PR libffi/23935
[official-gcc.git] / gcc / dwarf2out.c
blob9bf5ffc212059cbab9d432f4b25b3c15d512b7da
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 02110-1301, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 #ifndef DWARF2_FRAME_INFO
94 # ifdef DWARF2_DEBUGGING_INFO
95 # define DWARF2_FRAME_INFO \
96 (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
97 # else
98 # define DWARF2_FRAME_INFO 0
99 # endif
100 #endif
102 /* Map register numbers held in the call frame info that gcc has
103 collected using DWARF_FRAME_REGNUM to those that should be output in
104 .debug_frame and .eh_frame. */
105 #ifndef DWARF2_FRAME_REG_OUT
106 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
107 #endif
109 /* Decide whether we want to emit frame unwind information for the current
110 translation unit. */
113 dwarf2out_do_frame (void)
115 /* We want to emit correct CFA location expressions or lists, so we
116 have to return true if we're going to output debug info, even if
117 we're not going to output frame or unwind info. */
118 return (write_symbols == DWARF2_DEBUG
119 || write_symbols == VMS_AND_DWARF2_DEBUG
120 || DWARF2_FRAME_INFO
121 #ifdef DWARF2_UNWIND_INFO
122 || (DWARF2_UNWIND_INFO
123 && (flag_unwind_tables
124 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)))
125 #endif
129 /* The size of the target's pointer type. */
130 #ifndef PTR_SIZE
131 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
132 #endif
134 /* Array of RTXes referenced by the debugging information, which therefore
135 must be kept around forever. */
136 static GTY(()) VEC(rtx,gc) *used_rtx_array;
138 /* A pointer to the base of a list of incomplete types which might be
139 completed at some later time. incomplete_types_list needs to be a
140 VEC(tree,gc) because we want to tell the garbage collector about
141 it. */
142 static GTY(()) VEC(tree,gc) *incomplete_types;
144 /* A pointer to the base of a table of references to declaration
145 scopes. This table is a display which tracks the nesting
146 of declaration scopes at the current scope and containing
147 scopes. This table is used to find the proper place to
148 define type declaration DIE's. */
149 static GTY(()) VEC(tree,gc) *decl_scope_table;
151 /* Pointers to various DWARF2 sections. */
152 static GTY(()) section *debug_info_section;
153 static GTY(()) section *debug_abbrev_section;
154 static GTY(()) section *debug_aranges_section;
155 static GTY(()) section *debug_macinfo_section;
156 static GTY(()) section *debug_line_section;
157 static GTY(()) section *debug_loc_section;
158 static GTY(()) section *debug_pubnames_section;
159 static GTY(()) section *debug_str_section;
160 static GTY(()) section *debug_ranges_section;
161 static GTY(()) section *debug_frame_section;
163 /* How to start an assembler comment. */
164 #ifndef ASM_COMMENT_START
165 #define ASM_COMMENT_START ";#"
166 #endif
168 typedef struct dw_cfi_struct *dw_cfi_ref;
169 typedef struct dw_fde_struct *dw_fde_ref;
170 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
172 /* Call frames are described using a sequence of Call Frame
173 Information instructions. The register number, offset
174 and address fields are provided as possible operands;
175 their use is selected by the opcode field. */
177 enum dw_cfi_oprnd_type {
178 dw_cfi_oprnd_unused,
179 dw_cfi_oprnd_reg_num,
180 dw_cfi_oprnd_offset,
181 dw_cfi_oprnd_addr,
182 dw_cfi_oprnd_loc
185 typedef union dw_cfi_oprnd_struct GTY(())
187 unsigned int GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
188 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
189 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
190 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
192 dw_cfi_oprnd;
194 typedef struct dw_cfi_struct GTY(())
196 dw_cfi_ref dw_cfi_next;
197 enum dwarf_call_frame_info dw_cfi_opc;
198 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
199 dw_cfi_oprnd1;
200 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
201 dw_cfi_oprnd2;
203 dw_cfi_node;
205 /* This is how we define the location of the CFA. We use to handle it
206 as REG + OFFSET all the time, but now it can be more complex.
207 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
208 Instead of passing around REG and OFFSET, we pass a copy
209 of this structure. */
210 typedef struct cfa_loc GTY(())
212 HOST_WIDE_INT offset;
213 HOST_WIDE_INT base_offset;
214 unsigned int reg;
215 int indirect; /* 1 if CFA is accessed via a dereference. */
216 } dw_cfa_location;
218 /* All call frame descriptions (FDE's) in the GCC generated DWARF
219 refer to a single Common Information Entry (CIE), defined at
220 the beginning of the .debug_frame section. This use of a single
221 CIE obviates the need to keep track of multiple CIE's
222 in the DWARF generation routines below. */
224 typedef struct dw_fde_struct GTY(())
226 tree decl;
227 const char *dw_fde_begin;
228 const char *dw_fde_current_label;
229 const char *dw_fde_end;
230 const char *dw_fde_hot_section_label;
231 const char *dw_fde_hot_section_end_label;
232 const char *dw_fde_unlikely_section_label;
233 const char *dw_fde_unlikely_section_end_label;
234 bool dw_fde_switched_sections;
235 dw_cfi_ref dw_fde_cfi;
236 unsigned funcdef_number;
237 unsigned all_throwers_are_sibcalls : 1;
238 unsigned nothrow : 1;
239 unsigned uses_eh_lsda : 1;
241 dw_fde_node;
243 /* Maximum size (in bytes) of an artificially generated label. */
244 #define MAX_ARTIFICIAL_LABEL_BYTES 30
246 /* The size of addresses as they appear in the Dwarf 2 data.
247 Some architectures use word addresses to refer to code locations,
248 but Dwarf 2 info always uses byte addresses. On such machines,
249 Dwarf 2 addresses need to be larger than the architecture's
250 pointers. */
251 #ifndef DWARF2_ADDR_SIZE
252 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
253 #endif
255 /* The size in bytes of a DWARF field indicating an offset or length
256 relative to a debug info section, specified to be 4 bytes in the
257 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
258 as PTR_SIZE. */
260 #ifndef DWARF_OFFSET_SIZE
261 #define DWARF_OFFSET_SIZE 4
262 #endif
264 /* According to the (draft) DWARF 3 specification, the initial length
265 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
266 bytes are 0xffffffff, followed by the length stored in the next 8
267 bytes.
269 However, the SGI/MIPS ABI uses an initial length which is equal to
270 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
272 #ifndef DWARF_INITIAL_LENGTH_SIZE
273 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
274 #endif
276 #define DWARF_VERSION 2
278 /* Round SIZE up to the nearest BOUNDARY. */
279 #define DWARF_ROUND(SIZE,BOUNDARY) \
280 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
282 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
283 #ifndef DWARF_CIE_DATA_ALIGNMENT
284 #ifdef STACK_GROWS_DOWNWARD
285 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
286 #else
287 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
288 #endif
289 #endif
291 /* CIE identifier. */
292 #if HOST_BITS_PER_WIDE_INT >= 64
293 #define DWARF_CIE_ID \
294 (unsigned HOST_WIDE_INT) (DWARF_OFFSET_SIZE == 4 ? DW_CIE_ID : DW64_CIE_ID)
295 #else
296 #define DWARF_CIE_ID DW_CIE_ID
297 #endif
299 /* A pointer to the base of a table that contains frame description
300 information for each routine. */
301 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
303 /* Number of elements currently allocated for fde_table. */
304 static GTY(()) unsigned fde_table_allocated;
306 /* Number of elements in fde_table currently in use. */
307 static GTY(()) unsigned fde_table_in_use;
309 /* Size (in elements) of increments by which we may expand the
310 fde_table. */
311 #define FDE_TABLE_INCREMENT 256
313 /* A list of call frame insns for the CIE. */
314 static GTY(()) dw_cfi_ref cie_cfi_head;
316 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
317 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
318 attribute that accelerates the lookup of the FDE associated
319 with the subprogram. This variable holds the table index of the FDE
320 associated with the current function (body) definition. */
321 static unsigned current_funcdef_fde;
322 #endif
324 struct indirect_string_node GTY(())
326 const char *str;
327 unsigned int refcount;
328 unsigned int form;
329 char *label;
332 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
334 static GTY(()) int dw2_string_counter;
335 static GTY(()) unsigned long dwarf2out_cfi_label_num;
337 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
339 /* Forward declarations for functions defined in this file. */
341 static char *stripattributes (const char *);
342 static const char *dwarf_cfi_name (unsigned);
343 static dw_cfi_ref new_cfi (void);
344 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
345 static void add_fde_cfi (const char *, dw_cfi_ref);
346 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
347 static void lookup_cfa (dw_cfa_location *);
348 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
349 static void initial_return_save (rtx);
350 static HOST_WIDE_INT stack_adjust_offset (rtx);
351 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
352 static void output_call_frame_info (int);
353 static void dwarf2out_stack_adjust (rtx, bool);
354 static void flush_queued_reg_saves (void);
355 static bool clobbers_queued_reg_save (rtx);
356 static void dwarf2out_frame_debug_expr (rtx, const char *);
358 /* Support for complex CFA locations. */
359 static void output_cfa_loc (dw_cfi_ref);
360 static void get_cfa_from_loc_descr (dw_cfa_location *,
361 struct dw_loc_descr_struct *);
362 static struct dw_loc_descr_struct *build_cfa_loc
363 (dw_cfa_location *, HOST_WIDE_INT);
364 static void def_cfa_1 (const char *, dw_cfa_location *);
366 /* How to start an assembler comment. */
367 #ifndef ASM_COMMENT_START
368 #define ASM_COMMENT_START ";#"
369 #endif
371 /* Data and reference forms for relocatable data. */
372 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
373 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
375 #ifndef DEBUG_FRAME_SECTION
376 #define DEBUG_FRAME_SECTION ".debug_frame"
377 #endif
379 #ifndef FUNC_BEGIN_LABEL
380 #define FUNC_BEGIN_LABEL "LFB"
381 #endif
383 #ifndef FUNC_END_LABEL
384 #define FUNC_END_LABEL "LFE"
385 #endif
387 #ifndef FRAME_BEGIN_LABEL
388 #define FRAME_BEGIN_LABEL "Lframe"
389 #endif
390 #define CIE_AFTER_SIZE_LABEL "LSCIE"
391 #define CIE_END_LABEL "LECIE"
392 #define FDE_LABEL "LSFDE"
393 #define FDE_AFTER_SIZE_LABEL "LASFDE"
394 #define FDE_END_LABEL "LEFDE"
395 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
396 #define LINE_NUMBER_END_LABEL "LELT"
397 #define LN_PROLOG_AS_LABEL "LASLTP"
398 #define LN_PROLOG_END_LABEL "LELTP"
399 #define DIE_LABEL_PREFIX "DW"
401 /* The DWARF 2 CFA column which tracks the return address. Normally this
402 is the column for PC, or the first column after all of the hard
403 registers. */
404 #ifndef DWARF_FRAME_RETURN_COLUMN
405 #ifdef PC_REGNUM
406 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
407 #else
408 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
409 #endif
410 #endif
412 /* The mapping from gcc register number to DWARF 2 CFA column number. By
413 default, we just provide columns for all registers. */
414 #ifndef DWARF_FRAME_REGNUM
415 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
416 #endif
418 /* Hook used by __throw. */
421 expand_builtin_dwarf_sp_column (void)
423 unsigned int dwarf_regnum = DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM);
424 return GEN_INT (DWARF2_FRAME_REG_OUT (dwarf_regnum, 1));
427 /* Return a pointer to a copy of the section string name S with all
428 attributes stripped off, and an asterisk prepended (for assemble_name). */
430 static inline char *
431 stripattributes (const char *s)
433 char *stripped = XNEWVEC (char, strlen (s) + 2);
434 char *p = stripped;
436 *p++ = '*';
438 while (*s && *s != ',')
439 *p++ = *s++;
441 *p = '\0';
442 return stripped;
445 /* Generate code to initialize the register size table. */
447 void
448 expand_builtin_init_dwarf_reg_sizes (tree address)
450 unsigned int i;
451 enum machine_mode mode = TYPE_MODE (char_type_node);
452 rtx addr = expand_normal (address);
453 rtx mem = gen_rtx_MEM (BLKmode, addr);
454 bool wrote_return_column = false;
456 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
458 int rnum = DWARF2_FRAME_REG_OUT (DWARF_FRAME_REGNUM (i), 1);
460 if (rnum < DWARF_FRAME_REGISTERS)
462 HOST_WIDE_INT offset = rnum * GET_MODE_SIZE (mode);
463 enum machine_mode save_mode = reg_raw_mode[i];
464 HOST_WIDE_INT size;
466 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
467 save_mode = choose_hard_reg_mode (i, 1, true);
468 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
470 if (save_mode == VOIDmode)
471 continue;
472 wrote_return_column = true;
474 size = GET_MODE_SIZE (save_mode);
475 if (offset < 0)
476 continue;
478 emit_move_insn (adjust_address (mem, mode, offset),
479 gen_int_mode (size, mode));
483 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
484 gcc_assert (wrote_return_column);
485 i = DWARF_ALT_FRAME_RETURN_COLUMN;
486 wrote_return_column = false;
487 #else
488 i = DWARF_FRAME_RETURN_COLUMN;
489 #endif
491 if (! wrote_return_column)
493 enum machine_mode save_mode = Pmode;
494 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
495 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
496 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
500 /* Convert a DWARF call frame info. operation to its string name */
502 static const char *
503 dwarf_cfi_name (unsigned int cfi_opc)
505 switch (cfi_opc)
507 case DW_CFA_advance_loc:
508 return "DW_CFA_advance_loc";
509 case DW_CFA_offset:
510 return "DW_CFA_offset";
511 case DW_CFA_restore:
512 return "DW_CFA_restore";
513 case DW_CFA_nop:
514 return "DW_CFA_nop";
515 case DW_CFA_set_loc:
516 return "DW_CFA_set_loc";
517 case DW_CFA_advance_loc1:
518 return "DW_CFA_advance_loc1";
519 case DW_CFA_advance_loc2:
520 return "DW_CFA_advance_loc2";
521 case DW_CFA_advance_loc4:
522 return "DW_CFA_advance_loc4";
523 case DW_CFA_offset_extended:
524 return "DW_CFA_offset_extended";
525 case DW_CFA_restore_extended:
526 return "DW_CFA_restore_extended";
527 case DW_CFA_undefined:
528 return "DW_CFA_undefined";
529 case DW_CFA_same_value:
530 return "DW_CFA_same_value";
531 case DW_CFA_register:
532 return "DW_CFA_register";
533 case DW_CFA_remember_state:
534 return "DW_CFA_remember_state";
535 case DW_CFA_restore_state:
536 return "DW_CFA_restore_state";
537 case DW_CFA_def_cfa:
538 return "DW_CFA_def_cfa";
539 case DW_CFA_def_cfa_register:
540 return "DW_CFA_def_cfa_register";
541 case DW_CFA_def_cfa_offset:
542 return "DW_CFA_def_cfa_offset";
544 /* DWARF 3 */
545 case DW_CFA_def_cfa_expression:
546 return "DW_CFA_def_cfa_expression";
547 case DW_CFA_expression:
548 return "DW_CFA_expression";
549 case DW_CFA_offset_extended_sf:
550 return "DW_CFA_offset_extended_sf";
551 case DW_CFA_def_cfa_sf:
552 return "DW_CFA_def_cfa_sf";
553 case DW_CFA_def_cfa_offset_sf:
554 return "DW_CFA_def_cfa_offset_sf";
556 /* SGI/MIPS specific */
557 case DW_CFA_MIPS_advance_loc8:
558 return "DW_CFA_MIPS_advance_loc8";
560 /* GNU extensions */
561 case DW_CFA_GNU_window_save:
562 return "DW_CFA_GNU_window_save";
563 case DW_CFA_GNU_args_size:
564 return "DW_CFA_GNU_args_size";
565 case DW_CFA_GNU_negative_offset_extended:
566 return "DW_CFA_GNU_negative_offset_extended";
568 default:
569 return "DW_CFA_<unknown>";
573 /* Return a pointer to a newly allocated Call Frame Instruction. */
575 static inline dw_cfi_ref
576 new_cfi (void)
578 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
580 cfi->dw_cfi_next = NULL;
581 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
582 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
584 return cfi;
587 /* Add a Call Frame Instruction to list of instructions. */
589 static inline void
590 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
592 dw_cfi_ref *p;
594 /* Find the end of the chain. */
595 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
598 *p = cfi;
601 /* Generate a new label for the CFI info to refer to. */
603 char *
604 dwarf2out_cfi_label (void)
606 static char label[20];
608 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
609 ASM_OUTPUT_LABEL (asm_out_file, label);
610 return label;
613 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
614 or to the CIE if LABEL is NULL. */
616 static void
617 add_fde_cfi (const char *label, dw_cfi_ref cfi)
619 if (label)
621 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
623 if (*label == 0)
624 label = dwarf2out_cfi_label ();
626 if (fde->dw_fde_current_label == NULL
627 || strcmp (label, fde->dw_fde_current_label) != 0)
629 dw_cfi_ref xcfi;
631 label = xstrdup (label);
633 /* Set the location counter to the new label. */
634 xcfi = new_cfi ();
635 /* If we have a current label, advance from there, otherwise
636 set the location directly using set_loc. */
637 xcfi->dw_cfi_opc = fde->dw_fde_current_label
638 ? DW_CFA_advance_loc4
639 : DW_CFA_set_loc;
640 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
641 add_cfi (&fde->dw_fde_cfi, xcfi);
643 fde->dw_fde_current_label = label;
646 add_cfi (&fde->dw_fde_cfi, cfi);
649 else
650 add_cfi (&cie_cfi_head, cfi);
653 /* Subroutine of lookup_cfa. */
655 static void
656 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
658 switch (cfi->dw_cfi_opc)
660 case DW_CFA_def_cfa_offset:
661 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
662 break;
663 case DW_CFA_def_cfa_offset_sf:
664 loc->offset
665 = cfi->dw_cfi_oprnd1.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
666 break;
667 case DW_CFA_def_cfa_register:
668 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
669 break;
670 case DW_CFA_def_cfa:
671 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
672 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
673 break;
674 case DW_CFA_def_cfa_sf:
675 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
676 loc->offset
677 = cfi->dw_cfi_oprnd2.dw_cfi_offset * DWARF_CIE_DATA_ALIGNMENT;
678 break;
679 case DW_CFA_def_cfa_expression:
680 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
681 break;
682 default:
683 break;
687 /* Find the previous value for the CFA. */
689 static void
690 lookup_cfa (dw_cfa_location *loc)
692 dw_cfi_ref cfi;
694 loc->reg = INVALID_REGNUM;
695 loc->offset = 0;
696 loc->indirect = 0;
697 loc->base_offset = 0;
699 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
700 lookup_cfa_1 (cfi, loc);
702 if (fde_table_in_use)
704 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
705 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
706 lookup_cfa_1 (cfi, loc);
710 /* The current rule for calculating the DWARF2 canonical frame address. */
711 static dw_cfa_location cfa;
713 /* The register used for saving registers to the stack, and its offset
714 from the CFA. */
715 static dw_cfa_location cfa_store;
717 /* The running total of the size of arguments pushed onto the stack. */
718 static HOST_WIDE_INT args_size;
720 /* The last args_size we actually output. */
721 static HOST_WIDE_INT old_args_size;
723 /* Entry point to update the canonical frame address (CFA).
724 LABEL is passed to add_fde_cfi. The value of CFA is now to be
725 calculated from REG+OFFSET. */
727 void
728 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
730 dw_cfa_location loc;
731 loc.indirect = 0;
732 loc.base_offset = 0;
733 loc.reg = reg;
734 loc.offset = offset;
735 def_cfa_1 (label, &loc);
738 /* Determine if two dw_cfa_location structures define the same data. */
740 static bool
741 cfa_equal_p (const dw_cfa_location *loc1, const dw_cfa_location *loc2)
743 return (loc1->reg == loc2->reg
744 && loc1->offset == loc2->offset
745 && loc1->indirect == loc2->indirect
746 && (loc1->indirect == 0
747 || loc1->base_offset == loc2->base_offset));
750 /* This routine does the actual work. The CFA is now calculated from
751 the dw_cfa_location structure. */
753 static void
754 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
756 dw_cfi_ref cfi;
757 dw_cfa_location old_cfa, loc;
759 cfa = *loc_p;
760 loc = *loc_p;
762 if (cfa_store.reg == loc.reg && loc.indirect == 0)
763 cfa_store.offset = loc.offset;
765 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
766 lookup_cfa (&old_cfa);
768 /* If nothing changed, no need to issue any call frame instructions. */
769 if (cfa_equal_p (&loc, &old_cfa))
770 return;
772 cfi = new_cfi ();
774 if (loc.reg == old_cfa.reg && !loc.indirect)
776 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction, indicating
777 the CFA register did not change but the offset did. */
778 if (loc.offset < 0)
780 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
781 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
783 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset_sf;
784 cfi->dw_cfi_oprnd1.dw_cfi_offset = f_offset;
786 else
788 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
789 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
793 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
794 else if (loc.offset == old_cfa.offset
795 && old_cfa.reg != INVALID_REGNUM
796 && !loc.indirect)
798 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
799 indicating the CFA register has changed to <register> but the
800 offset has not changed. */
801 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
802 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
804 #endif
806 else if (loc.indirect == 0)
808 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
809 indicating the CFA register has changed to <register> with
810 the specified offset. */
811 if (loc.offset < 0)
813 HOST_WIDE_INT f_offset = loc.offset / DWARF_CIE_DATA_ALIGNMENT;
814 gcc_assert (f_offset * DWARF_CIE_DATA_ALIGNMENT == loc.offset);
816 cfi->dw_cfi_opc = DW_CFA_def_cfa_sf;
817 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
818 cfi->dw_cfi_oprnd2.dw_cfi_offset = f_offset;
820 else
822 cfi->dw_cfi_opc = DW_CFA_def_cfa;
823 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
824 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
827 else
829 /* Construct a DW_CFA_def_cfa_expression instruction to
830 calculate the CFA using a full location expression since no
831 register-offset pair is available. */
832 struct dw_loc_descr_struct *loc_list;
834 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
835 loc_list = build_cfa_loc (&loc, 0);
836 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
839 add_fde_cfi (label, cfi);
842 /* Add the CFI for saving a register. REG is the CFA column number.
843 LABEL is passed to add_fde_cfi.
844 If SREG is -1, the register is saved at OFFSET from the CFA;
845 otherwise it is saved in SREG. */
847 static void
848 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
850 dw_cfi_ref cfi = new_cfi ();
852 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
854 if (sreg == INVALID_REGNUM)
856 if (reg & ~0x3f)
857 /* The register number won't fit in 6 bits, so we have to use
858 the long form. */
859 cfi->dw_cfi_opc = DW_CFA_offset_extended;
860 else
861 cfi->dw_cfi_opc = DW_CFA_offset;
863 #ifdef ENABLE_CHECKING
865 /* If we get an offset that is not a multiple of
866 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
867 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
868 description. */
869 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
871 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
873 #endif
874 offset /= DWARF_CIE_DATA_ALIGNMENT;
875 if (offset < 0)
876 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
878 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
880 else if (sreg == reg)
881 cfi->dw_cfi_opc = DW_CFA_same_value;
882 else
884 cfi->dw_cfi_opc = DW_CFA_register;
885 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
888 add_fde_cfi (label, cfi);
891 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
892 This CFI tells the unwinder that it needs to restore the window registers
893 from the previous frame's window save area.
895 ??? Perhaps we should note in the CIE where windows are saved (instead of
896 assuming 0(cfa)) and what registers are in the window. */
898 void
899 dwarf2out_window_save (const char *label)
901 dw_cfi_ref cfi = new_cfi ();
903 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
904 add_fde_cfi (label, cfi);
907 /* Add a CFI to update the running total of the size of arguments
908 pushed onto the stack. */
910 void
911 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
913 dw_cfi_ref cfi;
915 if (size == old_args_size)
916 return;
918 old_args_size = size;
920 cfi = new_cfi ();
921 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
922 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
923 add_fde_cfi (label, cfi);
926 /* Entry point for saving a register to the stack. REG is the GCC register
927 number. LABEL and OFFSET are passed to reg_save. */
929 void
930 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
932 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
935 /* Entry point for saving the return address in the stack.
936 LABEL and OFFSET are passed to reg_save. */
938 void
939 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
941 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
944 /* Entry point for saving the return address in a register.
945 LABEL and SREG are passed to reg_save. */
947 void
948 dwarf2out_return_reg (const char *label, unsigned int sreg)
950 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
953 /* Record the initial position of the return address. RTL is
954 INCOMING_RETURN_ADDR_RTX. */
956 static void
957 initial_return_save (rtx rtl)
959 unsigned int reg = INVALID_REGNUM;
960 HOST_WIDE_INT offset = 0;
962 switch (GET_CODE (rtl))
964 case REG:
965 /* RA is in a register. */
966 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
967 break;
969 case MEM:
970 /* RA is on the stack. */
971 rtl = XEXP (rtl, 0);
972 switch (GET_CODE (rtl))
974 case REG:
975 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
976 offset = 0;
977 break;
979 case PLUS:
980 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
981 offset = INTVAL (XEXP (rtl, 1));
982 break;
984 case MINUS:
985 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
986 offset = -INTVAL (XEXP (rtl, 1));
987 break;
989 default:
990 gcc_unreachable ();
993 break;
995 case PLUS:
996 /* The return address is at some offset from any value we can
997 actually load. For instance, on the SPARC it is in %i7+8. Just
998 ignore the offset for now; it doesn't matter for unwinding frames. */
999 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
1000 initial_return_save (XEXP (rtl, 0));
1001 return;
1003 default:
1004 gcc_unreachable ();
1007 if (reg != DWARF_FRAME_RETURN_COLUMN)
1008 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
1011 /* Given a SET, calculate the amount of stack adjustment it
1012 contains. */
1014 static HOST_WIDE_INT
1015 stack_adjust_offset (rtx pattern)
1017 rtx src = SET_SRC (pattern);
1018 rtx dest = SET_DEST (pattern);
1019 HOST_WIDE_INT offset = 0;
1020 enum rtx_code code;
1022 if (dest == stack_pointer_rtx)
1024 /* (set (reg sp) (plus (reg sp) (const_int))) */
1025 code = GET_CODE (src);
1026 if (! (code == PLUS || code == MINUS)
1027 || XEXP (src, 0) != stack_pointer_rtx
1028 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1029 return 0;
1031 offset = INTVAL (XEXP (src, 1));
1032 if (code == PLUS)
1033 offset = -offset;
1035 else if (MEM_P (dest))
1037 /* (set (mem (pre_dec (reg sp))) (foo)) */
1038 src = XEXP (dest, 0);
1039 code = GET_CODE (src);
1041 switch (code)
1043 case PRE_MODIFY:
1044 case POST_MODIFY:
1045 if (XEXP (src, 0) == stack_pointer_rtx)
1047 rtx val = XEXP (XEXP (src, 1), 1);
1048 /* We handle only adjustments by constant amount. */
1049 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1050 && GET_CODE (val) == CONST_INT);
1051 offset = -INTVAL (val);
1052 break;
1054 return 0;
1056 case PRE_DEC:
1057 case POST_DEC:
1058 if (XEXP (src, 0) == stack_pointer_rtx)
1060 offset = GET_MODE_SIZE (GET_MODE (dest));
1061 break;
1063 return 0;
1065 case PRE_INC:
1066 case POST_INC:
1067 if (XEXP (src, 0) == stack_pointer_rtx)
1069 offset = -GET_MODE_SIZE (GET_MODE (dest));
1070 break;
1072 return 0;
1074 default:
1075 return 0;
1078 else
1079 return 0;
1081 return offset;
1084 /* Check INSN to see if it looks like a push or a stack adjustment, and
1085 make a note of it if it does. EH uses this information to find out how
1086 much extra space it needs to pop off the stack. */
1088 static void
1089 dwarf2out_stack_adjust (rtx insn, bool after_p)
1091 HOST_WIDE_INT offset;
1092 const char *label;
1093 int i;
1095 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1096 with this function. Proper support would require all frame-related
1097 insns to be marked, and to be able to handle saving state around
1098 epilogues textually in the middle of the function. */
1099 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1100 return;
1102 /* If only calls can throw, and we have a frame pointer,
1103 save up adjustments until we see the CALL_INSN. */
1104 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1106 if (CALL_P (insn) && !after_p)
1108 /* Extract the size of the args from the CALL rtx itself. */
1109 insn = PATTERN (insn);
1110 if (GET_CODE (insn) == PARALLEL)
1111 insn = XVECEXP (insn, 0, 0);
1112 if (GET_CODE (insn) == SET)
1113 insn = SET_SRC (insn);
1114 gcc_assert (GET_CODE (insn) == CALL);
1115 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1117 return;
1120 if (CALL_P (insn) && !after_p)
1122 if (!flag_asynchronous_unwind_tables)
1123 dwarf2out_args_size ("", args_size);
1124 return;
1126 else if (BARRIER_P (insn))
1128 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1129 the compiler will have already emitted a stack adjustment, but
1130 doesn't bother for calls to noreturn functions. */
1131 #ifdef STACK_GROWS_DOWNWARD
1132 offset = -args_size;
1133 #else
1134 offset = args_size;
1135 #endif
1137 else if (GET_CODE (PATTERN (insn)) == SET)
1138 offset = stack_adjust_offset (PATTERN (insn));
1139 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1140 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1142 /* There may be stack adjustments inside compound insns. Search
1143 for them. */
1144 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1145 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1146 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1148 else
1149 return;
1151 if (offset == 0)
1152 return;
1154 if (cfa.reg == STACK_POINTER_REGNUM)
1155 cfa.offset += offset;
1157 #ifndef STACK_GROWS_DOWNWARD
1158 offset = -offset;
1159 #endif
1161 args_size += offset;
1162 if (args_size < 0)
1163 args_size = 0;
1165 label = dwarf2out_cfi_label ();
1166 def_cfa_1 (label, &cfa);
1167 if (flag_asynchronous_unwind_tables)
1168 dwarf2out_args_size (label, args_size);
1171 #endif
1173 /* We delay emitting a register save until either (a) we reach the end
1174 of the prologue or (b) the register is clobbered. This clusters
1175 register saves so that there are fewer pc advances. */
1177 struct queued_reg_save GTY(())
1179 struct queued_reg_save *next;
1180 rtx reg;
1181 HOST_WIDE_INT cfa_offset;
1182 rtx saved_reg;
1185 static GTY(()) struct queued_reg_save *queued_reg_saves;
1187 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1188 struct reg_saved_in_data GTY(()) {
1189 rtx orig_reg;
1190 rtx saved_in_reg;
1193 /* A list of registers saved in other registers.
1194 The list intentionally has a small maximum capacity of 4; if your
1195 port needs more than that, you might consider implementing a
1196 more efficient data structure. */
1197 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1198 static GTY(()) size_t num_regs_saved_in_regs;
1200 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1201 static const char *last_reg_save_label;
1203 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1204 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1206 static void
1207 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1209 struct queued_reg_save *q;
1211 /* Duplicates waste space, but it's also necessary to remove them
1212 for correctness, since the queue gets output in reverse
1213 order. */
1214 for (q = queued_reg_saves; q != NULL; q = q->next)
1215 if (REGNO (q->reg) == REGNO (reg))
1216 break;
1218 if (q == NULL)
1220 q = ggc_alloc (sizeof (*q));
1221 q->next = queued_reg_saves;
1222 queued_reg_saves = q;
1225 q->reg = reg;
1226 q->cfa_offset = offset;
1227 q->saved_reg = sreg;
1229 last_reg_save_label = label;
1232 /* Output all the entries in QUEUED_REG_SAVES. */
1234 static void
1235 flush_queued_reg_saves (void)
1237 struct queued_reg_save *q;
1239 for (q = queued_reg_saves; q; q = q->next)
1241 size_t i;
1242 unsigned int reg, sreg;
1244 for (i = 0; i < num_regs_saved_in_regs; i++)
1245 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1246 break;
1247 if (q->saved_reg && i == num_regs_saved_in_regs)
1249 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1250 num_regs_saved_in_regs++;
1252 if (i != num_regs_saved_in_regs)
1254 regs_saved_in_regs[i].orig_reg = q->reg;
1255 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1258 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1259 if (q->saved_reg)
1260 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1261 else
1262 sreg = INVALID_REGNUM;
1263 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1266 queued_reg_saves = NULL;
1267 last_reg_save_label = NULL;
1270 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1271 location for? Or, does it clobber a register which we've previously
1272 said that some other register is saved in, and for which we now
1273 have a new location for? */
1275 static bool
1276 clobbers_queued_reg_save (rtx insn)
1278 struct queued_reg_save *q;
1280 for (q = queued_reg_saves; q; q = q->next)
1282 size_t i;
1283 if (modified_in_p (q->reg, insn))
1284 return true;
1285 for (i = 0; i < num_regs_saved_in_regs; i++)
1286 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1287 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1288 return true;
1291 return false;
1294 /* Entry point for saving the first register into the second. */
1296 void
1297 dwarf2out_reg_save_reg (const char *label, rtx reg, rtx sreg)
1299 size_t i;
1300 unsigned int regno, sregno;
1302 for (i = 0; i < num_regs_saved_in_regs; i++)
1303 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (reg))
1304 break;
1305 if (i == num_regs_saved_in_regs)
1307 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1308 num_regs_saved_in_regs++;
1310 regs_saved_in_regs[i].orig_reg = reg;
1311 regs_saved_in_regs[i].saved_in_reg = sreg;
1313 regno = DWARF_FRAME_REGNUM (REGNO (reg));
1314 sregno = DWARF_FRAME_REGNUM (REGNO (sreg));
1315 reg_save (label, regno, sregno, 0);
1318 /* What register, if any, is currently saved in REG? */
1320 static rtx
1321 reg_saved_in (rtx reg)
1323 unsigned int regn = REGNO (reg);
1324 size_t i;
1325 struct queued_reg_save *q;
1327 for (q = queued_reg_saves; q; q = q->next)
1328 if (q->saved_reg && regn == REGNO (q->saved_reg))
1329 return q->reg;
1331 for (i = 0; i < num_regs_saved_in_regs; i++)
1332 if (regs_saved_in_regs[i].saved_in_reg
1333 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1334 return regs_saved_in_regs[i].orig_reg;
1336 return NULL_RTX;
1340 /* A temporary register holding an integral value used in adjusting SP
1341 or setting up the store_reg. The "offset" field holds the integer
1342 value, not an offset. */
1343 static dw_cfa_location cfa_temp;
1345 /* Record call frame debugging information for an expression EXPR,
1346 which either sets SP or FP (adjusting how we calculate the frame
1347 address) or saves a register to the stack or another register.
1348 LABEL indicates the address of EXPR.
1350 This function encodes a state machine mapping rtxes to actions on
1351 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1352 users need not read the source code.
1354 The High-Level Picture
1356 Changes in the register we use to calculate the CFA: Currently we
1357 assume that if you copy the CFA register into another register, we
1358 should take the other one as the new CFA register; this seems to
1359 work pretty well. If it's wrong for some target, it's simple
1360 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1362 Changes in the register we use for saving registers to the stack:
1363 This is usually SP, but not always. Again, we deduce that if you
1364 copy SP into another register (and SP is not the CFA register),
1365 then the new register is the one we will be using for register
1366 saves. This also seems to work.
1368 Register saves: There's not much guesswork about this one; if
1369 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1370 register save, and the register used to calculate the destination
1371 had better be the one we think we're using for this purpose.
1372 It's also assumed that a copy from a call-saved register to another
1373 register is saving that register if RTX_FRAME_RELATED_P is set on
1374 that instruction. If the copy is from a call-saved register to
1375 the *same* register, that means that the register is now the same
1376 value as in the caller.
1378 Except: If the register being saved is the CFA register, and the
1379 offset is nonzero, we are saving the CFA, so we assume we have to
1380 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1381 the intent is to save the value of SP from the previous frame.
1383 In addition, if a register has previously been saved to a different
1384 register,
1386 Invariants / Summaries of Rules
1388 cfa current rule for calculating the CFA. It usually
1389 consists of a register and an offset.
1390 cfa_store register used by prologue code to save things to the stack
1391 cfa_store.offset is the offset from the value of
1392 cfa_store.reg to the actual CFA
1393 cfa_temp register holding an integral value. cfa_temp.offset
1394 stores the value, which will be used to adjust the
1395 stack pointer. cfa_temp is also used like cfa_store,
1396 to track stores to the stack via fp or a temp reg.
1398 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1399 with cfa.reg as the first operand changes the cfa.reg and its
1400 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1401 cfa_temp.offset.
1403 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1404 expression yielding a constant. This sets cfa_temp.reg
1405 and cfa_temp.offset.
1407 Rule 5: Create a new register cfa_store used to save items to the
1408 stack.
1410 Rules 10-14: Save a register to the stack. Define offset as the
1411 difference of the original location and cfa_store's
1412 location (or cfa_temp's location if cfa_temp is used).
1414 The Rules
1416 "{a,b}" indicates a choice of a xor b.
1417 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1419 Rule 1:
1420 (set <reg1> <reg2>:cfa.reg)
1421 effects: cfa.reg = <reg1>
1422 cfa.offset unchanged
1423 cfa_temp.reg = <reg1>
1424 cfa_temp.offset = cfa.offset
1426 Rule 2:
1427 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1428 {<const_int>,<reg>:cfa_temp.reg}))
1429 effects: cfa.reg = sp if fp used
1430 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1431 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1432 if cfa_store.reg==sp
1434 Rule 3:
1435 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1436 effects: cfa.reg = fp
1437 cfa_offset += +/- <const_int>
1439 Rule 4:
1440 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1441 constraints: <reg1> != fp
1442 <reg1> != sp
1443 effects: cfa.reg = <reg1>
1444 cfa_temp.reg = <reg1>
1445 cfa_temp.offset = cfa.offset
1447 Rule 5:
1448 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1449 constraints: <reg1> != fp
1450 <reg1> != sp
1451 effects: cfa_store.reg = <reg1>
1452 cfa_store.offset = cfa.offset - cfa_temp.offset
1454 Rule 6:
1455 (set <reg> <const_int>)
1456 effects: cfa_temp.reg = <reg>
1457 cfa_temp.offset = <const_int>
1459 Rule 7:
1460 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1461 effects: cfa_temp.reg = <reg1>
1462 cfa_temp.offset |= <const_int>
1464 Rule 8:
1465 (set <reg> (high <exp>))
1466 effects: none
1468 Rule 9:
1469 (set <reg> (lo_sum <exp> <const_int>))
1470 effects: cfa_temp.reg = <reg>
1471 cfa_temp.offset = <const_int>
1473 Rule 10:
1474 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1475 effects: cfa_store.offset -= <const_int>
1476 cfa.offset = cfa_store.offset if cfa.reg == sp
1477 cfa.reg = sp
1478 cfa.base_offset = -cfa_store.offset
1480 Rule 11:
1481 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1482 effects: cfa_store.offset += -/+ mode_size(mem)
1483 cfa.offset = cfa_store.offset if cfa.reg == sp
1484 cfa.reg = sp
1485 cfa.base_offset = -cfa_store.offset
1487 Rule 12:
1488 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1490 <reg2>)
1491 effects: cfa.reg = <reg1>
1492 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1494 Rule 13:
1495 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1496 effects: cfa.reg = <reg1>
1497 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1499 Rule 14:
1500 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1501 effects: cfa.reg = <reg1>
1502 cfa.base_offset = -cfa_temp.offset
1503 cfa_temp.offset -= mode_size(mem)
1505 Rule 15:
1506 (set <reg> {unspec, unspec_volatile})
1507 effects: target-dependent */
1509 static void
1510 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1512 rtx src, dest;
1513 HOST_WIDE_INT offset;
1515 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1516 the PARALLEL independently. The first element is always processed if
1517 it is a SET. This is for backward compatibility. Other elements
1518 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1519 flag is set in them. */
1520 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1522 int par_index;
1523 int limit = XVECLEN (expr, 0);
1525 for (par_index = 0; par_index < limit; par_index++)
1526 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1527 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1528 || par_index == 0))
1529 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1531 return;
1534 gcc_assert (GET_CODE (expr) == SET);
1536 src = SET_SRC (expr);
1537 dest = SET_DEST (expr);
1539 if (REG_P (src))
1541 rtx rsi = reg_saved_in (src);
1542 if (rsi)
1543 src = rsi;
1546 switch (GET_CODE (dest))
1548 case REG:
1549 switch (GET_CODE (src))
1551 /* Setting FP from SP. */
1552 case REG:
1553 if (cfa.reg == (unsigned) REGNO (src))
1555 /* Rule 1 */
1556 /* Update the CFA rule wrt SP or FP. Make sure src is
1557 relative to the current CFA register.
1559 We used to require that dest be either SP or FP, but the
1560 ARM copies SP to a temporary register, and from there to
1561 FP. So we just rely on the backends to only set
1562 RTX_FRAME_RELATED_P on appropriate insns. */
1563 cfa.reg = REGNO (dest);
1564 cfa_temp.reg = cfa.reg;
1565 cfa_temp.offset = cfa.offset;
1567 else
1569 /* Saving a register in a register. */
1570 gcc_assert (!fixed_regs [REGNO (dest)]
1571 /* For the SPARC and its register window. */
1572 || (DWARF_FRAME_REGNUM (REGNO (src))
1573 == DWARF_FRAME_RETURN_COLUMN));
1574 queue_reg_save (label, src, dest, 0);
1576 break;
1578 case PLUS:
1579 case MINUS:
1580 case LO_SUM:
1581 if (dest == stack_pointer_rtx)
1583 /* Rule 2 */
1584 /* Adjusting SP. */
1585 switch (GET_CODE (XEXP (src, 1)))
1587 case CONST_INT:
1588 offset = INTVAL (XEXP (src, 1));
1589 break;
1590 case REG:
1591 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1592 == cfa_temp.reg);
1593 offset = cfa_temp.offset;
1594 break;
1595 default:
1596 gcc_unreachable ();
1599 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1601 /* Restoring SP from FP in the epilogue. */
1602 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1603 cfa.reg = STACK_POINTER_REGNUM;
1605 else if (GET_CODE (src) == LO_SUM)
1606 /* Assume we've set the source reg of the LO_SUM from sp. */
1608 else
1609 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1611 if (GET_CODE (src) != MINUS)
1612 offset = -offset;
1613 if (cfa.reg == STACK_POINTER_REGNUM)
1614 cfa.offset += offset;
1615 if (cfa_store.reg == STACK_POINTER_REGNUM)
1616 cfa_store.offset += offset;
1618 else if (dest == hard_frame_pointer_rtx)
1620 /* Rule 3 */
1621 /* Either setting the FP from an offset of the SP,
1622 or adjusting the FP */
1623 gcc_assert (frame_pointer_needed);
1625 gcc_assert (REG_P (XEXP (src, 0))
1626 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1627 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1628 offset = INTVAL (XEXP (src, 1));
1629 if (GET_CODE (src) != MINUS)
1630 offset = -offset;
1631 cfa.offset += offset;
1632 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1634 else
1636 gcc_assert (GET_CODE (src) != MINUS);
1638 /* Rule 4 */
1639 if (REG_P (XEXP (src, 0))
1640 && REGNO (XEXP (src, 0)) == cfa.reg
1641 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1643 /* Setting a temporary CFA register that will be copied
1644 into the FP later on. */
1645 offset = - INTVAL (XEXP (src, 1));
1646 cfa.offset += offset;
1647 cfa.reg = REGNO (dest);
1648 /* Or used to save regs to the stack. */
1649 cfa_temp.reg = cfa.reg;
1650 cfa_temp.offset = cfa.offset;
1653 /* Rule 5 */
1654 else if (REG_P (XEXP (src, 0))
1655 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1656 && XEXP (src, 1) == stack_pointer_rtx)
1658 /* Setting a scratch register that we will use instead
1659 of SP for saving registers to the stack. */
1660 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1661 cfa_store.reg = REGNO (dest);
1662 cfa_store.offset = cfa.offset - cfa_temp.offset;
1665 /* Rule 9 */
1666 else if (GET_CODE (src) == LO_SUM
1667 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1669 cfa_temp.reg = REGNO (dest);
1670 cfa_temp.offset = INTVAL (XEXP (src, 1));
1672 else
1673 gcc_unreachable ();
1675 break;
1677 /* Rule 6 */
1678 case CONST_INT:
1679 cfa_temp.reg = REGNO (dest);
1680 cfa_temp.offset = INTVAL (src);
1681 break;
1683 /* Rule 7 */
1684 case IOR:
1685 gcc_assert (REG_P (XEXP (src, 0))
1686 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1687 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1689 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1690 cfa_temp.reg = REGNO (dest);
1691 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1692 break;
1694 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1695 which will fill in all of the bits. */
1696 /* Rule 8 */
1697 case HIGH:
1698 break;
1700 /* Rule 15 */
1701 case UNSPEC:
1702 case UNSPEC_VOLATILE:
1703 gcc_assert (targetm.dwarf_handle_frame_unspec);
1704 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1705 return;
1707 default:
1708 gcc_unreachable ();
1711 def_cfa_1 (label, &cfa);
1712 break;
1714 case MEM:
1715 gcc_assert (REG_P (src));
1717 /* Saving a register to the stack. Make sure dest is relative to the
1718 CFA register. */
1719 switch (GET_CODE (XEXP (dest, 0)))
1721 /* Rule 10 */
1722 /* With a push. */
1723 case PRE_MODIFY:
1724 /* We can't handle variable size modifications. */
1725 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1726 == CONST_INT);
1727 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1729 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1730 && cfa_store.reg == STACK_POINTER_REGNUM);
1732 cfa_store.offset += offset;
1733 if (cfa.reg == STACK_POINTER_REGNUM)
1734 cfa.offset = cfa_store.offset;
1736 offset = -cfa_store.offset;
1737 break;
1739 /* Rule 11 */
1740 case PRE_INC:
1741 case PRE_DEC:
1742 offset = GET_MODE_SIZE (GET_MODE (dest));
1743 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1744 offset = -offset;
1746 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1747 && cfa_store.reg == STACK_POINTER_REGNUM);
1749 cfa_store.offset += offset;
1750 if (cfa.reg == STACK_POINTER_REGNUM)
1751 cfa.offset = cfa_store.offset;
1753 offset = -cfa_store.offset;
1754 break;
1756 /* Rule 12 */
1757 /* With an offset. */
1758 case PLUS:
1759 case MINUS:
1760 case LO_SUM:
1762 int regno;
1764 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT
1765 && REG_P (XEXP (XEXP (dest, 0), 0)));
1766 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1767 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1768 offset = -offset;
1770 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1772 if (cfa_store.reg == (unsigned) regno)
1773 offset -= cfa_store.offset;
1774 else
1776 gcc_assert (cfa_temp.reg == (unsigned) regno);
1777 offset -= cfa_temp.offset;
1780 break;
1782 /* Rule 13 */
1783 /* Without an offset. */
1784 case REG:
1786 int regno = REGNO (XEXP (dest, 0));
1788 if (cfa_store.reg == (unsigned) regno)
1789 offset = -cfa_store.offset;
1790 else
1792 gcc_assert (cfa_temp.reg == (unsigned) regno);
1793 offset = -cfa_temp.offset;
1796 break;
1798 /* Rule 14 */
1799 case POST_INC:
1800 gcc_assert (cfa_temp.reg
1801 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1802 offset = -cfa_temp.offset;
1803 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1804 break;
1806 default:
1807 gcc_unreachable ();
1810 if (REGNO (src) != STACK_POINTER_REGNUM
1811 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1812 && (unsigned) REGNO (src) == cfa.reg)
1814 /* We're storing the current CFA reg into the stack. */
1816 if (cfa.offset == 0)
1818 /* If the source register is exactly the CFA, assume
1819 we're saving SP like any other register; this happens
1820 on the ARM. */
1821 def_cfa_1 (label, &cfa);
1822 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1823 break;
1825 else
1827 /* Otherwise, we'll need to look in the stack to
1828 calculate the CFA. */
1829 rtx x = XEXP (dest, 0);
1831 if (!REG_P (x))
1832 x = XEXP (x, 0);
1833 gcc_assert (REG_P (x));
1835 cfa.reg = REGNO (x);
1836 cfa.base_offset = offset;
1837 cfa.indirect = 1;
1838 def_cfa_1 (label, &cfa);
1839 break;
1843 def_cfa_1 (label, &cfa);
1844 queue_reg_save (label, src, NULL_RTX, offset);
1845 break;
1847 default:
1848 gcc_unreachable ();
1852 /* Record call frame debugging information for INSN, which either
1853 sets SP or FP (adjusting how we calculate the frame address) or saves a
1854 register to the stack. If INSN is NULL_RTX, initialize our state.
