insn (insn);
432 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
433 return 0;
435 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
436 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
437 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
438 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
439 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
441 /* For each operand, find out which regs are equivalent. */
442 for (i = 0; i < recog_data.n_operands; i++)
444 cselib_val *v;
445 struct elt_loc_list *l;
446 rtx op;
448 CLEAR_HARD_REG_SET (equiv_regs[i]);
450 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
451 right, so avoid the problem here. Likewise if we have a constant
452 and the insn pattern doesn't tell us the mode we need. */
453 if (LABEL_P (recog_data.operand[i])
454 || (CONSTANT_P (recog_data.operand[i])
455 && recog_data.operand_mode[i] == VOIDmode))
456 continue;
458 op = recog_data.operand[i];
459 #ifdef LOAD_EXTEND_OP
460 if (MEM_P (op)
461 && GET_MODE_BITSIZE (GET_MODE (op)) < BITS_PER_WORD
462 && LOAD_EXTEND_OP (GET_MODE (op)) != UNKNOWN)
464 rtx set = single_set (insn);
466 /* We might have multiple sets, some of which do implicit
467 extension. Punt on this for now. */
468 if (! set)
469 continue;
470 /* If the destination is also a MEM or a STRICT_LOW_PART, no
471 extension applies.
472 Also, if there is an explicit extension, we don't have to
473 worry about an implicit one. */
474 else if (MEM_P (SET_DEST (set))
475 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
476 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
477 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
478 ; /* Continue ordinary processing. */
479 #ifdef CANNOT_CHANGE_MODE_CLASS
480 /* If the register cannot change mode to word_mode, it follows that
481 it cannot have been used in word_mode. */
482 else if (REG_P (SET_DEST (set))
483 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
484 word_mode,
485 REGNO_REG_CLASS (REGNO (SET_DEST (set)))))
486 ; /* Continue ordinary processing. */
487 #endif
488 /* If this is a straight load, make the extension explicit. */
489 else if (REG_P (SET_DEST (set))
490 && recog_data.n_operands == 2
491 && SET_SRC (set) == op
492 && SET_DEST (set) == recog_data.operand[1-i])
494 validate_change (insn, recog_data.operand_loc[i],
495 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (op)),
496 word_mode, op),
498 validate_change (insn, recog_data.operand_loc[1-i],
499 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
501 if (! apply_change_group ())
502 return 0;
503 return reload_cse_simplify_operands (insn, testreg);
505 else
506 /* ??? There might be arithmetic operations with memory that are
507 safe to optimize, but is it worth the trouble? */
508 continue;
510 #endif /* LOAD_EXTEND_OP */
511 if (side_effects_p (op))
512 continue;
513 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
514 if (! v)
515 continue;
517 for (l = v->locs; l; l = l->next)
518 if (REG_P (l->loc))
519 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
522 alternative_mask preferred = get_preferred_alternatives (insn);
523 for (i = 0; i < recog_data.n_operands; i++)
525 machine_mode mode;
526 int regno;
527 const char *p;
529 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
530 for (j = 0; j < recog_data.n_alternatives; j++)
531 op_alt_regno[i][j] = -1;
533 p = constraints[i] = recog_data.constraints[i];
534 mode = recog_data.operand_mode[i];
536 /* Add the reject values for each alternative given by the constraints
537 for this operand. */
538 j = 0;
539 while (*p != '\0')
541 char c = *p++;
542 if (c == ',')
543 j++;
544 else if (c == '?')
545 alternative_reject[j] += 3;
546 else if (c == '!')
547 alternative_reject[j] += 300;
550 /* We won't change operands which are already registers. We
551 also don't want to modify output operands. */
552 regno = true_regnum (recog_data.operand[i]);
553 if (regno >= 0
554 || constraints[i][0] == '='
555 || constraints[i][0] == '+')
556 continue;
558 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
560 enum reg_class rclass = NO_REGS;
562 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
563 continue;
565 SET_REGNO_RAW (testreg, regno);
566 PUT_MODE (testreg, mode);
568 /* We found a register equal to this operand. Now look for all
569 alternatives that can accept this register and have not been
570 assigned a register they can use yet. */
571 j = 0;
572 p = constraints[i];
573 for (;;)
575 char c = *p;
577 switch (c)
579 case 'g':
580 rclass = reg_class_subunion[rclass][GENERAL_REGS];
581 break;
583 default:
584 rclass
585 = (reg_class_subunion
586 [rclass]
587 [reg_class_for_constraint (lookup_constraint (p))]);
588 break;
590 case ',': case '\0':
591 /* See if REGNO fits this alternative, and set it up as the
592 replacement register if we don't have one for this
593 alternative yet and the operand being replaced is not
594 a cheap CONST_INT. */
595 if (op_alt_regno[i][j] == -1
596 && TEST_BIT (preferred, j)
597 && reg_fits_class_p (testreg, rclass, 0, mode)
598 && (!CONST_INT_P (recog_data.operand[i])
599 || (set_src_cost (recog_data.operand[i],
600 optimize_bb_for_speed_p
601 (BLOCK_FOR_INSN (insn)))
602 > set_src_cost (testreg,
603 optimize_bb_for_speed_p
604 (BLOCK_FOR_INSN (insn))))))
606 alternative_nregs[j]++;
607 op_alt_regno[i][j] = regno;
609 j++;
610 rclass = NO_REGS;
611 break;
613 p += CONSTRAINT_LEN (c, p);
615 if (c == '\0')
616 break;
621 /* Record all alternatives which are better or equal to the currently
622 matching one in the alternative_order array. */
623 for (i = j = 0; i < recog_data.n_alternatives; i++)
624 if (alternative_reject[i] <= alternative_reject[which_alternative])
625 alternative_order[j++] = i;
626 recog_data.n_alternatives = j;
628 /* Sort it. Given a small number of alternatives, a dumb algorithm
629 won't hurt too much. */
630 for (i = 0; i < recog_data.n_alternatives - 1; i++)
632 int best = i;
633 int best_reject = alternative_reject[alternative_order[i]];
634 int best_nregs = alternative_nregs[alternative_order[i]];
635 int tmp;
637 for (j = i + 1; j < recog_data.n_alternatives; j++)
639 int this_reject = alternative_reject[alternative_order[j]];
640 int this_nregs = alternative_nregs[alternative_order[j]];
642 if (this_reject < best_reject
643 || (this_reject == best_reject && this_nregs > best_nregs))
645 best = j;
646 best_reject = this_reject;
647 best_nregs = this_nregs;
651 tmp = alternative_order[best];
652 alternative_order[best] = alternative_order[i];
653 alternative_order[i] = tmp;
656 /* Substitute the operands as determined by op_alt_regno for the best
657 alternative. */
658 j = alternative_order[0];
660 for (i = 0; i < recog_data.n_operands; i++)
662 machine_mode mode = recog_data.operand_mode[i];
663 if (op_alt_regno[i][j] == -1)
664 continue;
666 validate_change (insn, recog_data.operand_loc[i],
667 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
670 for (i = recog_data.n_dups - 1; i >= 0; i--)
672 int op = recog_data.dup_num[i];
673 machine_mode mode = recog_data.operand_mode[op];
675 if (op_alt_regno[op][j] == -1)
676 continue;
678 validate_change (insn, recog_data.dup_loc[i],
679 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
682 return apply_change_group ();
685 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
686 addressing now.
