First stab at getting namespaces working with PPH. This change will
[official-gcc.git] / gcc / tree-ssa-ccp.c
blob059274a3513679f2108397d28a4455e1808d794a
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
5 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 3, or (at your option) any
12 later version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* Conditional constant propagation (CCP) is based on the SSA
24 propagation engine (tree-ssa-propagate.c). Constant assignments of
25 the form VAR = CST are propagated from the assignments into uses of
26 VAR, which in turn may generate new constants. The simulation uses
27 a four level lattice to keep track of constant values associated
28 with SSA names. Given an SSA name V_i, it may take one of the
29 following values:
31 UNINITIALIZED -> the initial state of the value. This value
32 is replaced with a correct initial value
33 the first time the value is used, so the
34 rest of the pass does not need to care about
35 it. Using this value simplifies initialization
36 of the pass, and prevents us from needlessly
37 scanning statements that are never reached.
39 UNDEFINED -> V_i is a local variable whose definition
40 has not been processed yet. Therefore we
41 don't yet know if its value is a constant
42 or not.
44 CONSTANT -> V_i has been found to hold a constant
45 value C.
47 VARYING -> V_i cannot take a constant value, or if it
48 does, it is not possible to determine it
49 at compile time.
51 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
53 1- In ccp_visit_stmt, we are interested in assignments whose RHS
54 evaluates into a constant and conditional jumps whose predicate
55 evaluates into a boolean true or false. When an assignment of
56 the form V_i = CONST is found, V_i's lattice value is set to
57 CONSTANT and CONST is associated with it. This causes the
58 propagation engine to add all the SSA edges coming out the
59 assignment into the worklists, so that statements that use V_i
60 can be visited.
62 If the statement is a conditional with a constant predicate, we
63 mark the outgoing edges as executable or not executable
64 depending on the predicate's value. This is then used when
65 visiting PHI nodes to know when a PHI argument can be ignored.
68 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
69 same constant C, then the LHS of the PHI is set to C. This
70 evaluation is known as the "meet operation". Since one of the
71 goals of this evaluation is to optimistically return constant
72 values as often as possible, it uses two main short cuts:
74 - If an argument is flowing in through a non-executable edge, it
75 is ignored. This is useful in cases like this:
77 if (PRED)
78 a_9 = 3;
79 else
80 a_10 = 100;
81 a_11 = PHI (a_9, a_10)
83 If PRED is known to always evaluate to false, then we can
84 assume that a_11 will always take its value from a_10, meaning
85 that instead of consider it VARYING (a_9 and a_10 have
86 different values), we can consider it CONSTANT 100.
88 - If an argument has an UNDEFINED value, then it does not affect
89 the outcome of the meet operation. If a variable V_i has an
90 UNDEFINED value, it means that either its defining statement
91 hasn't been visited yet or V_i has no defining statement, in
92 which case the original symbol 'V' is being used
93 uninitialized. Since 'V' is a local variable, the compiler
94 may assume any initial value for it.
97 After propagation, every variable V_i that ends up with a lattice
98 value of CONSTANT will have the associated constant value in the
99 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
100 final substitution and folding.
102 References:
104 Constant propagation with conditional branches,
105 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
107 Building an Optimizing Compiler,
108 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
110 Advanced Compiler Design and Implementation,
111 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
113 #include "config.h"
114 #include "system.h"
115 #include "coretypes.h"
116 #include "tm.h"
117 #include "tree.h"
118 #include "flags.h"
119 #include "tm_p.h"
120 #include "basic-block.h"
121 #include "output.h"
122 #include "function.h"
123 #include "tree-pretty-print.h"
124 #include "gimple-pretty-print.h"
125 #include "timevar.h"
126 #include "tree-dump.h"
127 #include "tree-flow.h"
128 #include "tree-pass.h"
129 #include "tree-ssa-propagate.h"
130 #include "value-prof.h"
131 #include "langhooks.h"
132 #include "target.h"
133 #include "diagnostic-core.h"
134 #include "dbgcnt.h"
135 #include "gimple-fold.h"
138 /* Possible lattice values. */
139 typedef enum
141 UNINITIALIZED,
142 UNDEFINED,
143 CONSTANT,
144 VARYING
145 } ccp_lattice_t;
147 struct prop_value_d {
148 /* Lattice value. */
149 ccp_lattice_t lattice_val;
151 /* Propagated value. */
152 tree value;
154 /* Mask that applies to the propagated value during CCP. For
155 X with a CONSTANT lattice value X & ~mask == value & ~mask. */
156 double_int mask;
159 typedef struct prop_value_d prop_value_t;
161 /* Array of propagated constant values. After propagation,
162 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
163 the constant is held in an SSA name representing a memory store
164 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
165 memory reference used to store (i.e., the LHS of the assignment
166 doing the store). */
167 static prop_value_t *const_val;
169 static void canonicalize_float_value (prop_value_t *);
170 static bool ccp_fold_stmt (gimple_stmt_iterator *);
172 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
174 static void
175 dump_lattice_value (FILE *outf, const char *prefix, prop_value_t val)
177 switch (val.lattice_val)
179 case UNINITIALIZED:
180 fprintf (outf, "%sUNINITIALIZED", prefix);
181 break;
182 case UNDEFINED:
183 fprintf (outf, "%sUNDEFINED", prefix);
184 break;
185 case VARYING:
186 fprintf (outf, "%sVARYING", prefix);
187 break;
188 case CONSTANT:
189 fprintf (outf, "%sCONSTANT ", prefix);
190 if (TREE_CODE (val.value) != INTEGER_CST
191 || double_int_zero_p (val.mask))
192 print_generic_expr (outf, val.value, dump_flags);
193 else
195 double_int cval = double_int_and_not (tree_to_double_int (val.value),
196 val.mask);
197 fprintf (outf, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX,
198 prefix, cval.high, cval.low);
199 fprintf (outf, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX ")",
200 val.mask.high, val.mask.low);
202 break;
203 default:
204 gcc_unreachable ();
209 /* Print lattice value VAL to stderr. */
211 void debug_lattice_value (prop_value_t val);
213 DEBUG_FUNCTION void
214 debug_lattice_value (prop_value_t val)
216 dump_lattice_value (stderr, "", val);
217 fprintf (stderr, "\n");
221 /* Compute a default value for variable VAR and store it in the
222 CONST_VAL array. The following rules are used to get default
223 values:
225 1- Global and static variables that are declared constant are
226 considered CONSTANT.
228 2- Any other value is considered UNDEFINED. This is useful when
229 considering PHI nodes. PHI arguments that are undefined do not
230 change the constant value of the PHI node, which allows for more
231 constants to be propagated.
233 3- Variables defined by statements other than assignments and PHI
234 nodes are considered VARYING.
236 4- Initial values of variables that are not GIMPLE registers are
237 considered VARYING. */
239 static prop_value_t
240 get_default_value (tree var)
242 tree sym = SSA_NAME_VAR (var);
243 prop_value_t val = { UNINITIALIZED, NULL_TREE, { 0, 0 } };
244 gimple stmt;
246 stmt = SSA_NAME_DEF_STMT (var);
248 if (gimple_nop_p (stmt))
250 /* Variables defined by an empty statement are those used
251 before being initialized. If VAR is a local variable, we
252 can assume initially that it is UNDEFINED, otherwise we must
253 consider it VARYING. */
254 if (is_gimple_reg (sym)
255 && TREE_CODE (sym) == VAR_DECL)
256 val.lattice_val = UNDEFINED;
257 else
259 val.lattice_val = VARYING;
260 val.mask = double_int_minus_one;
263 else if (is_gimple_assign (stmt)
264 /* Value-returning GIMPLE_CALL statements assign to
265 a variable, and are treated similarly to GIMPLE_ASSIGN. */
266 || (is_gimple_call (stmt)
267 && gimple_call_lhs (stmt) != NULL_TREE)
268 || gimple_code (stmt) == GIMPLE_PHI)
270 tree cst;
271 if (gimple_assign_single_p (stmt)
272 && DECL_P (gimple_assign_rhs1 (stmt))
273 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
275 val.lattice_val = CONSTANT;
276 val.value = cst;
278 else
279 /* Any other variable defined by an assignment or a PHI node
280 is considered UNDEFINED. */
281 val.lattice_val = UNDEFINED;
283 else
285 /* Otherwise, VAR will never take on a constant value. */
286 val.lattice_val = VARYING;
287 val.mask = double_int_minus_one;
290 return val;
294 /* Get the constant value associated with variable VAR. */
296 static inline prop_value_t *
297 get_value (tree var)
299 prop_value_t *val;
301 if (const_val == NULL)
302 return NULL;
304 val = &const_val[SSA_NAME_VERSION (var)];
305 if (val->lattice_val == UNINITIALIZED)
306 *val = get_default_value (var);
308 canonicalize_float_value (val);
310 return val;
313 /* Return the constant tree value associated with VAR. */
315 static inline tree
316 get_constant_value (tree var)
318 prop_value_t *val;
319 if (TREE_CODE (var) != SSA_NAME)
321 if (is_gimple_min_invariant (var))
322 return var;
323 return NULL_TREE;
325 val = get_value (var);
326 if (val
327 && val->lattice_val == CONSTANT
328 && (TREE_CODE (val->value) != INTEGER_CST
329 || double_int_zero_p (val->mask)))
330 return val->value;
331 return NULL_TREE;
334 /* Sets the value associated with VAR to VARYING. */
336 static inline void
337 set_value_varying (tree var)
339 prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
341 val->lattice_val = VARYING;
342 val->value = NULL_TREE;
343 val->mask = double_int_minus_one;
346 /* For float types, modify the value of VAL to make ccp work correctly
347 for non-standard values (-0, NaN):
349 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0.