1856 If AFTER_P is false, we're being called before the insn is emitted,
1857 otherwise after. Call instructions get invoked twice. */
1859 void
1860 dwarf2out_frame_debug (rtx insn, bool after_p)
1862 const char *label;
1863 rtx src;
1865 if (insn == NULL_RTX)
1867 size_t i;
1869 /* Flush any queued register saves. */
1870 flush_queued_reg_saves ();
1872 /* Set up state for generating call frame debug info. */
1873 lookup_cfa (&cfa);
1874 gcc_assert (cfa.reg
1875 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1877 cfa.reg = STACK_POINTER_REGNUM;
1878 cfa_store = cfa;
1879 cfa_temp.reg = -1;
1880 cfa_temp.offset = 0;
1882 for (i = 0; i < num_regs_saved_in_regs; i++)
1884 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1885 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1887 num_regs_saved_in_regs = 0;
1888 return;
1891 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1892 flush_queued_reg_saves ();
1894 if (! RTX_FRAME_RELATED_P (insn))
1896 if (!ACCUMULATE_OUTGOING_ARGS)
1897 dwarf2out_stack_adjust (insn, after_p);
1898 return;
1901 label = dwarf2out_cfi_label ();
1902 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1903 if (src)
1904 insn = XEXP (src, 0);
1905 else
1906 insn = PATTERN (insn);
1908 dwarf2out_frame_debug_expr (insn, label);
1911 #endif
1913 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1914 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1915 (enum dwarf_call_frame_info cfi);
1917 static enum dw_cfi_oprnd_type
1918 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1920 switch (cfi)
1922 case DW_CFA_nop:
1923 case DW_CFA_GNU_window_save:
1924 return dw_cfi_oprnd_unused;
1926 case DW_CFA_set_loc:
1927 case DW_CFA_advance_loc1:
1928 case DW_CFA_advance_loc2:
1929 case DW_CFA_advance_loc4:
1930 case DW_CFA_MIPS_advance_loc8:
1931 return dw_cfi_oprnd_addr;
1933 case DW_CFA_offset:
1934 case DW_CFA_offset_extended:
1935 case DW_CFA_def_cfa:
1936 case DW_CFA_offset_extended_sf:
1937 case DW_CFA_def_cfa_sf:
1938 case DW_CFA_restore_extended:
1939 case DW_CFA_undefined:
1940 case DW_CFA_same_value:
1941 case DW_CFA_def_cfa_register:
1942 case DW_CFA_register:
1943 return dw_cfi_oprnd_reg_num;
1945 case DW_CFA_def_cfa_offset:
1946 case DW_CFA_GNU_args_size:
1947 case DW_CFA_def_cfa_offset_sf:
1948 return dw_cfi_oprnd_offset;
1950 case DW_CFA_def_cfa_expression:
1951 case DW_CFA_expression:
1952 return dw_cfi_oprnd_loc;
1954 default:
1955 gcc_unreachable ();
1959 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1960 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1961 (enum dwarf_call_frame_info cfi);
1963 static enum dw_cfi_oprnd_type
1964 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1966 switch (cfi)
1968 case DW_CFA_def_cfa:
1969 case DW_CFA_def_cfa_sf:
1970 case DW_CFA_offset:
1971 case DW_CFA_offset_extended_sf:
1972 case DW_CFA_offset_extended:
1973 return dw_cfi_oprnd_offset;
1975 case DW_CFA_register:
1976 return dw_cfi_oprnd_reg_num;
1978 default:
1979 return dw_cfi_oprnd_unused;
1983 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1985 /* Switch to eh_frame_section. If we don't have an eh_frame_section,
1986 switch to the data section instead, and write out a synthetic label
1987 for collect2. */
1989 static void
1990 switch_to_eh_frame_section (void)
1992 tree label;
1994 #ifdef EH_FRAME_SECTION_NAME
1995 if (eh_frame_section == 0)
1997 int flags;
1999 if (EH_TABLES_CAN_BE_READ_ONLY)
2001 int fde_encoding;
2002 int per_encoding;
2003 int lsda_encoding;
2005 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1,
2006 /*global=*/0);
2007 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2,
2008 /*global=*/1);
2009 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0,
2010 /*global=*/0);
2011 flags = ((! flag_pic
2012 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
2013 && (fde_encoding & 0x70) != DW_EH_PE_aligned
2014 && (per_encoding & 0x70) != DW_EH_PE_absptr
2015 && (per_encoding & 0x70) != DW_EH_PE_aligned
2016 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
2017 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
2018 ? 0 : SECTION_WRITE);
2020 else
2021 flags = SECTION_WRITE;
2022 eh_frame_section = get_section (EH_FRAME_SECTION_NAME, flags, NULL);
2024 #endif
2026 if (eh_frame_section)
2027 switch_to_section (eh_frame_section);
2028 else
2030 /* We have no special eh_frame section. Put the information in
2031 the data section and emit special labels to guide collect2. */
2032 switch_to_section (data_section);
2033 label = get_file_function_name ('F');
2034 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2035 targetm.asm_out.globalize_label (asm_out_file,
2036 IDENTIFIER_POINTER (label));
2037 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
2041 /* Output a Call Frame Information opcode and its operand(s). */
2043 static void
2044 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
2046 unsigned long r;
2047 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
2048 dw2_asm_output_data (1, (cfi->dw_cfi_opc
2049 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
2050 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
2051 cfi->dw_cfi_oprnd1.dw_cfi_offset);
2052 else if (cfi->dw_cfi_opc == DW_CFA_offset)
2054 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2055 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2056 "DW_CFA_offset, column 0x%lx", r);
2057 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2059 else if (cfi->dw_cfi_opc == DW_CFA_restore)
2061 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2062 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
2063 "DW_CFA_restore, column 0x%lx", r);
2065 else
2067 dw2_asm_output_data (1, cfi->dw_cfi_opc,
2068 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
2070 switch (cfi->dw_cfi_opc)
2072 case DW_CFA_set_loc:
2073 if (for_eh)
2074 dw2_asm_output_encoded_addr_rtx (
2075 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
2076 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
2077 false, NULL);
2078 else
2079 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2080 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
2081 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2082 break;
2084 case DW_CFA_advance_loc1:
2085 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2086 fde->dw_fde_current_label, NULL);
2087 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2088 break;
2090 case DW_CFA_advance_loc2:
2091 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2092 fde->dw_fde_current_label, NULL);
2093 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2094 break;
2096 case DW_CFA_advance_loc4:
2097 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2098 fde->dw_fde_current_label, NULL);
2099 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2100 break;
2102 case DW_CFA_MIPS_advance_loc8:
2103 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2104 fde->dw_fde_current_label, NULL);
2105 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2106 break;
2108 case DW_CFA_offset_extended:
2109 case DW_CFA_def_cfa:
2110 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2111 dw2_asm_output_data_uleb128 (r, NULL);
2112 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2113 break;
2115 case DW_CFA_offset_extended_sf:
2116 case DW_CFA_def_cfa_sf:
2117 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2118 dw2_asm_output_data_uleb128 (r, NULL);
2119 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2120 break;
2122 case DW_CFA_restore_extended:
2123 case DW_CFA_undefined:
2124 case DW_CFA_same_value:
2125 case DW_CFA_def_cfa_register:
2126 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2127 dw2_asm_output_data_uleb128 (r, NULL);
2128 break;
2130 case DW_CFA_register:
2131 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2132 dw2_asm_output_data_uleb128 (r, NULL);
2133 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2134 dw2_asm_output_data_uleb128 (r, NULL);
2135 break;
2137 case DW_CFA_def_cfa_offset:
2138 case DW_CFA_GNU_args_size:
2139 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2140 break;
2142 case DW_CFA_def_cfa_offset_sf:
2143 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2144 break;
2146 case DW_CFA_GNU_window_save:
2147 break;
2149 case DW_CFA_def_cfa_expression:
2150 case DW_CFA_expression:
2151 output_cfa_loc (cfi);
2152 break;
2154 case DW_CFA_GNU_negative_offset_extended:
2155 /* Obsoleted by DW_CFA_offset_extended_sf. */
2156 gcc_unreachable ();
2158 default:
2159 break;
2164 /* Output the call frame information used to record information
2165 that relates to calculating the frame pointer, and records the
2166 location of saved registers. */
2168 static void
2169 output_call_frame_info (int for_eh)
2171 unsigned int i;
2172 dw_fde_ref fde;
2173 dw_cfi_ref cfi;
2174 char l1[20], l2[20], section_start_label[20];
2175 bool any_lsda_needed = false;
2176 char augmentation[6];
2177 int augmentation_size;
2178 int fde_encoding = DW_EH_PE_absptr;
2179 int per_encoding = DW_EH_PE_absptr;
2180 int lsda_encoding = DW_EH_PE_absptr;
2181 int return_reg;
2183 /* Don't emit a CIE if there won't be any FDEs. */
2184 if (fde_table_in_use == 0)
2185 return;
2187 /* If we make FDEs linkonce, we may have to emit an empty label for
2188 an FDE that wouldn't otherwise be emitted. We want to avoid
2189 having an FDE kept around when the function it refers to is
2190 discarded. Example where this matters: a primary function
2191 template in C++ requires EH information, but an explicit
2192 specialization doesn't. */
2193 if (TARGET_USES_WEAK_UNWIND_INFO
2194 && ! flag_asynchronous_unwind_tables
2195 && for_eh)
2196 for (i = 0; i < fde_table_in_use; i++)
2197 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2198 && !fde_table[i].uses_eh_lsda
2199 && ! DECL_WEAK (fde_table[i].decl))
2200 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2201 for_eh, /* empty */ 1);
2203 /* If we don't have any functions we'll want to unwind out of, don't
2204 emit any EH unwind information. Note that if exceptions aren't
2205 enabled, we won't have collected nothrow information, and if we
2206 asked for asynchronous tables, we always want this info. */
2207 if (for_eh)
2209 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2211 for (i = 0; i < fde_table_in_use; i++)
2212 if (fde_table[i].uses_eh_lsda)
2213 any_eh_needed = any_lsda_needed = true;
2214 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2215 any_eh_needed = true;
2216 else if (! fde_table[i].nothrow
2217 && ! fde_table[i].all_throwers_are_sibcalls)
2218 any_eh_needed = true;
2220 if (! any_eh_needed)
2221 return;
2224 /* We're going to be generating comments, so turn on app. */
2225 if (flag_debug_asm)
2226 app_enable ();
2228 if (for_eh)
2229 switch_to_eh_frame_section ();
2230 else
2232 if (!debug_frame_section)
2233 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
2234 SECTION_DEBUG, NULL);
2235 switch_to_section (debug_frame_section);
2238 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2239 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2241 /* Output the CIE. */
2242 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2243 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2244 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2245 dw2_asm_output_data (4, 0xffffffff,
2246 "Initial length escape value indicating 64-bit DWARF extension");
2247 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2248 "Length of Common Information Entry");
2249 ASM_OUTPUT_LABEL (asm_out_file, l1);
2251 /* Now that the CIE pointer is PC-relative for EH,
2252 use 0 to identify the CIE. */
2253 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2254 (for_eh ? 0 : DWARF_CIE_ID),
2255 "CIE Identifier Tag");
2257 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2259 augmentation[0] = 0;
2260 augmentation_size = 0;
2261 if (for_eh)
2263 char *p;
2265 /* Augmentation:
2266 z Indicates that a uleb128 is present to size the
2267 augmentation section.
2268 L Indicates the encoding (and thus presence) of
2269 an LSDA pointer in the FDE augmentation.
2270 R Indicates a non-default pointer encoding for
2271 FDE code pointers.
2272 P Indicates the presence of an encoding + language
2273 personality routine in the CIE augmentation. */
2275 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2276 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2277 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2279 p = augmentation + 1;
2280 if (eh_personality_libfunc)
2282 *p++ = 'P';
2283 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2285 if (any_lsda_needed)
2287 *p++ = 'L';
2288 augmentation_size += 1;
2290 if (fde_encoding != DW_EH_PE_absptr)
2292 *p++ = 'R';
2293 augmentation_size += 1;
2295 if (p > augmentation + 1)
2297 augmentation[0] = 'z';
2298 *p = '\0';
2301 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2302 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2304 int offset = ( 4 /* Length */
2305 + 4 /* CIE Id */
2306 + 1 /* CIE version */
2307 + strlen (augmentation) + 1 /* Augmentation */
2308 + size_of_uleb128 (1) /* Code alignment */
2309 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2310 + 1 /* RA column */
2311 + 1 /* Augmentation size */
2312 + 1 /* Personality encoding */ );
2313 int pad = -offset & (PTR_SIZE - 1);
2315 augmentation_size += pad;
2317 /* Augmentations should be small, so there's scarce need to
2318 iterate for a solution. Die if we exceed one uleb128 byte. */
2319 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2323 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2324 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2325 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2326 "CIE Data Alignment Factor");
2328 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
2329 if (DW_CIE_VERSION == 1)
2330 dw2_asm_output_data (1, return_reg, "CIE RA Column");
2331 else
2332 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
2334 if (augmentation[0])
2336 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2337 if (eh_personality_libfunc)
2339 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2340 eh_data_format_name (per_encoding));
2341 dw2_asm_output_encoded_addr_rtx (per_encoding,
2342 eh_personality_libfunc,
2343 true, NULL);
2346 if (any_lsda_needed)
2347 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2348 eh_data_format_name (lsda_encoding));
2350 if (fde_encoding != DW_EH_PE_absptr)
2351 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2352 eh_data_format_name (fde_encoding));
2355 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2356 output_cfi (cfi, NULL, for_eh);
2358 /* Pad the CIE out to an address sized boundary. */
2359 ASM_OUTPUT_ALIGN (asm_out_file,
2360 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2361 ASM_OUTPUT_LABEL (asm_out_file, l2);
2363 /* Loop through all of the FDE's. */
2364 for (i = 0; i < fde_table_in_use; i++)
2366 fde = &fde_table[i];
2368 /* Don't emit EH unwind info for leaf functions that don't need it. */
2369 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2370 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2371 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2372 && !fde->uses_eh_lsda)
2373 continue;
2375 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2376 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2377 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2378 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2379 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4 && !for_eh)
2380 dw2_asm_output_data (4, 0xffffffff,
2381 "Initial length escape value indicating 64-bit DWARF extension");
2382 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2383 "FDE Length");
2384 ASM_OUTPUT_LABEL (asm_out_file, l1);
2386 if (for_eh)
2387 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2388 else
2389 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2390 debug_frame_section, "FDE CIE offset");
2392 if (for_eh)
2394 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2395 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2396 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2397 sym_ref,
2398 false,
2399 "FDE initial location");
2400 if (fde->dw_fde_switched_sections)
2402 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2403 fde->dw_fde_unlikely_section_label);
2404 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2405 fde->dw_fde_hot_section_label);
2406 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2407 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2408 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3, false,
2409 "FDE initial location");
2410 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2411 fde->dw_fde_hot_section_end_label,
2412 fde->dw_fde_hot_section_label,
2413 "FDE address range");
2414 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2, false,
2415 "FDE initial location");
2416 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2417 fde->dw_fde_unlikely_section_end_label,
2418 fde->dw_fde_unlikely_section_label,
2419 "FDE address range");
2421 else
2422 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2423 fde->dw_fde_end, fde->dw_fde_begin,
2424 "FDE address range");
2426 else
2428 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2429 "FDE initial location");
2430 if (fde->dw_fde_switched_sections)
2432 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2433 fde->dw_fde_hot_section_label,
2434 "FDE initial location");
2435 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2436 fde->dw_fde_hot_section_end_label,
2437 fde->dw_fde_hot_section_label,
2438 "FDE address range");
2439 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2440 fde->dw_fde_unlikely_section_label,
2441 "FDE initial location");
2442 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2443 fde->dw_fde_unlikely_section_end_label,
2444 fde->dw_fde_unlikely_section_label,
2445 "FDE address range");
2447 else
2448 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2449 fde->dw_fde_end, fde->dw_fde_begin,
2450 "FDE address range");
2453 if (augmentation[0])
2455 if (any_lsda_needed)
2457 int size = size_of_encoded_value (lsda_encoding);
2459 if (lsda_encoding == DW_EH_PE_aligned)
2461 int offset = ( 4 /* Length */
2462 + 4 /* CIE offset */
2463 + 2 * size_of_encoded_value (fde_encoding)
2464 + 1 /* Augmentation size */ );
2465 int pad = -offset & (PTR_SIZE - 1);
2467 size += pad;
2468 gcc_assert (size_of_uleb128 (size) == 1);
2471 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2473 if (fde->uses_eh_lsda)
2475 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2476 fde->funcdef_number);
2477 dw2_asm_output_encoded_addr_rtx (
2478 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2479 false, "Language Specific Data Area");
2481 else
2483 if (lsda_encoding == DW_EH_PE_aligned)
2484 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2485 dw2_asm_output_data
2486 (size_of_encoded_value (lsda_encoding), 0,
2487 "Language Specific Data Area (none)");
2490 else
2491 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2494 /* Loop through the Call Frame Instructions associated with
2495 this FDE. */
2496 fde->dw_fde_current_label = fde->dw_fde_begin;
2497 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2498 output_cfi (cfi, fde, for_eh);
2500 /* Pad the FDE out to an address sized boundary. */
2501 ASM_OUTPUT_ALIGN (asm_out_file,
2502 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2503 ASM_OUTPUT_LABEL (asm_out_file, l2);
2506 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2507 dw2_asm_output_data (4, 0, "End of Table");
2508 #ifdef MIPS_DEBUGGING_INFO
2509 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2510 get a value of 0. Putting .align 0 after the label fixes it. */
2511 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2512 #endif
2514 /* Turn off app to make assembly quicker. */
2515 if (flag_debug_asm)
2516 app_disable ();
2519 /* Output a marker (i.e. a label) for the beginning of a function, before
2520 the prologue. */
2522 void
2523 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2524 const char *file ATTRIBUTE_UNUSED)
2526 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2527 char * dup_label;
2528 dw_fde_ref fde;
2530 current_function_func_begin_label = NULL;
2532 #ifdef TARGET_UNWIND_INFO
2533 /* ??? current_function_func_begin_label is also used by except.c
2534 for call-site information. We must emit this label if it might
2535 be used. */
2536 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2537 && ! dwarf2out_do_frame ())
2538 return;
2539 #else
2540 if (! dwarf2out_do_frame ())
2541 return;
2542 #endif
2544 switch_to_section (function_section (current_function_decl));
2545 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2546 current_function_funcdef_no);
2547 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2548 current_function_funcdef_no);
2549 dup_label = xstrdup (label);
2550 current_function_func_begin_label = dup_label;
2552 #ifdef TARGET_UNWIND_INFO
2553 /* We can elide the fde allocation if we're not emitting debug info. */
2554 if (! dwarf2out_do_frame ())
2555 return;
2556 #endif
2558 /* Expand the fde table if necessary. */
2559 if (fde_table_in_use == fde_table_allocated)
2561 fde_table_allocated += FDE_TABLE_INCREMENT;
2562 fde_table = ggc_realloc (fde_table,
2563 fde_table_allocated * sizeof (dw_fde_node));
2564 memset (fde_table + fde_table_in_use, 0,
2565 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2568 /* Record the FDE associated with this function. */
2569 current_funcdef_fde = fde_table_in_use;
2571 /* Add the new FDE at the end of the fde_table. */
2572 fde = &fde_table[fde_table_in_use++];
2573 fde->decl = current_function_decl;
2574 fde->dw_fde_begin = dup_label;
2575 fde->dw_fde_current_label = NULL;
2576 fde->dw_fde_hot_section_label = NULL;
2577 fde->dw_fde_hot_section_end_label = NULL;
2578 fde->dw_fde_unlikely_section_label = NULL;
2579 fde->dw_fde_unlikely_section_end_label = NULL;
2580 fde->dw_fde_switched_sections = false;
2581 fde->dw_fde_end = NULL;
2582 fde->dw_fde_cfi = NULL;
2583 fde->funcdef_number = current_function_funcdef_no;
2584 fde->nothrow = TREE_NOTHROW (current_function_decl);
2585 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2586 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2588 args_size = old_args_size = 0;
2590 /* We only want to output line number information for the genuine dwarf2
2591 prologue case, not the eh frame case. */
2592 #ifdef DWARF2_DEBUGGING_INFO
2593 if (file)
2594 dwarf2out_source_line (line, file);
2595 #endif
2598 /* Output a marker (i.e. a label) for the absolute end of the generated code
2599 for a function definition. This gets called *after* the epilogue code has
2600 been generated. */
2602 void
2603 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2604 const char *file ATTRIBUTE_UNUSED)
2606 dw_fde_ref fde;
2607 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2609 /* Output a label to mark the endpoint of the code generated for this
2610 function. */
2611 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2612 current_function_funcdef_no);
2613 ASM_OUTPUT_LABEL (asm_out_file, label);
2614 fde = &fde_table[fde_table_in_use - 1];
2615 fde->dw_fde_end = xstrdup (label);
2618 void
2619 dwarf2out_frame_init (void)
2621 /* Allocate the initial hunk of the fde_table. */
2622 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2623 fde_table_allocated = FDE_TABLE_INCREMENT;
2624 fde_table_in_use = 0;
2626 /* Generate the CFA instructions common to all FDE's. Do it now for the
2627 sake of lookup_cfa. */
2629 /* On entry, the Canonical Frame Address is at SP. */
2630 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2632 #ifdef DWARF2_UNWIND_INFO
2633 if (DWARF2_UNWIND_INFO)
2634 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2635 #endif
2638 void
2639 dwarf2out_frame_finish (void)
2641 /* Output call frame information. */
2642 if (DWARF2_FRAME_INFO)
2643 output_call_frame_info (0);
2645 #ifndef TARGET_UNWIND_INFO
2646 /* Output another copy for the unwinder. */
2647 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2648 output_call_frame_info (1);
2649 #endif
2651 #endif
2653 /* And now, the subset of the debugging information support code necessary
2654 for emitting location expressions. */
2656 /* Data about a single source file. */
2657 struct dwarf_file_data GTY(())
2659 const char * filename;
2660 int emitted_number;
2663 /* We need some way to distinguish DW_OP_addr with a direct symbol
2664 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2665 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2668 typedef struct dw_val_struct *dw_val_ref;
2669 typedef struct die_struct *dw_die_ref;
2670 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2671 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2673 /* Each DIE may have a series of attribute/value pairs. Values
2674 can take on several forms. The forms that are used in this
2675 implementation are listed below. */
2677 enum dw_val_class
2679 dw_val_class_addr,
2680 dw_val_class_offset,
2681 dw_val_class_loc,
2682 dw_val_class_loc_list,
2683 dw_val_class_range_list,
2684 dw_val_class_const,
2685 dw_val_class_unsigned_const,
2686 dw_val_class_long_long,
2687 dw_val_class_vec,
2688 dw_val_class_flag,
2689 dw_val_class_die_ref,
2690 dw_val_class_fde_ref,
2691 dw_val_class_lbl_id,
2692 dw_val_class_lineptr,
2693 dw_val_class_str,
2694 dw_val_class_macptr,
2695 dw_val_class_file
2698 /* Describe a double word constant value. */
2699 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2701 typedef struct dw_long_long_struct GTY(())
2703 unsigned long hi;
2704 unsigned long low;
2706 dw_long_long_const;
2708 /* Describe a floating point constant value, or a vector constant value. */
2710 typedef struct dw_vec_struct GTY(())
2712 unsigned char * GTY((length ("%h.length"))) array;
2713 unsigned length;
2714 unsigned elt_size;
2716 dw_vec_const;
2718 /* The dw_val_node describes an attribute's value, as it is
2719 represented internally. */
2721 typedef struct dw_val_struct GTY(())
2723 enum dw_val_class val_class;
2724 union dw_val_struct_union
2726 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2727 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2728 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2729 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2730 HOST_WIDE_INT GTY ((default)) val_int;
2731 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2732 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2733 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2734 struct dw_val_die_union
2736 dw_die_ref die;
2737 int external;
2738 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2739 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2740 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2741 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2742 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2743 struct dwarf_file_data * GTY ((tag ("dw_val_class_file"))) val_file;
2745 GTY ((desc ("%1.val_class"))) v;
2747 dw_val_node;
2749 /* Locations in memory are described using a sequence of stack machine
2750 operations. */
2752 typedef struct dw_loc_descr_struct GTY(())
2754 dw_loc_descr_ref dw_loc_next;
2755 enum dwarf_location_atom dw_loc_opc;
2756 dw_val_node dw_loc_oprnd1;
2757 dw_val_node dw_loc_oprnd2;
2758 int dw_loc_addr;
2760 dw_loc_descr_node;
2762 /* Location lists are ranges + location descriptions for that range,
2763 so you can track variables that are in different places over
2764 their entire life. */
2765 typedef struct dw_loc_list_struct GTY(())
2767 dw_loc_list_ref dw_loc_next;
2768 const char *begin; /* Label for begin address of range */
2769 const char *end; /* Label for end address of range */
2770 char *ll_symbol; /* Label for beginning of location list.
2771 Only on head of list */
2772 const char *section; /* Section this loclist is relative to */
2773 dw_loc_descr_ref expr;
2774 } dw_loc_list_node;
2776 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2778 static const char *dwarf_stack_op_name (unsigned);
2779 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2780 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2781 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2782 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2783 static unsigned long size_of_locs (dw_loc_descr_ref);
2784 static void output_loc_operands (dw_loc_descr_ref);
2785 static void output_loc_sequence (dw_loc_descr_ref);
2787 /* Convert a DWARF stack opcode into its string name. */
2789 static const char *
2790 dwarf_stack_op_name (unsigned int op)
2792 switch (op)
2794 case DW_OP_addr:
2795 case INTERNAL_DW_OP_tls_addr:
2796 return "DW_OP_addr";
2797 case DW_OP_deref:
2798 return "DW_OP_deref";
2799 case DW_OP_const1u:
2800 return "DW_OP_const1u";
2801 case DW_OP_const1s:
2802 return "DW_OP_const1s";
2803 case DW_OP_const2u:
2804 return "DW_OP_const2u";
2805 case DW_OP_const2s:
2806 return "DW_OP_const2s";
2807 case DW_OP_const4u:
2808 return "DW_OP_const4u";
2809 case DW_OP_const4s:
2810 return "DW_OP_const4s";
2811 case DW_OP_const8u:
2812 return "DW_OP_const8u";
2813 case DW_OP_const8s:
2814 return "DW_OP_const8s";
2815 case DW_OP_constu:
2816 return "DW_OP_constu";
2817 case DW_OP_consts:
2818 return "DW_OP_consts";
2819 case DW_OP_dup:
2820 return "DW_OP_dup";
2821 case DW_OP_drop:
2822 return "DW_OP_drop";
2823 case DW_OP_over:
2824 return "DW_OP_over";
2825 case DW_OP_pick:
2826 return "DW_OP_pick";
2827 case DW_OP_swap:
2828 return "DW_OP_swap";
2829 case DW_OP_rot:
2830 return "DW_OP_rot";
2831 case DW_OP_xderef:
2832 return "DW_OP_xderef";
2833 case DW_OP_abs:
2834 return "DW_OP_abs";
2835 case DW_OP_and:
2836 return "DW_OP_and";
2837 case DW_OP_div:
2838 return "DW_OP_div";
2839 case DW_OP_minus:
2840 return "DW_OP_minus";
2841 case DW_OP_mod:
2842 return "DW_OP_mod";
2843 case DW_OP_mul:
2844 return "DW_OP_mul";
2845 case DW_OP_neg:
2846 return "DW_OP_neg";
2847 case DW_OP_not:
2848 return "DW_OP_not";
2849 case DW_OP_or:
2850 return "DW_OP_or";
2851 case DW_OP_plus:
2852 return "DW_OP_plus";
2853 case DW_OP_plus_uconst:
2854 return "DW_OP_plus_uconst";
2855 case DW_OP_shl:
2856 return "DW_OP_shl";
2857 case DW_OP_shr:
2858 return "DW_OP_shr";
2859 case DW_OP_shra:
2860 return "DW_OP_shra";
2861 case DW_OP_xor:
2862 return "DW_OP_xor";
2863 case DW_OP_bra:
2864 return "DW_OP_bra";
2865 case DW_OP_eq:
2866 return "DW_OP_eq";
2867 case DW_OP_ge:
2868 return "DW_OP_ge";
2869 case DW_OP_gt:
2870 return "DW_OP_gt";
2871 case DW_OP_le:
2872 return "DW_OP_le";
2873 case DW_OP_lt:
2874 return "DW_OP_lt";
2875 case DW_OP_ne:
2876 return "DW_OP_ne";
2877 case DW_OP_skip:
2878 return "DW_OP_skip";
2879 case DW_OP_lit0:
2880 return "DW_OP_lit0";
2881 case DW_OP_lit1:
2882 return "DW_OP_lit1";
2883 case DW_OP_lit2:
2884 return "DW_OP_lit2";
2885 case DW_OP_lit3:
2886 return "DW_OP_lit3";
2887 case DW_OP_lit4:
2888 return "DW_OP_lit4";
2889 case DW_OP_lit5:
2890 return "DW_OP_lit5";
2891 case DW_OP_lit6:
2892 return "DW_OP_lit6";
2893 case DW_OP_lit7:
2894 return "DW_OP_lit7";
2895 case DW_OP_lit8:
2896 return "DW_OP_lit8";
2897 case DW_OP_lit9:
2898 return "DW_OP_lit9";
2899 case DW_OP_lit10:
2900 return "DW_OP_lit10";
2901 case DW_OP_lit11:
2902 return "DW_OP_lit11";
2903 case DW_OP_lit12:
2904 return "DW_OP_lit12";
2905 case DW_OP_lit13:
2906 return "DW_OP_lit13";
2907 case DW_OP_lit14:
2908 return "DW_OP_lit14";
2909 case DW_OP_lit15:
2910 return "DW_OP_lit15";
2911 case DW_OP_lit16:
2912 return "DW_OP_lit16";
2913 case DW_OP_lit17:
2914 return "DW_OP_lit17";
2915 case DW_OP_lit18:
2916 return "DW_OP_lit18";
2917 case DW_OP_lit19:
2918 return "DW_OP_lit19";
2919 case DW_OP_lit20:
2920 return "DW_OP_lit20";
2921 case DW_OP_lit21:
2922 return "DW_OP_lit21";
2923 case DW_OP_lit22:
2924 return "DW_OP_lit22";
2925 case DW_OP_lit23:
2926 return "DW_OP_lit23";
2927 case DW_OP_lit24:
2928 return "DW_OP_lit24";
2929 case DW_OP_lit25:
2930 return "DW_OP_lit25";
2931 case DW_OP_lit26:
2932 return "DW_OP_lit26";
2933 case DW_OP_lit27:
2934 return "DW_OP_lit27";
2935 case DW_OP_lit28:
2936 return "DW_OP_lit28";
2937 case DW_OP_lit29:
2938 return "DW_OP_lit29";
2939 case DW_OP_lit30:
2940 return "DW_OP_lit30";
2941 case DW_OP_lit31:
2942 return "DW_OP_lit31";
2943 case DW_OP_reg0:
2944 return "DW_OP_reg0";
2945 case DW_OP_reg1:
2946 return "DW_OP_reg1";
2947 case DW_OP_reg2:
2948 return "DW_OP_reg2";
2949 case DW_OP_reg3:
2950 return "DW_OP_reg3";
2951 case DW_OP_reg4:
2952 return "DW_OP_reg4";
2953 case DW_OP_reg5:
2954 return "DW_OP_reg5";
2955 case DW_OP_reg6:
2956 return "DW_OP_reg6";
2957 case DW_OP_reg7:
2958 return "DW_OP_reg7";
2959 case DW_OP_reg8:
2960 return "DW_OP_reg8";
2961 case DW_OP_reg9:
2962 return "DW_OP_reg9";
2963 case DW_OP_reg10:
2964 return "DW_OP_reg10";
2965 case DW_OP_reg11:
2966 return "DW_OP_reg11";
2967 case DW_OP_reg12:
2968 return "DW_OP_reg12";
2969 case DW_OP_reg13:
2970 return "DW_OP_reg13";
2971 case DW_OP_reg14:
2972 return "DW_OP_reg14";
2973 case DW_OP_reg15:
2974 return "DW_OP_reg15";
2975 case DW_OP_reg16:
2976 return "DW_OP_reg16";
2977 case DW_OP_reg17:
2978 return "DW_OP_reg17";
2979 case DW_OP_reg18:
2980 return "DW_OP_reg18";
2981 case DW_OP_reg19:
2982 return "DW_OP_reg19";
2983 case DW_OP_reg20:
2984 return "DW_OP_reg20";
2985 case DW_OP_reg21:
2986 return "DW_OP_reg21";
2987 case DW_OP_reg22:
2988 return "DW_OP_reg22";
2989 case DW_OP_reg23:
2990 return "DW_OP_reg23";
2991 case DW_OP_reg24:
2992 return "DW_OP_reg24";
2993 case DW_OP_reg25:
2994 return "DW_OP_reg25";
2995 case DW_OP_reg26:
2996 return "DW_OP_reg26";
2997 case DW_OP_reg27:
2998 return "DW_OP_reg27";
2999 case DW_OP_reg28:
3000 return "DW_OP_reg28";
3001 case DW_OP_reg29:
3002 return "DW_OP_reg29";
3003 case DW_OP_reg30:
3004 return "DW_OP_reg30";
3005 case DW_OP_reg31:
3006 return "DW_OP_reg31";
3007 case DW_OP_breg0:
3008 return "DW_OP_breg0";
3009 case DW_OP_breg1:
3010 return "DW_OP_breg1";
3011 case DW_OP_breg2:
3012 return "DW_OP_breg2";
3013 case DW_OP_breg3:
3014 return "DW_OP_breg3";
3015 case DW_OP_breg4:
3016 return "DW_OP_breg4";
3017 case DW_OP_breg5:
3018 return "DW_OP_breg5";
3019 case DW_OP_breg6:
3020 return "DW_OP_breg6";
3021 case DW_OP_breg7:
3022 return "DW_OP_breg7";
3023 case DW_OP_breg8:
3024 return "DW_OP_breg8";
3025 case DW_OP_breg9:
3026 return "DW_OP_breg9";
3027 case DW_OP_breg10:
3028 return "DW_OP_breg10";
3029 case DW_OP_breg11:
3030 return "DW_OP_breg11";
3031 case DW_OP_breg12:
3032 return "DW_OP_breg12";
3033 case DW_OP_breg13:
3034 return "DW_OP_breg13";
3035 case DW_OP_breg14:
3036 return "DW_OP_breg14";
3037 case DW_OP_breg15:
3038 return "DW_OP_breg15";
3039 case DW_OP_breg16:
3040 return "DW_OP_breg16";
3041 case DW_OP_breg17:
3042 return "DW_OP_breg17";
3043 case DW_OP_breg18:
3044 return "DW_OP_breg18";
3045 case DW_OP_breg19:
3046 return "DW_OP_breg19";
3047 case DW_OP_breg20:
3048 return "DW_OP_breg20";
3049 case DW_OP_breg21:
3050 return "DW_OP_breg21";
3051 case DW_OP_breg22:
3052 return "DW_OP_breg22";
3053 case DW_OP_breg23:
3054 return "DW_OP_breg23";
3055 case DW_OP_breg24:
3056 return "DW_OP_breg24";
3057 case DW_OP_breg25:
3058 return "DW_OP_breg25";
3059 case DW_OP_breg26:
3060 return "DW_OP_breg26";
3061 case DW_OP_breg27:
3062 return "DW_OP_breg27";
3063 case DW_OP_breg28:
3064 return "DW_OP_breg28";
3065 case DW_OP_breg29:
3066 return "DW_OP_breg29";
3067 case DW_OP_breg30:
3068 return "DW_OP_breg30";
3069 case DW_OP_breg31:
3070 return "DW_OP_breg31";
3071 case DW_OP_regx:
3072 return "DW_OP_regx";
3073 case DW_OP_fbreg:
3074 return "DW_OP_fbreg";
3075 case DW_OP_bregx:
3076 return "DW_OP_bregx";
3077 case DW_OP_piece:
3078 return "DW_OP_piece";
3079 case DW_OP_deref_size:
3080 return "DW_OP_deref_size";
3081 case DW_OP_xderef_size:
3082 return "DW_OP_xderef_size";
3083 case DW_OP_nop:
3084 return "DW_OP_nop";
3085 case DW_OP_push_object_address:
3086 return "DW_OP_push_object_address";
3087 case DW_OP_call2:
3088 return "DW_OP_call2";
3089 case DW_OP_call4:
3090 return "DW_OP_call4";
3091 case DW_OP_call_ref:
3092 return "DW_OP_call_ref";
3093 case DW_OP_GNU_push_tls_address:
3094 return "DW_OP_GNU_push_tls_address";
3095 default:
3096 return "OP_<unknown>";
3100 /* Return a pointer to a newly allocated location description. Location
3101 descriptions are simple expression terms that can be strung
3102 together to form more complicated location (address) descriptions. */
3104 static inline dw_loc_descr_ref
3105 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
3106 unsigned HOST_WIDE_INT oprnd2)
3108 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
3110 descr->dw_loc_opc = op;
3111 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
3112 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
3113 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
3114 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
3116 return descr;
3119 /* Add a location description term to a location description expression. */
3121 static inline void
3122 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
3124 dw_loc_descr_ref *d;
3126 /* Find the end of the chain. */
3127 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3130 *d = descr;
3133 /* Return the size of a location descriptor. */
3135 static unsigned long
3136 size_of_loc_descr (dw_loc_descr_ref loc)
3138 unsigned long size = 1;
3140 switch (loc->dw_loc_opc)
3142 case DW_OP_addr:
3143 case INTERNAL_DW_OP_tls_addr:
3144 size += DWARF2_ADDR_SIZE;
3145 break;
3146 case DW_OP_const1u:
3147 case DW_OP_const1s:
3148 size += 1;
3149 break;
3150 case DW_OP_const2u:
3151 case DW_OP_const2s:
3152 size += 2;
3153 break;
3154 case DW_OP_const4u:
3155 case DW_OP_const4s:
3156 size += 4;
3157 break;
3158 case DW_OP_const8u:
3159 case DW_OP_const8s:
3160 size += 8;
3161 break;
3162 case DW_OP_constu:
3163 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3164 break;
3165 case DW_OP_consts:
3166 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3167 break;
3168 case DW_OP_pick:
3169 size += 1;
3170 break;
3171 case DW_OP_plus_uconst:
3172 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3173 break;
3174 case DW_OP_skip:
3175 case DW_OP_bra:
3176 size += 2;
3177 break;
3178 case DW_OP_breg0:
3179 case DW_OP_breg1:
3180 case DW_OP_breg2:
3181 case DW_OP_breg3:
3182 case DW_OP_breg4:
3183 case DW_OP_breg5:
3184 case DW_OP_breg6:
3185 case DW_OP_breg7:
3186 case DW_OP_breg8:
3187 case DW_OP_breg9:
3188 case DW_OP_breg10:
3189 case DW_OP_breg11:
3190 case DW_OP_breg12:
3191 case DW_OP_breg13:
3192 case DW_OP_breg14:
3193 case DW_OP_breg15:
3194 case DW_OP_breg16:
3195 case DW_OP_breg17:
3196 case DW_OP_breg18:
3197 case DW_OP_breg19:
3198 case DW_OP_breg20:
3199 case DW_OP_breg21:
3200 case DW_OP_breg22:
3201 case DW_OP_breg23:
3202 case DW_OP_breg24:
3203 case DW_OP_breg25:
3204 case DW_OP_breg26:
3205 case DW_OP_breg27:
3206 case DW_OP_breg28:
3207 case DW_OP_breg29:
3208 case DW_OP_breg30:
3209 case DW_OP_breg31:
3210 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3211 break;
3212 case DW_OP_regx:
3213 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3214 break;
3215 case DW_OP_fbreg:
3216 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3217 break;
3218 case DW_OP_bregx:
3219 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3220 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3221 break;
3222 case DW_OP_piece:
3223 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3224 break;
3225 case DW_OP_deref_size:
3226 case DW_OP_xderef_size:
3227 size += 1;
3228 break;
3229 case DW_OP_call2:
3230 size += 2;
3231 break;
3232 case DW_OP_call4:
3233 size += 4;
3234 break;
3235 case DW_OP_call_ref:
3236 size += DWARF2_ADDR_SIZE;
3237 break;
3238 default:
3239 break;
3242 return size;
3245 /* Return the size of a series of location descriptors. */
3247 static unsigned long
3248 size_of_locs (dw_loc_descr_ref loc)
3250 dw_loc_descr_ref l;
3251 unsigned long size;
3253 /* If there are no skip or bra opcodes, don't fill in the dw_loc_addr
3254 field, to avoid writing to a PCH file. */
3255 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3257 if (l->dw_loc_opc == DW_OP_skip || l->dw_loc_opc == DW_OP_bra)
3258 break;
3259 size += size_of_loc_descr (l);
3261 if (! l)
3262 return size;
3264 for (size = 0, l = loc; l != NULL; l = l->dw_loc_next)
3266 l->dw_loc_addr = size;
3267 size += size_of_loc_descr (l);
3270 return size;
3273 /* Output location description stack opcode's operands (if any). */
3275 static void
3276 output_loc_operands (dw_loc_descr_ref loc)
3278 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3279 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3281 switch (loc->dw_loc_opc)
3283 #ifdef DWARF2_DEBUGGING_INFO
3284 case DW_OP_addr:
3285 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3286 break;
3287 case DW_OP_const2u:
3288 case DW_OP_const2s:
3289 dw2_asm_output_data (2, val1->v.val_int, NULL);
3290 break;
3291 case DW_OP_const4u:
3292 case DW_OP_const4s:
3293 dw2_asm_output_data (4, val1->v.val_int, NULL);
3294 break;
3295 case DW_OP_const8u:
3296 case DW_OP_const8s:
3297 gcc_assert (HOST_BITS_PER_LONG >= 64);
3298 dw2_asm_output_data (8, val1->v.val_int, NULL);
3299 break;
3300 case DW_OP_skip:
3301 case DW_OP_bra:
3303 int offset;
3305 gcc_assert (val1->val_class == dw_val_class_loc);
3306 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3308 dw2_asm_output_data (2, offset, NULL);
3310 break;
3311 #else
3312 case DW_OP_addr:
3313 case DW_OP_const2u:
3314 case DW_OP_const2s:
3315 case DW_OP_const4u:
3316 case DW_OP_const4s:
3317 case DW_OP_const8u:
3318 case DW_OP_const8s:
3319 case DW_OP_skip:
3320 case DW_OP_bra:
3321 /* We currently don't make any attempt to make sure these are
3322 aligned properly like we do for the main unwind info, so
3323 don't support emitting things larger than a byte if we're
3324 only doing unwinding. */
3325 gcc_unreachable ();
3326 #endif
3327 case DW_OP_const1u:
3328 case DW_OP_const1s:
3329 dw2_asm_output_data (1, val1->v.val_int, NULL);
3330 break;
3331 case DW_OP_constu:
3332 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3333 break;
3334 case DW_OP_consts:
3335 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3336 break;
3337 case DW_OP_pick:
3338 dw2_asm_output_data (1, val1->v.val_int, NULL);
3339 break;
3340 case DW_OP_plus_uconst:
3341 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3342 break;
3343 case DW_OP_breg0:
3344 case DW_OP_breg1:
3345 case DW_OP_breg2:
3346 case DW_OP_breg3:
3347 case DW_OP_breg4:
3348 case DW_OP_breg5:
3349 case DW_OP_breg6:
3350 case DW_OP_breg7:
3351 case DW_OP_breg8:
3352 case DW_OP_breg9:
3353 case DW_OP_breg10:
3354 case DW_OP_breg11:
3355 case DW_OP_breg12:
3356 case DW_OP_breg13:
3357 case DW_OP_breg14:
3358 case DW_OP_breg15:
3359 case DW_OP_breg16:
3360 case DW_OP_breg17:
3361 case DW_OP_breg18:
3362 case DW_OP_breg19:
3363 case DW_OP_breg20:
3364 case DW_OP_breg21:
3365 case DW_OP_breg22:
3366 case DW_OP_breg23:
3367 case DW_OP_breg24:
3368 case DW_OP_breg25:
3369 case DW_OP_breg26:
3370 case DW_OP_breg27:
3371 case DW_OP_breg28:
3372 case DW_OP_breg29:
3373 case DW_OP_breg30:
3374 case DW_OP_breg31:
3375 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3376 break;
3377 case DW_OP_regx:
3378 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3379 break;
3380 case DW_OP_fbreg:
3381 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3382 break;
3383 case DW_OP_bregx:
3384 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3385 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3386 break;
3387 case DW_OP_piece:
3388 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3389 break;
3390 case DW_OP_deref_size:
3391 case DW_OP_xderef_size:
3392 dw2_asm_output_data (1, val1->v.val_int, NULL);
3393 break;
3395 case INTERNAL_DW_OP_tls_addr:
3396 if (targetm.asm_out.output_dwarf_dtprel)
3398 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3399 DWARF2_ADDR_SIZE,
3400 val1->v.val_addr);
3401 fputc ('\n', asm_out_file);
3403 else
3404 gcc_unreachable ();
3405 break;
3407 default:
3408 /* Other codes have no operands. */
3409 break;
3413 /* Output a sequence of location operations. */
3415 static void
3416 output_loc_sequence (dw_loc_descr_ref loc)
3418 for (; loc != NULL; loc = loc->dw_loc_next)
3420 /* Output the opcode. */
3421 dw2_asm_output_data (1, loc->dw_loc_opc,
3422 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3424 /* Output the operand(s) (if any). */
3425 output_loc_operands (loc);
3429 /* This routine will generate the correct assembly data for a location
3430 description based on a cfi entry with a complex address. */
3432 static void
3433 output_cfa_loc (dw_cfi_ref cfi)
3435 dw_loc_descr_ref loc;
3436 unsigned long size;
3438 /* Output the size of the block. */
3439 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3440 size = size_of_locs (loc);
3441 dw2_asm_output_data_uleb128 (size, NULL);
3443 /* Now output the operations themselves. */
3444 output_loc_sequence (loc);
3447 /* This function builds a dwarf location descriptor sequence from a
3448 dw_cfa_location, adding the given OFFSET to the result of the
3449 expression. */
3451 static struct dw_loc_descr_struct *
3452 build_cfa_loc (dw_cfa_location *cfa, HOST_WIDE_INT offset)
3454 struct dw_loc_descr_struct *head, *tmp;
3456 offset += cfa->offset;
3458 if (cfa->indirect)
3460 if (cfa->base_offset)
3462 if (cfa->reg <= 31)
3463 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3464 else
3465 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3467 else if (cfa->reg <= 31)
3468 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3469 else
3470 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3472 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3473 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3474 add_loc_descr (&head, tmp);
3475 if (offset != 0)
3477 tmp = new_loc_descr (DW_OP_plus_uconst, offset, 0);
3478 add_loc_descr (&head, tmp);
3481 else
3483 if (offset == 0)
3484 if (cfa->reg <= 31)
3485 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3486 else
3487 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3488 else if (cfa->reg <= 31)
3489 head = new_loc_descr (DW_OP_breg0 + cfa->reg, offset, 0);
3490 else
3491 head = new_loc_descr (DW_OP_bregx, cfa->reg, offset);
3494 return head;
3497 /* This function fills in aa dw_cfa_location structure from a dwarf location
3498 descriptor sequence. */
3500 static void
3501 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3503 struct dw_loc_descr_struct *ptr;
3504 cfa->offset = 0;
3505 cfa->base_offset = 0;
3506 cfa->indirect = 0;
3507 cfa->reg = -1;
3509 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3511 enum dwarf_location_atom op = ptr->dw_loc_opc;
3513 switch (op)
3515 case DW_OP_reg0:
3516 case DW_OP_reg1:
3517 case DW_OP_reg2:
3518 case DW_OP_reg3:
3519 case DW_OP_reg4:
3520 case DW_OP_reg5:
3521 case DW_OP_reg6:
3522 case DW_OP_reg7:
3523 case DW_OP_reg8:
3524 case DW_OP_reg9:
3525 case DW_OP_reg10:
3526 case DW_OP_reg11:
3527 case DW_OP_reg12:
3528 case DW_OP_reg13:
3529 case DW_OP_reg14:
3530 case DW_OP_reg15:
3531 case DW_OP_reg16:
3532 case DW_OP_reg17:
3533 case DW_OP_reg18:
3534 case DW_OP_reg19:
3535 case DW_OP_reg20:
3536 case DW_OP_reg21:
3537 case DW_OP_reg22:
3538 case DW_OP_reg23:
3539 case DW_OP_reg24:
3540 case DW_OP_reg25:
3541 case DW_OP_reg26:
3542 case DW_OP_reg27:
3543 case DW_OP_reg28:
3544 case DW_OP_reg29:
3545 case DW_OP_reg30:
3546 case DW_OP_reg31:
3547 cfa->reg = op - DW_OP_reg0;
3548 break;
3549 case DW_OP_regx:
3550 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3551 break;
3552 case DW_OP_breg0:
3553 case DW_OP_breg1:
3554 case DW_OP_breg2:
3555 case DW_OP_breg3:
3556 case DW_OP_breg4:
3557 case DW_OP_breg5:
3558 case DW_OP_breg6:
3559 case DW_OP_breg7:
3560 case DW_OP_breg8:
3561 case DW_OP_breg9:
3562 case DW_OP_breg10:
3563 case DW_OP_breg11:
3564 case DW_OP_breg12:
3565 case DW_OP_breg13:
3566 case DW_OP_breg14:
3567 case DW_OP_breg15:
3568 case DW_OP_breg16:
3569 case DW_OP_breg17:
3570 case DW_OP_breg18:
3571 case DW_OP_breg19:
3572 case DW_OP_breg20:
3573 case DW_OP_breg21:
3574 case DW_OP_breg22:
3575 case DW_OP_breg23:
3576 case DW_OP_breg24:
3577 case DW_OP_breg25:
3578 case DW_OP_breg26:
3579 case DW_OP_breg27:
3580 case DW_OP_breg28:
3581 case DW_OP_breg29:
3582 case DW_OP_breg30:
3583 case DW_OP_breg31:
3584 cfa->reg = op - DW_OP_breg0;
3585 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3586 break;
3587 case DW_OP_bregx:
3588 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3589 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3590 break;
3591 case DW_OP_deref:
3592 cfa->indirect = 1;
3593 break;
3594 case DW_OP_plus_uconst:
3595 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3596 break;
3597 default:
3598 internal_error ("DW_LOC_OP %s not implemented",
3599 dwarf_stack_op_name (ptr->dw_loc_opc));
3603 #endif /* .debug_frame support */
3605 /* And now, the support for symbolic debugging information. */
3606 #ifdef DWARF2_DEBUGGING_INFO
3608 /* .debug_str support. */
3609 static int output_indirect_string (void **, void *);
3611 static void dwarf2out_init (const char *);
3612 static void dwarf2out_finish (const char *);
3613 static void dwarf2out_define (unsigned int, const char *);
3614 static void dwarf2out_undef (unsigned int, const char *);
3615 static void dwarf2out_start_source_file (unsigned, const char *);
3616 static void dwarf2out_end_source_file (unsigned);
3617 static void dwarf2out_begin_block (unsigned, unsigned);
3618 static void dwarf2out_end_block (unsigned, unsigned);
3619 static bool dwarf2out_ignore_block (tree);
3620 static void dwarf2out_global_decl (tree);
3621 static void dwarf2out_type_decl (tree, int);
3622 static void dwarf2out_imported_module_or_decl (tree, tree);
3623 static void dwarf2out_abstract_function (tree);
3624 static void dwarf2out_var_location (rtx);
3625 static void dwarf2out_begin_function (tree);
3626 static void dwarf2out_switch_text_section (void);
3628 /* The debug hooks structure. */
3630 const struct gcc_debug_hooks dwarf2_debug_hooks =
3632 dwarf2out_init,
3633 dwarf2out_finish,
3634 dwarf2out_define,
3635 dwarf2out_undef,
3636 dwarf2out_start_source_file,
3637 dwarf2out_end_source_file,
3638 dwarf2out_begin_block,
3639 dwarf2out_end_block,
3640 dwarf2out_ignore_block,
3641 dwarf2out_source_line,
3642 dwarf2out_begin_prologue,
3643 debug_nothing_int_charstar, /* end_prologue */
3644 dwarf2out_end_epilogue,
3645 dwarf2out_begin_function,
3646 debug_nothing_int, /* end_function */
3647 dwarf2out_decl, /* function_decl */
3648 dwarf2out_global_decl,
3649 dwarf2out_type_decl, /* type_decl */
3650 dwarf2out_imported_module_or_decl,
3651 debug_nothing_tree, /* deferred_inline_function */
3652 /* The DWARF 2 backend tries to reduce debugging bloat by not
3653 emitting the abstract description of inline functions until
3654 something tries to reference them. */
3655 dwarf2out_abstract_function, /* outlining_inline_function */
3656 debug_nothing_rtx, /* label */
3657 debug_nothing_int, /* handle_pch */
3658 dwarf2out_var_location,
3659 dwarf2out_switch_text_section,
3660 1 /* start_end_main_source_file */
3662 #endif
3664 /* NOTE: In the comments in this file, many references are made to
3665 "Debugging Information Entries". This term is abbreviated as `DIE'
3666 throughout the remainder of this file. */
3668 /* An internal representation of the DWARF output is built, and then
3669 walked to generate the DWARF debugging info. The walk of the internal
3670 representation is done after the entire program has been compiled.
3671 The types below are used to describe the internal representation. */
3673 /* Various DIE's use offsets relative to the beginning of the
3674 .debug_info section to refer to each other. */
3676 typedef long int dw_offset;
3678 /* Define typedefs here to avoid circular dependencies. */
3680 typedef struct dw_attr_struct *dw_attr_ref;
3681 typedef struct dw_line_info_struct *dw_line_info_ref;
3682 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3683 typedef struct pubname_struct *pubname_ref;
3684 typedef struct dw_ranges_struct *dw_ranges_ref;
3686 /* Each entry in the line_info_table maintains the file and
3687 line number associated with the label generated for that
3688 entry. The label gives the PC value associated with
3689 the line number entry. */
3691 typedef struct dw_line_info_struct GTY(())
3693 unsigned long dw_file_num;
3694 unsigned long dw_line_num;
3696 dw_line_info_entry;
3698 /* Line information for functions in separate sections; each one gets its
3699 own sequence. */
3700 typedef struct dw_separate_line_info_struct GTY(())
3702 unsigned long dw_file_num;
3703 unsigned long dw_line_num;
3704 unsigned long function;
3706 dw_separate_line_info_entry;
3708 /* Each DIE attribute has a field specifying the attribute kind,
3709 a link to the next attribute in the chain, and an attribute value.