687 This code might also be useful when reload gave up on reg+reg addressing
688 because of clashes between the return register and INDEX_REG_CLASS. */
690 /* The maximum number of uses of a register we can keep track of to
691 replace them with reg+reg addressing. */
692 #define RELOAD_COMBINE_MAX_USES 16
694 /* Describes a recorded use of a register. */
695 struct reg_use
697 /* The insn where a register has been used. */
698 rtx_insn *insn;
699 /* Points to the memory reference enclosing the use, if any, NULL_RTX
700 otherwise. */
701 rtx containing_mem;
702 /* Location of the register within INSN. */
703 rtx *usep;
704 /* The reverse uid of the insn. */
705 int ruid;
708 /* If the register is used in some unknown fashion, USE_INDEX is negative.
709 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
710 indicates where it is first set or clobbered.
711 Otherwise, USE_INDEX is the index of the last encountered use of the
712 register (which is first among these we have seen since we scan backwards).
713 USE_RUID indicates the first encountered, i.e. last, of these uses.
714 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
715 with a constant offset; OFFSET contains this constant in that case.
716 STORE_RUID is always meaningful if we only want to use a value in a
717 register in a different place: it denotes the next insn in the insn
718 stream (i.e. the last encountered) that sets or clobbers the register.
719 REAL_STORE_RUID is similar, but clobbers are ignored when updating it. */
720 static struct
722 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
723 rtx offset;
724 int use_index;
725 int store_ruid;
726 int real_store_ruid;
727 int use_ruid;
728 bool all_offsets_match;
729 } reg_state[FIRST_PSEUDO_REGISTER];
731 /* Reverse linear uid. This is increased in reload_combine while scanning
732 the instructions from last to first. It is used to set last_label_ruid
733 and the store_ruid / use_ruid fields in reg_state. */
734 static int reload_combine_ruid;
736 /* The RUID of the last label we encountered in reload_combine. */
737 static int last_label_ruid;
739 /* The RUID of the last jump we encountered in reload_combine. */
740 static int last_jump_ruid;
742 /* The register numbers of the first and last index register. A value of
743 -1 in LAST_INDEX_REG indicates that we've previously computed these
744 values and found no suitable index registers. */
745 static int first_index_reg = -1;
746 static int last_index_reg;
748 #define LABEL_LIVE(LABEL) \
749 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
751 /* Subroutine of reload_combine_split_ruids, called to fix up a single
752 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
754 static inline void
755 reload_combine_split_one_ruid (int *pruid, int split_ruid)
757 if (*pruid > split_ruid)
758 (*pruid)++;
761 /* Called when we insert a new insn in a position we've already passed in
762 the scan. Examine all our state, increasing all ruids that are higher
763 than SPLIT_RUID by one in order to make room for a new insn. */
765 static void
766 reload_combine_split_ruids (int split_ruid)
768 unsigned i;
770 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
771 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
772 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
774 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
776 int j, idx = reg_state[i].use_index;
777 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
778 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
779 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
780 split_ruid);
781 if (idx < 0)
782 continue;
783 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
785 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
786 split_ruid);
791 /* Called when we are about to rescan a previously encountered insn with
792 reload_combine_note_use after modifying some part of it. This clears all
793 information about uses in that particular insn. */
795 static void
796 reload_combine_purge_insn_uses (rtx_insn *insn)
798 unsigned i;
800 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
802 int j, k, idx = reg_state[i].use_index;
803 if (idx < 0)
804 continue;
805 j = k = RELOAD_COMBINE_MAX_USES;
806 while (j-- > idx)
808 if (reg_state[i].reg_use[j].insn != insn)
810 k--;
811 if (k != j)
812 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
815 reg_state[i].use_index = k;
819 /* Called when we need to forget about all uses of REGNO after an insn
820 which is identified by RUID. */
822 static void
823 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
825 int j, k, idx = reg_state[regno].use_index;
826 if (idx < 0)
827 return;
828 j = k = RELOAD_COMBINE_MAX_USES;
829 while (j-- > idx)
831 if (reg_state[regno].reg_use[j].ruid >= ruid)
833 k--;
834 if (k != j)
835 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
838 reg_state[regno].use_index = k;
841 /* Find the use of REGNO with the ruid that is highest among those
842 lower than RUID_LIMIT, and return it if it is the only use of this
843 reg in the insn. Return NULL otherwise. */
845 static struct reg_use *
846 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
848 int i, best_ruid = 0;
849 int use_idx = reg_state[regno].use_index;
850 struct reg_use *retval;
852 if (use_idx < 0)
853 return NULL;
854 retval = NULL;
855 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
857 struct reg_use *use = reg_state[regno].reg_use + i;
858 int this_ruid = use->ruid;
859 if (this_ruid >= ruid_limit)
860 continue;
861 if (this_ruid > best_ruid)
863 best_ruid = this_ruid;
864 retval = use;
866 else if (this_ruid == best_ruid)
867 retval = NULL;
869 if (last_label_ruid >= best_ruid)
870 return NULL;
871 return retval;
874 /* After we've moved an add insn, fix up any debug insns that occur
875 between the old location of the add and the new location. REG is
876 the destination register of the add insn; REPLACEMENT is the
877 SET_SRC of the add. FROM and TO specify the range in which we
878 should make this change on debug insns. */
880 static void
881 fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
883 rtx_insn *insn;
884 for (insn = from; insn != to; insn = NEXT_INSN (insn))
886 rtx t;
888 if (!DEBUG_INSN_P (insn))
889 continue;
891 t = INSN_VAR_LOCATION_LOC (insn);
892 t = simplify_replace_rtx (t, reg, replacement);
893 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
897 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
898 with SRC in the insn described by USE, taking costs into account. Return
899 true if we made the replacement. */
901 static bool
902 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
904 rtx_insn *use_insn = use->insn;
905 rtx mem = use->containing_mem;
906 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
908 if (mem != NULL_RTX)
910 addr_space_t as = MEM_ADDR_SPACE (mem);
911 rtx oldaddr = XEXP (mem, 0);
912 rtx newaddr = NULL_RTX;
913 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
914 int new_cost;
916 newaddr = simplify_replace_rtx (oldaddr, reg, src);
917 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
919 XEXP (mem, 0) = newaddr;
920 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
921 XEXP (mem, 0) = oldaddr;
922 if (new_cost <= old_cost
923 && validate_change (use_insn,
924 &XEXP (mem, 0), newaddr, 0))
925 return true;
928 else
930 rtx new_set = single_set (use_insn);
931 if (new_set
932 && REG_P (SET_DEST (new_set))
933 && GET_CODE (SET_SRC (new_set)) == PLUS
934 && REG_P (XEXP (SET_SRC (new_set), 0))
935 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
937 rtx new_src;
938 int old_cost = set_src_cost (SET_SRC (new_set), speed);
940 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
941 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
943 if (set_src_cost (new_src, speed) <= old_cost
944 && validate_change (use_insn, &SET_SRC (new_set),
945 new_src, 0))
946 return true;
949 return false;
952 /* Called by reload_combine when scanning INSN. This function tries to detect
953 patterns where a constant is added to a register, and the result is used
954 in an address.