350 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED.
351 This is to fix the following problem (see PR 29921): Suppose we have
353 x = 0.0 * y
355 and we set value of y to NaN. This causes value of x to be set to NaN.
356 When we later determine that y is in fact VARYING, fold uses the fact
357 that HONOR_NANS is false, and we try to change the value of x to 0,
358 causing an ICE. With HONOR_NANS being false, the real appearance of
359 NaN would cause undefined behavior, though, so claiming that y (and x)
360 are UNDEFINED initially is correct. */
362 static void
363 canonicalize_float_value (prop_value_t *val)
365 enum machine_mode mode;
366 tree type;
367 REAL_VALUE_TYPE d;
369 if (val->lattice_val != CONSTANT
370 || TREE_CODE (val->value) != REAL_CST)
371 return;
373 d = TREE_REAL_CST (val->value);
374 type = TREE_TYPE (val->value);
375 mode = TYPE_MODE (type);
377 if (!HONOR_SIGNED_ZEROS (mode)
378 && REAL_VALUE_MINUS_ZERO (d))
380 val->value = build_real (type, dconst0);
381 return;
384 if (!HONOR_NANS (mode)
385 && REAL_VALUE_ISNAN (d))
387 val->lattice_val = UNDEFINED;
388 val->value = NULL;
389 return;
393 /* Return whether the lattice transition is valid. */
395 static bool
396 valid_lattice_transition (prop_value_t old_val, prop_value_t new_val)
398 /* Lattice transitions must always be monotonically increasing in
399 value. */
400 if (old_val.lattice_val < new_val.lattice_val)
401 return true;
403 if (old_val.lattice_val != new_val.lattice_val)
404 return false;
406 if (!old_val.value && !new_val.value)
407 return true;
409 /* Now both lattice values are CONSTANT. */
411 /* Allow transitioning from &x to &x & ~3. */
412 if (TREE_CODE (old_val.value) != INTEGER_CST
413 && TREE_CODE (new_val.value) == INTEGER_CST)
414 return true;
416 /* Bit-lattices have to agree in the still valid bits. */
417 if (TREE_CODE (old_val.value) == INTEGER_CST
418 && TREE_CODE (new_val.value) == INTEGER_CST)
419 return double_int_equal_p
420 (double_int_and_not (tree_to_double_int (old_val.value),
421 new_val.mask),
422 double_int_and_not (tree_to_double_int (new_val.value),
423 new_val.mask));
425 /* Otherwise constant values have to agree. */
426 return operand_equal_p (old_val.value, new_val.value, 0);
429 /* Set the value for variable VAR to NEW_VAL. Return true if the new
430 value is different from VAR's previous value. */
432 static bool
433 set_lattice_value (tree var, prop_value_t new_val)
435 /* We can deal with old UNINITIALIZED values just fine here. */
436 prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
438 canonicalize_float_value (&new_val);
440 /* We have to be careful to not go up the bitwise lattice
441 represented by the mask.
442 ??? This doesn't seem to be the best place to enforce this. */
443 if (new_val.lattice_val == CONSTANT
444 && old_val->lattice_val == CONSTANT
445 && TREE_CODE (new_val.value) == INTEGER_CST
446 && TREE_CODE (old_val->value) == INTEGER_CST)
448 double_int diff;
449 diff = double_int_xor (tree_to_double_int (new_val.value),
450 tree_to_double_int (old_val->value));
451 new_val.mask = double_int_ior (new_val.mask,
452 double_int_ior (old_val->mask, diff));
455 gcc_assert (valid_lattice_transition (*old_val, new_val));
457 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
458 caller that this was a non-transition. */
459 if (old_val->lattice_val != new_val.lattice_val
460 || (new_val.lattice_val == CONSTANT
461 && TREE_CODE (new_val.value) == INTEGER_CST
462 && (TREE_CODE (old_val->value) != INTEGER_CST
463 || !double_int_equal_p (new_val.mask, old_val->mask))))
465 /* ??? We would like to delay creation of INTEGER_CSTs from
466 partially constants here. */
468 if (dump_file && (dump_flags & TDF_DETAILS))
470 dump_lattice_value (dump_file, "Lattice value changed to ", new_val);
471 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
474 *old_val = new_val;
476 gcc_assert (new_val.lattice_val != UNINITIALIZED);
477 return true;
480 return false;
483 static prop_value_t get_value_for_expr (tree, bool);
484 static prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
485 static void bit_value_binop_1 (enum tree_code, tree, double_int *, double_int *,
486 tree, double_int, double_int,
487 tree, double_int, double_int);
489 /* Return a double_int that can be used for bitwise simplifications
490 from VAL. */
492 static double_int
493 value_to_double_int (prop_value_t val)
495 if (val.value
496 && TREE_CODE (val.value) == INTEGER_CST)
497 return tree_to_double_int (val.value);
498 else
499 return double_int_zero;
502 /* Return the value for the address expression EXPR based on alignment
503 information. */
505 static prop_value_t
506 get_value_from_alignment (tree expr)
508 prop_value_t val;
509 HOST_WIDE_INT bitsize, bitpos;
510 tree base, offset;
511 enum machine_mode mode;
512 int align;
514 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
516 base = get_inner_reference (TREE_OPERAND (expr, 0),
517 &bitsize, &bitpos, &offset,
518 &mode, &align, &align, false);
519 if (TREE_CODE (base) == MEM_REF)
520 val = bit_value_binop (PLUS_EXPR, TREE_TYPE (expr),
521 TREE_OPERAND (base, 0), TREE_OPERAND (base, 1));
522 else if (base
523 /* ??? While function decls have DECL_ALIGN their addresses
524 may encode extra information in the lower bits on some
525 targets (PR47239). Simply punt for function decls for now. */
526 && TREE_CODE (base) != FUNCTION_DECL
527 && ((align = get_object_alignment (base, BIGGEST_ALIGNMENT))
528 > BITS_PER_UNIT))
530 val.lattice_val = CONSTANT;
531 /* We assume pointers are zero-extended. */
532 val.mask = double_int_and_not
533 (double_int_mask (TYPE_PRECISION (TREE_TYPE (expr))),
534 uhwi_to_double_int (align / BITS_PER_UNIT - 1));
535 val.value = build_int_cst (TREE_TYPE (expr), 0);
537 else
539 val.lattice_val = VARYING;
540 val.mask = double_int_minus_one;
541 val.value = NULL_TREE;
543 if (bitpos != 0)
545 double_int value, mask;
546 bit_value_binop_1 (PLUS_EXPR, TREE_TYPE (expr), &value, &mask,
547 TREE_TYPE (expr), value_to_double_int (val), val.mask,
548 TREE_TYPE (expr),
549 shwi_to_double_int (bitpos / BITS_PER_UNIT),
550 double_int_zero);
551 val.lattice_val = double_int_minus_one_p (mask) ? VARYING : CONSTANT;
552 val.mask = mask;
553 if (val.lattice_val == CONSTANT)
554 val.value = double_int_to_tree (TREE_TYPE (expr), value);
555 else
556 val.value = NULL_TREE;
558 /* ??? We should handle i * 4 and more complex expressions from
559 the offset, possibly by just expanding get_value_for_expr. */
560 if (offset != NULL_TREE)
562 double_int value, mask;
563 prop_value_t oval = get_value_for_expr (offset, true);
564 bit_value_binop_1 (PLUS_EXPR, TREE_TYPE (expr), &value, &mask,
565 TREE_TYPE (expr), value_to_double_int (val), val.mask,
566 TREE_TYPE (expr), value_to_double_int (oval),
567 oval.mask);
568 val.mask = mask;
569 if (double_int_minus_one_p (mask))
571 val.lattice_val = VARYING;
572 val.value = NULL_TREE;
574 else
576 val.lattice_val = CONSTANT;
577 val.value = double_int_to_tree (TREE_TYPE (expr), value);
581 return val;
584 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
585 return constant bits extracted from alignment information for
586 invariant addresses. */
588 static prop_value_t
589 get_value_for_expr (tree expr, bool for_bits_p)
591 prop_value_t val;
593 if (TREE_CODE (expr) == SSA_NAME)
595 val = *get_value (expr);
596 if (for_bits_p
597 && val.lattice_val == CONSTANT
598 && TREE_CODE (val.value) == ADDR_EXPR)
599 val = get_value_from_alignment (val.value);
601 else if (is_gimple_min_invariant (expr)
602 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
604 val.lattice_val = CONSTANT;
605 val.value = expr;
606 val.mask = double_int_zero;
607 canonicalize_float_value (&val);
609 else if (TREE_CODE (expr) == ADDR_EXPR)
610 val = get_value_from_alignment (expr);
611 else
613 val.lattice_val = VARYING;
614 val.mask = double_int_minus_one;
615 val.value = NULL_TREE;
617 return val;
620 /* Return the likely CCP lattice value for STMT.