3710 Attributes are typically linked below the DIE they modify. */
3712 typedef struct dw_attr_struct GTY(())
3714 enum dwarf_attribute dw_attr;
3715 dw_val_node dw_attr_val;
3717 dw_attr_node;
3719 DEF_VEC_O(dw_attr_node);
3720 DEF_VEC_ALLOC_O(dw_attr_node,gc);
3722 /* The Debugging Information Entry (DIE) structure. DIEs form a tree.
3723 The children of each node form a circular list linked by
3724 die_sib. die_child points to the node *before* the "first" child node. */
3726 typedef struct die_struct GTY(())
3728 enum dwarf_tag die_tag;
3729 char *die_symbol;
3730 VEC(dw_attr_node,gc) * die_attr;
3731 dw_die_ref die_parent;
3732 dw_die_ref die_child;
3733 dw_die_ref die_sib;
3734 dw_die_ref die_definition; /* ref from a specification to its definition */
3735 dw_offset die_offset;
3736 unsigned long die_abbrev;
3737 int die_mark;
3738 /* Die is used and must not be pruned as unused. */
3739 int die_perennial_p;
3740 unsigned int decl_id;
3742 die_node;
3744 /* Evaluate 'expr' while 'c' is set to each child of DIE in order. */
3745 #define FOR_EACH_CHILD(die, c, expr) do { \
3746 c = die->die_child; \
3747 if (c) do { \
3748 c = c->die_sib; \
3749 expr; \
3750 } while (c != die->die_child); \
3751 } while (0)
3753 /* The pubname structure */
3755 typedef struct pubname_struct GTY(())
3757 dw_die_ref die;
3758 char *name;
3760 pubname_entry;
3762 struct dw_ranges_struct GTY(())
3764 int block_num;
3767 /* The limbo die list structure. */
3768 typedef struct limbo_die_struct GTY(())
3770 dw_die_ref die;
3771 tree created_for;
3772 struct limbo_die_struct *next;
3774 limbo_die_node;
3776 /* How to start an assembler comment. */
3777 #ifndef ASM_COMMENT_START
3778 #define ASM_COMMENT_START ";#"
3779 #endif
3781 /* Define a macro which returns nonzero for a TYPE_DECL which was
3782 implicitly generated for a tagged type.
3784 Note that unlike the gcc front end (which generates a NULL named
3785 TYPE_DECL node for each complete tagged type, each array type, and
3786 each function type node created) the g++ front end generates a
3787 _named_ TYPE_DECL node for each tagged type node created.
3788 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3789 generate a DW_TAG_typedef DIE for them. */
3791 #define TYPE_DECL_IS_STUB(decl) \
3792 (DECL_NAME (decl) == NULL_TREE \
3793 || (DECL_ARTIFICIAL (decl) \
3794 && is_tagged_type (TREE_TYPE (decl)) \
3795 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3796 /* This is necessary for stub decls that \
3797 appear in nested inline functions. */ \
3798 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3799 && (decl_ultimate_origin (decl) \
3800 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3802 /* Information concerning the compilation unit's programming
3803 language, and compiler version. */
3805 /* Fixed size portion of the DWARF compilation unit header. */
3806 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3807 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3809 /* Fixed size portion of public names info. */
3810 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3812 /* Fixed size portion of the address range info. */
3813 #define DWARF_ARANGES_HEADER_SIZE \
3814 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3815 DWARF2_ADDR_SIZE * 2) \
3816 - DWARF_INITIAL_LENGTH_SIZE)
3818 /* Size of padding portion in the address range info. It must be
3819 aligned to twice the pointer size. */
3820 #define DWARF_ARANGES_PAD_SIZE \
3821 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3822 DWARF2_ADDR_SIZE * 2) \
3823 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3825 /* Use assembler line directives if available. */
3826 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3827 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3828 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3829 #else
3830 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3831 #endif
3832 #endif
3834 /* Minimum line offset in a special line info. opcode.
3835 This value was chosen to give a reasonable range of values. */
3836 #define DWARF_LINE_BASE -10
3838 /* First special line opcode - leave room for the standard opcodes. */
3839 #define DWARF_LINE_OPCODE_BASE 10
3841 /* Range of line offsets in a special line info. opcode. */
3842 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3844 /* Flag that indicates the initial value of the is_stmt_start flag.
3845 In the present implementation, we do not mark any lines as
3846 the beginning of a source statement, because that information
3847 is not made available by the GCC front-end. */
3848 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3850 #ifdef DWARF2_DEBUGGING_INFO
3851 /* This location is used by calc_die_sizes() to keep track
3852 the offset of each DIE within the .debug_info section. */
3853 static unsigned long next_die_offset;
3854 #endif
3856 /* Record the root of the DIE's built for the current compilation unit. */
3857 static GTY(()) dw_die_ref comp_unit_die;
3859 /* A list of DIEs with a NULL parent waiting to be relocated. */
3860 static GTY(()) limbo_die_node *limbo_die_list;
3862 /* Filenames referenced by this compilation unit. */
3863 static GTY((param_is (struct dwarf_file_data))) htab_t file_table;
3865 /* A hash table of references to DIE's that describe declarations.
3866 The key is a DECL_UID() which is a unique number identifying each decl. */
3867 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3869 /* Node of the variable location list. */
3870 struct var_loc_node GTY ((chain_next ("%h.next")))
3872 rtx GTY (()) var_loc_note;
3873 const char * GTY (()) label;
3874 const char * GTY (()) section_label;
3875 struct var_loc_node * GTY (()) next;
3878 /* Variable location list. */
3879 struct var_loc_list_def GTY (())
3881 struct var_loc_node * GTY (()) first;
3883 /* Do not mark the last element of the chained list because
3884 it is marked through the chain. */
3885 struct var_loc_node * GTY ((skip ("%h"))) last;
3887 /* DECL_UID of the variable decl. */
3888 unsigned int decl_id;
3890 typedef struct var_loc_list_def var_loc_list;
3893 /* Table of decl location linked lists. */
3894 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3896 /* A pointer to the base of a list of references to DIE's that
3897 are uniquely identified by their tag, presence/absence of
3898 children DIE's, and list of attribute/value pairs. */
3899 static GTY((length ("abbrev_die_table_allocated")))
3900 dw_die_ref *abbrev_die_table;
3902 /* Number of elements currently allocated for abbrev_die_table. */
3903 static GTY(()) unsigned abbrev_die_table_allocated;
3905 /* Number of elements in type_die_table currently in use. */
3906 static GTY(()) unsigned abbrev_die_table_in_use;
3908 /* Size (in elements) of increments by which we may expand the
3909 abbrev_die_table. */
3910 #define ABBREV_DIE_TABLE_INCREMENT 256
3912 /* A pointer to the base of a table that contains line information
3913 for each source code line in .text in the compilation unit. */
3914 static GTY((length ("line_info_table_allocated")))
3915 dw_line_info_ref line_info_table;
3917 /* Number of elements currently allocated for line_info_table. */
3918 static GTY(()) unsigned line_info_table_allocated;
3920 /* Number of elements in line_info_table currently in use. */
3921 static GTY(()) unsigned line_info_table_in_use;
3923 /* True if the compilation unit places functions in more than one section. */
3924 static GTY(()) bool have_multiple_function_sections = false;
3926 /* A pointer to the base of a table that contains line information
3927 for each source code line outside of .text in the compilation unit. */
3928 static GTY ((length ("separate_line_info_table_allocated")))
3929 dw_separate_line_info_ref separate_line_info_table;
3931 /* Number of elements currently allocated for separate_line_info_table. */
3932 static GTY(()) unsigned separate_line_info_table_allocated;
3934 /* Number of elements in separate_line_info_table currently in use. */
3935 static GTY(()) unsigned separate_line_info_table_in_use;
3937 /* Size (in elements) of increments by which we may expand the
3938 line_info_table. */
3939 #define LINE_INFO_TABLE_INCREMENT 1024
3941 /* A pointer to the base of a table that contains a list of publicly
3942 accessible names. */
3943 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3945 /* Number of elements currently allocated for pubname_table. */
3946 static GTY(()) unsigned pubname_table_allocated;
3948 /* Number of elements in pubname_table currently in use. */
3949 static GTY(()) unsigned pubname_table_in_use;
3951 /* Size (in elements) of increments by which we may expand the
3952 pubname_table. */
3953 #define PUBNAME_TABLE_INCREMENT 64
3955 /* Array of dies for which we should generate .debug_arange info. */
3956 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3958 /* Number of elements currently allocated for arange_table. */
3959 static GTY(()) unsigned arange_table_allocated;
3961 /* Number of elements in arange_table currently in use. */
3962 static GTY(()) unsigned arange_table_in_use;
3964 /* Size (in elements) of increments by which we may expand the
3965 arange_table. */
3966 #define ARANGE_TABLE_INCREMENT 64
3968 /* Array of dies for which we should generate .debug_ranges info. */
3969 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3971 /* Number of elements currently allocated for ranges_table. */
3972 static GTY(()) unsigned ranges_table_allocated;
3974 /* Number of elements in ranges_table currently in use. */
3975 static GTY(()) unsigned ranges_table_in_use;
3977 /* Size (in elements) of increments by which we may expand the
3978 ranges_table. */
3979 #define RANGES_TABLE_INCREMENT 64
3981 /* Whether we have location lists that need outputting */
3982 static GTY(()) bool have_location_lists;
3984 /* Unique label counter. */
3985 static GTY(()) unsigned int loclabel_num;
3987 #ifdef DWARF2_DEBUGGING_INFO
3988 /* Record whether the function being analyzed contains inlined functions. */
3989 static int current_function_has_inlines;
3990 #endif
3991 #if 0 && defined (MIPS_DEBUGGING_INFO)
3992 static int comp_unit_has_inlines;
3993 #endif
3995 /* The last file entry emitted by maybe_emit_file(). */
3996 static GTY(()) struct dwarf_file_data * last_emitted_file;
3998 /* Number of internal labels generated by gen_internal_sym(). */
3999 static GTY(()) int label_num;
4001 #ifdef DWARF2_DEBUGGING_INFO
4003 /* Offset from the "steady-state frame pointer" to the frame base,
4004 within the current function. */
4005 static HOST_WIDE_INT frame_pointer_fb_offset;
4007 /* Forward declarations for functions defined in this file. */
4009 static int is_pseudo_reg (rtx);
4010 static tree type_main_variant (tree);
4011 static int is_tagged_type (tree);
4012 static const char *dwarf_tag_name (unsigned);
4013 static const char *dwarf_attr_name (unsigned);
4014 static const char *dwarf_form_name (unsigned);
4015 static tree decl_ultimate_origin (tree);
4016 static tree block_ultimate_origin (tree);
4017 static tree decl_class_context (tree);
4018 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
4019 static inline enum dw_val_class AT_class (dw_attr_ref);
4020 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
4021 static inline unsigned AT_flag (dw_attr_ref);
4022 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
4023 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
4024 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
4025 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
4026 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
4027 unsigned long);
4028 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
4029 unsigned int, unsigned char *);
4030 static hashval_t debug_str_do_hash (const void *);
4031 static int debug_str_eq (const void *, const void *);
4032 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
4033 static inline const char *AT_string (dw_attr_ref);
4034 static int AT_string_form (dw_attr_ref);
4035 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
4036 static void add_AT_specification (dw_die_ref, dw_die_ref);
4037 static inline dw_die_ref AT_ref (dw_attr_ref);
4038 static inline int AT_ref_external (dw_attr_ref);
4039 static inline void set_AT_ref_external (dw_attr_ref, int);
4040 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
4041 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
4042 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
4043 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
4044 dw_loc_list_ref);
4045 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
4046 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
4047 static inline rtx AT_addr (dw_attr_ref);
4048 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
4049 static void add_AT_lineptr (dw_die_ref, enum dwarf_attribute, const char *);
4050 static void add_AT_macptr (dw_die_ref, enum dwarf_attribute, const char *);
4051 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
4052 unsigned HOST_WIDE_INT);
4053 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
4054 unsigned long);
4055 static inline const char *AT_lbl (dw_attr_ref);
4056 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
4057 static const char *get_AT_low_pc (dw_die_ref);
4058 static const char *get_AT_hi_pc (dw_die_ref);
4059 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
4060 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
4061 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
4062 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
4063 static bool is_c_family (void);
4064 static bool is_cxx (void);
4065 static bool is_java (void);
4066 static bool is_fortran (void);
4067 static bool is_ada (void);
4068 static void remove_AT (dw_die_ref, enum dwarf_attribute);
4069 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
4070 static void add_child_die (dw_die_ref, dw_die_ref);
4071 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
4072 static dw_die_ref lookup_type_die (tree);
4073 static void equate_type_number_to_die (tree, dw_die_ref);
4074 static hashval_t decl_die_table_hash (const void *);
4075 static int decl_die_table_eq (const void *, const void *);
4076 static dw_die_ref lookup_decl_die (tree);
4077 static hashval_t decl_loc_table_hash (const void *);
4078 static int decl_loc_table_eq (const void *, const void *);
4079 static var_loc_list *lookup_decl_loc (tree);
4080 static void equate_decl_number_to_die (tree, dw_die_ref);
4081 static void add_var_loc_to_decl (tree, struct var_loc_node *);
4082 static void print_spaces (FILE *);
4083 static void print_die (dw_die_ref, FILE *);
4084 static void print_dwarf_line_table (FILE *);
4085 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
4086 static dw_die_ref pop_compile_unit (dw_die_ref);
4087 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
4088 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
4089 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
4090 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
4091 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
4092 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
4093 static int same_die_p (dw_die_ref, dw_die_ref, int *);
4094 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
4095 static void compute_section_prefix (dw_die_ref);
4096 static int is_type_die (dw_die_ref);
4097 static int is_comdat_die (dw_die_ref);
4098 static int is_symbol_die (dw_die_ref);
4099 static void assign_symbol_names (dw_die_ref);
4100 static void break_out_includes (dw_die_ref);
4101 static hashval_t htab_cu_hash (const void *);
4102 static int htab_cu_eq (const void *, const void *);
4103 static void htab_cu_del (void *);
4104 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
4105 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
4106 static void add_sibling_attributes (dw_die_ref);
4107 static void build_abbrev_table (dw_die_ref);
4108 static void output_location_lists (dw_die_ref);
4109 static int constant_size (long unsigned);
4110 static unsigned long size_of_die (dw_die_ref);
4111 static void calc_die_sizes (dw_die_ref);
4112 static void mark_dies (dw_die_ref);
4113 static void unmark_dies (dw_die_ref);
4114 static void unmark_all_dies (dw_die_ref);
4115 static unsigned long size_of_pubnames (void);
4116 static unsigned long size_of_aranges (void);
4117 static enum dwarf_form value_format (dw_attr_ref);
4118 static void output_value_format (dw_attr_ref);
4119 static void output_abbrev_section (void);
4120 static void output_die_symbol (dw_die_ref);
4121 static void output_die (dw_die_ref);
4122 static void output_compilation_unit_header (void);
4123 static void output_comp_unit (dw_die_ref, int);
4124 static const char *dwarf2_name (tree, int);
4125 static void add_pubname (tree, dw_die_ref);
4126 static void output_pubnames (void);
4127 static void add_arange (tree, dw_die_ref);
4128 static void output_aranges (void);
4129 static unsigned int add_ranges (tree);
4130 static void output_ranges (void);
4131 static void output_line_info (void);
4132 static void output_file_names (void);
4133 static dw_die_ref base_type_die (tree);
4134 static tree root_type (tree);
4135 static int is_base_type (tree);
4136 static bool is_subrange_type (tree);
4137 static dw_die_ref subrange_type_die (tree, dw_die_ref);
4138 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
4139 static int type_is_enum (tree);
4140 static unsigned int dbx_reg_number (rtx);
4141 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
4142 static dw_loc_descr_ref reg_loc_descriptor (rtx);
4143 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
4144 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
4145 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
4146 static dw_loc_descr_ref based_loc_descr (rtx, HOST_WIDE_INT);
4147 static int is_based_loc (rtx);
4148 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
4149 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
4150 static dw_loc_descr_ref loc_descriptor (rtx);
4151 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
4152 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
4153 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
4154 static tree field_type (tree);
4155 static unsigned int simple_type_align_in_bits (tree);
4156 static unsigned int simple_decl_align_in_bits (tree);
4157 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
4158 static HOST_WIDE_INT field_byte_offset (tree);
4159 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
4160 dw_loc_descr_ref);
4161 static void add_data_member_location_attribute (dw_die_ref, tree);
4162 static void add_const_value_attribute (dw_die_ref, rtx);
4163 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
4164 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4165 static void insert_float (rtx, unsigned char *);
4166 static rtx rtl_for_decl_location (tree);
4167 static void add_location_or_const_value_attribute (dw_die_ref, tree,
4168 enum dwarf_attribute);
4169 static void tree_add_const_value_attribute (dw_die_ref, tree);
4170 static void add_name_attribute (dw_die_ref, const char *);
4171 static void add_comp_dir_attribute (dw_die_ref);
4172 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4173 static void add_subscript_info (dw_die_ref, tree);
4174 static void add_byte_size_attribute (dw_die_ref, tree);
4175 static void add_bit_offset_attribute (dw_die_ref, tree);
4176 static void add_bit_size_attribute (dw_die_ref, tree);
4177 static void add_prototyped_attribute (dw_die_ref, tree);
4178 static void add_abstract_origin_attribute (dw_die_ref, tree);
4179 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4180 static void add_src_coords_attributes (dw_die_ref, tree);
4181 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4182 static void push_decl_scope (tree);
4183 static void pop_decl_scope (void);
4184 static dw_die_ref scope_die_for (tree, dw_die_ref);
4185 static inline int local_scope_p (dw_die_ref);
4186 static inline int class_or_namespace_scope_p (dw_die_ref);
4187 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4188 static void add_calling_convention_attribute (dw_die_ref, tree);
4189 static const char *type_tag (tree);
4190 static tree member_declared_type (tree);
4191 #if 0
4192 static const char *decl_start_label (tree);
4193 #endif
4194 static void gen_array_type_die (tree, dw_die_ref);
4195 #if 0
4196 static void gen_entry_point_die (tree, dw_die_ref);
4197 #endif
4198 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4199 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4200 static void gen_inlined_union_type_die (tree, dw_die_ref);
4201 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4202 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4203 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4204 static void gen_formal_types_die (tree, dw_die_ref);
4205 static void gen_subprogram_die (tree, dw_die_ref);
4206 static void gen_variable_die (tree, dw_die_ref);
4207 static void gen_label_die (tree, dw_die_ref);
4208 static void gen_lexical_block_die (tree, dw_die_ref, int);
4209 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4210 static void gen_field_die (tree, dw_die_ref);
4211 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4212 static dw_die_ref gen_compile_unit_die (const char *);
4213 static void gen_inheritance_die (tree, tree, dw_die_ref);
4214 static void gen_member_die (tree, dw_die_ref);
4215 static void gen_struct_or_union_type_die (tree, dw_die_ref);
4216 static void gen_subroutine_type_die (tree, dw_die_ref);
4217 static void gen_typedef_die (tree, dw_die_ref);
4218 static void gen_type_die (tree, dw_die_ref);
4219 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4220 static void gen_block_die (tree, dw_die_ref, int);
4221 static void decls_for_scope (tree, dw_die_ref, int);
4222 static int is_redundant_typedef (tree);
4223 static void gen_namespace_die (tree);
4224 static void gen_decl_die (tree, dw_die_ref);
4225 static dw_die_ref force_decl_die (tree);
4226 static dw_die_ref force_type_die (tree);
4227 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4228 static void declare_in_namespace (tree, dw_die_ref);
4229 static struct dwarf_file_data * lookup_filename (const char *);
4230 static void retry_incomplete_types (void);
4231 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4232 static void splice_child_die (dw_die_ref, dw_die_ref);
4233 static int file_info_cmp (const void *, const void *);
4234 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4235 const char *, const char *, unsigned);
4236 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4237 const char *, const char *,
4238 const char *);
4239 static void output_loc_list (dw_loc_list_ref);
4240 static char *gen_internal_sym (const char *);
4242 static void prune_unmark_dies (dw_die_ref);
4243 static void prune_unused_types_mark (dw_die_ref, int);
4244 static void prune_unused_types_walk (dw_die_ref);
4245 static void prune_unused_types_walk_attribs (dw_die_ref);
4246 static void prune_unused_types_prune (dw_die_ref);
4247 static void prune_unused_types (void);
4248 static int maybe_emit_file (struct dwarf_file_data *fd);
4250 /* Section names used to hold DWARF debugging information. */
4251 #ifndef DEBUG_INFO_SECTION
4252 #define DEBUG_INFO_SECTION ".debug_info"
4253 #endif
4254 #ifndef DEBUG_ABBREV_SECTION
4255 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4256 #endif
4257 #ifndef DEBUG_ARANGES_SECTION
4258 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4259 #endif
4260 #ifndef DEBUG_MACINFO_SECTION
4261 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4262 #endif
4263 #ifndef DEBUG_LINE_SECTION
4264 #define DEBUG_LINE_SECTION ".debug_line"
4265 #endif
4266 #ifndef DEBUG_LOC_SECTION
4267 #define DEBUG_LOC_SECTION ".debug_loc"
4268 #endif
4269 #ifndef DEBUG_PUBNAMES_SECTION
4270 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4271 #endif
4272 #ifndef DEBUG_STR_SECTION
4273 #define DEBUG_STR_SECTION ".debug_str"
4274 #endif
4275 #ifndef DEBUG_RANGES_SECTION
4276 #define DEBUG_RANGES_SECTION ".debug_ranges"
4277 #endif
4279 /* Standard ELF section names for compiled code and data. */
4280 #ifndef TEXT_SECTION_NAME
4281 #define TEXT_SECTION_NAME ".text"
4282 #endif
4284 /* Section flags for .debug_str section. */
4285 #define DEBUG_STR_SECTION_FLAGS \
4286 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4287 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4288 : SECTION_DEBUG)
4290 /* Labels we insert at beginning sections we can reference instead of
4291 the section names themselves. */
4293 #ifndef TEXT_SECTION_LABEL
4294 #define TEXT_SECTION_LABEL "Ltext"
4295 #endif
4296 #ifndef COLD_TEXT_SECTION_LABEL
4297 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4298 #endif
4299 #ifndef DEBUG_LINE_SECTION_LABEL
4300 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4301 #endif
4302 #ifndef DEBUG_INFO_SECTION_LABEL
4303 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4304 #endif
4305 #ifndef DEBUG_ABBREV_SECTION_LABEL
4306 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4307 #endif
4308 #ifndef DEBUG_LOC_SECTION_LABEL
4309 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4310 #endif
4311 #ifndef DEBUG_RANGES_SECTION_LABEL
4312 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4313 #endif
4314 #ifndef DEBUG_MACINFO_SECTION_LABEL
4315 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4316 #endif
4318 /* Definitions of defaults for formats and names of various special
4319 (artificial) labels which may be generated within this file (when the -g
4320 options is used and DWARF2_DEBUGGING_INFO is in effect.
4321 If necessary, these may be overridden from within the tm.h file, but
4322 typically, overriding these defaults is unnecessary. */
4324 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4325 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4326 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4327 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4328 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4329 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4330 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4331 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4332 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4333 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4335 #ifndef TEXT_END_LABEL
4336 #define TEXT_END_LABEL "Letext"
4337 #endif
4338 #ifndef COLD_END_LABEL
4339 #define COLD_END_LABEL "Letext_cold"
4340 #endif
4341 #ifndef BLOCK_BEGIN_LABEL
4342 #define BLOCK_BEGIN_LABEL "LBB"
4343 #endif
4344 #ifndef BLOCK_END_LABEL
4345 #define BLOCK_END_LABEL "LBE"
4346 #endif
4347 #ifndef LINE_CODE_LABEL
4348 #define LINE_CODE_LABEL "LM"
4349 #endif
4350 #ifndef SEPARATE_LINE_CODE_LABEL
4351 #define SEPARATE_LINE_CODE_LABEL "LSM"
4352 #endif
4354 /* We allow a language front-end to designate a function that is to be
4355 called to "demangle" any name before it is put into a DIE. */
4357 static const char *(*demangle_name_func) (const char *);
4359 void
4360 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4362 demangle_name_func = func;
4365 /* Test if rtl node points to a pseudo register. */
4367 static inline int
4368 is_pseudo_reg (rtx rtl)
4370 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4371 || (GET_CODE (rtl) == SUBREG
4372 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4375 /* Return a reference to a type, with its const and volatile qualifiers
4376 removed. */
4378 static inline tree
4379 type_main_variant (tree type)
4381 type = TYPE_MAIN_VARIANT (type);
4383 /* ??? There really should be only one main variant among any group of
4384 variants of a given type (and all of the MAIN_VARIANT values for all
4385 members of the group should point to that one type) but sometimes the C
4386 front-end messes this up for array types, so we work around that bug
4387 here. */
4388 if (TREE_CODE (type) == ARRAY_TYPE)
4389 while (type != TYPE_MAIN_VARIANT (type))
4390 type = TYPE_MAIN_VARIANT (type);
4392 return type;
4395 /* Return nonzero if the given type node represents a tagged type. */
4397 static inline int
4398 is_tagged_type (tree type)
4400 enum tree_code code = TREE_CODE (type);
4402 return (code == RECORD_TYPE || code == UNION_TYPE
4403 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4406 /* Convert a DIE tag into its string name. */
4408 static const char *
4409 dwarf_tag_name (unsigned int tag)
4411 switch (tag)
4413 case DW_TAG_padding:
4414 return "DW_TAG_padding";
4415 case DW_TAG_array_type:
4416 return "DW_TAG_array_type";
4417 case DW_TAG_class_type:
4418 return "DW_TAG_class_type";
4419 case DW_TAG_entry_point:
4420 return "DW_TAG_entry_point";
4421 case DW_TAG_enumeration_type:
4422 return "DW_TAG_enumeration_type";
4423 case DW_TAG_formal_parameter:
4424 return "DW_TAG_formal_parameter";
4425 case DW_TAG_imported_declaration:
4426 return "DW_TAG_imported_declaration";
4427 case DW_TAG_label:
4428 return "DW_TAG_label";
4429 case DW_TAG_lexical_block:
4430 return "DW_TAG_lexical_block";
4431 case DW_TAG_member:
4432 return "DW_TAG_member";
4433 case DW_TAG_pointer_type:
4434 return "DW_TAG_pointer_type";
4435 case DW_TAG_reference_type:
4436 return "DW_TAG_reference_type";
4437 case DW_TAG_compile_unit:
4438 return "DW_TAG_compile_unit";
4439 case DW_TAG_string_type:
4440 return "DW_TAG_string_type";
4441 case DW_TAG_structure_type:
4442 return "DW_TAG_structure_type";
4443 case DW_TAG_subroutine_type:
4444 return "DW_TAG_subroutine_type";
4445 case DW_TAG_typedef:
4446 return "DW_TAG_typedef";
4447 case DW_TAG_union_type:
4448 return "DW_TAG_union_type";
4449 case DW_TAG_unspecified_parameters:
4450 return "DW_TAG_unspecified_parameters";
4451 case DW_TAG_variant:
4452 return "DW_TAG_variant";
4453 case DW_TAG_common_block:
4454 return "DW_TAG_common_block";
4455 case DW_TAG_common_inclusion:
4456 return "DW_TAG_common_inclusion";
4457 case DW_TAG_inheritance:
4458 return "DW_TAG_inheritance";
4459 case DW_TAG_inlined_subroutine:
4460 return "DW_TAG_inlined_subroutine";
4461 case DW_TAG_module:
4462 return "DW_TAG_module";
4463 case DW_TAG_ptr_to_member_type:
4464 return "DW_TAG_ptr_to_member_type";
4465 case DW_TAG_set_type:
4466 return "DW_TAG_set_type";
4467 case DW_TAG_subrange_type:
4468 return "DW_TAG_subrange_type";
4469 case DW_TAG_with_stmt:
4470 return "DW_TAG_with_stmt";
4471 case DW_TAG_access_declaration:
4472 return "DW_TAG_access_declaration";
4473 case DW_TAG_base_type:
4474 return "DW_TAG_base_type";
4475 case DW_TAG_catch_block:
4476 return "DW_TAG_catch_block";
4477 case DW_TAG_const_type:
4478 return "DW_TAG_const_type";
4479 case DW_TAG_constant:
4480 return "DW_TAG_constant";
4481 case DW_TAG_enumerator:
4482 return "DW_TAG_enumerator";
4483 case DW_TAG_file_type:
4484 return "DW_TAG_file_type";
4485 case DW_TAG_friend:
4486 return "DW_TAG_friend";
4487 case DW_TAG_namelist:
4488 return "DW_TAG_namelist";
4489 case DW_TAG_namelist_item:
4490 return "DW_TAG_namelist_item";
4491 case DW_TAG_namespace:
4492 return "DW_TAG_namespace";
4493 case DW_TAG_packed_type:
4494 return "DW_TAG_packed_type";
4495 case DW_TAG_subprogram:
4496 return "DW_TAG_subprogram";
4497 case DW_TAG_template_type_param:
4498 return "DW_TAG_template_type_param";
4499 case DW_TAG_template_value_param:
4500 return "DW_TAG_template_value_param";
4501 case DW_TAG_thrown_type:
4502 return "DW_TAG_thrown_type";
4503 case DW_TAG_try_block:
4504 return "DW_TAG_try_block";
4505 case DW_TAG_variant_part:
4506 return "DW_TAG_variant_part";
4507 case DW_TAG_variable:
4508 return "DW_TAG_variable";
4509 case DW_TAG_volatile_type:
4510 return "DW_TAG_volatile_type";
4511 case DW_TAG_imported_module:
4512 return "DW_TAG_imported_module";
4513 case DW_TAG_MIPS_loop:
4514 return "DW_TAG_MIPS_loop";
4515 case DW_TAG_format_label:
4516 return "DW_TAG_format_label";
4517 case DW_TAG_function_template:
4518 return "DW_TAG_function_template";
4519 case DW_TAG_class_template:
4520 return "DW_TAG_class_template";
4521 case DW_TAG_GNU_BINCL:
4522 return "DW_TAG_GNU_BINCL";
4523 case DW_TAG_GNU_EINCL:
4524 return "DW_TAG_GNU_EINCL";
4525 default:
4526 return "DW_TAG_<unknown>";
4530 /* Convert a DWARF attribute code into its string name. */
4532 static const char *
4533 dwarf_attr_name (unsigned int attr)
4535 switch (attr)
4537 case DW_AT_sibling:
4538 return "DW_AT_sibling";
4539 case DW_AT_location:
4540 return "DW_AT_location";
4541 case DW_AT_name:
4542 return "DW_AT_name";
4543 case DW_AT_ordering:
4544 return "DW_AT_ordering";
4545 case DW_AT_subscr_data:
4546 return "DW_AT_subscr_data";
4547 case DW_AT_byte_size:
4548 return "DW_AT_byte_size";
4549 case DW_AT_bit_offset:
4550 return "DW_AT_bit_offset";
4551 case DW_AT_bit_size:
4552 return "DW_AT_bit_size";
4553 case DW_AT_element_list:
4554 return "DW_AT_element_list";
4555 case DW_AT_stmt_list:
4556 return "DW_AT_stmt_list";
4557 case DW_AT_low_pc:
4558 return "DW_AT_low_pc";
4559 case DW_AT_high_pc:
4560 return "DW_AT_high_pc";
4561 case DW_AT_language:
4562 return "DW_AT_language";
4563 case DW_AT_member:
4564 return "DW_AT_member";
4565 case DW_AT_discr:
4566 return "DW_AT_discr";
4567 case DW_AT_discr_value:
4568 return "DW_AT_discr_value";
4569 case DW_AT_visibility:
4570 return "DW_AT_visibility";
4571 case DW_AT_import:
4572 return "DW_AT_import";
4573 case DW_AT_string_length:
4574 return "DW_AT_string_length";
4575 case DW_AT_common_reference:
4576 return "DW_AT_common_reference";
4577 case DW_AT_comp_dir:
4578 return "DW_AT_comp_dir";
4579 case DW_AT_const_value:
4580 return "DW_AT_const_value";
4581 case DW_AT_containing_type:
4582 return "DW_AT_containing_type";
4583 case DW_AT_default_value:
4584 return "DW_AT_default_value";
4585 case DW_AT_inline:
4586 return "DW_AT_inline";
4587 case DW_AT_is_optional:
4588 return "DW_AT_is_optional";
4589 case DW_AT_lower_bound:
4590 return "DW_AT_lower_bound";
4591 case DW_AT_producer:
4592 return "DW_AT_producer";
4593 case DW_AT_prototyped:
4594 return "DW_AT_prototyped";
4595 case DW_AT_return_addr:
4596 return "DW_AT_return_addr";
4597 case DW_AT_start_scope:
4598 return "DW_AT_start_scope";
4599 case DW_AT_stride_size:
4600 return "DW_AT_stride_size";
4601 case DW_AT_upper_bound:
4602 return "DW_AT_upper_bound";
4603 case DW_AT_abstract_origin:
4604 return "DW_AT_abstract_origin";
4605 case DW_AT_accessibility:
4606 return "DW_AT_accessibility";
4607 case DW_AT_address_class:
4608 return "DW_AT_address_class";
4609 case DW_AT_artificial:
4610 return "DW_AT_artificial";
4611 case DW_AT_base_types:
4612 return "DW_AT_base_types";
4613 case DW_AT_calling_convention:
4614 return "DW_AT_calling_convention";
4615 case DW_AT_count:
4616 return "DW_AT_count";
4617 case DW_AT_data_member_location:
4618 return "DW_AT_data_member_location";
4619 case DW_AT_decl_column:
4620 return "DW_AT_decl_column";
4621 case DW_AT_decl_file:
4622 return "DW_AT_decl_file";
4623 case DW_AT_decl_line:
4624 return "DW_AT_decl_line";
4625 case DW_AT_declaration:
4626 return "DW_AT_declaration";
4627 case DW_AT_discr_list:
4628 return "DW_AT_discr_list";
4629 case DW_AT_encoding:
4630 return "DW_AT_encoding";
4631 case DW_AT_external:
4632 return "DW_AT_external";
4633 case DW_AT_frame_base:
4634 return "DW_AT_frame_base";
4635 case DW_AT_friend:
4636 return "DW_AT_friend";
4637 case DW_AT_identifier_case:
4638 return "DW_AT_identifier_case";
4639 case DW_AT_macro_info:
4640 return "DW_AT_macro_info";
4641 case DW_AT_namelist_items:
4642 return "DW_AT_namelist_items";
4643 case DW_AT_priority:
4644 return "DW_AT_priority";
4645 case DW_AT_segment:
4646 return "DW_AT_segment";
4647 case DW_AT_specification:
4648 return "DW_AT_specification";
4649 case DW_AT_static_link:
4650 return "DW_AT_static_link";
4651 case DW_AT_type:
4652 return "DW_AT_type";
4653 case DW_AT_use_location:
4654 return "DW_AT_use_location";
4655 case DW_AT_variable_parameter:
4656 return "DW_AT_variable_parameter";
4657 case DW_AT_virtuality:
4658 return "DW_AT_virtuality";
4659 case DW_AT_vtable_elem_location:
4660 return "DW_AT_vtable_elem_location";
4662 case DW_AT_allocated:
4663 return "DW_AT_allocated";
4664 case DW_AT_associated:
4665 return "DW_AT_associated";
4666 case DW_AT_data_location:
4667 return "DW_AT_data_location";
4668 case DW_AT_stride:
4669 return "DW_AT_stride";
4670 case DW_AT_entry_pc:
4671 return "DW_AT_entry_pc";
4672 case DW_AT_use_UTF8:
4673 return "DW_AT_use_UTF8";
4674 case DW_AT_extension:
4675 return "DW_AT_extension";
4676 case DW_AT_ranges:
4677 return "DW_AT_ranges";
4678 case DW_AT_trampoline:
4679 return "DW_AT_trampoline";
4680 case DW_AT_call_column:
4681 return "DW_AT_call_column";
4682 case DW_AT_call_file:
4683 return "DW_AT_call_file";
4684 case DW_AT_call_line:
4685 return "DW_AT_call_line";
4687 case DW_AT_MIPS_fde:
4688 return "DW_AT_MIPS_fde";
4689 case DW_AT_MIPS_loop_begin:
4690 return "DW_AT_MIPS_loop_begin";
4691 case DW_AT_MIPS_tail_loop_begin:
4692 return "DW_AT_MIPS_tail_loop_begin";
4693 case DW_AT_MIPS_epilog_begin:
4694 return "DW_AT_MIPS_epilog_begin";
4695 case DW_AT_MIPS_loop_unroll_factor:
4696 return "DW_AT_MIPS_loop_unroll_factor";
4697 case DW_AT_MIPS_software_pipeline_depth:
4698 return "DW_AT_MIPS_software_pipeline_depth";
4699 case DW_AT_MIPS_linkage_name:
4700 return "DW_AT_MIPS_linkage_name";
4701 case DW_AT_MIPS_stride:
4702 return "DW_AT_MIPS_stride";
4703 case DW_AT_MIPS_abstract_name:
4704 return "DW_AT_MIPS_abstract_name";
4705 case DW_AT_MIPS_clone_origin:
4706 return "DW_AT_MIPS_clone_origin";
4707 case DW_AT_MIPS_has_inlines:
4708 return "DW_AT_MIPS_has_inlines";
4710 case DW_AT_sf_names:
4711 return "DW_AT_sf_names";
4712 case DW_AT_src_info:
4713 return "DW_AT_src_info";
4714 case DW_AT_mac_info:
4715 return "DW_AT_mac_info";
4716 case DW_AT_src_coords:
4717 return "DW_AT_src_coords";
4718 case DW_AT_body_begin:
4719 return "DW_AT_body_begin";
4720 case DW_AT_body_end:
4721 return "DW_AT_body_end";
4722 case DW_AT_GNU_vector:
4723 return "DW_AT_GNU_vector";
4725 case DW_AT_VMS_rtnbeg_pd_address:
4726 return "DW_AT_VMS_rtnbeg_pd_address";
4728 default:
4729 return "DW_AT_<unknown>";
4733 /* Convert a DWARF value form code into its string name. */
4735 static const char *
4736 dwarf_form_name (unsigned int form)
4738 switch (form)
4740 case DW_FORM_addr:
4741 return "DW_FORM_addr";
4742 case DW_FORM_block2:
4743 return "DW_FORM_block2";
4744 case DW_FORM_block4:
4745 return "DW_FORM_block4";
4746 case DW_FORM_data2:
4747 return "DW_FORM_data2";
4748 case DW_FORM_data4:
4749 return "DW_FORM_data4";
4750 case DW_FORM_data8:
4751 return "DW_FORM_data8";
4752 case DW_FORM_string:
4753 return "DW_FORM_string";
4754 case DW_FORM_block:
4755 return "DW_FORM_block";
4756 case DW_FORM_block1:
4757 return "DW_FORM_block1";
4758 case DW_FORM_data1:
4759 return "DW_FORM_data1";
4760 case DW_FORM_flag:
4761 return "DW_FORM_flag";
4762 case DW_FORM_sdata:
4763 return "DW_FORM_sdata";
4764 case DW_FORM_strp:
4765 return "DW_FORM_strp";
4766 case DW_FORM_udata:
4767 return "DW_FORM_udata";
4768 case DW_FORM_ref_addr:
4769 return "DW_FORM_ref_addr";
4770 case DW_FORM_ref1:
4771 return "DW_FORM_ref1";
4772 case DW_FORM_ref2:
4773 return "DW_FORM_ref2";
4774 case DW_FORM_ref4:
4775 return "DW_FORM_ref4";
4776 case DW_FORM_ref8:
4777 return "DW_FORM_ref8";
4778 case DW_FORM_ref_udata:
4779 return "DW_FORM_ref_udata";
4780 case DW_FORM_indirect:
4781 return "DW_FORM_indirect";
4782 default:
4783 return "DW_FORM_<unknown>";
4787 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4788 instance of an inlined instance of a decl which is local to an inline
4789 function, so we have to trace all of the way back through the origin chain
4790 to find out what sort of node actually served as the original seed for the
4791 given block. */
4793 static tree
4794 decl_ultimate_origin (tree decl)
4796 if (!CODE_CONTAINS_STRUCT (TREE_CODE (decl), TS_DECL_COMMON))
4797 return NULL_TREE;
4799 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4800 nodes in the function to point to themselves; ignore that if
4801 we're trying to output the abstract instance of this function. */
4802 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4803 return NULL_TREE;
4805 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4806 most distant ancestor, this should never happen. */
4807 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4809 return DECL_ABSTRACT_ORIGIN (decl);
4812 /* Determine the "ultimate origin" of a block. The block may be an inlined
4813 instance of an inlined instance of a block which is local to an inline
4814 function, so we have to trace all of the way back through the origin chain
4815 to find out what sort of node actually served as the original seed for the
4816 given block. */
4818 static tree
4819 block_ultimate_origin (tree block)
4821 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4823 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4824 nodes in the function to point to themselves; ignore that if
4825 we're trying to output the abstract instance of this function. */
4826 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4827 return NULL_TREE;
4829 if (immediate_origin == NULL_TREE)
4830 return NULL_TREE;
4831 else
4833 tree ret_val;
4834 tree lookahead = immediate_origin;
4838 ret_val = lookahead;
4839 lookahead = (TREE_CODE (ret_val) == BLOCK
4840 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4842 while (lookahead != NULL && lookahead != ret_val);
4844 /* The block's abstract origin chain may not be the *ultimate* origin of
4845 the block. It could lead to a DECL that has an abstract origin set.
4846 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4847 will give us if it has one). Note that DECL's abstract origins are
4848 supposed to be the most distant ancestor (or so decl_ultimate_origin
4849 claims), so we don't need to loop following the DECL origins. */
4850 if (DECL_P (ret_val))
4851 return DECL_ORIGIN (ret_val);
4853 return ret_val;
4857 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4858 of a virtual function may refer to a base class, so we check the 'this'
4859 parameter. */
4861 static tree
4862 decl_class_context (tree decl)
4864 tree context = NULL_TREE;
4866 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4867 context = DECL_CONTEXT (decl);
4868 else
4869 context = TYPE_MAIN_VARIANT
4870 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4872 if (context && !TYPE_P (context))
4873 context = NULL_TREE;
4875 return context;
4878 /* Add an attribute/value pair to a DIE. */
4880 static inline void
4881 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4883 /* Maybe this should be an assert? */
4884 if (die == NULL)
4885 return;
4887 if (die->die_attr == NULL)
4888 die->die_attr = VEC_alloc (dw_attr_node, gc, 1);
4889 VEC_safe_push (dw_attr_node, gc, die->die_attr, attr);
4892 static inline enum dw_val_class
4893 AT_class (dw_attr_ref a)
4895 return a->dw_attr_val.val_class;
4898 /* Add a flag value attribute to a DIE. */
4900 static inline void
4901 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4903 dw_attr_node attr;
4905 attr.dw_attr = attr_kind;
4906 attr.dw_attr_val.val_class = dw_val_class_flag;
4907 attr.dw_attr_val.v.val_flag = flag;
4908 add_dwarf_attr (die, &attr);
4911 static inline unsigned
4912 AT_flag (dw_attr_ref a)
4914 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4915 return a->dw_attr_val.v.val_flag;
4918 /* Add a signed integer attribute value to a DIE. */
4920 static inline void
4921 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4923 dw_attr_node attr;
4925 attr.dw_attr = attr_kind;
4926 attr.dw_attr_val.val_class = dw_val_class_const;
4927 attr.dw_attr_val.v.val_int = int_val;
4928 add_dwarf_attr (die, &attr);
4931 static inline HOST_WIDE_INT
4932 AT_int (dw_attr_ref a)
4934 gcc_assert (a && AT_class (a) == dw_val_class_const);
4935 return a->dw_attr_val.v.val_int;
4938 /* Add an unsigned integer attribute value to a DIE. */
4940 static inline void
4941 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4942 unsigned HOST_WIDE_INT unsigned_val)
4944 dw_attr_node attr;
4946 attr.dw_attr = attr_kind;
4947 attr.dw_attr_val.val_class = dw_val_class_unsigned_const;
4948 attr.dw_attr_val.v.val_unsigned = unsigned_val;
4949 add_dwarf_attr (die, &attr);
4952 static inline unsigned HOST_WIDE_INT
4953 AT_unsigned (dw_attr_ref a)
4955 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4956 return a->dw_attr_val.v.val_unsigned;
4959 /* Add an unsigned double integer attribute value to a DIE. */
4961 static inline void
4962 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4963 long unsigned int val_hi, long unsigned int val_low)
4965 dw_attr_node attr;
4967 attr.dw_attr = attr_kind;
4968 attr.dw_attr_val.val_class = dw_val_class_long_long;
4969 attr.dw_attr_val.v.val_long_long.hi = val_hi;
4970 attr.dw_attr_val.v.val_long_long.low = val_low;
4971 add_dwarf_attr (die, &attr);
4974 /* Add a floating point attribute value to a DIE and return it. */
4976 static inline void
4977 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4978 unsigned int length, unsigned int elt_size, unsigned char *array)
4980 dw_attr_node attr;
4982 attr.dw_attr = attr_kind;
4983 attr.dw_attr_val.val_class = dw_val_class_vec;
4984 attr.dw_attr_val.v.val_vec.length = length;
4985 attr.dw_attr_val.v.val_vec.elt_size = elt_size;
4986 attr.dw_attr_val.v.val_vec.array = array;
4987 add_dwarf_attr (die, &attr);
4990 /* Hash and equality functions for debug_str_hash. */
4992 static hashval_t
4993 debug_str_do_hash (const void *x)
4995 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4998 static int
4999 debug_str_eq (const void *x1, const void *x2)
5001 return strcmp ((((const struct indirect_string_node *)x1)->str),
5002 (const char *)x2) == 0;
5005 /* Add a string attribute value to a DIE. */
5007 static inline void
5008 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
5010 dw_attr_node attr;
5011 struct indirect_string_node *node;
5012 void **slot;
5014 if (! debug_str_hash)
5015 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
5016 debug_str_eq, NULL);
5018 slot = htab_find_slot_with_hash (debug_str_hash, str,
5019 htab_hash_string (str), INSERT);
5020 if (*slot == NULL)
5021 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
5022 node = (struct indirect_string_node *) *slot;
5023 node->str = ggc_strdup (str);
5024 node->refcount++;
5026 attr.dw_attr = attr_kind;
5027 attr.dw_attr_val.val_class = dw_val_class_str;
5028 attr.dw_attr_val.v.val_str = node;
5029 add_dwarf_attr (die, &attr);
5032 static inline const char *
5033 AT_string (dw_attr_ref a)
5035 gcc_assert (a && AT_class (a) == dw_val_class_str);
5036 return a->dw_attr_val.v.val_str->str;
5039 /* Find out whether a string should be output inline in DIE
5040 or out-of-line in .debug_str section. */
5042 static int
5043 AT_string_form (dw_attr_ref a)
5045 struct indirect_string_node *node;
5046 unsigned int len;
5047 char label[32];
5049 gcc_assert (a && AT_class (a) == dw_val_class_str);
5051 node = a->dw_attr_val.v.val_str;
5052 if (node->form)
5053 return node->form;
5055 len = strlen (node->str) + 1;
5057 /* If the string is shorter or equal to the size of the reference, it is
5058 always better to put it inline. */
5059 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
5060 return node->form = DW_FORM_string;
5062 /* If we cannot expect the linker to merge strings in .debug_str
5063 section, only put it into .debug_str if it is worth even in this
5064 single module. */
5065 if ((debug_str_section->common.flags & SECTION_MERGE) == 0
5066 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
5067 return node->form = DW_FORM_string;
5069 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
5070 ++dw2_string_counter;
5071 node->label = xstrdup (label);
5073 return node->form = DW_FORM_strp;
5076 /* Add a DIE reference attribute value to a DIE. */
5078 static inline void
5079 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
5081 dw_attr_node attr;
5083 attr.dw_attr = attr_kind;
5084 attr.dw_attr_val.val_class = dw_val_class_die_ref;
5085 attr.dw_attr_val.v.val_die_ref.die = targ_die;
5086 attr.dw_attr_val.v.val_die_ref.external = 0;
5087 add_dwarf_attr (die, &attr);
5090 /* Add an AT_specification attribute to a DIE, and also make the back
5091 pointer from the specification to the definition. */
5093 static inline void
5094 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
5096 add_AT_die_ref (die, DW_AT_specification, targ_die);
5097 gcc_assert (!targ_die->die_definition);
5098 targ_die->die_definition = die;
5101 static inline dw_die_ref
5102 AT_ref (dw_attr_ref a)
5104 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5105 return a->dw_attr_val.v.val_die_ref.die;
5108 static inline int
5109 AT_ref_external (dw_attr_ref a)
5111 if (a && AT_class (a) == dw_val_class_die_ref)
5112 return a->dw_attr_val.v.val_die_ref.external;
5114 return 0;
5117 static inline void
5118 set_AT_ref_external (dw_attr_ref a, int i)
5120 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
5121 a->dw_attr_val.v.val_die_ref.external = i;
5124 /* Add an FDE reference attribute value to a DIE. */
5126 static inline void
5127 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
5129 dw_attr_node attr;
5131 attr.dw_attr = attr_kind;
5132 attr.dw_attr_val.val_class = dw_val_class_fde_ref;
5133 attr.dw_attr_val.v.val_fde_index = targ_fde;
5134 add_dwarf_attr (die, &attr);
5137 /* Add a location description attribute value to a DIE. */
5139 static inline void
5140 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
5142 dw_attr_node attr;
5144 attr.dw_attr = attr_kind;
5145 attr.dw_attr_val.val_class = dw_val_class_loc;
5146 attr.dw_attr_val.v.val_loc = loc;
5147 add_dwarf_attr (die, &attr);
5150 static inline dw_loc_descr_ref
5151 AT_loc (dw_attr_ref a)
5153 gcc_assert (a && AT_class (a) == dw_val_class_loc);
5154 return a->dw_attr_val.v.val_loc;
5157 static inline void
5158 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
5160 dw_attr_node attr;
5162 attr.dw_attr = attr_kind;
5163 attr.dw_attr_val.val_class = dw_val_class_loc_list;
5164 attr.dw_attr_val.v.val_loc_list = loc_list;
5165 add_dwarf_attr (die, &attr);
5166 have_location_lists = true;
5169 static inline dw_loc_list_ref
5170 AT_loc_list (dw_attr_ref a)
5172 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5173 return a->dw_attr_val.v.val_loc_list;
5176 /* Add an address constant attribute value to a DIE. */
5178 static inline void
5179 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5181 dw_attr_node attr;
5183 attr.dw_attr = attr_kind;
5184 attr.dw_attr_val.val_class = dw_val_class_addr;
5185 attr.dw_attr_val.v.val_addr = addr;
5186 add_dwarf_attr (die, &attr);
5189 /* Get the RTX from to an address DIE attribute. */
5191 static inline rtx
5192 AT_addr (dw_attr_ref a)
5194 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5195 return a->dw_attr_val.v.val_addr;
5198 /* Add a file attribute value to a DIE. */
5200 static inline void
5201 add_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind,
5202 struct dwarf_file_data *fd)
5204 dw_attr_node attr;
5206 attr.dw_attr = attr_kind;
5207 attr.dw_attr_val.val_class = dw_val_class_file;
5208 attr.dw_attr_val.v.val_file = fd;
5209 add_dwarf_attr (die, &attr);
5212 /* Get the dwarf_file_data from a file DIE attribute. */
5214 static inline struct dwarf_file_data *
5215 AT_file (dw_attr_ref a)
5217 gcc_assert (a && AT_class (a) == dw_val_class_file);
5218 return a->dw_attr_val.v.val_file;
5221 /* Add a label identifier attribute value to a DIE. */
5223 static inline void
5224 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5226 dw_attr_node attr;
5228 attr.dw_attr = attr_kind;
5229 attr.dw_attr_val.val_class = dw_val_class_lbl_id;
5230 attr.dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5231 add_dwarf_attr (die, &attr);
5234 /* Add a section offset attribute value to a DIE, an offset into the
5235 debug_line section. */
5237 static inline void
5238 add_AT_lineptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5239 const char *label)
5241 dw_attr_node attr;
5243 attr.dw_attr = attr_kind;
5244 attr.dw_attr_val.val_class = dw_val_class_lineptr;
5245 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5246 add_dwarf_attr (die, &attr);
5249 /* Add a section offset attribute value to a DIE, an offset into the
5250 debug_macinfo section. */
5252 static inline void
5253 add_AT_macptr (dw_die_ref die, enum dwarf_attribute attr_kind,
5254 const char *label)
5256 dw_attr_node attr;
5258 attr.dw_attr = attr_kind;
5259 attr.dw_attr_val.val_class = dw_val_class_macptr;
5260 attr.dw_attr_val.v.val_lbl_id = xstrdup (label);
5261 add_dwarf_attr (die, &attr);
5264 /* Add an offset attribute value to a DIE. */
5266 static inline void
5267 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5268 unsigned HOST_WIDE_INT offset)
5270 dw_attr_node attr;
5272 attr.dw_attr = attr_kind;
5273 attr.dw_attr_val.val_class = dw_val_class_offset;
5274 attr.dw_attr_val.v.val_offset = offset;
5275 add_dwarf_attr (die, &attr);
5278 /* Add an range_list attribute value to a DIE. */
5280 static void
5281 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5282 long unsigned int offset)
5284 dw_attr_node attr;
5286 attr.dw_attr = attr_kind;
5287 attr.dw_attr_val.val_class = dw_val_class_range_list;
5288 attr.dw_attr_val.v.val_offset = offset;
5289 add_dwarf_attr (die, &attr);
5292 static inline const char *
5293 AT_lbl (dw_attr_ref a)
5295 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5296 || AT_class (a) == dw_val_class_lineptr
5297 || AT_class (a) == dw_val_class_macptr));
5298 return a->dw_attr_val.v.val_lbl_id;
5301 /* Get the attribute of type attr_kind. */
5303 static dw_attr_ref
5304 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5306 dw_attr_ref a;
5307 unsigned ix;
5308 dw_die_ref spec = NULL;
5310 if (! die)
5311 return NULL;
5313 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5314 if (a->dw_attr == attr_kind)
5315 return a;
5316 else if (a->dw_attr == DW_AT_specification
5317 || a->dw_attr == DW_AT_abstract_origin)
5318 spec = AT_ref (a);
5320 if (spec)
5321 return get_AT (spec, attr_kind);
5323 return NULL;
5326 /* Return the "low pc" attribute value, typically associated with a subprogram
5327 DIE. Return null if the "low pc" attribute is either not present, or if it
5328 cannot be represented as an assembler label identifier. */
5330 static inline const char *
5331 get_AT_low_pc (dw_die_ref die)
5333 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5335 return a ? AT_lbl (a) : NULL;
5338 /* Return the "high pc" attribute value, typically associated with a subprogram
5339 DIE. Return null if the "high pc" attribute is either not present, or if it
5340 cannot be represented as an assembler label identifier. */
5342 static inline const char *
5343 get_AT_hi_pc (dw_die_ref die)
5345 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5347 return a ? AT_lbl (a) : NULL;
5350 /* Return the value of the string attribute designated by ATTR_KIND, or
5351 NULL if it is not present. */
5353 static inline const char *
5354 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5356 dw_attr_ref a = get_AT (die, attr_kind);
5358 return a ? AT_string (a) : NULL;
5361 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5362 if it is not present. */
5364 static inline int
5365 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5367 dw_attr_ref a = get_AT (die, attr_kind);
5369 return a ? AT_flag (a) : 0;
5372 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5373 if it is not present. */
5375 static inline unsigned
5376 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5378 dw_attr_ref a = get_AT (die, attr_kind);
5380 return a ? AT_unsigned (a) : 0;
5383 static inline dw_die_ref
5384 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5386 dw_attr_ref a = get_AT (die, attr_kind);
5388 return a ? AT_ref (a) : NULL;
5391 static inline struct dwarf_file_data *
5392 get_AT_file (dw_die_ref die, enum dwarf_attribute attr_kind)
5394 dw_attr_ref a = get_AT (die, attr_kind);
5396 return a ? AT_file (a) : NULL;
5399 /* Return TRUE if the language is C or C++. */
5401 static inline bool
5402 is_c_family (void)
5404 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5406 return (lang == DW_LANG_C || lang == DW_LANG_C89 || lang == DW_LANG_ObjC
5407 || lang == DW_LANG_C99
5408 || lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus);
5411 /* Return TRUE if the language is C++. */
5413 static inline bool
5414 is_cxx (void)
5416 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5418 return lang == DW_LANG_C_plus_plus || lang == DW_LANG_ObjC_plus_plus;
5421 /* Return TRUE if the language is Fortran. */
5423 static inline bool
5424 is_fortran (void)
5426 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5428 return (lang == DW_LANG_Fortran77
5429 || lang == DW_LANG_Fortran90
5430 || lang == DW_LANG_Fortran95);
5433 /* Return TRUE if the language is Java. */
5435 static inline bool
5436 is_java (void)
5438 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5440 return lang == DW_LANG_Java;
5443 /* Return TRUE if the language is Ada. */
5445 static inline bool
5446 is_ada (void)
5448 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5450 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5453 /* Remove the specified attribute if present. */
5455 static void
5456 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5458 dw_attr_ref a;
5459 unsigned ix;
5461 if (! die)
5462 return;
5464 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5465 if (a->dw_attr == attr_kind)
5467 if (AT_class (a) == dw_val_class_str)
5468 if (a->dw_attr_val.v.val_str->refcount)
5469 a->dw_attr_val.v.val_str->refcount--;
5471 /* VEC_ordered_remove should help reduce the number of abbrevs
5472 that are needed. */
5473 VEC_ordered_remove (dw_attr_node, die->die_attr, ix);
5474 return;
5478 /* Remove CHILD from its parent. PREV must have the property that
5479 PREV->DIE_SIB == CHILD. Does not alter CHILD. */
5481 static void
5482 remove_child_with_prev (dw_die_ref child, dw_die_ref prev)
5484 gcc_assert (child->die_parent == prev->die_parent);
5485 gcc_assert (prev->die_sib == child);
5486 if (prev == child)
5488 gcc_assert (child->die_parent->die_child == child);
5489 prev = NULL;
5491 else
5492 prev->die_sib = child->die_sib;
5493 if (child->die_parent->die_child == child)
5494 child->die_parent->die_child = prev;
5497 /* Remove child DIE whose die_tag is TAG. Do nothing if no child
5498 matches TAG. */
5500 static void
5501 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5503 dw_die_ref c;
5505 c = die->die_child;
5506 if (c) do {
5507 dw_die_ref prev = c;
5508 c = c->die_sib;
5509 while (c->die_tag == tag)
5511 remove_child_with_prev (c, prev);
5512 /* Might have removed every child. */
5513 if (c == c->die_sib)
5514 return;
5515 c = c->die_sib;
5517 } while (c != die->die_child);
5520 /* Add a CHILD_DIE as the last child of DIE. */
5522 static void
5523 add_child_die (dw_die_ref die, dw_die_ref child_die)
5525 /* FIXME this should probably be an assert. */
5526 if (! die || ! child_die)
5527 return;
5528 gcc_assert (die != child_die);
5530 child_die->die_parent = die;
5531 if (die->die_child)
5533 child_die->die_sib = die->die_child->die_sib;
5534 die->die_child->die_sib = child_die;
5536 else
5537 child_die->die_sib = child_die;
5538 die->die_child = child_die;
5541 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5542 is the specification, to the end of PARENT's list of children.