955 Return true if no further processing is needed on INSN; false if it wasn't
956 recognized and should be handled normally. */
958 static bool
959 reload_combine_recognize_const_pattern (rtx_insn *insn)
961 int from_ruid = reload_combine_ruid;
962 rtx set, pat, reg, src, addreg;
963 unsigned int regno;
964 struct reg_use *use;
965 bool must_move_add;
966 rtx_insn *add_moved_after_insn = NULL;
967 int add_moved_after_ruid = 0;
968 int clobbered_regno = -1;
970 set = single_set (insn);
971 if (set == NULL_RTX)
972 return false;
974 reg = SET_DEST (set);
975 src = SET_SRC (set);
976 if (!REG_P (reg)
977 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1
978 || GET_MODE (reg) != Pmode
979 || reg == stack_pointer_rtx)
980 return false;
982 regno = REGNO (reg);
984 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
985 uses of REG1 inside an address, or inside another add insn. If
986 possible and profitable, merge the addition into subsequent
987 uses. */
988 if (GET_CODE (src) != PLUS
989 || !REG_P (XEXP (src, 0))
990 || !CONSTANT_P (XEXP (src, 1)))
991 return false;
993 addreg = XEXP (src, 0);
994 must_move_add = rtx_equal_p (reg, addreg);
996 pat = PATTERN (insn);
997 if (must_move_add && set != pat)
999 /* We have to be careful when moving the add; apart from the
1000 single_set there may also be clobbers. Recognize one special
1001 case, that of one clobber alongside the set (likely a clobber
1002 of the CC register). */
1003 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
1004 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
1005 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
1006 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
1007 return false;
1008 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
1013 use = reload_combine_closest_single_use (regno, from_ruid);
1015 if (use)
1016 /* Start the search for the next use from here. */
1017 from_ruid = use->ruid;
1019 if (use && GET_MODE (*use->usep) == Pmode)
1021 bool delete_add = false;
1022 rtx_insn *use_insn = use->insn;
1023 int use_ruid = use->ruid;
1025 /* Avoid moving the add insn past a jump. */
1026 if (must_move_add && use_ruid <= last_jump_ruid)
1027 break;
1029 /* If the add clobbers another hard reg in parallel, don't move
1030 it past a real set of this hard reg. */
1031 if (must_move_add && clobbered_regno >= 0
1032 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1033 break;
1035 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
1036 if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
1037 break;
1039 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1040 /* Avoid moving a use of ADDREG past a point where it is stored. */
1041 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
1042 break;
1044 /* We also must not move the addition past an insn that sets
1045 the same register, unless we can combine two add insns. */
1046 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1048 if (use->containing_mem == NULL_RTX)
1049 delete_add = true;
1050 else
1051 break;
1054 if (try_replace_in_use (use, reg, src))
1056 reload_combine_purge_insn_uses (use_insn);
1057 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1058 use_ruid, NULL_RTX);
1060 if (delete_add)
1062 fixup_debug_insns (reg, src, insn, use_insn);
1063 delete_insn (insn);
1064 return true;
1066 if (must_move_add)
1068 add_moved_after_insn = use_insn;
1069 add_moved_after_ruid = use_ruid;
1071 continue;
1074 /* If we get here, we couldn't handle this use. */
1075 if (must_move_add)
1076 break;
1078 while (use);
1080 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1081 /* Process the add normally. */
1082 return false;
1084 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1086 reorder_insns (insn, insn, add_moved_after_insn);
1087 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1088 reload_combine_split_ruids (add_moved_after_ruid - 1);
1089 reload_combine_note_use (&PATTERN (insn), insn,
1090 add_moved_after_ruid, NULL_RTX);
1091 reg_state[regno].store_ruid = add_moved_after_ruid;
1093 return true;
1096 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1097 can handle and improve. Return true if no further processing is needed on
1098 INSN; false if it wasn't recognized and should be handled normally. */
1100 static bool
1101 reload_combine_recognize_pattern (rtx_insn *insn)
1103 rtx set, reg, src;
1104 unsigned int regno;
1106 set = single_set (insn);
1107 if (set == NULL_RTX)
1108 return false;
1110 reg = SET_DEST (set);
1111 src = SET_SRC (set);
1112 if (!REG_P (reg)
1113 || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1)
1114 return false;
1116 regno = REGNO (reg);
1118 /* Look for (set (REGX) (CONST_INT))
1119 (set (REGX) (PLUS (REGX) (REGY)))
1121 ... (MEM (REGX)) ...
1122 and convert it to
1123 (set (REGZ) (CONST_INT))
1125 ... (MEM (PLUS (REGZ) (REGY)))... .
1127 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1128 and that we know all uses of REGX before it dies.
