1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
24 #include "coretypes.h"
30 #include "hard-reg-set.h"
33 #include "insn-config.h"
43 #include "alloc-pool.h"
46 static bool cselib_record_memory
;
47 static int entry_and_rtx_equal_p (const void *, const void *);
48 static hashval_t
get_value_hash (const void *);
49 static struct elt_list
*new_elt_list (struct elt_list
*, cselib_val
*);
50 static struct elt_loc_list
*new_elt_loc_list (struct elt_loc_list
*, rtx
);
51 static void unchain_one_value (cselib_val
*);
52 static void unchain_one_elt_list (struct elt_list
**);
53 static void unchain_one_elt_loc_list (struct elt_loc_list
**);
54 static int discard_useless_locs (void **, void *);
55 static int discard_useless_values (void **, void *);
56 static void remove_useless_values (void);
57 static rtx
wrap_constant (enum machine_mode
, rtx
);
58 static unsigned int cselib_hash_rtx (rtx
, int);
59 static cselib_val
*new_cselib_val (unsigned int, enum machine_mode
);
60 static void add_mem_for_addr (cselib_val
*, cselib_val
*, rtx
);
61 static cselib_val
*cselib_lookup_mem (rtx
, int);
62 static void cselib_invalidate_regno (unsigned int, enum machine_mode
);
63 static void cselib_invalidate_mem (rtx
);
64 static void cselib_record_set (rtx
, cselib_val
*, cselib_val
*);
65 static void cselib_record_sets (rtx
);
67 /* There are three ways in which cselib can look up an rtx:
68 - for a REG, the reg_values table (which is indexed by regno) is used
69 - for a MEM, we recursively look up its address and then follow the
70 addr_list of that value
71 - for everything else, we compute a hash value and go through the hash
72 table. Since different rtx's can still have the same hash value,
73 this involves walking the table entries for a given value and comparing
74 the locations of the entries with the rtx we are looking up. */
76 /* A table that enables us to look up elts by their value. */
77 static htab_t hash_table
;
79 /* This is a global so we don't have to pass this through every function.
80 It is used in new_elt_loc_list to set SETTING_INSN. */
81 static rtx cselib_current_insn
;
82 static bool cselib_current_insn_in_libcall
;
84 /* Every new unknown value gets a unique number. */
85 static unsigned int next_unknown_value
;
87 /* The number of registers we had when the varrays were last resized. */
88 static unsigned int cselib_nregs
;
90 /* Count values without known locations. Whenever this grows too big, we
91 remove these useless values from the table. */
92 static int n_useless_values
;
94 /* Number of useless values before we remove them from the hash table. */
95 #define MAX_USELESS_VALUES 32
97 /* This table maps from register number to values. It does not
98 contain pointers to cselib_val structures, but rather elt_lists.
99 The purpose is to be able to refer to the same register in
100 different modes. The first element of the list defines the mode in
101 which the register was set; if the mode is unknown or the value is
102 no longer valid in that mode, ELT will be NULL for the first
104 static struct elt_list
**reg_values
;
105 static unsigned int reg_values_size
;
106 #define REG_VALUES(i) reg_values[i]
108 /* The largest number of hard regs used by any entry added to the
109 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
110 static unsigned int max_value_regs
;
112 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
113 in cselib_clear_table() for fast emptying. */
114 static unsigned int *used_regs
;
115 static unsigned int n_used_regs
;
117 /* We pass this to cselib_invalidate_mem to invalidate all of
118 memory for a non-const call instruction. */
119 static GTY(()) rtx callmem
;
121 /* Set by discard_useless_locs if it deleted the last location of any
123 static int values_became_useless
;
125 /* Used as stop element of the containing_mem list so we can check
126 presence in the list by checking the next pointer. */
127 static cselib_val dummy_val
;
129 /* Used to list all values that contain memory reference.