622 If STMT has no operands, then return CONSTANT.
624 Else if undefinedness of operands of STMT cause its value to be
625 undefined, then return UNDEFINED.
627 Else if any operands of STMT are constants, then return CONSTANT.
629 Else return VARYING. */
631 static ccp_lattice_t
632 likely_value (gimple stmt)
634 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
635 tree use;
636 ssa_op_iter iter;
637 unsigned i;
639 enum gimple_code code = gimple_code (stmt);
641 /* This function appears to be called only for assignments, calls,
642 conditionals, and switches, due to the logic in visit_stmt. */
643 gcc_assert (code == GIMPLE_ASSIGN
644 || code == GIMPLE_CALL
645 || code == GIMPLE_COND
646 || code == GIMPLE_SWITCH);
648 /* If the statement has volatile operands, it won't fold to a
649 constant value. */
650 if (gimple_has_volatile_ops (stmt))
651 return VARYING;
653 /* Arrive here for more complex cases. */
654 has_constant_operand = false;
655 has_undefined_operand = false;
656 all_undefined_operands = true;
657 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
659 prop_value_t *val = get_value (use);
661 if (val->lattice_val == UNDEFINED)
662 has_undefined_operand = true;
663 else
664 all_undefined_operands = false;
666 if (val->lattice_val == CONSTANT)
667 has_constant_operand = true;
670 /* There may be constants in regular rhs operands. For calls we
671 have to ignore lhs, fndecl and static chain, otherwise only
672 the lhs. */
673 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
674 i < gimple_num_ops (stmt); ++i)
676 tree op = gimple_op (stmt, i);
677 if (!op || TREE_CODE (op) == SSA_NAME)
678 continue;
679 if (is_gimple_min_invariant (op))
680 has_constant_operand = true;
683 if (has_constant_operand)
684 all_undefined_operands = false;
686 /* If the operation combines operands like COMPLEX_EXPR make sure to
687 not mark the result UNDEFINED if only one part of the result is
688 undefined. */
689 if (has_undefined_operand && all_undefined_operands)
690 return UNDEFINED;
691 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
693 switch (gimple_assign_rhs_code (stmt))
695 /* Unary operators are handled with all_undefined_operands. */
696 case PLUS_EXPR:
697 case MINUS_EXPR:
698 case POINTER_PLUS_EXPR:
699 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
700 Not bitwise operators, one VARYING operand may specify the
701 result completely. Not logical operators for the same reason.
702 Not COMPLEX_EXPR as one VARYING operand makes the result partly
703 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
704 the undefined operand may be promoted. */
705 return UNDEFINED;
707 default:
711 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
712 fall back to VARYING even if there were CONSTANT operands. */
713 if (has_undefined_operand)
714 return VARYING;
716 /* We do not consider virtual operands here -- load from read-only
717 memory may have only VARYING virtual operands, but still be
718 constant. */
719 if (has_constant_operand
720 || gimple_references_memory_p (stmt))
721 return CONSTANT;
723 return VARYING;
726 /* Returns true if STMT cannot be constant. */
728 static bool
729 surely_varying_stmt_p (gimple stmt)
731 /* If the statement has operands that we cannot handle, it cannot be
732 constant. */
733 if (gimple_has_volatile_ops (stmt))
734 return true;
736 /* If it is a call and does not return a value or is not a
737 builtin and not an indirect call, it is varying. */
738 if (is_gimple_call (stmt))
740 tree fndecl;
741 if (!gimple_call_lhs (stmt)
742 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
743 && !DECL_BUILT_IN (fndecl)))
744 return true;
747 /* Any other store operation is not interesting. */
748 else if (gimple_vdef (stmt))
749 return true;
751 /* Anything other than assignments and conditional jumps are not
752 interesting for CCP. */
753 if (gimple_code (stmt) != GIMPLE_ASSIGN
754 && gimple_code (stmt) != GIMPLE_COND
755 && gimple_code (stmt) != GIMPLE_SWITCH
756 && gimple_code (stmt) != GIMPLE_CALL)
757 return true;
759 return false;
762 /* Initialize local data structures for CCP. */
764 static void
765 ccp_initialize (void)
767 basic_block bb;
769 const_val = XCNEWVEC (prop_value_t, num_ssa_names);
771 /* Initialize simulation flags for PHI nodes and statements. */
772 FOR_EACH_BB (bb)
774 gimple_stmt_iterator i;
776 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
778 gimple stmt = gsi_stmt (i);
779 bool is_varying;
781 /* If the statement is a control insn, then we do not
782 want to avoid simulating the statement once. Failure
783 to do so means that those edges will never get added. */
784 if (stmt_ends_bb_p (stmt))
785 is_varying = false;
786 else
787 is_varying = surely_varying_stmt_p (stmt);
789 if (is_varying)
791 tree def;
792 ssa_op_iter iter;
794 /* If the statement will not produce a constant, mark
795 all its outputs VARYING. */
796 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
797 set_value_varying (def);
799 prop_set_simulate_again (stmt, !is_varying);
803 /* Now process PHI nodes. We never clear the simulate_again flag on
804 phi nodes, since we do not know which edges are executable yet,
805 except for phi nodes for virtual operands when we do not do store ccp. */
806 FOR_EACH_BB (bb)
808 gimple_stmt_iterator i;
810 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
812 gimple phi = gsi_stmt (i);
814 if (!is_gimple_reg (gimple_phi_result (phi)))
815 prop_set_simulate_again (phi, false);
816 else
817 prop_set_simulate_again (phi, true);
822 /* Debug count support. Reset the values of ssa names
823 VARYING when the total number ssa names analyzed is
824 beyond the debug count specified. */
826 static void
827 do_dbg_cnt (void)
829 unsigned i;
830 for (i = 0; i < num_ssa_names; i++)
832 if (!dbg_cnt (ccp))
834 const_val[i].lattice_val = VARYING;
835 const_val[i].mask = double_int_minus_one;
836 const_val[i].value = NULL_TREE;
842 /* Do final substitution of propagated values, cleanup the flowgraph and
843 free allocated storage.
845 Return TRUE when something was optimized. */
847 static bool
848 ccp_finalize (void)
850 bool something_changed;
851 unsigned i;
853 do_dbg_cnt ();
855 /* Derive alignment and misalignment information from partially
856 constant pointers in the lattice. */
857 for (i = 1; i < num_ssa_names; ++i)
859 tree name = ssa_name (i);
860 prop_value_t *val;
861 struct ptr_info_def *pi;
862 unsigned int tem, align;
864 if (!name
865 || !POINTER_TYPE_P (TREE_TYPE (name)))
866 continue;
868 val = get_value (name);
869 if (val->lattice_val != CONSTANT
870 || TREE_CODE (val->value) != INTEGER_CST)
871 continue;
873 /* Trailing constant bits specify the alignment, trailing value
874 bits the misalignment. */
875 tem = val->mask.low;
876 align = (tem & -tem);
877 if (align == 1)
878 continue;
880 pi = get_ptr_info (name);
881 pi->align = align;
882 pi->misalign = TREE_INT_CST_LOW (val->value) & (align - 1);
885 /* Perform substitutions based on the known constant values. */
886 something_changed = substitute_and_fold (get_constant_value,
887 ccp_fold_stmt, true);
889 free (const_val);
890 const_val = NULL;
891 return something_changed;;
895 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
896 in VAL1.