1129 Also, explicitly check that REGX != REGY; our life information
1130 does not yet show whether REGY changes in this insn. */
1132 if (GET_CODE (src) == PLUS
1133 && reg_state[regno].all_offsets_match
1134 && last_index_reg != -1
1135 && REG_P (XEXP (src, 1))
1136 && rtx_equal_p (XEXP (src, 0), reg)
1137 && !rtx_equal_p (XEXP (src, 1), reg)
1138 && reg_state[regno].use_index >= 0
1139 && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES
1140 && last_label_ruid < reg_state[regno].use_ruid)
1142 rtx base = XEXP (src, 1);
1143 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
1144 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1145 rtx index_reg = NULL_RTX;
1146 rtx reg_sum = NULL_RTX;
1147 int i;
1149 /* Now we need to set INDEX_REG to an index register (denoted as
1150 REGZ in the illustration above) and REG_SUM to the expression
1151 register+register that we want to use to substitute uses of REG
1152 (typically in MEMs) with. First check REG and BASE for being
1153 index registers; we can use them even if they are not dead. */
1154 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1155 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1156 REGNO (base)))
1158 index_reg = reg;
1159 reg_sum = src;
1161 else
1163 /* Otherwise, look for a free index register. Since we have
1164 checked above that neither REG nor BASE are index registers,
1165 if we find anything at all, it will be different from these
1166 two registers. */
1167 for (i = first_index_reg; i <= last_index_reg; i++)
1169 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1170 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1171 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1172 && (call_used_regs[i] || df_regs_ever_live_p (i))
1173 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1174 && !fixed_regs[i] && !global_regs[i]
1175 && hard_regno_nregs[i][GET_MODE (reg)] == 1
1176 && targetm.hard_regno_scratch_ok (i))
1178 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1179 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1180 break;
1185 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1186 (REGY), i.e. BASE, is not clobbered before the last use we'll
1187 create. */
1188 if (reg_sum
1189 && prev_set
1190 && CONST_INT_P (SET_SRC (prev_set))
1191 && rtx_equal_p (SET_DEST (prev_set), reg)
1192 && (reg_state[REGNO (base)].store_ruid
1193 <= reg_state[regno].use_ruid))
1195 /* Change destination register and, if necessary, the constant
1196 value in PREV, the constant loading instruction. */
1197 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1198 if (reg_state[regno].offset != const0_rtx)
1199 validate_change (prev,
1200 &SET_SRC (prev_set),
1201 GEN_INT (INTVAL (SET_SRC (prev_set))
1202 + INTVAL (reg_state[regno].offset)),
1205 /* Now for every use of REG that we have recorded, replace REG
1206 with REG_SUM. */
1207 for (i = reg_state[regno].use_index;
1208 i < RELOAD_COMBINE_MAX_USES; i++)
1209 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1210 reg_state[regno].reg_use[i].usep,
1211 /* Each change must have its own
1212 replacement. */
1213 reg_sum, 1);
1215 if (apply_change_group ())
1217 struct reg_use *lowest_ruid = NULL;
1219 /* For every new use of REG_SUM, we have to record the use
1220 of BASE therein, i.e. operand 1. */
1221 for (i = reg_state[regno].use_index;
1222 i < RELOAD_COMBINE_MAX_USES; i++)
1224 struct reg_use *use = reg_state[regno].reg_use + i;
1225 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1226 use->ruid, use->containing_mem);
1227 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1228 lowest_ruid = use;
1231 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1233 /* Delete the reg-reg addition. */
1234 delete_insn (insn);
1236 if (reg_state[regno].offset != const0_rtx)
1237 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1238 are now invalid. */
1239 remove_reg_equal_equiv_notes (prev);
1241 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1242 return true;
1246 return false;
1249 static void
1250 reload_combine (void)
1252 rtx_insn *insn, *prev;
1253 basic_block bb;
1254 unsigned int r;
1255 int min_labelno, n_labels;
1256 HARD_REG_SET ever_live_at_start, *label_live;
1258 /* To avoid wasting too much time later searching for an index register,
1259 determine the minimum and maximum index register numbers. */
1260 if (INDEX_REG_CLASS == NO_REGS)
1261 last_index_reg = -1;
1262 else if (first_index_reg == -1 && last_index_reg == 0)
1264 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1265 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1267 if (first_index_reg == -1)
1268 first_index_reg = r;
1270 last_index_reg = r;
1273 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1274 to -1 so we'll know to quit early the next time we get here. */
1275 if (first_index_reg == -1)
1277 last_index_reg = -1;
1278 return;
1282 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1283 information is a bit fuzzy immediately after reload, but it's
1284 still good enough to determine which registers are live at a jump
1285 destination. */
1286 min_labelno = get_first_label_num ();
1287 n_labels = max_label_num () - min_labelno;
1288 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1289 CLEAR_HARD_REG_SET (ever_live_at_start);
1291 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1293 insn = BB_HEAD (bb);
1294 if (LABEL_P (insn))
1296 HARD_REG_SET live;
1297 bitmap live_in = df_get_live_in (bb);
1299 REG_SET_TO_HARD_REG_SET (live, live_in);
1300 compute_use_by_pseudos (&live, live_in);
1301 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
1302 IOR_HARD_REG_SET (ever_live_at_start, live);
1306 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1307 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1308 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1310 reg_state[r].store_ruid = 0;
1311 reg_state[r].real_store_ruid = 0;
1312 if (fixed_regs[r])
1313 reg_state[r].use_index = -1;
1314 else
1315 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1318 for (insn = get_last_insn (); insn; insn = prev)
1320 bool control_flow_insn;
1321 rtx note;
1323 prev = PREV_INSN (insn);
1325 /* We cannot do our optimization across labels. Invalidating all the use
1326 information we have would be costly, so we just note where the label
1327 is and then later disable any optimization that would cross it. */
1328 if (LABEL_P (insn))
1329 last_label_ruid = reload_combine_ruid;
1330 else if (BARRIER_P (insn))
1332 /* Crossing a barrier resets all the use information. */
1333 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1334 if (! fixed_regs[r])
1335 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1337 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1338 /* Optimizations across insns being marked as volatile must be
1339 prevented. All the usage information is invalidated
1340 here. */
1341 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1342 if (! fixed_regs[r]
1343 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1344 reg_state[r].use_index = -1;
1346 if (! NONDEBUG_INSN_P (insn))
1347 continue;
1349 reload_combine_ruid++;
1351 control_flow_insn = control_flow_insn_p (insn);
1352 if (control_flow_insn)
1353 last_jump_ruid = reload_combine_ruid;
1355 if (reload_combine_recognize_const_pattern (insn)
1356 || reload_combine_recognize_pattern (insn))
1357 continue;
1359 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
1361 if (CALL_P (insn))
1363 rtx link;
1365 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1366 if (call_used_regs[r])
1368 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1369 reg_state[r].store_ruid = reload_combine_ruid;
1372 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1373 link = XEXP (link, 1))
1375 rtx setuse = XEXP (link, 0);
1376 rtx usage_rtx = XEXP (setuse, 0);
1377 if ((GET_CODE (setuse) == USE || GET_CODE (setuse) == CLOBBER)
1378 && REG_P (usage_rtx))
1380 unsigned int i;
1381 unsigned int start_reg = REGNO (usage_rtx);
1382 unsigned int num_regs
1383 = hard_regno_nregs[start_reg][GET_MODE (usage_rtx)];
1384 unsigned int end_reg = start_reg + num_regs - 1;
1385 for (i = start_reg; i <= end_reg; i++)
1386 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1388 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1389 reg_state[i].store_ruid = reload_combine_ruid;
1391 else
1392 reg_state[i].use_index = -1;
1397 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
1399 /* Non-spill registers might be used at the call destination in
1400 some unknown fashion, so we have to mark the unknown use. */
1401 HARD_REG_SET *live;
1403 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1404 && JUMP_LABEL (insn))
1406 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1407 live = NULL;
1408 else
1409 live = &LABEL_LIVE (JUMP_LABEL (insn));
1411 else
1412 live = &ever_live_at_start;
1414 if (live)
1415 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1416 if (TEST_HARD_REG_BIT (*live, r))
1417 reg_state[r].use_index = -1;
1420 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1421 NULL_RTX);
1423 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1425 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1427 int regno = REGNO (XEXP (note, 0));
1428 reg_state[regno].store_ruid = reload_combine_ruid;
1429 reg_state[regno].real_store_ruid = reload_combine_ruid;
1430 reg_state[regno].use_index = -1;
1435 free (label_live);
1438 /* Check if DST is a register or a subreg of a register; if it is,
1439 update store_ruid, real_store_ruid and use_index in the reg_state
1440 structure accordingly. Called via note_stores from reload_combine. */
1442 static void
1443 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1445 int regno = 0;
1446 int i;
1447 machine_mode mode = GET_MODE (dst);
1449 if (GET_CODE (dst) == SUBREG)
1451 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1452 GET_MODE (SUBREG_REG (dst)),
1453 SUBREG_BYTE (dst),
1454 GET_MODE (dst));
1455 dst = SUBREG_REG (dst);
1458 /* Some targets do argument pushes without adding REG_INC notes. */
1460 if (MEM_P (dst))
1462 dst = XEXP (dst, 0);
1463 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1464 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1465 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1467 regno = REGNO (XEXP (dst, 0));
1468 mode = GET_MODE (XEXP (dst, 0));
1469 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1471 /* We could probably do better, but for now mark the register
1472 as used in an unknown fashion and set/clobbered at this
1473 insn. */
1474 reg_state[i].use_index = -1;
1475 reg_state[i].store_ruid = reload_combine_ruid;
1476 reg_state[i].real_store_ruid = reload_combine_ruid;
1479 else
1480 return;
1483 if (!REG_P (dst))
1484 return;
1485 regno += REGNO (dst);
1487 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1488 careful with registers / register parts that are not full words.