5543 This is done by removing and re-adding it. */
5545 static void
5546 splice_child_die (dw_die_ref parent, dw_die_ref child)
5548 dw_die_ref p;
5550 /* We want the declaration DIE from inside the class, not the
5551 specification DIE at toplevel. */
5552 if (child->die_parent != parent)
5554 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5556 if (tmp)
5557 child = tmp;
5560 gcc_assert (child->die_parent == parent
5561 || (child->die_parent
5562 == get_AT_ref (parent, DW_AT_specification)));
5564 for (p = child->die_parent->die_child; ; p = p->die_sib)
5565 if (p->die_sib == child)
5567 remove_child_with_prev (child, p);
5568 break;
5571 add_child_die (parent, child);
5574 /* Return a pointer to a newly created DIE node. */
5576 static inline dw_die_ref
5577 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5579 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5581 die->die_tag = tag_value;
5583 if (parent_die != NULL)
5584 add_child_die (parent_die, die);
5585 else
5587 limbo_die_node *limbo_node;
5589 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5590 limbo_node->die = die;
5591 limbo_node->created_for = t;
5592 limbo_node->next = limbo_die_list;
5593 limbo_die_list = limbo_node;
5596 return die;
5599 /* Return the DIE associated with the given type specifier. */
5601 static inline dw_die_ref
5602 lookup_type_die (tree type)
5604 return TYPE_SYMTAB_DIE (type);
5607 /* Equate a DIE to a given type specifier. */
5609 static inline void
5610 equate_type_number_to_die (tree type, dw_die_ref type_die)
5612 TYPE_SYMTAB_DIE (type) = type_die;
5615 /* Returns a hash value for X (which really is a die_struct). */
5617 static hashval_t
5618 decl_die_table_hash (const void *x)
5620 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5623 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5625 static int
5626 decl_die_table_eq (const void *x, const void *y)
5628 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5631 /* Return the DIE associated with a given declaration. */
5633 static inline dw_die_ref
5634 lookup_decl_die (tree decl)
5636 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5639 /* Returns a hash value for X (which really is a var_loc_list). */
5641 static hashval_t
5642 decl_loc_table_hash (const void *x)
5644 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5647 /* Return nonzero if decl_id of var_loc_list X is the same as
5648 UID of decl *Y. */
5650 static int
5651 decl_loc_table_eq (const void *x, const void *y)
5653 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5656 /* Return the var_loc list associated with a given declaration. */
5658 static inline var_loc_list *
5659 lookup_decl_loc (tree decl)
5661 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5664 /* Equate a DIE to a particular declaration. */
5666 static void
5667 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5669 unsigned int decl_id = DECL_UID (decl);
5670 void **slot;
5672 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5673 *slot = decl_die;
5674 decl_die->decl_id = decl_id;
5677 /* Add a variable location node to the linked list for DECL. */
5679 static void
5680 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5682 unsigned int decl_id = DECL_UID (decl);
5683 var_loc_list *temp;
5684 void **slot;
5686 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5687 if (*slot == NULL)
5689 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5690 temp->decl_id = decl_id;
5691 *slot = temp;
5693 else
5694 temp = *slot;
5696 if (temp->last)
5698 /* If the current location is the same as the end of the list,
5699 we have nothing to do. */
5700 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5701 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5703 /* Add LOC to the end of list and update LAST. */
5704 temp->last->next = loc;
5705 temp->last = loc;
5708 /* Do not add empty location to the beginning of the list. */
5709 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5711 temp->first = loc;
5712 temp->last = loc;
5716 /* Keep track of the number of spaces used to indent the
5717 output of the debugging routines that print the structure of
5718 the DIE internal representation. */
5719 static int print_indent;
5721 /* Indent the line the number of spaces given by print_indent. */
5723 static inline void
5724 print_spaces (FILE *outfile)
5726 fprintf (outfile, "%*s", print_indent, "");
5729 /* Print the information associated with a given DIE, and its children.
5730 This routine is a debugging aid only. */
5732 static void
5733 print_die (dw_die_ref die, FILE *outfile)
5735 dw_attr_ref a;
5736 dw_die_ref c;
5737 unsigned ix;
5739 print_spaces (outfile);
5740 fprintf (outfile, "DIE %4lu: %s\n",
5741 die->die_offset, dwarf_tag_name (die->die_tag));
5742 print_spaces (outfile);
5743 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5744 fprintf (outfile, " offset: %lu\n", die->die_offset);
5746 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5748 print_spaces (outfile);
5749 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5751 switch (AT_class (a))
5753 case dw_val_class_addr:
5754 fprintf (outfile, "address");
5755 break;
5756 case dw_val_class_offset:
5757 fprintf (outfile, "offset");
5758 break;
5759 case dw_val_class_loc:
5760 fprintf (outfile, "location descriptor");
5761 break;
5762 case dw_val_class_loc_list:
5763 fprintf (outfile, "location list -> label:%s",
5764 AT_loc_list (a)->ll_symbol);
5765 break;
5766 case dw_val_class_range_list:
5767 fprintf (outfile, "range list");
5768 break;
5769 case dw_val_class_const:
5770 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5771 break;
5772 case dw_val_class_unsigned_const:
5773 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5774 break;
5775 case dw_val_class_long_long:
5776 fprintf (outfile, "constant (%lu,%lu)",
5777 a->dw_attr_val.v.val_long_long.hi,
5778 a->dw_attr_val.v.val_long_long.low);
5779 break;
5780 case dw_val_class_vec:
5781 fprintf (outfile, "floating-point or vector constant");
5782 break;
5783 case dw_val_class_flag:
5784 fprintf (outfile, "%u", AT_flag (a));
5785 break;
5786 case dw_val_class_die_ref:
5787 if (AT_ref (a) != NULL)
5789 if (AT_ref (a)->die_symbol)
5790 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5791 else
5792 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5794 else
5795 fprintf (outfile, "die -> <null>");
5796 break;
5797 case dw_val_class_lbl_id:
5798 case dw_val_class_lineptr:
5799 case dw_val_class_macptr:
5800 fprintf (outfile, "label: %s", AT_lbl (a));
5801 break;
5802 case dw_val_class_str:
5803 if (AT_string (a) != NULL)
5804 fprintf (outfile, "\"%s\"", AT_string (a));
5805 else
5806 fprintf (outfile, "<null>");
5807 break;
5808 case dw_val_class_file:
5809 fprintf (outfile, "\"%s\" (%d)", AT_file (a)->filename,
5810 AT_file (a)->emitted_number);
5811 break;
5812 default:
5813 break;
5816 fprintf (outfile, "\n");
5819 if (die->die_child != NULL)
5821 print_indent += 4;
5822 FOR_EACH_CHILD (die, c, print_die (c, outfile));
5823 print_indent -= 4;
5825 if (print_indent == 0)
5826 fprintf (outfile, "\n");
5829 /* Print the contents of the source code line number correspondence table.
5830 This routine is a debugging aid only. */
5832 static void
5833 print_dwarf_line_table (FILE *outfile)
5835 unsigned i;
5836 dw_line_info_ref line_info;
5838 fprintf (outfile, "\n\nDWARF source line information\n");
5839 for (i = 1; i < line_info_table_in_use; i++)
5841 line_info = &line_info_table[i];
5842 fprintf (outfile, "%5d: %4ld %6ld\n", i,
5843 line_info->dw_file_num,
5844 line_info->dw_line_num);
5847 fprintf (outfile, "\n\n");
5850 /* Print the information collected for a given DIE. */
5852 void
5853 debug_dwarf_die (dw_die_ref die)
5855 print_die (die, stderr);
5858 /* Print all DWARF information collected for the compilation unit.
5859 This routine is a debugging aid only. */
5861 void
5862 debug_dwarf (void)
5864 print_indent = 0;
5865 print_die (comp_unit_die, stderr);
5866 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5867 print_dwarf_line_table (stderr);
5870 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5871 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5872 DIE that marks the start of the DIEs for this include file. */
5874 static dw_die_ref
5875 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5877 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5878 dw_die_ref new_unit = gen_compile_unit_die (filename);
5880 new_unit->die_sib = old_unit;
5881 return new_unit;
5884 /* Close an include-file CU and reopen the enclosing one. */
5886 static dw_die_ref
5887 pop_compile_unit (dw_die_ref old_unit)
5889 dw_die_ref new_unit = old_unit->die_sib;
5891 old_unit->die_sib = NULL;
5892 return new_unit;
5895 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5896 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5898 /* Calculate the checksum of a location expression. */
5900 static inline void
5901 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5903 CHECKSUM (loc->dw_loc_opc);
5904 CHECKSUM (loc->dw_loc_oprnd1);
5905 CHECKSUM (loc->dw_loc_oprnd2);
5908 /* Calculate the checksum of an attribute. */
5910 static void
5911 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5913 dw_loc_descr_ref loc;
5914 rtx r;
5916 CHECKSUM (at->dw_attr);
5918 /* We don't care that this was compiled with a different compiler
5919 snapshot; if the output is the same, that's what matters. */
5920 if (at->dw_attr == DW_AT_producer)
5921 return;
5923 switch (AT_class (at))
5925 case dw_val_class_const:
5926 CHECKSUM (at->dw_attr_val.v.val_int);
5927 break;
5928 case dw_val_class_unsigned_const:
5929 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5930 break;
5931 case dw_val_class_long_long:
5932 CHECKSUM (at->dw_attr_val.v.val_long_long);
5933 break;
5934 case dw_val_class_vec:
5935 CHECKSUM (at->dw_attr_val.v.val_vec);
5936 break;
5937 case dw_val_class_flag:
5938 CHECKSUM (at->dw_attr_val.v.val_flag);
5939 break;
5940 case dw_val_class_str:
5941 CHECKSUM_STRING (AT_string (at));
5942 break;
5944 case dw_val_class_addr:
5945 r = AT_addr (at);
5946 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5947 CHECKSUM_STRING (XSTR (r, 0));
5948 break;
5950 case dw_val_class_offset:
5951 CHECKSUM (at->dw_attr_val.v.val_offset);
5952 break;
5954 case dw_val_class_loc:
5955 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5956 loc_checksum (loc, ctx);
5957 break;
5959 case dw_val_class_die_ref:
5960 die_checksum (AT_ref (at), ctx, mark);
5961 break;
5963 case dw_val_class_fde_ref:
5964 case dw_val_class_lbl_id:
5965 case dw_val_class_lineptr:
5966 case dw_val_class_macptr:
5967 break;
5969 case dw_val_class_file:
5970 CHECKSUM_STRING (AT_file (at)->filename);
5971 break;
5973 default:
5974 break;
5978 /* Calculate the checksum of a DIE. */
5980 static void
5981 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5983 dw_die_ref c;
5984 dw_attr_ref a;
5985 unsigned ix;
5987 /* To avoid infinite recursion. */
5988 if (die->die_mark)
5990 CHECKSUM (die->die_mark);
5991 return;
5993 die->die_mark = ++(*mark);
5995 CHECKSUM (die->die_tag);
5997 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
5998 attr_checksum (a, ctx, mark);
6000 FOR_EACH_CHILD (die, c, die_checksum (c, ctx, mark));
6003 #undef CHECKSUM
6004 #undef CHECKSUM_STRING
6006 /* Do the location expressions look same? */
6007 static inline int
6008 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
6010 return loc1->dw_loc_opc == loc2->dw_loc_opc
6011 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
6012 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
6015 /* Do the values look the same? */
6016 static int
6017 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
6019 dw_loc_descr_ref loc1, loc2;
6020 rtx r1, r2;
6022 if (v1->val_class != v2->val_class)
6023 return 0;
6025 switch (v1->val_class)
6027 case dw_val_class_const:
6028 return v1->v.val_int == v2->v.val_int;
6029 case dw_val_class_unsigned_const:
6030 return v1->v.val_unsigned == v2->v.val_unsigned;
6031 case dw_val_class_long_long:
6032 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
6033 && v1->v.val_long_long.low == v2->v.val_long_long.low;
6034 case dw_val_class_vec:
6035 if (v1->v.val_vec.length != v2->v.val_vec.length
6036 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
6037 return 0;
6038 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
6039 v1->v.val_vec.length * v1->v.val_vec.elt_size))
6040 return 0;
6041 return 1;
6042 case dw_val_class_flag:
6043 return v1->v.val_flag == v2->v.val_flag;
6044 case dw_val_class_str:
6045 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
6047 case dw_val_class_addr:
6048 r1 = v1->v.val_addr;
6049 r2 = v2->v.val_addr;
6050 if (GET_CODE (r1) != GET_CODE (r2))
6051 return 0;
6052 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
6053 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
6055 case dw_val_class_offset:
6056 return v1->v.val_offset == v2->v.val_offset;
6058 case dw_val_class_loc:
6059 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
6060 loc1 && loc2;
6061 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
6062 if (!same_loc_p (loc1, loc2, mark))
6063 return 0;
6064 return !loc1 && !loc2;
6066 case dw_val_class_die_ref:
6067 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
6069 case dw_val_class_fde_ref:
6070 case dw_val_class_lbl_id:
6071 case dw_val_class_lineptr:
6072 case dw_val_class_macptr:
6073 return 1;
6075 case dw_val_class_file:
6076 return v1->v.val_file == v2->v.val_file;
6078 default:
6079 return 1;
6083 /* Do the attributes look the same? */
6085 static int
6086 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
6088 if (at1->dw_attr != at2->dw_attr)
6089 return 0;
6091 /* We don't care that this was compiled with a different compiler
6092 snapshot; if the output is the same, that's what matters. */
6093 if (at1->dw_attr == DW_AT_producer)
6094 return 1;
6096 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
6099 /* Do the dies look the same? */
6101 static int
6102 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
6104 dw_die_ref c1, c2;
6105 dw_attr_ref a1;
6106 unsigned ix;
6108 /* To avoid infinite recursion. */
6109 if (die1->die_mark)
6110 return die1->die_mark == die2->die_mark;
6111 die1->die_mark = die2->die_mark = ++(*mark);
6113 if (die1->die_tag != die2->die_tag)
6114 return 0;
6116 if (VEC_length (dw_attr_node, die1->die_attr)
6117 != VEC_length (dw_attr_node, die2->die_attr))
6118 return 0;
6120 for (ix = 0; VEC_iterate (dw_attr_node, die1->die_attr, ix, a1); ix++)
6121 if (!same_attr_p (a1, VEC_index (dw_attr_node, die2->die_attr, ix), mark))
6122 return 0;
6124 c1 = die1->die_child;
6125 c2 = die2->die_child;
6126 if (! c1)
6128 if (c2)
6129 return 0;
6131 else
6132 for (;;)
6134 if (!same_die_p (c1, c2, mark))
6135 return 0;
6136 c1 = c1->die_sib;
6137 c2 = c2->die_sib;
6138 if (c1 == die1->die_child)
6140 if (c2 == die2->die_child)
6141 break;
6142 else
6143 return 0;
6147 return 1;
6150 /* Do the dies look the same? Wrapper around same_die_p. */
6152 static int
6153 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6155 int mark = 0;
6156 int ret = same_die_p (die1, die2, &mark);
6158 unmark_all_dies (die1);
6159 unmark_all_dies (die2);
6161 return ret;
6164 /* The prefix to attach to symbols on DIEs in the current comdat debug
6165 info section. */
6166 static char *comdat_symbol_id;
6168 /* The index of the current symbol within the current comdat CU. */
6169 static unsigned int comdat_symbol_number;
6171 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6172 children, and set comdat_symbol_id accordingly. */
6174 static void
6175 compute_section_prefix (dw_die_ref unit_die)
6177 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6178 const char *base = die_name ? lbasename (die_name) : "anonymous";
6179 char *name = alloca (strlen (base) + 64);
6180 char *p;
6181 int i, mark;
6182 unsigned char checksum[16];
6183 struct md5_ctx ctx;
6185 /* Compute the checksum of the DIE, then append part of it as hex digits to
6186 the name filename of the unit. */
6188 md5_init_ctx (&ctx);
6189 mark = 0;
6190 die_checksum (unit_die, &ctx, &mark);
6191 unmark_all_dies (unit_die);
6192 md5_finish_ctx (&ctx, checksum);
6194 sprintf (name, "%s.", base);
6195 clean_symbol_name (name);
6197 p = name + strlen (name);
6198 for (i = 0; i < 4; i++)
6200 sprintf (p, "%.2x", checksum[i]);
6201 p += 2;
6204 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6205 comdat_symbol_number = 0;
6208 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6210 static int
6211 is_type_die (dw_die_ref die)
6213 switch (die->die_tag)
6215 case DW_TAG_array_type:
6216 case DW_TAG_class_type:
6217 case DW_TAG_enumeration_type:
6218 case DW_TAG_pointer_type:
6219 case DW_TAG_reference_type:
6220 case DW_TAG_string_type:
6221 case DW_TAG_structure_type:
6222 case DW_TAG_subroutine_type:
6223 case DW_TAG_union_type:
6224 case DW_TAG_ptr_to_member_type:
6225 case DW_TAG_set_type:
6226 case DW_TAG_subrange_type:
6227 case DW_TAG_base_type:
6228 case DW_TAG_const_type:
6229 case DW_TAG_file_type:
6230 case DW_TAG_packed_type:
6231 case DW_TAG_volatile_type:
6232 case DW_TAG_typedef:
6233 return 1;
6234 default:
6235 return 0;
6239 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6240 Basically, we want to choose the bits that are likely to be shared between
6241 compilations (types) and leave out the bits that are specific to individual
6242 compilations (functions). */
6244 static int
6245 is_comdat_die (dw_die_ref c)
6247 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6248 we do for stabs. The advantage is a greater likelihood of sharing between
6249 objects that don't include headers in the same order (and therefore would
6250 put the base types in a different comdat). jason 8/28/00 */
6252 if (c->die_tag == DW_TAG_base_type)
6253 return 0;
6255 if (c->die_tag == DW_TAG_pointer_type
6256 || c->die_tag == DW_TAG_reference_type
6257 || c->die_tag == DW_TAG_const_type
6258 || c->die_tag == DW_TAG_volatile_type)
6260 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6262 return t ? is_comdat_die (t) : 0;
6265 return is_type_die (c);
6268 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6269 compilation unit. */
6271 static int
6272 is_symbol_die (dw_die_ref c)
6274 return (is_type_die (c)
6275 || (get_AT (c, DW_AT_declaration)
6276 && !get_AT (c, DW_AT_specification))
6277 || c->die_tag == DW_TAG_namespace);
6280 static char *
6281 gen_internal_sym (const char *prefix)
6283 char buf[256];
6285 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6286 return xstrdup (buf);
6289 /* Assign symbols to all worthy DIEs under DIE. */
6291 static void
6292 assign_symbol_names (dw_die_ref die)
6294 dw_die_ref c;
6296 if (is_symbol_die (die))
6298 if (comdat_symbol_id)
6300 char *p = alloca (strlen (comdat_symbol_id) + 64);
6302 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6303 comdat_symbol_id, comdat_symbol_number++);
6304 die->die_symbol = xstrdup (p);
6306 else
6307 die->die_symbol = gen_internal_sym ("LDIE");
6310 FOR_EACH_CHILD (die, c, assign_symbol_names (c));
6313 struct cu_hash_table_entry
6315 dw_die_ref cu;
6316 unsigned min_comdat_num, max_comdat_num;
6317 struct cu_hash_table_entry *next;
6320 /* Routines to manipulate hash table of CUs. */
6321 static hashval_t
6322 htab_cu_hash (const void *of)
6324 const struct cu_hash_table_entry *entry = of;
6326 return htab_hash_string (entry->cu->die_symbol);
6329 static int
6330 htab_cu_eq (const void *of1, const void *of2)
6332 const struct cu_hash_table_entry *entry1 = of1;
6333 const struct die_struct *entry2 = of2;
6335 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6338 static void
6339 htab_cu_del (void *what)
6341 struct cu_hash_table_entry *next, *entry = what;
6343 while (entry)
6345 next = entry->next;
6346 free (entry);
6347 entry = next;
6351 /* Check whether we have already seen this CU and set up SYM_NUM
6352 accordingly. */
6353 static int
6354 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6356 struct cu_hash_table_entry dummy;
6357 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6359 dummy.max_comdat_num = 0;
6361 slot = (struct cu_hash_table_entry **)
6362 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6363 INSERT);
6364 entry = *slot;
6366 for (; entry; last = entry, entry = entry->next)
6368 if (same_die_p_wrap (cu, entry->cu))
6369 break;
6372 if (entry)
6374 *sym_num = entry->min_comdat_num;
6375 return 1;
6378 entry = XCNEW (struct cu_hash_table_entry);
6379 entry->cu = cu;
6380 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6381 entry->next = *slot;
6382 *slot = entry;
6384 return 0;
6387 /* Record SYM_NUM to record of CU in HTABLE. */
6388 static void
6389 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6391 struct cu_hash_table_entry **slot, *entry;
6393 slot = (struct cu_hash_table_entry **)
6394 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6395 NO_INSERT);
6396 entry = *slot;
6398 entry->max_comdat_num = sym_num;
6401 /* Traverse the DIE (which is always comp_unit_die), and set up
6402 additional compilation units for each of the include files we see
6403 bracketed by BINCL/EINCL. */
6405 static void
6406 break_out_includes (dw_die_ref die)
6408 dw_die_ref c;
6409 dw_die_ref unit = NULL;
6410 limbo_die_node *node, **pnode;
6411 htab_t cu_hash_table;
6413 c = die->die_child;
6414 if (c) do {
6415 dw_die_ref prev = c;
6416 c = c->die_sib;
6417 while (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6418 || (unit && is_comdat_die (c)))
6420 dw_die_ref next = c->die_sib;
6422 /* This DIE is for a secondary CU; remove it from the main one. */
6423 remove_child_with_prev (c, prev);
6425 if (c->die_tag == DW_TAG_GNU_BINCL)
6426 unit = push_new_compile_unit (unit, c);
6427 else if (c->die_tag == DW_TAG_GNU_EINCL)
6428 unit = pop_compile_unit (unit);
6429 else
6430 add_child_die (unit, c);
6431 c = next;
6432 if (c == die->die_child)
6433 break;
6435 } while (c != die->die_child);
6437 #if 0
6438 /* We can only use this in debugging, since the frontend doesn't check
6439 to make sure that we leave every include file we enter. */
6440 gcc_assert (!unit);
6441 #endif
6443 assign_symbol_names (die);
6444 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6445 for (node = limbo_die_list, pnode = &limbo_die_list;
6446 node;
6447 node = node->next)
6449 int is_dupl;
6451 compute_section_prefix (node->die);
6452 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6453 &comdat_symbol_number);
6454 assign_symbol_names (node->die);
6455 if (is_dupl)
6456 *pnode = node->next;
6457 else
6459 pnode = &node->next;
6460 record_comdat_symbol_number (node->die, cu_hash_table,
6461 comdat_symbol_number);
6464 htab_delete (cu_hash_table);
6467 /* Traverse the DIE and add a sibling attribute if it may have the
6468 effect of speeding up access to siblings. To save some space,
6469 avoid generating sibling attributes for DIE's without children. */
6471 static void
6472 add_sibling_attributes (dw_die_ref die)
6474 dw_die_ref c;
6476 if (! die->die_child)
6477 return;
6479 if (die->die_parent && die != die->die_parent->die_child)
6480 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6482 FOR_EACH_CHILD (die, c, add_sibling_attributes (c));
6485 /* Output all location lists for the DIE and its children. */
6487 static void
6488 output_location_lists (dw_die_ref die)
6490 dw_die_ref c;
6491 dw_attr_ref a;
6492 unsigned ix;
6494 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6495 if (AT_class (a) == dw_val_class_loc_list)
6496 output_loc_list (AT_loc_list (a));
6498 FOR_EACH_CHILD (die, c, output_location_lists (c));
6501 /* The format of each DIE (and its attribute value pairs) is encoded in an
6502 abbreviation table. This routine builds the abbreviation table and assigns
6503 a unique abbreviation id for each abbreviation entry. The children of each
6504 die are visited recursively. */
6506 static void
6507 build_abbrev_table (dw_die_ref die)
6509 unsigned long abbrev_id;
6510 unsigned int n_alloc;
6511 dw_die_ref c;
6512 dw_attr_ref a;
6513 unsigned ix;
6515 /* Scan the DIE references, and mark as external any that refer to
6516 DIEs from other CUs (i.e. those which are not marked). */
6517 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6518 if (AT_class (a) == dw_val_class_die_ref
6519 && AT_ref (a)->die_mark == 0)
6521 gcc_assert (AT_ref (a)->die_symbol);
6523 set_AT_ref_external (a, 1);
6526 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6528 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6529 dw_attr_ref die_a, abbrev_a;
6530 unsigned ix;
6531 bool ok = true;
6533 if (abbrev->die_tag != die->die_tag)
6534 continue;
6535 if ((abbrev->die_child != NULL) != (die->die_child != NULL))
6536 continue;
6538 if (VEC_length (dw_attr_node, abbrev->die_attr)
6539 != VEC_length (dw_attr_node, die->die_attr))
6540 continue;
6542 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, die_a); ix++)
6544 abbrev_a = VEC_index (dw_attr_node, abbrev->die_attr, ix);
6545 if ((abbrev_a->dw_attr != die_a->dw_attr)
6546 || (value_format (abbrev_a) != value_format (die_a)))
6548 ok = false;
6549 break;
6552 if (ok)
6553 break;
6556 if (abbrev_id >= abbrev_die_table_in_use)
6558 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6560 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6561 abbrev_die_table = ggc_realloc (abbrev_die_table,
6562 sizeof (dw_die_ref) * n_alloc);
6564 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6565 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6566 abbrev_die_table_allocated = n_alloc;
6569 ++abbrev_die_table_in_use;
6570 abbrev_die_table[abbrev_id] = die;
6573 die->die_abbrev = abbrev_id;
6574 FOR_EACH_CHILD (die, c, build_abbrev_table (c));
6577 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6579 static int
6580 constant_size (long unsigned int value)
6582 int log;
6584 if (value == 0)
6585 log = 0;
6586 else
6587 log = floor_log2 (value);
6589 log = log / 8;
6590 log = 1 << (floor_log2 (log) + 1);
6592 return log;
6595 /* Return the size of a DIE as it is represented in the
6596 .debug_info section. */
6598 static unsigned long
6599 size_of_die (dw_die_ref die)
6601 unsigned long size = 0;
6602 dw_attr_ref a;
6603 unsigned ix;
6605 size += size_of_uleb128 (die->die_abbrev);
6606 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6608 switch (AT_class (a))
6610 case dw_val_class_addr:
6611 size += DWARF2_ADDR_SIZE;
6612 break;
6613 case dw_val_class_offset:
6614 size += DWARF_OFFSET_SIZE;
6615 break;
6616 case dw_val_class_loc:
6618 unsigned long lsize = size_of_locs (AT_loc (a));
6620 /* Block length. */
6621 size += constant_size (lsize);
6622 size += lsize;
6624 break;
6625 case dw_val_class_loc_list:
6626 size += DWARF_OFFSET_SIZE;
6627 break;
6628 case dw_val_class_range_list:
6629 size += DWARF_OFFSET_SIZE;
6630 break;
6631 case dw_val_class_const:
6632 size += size_of_sleb128 (AT_int (a));
6633 break;
6634 case dw_val_class_unsigned_const:
6635 size += constant_size (AT_unsigned (a));
6636 break;
6637 case dw_val_class_long_long:
6638 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6639 break;
6640 case dw_val_class_vec:
6641 size += 1 + (a->dw_attr_val.v.val_vec.length
6642 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6643 break;
6644 case dw_val_class_flag:
6645 size += 1;
6646 break;
6647 case dw_val_class_die_ref:
6648 if (AT_ref_external (a))
6649 size += DWARF2_ADDR_SIZE;
6650 else
6651 size += DWARF_OFFSET_SIZE;
6652 break;
6653 case dw_val_class_fde_ref:
6654 size += DWARF_OFFSET_SIZE;
6655 break;
6656 case dw_val_class_lbl_id:
6657 size += DWARF2_ADDR_SIZE;
6658 break;
6659 case dw_val_class_lineptr:
6660 case dw_val_class_macptr:
6661 size += DWARF_OFFSET_SIZE;
6662 break;
6663 case dw_val_class_str:
6664 if (AT_string_form (a) == DW_FORM_strp)
6665 size += DWARF_OFFSET_SIZE;
6666 else
6667 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6668 break;
6669 case dw_val_class_file:
6670 size += constant_size (maybe_emit_file (a->dw_attr_val.v.val_file));
6671 break;
6672 default:
6673 gcc_unreachable ();
6677 return size;
6680 /* Size the debugging information associated with a given DIE. Visits the
6681 DIE's children recursively. Updates the global variable next_die_offset, on
6682 each time through. Uses the current value of next_die_offset to update the
6683 die_offset field in each DIE. */
6685 static void
6686 calc_die_sizes (dw_die_ref die)
6688 dw_die_ref c;
6690 die->die_offset = next_die_offset;
6691 next_die_offset += size_of_die (die);
6693 FOR_EACH_CHILD (die, c, calc_die_sizes (c));
6695 if (die->die_child != NULL)
6696 /* Count the null byte used to terminate sibling lists. */
6697 next_die_offset += 1;
6700 /* Set the marks for a die and its children. We do this so
6701 that we know whether or not a reference needs to use FORM_ref_addr; only
6702 DIEs in the same CU will be marked. We used to clear out the offset
6703 and use that as the flag, but ran into ordering problems. */
6705 static void
6706 mark_dies (dw_die_ref die)
6708 dw_die_ref c;
6710 gcc_assert (!die->die_mark);
6712 die->die_mark = 1;
6713 FOR_EACH_CHILD (die, c, mark_dies (c));
6716 /* Clear the marks for a die and its children. */
6718 static void
6719 unmark_dies (dw_die_ref die)
6721 dw_die_ref c;
6723 gcc_assert (die->die_mark);
6725 die->die_mark = 0;
6726 FOR_EACH_CHILD (die, c, unmark_dies (c));
6729 /* Clear the marks for a die, its children and referred dies. */
6731 static void
6732 unmark_all_dies (dw_die_ref die)
6734 dw_die_ref c;
6735 dw_attr_ref a;
6736 unsigned ix;
6738 if (!die->die_mark)
6739 return;
6740 die->die_mark = 0;
6742 FOR_EACH_CHILD (die, c, unmark_all_dies (c));
6744 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
6745 if (AT_class (a) == dw_val_class_die_ref)
6746 unmark_all_dies (AT_ref (a));
6749 /* Return the size of the .debug_pubnames table generated for the
6750 compilation unit. */
6752 static unsigned long
6753 size_of_pubnames (void)
6755 unsigned long size;
6756 unsigned i;
6758 size = DWARF_PUBNAMES_HEADER_SIZE;
6759 for (i = 0; i < pubname_table_in_use; i++)
6761 pubname_ref p = &pubname_table[i];
6762 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6765 size += DWARF_OFFSET_SIZE;
6766 return size;
6769 /* Return the size of the information in the .debug_aranges section. */
6771 static unsigned long
6772 size_of_aranges (void)
6774 unsigned long size;
6776 size = DWARF_ARANGES_HEADER_SIZE;
6778 /* Count the address/length pair for this compilation unit. */
6779 size += 2 * DWARF2_ADDR_SIZE;
6780 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6782 /* Count the two zero words used to terminated the address range table. */
6783 size += 2 * DWARF2_ADDR_SIZE;
6784 return size;
6787 /* Select the encoding of an attribute value. */
6789 static enum dwarf_form
6790 value_format (dw_attr_ref a)
6792 switch (a->dw_attr_val.val_class)
6794 case dw_val_class_addr:
6795 return DW_FORM_addr;
6796 case dw_val_class_range_list:
6797 case dw_val_class_offset:
6798 case dw_val_class_loc_list:
6799 switch (DWARF_OFFSET_SIZE)
6801 case 4:
6802 return DW_FORM_data4;
6803 case 8:
6804 return DW_FORM_data8;
6805 default:
6806 gcc_unreachable ();
6808 case dw_val_class_loc:
6809 switch (constant_size (size_of_locs (AT_loc (a))))
6811 case 1:
6812 return DW_FORM_block1;
6813 case 2:
6814 return DW_FORM_block2;
6815 default:
6816 gcc_unreachable ();
6818 case dw_val_class_const:
6819 return DW_FORM_sdata;
6820 case dw_val_class_unsigned_const:
6821 switch (constant_size (AT_unsigned (a)))
6823 case 1:
6824 return DW_FORM_data1;
6825 case 2:
6826 return DW_FORM_data2;
6827 case 4:
6828 return DW_FORM_data4;
6829 case 8:
6830 return DW_FORM_data8;
6831 default:
6832 gcc_unreachable ();
6834 case dw_val_class_long_long:
6835 return DW_FORM_block1;
6836 case dw_val_class_vec:
6837 return DW_FORM_block1;
6838 case dw_val_class_flag:
6839 return DW_FORM_flag;
6840 case dw_val_class_die_ref:
6841 if (AT_ref_external (a))
6842 return DW_FORM_ref_addr;
6843 else
6844 return DW_FORM_ref;
6845 case dw_val_class_fde_ref:
6846 return DW_FORM_data;
6847 case dw_val_class_lbl_id:
6848 return DW_FORM_addr;
6849 case dw_val_class_lineptr:
6850 case dw_val_class_macptr:
6851 return DW_FORM_data;
6852 case dw_val_class_str:
6853 return AT_string_form (a);
6854 case dw_val_class_file:
6855 switch (constant_size (maybe_emit_file (a->dw_attr_val.v.val_file)))
6857 case 1:
6858 return DW_FORM_data1;
6859 case 2:
6860 return DW_FORM_data2;
6861 case 4:
6862 return DW_FORM_data4;
6863 default:
6864 gcc_unreachable ();
6867 default:
6868 gcc_unreachable ();
6872 /* Output the encoding of an attribute value. */
6874 static void
6875 output_value_format (dw_attr_ref a)
6877 enum dwarf_form form = value_format (a);
6879 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6882 /* Output the .debug_abbrev section which defines the DIE abbreviation
6883 table. */
6885 static void
6886 output_abbrev_section (void)
6888 unsigned long abbrev_id;
6890 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6892 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6893 unsigned ix;
6894 dw_attr_ref a_attr;
6896 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6897 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6898 dwarf_tag_name (abbrev->die_tag));
6900 if (abbrev->die_child != NULL)
6901 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6902 else
6903 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6905 for (ix = 0; VEC_iterate (dw_attr_node, abbrev->die_attr, ix, a_attr);
6906 ix++)
6908 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6909 dwarf_attr_name (a_attr->dw_attr));
6910 output_value_format (a_attr);
6913 dw2_asm_output_data (1, 0, NULL);
6914 dw2_asm_output_data (1, 0, NULL);
6917 /* Terminate the table. */
6918 dw2_asm_output_data (1, 0, NULL);
6921 /* Output a symbol we can use to refer to this DIE from another CU. */
6923 static inline void
6924 output_die_symbol (dw_die_ref die)
6926 char *sym = die->die_symbol;
6928 if (sym == 0)
6929 return;
6931 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6932 /* We make these global, not weak; if the target doesn't support
6933 .linkonce, it doesn't support combining the sections, so debugging
6934 will break. */
6935 targetm.asm_out.globalize_label (asm_out_file, sym);
6937 ASM_OUTPUT_LABEL (asm_out_file, sym);
6940 /* Return a new location list, given the begin and end range, and the
6941 expression. gensym tells us whether to generate a new internal symbol for
6942 this location list node, which is done for the head of the list only. */
6944 static inline dw_loc_list_ref
6945 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6946 const char *section, unsigned int gensym)
6948 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6950 retlist->begin = begin;
6951 retlist->end = end;
6952 retlist->expr = expr;
6953 retlist->section = section;
6954 if (gensym)
6955 retlist->ll_symbol = gen_internal_sym ("LLST");
6957 return retlist;
6960 /* Add a location description expression to a location list. */
6962 static inline void
6963 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6964 const char *begin, const char *end,
6965 const char *section)
6967 dw_loc_list_ref *d;
6969 /* Find the end of the chain. */
6970 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6973 /* Add a new location list node to the list. */
6974 *d = new_loc_list (descr, begin, end, section, 0);
6977 static void
6978 dwarf2out_switch_text_section (void)
6980 dw_fde_ref fde;
6982 gcc_assert (cfun);
6984 fde = &fde_table[fde_table_in_use - 1];
6985 fde->dw_fde_switched_sections = true;
6986 fde->dw_fde_hot_section_label = cfun->hot_section_label;
6987 fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
6988 fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
6989 fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
6990 have_multiple_function_sections = true;
6992 /* Reset the current label on switching text sections, so that we
6993 don't attempt to advance_loc4 between labels in different sections. */
6994 fde->dw_fde_current_label = NULL;
6997 /* Output the location list given to us. */
6999 static void
7000 output_loc_list (dw_loc_list_ref list_head)
7002 dw_loc_list_ref curr = list_head;
7004 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
7006 /* Walk the location list, and output each range + expression. */
7007 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
7009 unsigned long size;
7010 if (!have_multiple_function_sections)
7012 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
7013 "Location list begin address (%s)",
7014 list_head->ll_symbol);
7015 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
7016 "Location list end address (%s)",
7017 list_head->ll_symbol);
7019 else
7021 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
7022 "Location list begin address (%s)",
7023 list_head->ll_symbol);
7024 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
7025 "Location list end address (%s)",
7026 list_head->ll_symbol);
7028 size = size_of_locs (curr->expr);
7030 /* Output the block length for this list of location operations. */
7031 gcc_assert (size <= 0xffff);
7032 dw2_asm_output_data (2, size, "%s", "Location expression size");
7034 output_loc_sequence (curr->expr);
7037 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7038 "Location list terminator begin (%s)",
7039 list_head->ll_symbol);
7040 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
7041 "Location list terminator end (%s)",
7042 list_head->ll_symbol);
7045 /* Output the DIE and its attributes. Called recursively to generate
7046 the definitions of each child DIE. */
7048 static void
7049 output_die (dw_die_ref die)
7051 dw_attr_ref a;
7052 dw_die_ref c;
7053 unsigned long size;
7054 unsigned ix;
7056 /* If someone in another CU might refer to us, set up a symbol for
7057 them to point to. */
7058 if (die->die_symbol)
7059 output_die_symbol (die);
7061 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
7062 die->die_offset, dwarf_tag_name (die->die_tag));
7064 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
7066 const char *name = dwarf_attr_name (a->dw_attr);
7068 switch (AT_class (a))
7070 case dw_val_class_addr:
7071 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
7072 break;
7074 case dw_val_class_offset:
7075 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
7076 "%s", name);
7077 break;
7079 case dw_val_class_range_list:
7081 char *p = strchr (ranges_section_label, '\0');
7083 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
7084 a->dw_attr_val.v.val_offset);
7085 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
7086 debug_ranges_section, "%s", name);
7087 *p = '\0';
7089 break;
7091 case dw_val_class_loc:
7092 size = size_of_locs (AT_loc (a));
7094 /* Output the block length for this list of location operations. */
7095 dw2_asm_output_data (constant_size (size), size, "%s", name);
7097 output_loc_sequence (AT_loc (a));
7098 break;
7100 case dw_val_class_const:
7101 /* ??? It would be slightly more efficient to use a scheme like is
7102 used for unsigned constants below, but gdb 4.x does not sign
7103 extend. Gdb 5.x does sign extend. */
7104 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
7105 break;
7107 case dw_val_class_unsigned_const:
7108 dw2_asm_output_data (constant_size (AT_unsigned (a)),
7109 AT_unsigned (a), "%s", name);
7110 break;
7112 case dw_val_class_long_long:
7114 unsigned HOST_WIDE_INT first, second;
7116 dw2_asm_output_data (1,
7117 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7118 "%s", name);
7120 if (WORDS_BIG_ENDIAN)
7122 first = a->dw_attr_val.v.val_long_long.hi;
7123 second = a->dw_attr_val.v.val_long_long.low;
7125 else
7127 first = a->dw_attr_val.v.val_long_long.low;
7128 second = a->dw_attr_val.v.val_long_long.hi;
7131 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7132 first, "long long constant");
7133 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
7134 second, NULL);
7136 break;
7138 case dw_val_class_vec:
7140 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
7141 unsigned int len = a->dw_attr_val.v.val_vec.length;
7142 unsigned int i;
7143 unsigned char *p;
7145 dw2_asm_output_data (1, len * elt_size, "%s", name);
7146 if (elt_size > sizeof (HOST_WIDE_INT))
7148 elt_size /= 2;
7149 len *= 2;
7151 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
7152 i < len;
7153 i++, p += elt_size)
7154 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
7155 "fp or vector constant word %u", i);
7156 break;
7159 case dw_val_class_flag:
7160 dw2_asm_output_data (1, AT_flag (a), "%s", name);
7161 break;
7163 case dw_val_class_loc_list:
7165 char *sym = AT_loc_list (a)->ll_symbol;
7167 gcc_assert (sym);
7168 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, debug_loc_section,
7169 "%s", name);
7171 break;
7173 case dw_val_class_die_ref:
7174 if (AT_ref_external (a))
7176 char *sym = AT_ref (a)->die_symbol;
7178 gcc_assert (sym);
7179 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, debug_info_section,
7180 "%s", name);
7182 else
7184 gcc_assert (AT_ref (a)->die_offset);
7185 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7186 "%s", name);
7188 break;
7190 case dw_val_class_fde_ref:
7192 char l1[20];
7194 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7195 a->dw_attr_val.v.val_fde_index * 2);
7196 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, debug_frame_section,
7197 "%s", name);
7199 break;
7201 case dw_val_class_lbl_id:
7202 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7203 break;
7205 case dw_val_class_lineptr:
7206 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7207 debug_line_section, "%s", name);
7208 break;
7210 case dw_val_class_macptr:
7211 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a),
7212 debug_macinfo_section, "%s", name);
7213 break;
7215 case dw_val_class_str:
7216 if (AT_string_form (a) == DW_FORM_strp)
7217 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7218 a->dw_attr_val.v.val_str->label,
7219 debug_str_section,
7220 "%s: \"%s\"", name, AT_string (a));
7221 else
7222 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7223 break;
7225 case dw_val_class_file:
7227 int f = maybe_emit_file (a->dw_attr_val.v.val_file);
7229 dw2_asm_output_data (constant_size (f), f, "%s (%s)", name,
7230 a->dw_attr_val.v.val_file->filename);
7231 break;
7234 default:
7235 gcc_unreachable ();
7239 FOR_EACH_CHILD (die, c, output_die (c));
7241 /* Add null byte to terminate sibling list. */
7242 if (die->die_child != NULL)
7243 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7244 die->die_offset);
7247 /* Output the compilation unit that appears at the beginning of the
7248 .debug_info section, and precedes the DIE descriptions. */
7250 static void
7251 output_compilation_unit_header (void)
7253 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7254 dw2_asm_output_data (4, 0xffffffff,
7255 "Initial length escape value indicating 64-bit DWARF extension");
7256 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7257 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7258 "Length of Compilation Unit Info");
7259 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7260 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7261 debug_abbrev_section,
7262 "Offset Into Abbrev. Section");
7263 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7266 /* Output the compilation unit DIE and its children. */
7268 static void
7269 output_comp_unit (dw_die_ref die, int output_if_empty)
7271 const char *secname;
7272 char *oldsym, *tmp;
7274 /* Unless we are outputting main CU, we may throw away empty ones. */
7275 if (!output_if_empty && die->die_child == NULL)
7276 return;
7278 /* Even if there are no children of this DIE, we must output the information
7279 about the compilation unit. Otherwise, on an empty translation unit, we
7280 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7281 will then complain when examining the file. First mark all the DIEs in
7282 this CU so we know which get local refs. */
7283 mark_dies (die);
7285 build_abbrev_table (die);
7287 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7288 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7289 calc_die_sizes (die);
7291 oldsym = die->die_symbol;
7292 if (oldsym)
7294 tmp = alloca (strlen (oldsym) + 24);
7296 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7297 secname = tmp;
7298 die->die_symbol = NULL;
7299 switch_to_section (get_section (secname, SECTION_DEBUG, NULL));
7301 else
7302 switch_to_section (debug_info_section);
7304 /* Output debugging information. */
7305 output_compilation_unit_header ();
7306 output_die (die);
7308 /* Leave the marks on the main CU, so we can check them in
7309 output_pubnames. */
7310 if (oldsym)
7312 unmark_dies (die);
7313 die->die_symbol = oldsym;
7317 /* Return the DWARF2/3 pubname associated with a decl. */
7319 static const char *
7320 dwarf2_name (tree decl, int scope)
7322 return lang_hooks.dwarf_name (decl, scope ? 1 : 0);
7325 /* Add a new entry to .debug_pubnames if appropriate. */
7327 static void
7328 add_pubname (tree decl, dw_die_ref die)
7330 pubname_ref p;
7332 if (! TREE_PUBLIC (decl))
7333 return;
7335 if (pubname_table_in_use == pubname_table_allocated)
7337 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7338 pubname_table
7339 = ggc_realloc (pubname_table,
7340 (pubname_table_allocated * sizeof (pubname_entry)));
7341 memset (pubname_table + pubname_table_in_use, 0,
7342 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7345 p = &pubname_table[pubname_table_in_use++];
7346 p->die = die;
7347 p->name = xstrdup (dwarf2_name (decl, 1));
7350 /* Output the public names table used to speed up access to externally
7351 visible names. For now, only generate entries for externally
7352 visible procedures. */
7354 static void
7355 output_pubnames (void)
7357 unsigned i;
7358 unsigned long pubnames_length = size_of_pubnames ();
7360 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7361 dw2_asm_output_data (4, 0xffffffff,
7362 "Initial length escape value indicating 64-bit DWARF extension");
7363 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7364 "Length of Public Names Info");
7365 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7366 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7367 debug_info_section,
7368 "Offset of Compilation Unit Info");
7369 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7370 "Compilation Unit Length");
7372 for (i = 0; i < pubname_table_in_use; i++)
7374 pubname_ref pub = &pubname_table[i];
7376 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7377 gcc_assert (pub->die->die_mark);
7379 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7380 "DIE offset");
7382 dw2_asm_output_nstring (pub->name, -1, "external name");
7385 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7388 /* Add a new entry to .debug_aranges if appropriate. */
7390 static void
7391 add_arange (tree decl, dw_die_ref die)
7393 if (! DECL_SECTION_NAME (decl))
7394 return;
7396 if (arange_table_in_use == arange_table_allocated)
7398 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7399 arange_table = ggc_realloc (arange_table,
7400 (arange_table_allocated
7401 * sizeof (dw_die_ref)));
7402 memset (arange_table + arange_table_in_use, 0,
7403 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7406 arange_table[arange_table_in_use++] = die;
7409 /* Output the information that goes into the .debug_aranges table.