898 any M UNDEFINED = any
899 any M VARYING = VARYING
900 Ci M Cj = Ci if (i == j)
901 Ci M Cj = VARYING if (i != j)
904 static void
905 ccp_lattice_meet (prop_value_t *val1, prop_value_t *val2)
907 if (val1->lattice_val == UNDEFINED)
909 /* UNDEFINED M any = any */
910 *val1 = *val2;
912 else if (val2->lattice_val == UNDEFINED)
914 /* any M UNDEFINED = any
915 Nothing to do. VAL1 already contains the value we want. */
918 else if (val1->lattice_val == VARYING
919 || val2->lattice_val == VARYING)
921 /* any M VARYING = VARYING. */
922 val1->lattice_val = VARYING;
923 val1->mask = double_int_minus_one;
924 val1->value = NULL_TREE;
926 else if (val1->lattice_val == CONSTANT
927 && val2->lattice_val == CONSTANT
928 && TREE_CODE (val1->value) == INTEGER_CST
929 && TREE_CODE (val2->value) == INTEGER_CST)
931 /* Ci M Cj = Ci if (i == j)
932 Ci M Cj = VARYING if (i != j)
934 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
935 drop to varying. */
936 val1->mask
937 = double_int_ior (double_int_ior (val1->mask,
938 val2->mask),
939 double_int_xor (tree_to_double_int (val1->value),
940 tree_to_double_int (val2->value)));
941 if (double_int_minus_one_p (val1->mask))
943 val1->lattice_val = VARYING;
944 val1->value = NULL_TREE;
947 else if (val1->lattice_val == CONSTANT
948 && val2->lattice_val == CONSTANT
949 && simple_cst_equal (val1->value, val2->value) == 1)
951 /* Ci M Cj = Ci if (i == j)
952 Ci M Cj = VARYING if (i != j)
954 VAL1 already contains the value we want for equivalent values. */
956 else if (val1->lattice_val == CONSTANT
957 && val2->lattice_val == CONSTANT
958 && (TREE_CODE (val1->value) == ADDR_EXPR
959 || TREE_CODE (val2->value) == ADDR_EXPR))
961 /* When not equal addresses are involved try meeting for
962 alignment. */
963 prop_value_t tem = *val2;
964 if (TREE_CODE (val1->value) == ADDR_EXPR)
965 *val1 = get_value_for_expr (val1->value, true);
966 if (TREE_CODE (val2->value) == ADDR_EXPR)
967 tem = get_value_for_expr (val2->value, true);
968 ccp_lattice_meet (val1, &tem);
970 else
972 /* Any other combination is VARYING. */
973 val1->lattice_val = VARYING;
974 val1->mask = double_int_minus_one;
975 val1->value = NULL_TREE;
980 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
981 lattice values to determine PHI_NODE's lattice value. The value of a
982 PHI node is determined calling ccp_lattice_meet with all the arguments
983 of the PHI node that are incoming via executable edges. */
985 static enum ssa_prop_result
986 ccp_visit_phi_node (gimple phi)
988 unsigned i;
989 prop_value_t *old_val, new_val;
991 if (dump_file && (dump_flags & TDF_DETAILS))
993 fprintf (dump_file, "\nVisiting PHI node: ");
994 print_gimple_stmt (dump_file, phi, 0, dump_flags);
997 old_val = get_value (gimple_phi_result (phi));
998 switch (old_val->lattice_val)
1000 case VARYING:
1001 return SSA_PROP_VARYING;
1003 case CONSTANT:
1004 new_val = *old_val;
1005 break;
1007 case UNDEFINED:
1008 new_val.lattice_val = UNDEFINED;
1009 new_val.value = NULL_TREE;
1010 break;
1012 default:
1013 gcc_unreachable ();
1016 for (i = 0; i < gimple_phi_num_args (phi); i++)
1018 /* Compute the meet operator over all the PHI arguments flowing
1019 through executable edges. */
1020 edge e = gimple_phi_arg_edge (phi, i);
1022 if (dump_file && (dump_flags & TDF_DETAILS))
1024 fprintf (dump_file,
1025 "\n Argument #%d (%d -> %d %sexecutable)\n",
1026 i, e->src->index, e->dest->index,
1027 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1030 /* If the incoming edge is executable, Compute the meet operator for
1031 the existing value of the PHI node and the current PHI argument. */
1032 if (e->flags & EDGE_EXECUTABLE)
1034 tree arg = gimple_phi_arg (phi, i)->def;
1035 prop_value_t arg_val = get_value_for_expr (arg, false);
1037 ccp_lattice_meet (&new_val, &arg_val);
1039 if (dump_file && (dump_flags & TDF_DETAILS))
1041 fprintf (dump_file, "\t");
1042 print_generic_expr (dump_file, arg, dump_flags);
1043 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1044 fprintf (dump_file, "\n");
1047 if (new_val.lattice_val == VARYING)
1048 break;
1052 if (dump_file && (dump_flags & TDF_DETAILS))
1054 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1055 fprintf (dump_file, "\n\n");
1058 /* Make the transition to the new value. */
1059 if (set_lattice_value (gimple_phi_result (phi), new_val))
1061 if (new_val.lattice_val == VARYING)
1062 return SSA_PROP_VARYING;
1063 else
1064 return SSA_PROP_INTERESTING;
1066 else
1067 return SSA_PROP_NOT_INTERESTING;
1070 /* Return the constant value for OP or OP otherwise. */
1072 static tree
1073 valueize_op (tree op)
1075 if (TREE_CODE (op) == SSA_NAME)
1077 tree tem = get_constant_value (op);
1078 if (tem)
1079 return tem;
1081 return op;
1084 /* CCP specific front-end to the non-destructive constant folding
1085 routines.
1087 Attempt to simplify the RHS of STMT knowing that one or more
1088 operands are constants.
1090 If simplification is possible, return the simplified RHS,
1091 otherwise return the original RHS or NULL_TREE. */
1093 static tree
1094 ccp_fold (gimple stmt)
1096 location_t loc = gimple_location (stmt);
1097 switch (gimple_code (stmt))
1099 case GIMPLE_COND:
1101 /* Handle comparison operators that can appear in GIMPLE form. */
1102 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1103 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1104 enum tree_code code = gimple_cond_code (stmt);
1105 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1108 case GIMPLE_SWITCH:
1110 /* Return the constant switch index. */
1111 return valueize_op (gimple_switch_index (stmt));
1114 case GIMPLE_ASSIGN:
1115 case GIMPLE_CALL:
1116 return gimple_fold_stmt_to_constant_1 (stmt, valueize_op);
1118 default:
1119 gcc_unreachable ();
1123 /* Apply the operation CODE in type TYPE to the value, mask pair
1124 RVAL and RMASK representing a value of type RTYPE and set
1125 the value, mask pair *VAL and *MASK to the result. */
1127 static void
1128 bit_value_unop_1 (enum tree_code code, tree type,
1129 double_int *val, double_int *mask,
1130 tree rtype, double_int rval, double_int rmask)
1132 switch (code)
1134 case BIT_NOT_EXPR:
1135 *mask = rmask;
1136 *val = double_int_not (rval);
1137 break;
1139 case NEGATE_EXPR:
1141 double_int temv, temm;
1142 /* Return ~rval + 1. */
1143 bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask);
1144 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1145 type, temv, temm,
1146 type, double_int_one, double_int_zero);
1147 break;
1150 CASE_CONVERT:
1152 bool uns;
1154 /* First extend mask and value according to the original type. */
1155 uns = (TREE_CODE (rtype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (rtype)
1156 ? 0 : TYPE_UNSIGNED (rtype));
1157 *mask = double_int_ext (rmask, TYPE_PRECISION (rtype), uns);
1158 *val = double_int_ext (rval, TYPE_PRECISION (rtype), uns);
1160 /* Then extend mask and value according to the target type. */
1161 uns = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
1162 ? 0 : TYPE_UNSIGNED (type));
1163 *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
1164 *val = double_int_ext (*val, TYPE_PRECISION (type), uns);
1165 break;
1168 default:
1169 *mask = double_int_minus_one;
1170 break;
1174 /* Apply the operation CODE in type TYPE to the value, mask pairs
1175 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1176 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1178 static void
1179 bit_value_binop_1 (enum tree_code code, tree type,
1180 double_int *val, double_int *mask,
1181 tree r1type, double_int r1val, double_int r1mask,
1182 tree r2type, double_int r2val, double_int r2mask)
1184 bool uns = (TREE_CODE (type) == INTEGER_TYPE
1185 && TYPE_IS_SIZETYPE (type) ? 0 : TYPE_UNSIGNED (type));
1186 /* Assume we'll get a constant result. Use an initial varying value,
1187 we fall back to varying in the end if necessary. */
1188 *mask = double_int_minus_one;
1189 switch (code)
1191 case BIT_AND_EXPR:
1192 /* The mask is constant where there is a known not
1193 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1194 *mask = double_int_and (double_int_ior (r1mask, r2mask),
1195 double_int_and (double_int_ior (r1val, r1mask),
1196 double_int_ior (r2val, r2mask)));
1197 *val = double_int_and (r1val, r2val);
1198 break;
1200 case BIT_IOR_EXPR:
1201 /* The mask is constant where there is a known
1202 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1203 *mask = double_int_and_not
1204 (double_int_ior (r1mask, r2mask),
1205 double_int_ior (double_int_and_not (r1val, r1mask),
1206 double_int_and_not (r2val, r2mask)));
1207 *val = double_int_ior (r1val, r2val);
1208 break;
1210 case BIT_XOR_EXPR:
1211 /* m1 | m2 */
1212 *mask = double_int_ior (r1mask, r2mask);
1213 *val = double_int_xor (r1val, r2val);
1214 break;
1216 case LROTATE_EXPR:
1217 case RROTATE_EXPR:
1218 if (double_int_zero_p (r2mask))
1220 HOST_WIDE_INT shift = r2val.low;
1221 if (code == RROTATE_EXPR)
1222 shift = -shift;
1223 *mask = double_int_lrotate (r1mask, shift, TYPE_PRECISION (type));
1224 *val = double_int_lrotate (r1val, shift, TYPE_PRECISION (type));
1226 break;
1228 case LSHIFT_EXPR:
1229 case RSHIFT_EXPR:
1230 /* ??? We can handle partially known shift counts if we know
1231 its sign. That way we can tell that (x << (y | 8)) & 255
1232 is zero. */
1233 if (double_int_zero_p (r2mask))
1235 HOST_WIDE_INT shift = r2val.low;
1236 if (code == RSHIFT_EXPR)
1237 shift = -shift;
1238 /* We need to know if we are doing a left or a right shift
1239 to properly shift in zeros for left shift and unsigned
1240 right shifts and the sign bit for signed right shifts.