1489 Similarly for ZERO_EXTRACT. */
1490 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1491 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1493 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1495 reg_state[i].use_index = -1;
1496 reg_state[i].store_ruid = reload_combine_ruid;
1497 reg_state[i].real_store_ruid = reload_combine_ruid;
1500 else
1502 for (i = hard_regno_nregs[regno][mode] - 1 + regno; i >= regno; i--)
1504 reg_state[i].store_ruid = reload_combine_ruid;
1505 if (GET_CODE (set) == SET)
1506 reg_state[i].real_store_ruid = reload_combine_ruid;
1507 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1512 /* XP points to a piece of rtl that has to be checked for any uses of
1513 registers.
1514 *XP is the pattern of INSN, or a part of it.
1515 Called from reload_combine, and recursively by itself. */
1516 static void
1517 reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
1519 rtx x = *xp;
1520 enum rtx_code code = x->code;
1521 const char *fmt;
1522 int i, j;
1523 rtx offset = const0_rtx; /* For the REG case below. */
1525 switch (code)
1527 case SET:
1528 if (REG_P (SET_DEST (x)))
1530 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1531 return;
1533 break;
1535 case USE:
1536 /* If this is the USE of a return value, we can't change it. */
1537 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1539 /* Mark the return register as used in an unknown fashion. */
1540 rtx reg = XEXP (x, 0);
1541 int regno = REGNO (reg);
1542 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1544 while (--nregs >= 0)
1545 reg_state[regno + nregs].use_index = -1;
1546 return;
1548 break;
1550 case CLOBBER:
1551 if (REG_P (SET_DEST (x)))
1553 /* No spurious CLOBBERs of pseudo registers may remain. */
1554 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1555 return;
1557 break;
1559 case PLUS:
1560 /* We are interested in (plus (reg) (const_int)) . */
1561 if (!REG_P (XEXP (x, 0))
1562 || !CONST_INT_P (XEXP (x, 1)))
1563 break;
1564 offset = XEXP (x, 1);
1565 x = XEXP (x, 0);
1566 /* Fall through. */
1567 case REG:
1569 int regno = REGNO (x);
1570 int use_index;
1571 int nregs;
1573 /* No spurious USEs of pseudo registers may remain. */
1574 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1576 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1578 /* We can't substitute into multi-hard-reg uses. */
1579 if (nregs > 1)
1581 while (--nregs >= 0)
1582 reg_state[regno + nregs].use_index = -1;
1583 return;
1586 /* We may be called to update uses in previously seen insns.
1587 Don't add uses beyond the last store we saw. */
1588 if (ruid < reg_state[regno].store_ruid)
1589 return;
1591 /* If this register is already used in some unknown fashion, we
1592 can't do anything.
1593 If we decrement the index from zero to -1, we can't store more
1594 uses, so this register becomes used in an unknown fashion. */
1595 use_index = --reg_state[regno].use_index;
1596 if (use_index < 0)
1597 return;
1599 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1601 /* This is the first use of this register we have seen since we
1602 marked it as dead. */
1603 reg_state[regno].offset = offset;
1604 reg_state[regno].all_offsets_match = true;
1605 reg_state[regno].use_ruid = ruid;
1607 else
1609 if (reg_state[regno].use_ruid > ruid)
1610 reg_state[regno].use_ruid = ruid;
1612 if (! rtx_equal_p (offset, reg_state[regno].offset))
1613 reg_state[regno].all_offsets_match = false;
1616 reg_state[regno].reg_use[use_index].insn = insn;
1617 reg_state[regno].reg_use[use_index].ruid = ruid;
1618 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1619 reg_state[regno].reg_use[use_index].usep = xp;
1620 return;
1623 case MEM:
1624 containing_mem = x;
1625 break;
1627 default:
1628 break;
1631 /* Recursively process the components of X. */
1632 fmt = GET_RTX_FORMAT (code);
1633 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1635 if (fmt[i] == 'e')
1636 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1637 else if (fmt[i] == 'E')
1639 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1640 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1641 containing_mem);
1646 /* See if we can reduce the cost of a constant by replacing a move
1647 with an add. We track situations in which a register is set to a
1648 constant or to a register plus a constant. */
1649 /* We cannot do our optimization across labels. Invalidating all the
1650 information about register contents we have would be costly, so we
1651 use move2add_last_label_luid to note where the label is and then
1652 later disable any optimization that would cross it.
1653 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1654 are only valid if reg_set_luid[n] is greater than
1655 move2add_last_label_luid.
1656 For a set that established a new (potential) base register with
1657 non-constant value, we use move2add_luid from the place where the
1658 setting insn is encountered; registers based off that base then
1659 get the same reg_set_luid. Constants all get
1660 move2add_last_label_luid + 1 as their reg_set_luid. */
1661 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1663 /* If reg_base_reg[n] is negative, register n has been set to
1664 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1665 If reg_base_reg[n] is non-negative, register n has been set to the
1666 sum of reg_offset[n] and the value of register reg_base_reg[n]
1667 before reg_set_luid[n], calculated in mode reg_mode[n] .