130 May or may not contain the useless values - the list is compacted
131 each time memory is invalidated. */
132 static cselib_val
*first_containing_mem
= &dummy_val
;
133 static alloc_pool elt_loc_list_pool
, elt_list_pool
, cselib_val_pool
, value_pool
;
136 /* Allocate a struct elt_list and fill in its two elements with the
139 static inline struct elt_list
*
140 new_elt_list (struct elt_list
*next
, cselib_val
*elt
)
143 el
= pool_alloc (elt_list_pool
);
149 /* Allocate a struct elt_loc_list and fill in its two elements with the
152 static inline struct elt_loc_list
*
153 new_elt_loc_list (struct elt_loc_list
*next
, rtx loc
)
155 struct elt_loc_list
*el
;
156 el
= pool_alloc (elt_loc_list_pool
);
159 el
->setting_insn
= cselib_current_insn
;
160 el
->in_libcall
= cselib_current_insn_in_libcall
;
164 /* The elt_list at *PL is no longer needed. Unchain it and free its
168 unchain_one_elt_list (struct elt_list
**pl
)
170 struct elt_list
*l
= *pl
;
173 pool_free (elt_list_pool
, l
);
176 /* Likewise for elt_loc_lists. */
179 unchain_one_elt_loc_list (struct elt_loc_list
**pl
)
181 struct elt_loc_list
*l
= *pl
;
184 pool_free (elt_loc_list_pool
, l
);
187 /* Likewise for cselib_vals. This also frees the addr_list associated with
191 unchain_one_value (cselib_val
*v
)
194 unchain_one_elt_list (&v
->addr_list
);
196 pool_free (cselib_val_pool
, v
);
199 /* Remove all entries from the hash table. Also used during
200 initialization. If CLEAR_ALL isn't set, then only clear the entries
201 which are known to have been used. */
204 cselib_clear_table (void)
208 for (i
= 0; i
< n_used_regs
; i
++)
209 REG_VALUES (used_regs
[i
]) = 0;
215 htab_empty (hash_table
);
217 n_useless_values
= 0;
219 next_unknown_value
= 0;
221 first_containing_mem
= &dummy_val
;
224 /* The equality test for our hash table. The first argument ENTRY is a table
225 element (i.e. a cselib_val), while the second arg X is an rtx. We know
226 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
227 CONST of an appropriate mode. */
230 entry_and_rtx_equal_p (const void *entry
, const void *x_arg
)
232 struct elt_loc_list
*l
;
233 const cselib_val
*v
= (const cselib_val
*) entry
;
235 enum machine_mode mode
= GET_MODE (x
);
237 gcc_assert (GET_CODE (x
) != CONST_INT
238 && (mode
!= VOIDmode
|| GET_CODE (x
) != CONST_DOUBLE
));
240 if (mode
!= GET_MODE (v
->u
.val_rtx
))
243 /* Unwrap X if necessary. */
244 if (GET_CODE (x
) == CONST
245 && (GET_CODE (XEXP (x
, 0)) == CONST_INT
246 || GET_CODE (XEXP (x
, 0)) == CONST_DOUBLE
))
249 /* We don't guarantee that distinct rtx's have different hash values,
250 so we need to do a comparison. */
251 for (l
= v
->locs
; l
; l
= l
->next
)
252 if (rtx_equal_for_cselib_p (l
->loc
, x
))
258 /* The hash function for our hash table. The value is always computed with
259 cselib_hash_rtx when adding an element; this function just extracts the
260 hash value from a cselib_val structure. */
263 get_value_hash (const void *entry
)
265 const cselib_val
*v
= (const cselib_val
*) entry
;
269 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
270 only return true for values which point to a cselib_val whose value
271 element has been set to zero, which implies the cselib_val will be
275 references_value_p (rtx x
, int only_useless
)
277 enum rtx_code code
= GET_CODE (x
);
278 const char *fmt
= GET_RTX_FORMAT (code
);
281 if (GET_CODE (x
) == VALUE
282 && (! only_useless
|| CSELIB_VAL_PTR (x
)->locs
== 0))
285 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
287 if (fmt
[i
] == 'e' && references_value_p (XEXP (x
, i
), only_useless
))
289 else if (fmt
[i
] == 'E')
290 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
291 if (references_value_p (XVECEXP (x
, i
, j
), only_useless
))
298 /* For all locations found in X, delete locations that reference useless
299 values (i.e. values without any location). Called through
303 discard_useless_locs (void **x
, void *info ATTRIBUTE_UNUSED
)
305 cselib_val
*v
= (cselib_val
*)*x
;
306 struct elt_loc_list
**p
= &v
->locs
;
307 int had_locs
= v
->locs
!= 0;
311 if (references_value_p ((*p
)->loc
, 1))
312 unchain_one_elt_loc_list (p
);
317 if (had_locs
&& v
->locs
== 0)
320 values_became_useless
= 1;
325 /* If X is a value with no locations, remove it from the hashtable. */
328 discard_useless_values (void **x