1241 For signed right shifts we shift in varying in case
1242 the sign bit was varying. */
1243 if (shift > 0)
1245 *mask = double_int_lshift (r1mask, shift,
1246 TYPE_PRECISION (type), false);
1247 *val = double_int_lshift (r1val, shift,
1248 TYPE_PRECISION (type), false);
1250 else if (shift < 0)
1252 /* ??? We can have sizetype related inconsistencies in
1253 the IL. */
1254 if ((TREE_CODE (r1type) == INTEGER_TYPE
1255 && (TYPE_IS_SIZETYPE (r1type)
1256 ? 0 : TYPE_UNSIGNED (r1type))) != uns)
1257 break;
1259 shift = -shift;
1260 *mask = double_int_rshift (r1mask, shift,
1261 TYPE_PRECISION (type), !uns);
1262 *val = double_int_rshift (r1val, shift,
1263 TYPE_PRECISION (type), !uns);
1265 else
1267 *mask = r1mask;
1268 *val = r1val;
1271 break;
1273 case PLUS_EXPR:
1274 case POINTER_PLUS_EXPR:
1276 double_int lo, hi;
1277 /* Do the addition with unknown bits set to zero, to give carry-ins of
1278 zero wherever possible. */
1279 lo = double_int_add (double_int_and_not (r1val, r1mask),
1280 double_int_and_not (r2val, r2mask));
1281 lo = double_int_ext (lo, TYPE_PRECISION (type), uns);
1282 /* Do the addition with unknown bits set to one, to give carry-ins of
1283 one wherever possible. */
1284 hi = double_int_add (double_int_ior (r1val, r1mask),
1285 double_int_ior (r2val, r2mask));
1286 hi = double_int_ext (hi, TYPE_PRECISION (type), uns);
1287 /* Each bit in the result is known if (a) the corresponding bits in
1288 both inputs are known, and (b) the carry-in to that bit position
1289 is known. We can check condition (b) by seeing if we got the same
1290 result with minimised carries as with maximised carries. */
1291 *mask = double_int_ior (double_int_ior (r1mask, r2mask),
1292 double_int_xor (lo, hi));
1293 *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
1294 /* It shouldn't matter whether we choose lo or hi here. */
1295 *val = lo;
1296 break;
1299 case MINUS_EXPR:
1301 double_int temv, temm;
1302 bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm,
1303 r2type, r2val, r2mask);
1304 bit_value_binop_1 (PLUS_EXPR, type, val, mask,
1305 r1type, r1val, r1mask,
1306 r2type, temv, temm);
1307 break;
1310 case MULT_EXPR:
1312 /* Just track trailing zeros in both operands and transfer
1313 them to the other. */
1314 int r1tz = double_int_ctz (double_int_ior (r1val, r1mask));
1315 int r2tz = double_int_ctz (double_int_ior (r2val, r2mask));
1316 if (r1tz + r2tz >= HOST_BITS_PER_DOUBLE_INT)
1318 *mask = double_int_zero;
1319 *val = double_int_zero;
1321 else if (r1tz + r2tz > 0)
1323 *mask = double_int_not (double_int_mask (r1tz + r2tz));
1324 *mask = double_int_ext (*mask, TYPE_PRECISION (type), uns);
1325 *val = double_int_zero;
1327 break;
1330 case EQ_EXPR:
1331 case NE_EXPR:
1333 double_int m = double_int_ior (r1mask, r2mask);
1334 if (!double_int_equal_p (double_int_and_not (r1val, m),
1335 double_int_and_not (r2val, m)))
1337 *mask = double_int_zero;
1338 *val = ((code == EQ_EXPR) ? double_int_zero : double_int_one);
1340 else
1342 /* We know the result of a comparison is always one or zero. */
1343 *mask = double_int_one;
1344 *val = double_int_zero;
1346 break;
1349 case GE_EXPR:
1350 case GT_EXPR:
1352 double_int tem = r1val;
1353 r1val = r2val;
1354 r2val = tem;
1355 tem = r1mask;
1356 r1mask = r2mask;
1357 r2mask = tem;
1358 code = swap_tree_comparison (code);
1360 /* Fallthru. */
1361 case LT_EXPR:
1362 case LE_EXPR:
1364 int minmax, maxmin;
1365 /* If the most significant bits are not known we know nothing. */
1366 if (double_int_negative_p (r1mask) || double_int_negative_p (r2mask))
1367 break;
1369 /* For comparisons the signedness is in the comparison operands. */
1370 uns = (TREE_CODE (r1type) == INTEGER_TYPE
1371 && TYPE_IS_SIZETYPE (r1type) ? 0 : TYPE_UNSIGNED (r1type));
1372 /* ??? We can have sizetype related inconsistencies in the IL. */
1373 if ((TREE_CODE (r2type) == INTEGER_TYPE
1374 && TYPE_IS_SIZETYPE (r2type) ? 0 : TYPE_UNSIGNED (r2type)) != uns)
1375 break;
1377 /* If we know the most significant bits we know the values
1378 value ranges by means of treating varying bits as zero
1379 or one. Do a cross comparison of the max/min pairs. */
1380 maxmin = double_int_cmp (double_int_ior (r1val, r1mask),
1381 double_int_and_not (r2val, r2mask), uns);
1382 minmax = double_int_cmp (double_int_and_not (r1val, r1mask),
1383 double_int_ior (r2val, r2mask), uns);
1384 if (maxmin < 0) /* r1 is less than r2. */
1386 *mask = double_int_zero;
1387 *val = double_int_one;
1389 else if (minmax > 0) /* r1 is not less or equal to r2. */
1391 *mask = double_int_zero;
1392 *val = double_int_zero;
1394 else if (maxmin == minmax) /* r1 and r2 are equal. */
1396 /* This probably should never happen as we'd have
1397 folded the thing during fully constant value folding. */
1398 *mask = double_int_zero;
1399 *val = (code == LE_EXPR ? double_int_one : double_int_zero);
1401 else
1403 /* We know the result of a comparison is always one or zero. */
1404 *mask = double_int_one;
1405 *val = double_int_zero;
1407 break;
1410 default:;
1414 /* Return the propagation value when applying the operation CODE to
1415 the value RHS yielding type TYPE. */
1417 static prop_value_t
1418 bit_value_unop (enum tree_code code, tree type, tree rhs)
1420 prop_value_t rval = get_value_for_expr (rhs, true);
1421 double_int value, mask;
1422 prop_value_t val;
1423 gcc_assert ((rval.lattice_val == CONSTANT
1424 && TREE_CODE (rval.value) == INTEGER_CST)
1425 || double_int_minus_one_p (rval.mask));
1426 bit_value_unop_1 (code, type, &value, &mask,
1427 TREE_TYPE (rhs), value_to_double_int (rval), rval.mask);
1428 if (!double_int_minus_one_p (mask))
1430 val.lattice_val = CONSTANT;
1431 val.mask = mask;
1432 /* ??? Delay building trees here. */
1433 val.value = double_int_to_tree (type, value);
1435 else
1437 val.lattice_val = VARYING;
1438 val.value = NULL_TREE;
1439 val.mask = double_int_minus_one;
1441 return val;
1444 /* Return the propagation value when applying the operation CODE to
1445 the values RHS1 and RHS2 yielding type TYPE. */
1447 static prop_value_t
1448 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1450 prop_value_t r1val = get_value_for_expr (rhs1, true);
1451 prop_value_t r2val = get_value_for_expr (rhs2, true);
1452 double_int value, mask;
1453 prop_value_t val;
1454 gcc_assert ((r1val.lattice_val == CONSTANT
1455 && TREE_CODE (r1val.value) == INTEGER_CST)
1456 || double_int_minus_one_p (r1val.mask));
1457 gcc_assert ((r2val.lattice_val == CONSTANT
1458 && TREE_CODE (r2val.value) == INTEGER_CST)
1459 || double_int_minus_one_p (r2val.mask));
1460 bit_value_binop_1 (code, type, &value, &mask,
1461 TREE_TYPE (rhs1), value_to_double_int (r1val), r1val.mask,
1462 TREE_TYPE (rhs2), value_to_double_int (r2val), r2val.mask);
1463 if (!double_int_minus_one_p (mask))
1465 val.lattice_val = CONSTANT;
1466 val.mask = mask;
1467 /* ??? Delay building trees here. */
1468 val.value = double_int_to_tree (type, value);
1470 else
1472 val.lattice_val = VARYING;
1473 val.value = NULL_TREE;
1474 val.mask = double_int_minus_one;
1476 return val;
1479 /* Evaluate statement STMT.