7410 Namely, define the beginning and ending address range of the
7411 text section generated for this compilation unit. */
7413 static void
7414 output_aranges (void)
7416 unsigned i;
7417 unsigned long aranges_length = size_of_aranges ();
7419 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7420 dw2_asm_output_data (4, 0xffffffff,
7421 "Initial length escape value indicating 64-bit DWARF extension");
7422 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7423 "Length of Address Ranges Info");
7424 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7425 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7426 debug_info_section,
7427 "Offset of Compilation Unit Info");
7428 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7429 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7431 /* We need to align to twice the pointer size here. */
7432 if (DWARF_ARANGES_PAD_SIZE)
7434 /* Pad using a 2 byte words so that padding is correct for any
7435 pointer size. */
7436 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7437 2 * DWARF2_ADDR_SIZE);
7438 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7439 dw2_asm_output_data (2, 0, NULL);
7442 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7443 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7444 text_section_label, "Length");
7445 if (flag_reorder_blocks_and_partition)
7447 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7448 "Address");
7449 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7450 cold_text_section_label, "Length");
7453 for (i = 0; i < arange_table_in_use; i++)
7455 dw_die_ref die = arange_table[i];
7457 /* We shouldn't see aranges for DIEs outside of the main CU. */
7458 gcc_assert (die->die_mark);
7460 if (die->die_tag == DW_TAG_subprogram)
7462 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7463 "Address");
7464 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7465 get_AT_low_pc (die), "Length");
7467 else
7469 /* A static variable; extract the symbol from DW_AT_location.
7470 Note that this code isn't currently hit, as we only emit
7471 aranges for functions (jason 9/23/99). */
7472 dw_attr_ref a = get_AT (die, DW_AT_location);
7473 dw_loc_descr_ref loc;
7475 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7477 loc = AT_loc (a);
7478 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7480 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7481 loc->dw_loc_oprnd1.v.val_addr, "Address");
7482 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7483 get_AT_unsigned (die, DW_AT_byte_size),
7484 "Length");
7488 /* Output the terminator words. */
7489 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7490 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7493 /* Add a new entry to .debug_ranges. Return the offset at which it
7494 was placed. */
7496 static unsigned int
7497 add_ranges (tree block)
7499 unsigned int in_use = ranges_table_in_use;
7501 if (in_use == ranges_table_allocated)
7503 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7504 ranges_table
7505 = ggc_realloc (ranges_table, (ranges_table_allocated
7506 * sizeof (struct dw_ranges_struct)));
7507 memset (ranges_table + ranges_table_in_use, 0,
7508 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7511 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7512 ranges_table_in_use = in_use + 1;
7514 return in_use * 2 * DWARF2_ADDR_SIZE;
7517 static void
7518 output_ranges (void)
7520 unsigned i;
7521 static const char *const start_fmt = "Offset 0x%x";
7522 const char *fmt = start_fmt;
7524 for (i = 0; i < ranges_table_in_use; i++)
7526 int block_num = ranges_table[i].block_num;
7528 if (block_num)
7530 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7531 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7533 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7534 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7536 /* If all code is in the text section, then the compilation
7537 unit base address defaults to DW_AT_low_pc, which is the
7538 base of the text section. */
7539 if (!have_multiple_function_sections)
7541 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7542 text_section_label,
7543 fmt, i * 2 * DWARF2_ADDR_SIZE);
7544 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7545 text_section_label, NULL);
7548 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7549 compilation unit base address to zero, which allows us to
7550 use absolute addresses, and not worry about whether the
7551 target supports cross-section arithmetic. */
7552 else
7554 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7555 fmt, i * 2 * DWARF2_ADDR_SIZE);
7556 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7559 fmt = NULL;
7561 else
7563 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7564 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7565 fmt = start_fmt;
7570 /* Data structure containing information about input files. */
7571 struct file_info
7573 const char *path; /* Complete file name. */
7574 const char *fname; /* File name part. */
7575 int length; /* Length of entire string. */
7576 struct dwarf_file_data * file_idx; /* Index in input file table. */
7577 int dir_idx; /* Index in directory table. */
7580 /* Data structure containing information about directories with source
7581 files. */
7582 struct dir_info
7584 const char *path; /* Path including directory name. */
7585 int length; /* Path length. */
7586 int prefix; /* Index of directory entry which is a prefix. */
7587 int count; /* Number of files in this directory. */
7588 int dir_idx; /* Index of directory used as base. */
7591 /* Callback function for file_info comparison. We sort by looking at
7592 the directories in the path. */
7594 static int
7595 file_info_cmp (const void *p1, const void *p2)
7597 const struct file_info *s1 = p1;
7598 const struct file_info *s2 = p2;
7599 unsigned char *cp1;
7600 unsigned char *cp2;
7602 /* Take care of file names without directories. We need to make sure that
7603 we return consistent values to qsort since some will get confused if
7604 we return the same value when identical operands are passed in opposite
7605 orders. So if neither has a directory, return 0 and otherwise return
7606 1 or -1 depending on which one has the directory. */
7607 if ((s1->path == s1->fname || s2->path == s2->fname))
7608 return (s2->path == s2->fname) - (s1->path == s1->fname);
7610 cp1 = (unsigned char *) s1->path;
7611 cp2 = (unsigned char *) s2->path;
7613 while (1)
7615 ++cp1;
7616 ++cp2;
7617 /* Reached the end of the first path? If so, handle like above. */
7618 if ((cp1 == (unsigned char *) s1->fname)
7619 || (cp2 == (unsigned char *) s2->fname))
7620 return ((cp2 == (unsigned char *) s2->fname)
7621 - (cp1 == (unsigned char *) s1->fname));
7623 /* Character of current path component the same? */
7624 else if (*cp1 != *cp2)
7625 return *cp1 - *cp2;
7629 struct file_name_acquire_data
7631 struct file_info *files;
7632 int used_files;
7633 int max_files;
7636 /* Traversal function for the hash table. */
7638 static int
7639 file_name_acquire (void ** slot, void *data)
7641 struct file_name_acquire_data *fnad = data;
7642 struct dwarf_file_data *d = *slot;
7643 struct file_info *fi;
7644 const char *f;
7646 gcc_assert (fnad->max_files >= d->emitted_number);
7648 if (! d->emitted_number)
7649 return 1;
7651 gcc_assert (fnad->max_files != fnad->used_files);
7653 fi = fnad->files + fnad->used_files++;
7655 /* Skip all leading "./". */
7656 f = d->filename;
7657 while (f[0] == '.' && f[1] == '/')
7658 f += 2;
7660 /* Create a new array entry. */
7661 fi->path = f;
7662 fi->length = strlen (f);
7663 fi->file_idx = d;
7665 /* Search for the file name part. */
7666 f = strrchr (f, '/');
7667 fi->fname = f == NULL ? fi->path : f + 1;
7668 return 1;
7671 /* Output the directory table and the file name table. We try to minimize
7672 the total amount of memory needed. A heuristic is used to avoid large
7673 slowdowns with many input files. */
7675 static void
7676 output_file_names (void)
7678 struct file_name_acquire_data fnad;
7679 int numfiles;
7680 struct file_info *files;
7681 struct dir_info *dirs;
7682 int *saved;
7683 int *savehere;
7684 int *backmap;
7685 int ndirs;
7686 int idx_offset;
7687 int i;
7688 int idx;
7690 if (!last_emitted_file)
7692 dw2_asm_output_data (1, 0, "End directory table");
7693 dw2_asm_output_data (1, 0, "End file name table");
7694 return;
7697 numfiles = last_emitted_file->emitted_number;
7699 /* Allocate the various arrays we need. */
7700 files = alloca (numfiles * sizeof (struct file_info));
7701 dirs = alloca (numfiles * sizeof (struct dir_info));
7703 fnad.files = files;
7704 fnad.used_files = 0;
7705 fnad.max_files = numfiles;
7706 htab_traverse (file_table, file_name_acquire, &fnad);
7707 gcc_assert (fnad.used_files == fnad.max_files);
7709 qsort (files, numfiles, sizeof (files[0]), file_info_cmp);
7711 /* Find all the different directories used. */
7712 dirs[0].path = files[0].path;
7713 dirs[0].length = files[0].fname - files[0].path;
7714 dirs[0].prefix = -1;
7715 dirs[0].count = 1;
7716 dirs[0].dir_idx = 0;
7717 files[0].dir_idx = 0;
7718 ndirs = 1;
7720 for (i = 1; i < numfiles; i++)
7721 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7722 && memcmp (dirs[ndirs - 1].path, files[i].path,
7723 dirs[ndirs - 1].length) == 0)
7725 /* Same directory as last entry. */
7726 files[i].dir_idx = ndirs - 1;
7727 ++dirs[ndirs - 1].count;
7729 else
7731 int j;
7733 /* This is a new directory. */
7734 dirs[ndirs].path = files[i].path;
7735 dirs[ndirs].length = files[i].fname - files[i].path;
7736 dirs[ndirs].count = 1;
7737 dirs[ndirs].dir_idx = ndirs;
7738 files[i].dir_idx = ndirs;
7740 /* Search for a prefix. */
7741 dirs[ndirs].prefix = -1;
7742 for (j = 0; j < ndirs; j++)
7743 if (dirs[j].length < dirs[ndirs].length
7744 && dirs[j].length > 1
7745 && (dirs[ndirs].prefix == -1
7746 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7747 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7748 dirs[ndirs].prefix = j;
7750 ++ndirs;
7753 /* Now to the actual work. We have to find a subset of the directories which
7754 allow expressing the file name using references to the directory table
7755 with the least amount of characters. We do not do an exhaustive search
7756 where we would have to check out every combination of every single
7757 possible prefix. Instead we use a heuristic which provides nearly optimal
7758 results in most cases and never is much off. */
7759 saved = alloca (ndirs * sizeof (int));
7760 savehere = alloca (ndirs * sizeof (int));
7762 memset (saved, '\0', ndirs * sizeof (saved[0]));
7763 for (i = 0; i < ndirs; i++)
7765 int j;
7766 int total;
7768 /* We can always save some space for the current directory. But this
7769 does not mean it will be enough to justify adding the directory. */
7770 savehere[i] = dirs[i].length;
7771 total = (savehere[i] - saved[i]) * dirs[i].count;
7773 for (j = i + 1; j < ndirs; j++)
7775 savehere[j] = 0;
7776 if (saved[j] < dirs[i].length)
7778 /* Determine whether the dirs[i] path is a prefix of the
7779 dirs[j] path. */
7780 int k;
7782 k = dirs[j].prefix;
7783 while (k != -1 && k != (int) i)
7784 k = dirs[k].prefix;
7786 if (k == (int) i)
7788 /* Yes it is. We can possibly save some memory by
7789 writing the filenames in dirs[j] relative to
7790 dirs[i]. */
7791 savehere[j] = dirs[i].length;
7792 total += (savehere[j] - saved[j]) * dirs[j].count;
7797 /* Check whether we can save enough to justify adding the dirs[i]
7798 directory. */
7799 if (total > dirs[i].length + 1)
7801 /* It's worthwhile adding. */
7802 for (j = i; j < ndirs; j++)
7803 if (savehere[j] > 0)
7805 /* Remember how much we saved for this directory so far. */
7806 saved[j] = savehere[j];
7808 /* Remember the prefix directory. */
7809 dirs[j].dir_idx = i;
7814 /* Emit the directory name table. */
7815 idx = 1;
7816 idx_offset = dirs[0].length > 0 ? 1 : 0;
7817 for (i = 1 - idx_offset; i < ndirs; i++)
7818 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7819 "Directory Entry: 0x%x", i + idx_offset);
7821 dw2_asm_output_data (1, 0, "End directory table");
7823 /* We have to emit them in the order of emitted_number since that's
7824 used in the debug info generation. To do this efficiently we
7825 generate a back-mapping of the indices first. */
7826 backmap = alloca (numfiles * sizeof (int));
7827 for (i = 0; i < numfiles; i++)
7828 backmap[files[i].file_idx->emitted_number - 1] = i;
7830 /* Now write all the file names. */
7831 for (i = 0; i < numfiles; i++)
7833 int file_idx = backmap[i];
7834 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7836 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7837 "File Entry: 0x%x", (unsigned) i + 1);
7839 /* Include directory index. */
7840 dw2_asm_output_data_uleb128 (dir_idx + idx_offset, NULL);
7842 /* Modification time. */
7843 dw2_asm_output_data_uleb128 (0, NULL);
7845 /* File length in bytes. */
7846 dw2_asm_output_data_uleb128 (0, NULL);
7849 dw2_asm_output_data (1, 0, "End file name table");
7853 /* Output the source line number correspondence information. This
7854 information goes into the .debug_line section. */
7856 static void
7857 output_line_info (void)
7859 char l1[20], l2[20], p1[20], p2[20];
7860 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7861 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7862 unsigned opc;
7863 unsigned n_op_args;
7864 unsigned long lt_index;
7865 unsigned long current_line;
7866 long line_offset;
7867 long line_delta;
7868 unsigned long current_file;
7869 unsigned long function;
7871 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7872 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7873 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7874 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7876 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7877 dw2_asm_output_data (4, 0xffffffff,
7878 "Initial length escape value indicating 64-bit DWARF extension");
7879 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7880 "Length of Source Line Info");
7881 ASM_OUTPUT_LABEL (asm_out_file, l1);
7883 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7884 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7885 ASM_OUTPUT_LABEL (asm_out_file, p1);
7887 /* Define the architecture-dependent minimum instruction length (in
7888 bytes). In this implementation of DWARF, this field is used for
7889 information purposes only. Since GCC generates assembly language,
7890 we have no a priori knowledge of how many instruction bytes are
7891 generated for each source line, and therefore can use only the
7892 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7893 commands. Accordingly, we fix this as `1', which is "correct
7894 enough" for all architectures, and don't let the target override. */
7895 dw2_asm_output_data (1, 1,
7896 "Minimum Instruction Length");
7898 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7899 "Default is_stmt_start flag");
7900 dw2_asm_output_data (1, DWARF_LINE_BASE,
7901 "Line Base Value (Special Opcodes)");
7902 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7903 "Line Range Value (Special Opcodes)");
7904 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7905 "Special Opcode Base");
7907 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7909 switch (opc)
7911 case DW_LNS_advance_pc:
7912 case DW_LNS_advance_line:
7913 case DW_LNS_set_file:
7914 case DW_LNS_set_column:
7915 case DW_LNS_fixed_advance_pc:
7916 n_op_args = 1;
7917 break;
7918 default:
7919 n_op_args = 0;
7920 break;
7923 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7924 opc, n_op_args);
7927 /* Write out the information about the files we use. */
7928 output_file_names ();
7929 ASM_OUTPUT_LABEL (asm_out_file, p2);
7931 /* We used to set the address register to the first location in the text
7932 section here, but that didn't accomplish anything since we already
7933 have a line note for the opening brace of the first function. */
7935 /* Generate the line number to PC correspondence table, encoded as
7936 a series of state machine operations. */
7937 current_file = 1;
7938 current_line = 1;
7940 if (cfun && in_cold_section_p)
7941 strcpy (prev_line_label, cfun->cold_section_label);
7942 else
7943 strcpy (prev_line_label, text_section_label);
7944 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7946 dw_line_info_ref line_info = &line_info_table[lt_index];
7948 #if 0
7949 /* Disable this optimization for now; GDB wants to see two line notes
7950 at the beginning of a function so it can find the end of the
7951 prologue. */
7953 /* Don't emit anything for redundant notes. Just updating the
7954 address doesn't accomplish anything, because we already assume
7955 that anything after the last address is this line. */
7956 if (line_info->dw_line_num == current_line
7957 && line_info->dw_file_num == current_file)
7958 continue;
7959 #endif
7961 /* Emit debug info for the address of the current line.
7963 Unfortunately, we have little choice here currently, and must always
7964 use the most general form. GCC does not know the address delta
7965 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7966 attributes which will give an upper bound on the address range. We
7967 could perhaps use length attributes to determine when it is safe to
7968 use DW_LNS_fixed_advance_pc. */
7970 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7971 if (0)
7973 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7974 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7975 "DW_LNS_fixed_advance_pc");
7976 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7978 else
7980 /* This can handle any delta. This takes
7981 4+DWARF2_ADDR_SIZE bytes. */
7982 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7983 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7984 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7985 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7988 strcpy (prev_line_label, line_label);
7990 /* Emit debug info for the source file of the current line, if
7991 different from the previous line. */
7992 if (line_info->dw_file_num != current_file)
7994 current_file = line_info->dw_file_num;
7995 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7996 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
7999 /* Emit debug info for the current line number, choosing the encoding
8000 that uses the least amount of space. */
8001 if (line_info->dw_line_num != current_line)
8003 line_offset = line_info->dw_line_num - current_line;
8004 line_delta = line_offset - DWARF_LINE_BASE;
8005 current_line = line_info->dw_line_num;
8006 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8007 /* This can handle deltas from -10 to 234, using the current
8008 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
8009 takes 1 byte. */
8010 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8011 "line %lu", current_line);
8012 else
8014 /* This can handle any delta. This takes at least 4 bytes,
8015 depending on the value being encoded. */
8016 dw2_asm_output_data (1, DW_LNS_advance_line,
8017 "advance to line %lu", current_line);
8018 dw2_asm_output_data_sleb128 (line_offset, NULL);
8019 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8022 else
8023 /* We still need to start a new row, so output a copy insn. */
8024 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8027 /* Emit debug info for the address of the end of the function. */
8028 if (0)
8030 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8031 "DW_LNS_fixed_advance_pc");
8032 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
8034 else
8036 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8037 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8038 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8039 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
8042 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8043 dw2_asm_output_data_uleb128 (1, NULL);
8044 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8046 function = 0;
8047 current_file = 1;
8048 current_line = 1;
8049 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
8051 dw_separate_line_info_ref line_info
8052 = &separate_line_info_table[lt_index];
8054 #if 0
8055 /* Don't emit anything for redundant notes. */
8056 if (line_info->dw_line_num == current_line
8057 && line_info->dw_file_num == current_file
8058 && line_info->function == function)
8059 goto cont;
8060 #endif
8062 /* Emit debug info for the address of the current line. If this is
8063 a new function, or the first line of a function, then we need
8064 to handle it differently. */
8065 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
8066 lt_index);
8067 if (function != line_info->function)
8069 function = line_info->function;
8071 /* Set the address register to the first line in the function. */
8072 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8073 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8074 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8075 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8077 else
8079 /* ??? See the DW_LNS_advance_pc comment above. */
8080 if (0)
8082 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8083 "DW_LNS_fixed_advance_pc");
8084 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8086 else
8088 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8089 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8090 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8091 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8095 strcpy (prev_line_label, line_label);
8097 /* Emit debug info for the source file of the current line, if
8098 different from the previous line. */
8099 if (line_info->dw_file_num != current_file)
8101 current_file = line_info->dw_file_num;
8102 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
8103 dw2_asm_output_data_uleb128 (current_file, "%lu", current_file);
8106 /* Emit debug info for the current line number, choosing the encoding
8107 that uses the least amount of space. */
8108 if (line_info->dw_line_num != current_line)
8110 line_offset = line_info->dw_line_num - current_line;
8111 line_delta = line_offset - DWARF_LINE_BASE;
8112 current_line = line_info->dw_line_num;
8113 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
8114 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
8115 "line %lu", current_line);
8116 else
8118 dw2_asm_output_data (1, DW_LNS_advance_line,
8119 "advance to line %lu", current_line);
8120 dw2_asm_output_data_sleb128 (line_offset, NULL);
8121 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8124 else
8125 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
8127 #if 0
8128 cont:
8129 #endif
8131 lt_index++;
8133 /* If we're done with a function, end its sequence. */
8134 if (lt_index == separate_line_info_table_in_use
8135 || separate_line_info_table[lt_index].function != function)
8137 current_file = 1;
8138 current_line = 1;
8140 /* Emit debug info for the address of the end of the function. */
8141 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
8142 if (0)
8144 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
8145 "DW_LNS_fixed_advance_pc");
8146 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
8148 else
8150 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
8151 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
8152 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
8153 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
8156 /* Output the marker for the end of this sequence. */
8157 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
8158 dw2_asm_output_data_uleb128 (1, NULL);
8159 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
8163 /* Output the marker for the end of the line number info. */
8164 ASM_OUTPUT_LABEL (asm_out_file, l2);
8167 /* Given a pointer to a tree node for some base type, return a pointer to
8168 a DIE that describes the given type.
8170 This routine must only be called for GCC type nodes that correspond to
8171 Dwarf base (fundamental) types. */
8173 static dw_die_ref
8174 base_type_die (tree type)
8176 dw_die_ref base_type_result;
8177 enum dwarf_type encoding;
8179 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
8180 return 0;
8182 switch (TREE_CODE (type))
8184 case INTEGER_TYPE:
8185 if (TYPE_STRING_FLAG (type))
8187 if (TYPE_UNSIGNED (type))
8188 encoding = DW_ATE_unsigned_char;
8189 else
8190 encoding = DW_ATE_signed_char;
8192 else if (TYPE_UNSIGNED (type))
8193 encoding = DW_ATE_unsigned;
8194 else
8195 encoding = DW_ATE_signed;
8196 break;
8198 case REAL_TYPE:
8199 if (DECIMAL_FLOAT_MODE_P (TYPE_MODE (type)))
8200 encoding = DW_ATE_decimal_float;
8201 else
8202 encoding = DW_ATE_float;
8203 break;
8205 /* Dwarf2 doesn't know anything about complex ints, so use
8206 a user defined type for it. */
8207 case COMPLEX_TYPE:
8208 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8209 encoding = DW_ATE_complex_float;
8210 else
8211 encoding = DW_ATE_lo_user;
8212 break;
8214 case BOOLEAN_TYPE:
8215 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8216 encoding = DW_ATE_boolean;
8217 break;
8219 default:
8220 /* No other TREE_CODEs are Dwarf fundamental types. */
8221 gcc_unreachable ();
8224 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8226 /* This probably indicates a bug. */
8227 if (! TYPE_NAME (type))
8228 add_name_attribute (base_type_result, "__unknown__");
8230 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8231 int_size_in_bytes (type));
8232 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8234 return base_type_result;
8237 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8238 the Dwarf "root" type for the given input type. The Dwarf "root" type of
8239 a given type is generally the same as the given type, except that if the
8240 given type is a pointer or reference type, then the root type of the given
8241 type is the root type of the "basis" type for the pointer or reference
8242 type. (This definition of the "root" type is recursive.) Also, the root
8243 type of a `const' qualified type or a `volatile' qualified type is the
8244 root type of the given type without the qualifiers. */
8246 static tree
8247 root_type (tree type)
8249 if (TREE_CODE (type) == ERROR_MARK)
8250 return error_mark_node;
8252 switch (TREE_CODE (type))
8254 case ERROR_MARK:
8255 return error_mark_node;
8257 case POINTER_TYPE:
8258 case REFERENCE_TYPE:
8259 return type_main_variant (root_type (TREE_TYPE (type)));
8261 default:
8262 return type_main_variant (type);
8266 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8267 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8269 static inline int
8270 is_base_type (tree type)
8272 switch (TREE_CODE (type))
8274 case ERROR_MARK:
8275 case VOID_TYPE:
8276 case INTEGER_TYPE:
8277 case REAL_TYPE:
8278 case COMPLEX_TYPE:
8279 case BOOLEAN_TYPE:
8280 return 1;
8282 case ARRAY_TYPE:
8283 case RECORD_TYPE:
8284 case UNION_TYPE:
8285 case QUAL_UNION_TYPE:
8286 case ENUMERAL_TYPE:
8287 case FUNCTION_TYPE:
8288 case METHOD_TYPE:
8289 case POINTER_TYPE:
8290 case REFERENCE_TYPE:
8291 case OFFSET_TYPE:
8292 case LANG_TYPE:
8293 case VECTOR_TYPE:
8294 return 0;
8296 default:
8297 gcc_unreachable ();
8300 return 0;
8303 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8304 node, return the size in bits for the type if it is a constant, or else
8305 return the alignment for the type if the type's size is not constant, or
8306 else return BITS_PER_WORD if the type actually turns out to be an
8307 ERROR_MARK node. */
8309 static inline unsigned HOST_WIDE_INT
8310 simple_type_size_in_bits (tree type)
8312 if (TREE_CODE (type) == ERROR_MARK)
8313 return BITS_PER_WORD;
8314 else if (TYPE_SIZE (type) == NULL_TREE)
8315 return 0;
8316 else if (host_integerp (TYPE_SIZE (type), 1))
8317 return tree_low_cst (TYPE_SIZE (type), 1);
8318 else
8319 return TYPE_ALIGN (type);
8322 /* Return true if the debug information for the given type should be
8323 emitted as a subrange type. */
8325 static inline bool
8326 is_subrange_type (tree type)
8328 tree subtype = TREE_TYPE (type);
8330 /* Subrange types are identified by the fact that they are integer
8331 types, and that they have a subtype which is either an integer type
8332 or an enumeral type. */
8334 if (TREE_CODE (type) != INTEGER_TYPE
8335 || subtype == NULL_TREE)
8336 return false;
8338 if (TREE_CODE (subtype) != INTEGER_TYPE
8339 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8340 return false;
8342 if (TREE_CODE (type) == TREE_CODE (subtype)
8343 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8344 && TYPE_MIN_VALUE (type) != NULL
8345 && TYPE_MIN_VALUE (subtype) != NULL
8346 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8347 && TYPE_MAX_VALUE (type) != NULL
8348 && TYPE_MAX_VALUE (subtype) != NULL
8349 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8351 /* The type and its subtype have the same representation. If in
8352 addition the two types also have the same name, then the given
8353 type is not a subrange type, but rather a plain base type. */
8354 /* FIXME: brobecker/2004-03-22:
8355 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8356 therefore be sufficient to check the TYPE_SIZE node pointers
8357 rather than checking the actual size. Unfortunately, we have
8358 found some cases, such as in the Ada "integer" type, where
8359 this is not the case. Until this problem is solved, we need to
8360 keep checking the actual size. */
8361 tree type_name = TYPE_NAME (type);
8362 tree subtype_name = TYPE_NAME (subtype);
8364 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8365 type_name = DECL_NAME (type_name);
8367 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8368 subtype_name = DECL_NAME (subtype_name);
8370 if (type_name == subtype_name)
8371 return false;
8374 return true;
8377 /* Given a pointer to a tree node for a subrange type, return a pointer
8378 to a DIE that describes the given type. */
8380 static dw_die_ref
8381 subrange_type_die (tree type, dw_die_ref context_die)
8383 dw_die_ref subrange_die;
8384 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8386 if (context_die == NULL)
8387 context_die = comp_unit_die;
8389 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8391 if (int_size_in_bytes (TREE_TYPE (type)) != size_in_bytes)
8393 /* The size of the subrange type and its base type do not match,
8394 so we need to generate a size attribute for the subrange type. */
8395 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8398 if (TYPE_MIN_VALUE (type) != NULL)
8399 add_bound_info (subrange_die, DW_AT_lower_bound,
8400 TYPE_MIN_VALUE (type));
8401 if (TYPE_MAX_VALUE (type) != NULL)
8402 add_bound_info (subrange_die, DW_AT_upper_bound,
8403 TYPE_MAX_VALUE (type));
8405 return subrange_die;
8408 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8409 entry that chains various modifiers in front of the given type. */
8411 static dw_die_ref
8412 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8413 dw_die_ref context_die)
8415 enum tree_code code = TREE_CODE (type);
8416 dw_die_ref mod_type_die;
8417 dw_die_ref sub_die = NULL;
8418 tree item_type = NULL;
8419 tree qualified_type;
8420 tree name;
8422 if (code == ERROR_MARK)
8423 return NULL;
8425 /* See if we already have the appropriately qualified variant of
8426 this type. */
8427 qualified_type
8428 = get_qualified_type (type,
8429 ((is_const_type ? TYPE_QUAL_CONST : 0)
8430 | (is_volatile_type ? TYPE_QUAL_VOLATILE : 0)));
8432 /* If we do, then we can just use its DIE, if it exists. */
8433 if (qualified_type)
8435 mod_type_die = lookup_type_die (qualified_type);
8436 if (mod_type_die)
8437 return mod_type_die;
8440 name = qualified_type ? TYPE_NAME (qualified_type) : NULL;
8442 /* Handle C typedef types. */
8443 if (name && TREE_CODE (name) == TYPE_DECL && DECL_ORIGINAL_TYPE (name))
8445 tree dtype = TREE_TYPE (name);
8447 if (qualified_type == dtype)
8449 /* For a named type, use the typedef. */
8450 gen_type_die (qualified_type, context_die);
8451 return lookup_type_die (qualified_type);
8453 else if (DECL_ORIGINAL_TYPE (name)
8454 && (is_const_type < TYPE_READONLY (dtype)
8455 || is_volatile_type < TYPE_VOLATILE (dtype)))
8456 /* cv-unqualified version of named type. Just use the unnamed
8457 type to which it refers. */
8458 return modified_type_die (DECL_ORIGINAL_TYPE (name),
8459 is_const_type, is_volatile_type,
8460 context_die);
8461 /* Else cv-qualified version of named type; fall through. */
8464 if (is_const_type)
8466 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8467 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8469 else if (is_volatile_type)
8471 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8472 sub_die = modified_type_die (type, 0, 0, context_die);
8474 else if (code == POINTER_TYPE)
8476 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8477 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8478 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8479 item_type = TREE_TYPE (type);
8481 else if (code == REFERENCE_TYPE)
8483 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8484 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8485 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8486 item_type = TREE_TYPE (type);
8488 else if (is_subrange_type (type))
8490 mod_type_die = subrange_type_die (type, context_die);
8491 item_type = TREE_TYPE (type);
8493 else if (is_base_type (type))
8494 mod_type_die = base_type_die (type);
8495 else
8497 gen_type_die (type, context_die);
8499 /* We have to get the type_main_variant here (and pass that to the
8500 `lookup_type_die' routine) because the ..._TYPE node we have
8501 might simply be a *copy* of some original type node (where the
8502 copy was created to help us keep track of typedef names) and
8503 that copy might have a different TYPE_UID from the original
8504 ..._TYPE node. */
8505 if (TREE_CODE (type) != VECTOR_TYPE)
8506 return lookup_type_die (type_main_variant (type));
8507 else
8508 /* Vectors have the debugging information in the type,
8509 not the main variant. */
8510 return lookup_type_die (type);
8513 /* Builtin types don't have a DECL_ORIGINAL_TYPE. For those,
8514 don't output a DW_TAG_typedef, since there isn't one in the
8515 user's program; just attach a DW_AT_name to the type. */
8516 if (name
8517 && (TREE_CODE (name) != TYPE_DECL || TREE_TYPE (name) == qualified_type))
8519 if (TREE_CODE (name) == TYPE_DECL)
8520 /* Could just call add_name_and_src_coords_attributes here,
8521 but since this is a builtin type it doesn't have any
8522 useful source coordinates anyway. */
8523 name = DECL_NAME (name);
8524 add_name_attribute (mod_type_die, IDENTIFIER_POINTER (name));
8527 if (qualified_type)
8528 equate_type_number_to_die (qualified_type, mod_type_die);
8530 if (item_type)
8531 /* We must do this after the equate_type_number_to_die call, in case
8532 this is a recursive type. This ensures that the modified_type_die
8533 recursion will terminate even if the type is recursive. Recursive
8534 types are possible in Ada. */
8535 sub_die = modified_type_die (item_type,
8536 TYPE_READONLY (item_type),
8537 TYPE_VOLATILE (item_type),
8538 context_die);
8540 if (sub_die != NULL)
8541 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8543 return mod_type_die;
8546 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8547 an enumerated type. */
8549 static inline int
8550 type_is_enum (tree type)
8552 return TREE_CODE (type) == ENUMERAL_TYPE;
8555 /* Return the DBX register number described by a given RTL node. */
8557 static unsigned int
8558 dbx_reg_number (rtx rtl)
8560 unsigned regno = REGNO (rtl);
8562 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8564 #ifdef LEAF_REG_REMAP
8566 int leaf_reg;
8568 leaf_reg = LEAF_REG_REMAP (regno);
8569 if (leaf_reg != -1)
8570 regno = (unsigned) leaf_reg;
8572 #endif
8574 return DBX_REGISTER_NUMBER (regno);
8577 /* Optionally add a DW_OP_piece term to a location description expression.
8578 DW_OP_piece is only added if the location description expression already
8579 doesn't end with DW_OP_piece. */
8581 static void
8582 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8584 dw_loc_descr_ref loc;
8586 if (*list_head != NULL)
8588 /* Find the end of the chain. */
8589 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8592 if (loc->dw_loc_opc != DW_OP_piece)
8593 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8597 /* Return a location descriptor that designates a machine register or
8598 zero if there is none. */
8600 static dw_loc_descr_ref
8601 reg_loc_descriptor (rtx rtl)
8603 rtx regs;
8605 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8606 return 0;
8608 regs = targetm.dwarf_register_span (rtl);
8610 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1 || regs)
8611 return multiple_reg_loc_descriptor (rtl, regs);
8612 else
8613 return one_reg_loc_descriptor (dbx_reg_number (rtl));
8616 /* Return a location descriptor that designates a machine register for
8617 a given hard register number. */
8619 static dw_loc_descr_ref
8620 one_reg_loc_descriptor (unsigned int regno)
8622 if (regno <= 31)
8623 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8624 else
8625 return new_loc_descr (DW_OP_regx, regno, 0);
8628 /* Given an RTL of a register, return a location descriptor that
8629 designates a value that spans more than one register. */
8631 static dw_loc_descr_ref
8632 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8634 int nregs, size, i;
8635 unsigned reg;
8636 dw_loc_descr_ref loc_result = NULL;
8638 reg = REGNO (rtl);
8639 #ifdef LEAF_REG_REMAP
8641 int leaf_reg;
8643 leaf_reg = LEAF_REG_REMAP (reg);
8644 if (leaf_reg != -1)
8645 reg = (unsigned) leaf_reg;
8647 #endif
8648 gcc_assert ((unsigned) DBX_REGISTER_NUMBER (reg) == dbx_reg_number (rtl));
8649 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8651 /* Simple, contiguous registers. */
8652 if (regs == NULL_RTX)
8654 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8656 loc_result = NULL;
8657 while (nregs--)
8659 dw_loc_descr_ref t;
8661 t = one_reg_loc_descriptor (DBX_REGISTER_NUMBER (reg));
8662 add_loc_descr (&loc_result, t);
8663 add_loc_descr_op_piece (&loc_result, size);
8664 ++reg;
8666 return loc_result;
8669 /* Now onto stupid register sets in non contiguous locations. */
8671 gcc_assert (GET_CODE (regs) == PARALLEL);
8673 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8674 loc_result = NULL;
8676 for (i = 0; i < XVECLEN (regs, 0); ++i)
8678 dw_loc_descr_ref t;
8680 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8681 add_loc_descr (&loc_result, t);
8682 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8683 add_loc_descr_op_piece (&loc_result, size);
8685 return loc_result;
8688 /* Return a location descriptor that designates a constant. */
8690 static dw_loc_descr_ref
8691 int_loc_descriptor (HOST_WIDE_INT i)
8693 enum dwarf_location_atom op;
8695 /* Pick the smallest representation of a constant, rather than just
8696 defaulting to the LEB encoding. */
8697 if (i >= 0)
8699 if (i <= 31)
8700 op = DW_OP_lit0 + i;
8701 else if (i <= 0xff)
8702 op = DW_OP_const1u;
8703 else if (i <= 0xffff)
8704 op = DW_OP_const2u;
8705 else if (HOST_BITS_PER_WIDE_INT == 32
8706 || i <= 0xffffffff)
8707 op = DW_OP_const4u;
8708 else
8709 op = DW_OP_constu;
8711 else
8713 if (i >= -0x80)
8714 op = DW_OP_const1s;
8715 else if (i >= -0x8000)
8716 op = DW_OP_const2s;
8717 else if (HOST_BITS_PER_WIDE_INT == 32
8718 || i >= -0x80000000)
8719 op = DW_OP_const4s;
8720 else
8721 op = DW_OP_consts;
8724 return new_loc_descr (op, i, 0);
8727 /* Return a location descriptor that designates a base+offset location. */
8729 static dw_loc_descr_ref
8730 based_loc_descr (rtx reg, HOST_WIDE_INT offset)
8732 unsigned int regno;
8734 /* We only use "frame base" when we're sure we're talking about the
8735 post-prologue local stack frame. We do this by *not* running
8736 register elimination until this point, and recognizing the special
8737 argument pointer and soft frame pointer rtx's. */
8738 if (reg == arg_pointer_rtx || reg == frame_pointer_rtx)
8740 rtx elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8742 if (elim != reg)
8744 if (GET_CODE (elim) == PLUS)
8746 offset += INTVAL (XEXP (elim, 1));
8747 elim = XEXP (elim, 0);
8749 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
8750 : stack_pointer_rtx));
8751 offset += frame_pointer_fb_offset;
8753 return new_loc_descr (DW_OP_fbreg, offset, 0);
8757 regno = dbx_reg_number (reg);
8758 if (regno <= 31)
8759 return new_loc_descr (DW_OP_breg0 + regno, offset, 0);
8760 else
8761 return new_loc_descr (DW_OP_bregx, regno, offset);
8764 /* Return true if this RTL expression describes a base+offset calculation. */
8766 static inline int
8767 is_based_loc (rtx rtl)
8769 return (GET_CODE (rtl) == PLUS
8770 && ((REG_P (XEXP (rtl, 0))
8771 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8772 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8775 /* The following routine converts the RTL for a variable or parameter
8776 (resident in memory) into an equivalent Dwarf representation of a
8777 mechanism for getting the address of that same variable onto the top of a
8778 hypothetical "address evaluation" stack.
8780 When creating memory location descriptors, we are effectively transforming
8781 the RTL for a memory-resident object into its Dwarf postfix expression
8782 equivalent. This routine recursively descends an RTL tree, turning
8783 it into Dwarf postfix code as it goes.
8785 MODE is the mode of the memory reference, needed to handle some
8786 autoincrement addressing modes.
8788 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the
8789 location list for RTL.
8791 Return 0 if we can't represent the location. */
8793 static dw_loc_descr_ref
8794 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8796 dw_loc_descr_ref mem_loc_result = NULL;
8797 enum dwarf_location_atom op;
8799 /* Note that for a dynamically sized array, the location we will generate a
8800 description of here will be the lowest numbered location which is
8801 actually within the array. That's *not* necessarily the same as the
8802 zeroth element of the array. */
8804 rtl = targetm.delegitimize_address (rtl);
8806 switch (GET_CODE (rtl))
8808 case POST_INC:
8809 case POST_DEC:
8810 case POST_MODIFY:
8811 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8812 just fall into the SUBREG code. */
8814 /* ... fall through ... */
8816 case SUBREG:
8817 /* The case of a subreg may arise when we have a local (register)
8818 variable or a formal (register) parameter which doesn't quite fill
8819 up an entire register. For now, just assume that it is
8820 legitimate to make the Dwarf info refer to the whole register which
8821 contains the given subreg. */
8822 rtl = XEXP (rtl, 0);
8824 /* ... fall through ... */
8826 case REG:
8827 /* Whenever a register number forms a part of the description of the
8828 method for calculating the (dynamic) address of a memory resident
8829 object, DWARF rules require the register number be referred to as
8830 a "base register". This distinction is not based in any way upon
8831 what category of register the hardware believes the given register
8832 belongs to. This is strictly DWARF terminology we're dealing with
8833 here. Note that in cases where the location of a memory-resident
8834 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8835 OP_CONST (0)) the actual DWARF location descriptor that we generate
8836 may just be OP_BASEREG (basereg). This may look deceptively like
8837 the object in question was allocated to a register (rather than in
8838 memory) so DWARF consumers need to be aware of the subtle
8839 distinction between OP_REG and OP_BASEREG. */
8840 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8841 mem_loc_result = based_loc_descr (rtl, 0);
8842 break;
8844 case MEM:
8845 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8846 if (mem_loc_result != 0)
8847 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8848 break;
8850 case LO_SUM:
8851 rtl = XEXP (rtl, 1);
8853 /* ... fall through ... */
8855 case LABEL_REF:
8856 /* Some ports can transform a symbol ref into a label ref, because
8857 the symbol ref is too far away and has to be dumped into a constant
8858 pool. */
8859 case CONST:
8860 case SYMBOL_REF:
8861 /* Alternatively, the symbol in the constant pool might be referenced
8862 by a different symbol. */
8863 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8865 bool marked;
8866 rtx tmp = get_pool_constant_mark (rtl, &marked);
8868 if (GET_CODE (tmp) == SYMBOL_REF)
8870 rtl = tmp;
8871 if (CONSTANT_POOL_ADDRESS_P (tmp))
8872 get_pool_constant_mark (tmp, &marked);
8873 else
8874 marked = true;
8877 /* If all references to this pool constant were optimized away,
8878 it was not output and thus we can't represent it.
8879 FIXME: might try to use DW_OP_const_value here, though
8880 DW_OP_piece complicates it. */
8881 if (!marked)
8882 return 0;
8885 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8886 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8887 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8888 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
8889 break;
8891 case PRE_MODIFY:
8892 /* Extract the PLUS expression nested inside and fall into
8893 PLUS code below. */
8894 rtl = XEXP (rtl, 1);
8895 goto plus;
8897 case PRE_INC:
8898 case PRE_DEC:
8899 /* Turn these into a PLUS expression and fall into the PLUS code
8900 below. */
8901 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8902 GEN_INT (GET_CODE (rtl) == PRE_INC
8903 ? GET_MODE_UNIT_SIZE (mode)
8904 : -GET_MODE_UNIT_SIZE (mode)));
8906 /* ... fall through ... */
8908 case PLUS:
8909 plus:
8910 if (is_based_loc (rtl))
8911 mem_loc_result = based_loc_descr (XEXP (rtl, 0),
8912 INTVAL (XEXP (rtl, 1)));
8913 else
8915 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8916 if (mem_loc_result == 0)
8917 break;
8919 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8920 && INTVAL (XEXP (rtl, 1)) >= 0)
8921 add_loc_descr (&mem_loc_result,
8922 new_loc_descr (DW_OP_plus_uconst,
8923 INTVAL (XEXP (rtl, 1)), 0));
8924 else
8926 add_loc_descr (&mem_loc_result,
8927 mem_loc_descriptor (XEXP (rtl, 1), mode));
8928 add_loc_descr (&mem_loc_result,
8929 new_loc_descr (DW_OP_plus, 0, 0));
8932 break;
8934 /* If a pseudo-reg is optimized away, it is possible for it to
8935 be replaced with a MEM containing a multiply or shift. */
8936 case MULT:
8937 op = DW_OP_mul;
8938 goto do_binop;
8940 case ASHIFT:
8941 op = DW_OP_shl;
8942 goto do_binop;
8944 case ASHIFTRT:
8945 op = DW_OP_shra;
8946 goto do_binop;
8948 case LSHIFTRT:
8949 op = DW_OP_shr;
8950 goto do_binop;
8952 do_binop:
8954 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8955 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8957 if (op0 == 0 || op1 == 0)
8958 break;
8960 mem_loc_result = op0;
8961 add_loc_descr (&mem_loc_result, op1);
8962 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
8963 break;
8966 case CONST_INT:
8967 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8968 break;
8970 default:
8971 gcc_unreachable ();
8974 return mem_loc_result;
8977 /* Return a descriptor that describes the concatenation of two locations.
8978 This is typically a complex variable. */
8980 static dw_loc_descr_ref
8981 concat_loc_descriptor (rtx x0, rtx x1)
8983 dw_loc_descr_ref cc_loc_result = NULL;
8984 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8985 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8987 if (x0_ref == 0 || x1_ref == 0)
8988 return 0;
8990 cc_loc_result = x0_ref;
8991 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
8993 add_loc_descr (&cc_loc_result, x1_ref);
8994 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
8996 return cc_loc_result;
8999 /* Output a proper Dwarf location descriptor for a variable or parameter
9000 which is either allocated in a register or in a memory location. For a
9001 register, we just generate an OP_REG and the register number. For a
9002 memory location we provide a Dwarf postfix expression describing how to
9003 generate the (dynamic) address of the object onto the address stack.