, void *info ATTRIBUTE_UNUSED
)
330 cselib_val
*v
= (cselib_val
*)*x
;
334 CSELIB_VAL_PTR (v
->u
.val_rtx
) = NULL
;
335 htab_clear_slot (hash_table
, x
);
336 unchain_one_value (v
);
343 /* Clean out useless values (i.e. those which no longer have locations
344 associated with them) from the hash table. */
347 remove_useless_values (void)
350 /* First pass: eliminate locations that reference the value. That in
351 turn can make more values useless. */
354 values_became_useless
= 0;
355 htab_traverse (hash_table
, discard_useless_locs
, 0);
357 while (values_became_useless
);
359 /* Second pass: actually remove the values. */
361 p
= &first_containing_mem
;
362 for (v
= *p
; v
!= &dummy_val
; v
= v
->next_containing_mem
)
366 p
= &(*p
)->next_containing_mem
;
370 htab_traverse (hash_table
, discard_useless_values
, 0);
372 gcc_assert (!n_useless_values
);
375 /* Return the mode in which a register was last set. If X is not a
376 register, return its mode. If the mode in which the register was
377 set is not known, or the value was already clobbered, return
381 cselib_reg_set_mode (rtx x
)
386 if (REG_VALUES (REGNO (x
)) == NULL
387 || REG_VALUES (REGNO (x
))->elt
== NULL
)
390 return GET_MODE (REG_VALUES (REGNO (x
))->elt
->u
.val_rtx
);
393 /* Return nonzero if we can prove that X and Y contain the same value, taking
394 our gathered information into account. */
397 rtx_equal_for_cselib_p (rtx x
, rtx y
)
403 if (REG_P (x
) || MEM_P (x
))
405 cselib_val
*e
= cselib_lookup (x
, GET_MODE (x
), 0);
411 if (REG_P (y
) || MEM_P (y
))
413 cselib_val
*e
= cselib_lookup (y
, GET_MODE (y
), 0);
422 if (GET_CODE (x
) == VALUE
&& GET_CODE (y
) == VALUE
)
423 return CSELIB_VAL_PTR (x
) == CSELIB_VAL_PTR (y
);
425 if (GET_CODE (x
) == VALUE
)
427 cselib_val
*e
= CSELIB_VAL_PTR (x
);
428 struct elt_loc_list
*l
;
430 for (l
= e
->locs
; l
; l
= l
->next
)
434 /* Avoid infinite recursion. */
435 if (REG_P (t
) || MEM_P (t
))
437 else if (rtx_equal_for_cselib_p (t
, y
))
444 if (GET_CODE (y
) == VALUE
)
446 cselib_val
*e
= CSELIB_VAL_PTR (y
);
447 struct elt_loc_list
*l
;
449 for (l
= e
->locs
; l
; l
= l
->next
)
453 if (REG_P (t
) || MEM_P (t
))
455 else if (rtx_equal_for_cselib_p (x
, t
))
462 if (GET_CODE (x
) != GET_CODE (y
) || GET_MODE (x
) != GET_MODE (y
))
465 /* This won't be handled correctly by the code below. */
466 if (GET_CODE (x
) == LABEL_REF
)
467 return XEXP (x
, 0) == XEXP (y
, 0);
470 fmt
= GET_RTX_FORMAT (code
);
472 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
479 if (XWINT (x
, i
) != XWINT (y
, i
))
485 if (XINT (x
, i
) != XINT (y
, i
))
491 /* Two vectors must have the same length. */
492 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
495 /* And the corresponding elements must match. */
496 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
497 if (! rtx_equal_for_cselib_p (XVECEXP (x
, i
, j
),
504 && targetm
.commutative_p (x
, UNKNOWN
)
505 && rtx_equal_for_cselib_p (XEXP (x
, 1), XEXP (y
, 0))
506 && rtx_equal_for_cselib_p (XEXP (x
, 0), XEXP (y
, 1)))
508 if (! rtx_equal_for_cselib_p (XEXP (x
, i
), XEXP (y
, i
)))
514 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
519 /* These are just backpointers, so they don't matter. */
526 /* It is believed that rtx's at this level will never
527 contain anything but integers and other rtx's,
528 except for within LABEL_REFs and SYMBOL_REFs. */
536 /* We need to pass down the mode of constants through the hash table
537 functions. For that purpose, wrap them in a CONST of the appropriate
540 wrap_constant (enum machine_mode mode
, rtx x
)
542 if (GET_CODE (x
) != CONST_INT
543 && (GET_CODE (x
) != CONST_DOUBLE
|| GET_MODE (x
) != VOIDmode
))
545 gcc_assert (mode
!= VOIDmode
);
546 return gen_rtx_CONST (mode
, x
);
549 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
550 For registers and memory locations, we look up their cselib_val structure
551 and return its VALUE element.
552 Possible reasons for return 0 are: the object is volatile, or we couldn't
553 find a register or memory location in the table and CREATE is zero. If
554 CREATE is nonzero, table elts are created for regs and mem.
555 N.B. this hash function returns the same hash value for RTXes that
556 differ only in the order of operands, thus it is suitable for comparisons
557 that take commutativity into account.