1668 For multi-hard-register registers, all but the first one are
1669 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1670 marks it as invalid. */
1671 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1672 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1673 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1674 static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1676 /* move2add_luid is linearly increased while scanning the instructions
1677 from first to last. It is used to set reg_set_luid in
1678 reload_cse_move2add and move2add_note_store. */
1679 static int move2add_luid;
1681 /* move2add_last_label_luid is set whenever a label is found. Labels
1682 invalidate all previously collected reg_offset data. */
1683 static int move2add_last_label_luid;
1685 /* ??? We don't know how zero / sign extension is handled, hence we
1686 can't go from a narrower to a wider mode. */
1687 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1688 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1689 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1690 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1692 /* Record that REG is being set to a value with the mode of REG. */
1694 static void
1695 move2add_record_mode (rtx reg)
1697 int regno, nregs;
1698 machine_mode mode = GET_MODE (reg);
1700 if (GET_CODE (reg) == SUBREG)
1702 regno = subreg_regno (reg);
1703 nregs = subreg_nregs (reg);
1705 else if (REG_P (reg))
1707 regno = REGNO (reg);
1708 nregs = hard_regno_nregs[regno][mode];
1710 else
1711 gcc_unreachable ();
1712 for (int i = nregs - 1; i > 0; i--)
1713 reg_mode[regno + i] = BLKmode;
1714 reg_mode[regno] = mode;
1717 /* Record that REG is being set to the sum of SYM and OFF. */
1719 static void
1720 move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1722 int regno = REGNO (reg);
1724 move2add_record_mode (reg);
1725 reg_set_luid[regno] = move2add_luid;
1726 reg_base_reg[regno] = -1;
1727 reg_symbol_ref[regno] = sym;
1728 reg_offset[regno] = INTVAL (off);
1731 /* Check if REGNO contains a valid value in MODE. */
1733 static bool
1734 move2add_valid_value_p (int regno, machine_mode mode)
1736 if (reg_set_luid[regno] <= move2add_last_label_luid)
1737 return false;
1739 if (mode != reg_mode[regno])
1741 if (!MODES_OK_FOR_MOVE2ADD (mode, reg_mode[regno]))
1742 return false;
1743 /* The value loaded into regno in reg_mode[regno] is also valid in
1744 mode after truncation only if (REG:mode regno) is the lowpart of
1745 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1746 regno of the lowpart might be different. */
1747 int s_off = subreg_lowpart_offset (mode, reg_mode[regno]);
1748 s_off = subreg_regno_offset (regno, reg_mode[regno], s_off, mode);
1749 if (s_off != 0)
1750 /* We could in principle adjust regno, check reg_mode[regno] to be
1751 BLKmode, and return s_off to the caller (vs. -1 for failure),
1752 but we currently have no callers that could make use of this
1753 information. */
1754 return false;
1757 for (int i = hard_regno_nregs[regno][mode] - 1; i > 0; i--)
1758 if (reg_mode[regno + i] != BLKmode)
1759 return false;
1760 return true;
1763 /* This function is called with INSN that sets REG to (SYM + OFF),
1764 while REG is known to already have value (SYM + offset).
1765 This function tries to change INSN into an add instruction
1766 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1767 It also updates the information about REG's known value.
1768 Return true if we made a change. */
1770 static bool
1771 move2add_use_add2_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1773 rtx pat = PATTERN (insn);
1774 rtx src = SET_SRC (pat);
1775 int regno = REGNO (reg);
1776 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno],
1777 GET_MODE (reg));
1778 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1779 bool changed = false;
1781 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1782 use (set (reg) (reg)) instead.
1783 We don't delete this insn, nor do we convert it into a
1784 note, to avoid losing register notes or the return
1785 value flag. jump2 already knows how to get rid of
1786 no-op moves. */
1787 if (new_src == const0_rtx)
1789 /* If the constants are different, this is a
1790 truncation, that, if turned into (set (reg)
1791 (reg)), would be discarded. Maybe we should
1792 try a truncMN pattern? */
1793 if (INTVAL (off) == reg_offset [regno])
1794 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1796 else
1798 struct full_rtx_costs oldcst, newcst;
1799 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
1801 get_full_set_rtx_cost (pat, &oldcst);
1802 SET_SRC (pat) = tem;
1803 get_full_set_rtx_cost (pat, &newcst);
1804 SET_SRC (pat) = src;
1806 if (costs_lt_p (&newcst, &oldcst, speed)
1807 && have_add2_insn (reg, new_src))
1808 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1809 else if (sym == NULL_RTX && GET_MODE (reg) != BImode)
1811 machine_mode narrow_mode;
1812 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1813 narrow_mode != VOIDmode
1814 && narrow_mode != GET_MODE (reg);
1815 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1817 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1818 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1819 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1821 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
1822 rtx narrow_src = gen_int_mode (INTVAL (off),
1823 narrow_mode);
1824 rtx new_set
1825 = gen_rtx_SET (VOIDmode,
1826 gen_rtx_STRICT_LOW_PART (VOIDmode,
1827 narrow_reg),
1828 narrow_src);
1829 get_full_set_rtx_cost (new_set, &newcst);
1830 if (costs_lt_p (&newcst, &oldcst, speed))
1832 changed = validate_change (insn, &PATTERN (insn),
1833 new_set, 0);
1834 if (changed)
1835 break;
1841 move2add_record_sym_value (reg, sym, off);
1842 return changed;
1846 /* This function is called with INSN that sets REG to (SYM + OFF),
1847 but REG doesn't have known value (SYM + offset). This function
1848 tries to find another register which is known to already have
1849 value (SYM + offset) and change INSN into an add instruction
1850 (set (REG) (plus (the found register) (OFF - offset))) if such
1851 a register is found. It also updates the information about
1852 REG's known value.
1853 Return true iff we made a change. */
1855 static bool
1856 move2add_use_add3_insn (rtx reg, rtx sym, rtx off, rtx_insn *insn)
1858 rtx pat = PATTERN (insn);
1859 rtx src = SET_SRC (pat);
1860 int regno = REGNO (reg);
1861 int min_regno = 0;
1862 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1863 int i;
1864 bool changed = false;
1865 struct full_rtx_costs oldcst, newcst, mincst;
1866 rtx plus_expr;
1868 init_costs_to_max (&mincst);
1869 get_full_set_rtx_cost (pat, &oldcst);
1871 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1872 SET_SRC (pat) = plus_expr;
1874 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1875 if (move2add_valid_value_p (i, GET_MODE (reg))
1876 && reg_base_reg[i] < 0
1877 && reg_symbol_ref[i] != NULL_RTX
1878 && rtx_equal_p (sym, reg_symbol_ref[i]))
1880 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
1881 GET_MODE (reg));
1882 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1883 use (set (reg) (reg)) instead.