9005 If we don't know how to describe it, return 0. */
9007 static dw_loc_descr_ref
9008 loc_descriptor (rtx rtl)
9010 dw_loc_descr_ref loc_result = NULL;
9012 switch (GET_CODE (rtl))
9014 case SUBREG:
9015 /* The case of a subreg may arise when we have a local (register)
9016 variable or a formal (register) parameter which doesn't quite fill
9017 up an entire register. For now, just assume that it is
9018 legitimate to make the Dwarf info refer to the whole register which
9019 contains the given subreg. */
9020 rtl = SUBREG_REG (rtl);
9022 /* ... fall through ... */
9024 case REG:
9025 loc_result = reg_loc_descriptor (rtl);
9026 break;
9028 case MEM:
9029 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
9030 break;
9032 case CONCAT:
9033 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
9034 break;
9036 case VAR_LOCATION:
9037 /* Single part. */
9038 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
9040 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0));
9041 break;
9044 rtl = XEXP (rtl, 1);
9045 /* FALLTHRU */
9047 case PARALLEL:
9049 rtvec par_elems = XVEC (rtl, 0);
9050 int num_elem = GET_NUM_ELEM (par_elems);
9051 enum machine_mode mode;
9052 int i;
9054 /* Create the first one, so we have something to add to. */
9055 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0));
9056 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
9057 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9058 for (i = 1; i < num_elem; i++)
9060 dw_loc_descr_ref temp;
9062 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0));
9063 add_loc_descr (&loc_result, temp);
9064 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
9065 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
9068 break;
9070 default:
9071 gcc_unreachable ();
9074 return loc_result;
9077 /* Similar, but generate the descriptor from trees instead of rtl. This comes
9078 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
9079 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
9080 top-level invocation, and we require the address of LOC; is 0 if we require
9081 the value of LOC. */
9083 static dw_loc_descr_ref
9084 loc_descriptor_from_tree_1 (tree loc, int want_address)
9086 dw_loc_descr_ref ret, ret1;
9087 int have_address = 0;
9088 enum dwarf_location_atom op;
9090 /* ??? Most of the time we do not take proper care for sign/zero
9091 extending the values properly. Hopefully this won't be a real
9092 problem... */
9094 switch (TREE_CODE (loc))
9096 case ERROR_MARK:
9097 return 0;
9099 case PLACEHOLDER_EXPR:
9100 /* This case involves extracting fields from an object to determine the
9101 position of other fields. We don't try to encode this here. The
9102 only user of this is Ada, which encodes the needed information using
9103 the names of types. */
9104 return 0;
9106 case CALL_EXPR:
9107 return 0;
9109 case PREINCREMENT_EXPR:
9110 case PREDECREMENT_EXPR:
9111 case POSTINCREMENT_EXPR:
9112 case POSTDECREMENT_EXPR:
9113 /* There are no opcodes for these operations. */
9114 return 0;
9116 case ADDR_EXPR:
9117 /* If we already want an address, there's nothing we can do. */
9118 if (want_address)
9119 return 0;
9121 /* Otherwise, process the argument and look for the address. */
9122 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
9124 case VAR_DECL:
9125 if (DECL_THREAD_LOCAL_P (loc))
9127 rtx rtl;
9129 /* If this is not defined, we have no way to emit the data. */
9130 if (!targetm.asm_out.output_dwarf_dtprel)
9131 return 0;
9133 /* The way DW_OP_GNU_push_tls_address is specified, we can only
9134 look up addresses of objects in the current module. */
9135 if (DECL_EXTERNAL (loc))
9136 return 0;
9138 rtl = rtl_for_decl_location (loc);
9139 if (rtl == NULL_RTX)
9140 return 0;
9142 if (!MEM_P (rtl))
9143 return 0;
9144 rtl = XEXP (rtl, 0);
9145 if (! CONSTANT_P (rtl))
9146 return 0;
9148 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
9149 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9150 ret->dw_loc_oprnd1.v.val_addr = rtl;
9152 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
9153 add_loc_descr (&ret, ret1);
9155 have_address = 1;
9156 break;
9158 /* FALLTHRU */
9160 case PARM_DECL:
9161 if (DECL_HAS_VALUE_EXPR_P (loc))
9162 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
9163 want_address);
9164 /* FALLTHRU */
9166 case RESULT_DECL:
9168 rtx rtl = rtl_for_decl_location (loc);
9170 if (rtl == NULL_RTX)
9171 return 0;
9172 else if (GET_CODE (rtl) == CONST_INT)
9174 HOST_WIDE_INT val = INTVAL (rtl);
9175 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9176 val &= GET_MODE_MASK (DECL_MODE (loc));
9177 ret = int_loc_descriptor (val);
9179 else if (GET_CODE (rtl) == CONST_STRING)
9180 return 0;
9181 else if (CONSTANT_P (rtl))
9183 ret = new_loc_descr (DW_OP_addr, 0, 0);
9184 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9185 ret->dw_loc_oprnd1.v.val_addr = rtl;
9187 else
9189 enum machine_mode mode;
9191 /* Certain constructs can only be represented at top-level. */
9192 if (want_address == 2)
9193 return loc_descriptor (rtl);
9195 mode = GET_MODE (rtl);
9196 if (MEM_P (rtl))
9198 rtl = XEXP (rtl, 0);
9199 have_address = 1;
9201 ret = mem_loc_descriptor (rtl, mode);
9204 break;
9206 case INDIRECT_REF:
9207 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9208 have_address = 1;
9209 break;
9211 case COMPOUND_EXPR:
9212 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9214 case NOP_EXPR:
9215 case CONVERT_EXPR:
9216 case NON_LVALUE_EXPR:
9217 case VIEW_CONVERT_EXPR:
9218 case SAVE_EXPR:
9219 case MODIFY_EXPR:
9220 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
9222 case COMPONENT_REF:
9223 case BIT_FIELD_REF:
9224 case ARRAY_REF:
9225 case ARRAY_RANGE_REF:
9227 tree obj, offset;
9228 HOST_WIDE_INT bitsize, bitpos, bytepos;
9229 enum machine_mode mode;
9230 int volatilep;
9231 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
9233 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9234 &unsignedp, &volatilep, false);
9236 if (obj == loc)
9237 return 0;
9239 ret = loc_descriptor_from_tree_1 (obj, 1);
9240 if (ret == 0
9241 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9242 return 0;
9244 if (offset != NULL_TREE)
9246 /* Variable offset. */
9247 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9248 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9251 bytepos = bitpos / BITS_PER_UNIT;
9252 if (bytepos > 0)
9253 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9254 else if (bytepos < 0)
9256 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9257 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9260 have_address = 1;
9261 break;
9264 case INTEGER_CST:
9265 if (host_integerp (loc, 0))
9266 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9267 else
9268 return 0;
9269 break;
9271 case CONSTRUCTOR:
9273 /* Get an RTL for this, if something has been emitted. */
9274 rtx rtl = lookup_constant_def (loc);
9275 enum machine_mode mode;
9277 if (!rtl || !MEM_P (rtl))
9278 return 0;
9279 mode = GET_MODE (rtl);
9280 rtl = XEXP (rtl, 0);
9281 ret = mem_loc_descriptor (rtl, mode);
9282 have_address = 1;
9283 break;
9286 case TRUTH_AND_EXPR:
9287 case TRUTH_ANDIF_EXPR:
9288 case BIT_AND_EXPR:
9289 op = DW_OP_and;
9290 goto do_binop;
9292 case TRUTH_XOR_EXPR:
9293 case BIT_XOR_EXPR:
9294 op = DW_OP_xor;
9295 goto do_binop;
9297 case TRUTH_OR_EXPR:
9298 case TRUTH_ORIF_EXPR:
9299 case BIT_IOR_EXPR:
9300 op = DW_OP_or;
9301 goto do_binop;
9303 case FLOOR_DIV_EXPR:
9304 case CEIL_DIV_EXPR:
9305 case ROUND_DIV_EXPR:
9306 case TRUNC_DIV_EXPR:
9307 op = DW_OP_div;
9308 goto do_binop;
9310 case MINUS_EXPR:
9311 op = DW_OP_minus;
9312 goto do_binop;
9314 case FLOOR_MOD_EXPR:
9315 case CEIL_MOD_EXPR:
9316 case ROUND_MOD_EXPR:
9317 case TRUNC_MOD_EXPR:
9318 op = DW_OP_mod;
9319 goto do_binop;
9321 case MULT_EXPR:
9322 op = DW_OP_mul;
9323 goto do_binop;
9325 case LSHIFT_EXPR:
9326 op = DW_OP_shl;
9327 goto do_binop;
9329 case RSHIFT_EXPR:
9330 op = (TYPE_UNSIGNED (TREE_TYPE (loc)) ? DW_OP_shr : DW_OP_shra);
9331 goto do_binop;
9333 case PLUS_EXPR:
9334 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9335 && host_integerp (TREE_OPERAND (loc, 1), 0))
9337 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9338 if (ret == 0)
9339 return 0;
9341 add_loc_descr (&ret,
9342 new_loc_descr (DW_OP_plus_uconst,
9343 tree_low_cst (TREE_OPERAND (loc, 1),
9345 0));
9346 break;
9349 op = DW_OP_plus;
9350 goto do_binop;
9352 case LE_EXPR:
9353 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9354 return 0;
9356 op = DW_OP_le;
9357 goto do_binop;
9359 case GE_EXPR:
9360 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9361 return 0;
9363 op = DW_OP_ge;
9364 goto do_binop;
9366 case LT_EXPR:
9367 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9368 return 0;
9370 op = DW_OP_lt;
9371 goto do_binop;
9373 case GT_EXPR:
9374 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9375 return 0;
9377 op = DW_OP_gt;
9378 goto do_binop;
9380 case EQ_EXPR:
9381 op = DW_OP_eq;
9382 goto do_binop;
9384 case NE_EXPR:
9385 op = DW_OP_ne;
9386 goto do_binop;
9388 do_binop:
9389 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9390 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9391 if (ret == 0 || ret1 == 0)
9392 return 0;
9394 add_loc_descr (&ret, ret1);
9395 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9396 break;
9398 case TRUTH_NOT_EXPR:
9399 case BIT_NOT_EXPR:
9400 op = DW_OP_not;
9401 goto do_unop;
9403 case ABS_EXPR:
9404 op = DW_OP_abs;
9405 goto do_unop;
9407 case NEGATE_EXPR:
9408 op = DW_OP_neg;
9409 goto do_unop;
9411 do_unop:
9412 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9413 if (ret == 0)
9414 return 0;
9416 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9417 break;
9419 case MIN_EXPR:
9420 case MAX_EXPR:
9422 const enum tree_code code =
9423 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9425 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9426 build2 (code, integer_type_node,
9427 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9428 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9431 /* ... fall through ... */
9433 case COND_EXPR:
9435 dw_loc_descr_ref lhs
9436 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9437 dw_loc_descr_ref rhs
9438 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9439 dw_loc_descr_ref bra_node, jump_node, tmp;
9441 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9442 if (ret == 0 || lhs == 0 || rhs == 0)
9443 return 0;
9445 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9446 add_loc_descr (&ret, bra_node);
9448 add_loc_descr (&ret, rhs);
9449 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9450 add_loc_descr (&ret, jump_node);
9452 add_loc_descr (&ret, lhs);
9453 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9454 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9456 /* ??? Need a node to point the skip at. Use a nop. */
9457 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9458 add_loc_descr (&ret, tmp);
9459 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9460 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9462 break;
9464 case FIX_TRUNC_EXPR:
9465 case FIX_CEIL_EXPR:
9466 case FIX_FLOOR_EXPR:
9467 case FIX_ROUND_EXPR:
9468 return 0;
9470 default:
9471 /* Leave front-end specific codes as simply unknown. This comes
9472 up, for instance, with the C STMT_EXPR. */
9473 if ((unsigned int) TREE_CODE (loc)
9474 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9475 return 0;
9477 #ifdef ENABLE_CHECKING
9478 /* Otherwise this is a generic code; we should just lists all of
9479 these explicitly. We forgot one. */
9480 gcc_unreachable ();
9481 #else
9482 /* In a release build, we want to degrade gracefully: better to
9483 generate incomplete debugging information than to crash. */
9484 return NULL;
9485 #endif
9488 /* Show if we can't fill the request for an address. */
9489 if (want_address && !have_address)
9490 return 0;
9492 /* If we've got an address and don't want one, dereference. */
9493 if (!want_address && have_address && ret)
9495 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9497 if (size > DWARF2_ADDR_SIZE || size == -1)
9498 return 0;
9499 else if (size == DWARF2_ADDR_SIZE)
9500 op = DW_OP_deref;
9501 else
9502 op = DW_OP_deref_size;
9504 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9507 return ret;
9510 static inline dw_loc_descr_ref
9511 loc_descriptor_from_tree (tree loc)
9513 return loc_descriptor_from_tree_1 (loc, 2);
9516 /* Given a value, round it up to the lowest multiple of `boundary'
9517 which is not less than the value itself. */
9519 static inline HOST_WIDE_INT
9520 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9522 return (((value + boundary - 1) / boundary) * boundary);
9525 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9526 pointer to the declared type for the relevant field variable, or return
9527 `integer_type_node' if the given node turns out to be an
9528 ERROR_MARK node. */
9530 static inline tree
9531 field_type (tree decl)
9533 tree type;
9535 if (TREE_CODE (decl) == ERROR_MARK)
9536 return integer_type_node;
9538 type = DECL_BIT_FIELD_TYPE (decl);
9539 if (type == NULL_TREE)
9540 type = TREE_TYPE (decl);
9542 return type;
9545 /* Given a pointer to a tree node, return the alignment in bits for
9546 it, or else return BITS_PER_WORD if the node actually turns out to
9547 be an ERROR_MARK node. */
9549 static inline unsigned
9550 simple_type_align_in_bits (tree type)
9552 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9555 static inline unsigned
9556 simple_decl_align_in_bits (tree decl)
9558 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9561 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9562 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9563 or return 0 if we are unable to determine what that offset is, either
9564 because the argument turns out to be a pointer to an ERROR_MARK node, or
9565 because the offset is actually variable. (We can't handle the latter case
9566 just yet). */
9568 static HOST_WIDE_INT
9569 field_byte_offset (tree decl)
9571 unsigned int type_align_in_bits;
9572 unsigned int decl_align_in_bits;
9573 unsigned HOST_WIDE_INT type_size_in_bits;
9574 HOST_WIDE_INT object_offset_in_bits;
9575 tree type;
9576 tree field_size_tree;
9577 HOST_WIDE_INT bitpos_int;
9578 HOST_WIDE_INT deepest_bitpos;
9579 unsigned HOST_WIDE_INT field_size_in_bits;
9581 if (TREE_CODE (decl) == ERROR_MARK)
9582 return 0;
9584 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9586 type = field_type (decl);
9587 field_size_tree = DECL_SIZE (decl);
9589 /* The size could be unspecified if there was an error, or for
9590 a flexible array member. */
9591 if (! field_size_tree)
9592 field_size_tree = bitsize_zero_node;
9594 /* We cannot yet cope with fields whose positions are variable, so
9595 for now, when we see such things, we simply return 0. Someday, we may
9596 be able to handle such cases, but it will be damn difficult. */
9597 if (! host_integerp (bit_position (decl), 0))
9598 return 0;
9600 bitpos_int = int_bit_position (decl);
9602 /* If we don't know the size of the field, pretend it's a full word. */
9603 if (host_integerp (field_size_tree, 1))
9604 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9605 else
9606 field_size_in_bits = BITS_PER_WORD;
9608 type_size_in_bits = simple_type_size_in_bits (type);
9609 type_align_in_bits = simple_type_align_in_bits (type);
9610 decl_align_in_bits = simple_decl_align_in_bits (decl);
9612 /* The GCC front-end doesn't make any attempt to keep track of the starting
9613 bit offset (relative to the start of the containing structure type) of the
9614 hypothetical "containing object" for a bit-field. Thus, when computing
9615 the byte offset value for the start of the "containing object" of a
9616 bit-field, we must deduce this information on our own. This can be rather
9617 tricky to do in some cases. For example, handling the following structure
9618 type definition when compiling for an i386/i486 target (which only aligns
9619 long long's to 32-bit boundaries) can be very tricky:
9621 struct S { int field1; long long field2:31; };
9623 Fortunately, there is a simple rule-of-thumb which can be used in such
9624 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9625 structure shown above. It decides to do this based upon one simple rule
9626 for bit-field allocation. GCC allocates each "containing object" for each
9627 bit-field at the first (i.e. lowest addressed) legitimate alignment
9628 boundary (based upon the required minimum alignment for the declared type
9629 of the field) which it can possibly use, subject to the condition that
9630 there is still enough available space remaining in the containing object
9631 (when allocated at the selected point) to fully accommodate all of the
9632 bits of the bit-field itself.
9634 This simple rule makes it obvious why GCC allocates 8 bytes for each
9635 object of the structure type shown above. When looking for a place to
9636 allocate the "containing object" for `field2', the compiler simply tries
9637 to allocate a 64-bit "containing object" at each successive 32-bit
9638 boundary (starting at zero) until it finds a place to allocate that 64-
9639 bit field such that at least 31 contiguous (and previously unallocated)
9640 bits remain within that selected 64 bit field. (As it turns out, for the
9641 example above, the compiler finds it is OK to allocate the "containing
9642 object" 64-bit field at bit-offset zero within the structure type.)
9644 Here we attempt to work backwards from the limited set of facts we're
9645 given, and we try to deduce from those facts, where GCC must have believed
9646 that the containing object started (within the structure type). The value
9647 we deduce is then used (by the callers of this routine) to generate
9648 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9649 and, in the case of DW_AT_location, regular fields as well). */
9651 /* Figure out the bit-distance from the start of the structure to the
9652 "deepest" bit of the bit-field. */
9653 deepest_bitpos = bitpos_int + field_size_in_bits;
9655 /* This is the tricky part. Use some fancy footwork to deduce where the
9656 lowest addressed bit of the containing object must be. */
9657 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9659 /* Round up to type_align by default. This works best for bitfields. */
9660 object_offset_in_bits += type_align_in_bits - 1;
9661 object_offset_in_bits /= type_align_in_bits;
9662 object_offset_in_bits *= type_align_in_bits;
9664 if (object_offset_in_bits > bitpos_int)
9666 /* Sigh, the decl must be packed. */
9667 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9669 /* Round up to decl_align instead. */
9670 object_offset_in_bits += decl_align_in_bits - 1;
9671 object_offset_in_bits /= decl_align_in_bits;
9672 object_offset_in_bits *= decl_align_in_bits;
9675 return object_offset_in_bits / BITS_PER_UNIT;
9678 /* The following routines define various Dwarf attributes and any data
9679 associated with them. */
9681 /* Add a location description attribute value to a DIE.
9683 This emits location attributes suitable for whole variables and
9684 whole parameters. Note that the location attributes for struct fields are
9685 generated by the routine `data_member_location_attribute' below. */
9687 static inline void
9688 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9689 dw_loc_descr_ref descr)
9691 if (descr != 0)
9692 add_AT_loc (die, attr_kind, descr);
9695 /* Attach the specialized form of location attribute used for data members of
9696 struct and union types. In the special case of a FIELD_DECL node which
9697 represents a bit-field, the "offset" part of this special location
9698 descriptor must indicate the distance in bytes from the lowest-addressed
9699 byte of the containing struct or union type to the lowest-addressed byte of
9700 the "containing object" for the bit-field. (See the `field_byte_offset'
9701 function above).
9703 For any given bit-field, the "containing object" is a hypothetical object
9704 (of some integral or enum type) within which the given bit-field lives. The
9705 type of this hypothetical "containing object" is always the same as the
9706 declared type of the individual bit-field itself (for GCC anyway... the
9707 DWARF spec doesn't actually mandate this). Note that it is the size (in
9708 bytes) of the hypothetical "containing object" which will be given in the
9709 DW_AT_byte_size attribute for this bit-field. (See the
9710 `byte_size_attribute' function below.) It is also used when calculating the
9711 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9712 function below.) */
9714 static void
9715 add_data_member_location_attribute (dw_die_ref die, tree decl)
9717 HOST_WIDE_INT offset;
9718 dw_loc_descr_ref loc_descr = 0;
9720 if (TREE_CODE (decl) == TREE_BINFO)
9722 /* We're working on the TAG_inheritance for a base class. */
9723 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9725 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9726 aren't at a fixed offset from all (sub)objects of the same
9727 type. We need to extract the appropriate offset from our
9728 vtable. The following dwarf expression means
9730 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9732 This is specific to the V3 ABI, of course. */
9734 dw_loc_descr_ref tmp;
9736 /* Make a copy of the object address. */
9737 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9738 add_loc_descr (&loc_descr, tmp);
9740 /* Extract the vtable address. */
9741 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9742 add_loc_descr (&loc_descr, tmp);
9744 /* Calculate the address of the offset. */
9745 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9746 gcc_assert (offset < 0);
9748 tmp = int_loc_descriptor (-offset);
9749 add_loc_descr (&loc_descr, tmp);
9750 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9751 add_loc_descr (&loc_descr, tmp);
9753 /* Extract the offset. */
9754 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9755 add_loc_descr (&loc_descr, tmp);
9757 /* Add it to the object address. */
9758 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9759 add_loc_descr (&loc_descr, tmp);
9761 else
9762 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9764 else
9765 offset = field_byte_offset (decl);
9767 if (! loc_descr)
9769 enum dwarf_location_atom op;
9771 /* The DWARF2 standard says that we should assume that the structure
9772 address is already on the stack, so we can specify a structure field
9773 address by using DW_OP_plus_uconst. */
9775 #ifdef MIPS_DEBUGGING_INFO
9776 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9777 operator correctly. It works only if we leave the offset on the
9778 stack. */
9779 op = DW_OP_constu;
9780 #else
9781 op = DW_OP_plus_uconst;
9782 #endif
9784 loc_descr = new_loc_descr (op, offset, 0);
9787 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9790 /* Writes integer values to dw_vec_const array. */
9792 static void
9793 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9795 while (size != 0)
9797 *dest++ = val & 0xff;
9798 val >>= 8;
9799 --size;
9803 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9805 static HOST_WIDE_INT
9806 extract_int (const unsigned char *src, unsigned int size)
9808 HOST_WIDE_INT val = 0;
9810 src += size;
9811 while (size != 0)
9813 val <<= 8;
9814 val |= *--src & 0xff;
9815 --size;
9817 return val;
9820 /* Writes floating point values to dw_vec_const array. */
9822 static void
9823 insert_float (rtx rtl, unsigned char *array)
9825 REAL_VALUE_TYPE rv;
9826 long val[4];
9827 int i;
9829 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9830 real_to_target (val, &rv, GET_MODE (rtl));
9832 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9833 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9835 insert_int (val[i], 4, array);
9836 array += 4;
9840 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9841 does not have a "location" either in memory or in a register. These
9842 things can arise in GNU C when a constant is passed as an actual parameter
9843 to an inlined function. They can also arise in C++ where declared
9844 constants do not necessarily get memory "homes". */
9846 static void
9847 add_const_value_attribute (dw_die_ref die, rtx rtl)
9849 switch (GET_CODE (rtl))
9851 case CONST_INT:
9853 HOST_WIDE_INT val = INTVAL (rtl);
9855 if (val < 0)
9856 add_AT_int (die, DW_AT_const_value, val);
9857 else
9858 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9860 break;
9862 case CONST_DOUBLE:
9863 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9864 floating-point constant. A CONST_DOUBLE is used whenever the
9865 constant requires more than one word in order to be adequately
9866 represented. We output CONST_DOUBLEs as blocks. */
9868 enum machine_mode mode = GET_MODE (rtl);
9870 if (SCALAR_FLOAT_MODE_P (mode))
9872 unsigned int length = GET_MODE_SIZE (mode);
9873 unsigned char *array = ggc_alloc (length);
9875 insert_float (rtl, array);
9876 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9878 else
9880 /* ??? We really should be using HOST_WIDE_INT throughout. */
9881 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9883 add_AT_long_long (die, DW_AT_const_value,
9884 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9887 break;
9889 case CONST_VECTOR:
9891 enum machine_mode mode = GET_MODE (rtl);
9892 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9893 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9894 unsigned char *array = ggc_alloc (length * elt_size);
9895 unsigned int i;
9896 unsigned char *p;
9898 switch (GET_MODE_CLASS (mode))
9900 case MODE_VECTOR_INT:
9901 for (i = 0, p = array; i < length; i++, p += elt_size)
9903 rtx elt = CONST_VECTOR_ELT (rtl, i);
9904 HOST_WIDE_INT lo, hi;
9906 switch (GET_CODE (elt))
9908 case CONST_INT:
9909 lo = INTVAL (elt);
9910 hi = -(lo < 0);
9911 break;
9913 case CONST_DOUBLE:
9914 lo = CONST_DOUBLE_LOW (elt);
9915 hi = CONST_DOUBLE_HIGH (elt);
9916 break;
9918 default:
9919 gcc_unreachable ();
9922 if (elt_size <= sizeof (HOST_WIDE_INT))
9923 insert_int (lo, elt_size, p);
9924 else
9926 unsigned char *p0 = p;
9927 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9929 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9930 if (WORDS_BIG_ENDIAN)
9932 p0 = p1;
9933 p1 = p;
9935 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9936 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9939 break;
9941 case MODE_VECTOR_FLOAT:
9942 for (i = 0, p = array; i < length; i++, p += elt_size)
9944 rtx elt = CONST_VECTOR_ELT (rtl, i);
9945 insert_float (elt, p);
9947 break;
9949 default:
9950 gcc_unreachable ();
9953 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9955 break;
9957 case CONST_STRING:
9958 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9959 break;
9961 case SYMBOL_REF:
9962 case LABEL_REF:
9963 case CONST:
9964 add_AT_addr (die, DW_AT_const_value, rtl);
9965 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
9966 break;
9968 case PLUS:
9969 /* In cases where an inlined instance of an inline function is passed
9970 the address of an `auto' variable (which is local to the caller) we
9971 can get a situation where the DECL_RTL of the artificial local
9972 variable (for the inlining) which acts as a stand-in for the
9973 corresponding formal parameter (of the inline function) will look
9974 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9975 exactly a compile-time constant expression, but it isn't the address
9976 of the (artificial) local variable either. Rather, it represents the
9977 *value* which the artificial local variable always has during its
9978 lifetime. We currently have no way to represent such quasi-constant
9979 values in Dwarf, so for now we just punt and generate nothing. */
9980 break;
9982 default:
9983 /* No other kinds of rtx should be possible here. */
9984 gcc_unreachable ();
9989 /* Determine whether the evaluation of EXPR references any variables
9990 or functions which aren't otherwise used (and therefore may not be
9991 output). */
9992 static tree
9993 reference_to_unused (tree * tp, int * walk_subtrees,
9994 void * data ATTRIBUTE_UNUSED)
9996 if (! EXPR_P (*tp) && ! CONSTANT_CLASS_P (*tp))
9997 *walk_subtrees = 0;
9999 if (DECL_P (*tp) && ! TREE_PUBLIC (*tp) && ! TREE_USED (*tp)
10000 && ! TREE_ASM_WRITTEN (*tp))
10001 return *tp;
10002 else
10003 return NULL_TREE;
10006 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
10007 for use in a later add_const_value_attribute call. */
10009 static rtx
10010 rtl_for_decl_init (tree init, tree type)
10012 rtx rtl = NULL_RTX;
10014 /* If a variable is initialized with a string constant without embedded
10015 zeros, build CONST_STRING. */
10016 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
10018 tree enttype = TREE_TYPE (type);
10019 tree domain = TYPE_DOMAIN (type);
10020 enum machine_mode mode = TYPE_MODE (enttype);
10022 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
10023 && domain
10024 && integer_zerop (TYPE_MIN_VALUE (domain))
10025 && compare_tree_int (TYPE_MAX_VALUE (domain),
10026 TREE_STRING_LENGTH (init) - 1) == 0
10027 && ((size_t) TREE_STRING_LENGTH (init)
10028 == strlen (TREE_STRING_POINTER (init)) + 1))
10029 rtl = gen_rtx_CONST_STRING (VOIDmode,
10030 ggc_strdup (TREE_STRING_POINTER (init)));
10032 /* Other aggregates, and complex values, could be represented using
10033 CONCAT: FIXME! */
10034 else if (AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE)
10036 /* Vectors only work if their mode is supported by the target.
10037 FIXME: generic vectors ought to work too. */
10038 else if (TREE_CODE (type) == VECTOR_TYPE && TYPE_MODE (type) == BLKmode)
10040 /* If the initializer is something that we know will expand into an
10041 immediate RTL constant, expand it now. We must be careful not to
10042 reference variables which won't be output. */
10043 else if (initializer_constant_valid_p (init, type)
10044 && ! walk_tree (&init, reference_to_unused, NULL, NULL))
10046 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
10048 /* If expand_expr returns a MEM, it wasn't immediate. */
10049 gcc_assert (!rtl || !MEM_P (rtl));
10052 return rtl;
10055 /* Generate RTL for the variable DECL to represent its location. */
10057 static rtx
10058 rtl_for_decl_location (tree decl)
10060 rtx rtl;
10062 /* Here we have to decide where we are going to say the parameter "lives"
10063 (as far as the debugger is concerned). We only have a couple of
10064 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
10066 DECL_RTL normally indicates where the parameter lives during most of the
10067 activation of the function. If optimization is enabled however, this
10068 could be either NULL or else a pseudo-reg. Both of those cases indicate
10069 that the parameter doesn't really live anywhere (as far as the code
10070 generation parts of GCC are concerned) during most of the function's
10071 activation. That will happen (for example) if the parameter is never
10072 referenced within the function.
10074 We could just generate a location descriptor here for all non-NULL
10075 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
10076 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
10077 where DECL_RTL is NULL or is a pseudo-reg.
10079 Note however that we can only get away with using DECL_INCOMING_RTL as
10080 a backup substitute for DECL_RTL in certain limited cases. In cases
10081 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
10082 we can be sure that the parameter was passed using the same type as it is
10083 declared to have within the function, and that its DECL_INCOMING_RTL
10084 points us to a place where a value of that type is passed.
10086 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
10087 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
10088 because in these cases DECL_INCOMING_RTL points us to a value of some
10089 type which is *different* from the type of the parameter itself. Thus,
10090 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
10091 such cases, the debugger would end up (for example) trying to fetch a
10092 `float' from a place which actually contains the first part of a
10093 `double'. That would lead to really incorrect and confusing
10094 output at debug-time.
10096 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
10097 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
10098 are a couple of exceptions however. On little-endian machines we can
10099 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
10100 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
10101 an integral type that is smaller than TREE_TYPE (decl). These cases arise
10102 when (on a little-endian machine) a non-prototyped function has a
10103 parameter declared to be of type `short' or `char'. In such cases,
10104 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
10105 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
10106 passed `int' value. If the debugger then uses that address to fetch
10107 a `short' or a `char' (on a little-endian machine) the result will be
10108 the correct data, so we allow for such exceptional cases below.
10110 Note that our goal here is to describe the place where the given formal
10111 parameter lives during most of the function's activation (i.e. between the
10112 end of the prologue and the start of the epilogue). We'll do that as best
10113 as we can. Note however that if the given formal parameter is modified
10114 sometime during the execution of the function, then a stack backtrace (at
10115 debug-time) will show the function as having been called with the *new*
10116 value rather than the value which was originally passed in. This happens
10117 rarely enough that it is not a major problem, but it *is* a problem, and
10118 I'd like to fix it.
10120 A future version of dwarf2out.c may generate two additional attributes for
10121 any given DW_TAG_formal_parameter DIE which will describe the "passed
10122 type" and the "passed location" for the given formal parameter in addition
10123 to the attributes we now generate to indicate the "declared type" and the
10124 "active location" for each parameter. This additional set of attributes
10125 could be used by debuggers for stack backtraces. Separately, note that
10126 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
10127 This happens (for example) for inlined-instances of inline function formal
10128 parameters which are never referenced. This really shouldn't be
10129 happening. All PARM_DECL nodes should get valid non-NULL
10130 DECL_INCOMING_RTL values. FIXME. */
10132 /* Use DECL_RTL as the "location" unless we find something better. */
10133 rtl = DECL_RTL_IF_SET (decl);
10135 /* When generating abstract instances, ignore everything except
10136 constants, symbols living in memory, and symbols living in
10137 fixed registers. */
10138 if (! reload_completed)
10140 if (rtl
10141 && (CONSTANT_P (rtl)
10142 || (MEM_P (rtl)
10143 && CONSTANT_P (XEXP (rtl, 0)))
10144 || (REG_P (rtl)
10145 && TREE_CODE (decl) == VAR_DECL
10146 && TREE_STATIC (decl))))
10148 rtl = targetm.delegitimize_address (rtl);
10149 return rtl;
10151 rtl = NULL_RTX;
10153 else if (TREE_CODE (decl) == PARM_DECL)
10155 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
10157 tree declared_type = TREE_TYPE (decl);
10158 tree passed_type = DECL_ARG_TYPE (decl);
10159 enum machine_mode dmode = TYPE_MODE (declared_type);
10160 enum machine_mode pmode = TYPE_MODE (passed_type);
10162 /* This decl represents a formal parameter which was optimized out.
10163 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
10164 all cases where (rtl == NULL_RTX) just below. */
10165 if (dmode == pmode)
10166 rtl = DECL_INCOMING_RTL (decl);
10167 else if (SCALAR_INT_MODE_P (dmode)
10168 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
10169 && DECL_INCOMING_RTL (decl))
10171 rtx inc = DECL_INCOMING_RTL (decl);
10172 if (REG_P (inc))
10173 rtl = inc;
10174 else if (MEM_P (inc))
10176 if (BYTES_BIG_ENDIAN)
10177 rtl = adjust_address_nv (inc, dmode,
10178 GET_MODE_SIZE (pmode)
10179 - GET_MODE_SIZE (dmode));
10180 else
10181 rtl = inc;
10186 /* If the parm was passed in registers, but lives on the stack, then
10187 make a big endian correction if the mode of the type of the
10188 parameter is not the same as the mode of the rtl. */
10189 /* ??? This is the same series of checks that are made in dbxout.c before
10190 we reach the big endian correction code there. It isn't clear if all
10191 of these checks are necessary here, but keeping them all is the safe
10192 thing to do. */
10193 else if (MEM_P (rtl)
10194 && XEXP (rtl, 0) != const0_rtx
10195 && ! CONSTANT_P (XEXP (rtl, 0))
10196 /* Not passed in memory. */
10197 && !MEM_P (DECL_INCOMING_RTL (decl))
10198 /* Not passed by invisible reference. */
10199 && (!REG_P (XEXP (rtl, 0))
10200 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10201 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10202 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10203 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10204 #endif
10206 /* Big endian correction check. */
10207 && BYTES_BIG_ENDIAN
10208 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10209 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10210 < UNITS_PER_WORD))
10212 int offset = (UNITS_PER_WORD
10213 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10215 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10216 plus_constant (XEXP (rtl, 0), offset));
10219 else if (TREE_CODE (decl) == VAR_DECL
10220 && rtl
10221 && MEM_P (rtl)
10222 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10223 && BYTES_BIG_ENDIAN)
10225 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10226 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10228 /* If a variable is declared "register" yet is smaller than
10229 a register, then if we store the variable to memory, it
10230 looks like we're storing a register-sized value, when in
10231 fact we are not. We need to adjust the offset of the
10232 storage location to reflect the actual value's bytes,
10233 else gdb will not be able to display it. */
10234 if (rsize > dsize)
10235 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10236 plus_constant (XEXP (rtl, 0), rsize-dsize));
10239 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10240 and will have been substituted directly into all expressions that use it.
10241 C does not have such a concept, but C++ and other languages do. */
10242 if (!rtl && TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10243 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10245 if (rtl)
10246 rtl = targetm.delegitimize_address (rtl);
10248 /* If we don't look past the constant pool, we risk emitting a
10249 reference to a constant pool entry that isn't referenced from
10250 code, and thus is not emitted. */
10251 if (rtl)
10252 rtl = avoid_constant_pool_reference (rtl);
10254 return rtl;
10257 /* We need to figure out what section we should use as the base for the
10258 address ranges where a given location is valid.
10259 1. If this particular DECL has a section associated with it, use that.
10260 2. If this function has a section associated with it, use that.
10261 3. Otherwise, use the text section.
10262 XXX: If you split a variable across multiple sections, we won't notice. */
10264 static const char *
10265 secname_for_decl (tree decl)
10267 const char *secname;
10269 if (VAR_OR_FUNCTION_DECL_P (decl) && DECL_SECTION_NAME (decl))
10271 tree sectree = DECL_SECTION_NAME (decl);
10272 secname = TREE_STRING_POINTER (sectree);
10274 else if (current_function_decl && DECL_SECTION_NAME (current_function_decl))
10276 tree sectree = DECL_SECTION_NAME (current_function_decl);
10277 secname = TREE_STRING_POINTER (sectree);
10279 else if (cfun && in_cold_section_p)
10280 secname = cfun->cold_section_label;
10281 else
10282 secname = text_section_label;
10284 return secname;
10287 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10288 data attribute for a variable or a parameter. We generate the
10289 DW_AT_const_value attribute only in those cases where the given variable
10290 or parameter does not have a true "location" either in memory or in a
10291 register. This can happen (for example) when a constant is passed as an
10292 actual argument in a call to an inline function. (It's possible that
10293 these things can crop up in other ways also.) Note that one type of
10294 constant value which can be passed into an inlined function is a constant
10295 pointer. This can happen for example if an actual argument in an inlined
10296 function call evaluates to a compile-time constant address. */
10298 static void
10299 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10300 enum dwarf_attribute attr)
10302 rtx rtl;
10303 dw_loc_descr_ref descr;
10304 var_loc_list *loc_list;
10305 struct var_loc_node *node;
10306 if (TREE_CODE (decl) == ERROR_MARK)
10307 return;
10309 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10310 || TREE_CODE (decl) == RESULT_DECL);
10312 /* See if we possibly have multiple locations for this variable. */
10313 loc_list = lookup_decl_loc (decl);
10315 /* If it truly has multiple locations, the first and last node will
10316 differ. */
10317 if (loc_list && loc_list->first != loc_list->last)
10319 const char *endname, *secname;
10320 dw_loc_list_ref list;
10321 rtx varloc;
10323 /* Now that we know what section we are using for a base,
10324 actually construct the list of locations.
10325 The first location information is what is passed to the
10326 function that creates the location list, and the remaining
10327 locations just get added on to that list.
10328 Note that we only know the start address for a location
10329 (IE location changes), so to build the range, we use
10330 the range [current location start, next location start].
10331 This means we have to special case the last node, and generate
10332 a range of [last location start, end of function label]. */
10334 node = loc_list->first;
10335 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10336 secname = secname_for_decl (decl);
10338 list = new_loc_list (loc_descriptor (varloc),
10339 node->label, node->next->label, secname, 1);
10340 node = node->next;
10342 for (; node->next; node = node->next)
10343 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10345 /* The variable has a location between NODE->LABEL and
10346 NODE->NEXT->LABEL. */
10347 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10348 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10349 node->label, node->next->label, secname);
10352 /* If the variable has a location at the last label
10353 it keeps its location until the end of function. */
10354 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10356 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10358 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10359 if (!current_function_decl)
10360 endname = text_end_label;
10361 else
10363 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10364 current_function_funcdef_no);
10365 endname = ggc_strdup (label_id);
10367 add_loc_descr_to_loc_list (&list, loc_descriptor (varloc),
10368 node->label, endname, secname);
10371 /* Finally, add the location list to the DIE, and we are done. */
10372 add_AT_loc_list (die, attr, list);
10373 return;
10376 /* Try to get some constant RTL for this decl, and use that as the value of
10377 the location. */
10379 rtl = rtl_for_decl_location (decl);
10380 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10382 add_const_value_attribute (die, rtl);
10383 return;
10386 /* If we have tried to generate the location otherwise, and it
10387 didn't work out (we wouldn't be here if we did), and we have a one entry
10388 location list, try generating a location from that. */
10389 if (loc_list && loc_list->first)
10391 node = loc_list->first;
10392 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note));
10393 if (descr)
10395 add_AT_location_description (die, attr, descr);
10396 return;
10400 /* We couldn't get any rtl, so try directly generating the location
10401 description from the tree. */
10402 descr = loc_descriptor_from_tree (decl);
10403 if (descr)
10405 add_AT_location_description (die, attr, descr);
10406 return;
10408 /* None of that worked, so it must not really have a location;
10409 try adding a constant value attribute from the DECL_INITIAL. */
10410 tree_add_const_value_attribute (die, decl);
10413 /* If we don't have a copy of this variable in memory for some reason (such
10414 as a C++ member constant that doesn't have an out-of-line definition),
10415 we should tell the debugger about the constant value. */
10417 static void
10418 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10420 tree init = DECL_INITIAL (decl);
10421 tree type = TREE_TYPE (decl);
10422 rtx rtl;
10424 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10425 /* OK */;
10426 else
10427 return;
10429 rtl = rtl_for_decl_init (init, type);
10430 if (rtl)
10431 add_const_value_attribute (var_die, rtl);
10434 /* Convert the CFI instructions for the current function into a
10435 location list. This is used for DW_AT_frame_base when we targeting
10436 a dwarf2 consumer that does not support the dwarf3
10437 DW_OP_call_frame_cfa. OFFSET is a constant to be added to all CFA
10438 expressions. */
10440 static dw_loc_list_ref
10441 convert_cfa_to_fb_loc_list (HOST_WIDE_INT offset)
10443 dw_fde_ref fde;
10444 dw_loc_list_ref list, *list_tail;
10445 dw_cfi_ref cfi;
10446 dw_cfa_location last_cfa, next_cfa;
10447 const char *start_label, *last_label, *section;
10449 fde = &fde_table[fde_table_in_use - 1];
10451 section = secname_for_decl (current_function_decl);
10452 list_tail = &list;
10453 list = NULL;
10455 next_cfa.reg = INVALID_REGNUM;
10456 next_cfa.offset = 0;
10457 next_cfa.indirect = 0;
10458 next_cfa.base_offset = 0;
10460 start_label = fde->dw_fde_begin;
10462 /* ??? Bald assumption that the CIE opcode list does not contain
10463 advance opcodes. */
10464 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
10465 lookup_cfa_1 (cfi, &next_cfa);
10467 last_cfa = next_cfa;
10468 last_label = start_label;
10470 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
10471 switch (cfi->dw_cfi_opc)
10473 case DW_CFA_set_loc:
10474 case DW_CFA_advance_loc1:
10475 case DW_CFA_advance_loc2:
10476 case DW_CFA_advance_loc4:
10477 if (!cfa_equal_p (&last_cfa, &next_cfa))
10479 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10480 start_label, last_label, section,
10481 list == NULL);
10483 list_tail = &(*list_tail)->dw_loc_next;
10484 last_cfa = next_cfa;
10485 start_label = last_label;
10487 last_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
10488 break;
10490 case DW_CFA_advance_loc:
10491 /* The encoding is complex enough that we should never emit this. */
10492 case DW_CFA_remember_state:
10493 case DW_CFA_restore_state:
10494 /* We don't handle these two in this function. It would be possible
10495 if it were to be required. */
10496 gcc_unreachable ();
10498 default:
10499 lookup_cfa_1 (cfi, &next_cfa);
10500 break;
10503 if (!cfa_equal_p (&last_cfa, &next_cfa))
10505 *list_tail = new_loc_list (build_cfa_loc (&last_cfa, offset),
10506 start_label, last_label, section,
10507 list == NULL);
10508 list_tail = &(*list_tail)->dw_loc_next;
10509 start_label = last_label;
10511 *list_tail = new_loc_list (build_cfa_loc (&next_cfa, offset),
10512 start_label, fde->dw_fde_end, section,
10513 list == NULL);
10515 return list;
10518 /* Compute a displacement from the "steady-state frame pointer" to the
10519 frame base (often the same as the CFA), and store it in
10520 frame_pointer_fb_offset. OFFSET is added to the displacement
10521 before the latter is negated. */
10523 static void
10524 compute_frame_pointer_to_fb_displacement (HOST_WIDE_INT offset)
10526 rtx reg, elim;
10528 #ifdef FRAME_POINTER_CFA_OFFSET
10529 reg = frame_pointer_rtx;
10530 offset += FRAME_POINTER_CFA_OFFSET (current_function_decl);
10531 #else
10532 reg = arg_pointer_rtx;
10533 offset += ARG_POINTER_CFA_OFFSET (current_function_decl);
10534 #endif
10536 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10537 if (GET_CODE (elim) == PLUS)
10539 offset += INTVAL (XEXP (elim, 1));
10540 elim = XEXP (elim, 0);
10542 gcc_assert (elim == (frame_pointer_needed ? hard_frame_pointer_rtx
10543 : stack_pointer_rtx));
10545 frame_pointer_fb_offset = -offset;
10548 /* Generate a DW_AT_name attribute given some string value to be included as
10549 the value of the attribute. */
10551 static void
10552 add_name_attribute (dw_die_ref die, const char *name_string)
10554 if (name_string != NULL && *name_string != 0)
10556 if (demangle_name_func)
10557 name_string = (*demangle_name_func) (name_string);
10559 add_AT_string (die, DW_AT_name, name_string);
10563 /* Generate a DW_AT_comp_dir attribute for DIE. */
10565 static void
10566 add_comp_dir_attribute (dw_die_ref die)
10568 const char *wd = get_src_pwd ();
10569 if (wd != NULL)
10570 add_AT_string (die, DW_AT_comp_dir, wd);
10573 /* Given a tree node describing an array bound (either lower or upper) output
10574 a representation for that bound. */
10576 static void
10577 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10579 switch (TREE_CODE (bound))
10581 case ERROR_MARK:
10582 return;
10584 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10585 case INTEGER_CST:
10586 if (! host_integerp (bound, 0)
10587 || (bound_attr == DW_AT_lower_bound
10588 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10589 || (is_fortran () && integer_onep (bound)))))
10590 /* Use the default. */
10592 else
10593 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10594 break;
10596 case CONVERT_EXPR:
10597 case NOP_EXPR:
10598 case NON_LVALUE_EXPR:
10599 case VIEW_CONVERT_EXPR:
10600 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10601 break;
10603 case SAVE_EXPR:
10604 break;
10606 case VAR_DECL:
10607 case PARM_DECL:
10608 case RESULT_DECL:
10610 dw_die_ref decl_die = lookup_decl_die (bound);
10612 /* ??? Can this happen, or should the variable have been bound
10613 first? Probably it can, since I imagine that we try to create
10614 the types of parameters in the order in which they exist in
10615 the list, and won't have created a forward reference to a
10616 later parameter. */
10617 if (decl_die != NULL)
10618 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10619 break;
10622 default:
10624 /* Otherwise try to create a stack operation procedure to
10625 evaluate the value of the array bound. */
10627 dw_die_ref ctx, decl_die;
10628 dw_loc_descr_ref loc;
10630 loc = loc_descriptor_from_tree (bound);
10631 if (loc == NULL)
10632 break;
10634 if (current_function_decl == 0)
10635 ctx = comp_unit_die;
10636 else
10637 ctx = lookup_decl_die (current_function_decl);
10639 decl_die = new_die (DW_TAG_variable, ctx, bound);
10640 add_AT_flag (decl_die, DW_AT_artificial, 1);
10641 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10642 add_AT_loc (decl_die, DW_AT_location, loc);
10644 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10645 break;
10650 /* Note that the block of subscript information for an array type also
10651 includes information about the element type of type given array type. */
10653 static void
10654 add_subscript_info (dw_die_ref type_die, tree type)
10656 #ifndef MIPS_DEBUGGING_INFO
10657 unsigned dimension_number;
10658 #endif
10659 tree lower, upper;
10660 dw_die_ref subrange_die;
10662 /* The GNU compilers represent multidimensional array types as sequences of
10663 one dimensional array types whose element types are themselves array
10664 types. Here we squish that down, so that each multidimensional array
10665 type gets only one array_type DIE in the Dwarf debugging info. The draft
10666 Dwarf specification say that we are allowed to do this kind of
10667 compression in C (because there is no difference between an array or
10668 arrays and a multidimensional array in C) but for other source languages
10669 (e.g. Ada) we probably shouldn't do this. */
10671 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10672 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10673 We work around this by disabling this feature. See also
10674 gen_array_type_die. */
10675 #ifndef MIPS_DEBUGGING_INFO
10676 for (dimension_number = 0;
10677 TREE_CODE (type) == ARRAY_TYPE;
10678 type = TREE_TYPE (type), dimension_number++)
10679 #endif
10681 tree domain = TYPE_DOMAIN (type);
10683 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10684 and (in GNU C only) variable bounds. Handle all three forms
10685 here. */
10686 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10687 if (domain)
10689 /* We have an array type with specified bounds. */
10690 lower = TYPE_MIN_VALUE (domain);
10691 upper = TYPE_MAX_VALUE (domain);
10693 /* Define the index type. */
10694 if (TREE_TYPE (domain))
10696 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10697 TREE_TYPE field. We can't emit debug info for this
10698 because it is an unnamed integral type. */
10699 if (TREE_CODE (domain) == INTEGER_TYPE
10700 && TYPE_NAME (domain) == NULL_TREE
10701 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10702 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10704 else
10705 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10706 type_die);
10709 /* ??? If upper is NULL, the array has unspecified length,
10710 but it does have a lower bound. This happens with Fortran
10711 dimension arr(N:*)
10712 Since the debugger is definitely going to need to know N
10713 to produce useful results, go ahead and output the lower
10714 bound solo, and hope the debugger can cope. */
10716 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10717 if (upper)
10718 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10721 /* Otherwise we have an array type with an unspecified length. The
10722 DWARF-2 spec does not say how to handle this; let's just leave out the
10723 bounds. */
10727 static void
10728 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10730 unsigned size;
10732 switch (TREE_CODE (tree_node))
10734 case ERROR_MARK:
10735 size = 0;
10736 break;
10737 case ENUMERAL_TYPE:
10738 case RECORD_TYPE:
10739 case UNION_TYPE:
10740 case QUAL_UNION_TYPE:
10741 size = int_size_in_bytes (tree_node);
10742 break;
10743 case FIELD_DECL:
10744 /* For a data member of a struct or union, the DW_AT_byte_size is
10745 generally given as the number of bytes normally allocated for an
10746 object of the *declared* type of the member itself. This is true
10747 even for bit-fields. */
10748 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10749 break;
10750 default:
10751 gcc_unreachable ();
10754 /* Note that `size' might be -1 when we get to this point. If it is, that
10755 indicates that the byte size of the entity in question is variable. We
10756 have no good way of expressing this fact in Dwarf at the present time,
10757 so just let the -1 pass on through. */
10758 add_AT_unsigned (die, DW_AT_byte_size, size);
10761 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10762 which specifies the distance in bits from the highest order bit of the
10763 "containing object" for the bit-field to the highest order bit of the
10764 bit-field itself.
10766 For any given bit-field, the "containing object" is a hypothetical object
10767 (of some integral or enum type) within which the given bit-field lives. The
10768 type of this hypothetical "containing object" is always the same as the
10769 declared type of the individual bit-field itself. The determination of the
10770 exact location of the "containing object" for a bit-field is rather
10771 complicated. It's handled by the `field_byte_offset' function (above).
10773 Note that it is the size (in bytes) of the hypothetical "containing object"
10774 which will be given in the DW_AT_byte_size attribute for this bit-field.
10775 (See `byte_size_attribute' above). */
10777 static inline void
10778 add_bit_offset_attribute (dw_die_ref die, tree decl)
10780 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10781 tree type = DECL_BIT_FIELD_TYPE (decl);
10782 HOST_WIDE_INT bitpos_int;
10783 HOST_WIDE_INT highest_order_object_bit_offset;
10784 HOST_WIDE_INT highest_order_field_bit_offset;
10785 HOST_WIDE_INT unsigned bit_offset;
10787 /* Must be a field and a bit field. */
10788 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10790 /* We can't yet handle bit-fields whose offsets are variable, so if we
10791 encounter such things, just return without generating any attribute
10792 whatsoever. Likewise for variable or too large size. */
10793 if (! host_integerp (bit_position (decl), 0)
10794 || ! host_integerp (DECL_SIZE (decl), 1))
10795 return;
10797 bitpos_int = int_bit_position (decl);
10799 /* Note that the bit offset is always the distance (in bits) from the
10800 highest-order bit of the "containing object" to the highest-order bit of
10801 the bit-field itself. Since the "high-order end" of any object or field
10802 is different on big-endian and little-endian machines, the computation
10803 below must take account of these differences. */
10804 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10805 highest_order_field_bit_offset = bitpos_int;
10807 if (! BYTES_BIG_ENDIAN)
10809 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10810 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10813 bit_offset
10814 = (! BYTES_BIG_ENDIAN
10815 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10816 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10818 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10821 /* For a FIELD_DECL node which represents a bit field, output an attribute
10822 which specifies the length in bits of the given field. */
10824 static inline void
10825 add_bit_size_attribute (dw_die_ref die, tree decl)
10827 /* Must be a field and a bit field. */
10828 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10829 && DECL_BIT_FIELD_TYPE (decl));
10831 if (host_integerp (DECL_SIZE (decl), 1))
10832 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10835 /* If the compiled language is ANSI C, then add a 'prototyped'
10836 attribute, if arg types are given for the parameters of a function. */
10838 static inline void
10839 add_prototyped_attribute (dw_die_ref die, tree func_type)
10841 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10842 && TYPE_ARG_TYPES (func_type) != NULL)
10843 add_AT_flag (die, DW_AT_prototyped, 1);
10846 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10847 by looking in either the type declaration or object declaration
10848 equate table. */
10850 static inline void
10851 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10853 dw_die_ref origin_die = NULL;
10855 if (TREE_CODE (origin) != FUNCTION_DECL)
10857 /* We may have gotten separated from the block for the inlined
10858 function, if we're in an exception handler or some such; make
10859 sure that the abstract function has been written out.