558 If we wanted to also support associative rules, we'd have to use a different
559 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
560 We used to have a MODE argument for hashing for CONST_INTs, but that
561 didn't make sense, since it caused spurious hash differences between
562 (set (reg:SI 1) (const_int))
563 (plus:SI (reg:SI 2) (reg:SI 1))
565 (plus:SI (reg:SI 2) (const_int))
566 If the mode is important in any context, it must be checked specifically
567 in a comparison anyway, since relying on hash differences is unsafe. */
570 cselib_hash_rtx (rtx x
, int create
)
576 unsigned int hash
= 0;
579 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
);
585 e
= cselib_lookup (x
, GET_MODE (x
), create
);
592 hash
+= ((unsigned) CONST_INT
<< 7) + INTVAL (x
);
593 return hash
? hash
: (unsigned int) CONST_INT
;
596 /* This is like the general case, except that it only counts
597 the integers representing the constant. */
598 hash
+= (unsigned) code
+ (unsigned) GET_MODE (x
);
599 if (GET_MODE (x
) != VOIDmode
)
600 hash
+= real_hash (CONST_DOUBLE_REAL_VALUE (x
));
602 hash
+= ((unsigned) CONST_DOUBLE_LOW (x
)
603 + (unsigned) CONST_DOUBLE_HIGH (x
));
604 return hash
? hash
: (unsigned int) CONST_DOUBLE
;
611 units
= CONST_VECTOR_NUNITS (x
);
613 for (i
= 0; i
< units
; ++i
)
615 elt
= CONST_VECTOR_ELT (x
, i
);
616 hash
+= cselib_hash_rtx (elt
, 0);
622 /* Assume there is only one rtx object for any given label. */
625 += ((unsigned) LABEL_REF
<< 7) + (unsigned long) XEXP (x
, 0);
626 return hash
? hash
: (unsigned int) LABEL_REF
;
630 += ((unsigned) SYMBOL_REF
<< 7) + (unsigned long) XSTR (x
, 0);
631 return hash
? hash
: (unsigned int) SYMBOL_REF
;
642 case UNSPEC_VOLATILE
:
646 if (MEM_VOLATILE_P (x
))
655 i
= GET_RTX_LENGTH (code
) - 1;
656 fmt
= GET_RTX_FORMAT (code
);
663 rtx tem
= XEXP (x
, i
);
664 unsigned int tem_hash
= cselib_hash_rtx (tem
, create
);
673 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
675 unsigned int tem_hash
676 = cselib_hash_rtx (XVECEXP (x
, i
, j
), create
);
687 const unsigned char *p
= (const unsigned char *) XSTR (x
, i
);
709 return hash
? hash
: 1 + (unsigned int) GET_CODE (x
);
712 /* Create a new value structure for VALUE and initialize it. The mode of the
715 static inline cselib_val
*
716 new_cselib_val (unsigned int value
, enum machine_mode mode
)
718 cselib_val
*e
= pool_alloc (cselib_val_pool
);
723 /* We use an alloc pool to allocate this RTL construct because it
724 accounts for about 8% of the overall memory usage. We know
725 precisely when we can have VALUE RTXen (when cselib is active)
726 so we don't need to put them in garbage collected memory.
727 ??? Why should a VALUE be an RTX in the first place? */
728 e
->u
.val_rtx
= pool_alloc (value_pool
);
729 memset (e
->u
.val_rtx
, 0, RTX_HDR_SIZE
);
730 PUT_CODE (e
->u
.val_rtx
, VALUE
);
731 PUT_MODE (e
->u
.val_rtx
, mode
);
732 CSELIB_VAL_PTR (e
->u
.val_rtx
) = e
;
735 e
->next_containing_mem
= 0;
739 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
740 contains the data at this address. X is a MEM that represents the
741 value. Update the two value structures to represent this situation. */
744 add_mem_for_addr (cselib_val
*addr_elt
, cselib_val
*mem_elt
, rtx x
)
746 struct elt_loc_list
*l
;
748 /* Avoid duplicates. */
749 for (l
= mem_elt
->locs
; l
; l
= l
->next
)
751 && CSELIB_VAL_PTR (XEXP (l
->loc
, 0)) == addr_elt
)
754 addr_elt
->addr_list
= new_elt_list (addr_elt
->addr_list
, mem_elt
);
756 = new_elt_loc_list (mem_elt
->locs
,
757 replace_equiv_address_nv (x
, addr_elt
->u
.val_rtx
));
758 if (mem_elt
->next_containing_mem
== NULL
)
760 mem_elt
->next_containing_mem
= first_containing_mem
;
761 first_containing_mem
= mem_elt
;
765 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
766 If CREATE, make a new one if we haven't seen it before. */
769 cselib_lookup_mem (rtx x
, int create
)
771 enum machine_mode mode
= GET_MODE (x
);
777 if (MEM_VOLATILE_P (x
) || mode
== BLKmode
778 || !cselib_record_memory
779 || (FLOAT_MODE_P (mode
) && flag_float_store
))
782 /* Look up the value for the address. */
783 addr
= cselib_lookup (XEXP (x
, 0), mode
, create
);
787 /* Find a value that describes a value of our mode at that address. */
788 for (l
= addr
->addr_list
; l
; l
= l
->next
)
789 if (GET_MODE (l
->elt
->u
.val_rtx
) == mode
)
795 mem_elt
= new_cselib_val (++next_unknown_value
, mode
);
796 add_mem_for_addr (addr
, mem_elt
, x
);
797 slot
= htab_find_slot_with_hash (hash_table
, wrap_constant (mode
, x
),
798 mem_elt
->value
, INSERT
);
803 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
804 with VALUE expressions. This way, it becomes independent of changes
805 to registers and memory.