1480 Valid only for assignments, calls, conditionals, and switches. */
1482 static prop_value_t
1483 evaluate_stmt (gimple stmt)
1485 prop_value_t val;
1486 tree simplified = NULL_TREE;
1487 ccp_lattice_t likelyvalue = likely_value (stmt);
1488 bool is_constant = false;
1490 if (dump_file && (dump_flags & TDF_DETAILS))
1492 fprintf (dump_file, "which is likely ");
1493 switch (likelyvalue)
1495 case CONSTANT:
1496 fprintf (dump_file, "CONSTANT");
1497 break;
1498 case UNDEFINED:
1499 fprintf (dump_file, "UNDEFINED");
1500 break;
1501 case VARYING:
1502 fprintf (dump_file, "VARYING");
1503 break;
1504 default:;
1506 fprintf (dump_file, "\n");
1509 /* If the statement is likely to have a CONSTANT result, then try
1510 to fold the statement to determine the constant value. */
1511 /* FIXME. This is the only place that we call ccp_fold.
1512 Since likely_value never returns CONSTANT for calls, we will
1513 not attempt to fold them, including builtins that may profit. */
1514 if (likelyvalue == CONSTANT)
1516 fold_defer_overflow_warnings ();
1517 simplified = ccp_fold (stmt);
1518 is_constant = simplified && is_gimple_min_invariant (simplified);
1519 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1520 if (is_constant)
1522 /* The statement produced a constant value. */
1523 val.lattice_val = CONSTANT;
1524 val.value = simplified;
1525 val.mask = double_int_zero;
1528 /* If the statement is likely to have a VARYING result, then do not
1529 bother folding the statement. */
1530 else if (likelyvalue == VARYING)
1532 enum gimple_code code = gimple_code (stmt);
1533 if (code == GIMPLE_ASSIGN)
1535 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1537 /* Other cases cannot satisfy is_gimple_min_invariant
1538 without folding. */
1539 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1540 simplified = gimple_assign_rhs1 (stmt);
1542 else if (code == GIMPLE_SWITCH)
1543 simplified = gimple_switch_index (stmt);
1544 else
1545 /* These cannot satisfy is_gimple_min_invariant without folding. */
1546 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1547 is_constant = simplified && is_gimple_min_invariant (simplified);
1548 if (is_constant)
1550 /* The statement produced a constant value. */
1551 val.lattice_val = CONSTANT;
1552 val.value = simplified;
1553 val.mask = double_int_zero;
1557 /* Resort to simplification for bitwise tracking. */
1558 if (flag_tree_bit_ccp
1559 && likelyvalue == CONSTANT
1560 && !is_constant)
1562 enum gimple_code code = gimple_code (stmt);
1563 tree fndecl;
1564 val.lattice_val = VARYING;
1565 val.value = NULL_TREE;
1566 val.mask = double_int_minus_one;
1567 if (code == GIMPLE_ASSIGN)
1569 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1570 tree rhs1 = gimple_assign_rhs1 (stmt);
1571 switch (get_gimple_rhs_class (subcode))
1573 case GIMPLE_SINGLE_RHS:
1574 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1575 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1576 val = get_value_for_expr (rhs1, true);
1577 break;
1579 case GIMPLE_UNARY_RHS:
1580 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1581 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1582 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt))
1583 || POINTER_TYPE_P (gimple_expr_type (stmt))))
1584 val = bit_value_unop (subcode, gimple_expr_type (stmt), rhs1);
1585 break;
1587 case GIMPLE_BINARY_RHS:
1588 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1589 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1591 tree lhs = gimple_assign_lhs (stmt);
1592 tree rhs2 = gimple_assign_rhs2 (stmt);
1593 val = bit_value_binop (subcode,
1594 TREE_TYPE (lhs), rhs1, rhs2);
1596 break;
1598 default:;
1601 else if (code == GIMPLE_COND)
1603 enum tree_code code = gimple_cond_code (stmt);
1604 tree rhs1 = gimple_cond_lhs (stmt);
1605 tree rhs2 = gimple_cond_rhs (stmt);
1606 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1607 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1608 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1610 else if (code == GIMPLE_CALL
1611 && (fndecl = gimple_call_fndecl (stmt))
1612 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1614 switch (DECL_FUNCTION_CODE (fndecl))
1616 case BUILT_IN_MALLOC:
1617 case BUILT_IN_REALLOC:
1618 case BUILT_IN_CALLOC:
1619 val.lattice_val = CONSTANT;
1620 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1621 val.mask = shwi_to_double_int
1622 (~(((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT)
1623 / BITS_PER_UNIT - 1));
1624 break;
1626 case BUILT_IN_ALLOCA:
1627 val.lattice_val = CONSTANT;
1628 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1629 val.mask = shwi_to_double_int
1630 (~(((HOST_WIDE_INT) BIGGEST_ALIGNMENT)
1631 / BITS_PER_UNIT - 1));
1632 break;
1634 default:;
1637 is_constant = (val.lattice_val == CONSTANT);
1640 if (!is_constant)
1642 /* The statement produced a nonconstant value. If the statement
1643 had UNDEFINED operands, then the result of the statement
1644 should be UNDEFINED. Otherwise, the statement is VARYING. */
1645 if (likelyvalue == UNDEFINED)
1647 val.lattice_val = likelyvalue;
1648 val.mask = double_int_zero;
1650 else
1652 val.lattice_val = VARYING;
1653 val.mask = double_int_minus_one;
1656 val.value = NULL_TREE;
1659 return val;
1662 /* Fold the stmt at *GSI with CCP specific information that propagating
1663 and regular folding does not catch. */
1665 static bool
1666 ccp_fold_stmt (gimple_stmt_iterator *gsi)
1668 gimple stmt = gsi_stmt (*gsi);
1670 switch (gimple_code (stmt))
1672 case GIMPLE_COND:
1674 prop_value_t val;
1675 /* Statement evaluation will handle type mismatches in constants
1676 more gracefully than the final propagation. This allows us to
1677 fold more conditionals here. */
1678 val = evaluate_stmt (stmt);
1679 if (val.lattice_val != CONSTANT
1680 || !double_int_zero_p (val.mask))
1681 return false;
1683 if (dump_file)
1685 fprintf (dump_file, "Folding predicate ");
1686 print_gimple_expr (dump_file, stmt, 0, 0);
1687 fprintf (dump_file, " to ");
1688 print_generic_expr (dump_file, val.value, 0);
1689 fprintf (dump_file, "\n");
1692 if (integer_zerop (val.value))
1693 gimple_cond_make_false (stmt);
1694 else
1695 gimple_cond_make_true (stmt);
1697 return true;
1700 case GIMPLE_CALL:
1702 tree lhs = gimple_call_lhs (stmt);