10861 Doing this for nested functions is wrong, however; functions are
10862 distinct units, and our context might not even be inline. */
10863 tree fn = origin;
10865 if (TYPE_P (fn))
10866 fn = TYPE_STUB_DECL (fn);
10868 fn = decl_function_context (fn);
10869 if (fn)
10870 dwarf2out_abstract_function (fn);
10873 if (DECL_P (origin))
10874 origin_die = lookup_decl_die (origin);
10875 else if (TYPE_P (origin))
10876 origin_die = lookup_type_die (origin);
10878 /* XXX: Functions that are never lowered don't always have correct block
10879 trees (in the case of java, they simply have no block tree, in some other
10880 languages). For these functions, there is nothing we can really do to
10881 output correct debug info for inlined functions in all cases. Rather
10882 than die, we'll just produce deficient debug info now, in that we will
10883 have variables without a proper abstract origin. In the future, when all
10884 functions are lowered, we should re-add a gcc_assert (origin_die)
10885 here. */
10887 if (origin_die)
10888 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10891 /* We do not currently support the pure_virtual attribute. */
10893 static inline void
10894 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10896 if (DECL_VINDEX (func_decl))
10898 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10900 if (host_integerp (DECL_VINDEX (func_decl), 0))
10901 add_AT_loc (die, DW_AT_vtable_elem_location,
10902 new_loc_descr (DW_OP_constu,
10903 tree_low_cst (DECL_VINDEX (func_decl), 0),
10904 0));
10906 /* GNU extension: Record what type this method came from originally. */
10907 if (debug_info_level > DINFO_LEVEL_TERSE)
10908 add_AT_die_ref (die, DW_AT_containing_type,
10909 lookup_type_die (DECL_CONTEXT (func_decl)));
10913 /* Add source coordinate attributes for the given decl. */
10915 static void
10916 add_src_coords_attributes (dw_die_ref die, tree decl)
10918 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10920 add_AT_file (die, DW_AT_decl_file, lookup_filename (s.file));
10921 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10924 /* Add a DW_AT_name attribute and source coordinate attribute for the
10925 given decl, but only if it actually has a name. */
10927 static void
10928 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10930 tree decl_name;
10932 decl_name = DECL_NAME (decl);
10933 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10935 add_name_attribute (die, dwarf2_name (decl, 0));
10936 if (! DECL_ARTIFICIAL (decl))
10937 add_src_coords_attributes (die, decl);
10939 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10940 && TREE_PUBLIC (decl)
10941 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10942 && !DECL_ABSTRACT (decl)
10943 && !(TREE_CODE (decl) == VAR_DECL && DECL_REGISTER (decl)))
10944 add_AT_string (die, DW_AT_MIPS_linkage_name,
10945 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10948 #ifdef VMS_DEBUGGING_INFO
10949 /* Get the function's name, as described by its RTL. This may be different
10950 from the DECL_NAME name used in the source file. */
10951 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10953 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10954 XEXP (DECL_RTL (decl), 0));
10955 VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
10957 #endif
10960 /* Push a new declaration scope. */
10962 static void
10963 push_decl_scope (tree scope)
10965 VEC_safe_push (tree, gc, decl_scope_table, scope);
10968 /* Pop a declaration scope. */
10970 static inline void
10971 pop_decl_scope (void)
10973 VEC_pop (tree, decl_scope_table);
10976 /* Return the DIE for the scope that immediately contains this type.
10977 Non-named types get global scope. Named types nested in other
10978 types get their containing scope if it's open, or global scope
10979 otherwise. All other types (i.e. function-local named types) get
10980 the current active scope. */
10982 static dw_die_ref
10983 scope_die_for (tree t, dw_die_ref context_die)
10985 dw_die_ref scope_die = NULL;
10986 tree containing_scope;
10987 int i;
10989 /* Non-types always go in the current scope. */
10990 gcc_assert (TYPE_P (t));
10992 containing_scope = TYPE_CONTEXT (t);
10994 /* Use the containing namespace if it was passed in (for a declaration). */
10995 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10997 if (context_die == lookup_decl_die (containing_scope))
10998 /* OK */;
10999 else
11000 containing_scope = NULL_TREE;
11003 /* Ignore function type "scopes" from the C frontend. They mean that
11004 a tagged type is local to a parmlist of a function declarator, but
11005 that isn't useful to DWARF. */
11006 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
11007 containing_scope = NULL_TREE;
11009 if (containing_scope == NULL_TREE)
11010 scope_die = comp_unit_die;
11011 else if (TYPE_P (containing_scope))
11013 /* For types, we can just look up the appropriate DIE. But
11014 first we check to see if we're in the middle of emitting it
11015 so we know where the new DIE should go. */
11016 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
11017 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
11018 break;
11020 if (i < 0)
11022 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
11023 || TREE_ASM_WRITTEN (containing_scope));
11025 /* If none of the current dies are suitable, we get file scope. */
11026 scope_die = comp_unit_die;
11028 else
11029 scope_die = lookup_type_die (containing_scope);
11031 else
11032 scope_die = context_die;
11034 return scope_die;
11037 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
11039 static inline int
11040 local_scope_p (dw_die_ref context_die)
11042 for (; context_die; context_die = context_die->die_parent)
11043 if (context_die->die_tag == DW_TAG_inlined_subroutine
11044 || context_die->die_tag == DW_TAG_subprogram)
11045 return 1;
11047 return 0;
11050 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
11051 whether or not to treat a DIE in this context as a declaration. */
11053 static inline int
11054 class_or_namespace_scope_p (dw_die_ref context_die)
11056 return (context_die
11057 && (context_die->die_tag == DW_TAG_structure_type
11058 || context_die->die_tag == DW_TAG_union_type
11059 || context_die->die_tag == DW_TAG_namespace));
11062 /* Many forms of DIEs require a "type description" attribute. This
11063 routine locates the proper "type descriptor" die for the type given
11064 by 'type', and adds a DW_AT_type attribute below the given die. */
11066 static void
11067 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
11068 int decl_volatile, dw_die_ref context_die)
11070 enum tree_code code = TREE_CODE (type);
11071 dw_die_ref type_die = NULL;
11073 /* ??? If this type is an unnamed subrange type of an integral or
11074 floating-point type, use the inner type. This is because we have no
11075 support for unnamed types in base_type_die. This can happen if this is
11076 an Ada subrange type. Correct solution is emit a subrange type die. */
11077 if ((code == INTEGER_TYPE || code == REAL_TYPE)
11078 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
11079 type = TREE_TYPE (type), code = TREE_CODE (type);
11081 if (code == ERROR_MARK
11082 /* Handle a special case. For functions whose return type is void, we
11083 generate *no* type attribute. (Note that no object may have type
11084 `void', so this only applies to function return types). */
11085 || code == VOID_TYPE)
11086 return;
11088 type_die = modified_type_die (type,
11089 decl_const || TYPE_READONLY (type),
11090 decl_volatile || TYPE_VOLATILE (type),
11091 context_die);
11093 if (type_die != NULL)
11094 add_AT_die_ref (object_die, DW_AT_type, type_die);
11097 /* Given an object die, add the calling convention attribute for the
11098 function call type. */
11099 static void
11100 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
11102 enum dwarf_calling_convention value = DW_CC_normal;
11104 value = targetm.dwarf_calling_convention (type);
11106 /* Only add the attribute if the backend requests it, and
11107 is not DW_CC_normal. */
11108 if (value && (value != DW_CC_normal))
11109 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
11112 /* Given a tree pointer to a struct, class, union, or enum type node, return
11113 a pointer to the (string) tag name for the given type, or zero if the type
11114 was declared without a tag. */
11116 static const char *
11117 type_tag (tree type)
11119 const char *name = 0;
11121 if (TYPE_NAME (type) != 0)
11123 tree t = 0;
11125 /* Find the IDENTIFIER_NODE for the type name. */
11126 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
11127 t = TYPE_NAME (type);
11129 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
11130 a TYPE_DECL node, regardless of whether or not a `typedef' was
11131 involved. */
11132 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11133 && ! DECL_IGNORED_P (TYPE_NAME (type)))
11134 t = DECL_NAME (TYPE_NAME (type));
11136 /* Now get the name as a string, or invent one. */
11137 if (t != 0)
11138 name = IDENTIFIER_POINTER (t);
11141 return (name == 0 || *name == '\0') ? 0 : name;
11144 /* Return the type associated with a data member, make a special check
11145 for bit field types. */
11147 static inline tree
11148 member_declared_type (tree member)
11150 return (DECL_BIT_FIELD_TYPE (member)
11151 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
11154 /* Get the decl's label, as described by its RTL. This may be different
11155 from the DECL_NAME name used in the source file. */
11157 #if 0
11158 static const char *
11159 decl_start_label (tree decl)
11161 rtx x;
11162 const char *fnname;
11164 x = DECL_RTL (decl);
11165 gcc_assert (MEM_P (x));
11167 x = XEXP (x, 0);
11168 gcc_assert (GET_CODE (x) == SYMBOL_REF);
11170 fnname = XSTR (x, 0);
11171 return fnname;
11173 #endif
11175 /* These routines generate the internal representation of the DIE's for
11176 the compilation unit. Debugging information is collected by walking
11177 the declaration trees passed in from dwarf2out_decl(). */
11179 static void
11180 gen_array_type_die (tree type, dw_die_ref context_die)
11182 dw_die_ref scope_die = scope_die_for (type, context_die);
11183 dw_die_ref array_die;
11184 tree element_type;
11186 /* ??? The SGI dwarf reader fails for array of array of enum types unless
11187 the inner array type comes before the outer array type. Thus we must
11188 call gen_type_die before we call new_die. See below also. */
11189 #ifdef MIPS_DEBUGGING_INFO
11190 gen_type_die (TREE_TYPE (type), context_die);
11191 #endif
11193 array_die = new_die (DW_TAG_array_type, scope_die, type);
11194 add_name_attribute (array_die, type_tag (type));
11195 equate_type_number_to_die (type, array_die);
11197 if (TREE_CODE (type) == VECTOR_TYPE)
11199 /* The frontend feeds us a representation for the vector as a struct
11200 containing an array. Pull out the array type. */
11201 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
11202 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
11205 #if 0
11206 /* We default the array ordering. SDB will probably do
11207 the right things even if DW_AT_ordering is not present. It's not even
11208 an issue until we start to get into multidimensional arrays anyway. If
11209 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
11210 then we'll have to put the DW_AT_ordering attribute back in. (But if
11211 and when we find out that we need to put these in, we will only do so
11212 for multidimensional arrays. */
11213 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
11214 #endif
11216 #ifdef MIPS_DEBUGGING_INFO
11217 /* The SGI compilers handle arrays of unknown bound by setting
11218 AT_declaration and not emitting any subrange DIEs. */
11219 if (! TYPE_DOMAIN (type))
11220 add_AT_flag (array_die, DW_AT_declaration, 1);
11221 else
11222 #endif
11223 add_subscript_info (array_die, type);
11225 /* Add representation of the type of the elements of this array type. */
11226 element_type = TREE_TYPE (type);
11228 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
11229 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
11230 We work around this by disabling this feature. See also
11231 add_subscript_info. */
11232 #ifndef MIPS_DEBUGGING_INFO
11233 while (TREE_CODE (element_type) == ARRAY_TYPE)
11234 element_type = TREE_TYPE (element_type);
11236 gen_type_die (element_type, context_die);
11237 #endif
11239 add_type_attribute (array_die, element_type, 0, 0, context_die);
11242 #if 0
11243 static void
11244 gen_entry_point_die (tree decl, dw_die_ref context_die)
11246 tree origin = decl_ultimate_origin (decl);
11247 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
11249 if (origin != NULL)
11250 add_abstract_origin_attribute (decl_die, origin);
11251 else
11253 add_name_and_src_coords_attributes (decl_die, decl);
11254 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
11255 0, 0, context_die);
11258 if (DECL_ABSTRACT (decl))
11259 equate_decl_number_to_die (decl, decl_die);
11260 else
11261 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
11263 #endif
11265 /* Walk through the list of incomplete types again, trying once more to
11266 emit full debugging info for them. */
11268 static void
11269 retry_incomplete_types (void)
11271 int i;
11273 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
11274 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
11277 /* Generate a DIE to represent an inlined instance of an enumeration type. */
11279 static void
11280 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
11282 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
11284 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11285 be incomplete and such types are not marked. */
11286 add_abstract_origin_attribute (type_die, type);
11289 /* Generate a DIE to represent an inlined instance of a structure type. */
11291 static void
11292 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
11294 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
11296 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11297 be incomplete and such types are not marked. */
11298 add_abstract_origin_attribute (type_die, type);
11301 /* Generate a DIE to represent an inlined instance of a union type. */
11303 static void
11304 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11306 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11308 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11309 be incomplete and such types are not marked. */
11310 add_abstract_origin_attribute (type_die, type);
11313 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11314 include all of the information about the enumeration values also. Each
11315 enumerated type name/value is listed as a child of the enumerated type
11316 DIE. */
11318 static dw_die_ref
11319 gen_enumeration_type_die (tree type, dw_die_ref context_die)
11321 dw_die_ref type_die = lookup_type_die (type);
11323 if (type_die == NULL)
11325 type_die = new_die (DW_TAG_enumeration_type,
11326 scope_die_for (type, context_die), type);
11327 equate_type_number_to_die (type, type_die);
11328 add_name_attribute (type_die, type_tag (type));
11330 else if (! TYPE_SIZE (type))
11331 return type_die;
11332 else
11333 remove_AT (type_die, DW_AT_declaration);
11335 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11336 given enum type is incomplete, do not generate the DW_AT_byte_size
11337 attribute or the DW_AT_element_list attribute. */
11338 if (TYPE_SIZE (type))
11340 tree link;
11342 TREE_ASM_WRITTEN (type) = 1;
11343 add_byte_size_attribute (type_die, type);
11344 if (TYPE_STUB_DECL (type) != NULL_TREE)
11345 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11347 /* If the first reference to this type was as the return type of an
11348 inline function, then it may not have a parent. Fix this now. */
11349 if (type_die->die_parent == NULL)
11350 add_child_die (scope_die_for (type, context_die), type_die);
11352 for (link = TYPE_VALUES (type);
11353 link != NULL; link = TREE_CHAIN (link))
11355 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11356 tree value = TREE_VALUE (link);
11358 add_name_attribute (enum_die,
11359 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11361 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11362 /* DWARF2 does not provide a way of indicating whether or
11363 not enumeration constants are signed or unsigned. GDB
11364 always assumes the values are signed, so we output all
11365 values as if they were signed. That means that
11366 enumeration constants with very large unsigned values
11367 will appear to have negative values in the debugger. */
11368 add_AT_int (enum_die, DW_AT_const_value,
11369 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11372 else
11373 add_AT_flag (type_die, DW_AT_declaration, 1);
11375 return type_die;
11378 /* Generate a DIE to represent either a real live formal parameter decl or to
11379 represent just the type of some formal parameter position in some function
11380 type.
11382 Note that this routine is a bit unusual because its argument may be a
11383 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11384 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11385 node. If it's the former then this function is being called to output a
11386 DIE to represent a formal parameter object (or some inlining thereof). If
11387 it's the latter, then this function is only being called to output a
11388 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11389 argument type of some subprogram type. */
11391 static dw_die_ref
11392 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11394 dw_die_ref parm_die
11395 = new_die (DW_TAG_formal_parameter, context_die, node);
11396 tree origin;
11398 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11400 case tcc_declaration:
11401 origin = decl_ultimate_origin (node);
11402 if (origin != NULL)
11403 add_abstract_origin_attribute (parm_die, origin);
11404 else
11406 add_name_and_src_coords_attributes (parm_die, node);
11407 add_type_attribute (parm_die, TREE_TYPE (node),
11408 TREE_READONLY (node),
11409 TREE_THIS_VOLATILE (node),
11410 context_die);
11411 if (DECL_ARTIFICIAL (node))
11412 add_AT_flag (parm_die, DW_AT_artificial, 1);
11415 equate_decl_number_to_die (node, parm_die);
11416 if (! DECL_ABSTRACT (node))
11417 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11419 break;
11421 case tcc_type:
11422 /* We were called with some kind of a ..._TYPE node. */
11423 add_type_attribute (parm_die, node, 0, 0, context_die);
11424 break;
11426 default:
11427 gcc_unreachable ();
11430 return parm_die;
11433 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11434 at the end of an (ANSI prototyped) formal parameters list. */
11436 static void
11437 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11439 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11442 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11443 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11444 parameters as specified in some function type specification (except for
11445 those which appear as part of a function *definition*). */
11447 static void
11448 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11450 tree link;
11451 tree formal_type = NULL;
11452 tree first_parm_type;
11453 tree arg;
11455 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11457 arg = DECL_ARGUMENTS (function_or_method_type);
11458 function_or_method_type = TREE_TYPE (function_or_method_type);
11460 else
11461 arg = NULL_TREE;
11463 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11465 /* Make our first pass over the list of formal parameter types and output a
11466 DW_TAG_formal_parameter DIE for each one. */
11467 for (link = first_parm_type; link; )
11469 dw_die_ref parm_die;
11471 formal_type = TREE_VALUE (link);
11472 if (formal_type == void_type_node)
11473 break;
11475 /* Output a (nameless) DIE to represent the formal parameter itself. */
11476 parm_die = gen_formal_parameter_die (formal_type, context_die);
11477 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11478 && link == first_parm_type)
11479 || (arg && DECL_ARTIFICIAL (arg)))
11480 add_AT_flag (parm_die, DW_AT_artificial, 1);
11482 link = TREE_CHAIN (link);
11483 if (arg)
11484 arg = TREE_CHAIN (arg);
11487 /* If this function type has an ellipsis, add a
11488 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11489 if (formal_type != void_type_node)
11490 gen_unspecified_parameters_die (function_or_method_type, context_die);
11492 /* Make our second (and final) pass over the list of formal parameter types
11493 and output DIEs to represent those types (as necessary). */
11494 for (link = TYPE_ARG_TYPES (function_or_method_type);
11495 link && TREE_VALUE (link);
11496 link = TREE_CHAIN (link))
11497 gen_type_die (TREE_VALUE (link), context_die);
11500 /* We want to generate the DIE for TYPE so that we can generate the
11501 die for MEMBER, which has been defined; we will need to refer back
11502 to the member declaration nested within TYPE. If we're trying to
11503 generate minimal debug info for TYPE, processing TYPE won't do the
11504 trick; we need to attach the member declaration by hand. */
11506 static void
11507 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11509 gen_type_die (type, context_die);
11511 /* If we're trying to avoid duplicate debug info, we may not have
11512 emitted the member decl for this function. Emit it now. */
11513 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11514 && ! lookup_decl_die (member))
11516 dw_die_ref type_die;
11517 gcc_assert (!decl_ultimate_origin (member));
11519 push_decl_scope (type);
11520 type_die = lookup_type_die (type);
11521 if (TREE_CODE (member) == FUNCTION_DECL)
11522 gen_subprogram_die (member, type_die);
11523 else if (TREE_CODE (member) == FIELD_DECL)
11525 /* Ignore the nameless fields that are used to skip bits but handle
11526 C++ anonymous unions and structs. */
11527 if (DECL_NAME (member) != NULL_TREE
11528 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11529 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11531 gen_type_die (member_declared_type (member), type_die);
11532 gen_field_die (member, type_die);
11535 else
11536 gen_variable_die (member, type_die);
11538 pop_decl_scope ();
11542 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11543 may later generate inlined and/or out-of-line instances of. */
11545 static void
11546 dwarf2out_abstract_function (tree decl)
11548 dw_die_ref old_die;
11549 tree save_fn;
11550 struct function *save_cfun;
11551 tree context;
11552 int was_abstract = DECL_ABSTRACT (decl);
11554 /* Make sure we have the actual abstract inline, not a clone. */
11555 decl = DECL_ORIGIN (decl);
11557 old_die = lookup_decl_die (decl);
11558 if (old_die && get_AT (old_die, DW_AT_inline))
11559 /* We've already generated the abstract instance. */
11560 return;
11562 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11563 we don't get confused by DECL_ABSTRACT. */
11564 if (debug_info_level > DINFO_LEVEL_TERSE)
11566 context = decl_class_context (decl);
11567 if (context)
11568 gen_type_die_for_member
11569 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11572 /* Pretend we've just finished compiling this function. */
11573 save_fn = current_function_decl;
11574 save_cfun = cfun;
11575 current_function_decl = decl;
11576 cfun = DECL_STRUCT_FUNCTION (decl);
11578 set_decl_abstract_flags (decl, 1);
11579 dwarf2out_decl (decl);
11580 if (! was_abstract)
11581 set_decl_abstract_flags (decl, 0);
11583 current_function_decl = save_fn;
11584 cfun = save_cfun;
11587 /* Helper function of premark_used_types() which gets called through
11588 htab_traverse_resize().
11590 Marks the DIE of a given type in *SLOT as perennial, so it never gets
11591 marked as unused by prune_unused_types. */
11592 static int
11593 premark_used_types_helper (void **slot, void *data ATTRIBUTE_UNUSED)
11595 tree type;
11596 dw_die_ref die;
11598 type = *slot;
11599 die = lookup_type_die (type);
11600 if (die != NULL)
11601 die->die_perennial_p = 1;
11602 return 1;
11605 /* Mark all members of used_types_hash as perennial. */
11606 static void
11607 premark_used_types (void)
11609 if (cfun && cfun->used_types_hash)
11610 htab_traverse (cfun->used_types_hash, premark_used_types_helper, NULL);
11613 /* Generate a DIE to represent a declared function (either file-scope or
11614 block-local). */
11616 static void
11617 gen_subprogram_die (tree decl, dw_die_ref context_die)
11619 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11620 tree origin = decl_ultimate_origin (decl);
11621 dw_die_ref subr_die;
11622 tree fn_arg_types;
11623 tree outer_scope;
11624 dw_die_ref old_die = lookup_decl_die (decl);
11625 int declaration = (current_function_decl != decl
11626 || class_or_namespace_scope_p (context_die));
11628 premark_used_types ();
11630 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11631 started to generate the abstract instance of an inline, decided to output
11632 its containing class, and proceeded to emit the declaration of the inline
11633 from the member list for the class. If so, DECLARATION takes priority;
11634 we'll get back to the abstract instance when done with the class. */
11636 /* The class-scope declaration DIE must be the primary DIE. */
11637 if (origin && declaration && class_or_namespace_scope_p (context_die))
11639 origin = NULL;
11640 gcc_assert (!old_die);
11643 /* Now that the C++ front end lazily declares artificial member fns, we
11644 might need to retrofit the declaration into its class. */
11645 if (!declaration && !origin && !old_die
11646 && DECL_CONTEXT (decl) && TYPE_P (DECL_CONTEXT (decl))
11647 && !class_or_namespace_scope_p (context_die)
11648 && debug_info_level > DINFO_LEVEL_TERSE)
11649 old_die = force_decl_die (decl);
11651 if (origin != NULL)
11653 gcc_assert (!declaration || local_scope_p (context_die));
11655 /* Fixup die_parent for the abstract instance of a nested
11656 inline function. */
11657 if (old_die && old_die->die_parent == NULL)
11658 add_child_die (context_die, old_die);
11660 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11661 add_abstract_origin_attribute (subr_die, origin);
11663 else if (old_die)
11665 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11666 struct dwarf_file_data * file_index = lookup_filename (s.file);
11668 if (!get_AT_flag (old_die, DW_AT_declaration)
11669 /* We can have a normal definition following an inline one in the
11670 case of redefinition of GNU C extern inlines.
11671 It seems reasonable to use AT_specification in this case. */
11672 && !get_AT (old_die, DW_AT_inline))
11674 /* Detect and ignore this case, where we are trying to output
11675 something we have already output. */
11676 return;
11679 /* If the definition comes from the same place as the declaration,
11680 maybe use the old DIE. We always want the DIE for this function
11681 that has the *_pc attributes to be under comp_unit_die so the
11682 debugger can find it. We also need to do this for abstract
11683 instances of inlines, since the spec requires the out-of-line copy
11684 to have the same parent. For local class methods, this doesn't
11685 apply; we just use the old DIE. */
11686 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11687 && (DECL_ARTIFICIAL (decl)
11688 || (get_AT_file (old_die, DW_AT_decl_file) == file_index
11689 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11690 == (unsigned) s.line))))
11692 subr_die = old_die;
11694 /* Clear out the declaration attribute and the formal parameters.
11695 Do not remove all children, because it is possible that this
11696 declaration die was forced using force_decl_die(). In such
11697 cases die that forced declaration die (e.g. TAG_imported_module)
11698 is one of the children that we do not want to remove. */
11699 remove_AT (subr_die, DW_AT_declaration);
11700 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11702 else
11704 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11705 add_AT_specification (subr_die, old_die);
11706 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
11707 add_AT_file (subr_die, DW_AT_decl_file, file_index);
11708 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
11709 add_AT_unsigned (subr_die, DW_AT_decl_line, s.line);
11712 else
11714 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11716 if (TREE_PUBLIC (decl))
11717 add_AT_flag (subr_die, DW_AT_external, 1);
11719 add_name_and_src_coords_attributes (subr_die, decl);
11720 if (debug_info_level > DINFO_LEVEL_TERSE)
11722 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11723 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11724 0, 0, context_die);
11727 add_pure_or_virtual_attribute (subr_die, decl);
11728 if (DECL_ARTIFICIAL (decl))
11729 add_AT_flag (subr_die, DW_AT_artificial, 1);
11731 if (TREE_PROTECTED (decl))
11732 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11733 else if (TREE_PRIVATE (decl))
11734 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11737 if (declaration)
11739 if (!old_die || !get_AT (old_die, DW_AT_inline))
11741 add_AT_flag (subr_die, DW_AT_declaration, 1);
11743 /* The first time we see a member function, it is in the context of
11744 the class to which it belongs. We make sure of this by emitting
11745 the class first. The next time is the definition, which is
11746 handled above. The two may come from the same source text.
11748 Note that force_decl_die() forces function declaration die. It is
11749 later reused to represent definition. */
11750 equate_decl_number_to_die (decl, subr_die);
11753 else if (DECL_ABSTRACT (decl))
11755 if (DECL_DECLARED_INLINE_P (decl))
11757 if (cgraph_function_possibly_inlined_p (decl))
11758 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11759 else
11760 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11762 else
11764 if (cgraph_function_possibly_inlined_p (decl))
11765 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11766 else
11767 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11770 equate_decl_number_to_die (decl, subr_die);
11772 else if (!DECL_EXTERNAL (decl))
11774 HOST_WIDE_INT cfa_fb_offset;
11776 if (!old_die || !get_AT (old_die, DW_AT_inline))
11777 equate_decl_number_to_die (decl, subr_die);
11779 if (!flag_reorder_blocks_and_partition)
11781 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11782 current_function_funcdef_no);
11783 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11784 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11785 current_function_funcdef_no);
11786 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11788 add_pubname (decl, subr_die);
11789 add_arange (decl, subr_die);
11791 else
11792 { /* Do nothing for now; maybe need to duplicate die, one for
11793 hot section and ond for cold section, then use the hot/cold
11794 section begin/end labels to generate the aranges... */
11796 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11797 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11798 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11799 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11801 add_pubname (decl, subr_die);
11802 add_arange (decl, subr_die);
11803 add_arange (decl, subr_die);
11807 #ifdef MIPS_DEBUGGING_INFO
11808 /* Add a reference to the FDE for this routine. */
11809 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11810 #endif
11812 cfa_fb_offset = CFA_FRAME_BASE_OFFSET (decl);
11814 /* We define the "frame base" as the function's CFA. This is more
11815 convenient for several reasons: (1) It's stable across the prologue
11816 and epilogue, which makes it better than just a frame pointer,
11817 (2) With dwarf3, there exists a one-byte encoding that allows us
11818 to reference the .debug_frame data by proxy, but failing that,
11819 (3) We can at least reuse the code inspection and interpretation
11820 code that determines the CFA position at various points in the
11821 function. */
11822 /* ??? Use some command-line or configury switch to enable the use
11823 of dwarf3 DW_OP_call_frame_cfa. At present there are no dwarf
11824 consumers that understand it; fall back to "pure" dwarf2 and
11825 convert the CFA data into a location list. */
11827 dw_loc_list_ref list = convert_cfa_to_fb_loc_list (cfa_fb_offset);
11828 if (list->dw_loc_next)
11829 add_AT_loc_list (subr_die, DW_AT_frame_base, list);
11830 else
11831 add_AT_loc (subr_die, DW_AT_frame_base, list->expr);
11834 /* Compute a displacement from the "steady-state frame pointer" to
11835 the CFA. The former is what all stack slots and argument slots
11836 will reference in the rtl; the later is what we've told the
11837 debugger about. We'll need to adjust all frame_base references
11838 by this displacement. */
11839 compute_frame_pointer_to_fb_displacement (cfa_fb_offset);
11841 if (cfun->static_chain_decl)
11842 add_AT_location_description (subr_die, DW_AT_static_link,
11843 loc_descriptor_from_tree (cfun->static_chain_decl));
11846 /* Now output descriptions of the arguments for this function. This gets
11847 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11848 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11849 `...' at the end of the formal parameter list. In order to find out if
11850 there was a trailing ellipsis or not, we must instead look at the type
11851 associated with the FUNCTION_DECL. This will be a node of type
11852 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11853 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11854 an ellipsis at the end. */
11856 /* In the case where we are describing a mere function declaration, all we
11857 need to do here (and all we *can* do here) is to describe the *types* of
11858 its formal parameters. */
11859 if (debug_info_level <= DINFO_LEVEL_TERSE)
11861 else if (declaration)
11862 gen_formal_types_die (decl, subr_die);
11863 else
11865 /* Generate DIEs to represent all known formal parameters. */
11866 tree arg_decls = DECL_ARGUMENTS (decl);
11867 tree parm;
11869 /* When generating DIEs, generate the unspecified_parameters DIE
11870 instead if we come across the arg "__builtin_va_alist" */
11871 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11872 if (TREE_CODE (parm) == PARM_DECL)
11874 if (DECL_NAME (parm)
11875 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11876 "__builtin_va_alist"))
11877 gen_unspecified_parameters_die (parm, subr_die);
11878 else
11879 gen_decl_die (parm, subr_die);
11882 /* Decide whether we need an unspecified_parameters DIE at the end.
11883 There are 2 more cases to do this for: 1) the ansi ... declaration -
11884 this is detectable when the end of the arg list is not a
11885 void_type_node 2) an unprototyped function declaration (not a
11886 definition). This just means that we have no info about the
11887 parameters at all. */
11888 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11889 if (fn_arg_types != NULL)
11891 /* This is the prototyped case, check for.... */
11892 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11893 gen_unspecified_parameters_die (decl, subr_die);
11895 else if (DECL_INITIAL (decl) == NULL_TREE)
11896 gen_unspecified_parameters_die (decl, subr_die);
11899 /* Output Dwarf info for all of the stuff within the body of the function
11900 (if it has one - it may be just a declaration). */
11901 outer_scope = DECL_INITIAL (decl);
11903 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11904 a function. This BLOCK actually represents the outermost binding contour
11905 for the function, i.e. the contour in which the function's formal
11906 parameters and labels get declared. Curiously, it appears that the front
11907 end doesn't actually put the PARM_DECL nodes for the current function onto
11908 the BLOCK_VARS list for this outer scope, but are strung off of the
11909 DECL_ARGUMENTS list for the function instead.
11911 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11912 the LABEL_DECL nodes for the function however, and we output DWARF info
11913 for those in decls_for_scope. Just within the `outer_scope' there will be
11914 a BLOCK node representing the function's outermost pair of curly braces,
11915 and any blocks used for the base and member initializers of a C++
11916 constructor function. */
11917 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11919 /* Emit a DW_TAG_variable DIE for a named return value. */
11920 if (DECL_NAME (DECL_RESULT (decl)))
11921 gen_decl_die (DECL_RESULT (decl), subr_die);
11923 current_function_has_inlines = 0;
11924 decls_for_scope (outer_scope, subr_die, 0);
11926 #if 0 && defined (MIPS_DEBUGGING_INFO)
11927 if (current_function_has_inlines)
11929 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11930 if (! comp_unit_has_inlines)
11932 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11933 comp_unit_has_inlines = 1;
11936 #endif
11938 /* Add the calling convention attribute if requested. */
11939 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11943 /* Generate a DIE to represent a declared data object. */
11945 static void
11946 gen_variable_die (tree decl, dw_die_ref context_die)
11948 tree origin = decl_ultimate_origin (decl);
11949 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11951 dw_die_ref old_die = lookup_decl_die (decl);
11952 int declaration = (DECL_EXTERNAL (decl)
11953 /* If DECL is COMDAT and has not actually been
11954 emitted, we cannot take its address; there
11955 might end up being no definition anywhere in
11956 the program. For example, consider the C++
11957 test case:
11959 template <class T>
11960 struct S { static const int i = 7; };
11962 template <class T>
11963 const int S<T>::i;
11965 int f() { return S<int>::i; }
11967 Here, S<int>::i is not DECL_EXTERNAL, but no
11968 definition is required, so the compiler will
11969 not emit a definition. */
11970 || (TREE_CODE (decl) == VAR_DECL
11971 && DECL_COMDAT (decl) && !TREE_ASM_WRITTEN (decl))
11972 || class_or_namespace_scope_p (context_die));
11974 if (origin != NULL)
11975 add_abstract_origin_attribute (var_die, origin);
11977 /* Loop unrolling can create multiple blocks that refer to the same
11978 static variable, so we must test for the DW_AT_declaration flag.
11980 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11981 copy decls and set the DECL_ABSTRACT flag on them instead of
11982 sharing them.
11984 ??? Duplicated blocks have been rewritten to use .debug_ranges.
11986 ??? The declare_in_namespace support causes us to get two DIEs for one
11987 variable, both of which are declarations. We want to avoid considering
11988 one to be a specification, so we must test that this DIE is not a
11989 declaration. */
11990 else if (old_die && TREE_STATIC (decl) && ! declaration
11991 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11993 /* This is a definition of a C++ class level static. */
11994 add_AT_specification (var_die, old_die);
11995 if (DECL_NAME (decl))
11997 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11998 struct dwarf_file_data * file_index = lookup_filename (s.file);
12000 if (get_AT_file (old_die, DW_AT_decl_file) != file_index)
12001 add_AT_file (var_die, DW_AT_decl_file, file_index);
12003 if (get_AT_unsigned (old_die, DW_AT_decl_line) != (unsigned) s.line)
12005 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
12008 else
12010 add_name_and_src_coords_attributes (var_die, decl);
12011 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
12012 TREE_THIS_VOLATILE (decl), context_die);
12014 if (TREE_PUBLIC (decl))
12015 add_AT_flag (var_die, DW_AT_external, 1);
12017 if (DECL_ARTIFICIAL (decl))
12018 add_AT_flag (var_die, DW_AT_artificial, 1);
12020 if (TREE_PROTECTED (decl))
12021 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
12022 else if (TREE_PRIVATE (decl))
12023 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
12026 if (declaration)
12027 add_AT_flag (var_die, DW_AT_declaration, 1);
12029 if (DECL_ABSTRACT (decl) || declaration)
12030 equate_decl_number_to_die (decl, var_die);
12032 if (! declaration && ! DECL_ABSTRACT (decl))
12034 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
12035 add_pubname (decl, var_die);
12037 else
12038 tree_add_const_value_attribute (var_die, decl);
12041 /* Generate a DIE to represent a label identifier. */
12043 static void
12044 gen_label_die (tree decl, dw_die_ref context_die)
12046 tree origin = decl_ultimate_origin (decl);
12047 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
12048 rtx insn;
12049 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12051 if (origin != NULL)
12052 add_abstract_origin_attribute (lbl_die, origin);
12053 else
12054 add_name_and_src_coords_attributes (lbl_die, decl);
12056 if (DECL_ABSTRACT (decl))
12057 equate_decl_number_to_die (decl, lbl_die);
12058 else
12060 insn = DECL_RTL_IF_SET (decl);
12062 /* Deleted labels are programmer specified labels which have been
12063 eliminated because of various optimizations. We still emit them
12064 here so that it is possible to put breakpoints on them. */
12065 if (insn
12066 && (LABEL_P (insn)
12067 || ((NOTE_P (insn)
12068 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
12070 /* When optimization is enabled (via -O) some parts of the compiler
12071 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
12072 represent source-level labels which were explicitly declared by
12073 the user. This really shouldn't be happening though, so catch
12074 it if it ever does happen. */
12075 gcc_assert (!INSN_DELETED_P (insn));
12077 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
12078 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
12083 /* A helper function for gen_inlined_subroutine_die. Add source coordinate
12084 attributes to the DIE for a block STMT, to describe where the inlined
12085 function was called from. This is similar to add_src_coords_attributes. */
12087 static inline void
12088 add_call_src_coords_attributes (tree stmt, dw_die_ref die)
12090 expanded_location s = expand_location (BLOCK_SOURCE_LOCATION (stmt));
12092 add_AT_file (die, DW_AT_call_file, lookup_filename (s.file));
12093 add_AT_unsigned (die, DW_AT_call_line, s.line);
12096 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
12097 Add low_pc and high_pc attributes to the DIE for a block STMT. */
12099 static inline void
12100 add_high_low_attributes (tree stmt, dw_die_ref die)
12102 char label[MAX_ARTIFICIAL_LABEL_BYTES];
12104 if (BLOCK_FRAGMENT_CHAIN (stmt))
12106 tree chain;
12108 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
12110 chain = BLOCK_FRAGMENT_CHAIN (stmt);
12113 add_ranges (chain);
12114 chain = BLOCK_FRAGMENT_CHAIN (chain);
12116 while (chain);
12117 add_ranges (NULL);
12119 else
12121 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
12122 BLOCK_NUMBER (stmt));
12123 add_AT_lbl_id (die, DW_AT_low_pc, label);
12124 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
12125 BLOCK_NUMBER (stmt));
12126 add_AT_lbl_id (die, DW_AT_high_pc, label);
12130 /* Generate a DIE for a lexical block. */
12132 static void
12133 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
12135 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
12137 if (! BLOCK_ABSTRACT (stmt))
12138 add_high_low_attributes (stmt, stmt_die);
12140 decls_for_scope (stmt, stmt_die, depth);
12143 /* Generate a DIE for an inlined subprogram. */
12145 static void
12146 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
12148 tree decl = block_ultimate_origin (stmt);
12150 /* Emit info for the abstract instance first, if we haven't yet. We
12151 must emit this even if the block is abstract, otherwise when we
12152 emit the block below (or elsewhere), we may end up trying to emit
12153 a die whose origin die hasn't been emitted, and crashing. */
12154 dwarf2out_abstract_function (decl);
12156 if (! BLOCK_ABSTRACT (stmt))
12158 dw_die_ref subr_die
12159 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
12161 add_abstract_origin_attribute (subr_die, decl);
12162 add_high_low_attributes (stmt, subr_die);
12163 add_call_src_coords_attributes (stmt, subr_die);
12165 decls_for_scope (stmt, subr_die, depth);
12166 current_function_has_inlines = 1;
12168 else
12169 /* We may get here if we're the outer block of function A that was
12170 inlined into function B that was inlined into function C. When
12171 generating debugging info for C, dwarf2out_abstract_function(B)
12172 would mark all inlined blocks as abstract, including this one.
12173 So, we wouldn't (and shouldn't) expect labels to be generated
12174 for this one. Instead, just emit debugging info for
12175 declarations within the block. This is particularly important
12176 in the case of initializers of arguments passed from B to us:
12177 if they're statement expressions containing declarations, we
12178 wouldn't generate dies for their abstract variables, and then,
12179 when generating dies for the real variables, we'd die (pun
12180 intended :-) */
12181 gen_lexical_block_die (stmt, context_die, depth);
12184 /* Generate a DIE for a field in a record, or structure. */
12186 static void
12187 gen_field_die (tree decl, dw_die_ref context_die)
12189 dw_die_ref decl_die;
12191 if (TREE_TYPE (decl) == error_mark_node)
12192 return;
12194 decl_die = new_die (DW_TAG_member, context_die, decl);
12195 add_name_and_src_coords_attributes (decl_die, decl);
12196 add_type_attribute (decl_die, member_declared_type (decl),
12197 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
12198 context_die);
12200 if (DECL_BIT_FIELD_TYPE (decl))
12202 add_byte_size_attribute (decl_die, decl);
12203 add_bit_size_attribute (decl_die, decl);
12204 add_bit_offset_attribute (decl_die, decl);
12207 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
12208 add_data_member_location_attribute (decl_die, decl);
12210 if (DECL_ARTIFICIAL (decl))
12211 add_AT_flag (decl_die, DW_AT_artificial, 1);
12213 if (TREE_PROTECTED (decl))
12214 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
12215 else if (TREE_PRIVATE (decl))
12216 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
12218 /* Equate decl number to die, so that we can look up this decl later on. */
12219 equate_decl_number_to_die (decl, decl_die);
12222 #if 0
12223 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12224 Use modified_type_die instead.
12225 We keep this code here just in case these types of DIEs may be needed to
12226 represent certain things in other languages (e.g. Pascal) someday. */
12228 static void
12229 gen_pointer_type_die (tree type, dw_die_ref context_die)
12231 dw_die_ref ptr_die
12232 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
12234 equate_type_number_to_die (type, ptr_die);
12235 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12236 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12239 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
12240 Use modified_type_die instead.
12241 We keep this code here just in case these types of DIEs may be needed to
12242 represent certain things in other languages (e.g. Pascal) someday. */
12244 static void
12245 gen_reference_type_die (tree type, dw_die_ref context_die)
12247 dw_die_ref ref_die
12248 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
12250 equate_type_number_to_die (type, ref_die);
12251 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
12252 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
12254 #endif
12256 /* Generate a DIE for a pointer to a member type. */
12258 static void
12259 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
12261 dw_die_ref ptr_die
12262 = new_die (DW_TAG_ptr_to_member_type,
12263 scope_die_for (type, context_die), type);
12265 equate_type_number_to_die (type, ptr_die);
12266 add_AT_die_ref (ptr_die, DW_AT_containing_type,
12267 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
12268 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
12271 /* Generate the DIE for the compilation unit. */
12273 static dw_die_ref
12274 gen_compile_unit_die (const char *filename)
12276 dw_die_ref die;
12277 char producer[250];
12278 const char *language_string = lang_hooks.name;
12279 int language;
12281 die = new_die (DW_TAG_compile_unit, NULL, NULL);
12283 if (filename)
12285 add_name_attribute (die, filename);
12286 /* Don't add cwd for <built-in>. */
12287 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
12288 add_comp_dir_attribute (die);
12291 sprintf (producer, "%s %s", language_string, version_string);
12293 #ifdef MIPS_DEBUGGING_INFO
12294 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
12295 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
12296 not appear in the producer string, the debugger reaches the conclusion
12297 that the object file is stripped and has no debugging information.
12298 To get the MIPS/SGI debugger to believe that there is debugging
12299 information in the object file, we add a -g to the producer string. */
12300 if (debug_info_level > DINFO_LEVEL_TERSE)
12301 strcat (producer, " -g");
12302 #endif
12304 add_AT_string (die, DW_AT_producer, producer);
12306 if (strcmp (language_string, "GNU C++") == 0)
12307 language = DW_LANG_C_plus_plus;
12308 else if (strcmp (language_string, "GNU Ada") == 0)
12309 language = DW_LANG_Ada95;
12310 else if (strcmp (language_string, "GNU F77") == 0)
12311 language = DW_LANG_Fortran77;
12312 else if (strcmp (language_string, "GNU F95") == 0)
12313 language = DW_LANG_Fortran95;
12314 else if (strcmp (language_string, "GNU Pascal") == 0)
12315 language = DW_LANG_Pascal83;
12316 else if (strcmp (language_string, "GNU Java") == 0)
12317 language = DW_LANG_Java;
12318 else if (strcmp (language_string, "GNU Objective-C") == 0)
12319 language = DW_LANG_ObjC;
12320 else if (strcmp (language_string, "GNU Objective-C++") == 0)
12321 language = DW_LANG_ObjC_plus_plus;
12322 else
12323 language = DW_LANG_C89;
12325 add_AT_unsigned (die, DW_AT_language, language);
12326 return die;
12329 /* Generate the DIE for a base class. */
12331 static void
12332 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
12334 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
12336 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
12337 add_data_member_location_attribute (die, binfo);
12339 if (BINFO_VIRTUAL_P (binfo))
12340 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
12342 if (access == access_public_node)
12343 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
12344 else if (access == access_protected_node)
12345 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
12348 /* Generate a DIE for a class member. */
12350 static void
12351 gen_member_die (tree type, dw_die_ref context_die)
12353 tree member;
12354 tree binfo = TYPE_BINFO (type);
12355 dw_die_ref child;
12357 /* If this is not an incomplete type, output descriptions of each of its
12358 members. Note that as we output the DIEs necessary to represent the
12359 members of this record or union type, we will also be trying to output
12360 DIEs to represent the *types* of those members. However the `type'
12361 function (above) will specifically avoid generating type DIEs for member
12362 types *within* the list of member DIEs for this (containing) type except
12363 for those types (of members) which are explicitly marked as also being
12364 members of this (containing) type themselves. The g++ front- end can
12365 force any given type to be treated as a member of some other (containing)
12366 type by setting the TYPE_CONTEXT of the given (member) type to point to
12367 the TREE node representing the appropriate (containing) type. */
12369 /* First output info about the base classes. */
12370 if (binfo)
12372 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
12373 int i;
12374 tree base;
12376 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12377 gen_inheritance_die (base,
12378 (accesses ? VEC_index (tree, accesses, i)
12379 : access_public_node), context_die);
12382 /* Now output info about the data members and type members. */
12383 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
12385 /* If we thought we were generating minimal debug info for TYPE
12386 and then changed our minds, some of the member declarations
12387 may have already been defined. Don't define them again, but
12388 do put them in the right order. */
12390 child = lookup_decl_die (member);
12391 if (child)
12392 splice_child_die (context_die, child);
12393 else
12394 gen_decl_die (member, context_die);
12397 /* Now output info about the function members (if any). */
12398 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
12400 /* Don't include clones in the member list. */
12401 if (DECL_ABSTRACT_ORIGIN (member))
12402 continue;
12404 child = lookup_decl_die (member);
12405 if (child)
12406 splice_child_die (context_die, child);
12407 else
12408 gen_decl_die (member, context_die);
12412 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12413 is set, we pretend that the type was never defined, so we only get the
12414 member DIEs needed by later specification DIEs. */
12416 static void
12417 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
12419 dw_die_ref type_die = lookup_type_die (type);
12420 dw_die_ref scope_die = 0;
12421 int nested = 0;
12422 int complete = (TYPE_SIZE (type)
12423 && (! TYPE_STUB_DECL (type)
12424 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
12425 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
12427 if (type_die && ! complete)
12428 return;
12430 if (TYPE_CONTEXT (type) != NULL_TREE
12431 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12432 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
12433 nested = 1;
12435 scope_die = scope_die_for (type, context_die);
12437 if (! type_die || (nested && scope_die == comp_unit_die))
12438 /* First occurrence of type or toplevel definition of nested class. */
12440 dw_die_ref old_die = type_die;
12442 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12443 ? DW_TAG_structure_type : DW_TAG_union_type,
12444 scope_die, type);
12445 equate_type_number_to_die (type, type_die);
12446 if (old_die)
12447 add_AT_specification (type_die, old_die);
12448 else
12449 add_name_attribute (type_die, type_tag (type));
12451 else
12452 remove_AT (type_die, DW_AT_declaration);
12454 /* If this type has been completed, then give it a byte_size attribute and
12455 then give a list of members. */
12456 if (complete && !ns_decl)
12458 /* Prevent infinite recursion in cases where the type of some member of
12459 this type is expressed in terms of this type itself. */
12460 TREE_ASM_WRITTEN (type) = 1;
12461 add_byte_size_attribute (type_die, type);
12462 if (TYPE_STUB_DECL (type) != NULL_TREE)
12463 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12465 /* If the first reference to this type was as the return type of an
12466 inline function, then it may not have a parent. Fix this now. */
12467 if (type_die->die_parent == NULL)
12468 add_child_die (scope_die, type_die);
12470 push_decl_scope (type);
12471 gen_member_die (type, type_die);
12472 pop_decl_scope ();
12474 /* GNU extension: Record what type our vtable lives in. */
12475 if (TYPE_VFIELD (type))
12477 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12479 gen_type_die (vtype, context_die);
12480 add_AT_die_ref (type_die, DW_AT_containing_type,
12481 lookup_type_die (vtype));
12484 else
12486 add_AT_flag (type_die, DW_AT_declaration, 1);
12488 /* We don't need to do this for function-local types. */
12489 if (TYPE_STUB_DECL (type)
12490 && ! decl_function_context (TYPE_STUB_DECL (type)))
12491 VEC_safe_push (tree, gc, incomplete_types, type);
12495 /* Generate a DIE for a subroutine _type_. */
12497 static void
12498 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12500 tree return_type = TREE_TYPE (type);
12501 dw_die_ref subr_die
12502 = new_die (DW_TAG_subroutine_type,
12503 scope_die_for (type, context_die), type);
12505 equate_type_number_to_die (type, subr_die);
12506 add_prototyped_attribute (subr_die, type);
12507 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12508 gen_formal_types_die (type, subr_die);
12511 /* Generate a DIE for a type definition. */
12513 static void
12514 gen_typedef_die (tree decl, dw_die_ref context_die)
12516 dw_die_ref type_die;
12517 tree origin;
12519 if (TREE_ASM_WRITTEN (decl))
12520 return;
12522 TREE_ASM_WRITTEN (decl) = 1;
12523 type_die = new_die (DW_TAG_typedef, context_die, decl);
12524 origin = decl_ultimate_origin (decl);
12525 if (origin != NULL)
12526 add_abstract_origin_attribute (type_die, origin);
12527 else
12529 tree type;
12531 add_name_and_src_coords_attributes (type_die, decl);
12532 if (DECL_ORIGINAL_TYPE (decl))
12534 type = DECL_ORIGINAL_TYPE (decl);
12536 gcc_assert (type != TREE_TYPE (decl));
12537 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12539 else
12540 type = TREE_TYPE (decl);
12542 add_type_attribute (type_die, type, TREE_READONLY (decl),
12543 TREE_THIS_VOLATILE (decl), context_die);
12546 if (DECL_ABSTRACT (decl))
12547 equate_decl_number_to_die (decl, type_die);
12550 /* Generate a type description DIE. */
12552 static void
12553 gen_type_die (tree type, dw_die_ref context_die)
12555 int need_pop;
12557 if (type == NULL_TREE || type == error_mark_node)
12558 return;
12560 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12561 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12563 if (TREE_ASM_WRITTEN (type))
12564 return;
12566 /* Prevent broken recursion; we can't hand off to the same type. */
12567 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12569 TREE_ASM_WRITTEN (type) = 1;
12570 gen_decl_die (TYPE_NAME (type), context_die);
12571 return;
12574 /* We are going to output a DIE to represent the unqualified version
12575 of this type (i.e. without any const or volatile qualifiers) so
12576 get the main variant (i.e. the unqualified version) of this type
12577 now. (Vectors are special because the debugging info is in the
12578 cloned type itself). */
12579 if (TREE_CODE (type) != VECTOR_TYPE)
12580 type = type_main_variant (type);
12582 if (TREE_ASM_WRITTEN (type))
12583 return;
12585 switch (TREE_CODE (type))
12587 case ERROR_MARK:
12588 break;
12590 case POINTER_TYPE:
12591 case REFERENCE_TYPE:
12592 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12593 ensures that the gen_type_die recursion will terminate even if the
12594 type is recursive. Recursive types are possible in Ada. */
12595 /* ??? We could perhaps do this for all types before the switch
12596 statement. */
12597 TREE_ASM_WRITTEN (type) = 1;
12599 /* For these types, all that is required is that we output a DIE (or a
12600 set of DIEs) to represent the "basis" type. */
12601 gen_type_die (TREE_TYPE (type), context_die);
12602 break;
12604 case OFFSET_TYPE:
12605 /* This code is used for C++ pointer-to-data-member types.