806 X isn't actually modified; if modifications are needed, new rtl is
807 allocated. However, the return value can share rtl with X. */
810 cselib_subst_to_values (rtx x
)
812 enum rtx_code code
= GET_CODE (x
);
813 const char *fmt
= GET_RTX_FORMAT (code
);
822 l
= REG_VALUES (REGNO (x
));
823 if (l
&& l
->elt
== NULL
)
825 for (; l
; l
= l
->next
)
826 if (GET_MODE (l
->elt
->u
.val_rtx
) == GET_MODE (x
))
827 return l
->elt
->u
.val_rtx
;
832 e
= cselib_lookup_mem (x
, 0);
835 /* This happens for autoincrements. Assign a value that doesn't
837 e
= new_cselib_val (++next_unknown_value
, GET_MODE (x
));
852 e
= new_cselib_val (++next_unknown_value
, GET_MODE (x
));
859 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
863 rtx t
= cselib_subst_to_values (XEXP (x
, i
));
865 if (t
!= XEXP (x
, i
) && x
== copy
)
866 copy
= shallow_copy_rtx (x
);
870 else if (fmt
[i
] == 'E')
874 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
876 rtx t
= cselib_subst_to_values (XVECEXP (x
, i
, j
));
878 if (t
!= XVECEXP (x
, i
, j
) && XVEC (x
, i
) == XVEC (copy
, i
))
881 copy
= shallow_copy_rtx (x
);
883 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (x
, i
));
884 for (k
= 0; k
< j
; k
++)
885 XVECEXP (copy
, i
, k
) = XVECEXP (x
, i
, k
);
888 XVECEXP (copy
, i
, j
) = t
;
896 /* Look up the rtl expression X in our tables and return the value it has.
897 If CREATE is zero, we return NULL if we don't know the value. Otherwise,
898 we create a new one if possible, using mode MODE if X doesn't have a mode
899 (i.e. because it's a constant). */
902 cselib_lookup (rtx x
, enum machine_mode mode
, int create
)
906 unsigned int hashval
;
908 if (GET_MODE (x
) != VOIDmode
)
911 if (GET_CODE (x
) == VALUE
)
912 return CSELIB_VAL_PTR (x
);
917 unsigned int i
= REGNO (x
);
920 if (l
&& l
->elt
== NULL
)
922 for (; l
; l
= l
->next
)
923 if (mode
== GET_MODE (l
->elt
->u
.val_rtx
))
929 if (i
< FIRST_PSEUDO_REGISTER
)
931 unsigned int n
= hard_regno_nregs
[i
][mode
];
933 if (n
> max_value_regs
)
937 e
= new_cselib_val (++next_unknown_value
, GET_MODE (x
));
938 e
->locs
= new_elt_loc_list (e
->locs
, x
);
939 if (REG_VALUES (i
) == 0)
941 /* Maintain the invariant that the first entry of
942 REG_VALUES, if present, must be the value used to set the
943 register, or NULL. */
944 used_regs
[n_used_regs
++] = i
;
945 REG_VALUES (i
) = new_elt_list (REG_VALUES (i
), NULL
);
947 REG_VALUES (i
)->next
= new_elt_list (REG_VALUES (i
)->next
, e
);
948 slot
= htab_find_slot_with_hash (hash_table
, x
, e
->value
, INSERT
);
954 return cselib_lookup_mem (x
, create
);
956 hashval
= cselib_hash_rtx (x
, create
);
957 /* Can't even create if hashing is not possible. */
961 slot
= htab_find_slot_with_hash (hash_table
, wrap_constant (mode
, x
),
962 hashval
, create
? INSERT
: NO_INSERT
);
966 e
= (cselib_val
*) *slot
;
970 e
= new_cselib_val (hashval
, mode
);
972 /* We have to fill the slot before calling cselib_subst_to_values:
973 the hash table is inconsistent until we do so, and
974 cselib_subst_to_values will need to do lookups. */
976 e
->locs
= new_elt_loc_list (e
->locs
, cselib_subst_to_values (x
));
980 /* Invalidate any entries in reg_values that overlap REGNO. This is called
981 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
982 is used to determine how many hard registers are being changed. If MODE
983 is VOIDmode, then only REGNO is being changed; this is used when
984 invalidating call clobbered registers across a call. */
987 cselib_invalidate_regno (unsigned int regno
, enum machine_mode mode
)
989 unsigned int endregno
;
992 /* If we see pseudos after reload, something is _wrong_. */
993 gcc_assert (!reload_completed
|| regno
< FIRST_PSEUDO_REGISTER
994 || reg_renumber
[regno
] < 0);
996 /* Determine the range of registers that must be invalidated. For
997 pseudos, only REGNO is affected. For hard regs, we must take MODE
998 into account, and we must also invalidate lower register numbers
999 if they contain values that overlap REGNO. */