1703 tree val;
1704 tree argt;
1705 tree callee;
1706 bool changed = false;
1707 unsigned i;
1709 /* If the call was folded into a constant make sure it goes
1710 away even if we cannot propagate into all uses because of
1711 type issues. */
1712 if (lhs
1713 && TREE_CODE (lhs) == SSA_NAME
1714 && (val = get_constant_value (lhs)))
1716 tree new_rhs = unshare_expr (val);
1717 bool res;
1718 if (!useless_type_conversion_p (TREE_TYPE (lhs),
1719 TREE_TYPE (new_rhs)))
1720 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
1721 res = update_call_from_tree (gsi, new_rhs);
1722 gcc_assert (res);
1723 return true;
1726 /* Propagate into the call arguments. Compared to replace_uses_in
1727 this can use the argument slot types for type verification
1728 instead of the current argument type. We also can safely
1729 drop qualifiers here as we are dealing with constants anyway. */
1730 argt = TYPE_ARG_TYPES (TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt))));
1731 for (i = 0; i < gimple_call_num_args (stmt) && argt;
1732 ++i, argt = TREE_CHAIN (argt))
1734 tree arg = gimple_call_arg (stmt, i);
1735 if (TREE_CODE (arg) == SSA_NAME
1736 && (val = get_constant_value (arg))
1737 && useless_type_conversion_p
1738 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
1739 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
1741 gimple_call_set_arg (stmt, i, unshare_expr (val));
1742 changed = true;
1746 callee = gimple_call_fn (stmt);
1747 if (TREE_CODE (callee) == OBJ_TYPE_REF
1748 && TREE_CODE (OBJ_TYPE_REF_EXPR (callee)) == SSA_NAME)
1750 tree expr = OBJ_TYPE_REF_EXPR (callee);
1751 OBJ_TYPE_REF_EXPR (callee) = valueize_op (expr);
1752 if (gimple_fold_call (gsi, false))
1753 changed = true;
1754 OBJ_TYPE_REF_EXPR (callee) = expr;
1757 return changed;
1760 case GIMPLE_ASSIGN:
1762 tree lhs = gimple_assign_lhs (stmt);
1763 tree val;
1765 /* If we have a load that turned out to be constant replace it
1766 as we cannot propagate into all uses in all cases. */
1767 if (gimple_assign_single_p (stmt)
1768 && TREE_CODE (lhs) == SSA_NAME
1769 && (val = get_constant_value (lhs)))
1771 tree rhs = unshare_expr (val);
1772 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
1773 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
1774 gimple_assign_set_rhs_from_tree (gsi, rhs);
1775 return true;
1778 return false;
1781 default:
1782 return false;
1786 /* Visit the assignment statement STMT. Set the value of its LHS to the
1787 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
1788 creates virtual definitions, set the value of each new name to that
1789 of the RHS (if we can derive a constant out of the RHS).
1790 Value-returning call statements also perform an assignment, and
1791 are handled here. */
1793 static enum ssa_prop_result
1794 visit_assignment (gimple stmt, tree *output_p)
1796 prop_value_t val;
1797 enum ssa_prop_result retval;
1799 tree lhs = gimple_get_lhs (stmt);
1801 gcc_assert (gimple_code (stmt) != GIMPLE_CALL
1802 || gimple_call_lhs (stmt) != NULL_TREE);
1804 if (gimple_assign_single_p (stmt)
1805 && gimple_assign_rhs_code (stmt) == SSA_NAME)
1806 /* For a simple copy operation, we copy the lattice values. */
1807 val = *get_value (gimple_assign_rhs1 (stmt));
1808 else
1809 /* Evaluate the statement, which could be
1810 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1811 val = evaluate_stmt (stmt);
1813 retval = SSA_PROP_NOT_INTERESTING;
1815 /* Set the lattice value of the statement's output. */
1816 if (TREE_CODE (lhs) == SSA_NAME)
1818 /* If STMT is an assignment to an SSA_NAME, we only have one
1819 value to set. */
1820 if (set_lattice_value (lhs, val))
1822 *output_p = lhs;
1823 if (val.lattice_val == VARYING)
1824 retval = SSA_PROP_VARYING;
1825 else
1826 retval = SSA_PROP_INTERESTING;
1830 return retval;
1834 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
1835 if it can determine which edge will be taken. Otherwise, return
1836 SSA_PROP_VARYING. */
1838 static enum ssa_prop_result
1839 visit_cond_stmt (gimple stmt, edge *taken_edge_p)
1841 prop_value_t val;
1842 basic_block block;
1844 block = gimple_bb (stmt);
1845 val = evaluate_stmt (stmt);
1846 if (val.lattice_val != CONSTANT
1847 || !double_int_zero_p (val.mask))
1848 return SSA_PROP_VARYING;
1850 /* Find which edge out of the conditional block will be taken and add it
1851 to the worklist. If no single edge can be determined statically,
1852 return SSA_PROP_VARYING to feed all the outgoing edges to the
1853 propagation engine. */
1854 *taken_edge_p = find_taken_edge (block, val.value);
1855 if (*taken_edge_p)
1856 return SSA_PROP_INTERESTING;
1857 else
1858 return SSA_PROP_VARYING;
1862 /* Evaluate statement STMT. If the statement produces an output value and
1863 its evaluation changes the lattice value of its output, return
1864 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
1865 output value.
1867 If STMT is a conditional branch and we can determine its truth
1868 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
1869 value, return SSA_PROP_VARYING. */
1871 static enum ssa_prop_result
1872 ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
1874 tree def;
1875 ssa_op_iter iter;
1877 if (dump_file && (dump_flags & TDF_DETAILS))
1879 fprintf (dump_file, "\nVisiting statement:\n");
1880 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
1883 switch (gimple_code (stmt))
1885 case GIMPLE_ASSIGN:
1886 /* If the statement is an assignment that produces a single
1887 output value, evaluate its RHS to see if the lattice value of
1888 its output has changed. */
1889 return visit_assignment (stmt, output_p);
1891 case GIMPLE_CALL:
1892 /* A value-returning call also performs an assignment. */
1893 if (gimple_call_lhs (stmt) != NULL_TREE)
1894 return visit_assignment (stmt, output_p);
1895 break;
1897 case GIMPLE_COND:
1898 case GIMPLE_SWITCH:
1899 /* If STMT is a conditional branch, see if we can determine
1900 which branch will be taken. */
1901 /* FIXME. It appears that we should be able to optimize
1902 computed GOTOs here as well. */
1903 return visit_cond_stmt (stmt, taken_edge_p);
1905 default:
1906 break;
1909 /* Any other kind of statement is not interesting for constant
1910 propagation and, therefore, not worth simulating. */
1911 if (dump_file && (dump_flags & TDF_DETAILS))