12606 Output a description of the relevant class type. */
12607 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12609 /* Output a description of the type of the object pointed to. */
12610 gen_type_die (TREE_TYPE (type), context_die);
12612 /* Now output a DIE to represent this pointer-to-data-member type
12613 itself. */
12614 gen_ptr_to_mbr_type_die (type, context_die);
12615 break;
12617 case FUNCTION_TYPE:
12618 /* Force out return type (in case it wasn't forced out already). */
12619 gen_type_die (TREE_TYPE (type), context_die);
12620 gen_subroutine_type_die (type, context_die);
12621 break;
12623 case METHOD_TYPE:
12624 /* Force out return type (in case it wasn't forced out already). */
12625 gen_type_die (TREE_TYPE (type), context_die);
12626 gen_subroutine_type_die (type, context_die);
12627 break;
12629 case ARRAY_TYPE:
12630 gen_array_type_die (type, context_die);
12631 break;
12633 case VECTOR_TYPE:
12634 gen_array_type_die (type, context_die);
12635 break;
12637 case ENUMERAL_TYPE:
12638 case RECORD_TYPE:
12639 case UNION_TYPE:
12640 case QUAL_UNION_TYPE:
12641 /* If this is a nested type whose containing class hasn't been written
12642 out yet, writing it out will cover this one, too. This does not apply
12643 to instantiations of member class templates; they need to be added to
12644 the containing class as they are generated. FIXME: This hurts the
12645 idea of combining type decls from multiple TUs, since we can't predict
12646 what set of template instantiations we'll get. */
12647 if (TYPE_CONTEXT (type)
12648 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12649 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12651 gen_type_die (TYPE_CONTEXT (type), context_die);
12653 if (TREE_ASM_WRITTEN (type))
12654 return;
12656 /* If that failed, attach ourselves to the stub. */
12657 push_decl_scope (TYPE_CONTEXT (type));
12658 context_die = lookup_type_die (TYPE_CONTEXT (type));
12659 need_pop = 1;
12661 else
12663 declare_in_namespace (type, context_die);
12664 need_pop = 0;
12667 if (TREE_CODE (type) == ENUMERAL_TYPE)
12668 gen_enumeration_type_die (type, context_die);
12669 else
12670 gen_struct_or_union_type_die (type, context_die);
12672 if (need_pop)
12673 pop_decl_scope ();
12675 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12676 it up if it is ever completed. gen_*_type_die will set it for us
12677 when appropriate. */
12678 return;
12680 case VOID_TYPE:
12681 case INTEGER_TYPE:
12682 case REAL_TYPE:
12683 case COMPLEX_TYPE:
12684 case BOOLEAN_TYPE:
12685 /* No DIEs needed for fundamental types. */
12686 break;
12688 case LANG_TYPE:
12689 /* No Dwarf representation currently defined. */
12690 break;
12692 default:
12693 gcc_unreachable ();
12696 TREE_ASM_WRITTEN (type) = 1;
12699 /* Generate a DIE for a tagged type instantiation. */
12701 static void
12702 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12704 if (type == NULL_TREE || type == error_mark_node)
12705 return;
12707 /* We are going to output a DIE to represent the unqualified version of
12708 this type (i.e. without any const or volatile qualifiers) so make sure
12709 that we have the main variant (i.e. the unqualified version) of this
12710 type now. */
12711 gcc_assert (type == type_main_variant (type));
12713 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12714 an instance of an unresolved type. */
12716 switch (TREE_CODE (type))
12718 case ERROR_MARK:
12719 break;
12721 case ENUMERAL_TYPE:
12722 gen_inlined_enumeration_type_die (type, context_die);
12723 break;
12725 case RECORD_TYPE:
12726 gen_inlined_structure_type_die (type, context_die);
12727 break;
12729 case UNION_TYPE:
12730 case QUAL_UNION_TYPE:
12731 gen_inlined_union_type_die (type, context_die);
12732 break;
12734 default:
12735 gcc_unreachable ();
12739 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12740 things which are local to the given block. */
12742 static void
12743 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12745 int must_output_die = 0;
12746 tree origin;
12747 tree decl;
12748 enum tree_code origin_code;
12750 /* Ignore blocks that are NULL. */
12751 if (stmt == NULL_TREE)
12752 return;
12754 /* If the block is one fragment of a non-contiguous block, do not
12755 process the variables, since they will have been done by the
12756 origin block. Do process subblocks. */
12757 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12759 tree sub;
12761 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12762 gen_block_die (sub, context_die, depth + 1);
12764 return;
12767 /* Determine the "ultimate origin" of this block. This block may be an
12768 inlined instance of an inlined instance of inline function, so we have
12769 to trace all of the way back through the origin chain to find out what
12770 sort of node actually served as the original seed for the creation of
12771 the current block. */
12772 origin = block_ultimate_origin (stmt);
12773 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12775 /* Determine if we need to output any Dwarf DIEs at all to represent this
12776 block. */
12777 if (origin_code == FUNCTION_DECL)
12778 /* The outer scopes for inlinings *must* always be represented. We
12779 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12780 must_output_die = 1;
12781 else
12783 /* In the case where the current block represents an inlining of the
12784 "body block" of an inline function, we must *NOT* output any DIE for
12785 this block because we have already output a DIE to represent the whole
12786 inlined function scope and the "body block" of any function doesn't
12787 really represent a different scope according to ANSI C rules. So we
12788 check here to make sure that this block does not represent a "body
12789 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12790 if (! is_body_block (origin ? origin : stmt))
12792 /* Determine if this block directly contains any "significant"
12793 local declarations which we will need to output DIEs for. */
12794 if (debug_info_level > DINFO_LEVEL_TERSE)
12795 /* We are not in terse mode so *any* local declaration counts
12796 as being a "significant" one. */
12797 must_output_die = (BLOCK_VARS (stmt) != NULL
12798 && (TREE_USED (stmt)
12799 || TREE_ASM_WRITTEN (stmt)
12800 || BLOCK_ABSTRACT (stmt)));
12801 else
12802 /* We are in terse mode, so only local (nested) function
12803 definitions count as "significant" local declarations. */
12804 for (decl = BLOCK_VARS (stmt);
12805 decl != NULL; decl = TREE_CHAIN (decl))
12806 if (TREE_CODE (decl) == FUNCTION_DECL
12807 && DECL_INITIAL (decl))
12809 must_output_die = 1;
12810 break;
12815 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12816 DIE for any block which contains no significant local declarations at
12817 all. Rather, in such cases we just call `decls_for_scope' so that any
12818 needed Dwarf info for any sub-blocks will get properly generated. Note
12819 that in terse mode, our definition of what constitutes a "significant"
12820 local declaration gets restricted to include only inlined function
12821 instances and local (nested) function definitions. */
12822 if (must_output_die)
12824 if (origin_code == FUNCTION_DECL)
12825 gen_inlined_subroutine_die (stmt, context_die, depth);
12826 else
12827 gen_lexical_block_die (stmt, context_die, depth);
12829 else
12830 decls_for_scope (stmt, context_die, depth);
12833 /* Generate all of the decls declared within a given scope and (recursively)
12834 all of its sub-blocks. */
12836 static void
12837 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12839 tree decl;
12840 tree subblocks;
12842 /* Ignore NULL blocks. */
12843 if (stmt == NULL_TREE)
12844 return;
12846 if (TREE_USED (stmt))
12848 /* Output the DIEs to represent all of the data objects and typedefs
12849 declared directly within this block but not within any nested
12850 sub-blocks. Also, nested function and tag DIEs have been
12851 generated with a parent of NULL; fix that up now. */
12852 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12854 dw_die_ref die;
12856 if (TREE_CODE (decl) == FUNCTION_DECL)
12857 die = lookup_decl_die (decl);
12858 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12859 die = lookup_type_die (TREE_TYPE (decl));
12860 else
12861 die = NULL;
12863 if (die != NULL && die->die_parent == NULL)
12864 add_child_die (context_die, die);
12865 /* Do not produce debug information for static variables since
12866 these might be optimized out. We are called for these later
12867 in cgraph_varpool_analyze_pending_decls. */
12868 if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
12870 else
12871 gen_decl_die (decl, context_die);
12875 /* If we're at -g1, we're not interested in subblocks. */
12876 if (debug_info_level <= DINFO_LEVEL_TERSE)
12877 return;
12879 /* Output the DIEs to represent all sub-blocks (and the items declared
12880 therein) of this block. */
12881 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12882 subblocks != NULL;
12883 subblocks = BLOCK_CHAIN (subblocks))
12884 gen_block_die (subblocks, context_die, depth + 1);
12887 /* Is this a typedef we can avoid emitting? */
12889 static inline int
12890 is_redundant_typedef (tree decl)
12892 if (TYPE_DECL_IS_STUB (decl))
12893 return 1;
12895 if (DECL_ARTIFICIAL (decl)
12896 && DECL_CONTEXT (decl)
12897 && is_tagged_type (DECL_CONTEXT (decl))
12898 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12899 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12900 /* Also ignore the artificial member typedef for the class name. */
12901 return 1;
12903 return 0;
12906 /* Returns the DIE for decl. A DIE will always be returned. */
12908 static dw_die_ref
12909 force_decl_die (tree decl)
12911 dw_die_ref decl_die;
12912 unsigned saved_external_flag;
12913 tree save_fn = NULL_TREE;
12914 decl_die = lookup_decl_die (decl);
12915 if (!decl_die)
12917 dw_die_ref context_die;
12918 tree decl_context = DECL_CONTEXT (decl);
12919 if (decl_context)
12921 /* Find die that represents this context. */
12922 if (TYPE_P (decl_context))
12923 context_die = force_type_die (decl_context);
12924 else
12925 context_die = force_decl_die (decl_context);
12927 else
12928 context_die = comp_unit_die;
12930 decl_die = lookup_decl_die (decl);
12931 if (decl_die)
12932 return decl_die;
12934 switch (TREE_CODE (decl))
12936 case FUNCTION_DECL:
12937 /* Clear current_function_decl, so that gen_subprogram_die thinks
12938 that this is a declaration. At this point, we just want to force
12939 declaration die. */
12940 save_fn = current_function_decl;
12941 current_function_decl = NULL_TREE;
12942 gen_subprogram_die (decl, context_die);
12943 current_function_decl = save_fn;
12944 break;
12946 case VAR_DECL:
12947 /* Set external flag to force declaration die. Restore it after
12948 gen_decl_die() call. */
12949 saved_external_flag = DECL_EXTERNAL (decl);
12950 DECL_EXTERNAL (decl) = 1;
12951 gen_decl_die (decl, context_die);
12952 DECL_EXTERNAL (decl) = saved_external_flag;
12953 break;
12955 case NAMESPACE_DECL:
12956 dwarf2out_decl (decl);
12957 break;
12959 default:
12960 gcc_unreachable ();
12963 /* We should be able to find the DIE now. */
12964 if (!decl_die)
12965 decl_die = lookup_decl_die (decl);
12966 gcc_assert (decl_die);
12969 return decl_die;
12972 /* Returns the DIE for TYPE. A DIE is always returned. */
12974 static dw_die_ref
12975 force_type_die (tree type)
12977 dw_die_ref type_die;
12979 type_die = lookup_type_die (type);
12980 if (!type_die)
12982 dw_die_ref context_die;
12983 if (TYPE_CONTEXT (type))
12985 if (TYPE_P (TYPE_CONTEXT (type)))
12986 context_die = force_type_die (TYPE_CONTEXT (type));
12987 else
12988 context_die = force_decl_die (TYPE_CONTEXT (type));
12990 else
12991 context_die = comp_unit_die;
12993 type_die = lookup_type_die (type);
12994 if (type_die)
12995 return type_die;
12996 gen_type_die (type, context_die);
12997 type_die = lookup_type_die (type);
12998 gcc_assert (type_die);
13000 return type_die;
13003 /* Force out any required namespaces to be able to output DECL,
13004 and return the new context_die for it, if it's changed. */
13006 static dw_die_ref
13007 setup_namespace_context (tree thing, dw_die_ref context_die)
13009 tree context = (DECL_P (thing)
13010 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
13011 if (context && TREE_CODE (context) == NAMESPACE_DECL)
13012 /* Force out the namespace. */
13013 context_die = force_decl_die (context);
13015 return context_die;
13018 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
13019 type) within its namespace, if appropriate.
13021 For compatibility with older debuggers, namespace DIEs only contain
13022 declarations; all definitions are emitted at CU scope. */
13024 static void
13025 declare_in_namespace (tree thing, dw_die_ref context_die)
13027 dw_die_ref ns_context;
13029 if (debug_info_level <= DINFO_LEVEL_TERSE)
13030 return;
13032 /* If this decl is from an inlined function, then don't try to emit it in its
13033 namespace, as we will get confused. It would have already been emitted
13034 when the abstract instance of the inline function was emitted anyways. */
13035 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
13036 return;
13038 ns_context = setup_namespace_context (thing, context_die);
13040 if (ns_context != context_die)
13042 if (DECL_P (thing))
13043 gen_decl_die (thing, ns_context);
13044 else
13045 gen_type_die (thing, ns_context);
13049 /* Generate a DIE for a namespace or namespace alias. */
13051 static void
13052 gen_namespace_die (tree decl)
13054 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
13056 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
13057 they are an alias of. */
13058 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
13060 /* Output a real namespace. */
13061 dw_die_ref namespace_die
13062 = new_die (DW_TAG_namespace, context_die, decl);
13063 add_name_and_src_coords_attributes (namespace_die, decl);
13064 equate_decl_number_to_die (decl, namespace_die);
13066 else
13068 /* Output a namespace alias. */
13070 /* Force out the namespace we are an alias of, if necessary. */
13071 dw_die_ref origin_die
13072 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
13074 /* Now create the namespace alias DIE. */
13075 dw_die_ref namespace_die
13076 = new_die (DW_TAG_imported_declaration, context_die, decl);
13077 add_name_and_src_coords_attributes (namespace_die, decl);
13078 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
13079 equate_decl_number_to_die (decl, namespace_die);
13083 /* Generate Dwarf debug information for a decl described by DECL. */
13085 static void
13086 gen_decl_die (tree decl, dw_die_ref context_die)
13088 tree origin;
13090 if (DECL_P (decl) && DECL_IGNORED_P (decl))
13091 return;
13093 switch (TREE_CODE (decl))
13095 case ERROR_MARK:
13096 break;
13098 case CONST_DECL:
13099 /* The individual enumerators of an enum type get output when we output
13100 the Dwarf representation of the relevant enum type itself. */
13101 break;
13103 case FUNCTION_DECL:
13104 /* Don't output any DIEs to represent mere function declarations,
13105 unless they are class members or explicit block externs. */
13106 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
13107 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
13108 break;
13110 #if 0
13111 /* FIXME */
13112 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
13113 on local redeclarations of global functions. That seems broken. */
13114 if (current_function_decl != decl)
13115 /* This is only a declaration. */;
13116 #endif
13118 /* If we're emitting a clone, emit info for the abstract instance. */
13119 if (DECL_ORIGIN (decl) != decl)
13120 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
13122 /* If we're emitting an out-of-line copy of an inline function,
13123 emit info for the abstract instance and set up to refer to it. */
13124 else if (cgraph_function_possibly_inlined_p (decl)
13125 && ! DECL_ABSTRACT (decl)
13126 && ! class_or_namespace_scope_p (context_die)
13127 /* dwarf2out_abstract_function won't emit a die if this is just
13128 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
13129 that case, because that works only if we have a die. */
13130 && DECL_INITIAL (decl) != NULL_TREE)
13132 dwarf2out_abstract_function (decl);
13133 set_decl_origin_self (decl);
13136 /* Otherwise we're emitting the primary DIE for this decl. */
13137 else if (debug_info_level > DINFO_LEVEL_TERSE)
13139 /* Before we describe the FUNCTION_DECL itself, make sure that we
13140 have described its return type. */
13141 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
13143 /* And its virtual context. */
13144 if (DECL_VINDEX (decl) != NULL_TREE)
13145 gen_type_die (DECL_CONTEXT (decl), context_die);
13147 /* And its containing type. */
13148 origin = decl_class_context (decl);
13149 if (origin != NULL_TREE)
13150 gen_type_die_for_member (origin, decl, context_die);
13152 /* And its containing namespace. */
13153 declare_in_namespace (decl, context_die);
13156 /* Now output a DIE to represent the function itself. */
13157 gen_subprogram_die (decl, context_die);
13158 break;
13160 case TYPE_DECL:
13161 /* If we are in terse mode, don't generate any DIEs to represent any
13162 actual typedefs. */
13163 if (debug_info_level <= DINFO_LEVEL_TERSE)
13164 break;
13166 /* In the special case of a TYPE_DECL node representing the declaration
13167 of some type tag, if the given TYPE_DECL is marked as having been
13168 instantiated from some other (original) TYPE_DECL node (e.g. one which
13169 was generated within the original definition of an inline function) we
13170 have to generate a special (abbreviated) DW_TAG_structure_type,
13171 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
13172 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
13174 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
13175 break;
13178 if (is_redundant_typedef (decl))
13179 gen_type_die (TREE_TYPE (decl), context_die);
13180 else
13181 /* Output a DIE to represent the typedef itself. */
13182 gen_typedef_die (decl, context_die);
13183 break;
13185 case LABEL_DECL:
13186 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13187 gen_label_die (decl, context_die);
13188 break;
13190 case VAR_DECL:
13191 case RESULT_DECL:
13192 /* If we are in terse mode, don't generate any DIEs to represent any
13193 variable declarations or definitions. */
13194 if (debug_info_level <= DINFO_LEVEL_TERSE)
13195 break;
13197 /* Output any DIEs that are needed to specify the type of this data
13198 object. */
13199 gen_type_die (TREE_TYPE (decl), context_die);
13201 /* And its containing type. */
13202 origin = decl_class_context (decl);
13203 if (origin != NULL_TREE)
13204 gen_type_die_for_member (origin, decl, context_die);
13206 /* And its containing namespace. */
13207 declare_in_namespace (decl, context_die);
13209 /* Now output the DIE to represent the data object itself. This gets
13210 complicated because of the possibility that the VAR_DECL really
13211 represents an inlined instance of a formal parameter for an inline
13212 function. */
13213 origin = decl_ultimate_origin (decl);
13214 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
13215 gen_formal_parameter_die (decl, context_die);
13216 else
13217 gen_variable_die (decl, context_die);
13218 break;
13220 case FIELD_DECL:
13221 /* Ignore the nameless fields that are used to skip bits but handle C++
13222 anonymous unions and structs. */
13223 if (DECL_NAME (decl) != NULL_TREE
13224 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
13225 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
13227 gen_type_die (member_declared_type (decl), context_die);
13228 gen_field_die (decl, context_die);
13230 break;
13232 case PARM_DECL:
13233 gen_type_die (TREE_TYPE (decl), context_die);
13234 gen_formal_parameter_die (decl, context_die);
13235 break;
13237 case NAMESPACE_DECL:
13238 gen_namespace_die (decl);
13239 break;
13241 default:
13242 /* Probably some frontend-internal decl. Assume we don't care. */
13243 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
13244 break;
13248 /* Output debug information for global decl DECL. Called from toplev.c after
13249 compilation proper has finished. */
13251 static void
13252 dwarf2out_global_decl (tree decl)
13254 /* Output DWARF2 information for file-scope tentative data object
13255 declarations, file-scope (extern) function declarations (which had no
13256 corresponding body) and file-scope tagged type declarations and
13257 definitions which have not yet been forced out. */
13258 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
13259 dwarf2out_decl (decl);
13262 /* Output debug information for type decl DECL. Called from toplev.c
13263 and from language front ends (to record built-in types). */
13264 static void
13265 dwarf2out_type_decl (tree decl, int local)
13267 if (!local)
13268 dwarf2out_decl (decl);
13271 /* Output debug information for imported module or decl. */
13273 static void
13274 dwarf2out_imported_module_or_decl (tree decl, tree context)
13276 dw_die_ref imported_die, at_import_die;
13277 dw_die_ref scope_die;
13278 expanded_location xloc;
13280 if (debug_info_level <= DINFO_LEVEL_TERSE)
13281 return;
13283 gcc_assert (decl);
13285 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
13286 We need decl DIE for reference and scope die. First, get DIE for the decl
13287 itself. */
13289 /* Get the scope die for decl context. Use comp_unit_die for global module
13290 or decl. If die is not found for non globals, force new die. */
13291 if (!context)
13292 scope_die = comp_unit_die;
13293 else if (TYPE_P (context))
13294 scope_die = force_type_die (context);
13295 else
13296 scope_die = force_decl_die (context);
13298 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
13299 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
13300 at_import_die = force_type_die (TREE_TYPE (decl));
13301 else
13303 at_import_die = lookup_decl_die (decl);
13304 if (!at_import_die)
13306 /* If we're trying to avoid duplicate debug info, we may not have
13307 emitted the member decl for this field. Emit it now. */
13308 if (TREE_CODE (decl) == FIELD_DECL)
13310 tree type = DECL_CONTEXT (decl);
13311 dw_die_ref type_context_die;
13313 if (TYPE_CONTEXT (type))
13314 if (TYPE_P (TYPE_CONTEXT (type)))
13315 type_context_die = force_type_die (TYPE_CONTEXT (type));
13316 else
13317 type_context_die = force_decl_die (TYPE_CONTEXT (type));
13318 else
13319 type_context_die = comp_unit_die;
13320 gen_type_die_for_member (type, decl, type_context_die);
13322 at_import_die = force_decl_die (decl);
13326 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
13327 if (TREE_CODE (decl) == NAMESPACE_DECL)
13328 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
13329 else
13330 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
13332 xloc = expand_location (input_location);
13333 add_AT_file (imported_die, DW_AT_decl_file, lookup_filename (xloc.file));
13334 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
13335 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
13338 /* Write the debugging output for DECL. */
13340 void
13341 dwarf2out_decl (tree decl)
13343 dw_die_ref context_die = comp_unit_die;
13345 switch (TREE_CODE (decl))
13347 case ERROR_MARK:
13348 return;
13350 case FUNCTION_DECL:
13351 /* What we would really like to do here is to filter out all mere
13352 file-scope declarations of file-scope functions which are never
13353 referenced later within this translation unit (and keep all of ones
13354 that *are* referenced later on) but we aren't clairvoyant, so we have
13355 no idea which functions will be referenced in the future (i.e. later
13356 on within the current translation unit). So here we just ignore all
13357 file-scope function declarations which are not also definitions. If
13358 and when the debugger needs to know something about these functions,
13359 it will have to hunt around and find the DWARF information associated
13360 with the definition of the function.
13362 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13363 nodes represent definitions and which ones represent mere
13364 declarations. We have to check DECL_INITIAL instead. That's because
13365 the C front-end supports some weird semantics for "extern inline"
13366 function definitions. These can get inlined within the current
13367 translation unit (and thus, we need to generate Dwarf info for their
13368 abstract instances so that the Dwarf info for the concrete inlined
13369 instances can have something to refer to) but the compiler never
13370 generates any out-of-lines instances of such things (despite the fact
13371 that they *are* definitions).
13373 The important point is that the C front-end marks these "extern
13374 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13375 them anyway. Note that the C++ front-end also plays some similar games
13376 for inline function definitions appearing within include files which
13377 also contain `#pragma interface' pragmas. */
13378 if (DECL_INITIAL (decl) == NULL_TREE)
13379 return;
13381 /* If we're a nested function, initially use a parent of NULL; if we're
13382 a plain function, this will be fixed up in decls_for_scope. If
13383 we're a method, it will be ignored, since we already have a DIE. */
13384 if (decl_function_context (decl)
13385 /* But if we're in terse mode, we don't care about scope. */
13386 && debug_info_level > DINFO_LEVEL_TERSE)
13387 context_die = NULL;
13388 break;
13390 case VAR_DECL:
13391 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13392 declaration and if the declaration was never even referenced from
13393 within this entire compilation unit. We suppress these DIEs in
13394 order to save space in the .debug section (by eliminating entries
13395 which are probably useless). Note that we must not suppress
13396 block-local extern declarations (whether used or not) because that
13397 would screw-up the debugger's name lookup mechanism and cause it to
13398 miss things which really ought to be in scope at a given point. */
13399 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
13400 return;
13402 /* For local statics lookup proper context die. */
13403 if (TREE_STATIC (decl) && decl_function_context (decl))
13404 context_die = lookup_decl_die (DECL_CONTEXT (decl));
13406 /* If we are in terse mode, don't generate any DIEs to represent any
13407 variable declarations or definitions. */
13408 if (debug_info_level <= DINFO_LEVEL_TERSE)
13409 return;
13410 break;
13412 case NAMESPACE_DECL:
13413 if (debug_info_level <= DINFO_LEVEL_TERSE)
13414 return;
13415 if (lookup_decl_die (decl) != NULL)
13416 return;
13417 break;
13419 case TYPE_DECL:
13420 /* Don't emit stubs for types unless they are needed by other DIEs. */
13421 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13422 return;
13424 /* Don't bother trying to generate any DIEs to represent any of the
13425 normal built-in types for the language we are compiling. */
13426 if (DECL_IS_BUILTIN (decl))
13428 /* OK, we need to generate one for `bool' so GDB knows what type
13429 comparisons have. */
13430 if (is_cxx ()
13431 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13432 && ! DECL_IGNORED_P (decl))
13433 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
13435 return;
13438 /* If we are in terse mode, don't generate any DIEs for types. */
13439 if (debug_info_level <= DINFO_LEVEL_TERSE)
13440 return;
13442 /* If we're a function-scope tag, initially use a parent of NULL;
13443 this will be fixed up in decls_for_scope. */
13444 if (decl_function_context (decl))
13445 context_die = NULL;
13447 break;
13449 default:
13450 return;
13453 gen_decl_die (decl, context_die);
13456 /* Output a marker (i.e. a label) for the beginning of the generated code for
13457 a lexical block. */
13459 static void
13460 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13461 unsigned int blocknum)
13463 switch_to_section (current_function_section ());
13464 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13467 /* Output a marker (i.e. a label) for the end of the generated code for a
13468 lexical block. */
13470 static void
13471 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13473 switch_to_section (current_function_section ());
13474 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13477 /* Returns nonzero if it is appropriate not to emit any debugging
13478 information for BLOCK, because it doesn't contain any instructions.
13480 Don't allow this for blocks with nested functions or local classes
13481 as we would end up with orphans, and in the presence of scheduling
13482 we may end up calling them anyway. */
13484 static bool
13485 dwarf2out_ignore_block (tree block)
13487 tree decl;
13489 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13490 if (TREE_CODE (decl) == FUNCTION_DECL
13491 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13492 return 0;
13494 return 1;
13497 /* Hash table routines for file_hash. */
13499 static int
13500 file_table_eq (const void *p1_p, const void *p2_p)
13502 const struct dwarf_file_data * p1 = p1_p;
13503 const char * p2 = p2_p;
13504 return strcmp (p1->filename, p2) == 0;
13507 static hashval_t
13508 file_table_hash (const void *p_p)
13510 const struct dwarf_file_data * p = p_p;
13511 return htab_hash_string (p->filename);
13514 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13515 dwarf2out.c) and return its "index". The index of each (known) filename is
13516 just a unique number which is associated with only that one filename. We
13517 need such numbers for the sake of generating labels (in the .debug_sfnames
13518 section) and references to those files numbers (in the .debug_srcinfo
13519 and.debug_macinfo sections). If the filename given as an argument is not
13520 found in our current list, add it to the list and assign it the next
13521 available unique index number. In order to speed up searches, we remember
13522 the index of the filename was looked up last. This handles the majority of
13523 all searches. */
13525 static GTY(()) struct dwarf_file_data * file_table_last_lookup;
13527 static struct dwarf_file_data *
13528 lookup_filename (const char *file_name)
13530 void ** slot;
13531 struct dwarf_file_data * created;
13533 /* Check to see if the file name that was searched on the previous
13534 call matches this file name. If so, return the index. */
13535 if (file_table_last_lookup
13536 && (file_name == file_table_last_lookup->filename
13537 || strcmp (file_table_last_lookup->filename, file_name) == 0))
13538 return file_table_last_lookup;
13540 /* Didn't match the previous lookup, search the table. */
13541 slot = htab_find_slot_with_hash (file_table, file_name,
13542 htab_hash_string (file_name), INSERT);
13543 if (*slot)
13544 return *slot;
13546 created = ggc_alloc (sizeof (struct dwarf_file_data));
13547 created->filename = file_name;
13548 created->emitted_number = 0;
13549 *slot = created;
13550 return created;
13553 /* If the assembler will construct the file table, then translate the compiler
13554 internal file table number into the assembler file table number, and emit
13555 a .file directive if we haven't already emitted one yet. The file table
13556 numbers are different because we prune debug info for unused variables and
13557 types, which may include filenames. */
13559 static int
13560 maybe_emit_file (struct dwarf_file_data * fd)
13562 if (! fd->emitted_number)
13564 if (last_emitted_file)
13565 fd->emitted_number = last_emitted_file->emitted_number + 1;
13566 else
13567 fd->emitted_number = 1;
13568 last_emitted_file = fd;
13570 if (DWARF2_ASM_LINE_DEBUG_INFO)
13572 fprintf (asm_out_file, "\t.file %u ", fd->emitted_number);
13573 output_quoted_string (asm_out_file, fd->filename);
13574 fputc ('\n', asm_out_file);
13578 return fd->emitted_number;
13581 /* Called by the final INSN scan whenever we see a var location. We
13582 use it to drop labels in the right places, and throw the location in
13583 our lookup table. */
13585 static void
13586 dwarf2out_var_location (rtx loc_note)
13588 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13589 struct var_loc_node *newloc;
13590 rtx prev_insn;
13591 static rtx last_insn;
13592 static const char *last_label;
13593 tree decl;
13595 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13596 return;
13597 prev_insn = PREV_INSN (loc_note);
13599 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13600 /* If the insn we processed last time is the previous insn
13601 and it is also a var location note, use the label we emitted
13602 last time. */
13603 if (last_insn != NULL_RTX
13604 && last_insn == prev_insn
13605 && NOTE_P (prev_insn)
13606 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13608 newloc->label = last_label;
13610 else
13612 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13613 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13614 loclabel_num++;
13615 newloc->label = ggc_strdup (loclabel);
13617 newloc->var_loc_note = loc_note;
13618 newloc->next = NULL;
13620 if (cfun && in_cold_section_p)
13621 newloc->section_label = cfun->cold_section_label;
13622 else
13623 newloc->section_label = text_section_label;
13625 last_insn = loc_note;
13626 last_label = newloc->label;
13627 decl = NOTE_VAR_LOCATION_DECL (loc_note);
13628 add_var_loc_to_decl (decl, newloc);
13631 /* We need to reset the locations at the beginning of each
13632 function. We can't do this in the end_function hook, because the
13633 declarations that use the locations won't have been output when
13634 that hook is called. Also compute have_multiple_function_sections here. */
13636 static void
13637 dwarf2out_begin_function (tree fun)
13639 htab_empty (decl_loc_table);
13641 if (function_section (fun) != text_section)
13642 have_multiple_function_sections = true;
13645 /* Output a label to mark the beginning of a source code line entry
13646 and record information relating to this source line, in
13647 'line_info_table' for later output of the .debug_line section. */
13649 static void
13650 dwarf2out_source_line (unsigned int line, const char *filename)
13652 if (debug_info_level >= DINFO_LEVEL_NORMAL
13653 && line != 0)
13655 int file_num = maybe_emit_file (lookup_filename (filename));
13657 switch_to_section (current_function_section ());
13659 /* If requested, emit something human-readable. */
13660 if (flag_debug_asm)
13661 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13662 filename, line);
13664 if (DWARF2_ASM_LINE_DEBUG_INFO)
13666 /* Emit the .loc directive understood by GNU as. */
13667 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13669 /* Indicate that line number info exists. */
13670 line_info_table_in_use++;
13672 else if (function_section (current_function_decl) != text_section)
13674 dw_separate_line_info_ref line_info;
13675 targetm.asm_out.internal_label (asm_out_file,
13676 SEPARATE_LINE_CODE_LABEL,
13677 separate_line_info_table_in_use);
13679 /* Expand the line info table if necessary. */
13680 if (separate_line_info_table_in_use
13681 == separate_line_info_table_allocated)
13683 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13684 separate_line_info_table
13685 = ggc_realloc (separate_line_info_table,
13686 separate_line_info_table_allocated
13687 * sizeof (dw_separate_line_info_entry));
13688 memset (separate_line_info_table
13689 + separate_line_info_table_in_use,
13691 (LINE_INFO_TABLE_INCREMENT
13692 * sizeof (dw_separate_line_info_entry)));
13695 /* Add the new entry at the end of the line_info_table. */
13696 line_info
13697 = &separate_line_info_table[separate_line_info_table_in_use++];
13698 line_info->dw_file_num = file_num;
13699 line_info->dw_line_num = line;
13700 line_info->function = current_function_funcdef_no;
13702 else
13704 dw_line_info_ref line_info;
13706 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13707 line_info_table_in_use);
13709 /* Expand the line info table if necessary. */
13710 if (line_info_table_in_use == line_info_table_allocated)
13712 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13713 line_info_table
13714 = ggc_realloc (line_info_table,
13715 (line_info_table_allocated
13716 * sizeof (dw_line_info_entry)));
13717 memset (line_info_table + line_info_table_in_use, 0,
13718 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13721 /* Add the new entry at the end of the line_info_table. */
13722 line_info = &line_info_table[line_info_table_in_use++];
13723 line_info->dw_file_num = file_num;
13724 line_info->dw_line_num = line;
13729 /* Record the beginning of a new source file. */
13731 static void
13732 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13734 if (flag_eliminate_dwarf2_dups)
13736 /* Record the beginning of the file for break_out_includes. */
13737 dw_die_ref bincl_die;
13739 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13740 add_AT_string (bincl_die, DW_AT_name, filename);
13743 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13745 int file_num = maybe_emit_file (lookup_filename (filename));
13747 switch_to_section (debug_macinfo_section);
13748 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13749 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13750 lineno);
13752 dw2_asm_output_data_uleb128 (file_num, "file %s", filename);
13756 /* Record the end of a source file. */
13758 static void
13759 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13761 if (flag_eliminate_dwarf2_dups)
13762 /* Record the end of the file for break_out_includes. */
13763 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13765 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13767 switch_to_section (debug_macinfo_section);
13768 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13772 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13773 the tail part of the directive line, i.e. the part which is past the
13774 initial whitespace, #, whitespace, directive-name, whitespace part. */
13776 static void
13777 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13778 const char *buffer ATTRIBUTE_UNUSED)
13780 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13782 switch_to_section (debug_macinfo_section);
13783 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13784 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13785 dw2_asm_output_nstring (buffer, -1, "The macro");
13789 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13790 the tail part of the directive line, i.e. the part which is past the
13791 initial whitespace, #, whitespace, directive-name, whitespace part. */
13793 static void
13794 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13795 const char *buffer ATTRIBUTE_UNUSED)
13797 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13799 switch_to_section (debug_macinfo_section);
13800 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13801 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13802 dw2_asm_output_nstring (buffer, -1, "The macro");
13806 /* Set up for Dwarf output at the start of compilation. */
13808 static void
13809 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13811 /* Allocate the file_table. */
13812 file_table = htab_create_ggc (50, file_table_hash,
13813 file_table_eq, NULL);
13815 /* Allocate the decl_die_table. */
13816 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13817 decl_die_table_eq, NULL);
13819 /* Allocate the decl_loc_table. */
13820 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13821 decl_loc_table_eq, NULL);
13823 /* Allocate the initial hunk of the decl_scope_table. */
13824 decl_scope_table = VEC_alloc (tree, gc, 256);
13826 /* Allocate the initial hunk of the abbrev_die_table. */
13827 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13828 * sizeof (dw_die_ref));
13829 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13830 /* Zero-th entry is allocated, but unused. */
13831 abbrev_die_table_in_use = 1;
13833 /* Allocate the initial hunk of the line_info_table. */
13834 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13835 * sizeof (dw_line_info_entry));
13836 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13838 /* Zero-th entry is allocated, but unused. */
13839 line_info_table_in_use = 1;
13841 /* Generate the initial DIE for the .debug section. Note that the (string)
13842 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13843 will (typically) be a relative pathname and that this pathname should be
13844 taken as being relative to the directory from which the compiler was
13845 invoked when the given (base) source file was compiled. We will fill
13846 in this value in dwarf2out_finish. */
13847 comp_unit_die = gen_compile_unit_die (NULL);
13849 incomplete_types = VEC_alloc (tree, gc, 64);
13851 used_rtx_array = VEC_alloc (rtx, gc, 32);
13853 debug_info_section = get_section (DEBUG_INFO_SECTION,
13854 SECTION_DEBUG, NULL);
13855 debug_abbrev_section = get_section (DEBUG_ABBREV_SECTION,
13856 SECTION_DEBUG, NULL);
13857 debug_aranges_section = get_section (DEBUG_ARANGES_SECTION,
13858 SECTION_DEBUG, NULL);
13859 debug_macinfo_section = get_section (DEBUG_MACINFO_SECTION,
13860 SECTION_DEBUG, NULL);
13861 debug_line_section = get_section (DEBUG_LINE_SECTION,
13862 SECTION_DEBUG, NULL);
13863 debug_loc_section = get_section (DEBUG_LOC_SECTION,
13864 SECTION_DEBUG, NULL);
13865 debug_pubnames_section = get_section (DEBUG_PUBNAMES_SECTION,
13866 SECTION_DEBUG, NULL);
13867 debug_str_section = get_section (DEBUG_STR_SECTION,
13868 DEBUG_STR_SECTION_FLAGS, NULL);
13869 debug_ranges_section = get_section (DEBUG_RANGES_SECTION,
13870 SECTION_DEBUG, NULL);
13871 debug_frame_section = get_section (DEBUG_FRAME_SECTION,
13872 SECTION_DEBUG, NULL);
13874 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13875 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13876 DEBUG_ABBREV_SECTION_LABEL, 0);
13877 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13878 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
13879 COLD_TEXT_SECTION_LABEL, 0);
13880 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
13882 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13883 DEBUG_INFO_SECTION_LABEL, 0);
13884 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13885 DEBUG_LINE_SECTION_LABEL, 0);
13886 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13887 DEBUG_RANGES_SECTION_LABEL, 0);
13888 switch_to_section (debug_abbrev_section);
13889 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13890 switch_to_section (debug_info_section);
13891 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13892 switch_to_section (debug_line_section);
13893 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13895 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13897 switch_to_section (debug_macinfo_section);
13898 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13899 DEBUG_MACINFO_SECTION_LABEL, 0);
13900 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13903 switch_to_section (text_section);
13904 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13905 if (flag_reorder_blocks_and_partition)
13907 switch_to_section (unlikely_text_section ());
13908 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
13912 /* A helper function for dwarf2out_finish called through
13913 ht_forall. Emit one queued .debug_str string. */
13915 static int
13916 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13918 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13920 if (node->form == DW_FORM_strp)
13922 switch_to_section (debug_str_section);
13923 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13924 assemble_string (node->str, strlen (node->str) + 1);
13927 return 1;
13930 #if ENABLE_ASSERT_CHECKING
13931 /* Verify that all marks are clear. */
13933 static void
13934 verify_marks_clear (dw_die_ref die)
13936 dw_die_ref c;
13938 gcc_assert (! die->die_mark);
13939 FOR_EACH_CHILD (die, c, verify_marks_clear (c));
13941 #endif /* ENABLE_ASSERT_CHECKING */
13943 /* Clear the marks for a die and its children.
13944 Be cool if the mark isn't set. */
13946 static void
13947 prune_unmark_dies (dw_die_ref die)
13949 dw_die_ref c;
13951 if (die->die_mark)
13952 die->die_mark = 0;
13953 FOR_EACH_CHILD (die, c, prune_unmark_dies (c));
13956 /* Given DIE that we're marking as used, find any other dies
13957 it references as attributes and mark them as used. */
13959 static void
13960 prune_unused_types_walk_attribs (dw_die_ref die)
13962 dw_attr_ref a;
13963 unsigned ix;
13965 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
13967 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13969 /* A reference to another DIE.
13970 Make sure that it will get emitted. */
13971 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13973 /* Set the string's refcount to 0 so that prune_unused_types_mark
13974 accounts properly for it. */
13975 if (AT_class (a) == dw_val_class_str)
13976 a->dw_attr_val.v.val_str->refcount = 0;
13981 /* Mark DIE as being used. If DOKIDS is true, then walk down
13982 to DIE's children. */
13984 static void
13985 prune_unused_types_mark (dw_die_ref die, int dokids)
13987 dw_die_ref c;
13989 if (die->die_mark == 0)
13991 /* We haven't done this node yet. Mark it as used. */
13992 die->die_mark = 1;
13994 /* We also have to mark its parents as used.
13995 (But we don't want to mark our parents' kids due to this.) */
13996 if (die->die_parent)
13997 prune_unused_types_mark (die->die_parent, 0);
13999 /* Mark any referenced nodes. */
14000 prune_unused_types_walk_attribs (die);
14002 /* If this node is a specification,
14003 also mark the definition, if it exists. */
14004 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
14005 prune_unused_types_mark (die->die_definition, 1);
14008 if (dokids && die->die_mark != 2)
14010 /* We need to walk the children, but haven't done so yet.
14011 Remember that we've walked the kids. */
14012 die->die_mark = 2;
14014 /* If this is an array type, we need to make sure our
14015 kids get marked, even if they're types. */
14016 if (die->die_tag == DW_TAG_array_type)
14017 FOR_EACH_CHILD (die, c, prune_unused_types_mark (c, 1));
14018 else
14019 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14024 /* Walk the tree DIE and mark types that we actually use. */
14026 static void
14027 prune_unused_types_walk (dw_die_ref die)
14029 dw_die_ref c;
14031 /* Don't do anything if this node is already marked. */
14032 if (die->die_mark)
14033 return;
14035 switch (die->die_tag) {
14036 case DW_TAG_const_type:
14037 case DW_TAG_packed_type:
14038 case DW_TAG_pointer_type:
14039 case DW_TAG_reference_type:
14040 case DW_TAG_volatile_type:
14041 case DW_TAG_typedef:
14042 case DW_TAG_array_type:
14043 case DW_TAG_structure_type:
14044 case DW_TAG_union_type:
14045 case DW_TAG_class_type:
14046 case DW_TAG_friend:
14047 case DW_TAG_variant_part:
14048 case DW_TAG_enumeration_type:
14049 case DW_TAG_subroutine_type:
14050 case DW_TAG_string_type:
14051 case DW_TAG_set_type:
14052 case DW_TAG_subrange_type:
14053 case DW_TAG_ptr_to_member_type:
14054 case DW_TAG_file_type:
14055 if (die->die_perennial_p)
14056 break;
14058 /* It's a type node --- don't mark it. */
14059 return;
14061 default:
14062 /* Mark everything else. */
14063 break;
14066 die->die_mark = 1;
14068 /* Now, mark any dies referenced from here. */
14069 prune_unused_types_walk_attribs (die);
14071 /* Mark children. */
14072 FOR_EACH_CHILD (die, c, prune_unused_types_walk (c));
14075 /* Increment the string counts on strings referred to from DIE's
14076 attributes. */
14078 static void
14079 prune_unused_types_update_strings (dw_die_ref die)
14081 dw_attr_ref a;
14082 unsigned ix;
14084 for (ix = 0; VEC_iterate (dw_attr_node, die->die_attr, ix, a); ix++)
14085 if (AT_class (a) == dw_val_class_str)
14087 struct indirect_string_node *s = a->dw_attr_val.v.val_str;
14088 s->refcount++;
14089 /* Avoid unnecessarily putting strings that are used less than
14090 twice in the hash table. */
14091 if (s->refcount
14092 == ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) ? 1 : 2))
14094 void ** slot;
14095 slot = htab_find_slot_with_hash (debug_str_hash, s->str,
14096 htab_hash_string (s->str),
14097 INSERT);
14098 gcc_assert (*slot == NULL);
14099 *slot = s;
14104 /* Remove from the tree DIE any dies that aren't marked. */
14106 static void
14107 prune_unused_types_prune (dw_die_ref die)
14109 dw_die_ref c;
14111 gcc_assert (die->die_mark);
14112 prune_unused_types_update_strings (die);
14114 if (! die->die_child)
14115 return;
14117 c = die->die_child;
14118 do {
14119 dw_die_ref prev = c;
14120 for (c = c->die_sib; ! c->die_mark; c = c->die_sib)
14121 if (c == die->die_child)
14123 /* No marked children between 'prev' and the end of the list. */
14124 if (prev == c)
14125 /* No marked children at all. */
14126 die->die_child = NULL;
14127 else
14129 prev->die_sib = c->die_sib;
14130 die->die_child = prev;
14132 return;
14135 if (c != prev->die_sib)
14136 prev->die_sib = c;
14137 prune_unused_types_prune (c);
14138 } while (c != die->die_child);
14142 /* Remove dies representing declarations that we never use. */
14144 static void
14145 prune_unused_types (void)
14147 unsigned int i;
14148 limbo_die_node *node;
14150 #if ENABLE_ASSERT_CHECKING
14151 /* All the marks should already be clear. */
14152 verify_marks_clear (comp_unit_die);
14153 for (node = limbo_die_list; node; node = node->next)
14154 verify_marks_clear (node->die);
14155 #endif /* ENABLE_ASSERT_CHECKING */
14157 /* Set the mark on nodes that are actually used. */
14158 prune_unused_types_walk (comp_unit_die);
14159 for (node = limbo_die_list; node; node = node->next)
14160 prune_unused_types_walk (node->die);
14162 /* Also set the mark on nodes referenced from the
14163 pubname_table or arange_table. */
14164 for (i = 0; i < pubname_table_in_use; i++)
14165 prune_unused_types_mark (pubname_table[i].die, 1);
14166 for (i = 0; i < arange_table_in_use; i++)
14167 prune_unused_types_mark (arange_table[i], 1);
14169 /* Get rid of nodes that aren't marked; and update the string counts. */
14170 if (debug_str_hash)
14171 htab_empty (debug_str_hash);
14172 prune_unused_types_prune (comp_unit_die);
14173 for (node = limbo_die_list; node; node = node->next)
14174 prune_unused_types_prune (node->die);
14176 /* Leave the marks clear. */
14177 prune_unmark_dies (comp_unit_die);
14178 for (node = limbo_die_list; node; node = node->next)
14179 prune_unmark_dies (node->die);
14182 /* Set the parameter to true if there are any relative pathnames in
14183 the file table. */
14184 static int
14185 file_table_relative_p (void ** slot, void *param)
14187 bool *p = param;
14188 struct dwarf_file_data *d = *slot;
14189 if (d->emitted_number && d->filename[0] != DIR_SEPARATOR)
14191 *p = true;
14192 return 0;
14194 return 1;
14197 /* Output stuff that dwarf requires at the end of every file,
14198 and generate the DWARF-2 debugging info. */
14200 static void
14201 dwarf2out_finish (const char *filename)
14203 limbo_die_node *node, *next_node;
14204 dw_die_ref die = 0;
14206 /* Add the name for the main input file now. We delayed this from
14207 dwarf2out_init to avoid complications with PCH. */
14208 add_name_attribute (comp_unit_die, filename);
14209 if (filename[0] != DIR_SEPARATOR)
14210 add_comp_dir_attribute (comp_unit_die);
14211 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
14213 bool p = false;
14214 htab_traverse (file_table, file_table_relative_p, &p);
14215 if (p)
14216 add_comp_dir_attribute (comp_unit_die);
14219 /* Traverse the limbo die list, and add parent/child links. The only
14220 dies without parents that should be here are concrete instances of
14221 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
14222 For concrete instances, we can get the parent die from the abstract
14223 instance. */
14224 for (node = limbo_die_list; node; node = next_node)
14226 next_node = node->next;
14227 die = node->die;
14229 if (die->die_parent == NULL)
14231 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
14233 if (origin)
14234 add_child_die (origin->die_parent, die);
14235 else if (die == comp_unit_die)
14237 else if (errorcount > 0 || sorrycount > 0)
14238 /* It's OK to be confused by errors in the input. */
14239 add_child_die (comp_unit_die, die);
14240 else
14242 /* In certain situations, the lexical block containing a
14243 nested function can be optimized away, which results
14244 in the nested function die being orphaned. Likewise
14245 with the return type of that nested function. Force
14246 this to be a child of the containing function.
14248 It may happen that even the containing function got fully
14249 inlined and optimized out. In that case we are lost and
14250 assign the empty child. This should not be big issue as
14251 the function is likely unreachable too. */
14252 tree context = NULL_TREE;
14254 gcc_assert (node->created_for);
14256 if (DECL_P (node->created_for))
14257 context = DECL_CONTEXT (node->created_for);
14258 else if (TYPE_P (node->created_for))
14259 context = TYPE_CONTEXT (node->created_for);
14261 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
14263 origin = lookup_decl_die (context);
14264 if (origin)
14265 add_child_die (origin, die);
14266 else
14267 add_child_die (comp_unit_die, die);
14272 limbo_die_list = NULL;
14274 /* Walk through the list of incomplete types again, trying once more to
14275 emit full debugging info for them. */
14276 retry_incomplete_types ();
14278 if (flag_eliminate_unused_debug_types)
14279 prune_unused_types ();
14281 /* Generate separate CUs for each of the include files we've seen.
14282 They will go into limbo_die_list. */
14283 if (flag_eliminate_dwarf2_dups)
14284 break_out_includes (comp_unit_die);
14286 /* Traverse the DIE's and add add sibling attributes to those DIE's
14287 that have children. */
14288 add_sibling_attributes (comp_unit_die);
14289 for (node = limbo_die_list; node; node = node->next)
14290 add_sibling_attributes (node->die);
14292 /* Output a terminator label for the .text section. */
14293 switch_to_section (text_section);
14294 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
14295 if (flag_reorder_blocks_and_partition)
14297 switch_to_section (unlikely_text_section ());
14298 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
14301 /* We can only use the low/high_pc attributes if all of the code was
14302 in .text. */
14303 if (!have_multiple_function_sections)
14305 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
14306 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
14309 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
14310 "base address". Use zero so that these addresses become absolute. */
14311 else if (have_location_lists || ranges_table_in_use)
14312 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
14314 /* Output location list section if necessary. */
14315 if (have_location_lists)
14317 /* Output the location lists info. */
14318 switch_to_section (debug_loc_section);
14319 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
14320 DEBUG_LOC_SECTION_LABEL, 0);
14321 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
14322 output_location_lists (die);
14325 if (debug_info_level >= DINFO_LEVEL_NORMAL)
14326 add_AT_lineptr (comp_unit_die, DW_AT_stmt_list,
14327 debug_line_section_label);
14329 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14330 add_AT_macptr (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
14332 /* Output all of the compilation units. We put the main one last so that
14333 the offsets are available to output_pubnames. */
14334 for (node = limbo_die_list; node; node = node->next)
14335 output_comp_unit (node->die, 0);
14337 output_comp_unit (comp_unit_die, 0);
14339 /* Output the abbreviation table. */
14340 switch_to_section (debug_abbrev_section);
14341 output_abbrev_section ();
14343 /* Output public names table if necessary. */
14344 if (pubname_table_in_use)
14346 switch_to_section (debug_pubnames_section);
14347 output_pubnames ();
14350 /* Output the address range information. We only put functions in the arange
14351 table, so don't write it out if we don't have any. */
14352 if (fde_table_in_use)
14354 switch_to_section (debug_aranges_section);
14355 output_aranges ();
14358 /* Output ranges section if necessary. */
14359 if (ranges_table_in_use)
14361 switch_to_section (debug_ranges_section);
14362 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
14363 output_ranges ();
14366 /* Output the source line correspondence table. We must do this
14367 even if there is no line information. Otherwise, on an empty
14368 translation unit, we will generate a present, but empty,
14369 .debug_info section. IRIX 6.5 `nm' will then complain when
14370 examining the file. This is done late so that any filenames
14371 used by the debug_info section are marked as 'used'. */
14372 if (! DWARF2_ASM_LINE_DEBUG_INFO)
14374 switch_to_section (debug_line_section);
14375 output_line_info ();
14378 /* Have to end the macro section. */
14379 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
14381 switch_to_section (debug_macinfo_section);
14382 dw2_asm_output_data (1, 0, "End compilation unit");
14385 /* If we emitted any DW_FORM_strp form attribute, output the string
14386 table too. */
14387 if (debug_str_hash)
14388 htab_traverse (debug_str_hash, output_indirect_string, NULL);
14390 #else
14392 /* This should never be used, but its address is needed for comparisons. */
14393 const struct gcc_debug_hooks dwarf2_debug_hooks;
14395 #endif /* DWARF2_DEBUGGING_INFO */
14397 #include "gt-dwarf2out.h"