1000 if (regno
< FIRST_PSEUDO_REGISTER
)
1002 gcc_assert (mode
!= VOIDmode
);
1004 if (regno
< max_value_regs
)
1007 i
= regno
- max_value_regs
;
1009 endregno
= regno
+ hard_regno_nregs
[regno
][mode
];
1014 endregno
= regno
+ 1;
1017 for (; i
< endregno
; i
++)
1019 struct elt_list
**l
= ®_VALUES (i
);
1021 /* Go through all known values for this reg; if it overlaps the range
1022 we're invalidating, remove the value. */
1025 cselib_val
*v
= (*l
)->elt
;
1026 struct elt_loc_list
**p
;
1027 unsigned int this_last
= i
;
1029 if (i
< FIRST_PSEUDO_REGISTER
&& v
!= NULL
)
1030 this_last
+= hard_regno_nregs
[i
][GET_MODE (v
->u
.val_rtx
)] - 1;
1032 if (this_last
< regno
|| v
== NULL
)
1038 /* We have an overlap. */
1039 if (*l
== REG_VALUES (i
))
1041 /* Maintain the invariant that the first entry of
1042 REG_VALUES, if present, must be the value used to set
1043 the register, or NULL. This is also nice because
1044 then we won't push the same regno onto user_regs
1050 unchain_one_elt_list (l
);
1052 /* Now, we clear the mapping from value to reg. It must exist, so
1053 this code will crash intentionally if it doesn't. */
1054 for (p
= &v
->locs
; ; p
= &(*p
)->next
)
1058 if (REG_P (x
) && REGNO (x
) == i
)
1060 unchain_one_elt_loc_list (p
);
1070 /* Return 1 if X has a value that can vary even between two
1071 executions of the program. 0 means X can be compared reliably
1072 against certain constants or near-constants. */
1075 cselib_rtx_varies_p (rtx x ATTRIBUTE_UNUSED
, int from_alias ATTRIBUTE_UNUSED
)
1077 /* We actually don't need to verify very hard. This is because
1078 if X has actually changed, we invalidate the memory anyway,
1079 so assume that all common memory addresses are
1084 /* Invalidate any locations in the table which are changed because of a
1085 store to MEM_RTX. If this is called because of a non-const call
1086 instruction, MEM_RTX is (mem:BLK const0_rtx). */
1089 cselib_invalidate_mem (rtx mem_rtx
)
1091 cselib_val
**vp
, *v
, *next
;
1095 mem_addr
= canon_rtx (get_addr (XEXP (mem_rtx
, 0)));
1096 mem_rtx
= canon_rtx (mem_rtx
);
1098 vp
= &first_containing_mem
;
1099 for (v
= *vp
; v
!= &dummy_val
; v
= next
)
1101 bool has_mem
= false;
1102 struct elt_loc_list
**p
= &v
->locs
;
1103 int had_locs
= v
->locs
!= 0;
1109 struct elt_list
**mem_chain
;
1111 /* MEMs may occur in locations only at the top level; below
1112 that every MEM or REG is substituted by its VALUE. */
1118 if (num_mems
< PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS
)
1119 && ! canon_true_dependence (mem_rtx
, GET_MODE (mem_rtx
), mem_addr
,
1120 x
, cselib_rtx_varies_p
))
1128 /* This one overlaps. */
1129 /* We must have a mapping from this MEM's address to the
1130 value (E). Remove that, too. */
1131 addr
= cselib_lookup (XEXP (x
, 0), VOIDmode
, 0);
1132 mem_chain
= &addr
->addr_list
;
1135 if ((*mem_chain
)->elt
== v
)
1137 unchain_one_elt_list (mem_chain
);
1141 mem_chain
= &(*mem_chain
)->next
;
1144 unchain_one_elt_loc_list (p
);
1147 if (had_locs
&& v
->locs
== 0)
1150 next
= v
->next_containing_mem
;
1154 vp
= &(*vp
)->next_containing_mem
;
1157 v
->next_containing_mem
= NULL
;
1162 /* Invalidate DEST, which is being assigned to or clobbered. */
1165 cselib_invalidate_rtx (rtx dest
)
1167 while (GET_CODE (dest
) == SUBREG
1168 || GET_CODE (dest
) == ZERO_EXTRACT
1169 || GET_CODE (dest
) == STRICT_LOW_PART
)
1170 dest
= XEXP (dest
, 0);
1173 cselib_invalidate_regno (REGNO (dest
), GET_MODE (dest
));
1174 else if (MEM_P (dest
))
1175 cselib_invalidate_mem (dest
);
1177 /* Some machines don't define AUTO_INC_DEC, but they still use push
1178 instructions. We need to catch that case here in order to
1179 invalidate the stack pointer correctly. Note that invalidating
1180 the stack pointer is different from invalidating DEST. */
1181 if (push_operand (dest
, GET_MODE (dest
)))
1182 cselib_invalidate_rtx (stack_pointer_rtx
);
1185 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
1188 cselib_invalidate_rtx_note_stores (rtx dest