1884 We don't delete this insn, nor do we convert it into a
1885 note, to avoid losing register notes or the return
1886 value flag. jump2 already knows how to get rid of
1887 no-op moves. */
1888 if (new_src == const0_rtx)
1890 init_costs_to_zero (&mincst);
1891 min_regno = i;
1892 break;
1894 else
1896 XEXP (plus_expr, 1) = new_src;
1897 get_full_set_rtx_cost (pat, &newcst);
1899 if (costs_lt_p (&newcst, &mincst, speed))
1901 mincst = newcst;
1902 min_regno = i;
1906 SET_SRC (pat) = src;
1908 if (costs_lt_p (&mincst, &oldcst, speed))
1910 rtx tem;
1912 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1913 if (i != min_regno)
1915 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
1916 GET_MODE (reg));
1917 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1919 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1920 changed = true;
1922 reg_set_luid[regno] = move2add_luid;
1923 move2add_record_sym_value (reg, sym, off);
1924 return changed;
1927 /* Convert move insns with constant inputs to additions if they are cheaper.
1928 Return true if any changes were made. */
1929 static bool
1930 reload_cse_move2add (rtx_insn *first)
1932 int i;
1933 rtx_insn *insn;
1934 bool changed = false;
1936 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1938 reg_set_luid[i] = 0;
1939 reg_offset[i] = 0;
1940 reg_base_reg[i] = 0;
1941 reg_symbol_ref[i] = NULL_RTX;
1942 reg_mode[i] = VOIDmode;
1945 move2add_last_label_luid = 0;
1946 move2add_luid = 2;
1947 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1949 rtx pat, note;
1951 if (LABEL_P (insn))
1953 move2add_last_label_luid = move2add_luid;
1954 /* We're going to increment move2add_luid twice after a
1955 label, so that we can use move2add_last_label_luid + 1 as
1956 the luid for constants. */
1957 move2add_luid++;
1958 continue;
1960 if (! INSN_P (insn))
1961 continue;
1962 pat = PATTERN (insn);
1963 /* For simplicity, we only perform this optimization on
1964 straightforward SETs. */
1965 if (GET_CODE (pat) == SET
1966 && REG_P (SET_DEST (pat)))
1968 rtx reg = SET_DEST (pat);
1969 int regno = REGNO (reg);
1970 rtx src = SET_SRC (pat);
1972 /* Check if we have valid information on the contents of this
1973 register in the mode of REG. */
1974 if (move2add_valid_value_p (regno, GET_MODE (reg))
1975 && dbg_cnt (cse2_move2add))
1977 /* Try to transform (set (REGX) (CONST_INT A))
1979 (set (REGX) (CONST_INT B))
1981 (set (REGX) (CONST_INT A))
1983 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1985 (set (REGX) (CONST_INT A))
1987 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1990 if (CONST_INT_P (src)
1991 && reg_base_reg[regno] < 0
1992 && reg_symbol_ref[regno] == NULL_RTX)
1994 changed |= move2add_use_add2_insn (reg, NULL_RTX, src, insn);
1995 continue;
1998 /* Try to transform (set (REGX) (REGY))
1999 (set (REGX) (PLUS (REGX) (CONST_INT A)))
2001 (set (REGX) (REGY))
2002 (set (REGX) (PLUS (REGX) (CONST_INT B)))
2004 (set (REGX) (REGY))
2005 (set (REGX) (PLUS (REGX) (CONST_INT A)))
2007 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
2008 else if (REG_P (src)
2009 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
2010 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
2011 && move2add_valid_value_p (REGNO (src), GET_MODE (reg)))
2013 rtx_insn *next = next_nonnote_nondebug_insn (insn);
2014 rtx set = NULL_RTX;
2015 if (next)
2016 set = single_set (next);
2017 if (set
2018 && SET_DEST (set) == reg
2019 && GET_CODE (SET_SRC (set)) == PLUS
2020 && XEXP (SET_SRC (set), 0) == reg
2021 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
2023 rtx src3 = XEXP (SET_SRC (set), 1);
2024 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
2025 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
2026 HOST_WIDE_INT regno_offset = reg_offset[regno];
2027 rtx new_src =
2028 gen_int_mode (added_offset
2029 + base_offset
2030 - regno_offset,
2031 GET_MODE (reg));
2032 bool success = false;
2033 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
2035 if (new_src == const0_rtx)
2036 /* See above why we create (set (reg) (reg)) here. */
2037 success
2038 = validate_change (next, &SET_SRC (set), reg, 0);
2039 else
2041 rtx old_src = SET_SRC (set);
2042 struct full_rtx_costs oldcst, newcst;
2043 rtx tem = gen_rtx_PLUS (GET_MODE (reg), reg, new_src);
2045 get_full_set_rtx_cost (set, &oldcst);
2046 SET_SRC (set) = tem;
2047 get_full_set_src_cost (tem, &newcst);
2048 SET_SRC (set) = old_src;
2049 costs_add_n_insns (&oldcst, 1);
2051 if (costs_lt_p (&newcst, &oldcst, speed)
2052 && have_add2_insn (reg, new_src))
2054 rtx newpat = gen_rtx_SET (VOIDmode, reg, tem);
2055 success
2056 = validate_change (next, &PATTERN (next),
2057 newpat, 0);
2060 if (success)
2061 delete_insn (insn);
2062 changed |= success;
2063 insn = next;
2064 move2add_record_mode (reg);
2065 reg_offset[regno]
2066 = trunc_int_for_mode (added_offset + base_offset,
2067 GET_MODE (reg));
2068 continue;
2073 /* Try to transform
2074 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2076 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2078 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2080 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2081 if ((GET_CODE (src) == SYMBOL_REF
2082 || (GET_CODE (src) == CONST
2083 && GET_CODE (XEXP (src, 0)) == PLUS
2084 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2085 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2086 && dbg_cnt (cse2_move2add))
2088 rtx sym, off;
2090 if (GET_CODE (src) == SYMBOL_REF)
2092 sym = src;
2093 off = const0_rtx;
2095 else
2097 sym = XEXP (XEXP (src, 0), 0);
2098 off = XEXP (XEXP (src, 0), 1);
2101 /* If the reg already contains the value which is sum of
2102 sym and some constant value, we can use an add2 insn. */
2103 if (move2add_valid_value_p (regno, GET_MODE (reg))
2104 && reg_base_reg[regno] < 0
2105 && reg_symbol_ref[regno] != NULL_RTX
2106 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2107 changed |= move2add_use_add2_insn (reg, sym, off, insn);
2109 /* Otherwise, we have to find a register whose value is sum
2110 of sym and some constant value. */
2111 else
2112 changed |= move2add_use_add3_insn (reg, sym, off, insn);
2114 continue;
2118 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2120 if (REG_NOTE_KIND (note) == REG_INC
2121 && REG_P (XEXP (note, 0)))
2123 /* Reset the information about this register. */
2124 int regno = REGNO (XEXP (note, 0));
2125 if (regno < FIRST_PSEUDO_REGISTER)
2127 move2add_record_mode (XEXP (note, 0));
2128 reg_mode[regno] = VOIDmode;
2132 note_stores (PATTERN (insn), move2add_note_store, insn);
2134 /* If INSN is a conditional branch, we try to extract an
2135 implicit set out of it. */
2136 if (any_condjump_p (insn))
2138 rtx cnd = fis_get_condition (insn);
2140 if (cnd != NULL_RTX
2141 && GET_CODE (cnd) == NE
2142 && REG_P (XEXP (cnd, 0))
2143 && !reg_set_p (XEXP (cnd, 0), insn)
2144 /* The following two checks, which are also in
2145 move2add_note_store, are intended to reduce the
2146 number of calls to gen_rtx_SET to avoid memory
2147 allocation if possible. */
2148 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2149 && hard_regno_nregs[REGNO (XEXP (cnd, 0))][GET_MODE (XEXP (cnd, 0))] == 1
2150 && CONST_INT_P (XEXP (cnd, 1)))
2152 rtx implicit_set =
2153 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
2154 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2158 /* If this is a CALL_INSN, all call used registers are stored with
2159 unknown values. */
2160 if (CALL_P (insn))
2162 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2164 if (call_used_regs[i])
2165 /* Reset the information about this register. */
2166 reg_mode[i] = VOIDmode;
2170 return changed;
2173 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2174 contains SET.