1912 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
1914 /* Definitions made by statements other than assignments to
1915 SSA_NAMEs represent unknown modifications to their outputs.
1916 Mark them VARYING. */
1917 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
1919 prop_value_t v = { VARYING, NULL_TREE, { -1, (HOST_WIDE_INT) -1 } };
1920 set_lattice_value (def, v);
1923 return SSA_PROP_VARYING;
1927 /* Main entry point for SSA Conditional Constant Propagation. */
1929 static unsigned int
1930 do_ssa_ccp (void)
1932 ccp_initialize ();
1933 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
1934 if (ccp_finalize ())
1935 return (TODO_cleanup_cfg | TODO_update_ssa | TODO_remove_unused_locals);
1936 else
1937 return 0;
1941 static bool
1942 gate_ccp (void)
1944 return flag_tree_ccp != 0;
1948 struct gimple_opt_pass pass_ccp =
1951 GIMPLE_PASS,
1952 "ccp", /* name */
1953 gate_ccp, /* gate */
1954 do_ssa_ccp, /* execute */
1955 NULL, /* sub */
1956 NULL, /* next */
1957 0, /* static_pass_number */
1958 TV_TREE_CCP, /* tv_id */
1959 PROP_cfg | PROP_ssa, /* properties_required */
1960 0, /* properties_provided */
1961 0, /* properties_destroyed */
1962 0, /* todo_flags_start */
1963 TODO_dump_func | TODO_verify_ssa
1964 | TODO_verify_stmts | TODO_ggc_collect/* todo_flags_finish */
1970 /* Try to optimize out __builtin_stack_restore. Optimize it out
1971 if there is another __builtin_stack_restore in the same basic
1972 block and no calls or ASM_EXPRs are in between, or if this block's
1973 only outgoing edge is to EXIT_BLOCK and there are no calls or
1974 ASM_EXPRs after this __builtin_stack_restore. */
1976 static tree
1977 optimize_stack_restore (gimple_stmt_iterator i)
1979 tree callee;
1980 gimple stmt;
1982 basic_block bb = gsi_bb (i);
1983 gimple call = gsi_stmt (i);
1985 if (gimple_code (call) != GIMPLE_CALL
1986 || gimple_call_num_args (call) != 1
1987 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
1988 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
1989 return NULL_TREE;
1991 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
1993 stmt = gsi_stmt (i);
1994 if (gimple_code (stmt) == GIMPLE_ASM)
1995 return NULL_TREE;
1996 if (gimple_code (stmt) != GIMPLE_CALL)
1997 continue;
1999 callee = gimple_call_fndecl (stmt);
2000 if (!callee
2001 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2002 /* All regular builtins are ok, just obviously not alloca. */
2003 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA)
2004 return NULL_TREE;
2006 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2007 goto second_stack_restore;
2010 if (!gsi_end_p (i))
2011 return NULL_TREE;
2013 /* Allow one successor of the exit block, or zero successors. */
2014 switch (EDGE_COUNT (bb->succs))
2016 case 0:
2017 break;
2018 case 1:
2019 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR)
2020 return NULL_TREE;
2021 break;
2022 default:
2023 return NULL_TREE;
2025 second_stack_restore:
2027 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2028 If there are multiple uses, then the last one should remove the call.
2029 In any case, whether the call to __builtin_stack_save can be removed
2030 or not is irrelevant to removing the call to __builtin_stack_restore. */
2031 if (has_single_use (gimple_call_arg (call, 0)))
2033 gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2034 if (is_gimple_call (stack_save))
2036 callee = gimple_call_fndecl (stack_save);
2037 if (callee
2038 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2039 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2041 gimple_stmt_iterator stack_save_gsi;
2042 tree rhs;
2044 stack_save_gsi = gsi_for_stmt (stack_save);
2045 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2046 update_call_from_tree (&stack_save_gsi, rhs);
2051 /* No effect, so the statement will be deleted. */
2052 return integer_zero_node;
2055 /* If va_list type is a simple pointer and nothing special is needed,
2056 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2057 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2058 pointer assignment. */
2060 static tree
2061 optimize_stdarg_builtin (gimple call)
2063 tree callee, lhs, rhs, cfun_va_list;
2064 bool va_list_simple_ptr;
2065 location_t loc = gimple_location (call);
2067 if (gimple_code (call) != GIMPLE_CALL)
2068 return NULL_TREE;
2070 callee = gimple_call_fndecl (call);
2072 cfun_va_list = targetm.fn_abi_va_list (callee);
2073 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2074 && (TREE_TYPE (cfun_va_list) == void_type_node
2075 || TREE_TYPE (cfun_va_list) == char_type_node);
2077 switch (DECL_FUNCTION_CODE (callee))
2079 case BUILT_IN_VA_START:
2080 if (!va_list_simple_ptr
2081 || targetm.expand_builtin_va_start != NULL
2082 || built_in_decls[BUILT_IN_NEXT_ARG] == NULL)
2083 return NULL_TREE;
2085 if (gimple_call_num_args (call) != 2)
2086 return NULL_TREE;
2088 lhs = gimple_call_arg (call, 0);
2089 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2090 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2091 != TYPE_MAIN_VARIANT (cfun_va_list))
2092 return NULL_TREE;
2094 lhs = build_fold_indirect_ref_loc (loc, lhs);
2095 rhs = build_call_expr_loc (loc, built_in_decls[BUILT_IN_NEXT_ARG],
2096 1, integer_zero_node);
2097 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2098 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2100 case BUILT_IN_VA_COPY:
2101 if (!va_list_simple_ptr)
2102 return NULL_TREE;
2104 if (gimple_call_num_args (call) != 2)
2105 return NULL_TREE;
2107 lhs = gimple_call_arg (call, 0);
2108 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2109 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2110 != TYPE_MAIN_VARIANT (cfun_va_list))
2111 return NULL_TREE;
2113 lhs = build_fold_indirect_ref_loc (loc, lhs);
2114 rhs = gimple_call_arg (call, 1);
2115 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2116 != TYPE_MAIN_VARIANT (cfun_va_list))
2117 return NULL_TREE;
2119 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2120 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2122 case BUILT_IN_VA_END:
2123 /* No effect, so the statement will be deleted. */
2124 return integer_zero_node;
2126 default:
2127 gcc_unreachable ();
2131 /* A simple pass that attempts to fold all builtin functions. This pass
2132 is run after we've propagated as many constants as we can. */
2134 static unsigned int
2135 execute_fold_all_builtins (void)
2137 bool cfg_changed = false;
2138 basic_block bb;
2139 unsigned int todoflags = 0;
2141 FOR_EACH_BB (bb)
2143 gimple_stmt_iterator i;
2144 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
2146 gimple stmt, old_stmt;
2147 tree callee, result;
2148 enum built_in_function fcode;
2150 stmt = gsi_stmt (i);
2152 if (gimple_code (stmt) != GIMPLE_CALL)
2154 gsi_next (&i);
2155 continue;
2157 callee = gimple_call_fndecl (stmt);
2158 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
2160 gsi_next (&i);
2161 continue;
2163 fcode = DECL_FUNCTION_CODE (callee);
2165 result = gimple_fold_builtin (stmt);
2167 if (result)
2168 gimple_remove_stmt_histograms (cfun, stmt);
2170 if (!result)
2171 switch (DECL_FUNCTION_CODE (callee))
2173 case BUILT_IN_CONSTANT_P:
2174 /* Resolve __builtin_constant_p. If it hasn't been
2175 folded to integer_one_node by now, it's fairly
2176 certain that the value simply isn't constant. */
2177 result = integer_zero_node;
2178 break;
2180 case BUILT_IN_STACK_RESTORE:
2181 result = optimize_stack_restore (i);
2182 if (result)
2183 break;
2184 gsi_next (&i);
2185 continue;
2187 case BUILT_IN_VA_START:
2188 case BUILT_IN_VA_END:
2189 case BUILT_IN_VA_COPY:
2190 /* These shouldn't be folded before pass_stdarg. */
2191 result = optimize_stdarg_builtin (stmt);
2192 if (result)
2193 break;
2194 /* FALLTHRU */
2196 default:
2197 gsi_next (&i);
2198 continue;
2201 if (dump_file && (dump_flags & TDF_DETAILS))
2203 fprintf (dump_file, "Simplified\n ");
2204 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2207 old_stmt = stmt;
2208 if (!update_call_from_tree (&i, result))
2210 gimplify_and_update_call_from_tree (&i, result);
2211 todoflags |= TODO_update_address_taken;
2214 stmt = gsi_stmt (i);
2215 update_stmt (stmt);
2217 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
2218 && gimple_purge_dead_eh_edges (bb))
2219 cfg_changed = true;
2221 if (dump_file && (dump_flags & TDF_DETAILS))
2223 fprintf (dump_file, "to\n ");
2224 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2225 fprintf (dump_file, "\n");
2228 /* Retry the same statement if it changed into another
2229 builtin, there might be new opportunities now. */
2230 if (gimple_code (stmt) != GIMPLE_CALL)
2232 gsi_next (&i);
2233 continue;
2235 callee = gimple_call_fndecl (stmt);
2236 if (!callee
2237 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2238 || DECL_FUNCTION_CODE (callee) == fcode)
2239 gsi_next (&i);
2243 /* Delete unreachable blocks. */
2244 if (cfg_changed)
2245 todoflags |= TODO_cleanup_cfg;
2247 return todoflags;
2251 struct gimple_opt_pass pass_fold_builtins =
2254 GIMPLE_PASS,
2255 "fab", /* name */
2256 NULL, /* gate */
2257 execute_fold_all_builtins, /* execute */
2258 NULL, /* sub */
2259 NULL, /* next */
2260 0, /* static_pass_number */
2261 TV_NONE, /* tv_id */
2262 PROP_cfg | PROP_ssa, /* properties_required */
2263 0, /* properties_provided */
2264 0, /* properties_destroyed */
2265 0, /* todo_flags_start */
2266 TODO_dump_func
2267 | TODO_verify_ssa
2268 | TODO_update_ssa /* todo_flags_finish */