, rtx ignore ATTRIBUTE_UNUSED
,
1189 void *data ATTRIBUTE_UNUSED
)
1191 cselib_invalidate_rtx (dest
);
1194 /* Record the result of a SET instruction. DEST is being set; the source
1195 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
1196 describes its address. */
1199 cselib_record_set (rtx dest
, cselib_val
*src_elt
, cselib_val
*dest_addr_elt
)
1201 int dreg
= REG_P (dest
) ? (int) REGNO (dest
) : -1;
1203 if (src_elt
== 0 || side_effects_p (dest
))
1208 if (dreg
< FIRST_PSEUDO_REGISTER
)
1210 unsigned int n
= hard_regno_nregs
[dreg
][GET_MODE (dest
)];
1212 if (n
> max_value_regs
)
1216 if (REG_VALUES (dreg
) == 0)
1218 used_regs
[n_used_regs
++] = dreg
;
1219 REG_VALUES (dreg
) = new_elt_list (REG_VALUES (dreg
), src_elt
);
1223 /* The register should have been invalidated. */
1224 gcc_assert (REG_VALUES (dreg
)->elt
== 0);
1225 REG_VALUES (dreg
)->elt
= src_elt
;
1228 if (src_elt
->locs
== 0)
1230 src_elt
->locs
= new_elt_loc_list (src_elt
->locs
, dest
);
1232 else if (MEM_P (dest
) && dest_addr_elt
!= 0
1233 && cselib_record_memory
)
1235 if (src_elt
->locs
== 0)
1237 add_mem_for_addr (dest_addr_elt
, src_elt
, dest
);
1241 /* Describe a single set that is part of an insn. */
1246 cselib_val
*src_elt
;
1247 cselib_val
*dest_addr_elt
;
1250 /* There is no good way to determine how many elements there can be
1251 in a PARALLEL. Since it's fairly cheap, use a really large number. */
1252 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
1254 /* Record the effects of any sets in INSN. */
1256 cselib_record_sets (rtx insn
)
1260 struct set sets
[MAX_SETS
];
1261 rtx body
= PATTERN (insn
);
1264 body
= PATTERN (insn
);
1265 if (GET_CODE (body
) == COND_EXEC
)
1267 cond
= COND_EXEC_TEST (body
);
1268 body
= COND_EXEC_CODE (body
);
1271 /* Find all sets. */
1272 if (GET_CODE (body
) == SET
)
1274 sets
[0].src
= SET_SRC (body
);
1275 sets
[0].dest
= SET_DEST (body
);
1278 else if (GET_CODE (body
) == PARALLEL
)
1280 /* Look through the PARALLEL and record the values being
1281 set, if possible. Also handle any CLOBBERs. */
1282 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; --i
)
1284 rtx x
= XVECEXP (body
, 0, i
);
1286 if (GET_CODE (x
) == SET
)
1288 sets
[n_sets
].src
= SET_SRC (x
);
1289 sets
[n_sets
].dest
= SET_DEST (x
);
1295 /* Look up the values that are read. Do this before invalidating the
1296 locations that are written. */
1297 for (i
= 0; i
< n_sets
; i
++)
1299 rtx dest
= sets
[i
].dest
;
1301 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
1302 the low part after invalidating any knowledge about larger modes. */
1303 if (GET_CODE (sets
[i
].dest
) == STRICT_LOW_PART
)
1304 sets
[i
].dest
= dest
= XEXP (dest
, 0);
1306 /* We don't know how to record anything but REG or MEM. */
1308 || (MEM_P (dest
) && cselib_record_memory
))
1310 rtx src
= sets
[i
].src
;
1312 src
= gen_rtx_IF_THEN_ELSE (GET_MODE (src
), cond
, src
, dest
);
1313 sets
[i
].src_elt
= cselib_lookup (src
, GET_MODE (dest
), 1);
1315 sets
[i
].dest_addr_elt
= cselib_lookup (XEXP (dest
, 0), Pmode
, 1);
1317 sets
[i
].dest_addr_elt
= 0;
1321 /* Invalidate all locations written by this insn. Note that the elts we
1322 looked up in the previous loop aren't affected, just some of their
1323 locations may go away. */
1324 note_stores (body
, cselib_invalidate_rtx_note_stores
, NULL
);
1326 /* If this is an asm, look for duplicate sets. This can happen when the
1327 user uses the same value as an output multiple times. This is valid
1328 if the outputs are not actually used thereafter. Treat this case as
1329 if the value isn't actually set. We do this by smashing the destination
1330 to pc_rtx, so that we won't record the value later. */
1331 if (n_sets
>= 2 && asm_noperands (body
) >= 0)
1333 for (i
= 0; i
< n_sets
; i
++)
1335 rtx dest
= sets
[i
].dest
;
1336 if (REG_P (dest
) || MEM_P (dest
))
1339 for (j
= i
+ 1; j
< n_sets
; j
++)
1340 if (rtx_equal_p (dest
, sets
[j
].dest
))
1342 sets
[i
].dest
= pc_rtx
;
1343 sets
[j
].dest
= pc_rtx
;