2175 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2176 Called from reload_cse_move2add via note_stores. */
2178 static void
2179 move2add_note_store (rtx dst, const_rtx set, void *data)
2181 rtx_insn *insn = (rtx_insn *) data;
2182 unsigned int regno = 0;
2183 machine_mode mode = GET_MODE (dst);
2185 /* Some targets do argument pushes without adding REG_INC notes. */
2187 if (MEM_P (dst))
2189 dst = XEXP (dst, 0);
2190 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
2191 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
2192 reg_mode[REGNO (XEXP (dst, 0))] = VOIDmode;
2193 return;
2196 if (GET_CODE (dst) == SUBREG)
2197 regno = subreg_regno (dst);
2198 else if (REG_P (dst))
2199 regno = REGNO (dst);
2200 else
2201 return;
2203 if (SCALAR_INT_MODE_P (mode)
2204 && GET_CODE (set) == SET)
2206 rtx note, sym = NULL_RTX;
2207 rtx off;
2209 note = find_reg_equal_equiv_note (insn);
2210 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2212 sym = XEXP (note, 0);
2213 off = const0_rtx;
2215 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2216 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2217 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2218 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2220 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2221 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
2224 if (sym != NULL_RTX)
2226 move2add_record_sym_value (dst, sym, off);
2227 return;
2231 if (SCALAR_INT_MODE_P (mode)
2232 && GET_CODE (set) == SET
2233 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2234 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2236 rtx src = SET_SRC (set);
2237 rtx base_reg;
2238 unsigned HOST_WIDE_INT offset;
2239 int base_regno;
2241 switch (GET_CODE (src))
2243 case PLUS:
2244 if (REG_P (XEXP (src, 0)))
2246 base_reg = XEXP (src, 0);
2248 if (CONST_INT_P (XEXP (src, 1)))
2249 offset = UINTVAL (XEXP (src, 1));
2250 else if (REG_P (XEXP (src, 1))
2251 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
2253 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2254 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2255 offset = reg_offset[REGNO (XEXP (src, 1))];
2256 /* Maybe the first register is known to be a
2257 constant. */
2258 else if (move2add_valid_value_p (REGNO (base_reg), mode)
2259 && reg_base_reg[REGNO (base_reg)] < 0
2260 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2262 offset = reg_offset[REGNO (base_reg)];
2263 base_reg = XEXP (src, 1);
2265 else
2266 goto invalidate;
2268 else
2269 goto invalidate;
2271 break;
2274 goto invalidate;
2276 case REG:
2277 base_reg = src;
2278 offset = 0;
2279 break;
2281 case CONST_INT:
2282 /* Start tracking the register as a constant. */
2283 reg_base_reg[regno] = -1;
2284 reg_symbol_ref[regno] = NULL_RTX;
2285 reg_offset[regno] = INTVAL (SET_SRC (set));
2286 /* We assign the same luid to all registers set to constants. */
2287 reg_set_luid[regno] = move2add_last_label_luid + 1;
2288 move2add_record_mode (dst);
2289 return;
2291 default:
2292 goto invalidate;
2295 base_regno = REGNO (base_reg);
2296 /* If information about the base register is not valid, set it
2297 up as a new base register, pretending its value is known
2298 starting from the current insn. */
2299 if (!move2add_valid_value_p (base_regno, mode))
2301 reg_base_reg[base_regno] = base_regno;
2302 reg_symbol_ref[base_regno] = NULL_RTX;
2303 reg_offset[base_regno] = 0;
2304 reg_set_luid[base_regno] = move2add_luid;
2305 gcc_assert (GET_MODE (base_reg) == mode);
2306 move2add_record_mode (base_reg);
2309 /* Copy base information from our base register. */
2310 reg_set_luid[regno] = reg_set_luid[base_regno];
2311 reg_base_reg[regno] = reg_base_reg[base_regno];
2312 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2314 /* Compute the sum of the offsets or constants. */
2315 reg_offset[regno]
2316 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2318 move2add_record_mode (dst);
2320 else
2322 invalidate:
2323 /* Invalidate the contents of the register. */
2324 move2add_record_mode (dst);
2325 reg_mode[regno] = VOIDmode;
2329 namespace {
2331 const pass_data pass_data_postreload_cse =
2333 RTL_PASS, /* type */
2334 "postreload", /* name */
2335 OPTGROUP_NONE, /* optinfo_flags */
2336 TV_RELOAD_CSE_REGS, /* tv_id */
2337 0, /* properties_required */
2338 0, /* properties_provided */
2339 0, /* properties_destroyed */
2340 0, /* todo_flags_start */
2341 TODO_df_finish, /* todo_flags_finish */
2344 class pass_postreload_cse : public rtl_opt_pass
2346 public:
2347 pass_postreload_cse (gcc::context *ctxt)
2348 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
2351 /* opt_pass methods: */
2352 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2354 virtual unsigned int execute (function *);
2356 }; // class pass_postreload_cse
2358 unsigned int
2359 pass_postreload_cse::execute (function *fun)
2361 if (!dbg_cnt (postreload_cse))
2362 return 0;
2364 /* Do a very simple CSE pass over just the hard registers. */
2365 reload_cse_regs (get_insns ());
2366 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2367 Remove any EH edges associated with them. */
2368 if (fun->can_throw_non_call_exceptions
2369 && purge_all_dead_edges ())
2370 cleanup_cfg (0);
2372 return 0;
2375 } // anon namespace
2377 rtl_opt_pass *
2378 make_pass_postreload_cse (gcc::context *ctxt)
2380 return new pass_postreload_cse (ctxt);