1349 /* Now enter the equivalences in our tables. */
1350 for (i
= 0; i
< n_sets
; i
++)
1352 rtx dest
= sets
[i
].dest
;
1354 || (MEM_P (dest
) && cselib_record_memory
))
1355 cselib_record_set (dest
, sets
[i
].src_elt
, sets
[i
].dest_addr_elt
);
1359 /* Record the effects of INSN. */
1362 cselib_process_insn (rtx insn
)
1367 if (find_reg_note (insn
, REG_LIBCALL
, NULL
))
1368 cselib_current_insn_in_libcall
= true;
1369 cselib_current_insn
= insn
;
1371 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
1374 && find_reg_note (insn
, REG_SETJMP
, NULL
))
1375 || (NONJUMP_INSN_P (insn
)
1376 && GET_CODE (PATTERN (insn
)) == ASM_OPERANDS
1377 && MEM_VOLATILE_P (PATTERN (insn
))))
1379 if (find_reg_note (insn
, REG_RETVAL
, NULL
))
1380 cselib_current_insn_in_libcall
= false;
1381 cselib_clear_table ();
1385 if (! INSN_P (insn
))
1387 if (find_reg_note (insn
, REG_RETVAL
, NULL
))
1388 cselib_current_insn_in_libcall
= false;
1389 cselib_current_insn
= 0;
1393 /* If this is a call instruction, forget anything stored in a
1394 call clobbered register, or, if this is not a const call, in
1398 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1399 if (call_used_regs
[i
]
1400 || (REG_VALUES (i
) && REG_VALUES (i
)->elt
1401 && HARD_REGNO_CALL_PART_CLOBBERED (i
,
1402 GET_MODE (REG_VALUES (i
)->elt
->u
.val_rtx
))))
1403 cselib_invalidate_regno (i
, reg_raw_mode
[i
]);
1405 if (! CONST_OR_PURE_CALL_P (insn
))
1406 cselib_invalidate_mem (callmem
);
1409 cselib_record_sets (insn
);
1412 /* Clobber any registers which appear in REG_INC notes. We
1413 could keep track of the changes to their values, but it is
1414 unlikely to help. */
1415 for (x
= REG_NOTES (insn
); x
; x
= XEXP (x
, 1))
1416 if (REG_NOTE_KIND (x
) == REG_INC
)
1417 cselib_invalidate_rtx (XEXP (x
, 0));
1420 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
1421 after we have processed the insn. */
1423 for (x
= CALL_INSN_FUNCTION_USAGE (insn
); x
; x
= XEXP (x
, 1))
1424 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
1425 cselib_invalidate_rtx (XEXP (XEXP (x
, 0), 0));
1427 if (find_reg_note (insn
, REG_RETVAL
, NULL
))
1428 cselib_current_insn_in_libcall
= false;
1429 cselib_current_insn
= 0;
1431 if (n_useless_values
> MAX_USELESS_VALUES
)
1432 remove_useless_values ();
1435 /* Initialize cselib for one pass. The caller must also call
1436 init_alias_analysis. */
1439 cselib_init (bool record_memory
)
1441 elt_list_pool
= create_alloc_pool ("elt_list",
1442 sizeof (struct elt_list
), 10);
1443 elt_loc_list_pool
= create_alloc_pool ("elt_loc_list",
1444 sizeof (struct elt_loc_list
), 10);
1445 cselib_val_pool
= create_alloc_pool ("cselib_val_list",
1446 sizeof (cselib_val
), 10);
1447 value_pool
= create_alloc_pool ("value",
1448 RTX_SIZE (VALUE
), 100);
1449 cselib_record_memory
= record_memory
;
1450 /* This is only created once. */
1452 callmem
= gen_rtx_MEM (BLKmode
, const0_rtx
);
1454 cselib_nregs
= max_reg_num ();
1456 /* We preserve reg_values to allow expensive clearing of the whole thing.
1457 Reallocate it however if it happens to be too large. */
1458 if (!reg_values
|| reg_values_size
< cselib_nregs
1459 || (reg_values_size
> 10 && reg_values_size
> cselib_nregs
* 4))
1463 /* Some space for newly emit instructions so we don't end up
1464 reallocating in between passes. */
1465 reg_values_size
= cselib_nregs
+ (63 + cselib_nregs
) / 16;
1466 reg_values
= xcalloc (reg_values_size
, sizeof (reg_values
));
1468 used_regs
= xmalloc (sizeof (*used_regs
) * cselib_nregs
);
1470 hash_table
= htab_create (31, get_value_hash
, entry_and_rtx_equal_p
, NULL
);
1471 cselib_current_insn_in_libcall
= false;
1474 /* Called when the current user is done with cselib. */
1477 cselib_finish (void)
1479 free_alloc_pool (elt_list_pool
);
1480 free_alloc_pool (elt_loc_list_pool
);
1481 free_alloc_pool (cselib_val_pool
);
1482 free_alloc_pool (value_pool
);
1483 cselib_clear_table ();
1484 htab_delete (hash_table
);
1488 n_useless_values
= 0;
1489 next_unknown_value
= 0;
1492 #include "gt-cselib.h"