1 /* Loop invariant motion.
2 Copyright (C) 2003-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
27 #include "tree-pass.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
34 #include "gimple-iterator.h"
36 #include "tree-ssa-loop-manip.h"
37 #include "tree-ssa-loop.h"
38 #include "tree-into-ssa.h"
40 #include "tree-affine.h"
41 #include "tree-ssa-propagate.h"
42 #include "trans-mem.h"
43 #include "gimple-fold.h"
44 #include "tree-scalar-evolution.h"
45 #include "tree-ssa-loop-niter.h"
52 /* TODO: Support for predicated code motion. I.e.
63 Where COND and INV are invariants, but evaluating INV may trap or be
64 invalid from some other reason if !COND. This may be transformed to
74 /* The auxiliary data kept for each statement. */
78 class loop
*max_loop
; /* The outermost loop in that the statement
81 class loop
*tgt_loop
; /* The loop out of that we want to move the
84 class loop
*always_executed_in
;
85 /* The outermost loop for that we are sure
86 the statement is executed if the loop
89 unsigned cost
; /* Cost of the computation performed by the
92 unsigned ref
; /* The simple_mem_ref in this stmt or 0. */
94 vec
<gimple
*> depends
; /* Vector of statements that must be also
95 hoisted out of the loop when this statement
96 is hoisted; i.e. those that define the
97 operands of the statement and are inside of
101 /* Maps statements to their lim_aux_data. */
103 static hash_map
<gimple
*, lim_aux_data
*> *lim_aux_data_map
;
105 /* Description of a memory reference location. */
109 tree
*ref
; /* The reference itself. */
110 gimple
*stmt
; /* The statement in that it occurs. */
114 /* Description of a memory reference. */
119 unsigned id
: 30; /* ID assigned to the memory reference
120 (its index in memory_accesses.refs_list) */
121 unsigned ref_canonical
: 1; /* Whether mem.ref was canonicalized. */
122 unsigned ref_decomposed
: 1; /* Whether the ref was hashed from mem. */
123 hashval_t hash
; /* Its hash value. */
125 /* The memory access itself and associated caching of alias-oracle
126 query meta-data. We are using mem.ref == error_mark_node for the
127 case the reference is represented by its single access stmt
128 in accesses_in_loop[0]. */
131 bitmap stored
; /* The set of loops in that this memory location
133 bitmap loaded
; /* The set of loops in that this memory location
135 vec
<mem_ref_loc
> accesses_in_loop
;
136 /* The locations of the accesses. */
138 /* The following set is computed on demand. */
139 bitmap_head dep_loop
; /* The set of loops in that the memory
140 reference is {in,}dependent in
144 /* We use six bits per loop in the ref->dep_loop bitmap to record
145 the dep_kind x dep_state combinations. */
147 enum dep_kind
{ lim_raw
, sm_war
, sm_waw
};
148 enum dep_state
{ dep_unknown
, dep_independent
, dep_dependent
};
150 /* coldest outermost loop for given loop. */
151 vec
<class loop
*> coldest_outermost_loop
;
152 /* hotter outer loop nearest to given loop. */
153 vec
<class loop
*> hotter_than_inner_loop
;
155 /* Populate the loop dependence cache of REF for LOOP, KIND with STATE. */
158 record_loop_dependence (class loop
*loop
, im_mem_ref
*ref
,
159 dep_kind kind
, dep_state state
)
161 gcc_assert (state
!= dep_unknown
);
162 unsigned bit
= 6 * loop
->num
+ kind
* 2 + state
== dep_dependent
? 1 : 0;
163 bitmap_set_bit (&ref
->dep_loop
, bit
);
166 /* Query the loop dependence cache of REF for LOOP, KIND. */
169 query_loop_dependence (class loop
*loop
, im_mem_ref
*ref
, dep_kind kind
)
171 unsigned first_bit
= 6 * loop
->num
+ kind
* 2;
172 if (bitmap_bit_p (&ref
->dep_loop
, first_bit
))
173 return dep_independent
;
174 else if (bitmap_bit_p (&ref
->dep_loop
, first_bit
+ 1))
175 return dep_dependent
;
179 /* Mem_ref hashtable helpers. */
181 struct mem_ref_hasher
: nofree_ptr_hash
<im_mem_ref
>
183 typedef ao_ref
*compare_type
;
184 static inline hashval_t
hash (const im_mem_ref
*);
185 static inline bool equal (const im_mem_ref
*, const ao_ref
*);
188 /* A hash function for class im_mem_ref object OBJ. */
191 mem_ref_hasher::hash (const im_mem_ref
*mem
)
196 /* An equality function for class im_mem_ref object MEM1 with
197 memory reference OBJ2. */
200 mem_ref_hasher::equal (const im_mem_ref
*mem1
, const ao_ref
*obj2
)
202 if (obj2
->max_size_known_p ())
203 return (mem1
->ref_decomposed
204 && ((TREE_CODE (mem1
->mem
.base
) == MEM_REF
205 && TREE_CODE (obj2
->base
) == MEM_REF
206 && operand_equal_p (TREE_OPERAND (mem1
->mem
.base
, 0),
207 TREE_OPERAND (obj2
->base
, 0), 0)
208 && known_eq (mem_ref_offset (mem1
->mem
.base
) * BITS_PER_UNIT
+ mem1
->mem
.offset
,
209 mem_ref_offset (obj2
->base
) * BITS_PER_UNIT
+ obj2
->offset
))
210 || (operand_equal_p (mem1
->mem
.base
, obj2
->base
, 0)
211 && known_eq (mem1
->mem
.offset
, obj2
->offset
)))
212 && known_eq (mem1
->mem
.size
, obj2
->size
)
213 && known_eq (mem1
->mem
.max_size
, obj2
->max_size
)
214 && mem1
->mem
.volatile_p
== obj2
->volatile_p
215 && (mem1
->mem
.ref_alias_set
== obj2
->ref_alias_set
216 /* We are not canonicalizing alias-sets but for the
217 special-case we didn't canonicalize yet and the
218 incoming ref is a alias-set zero MEM we pick
219 the correct one already. */
220 || (!mem1
->ref_canonical
221 && (TREE_CODE (obj2
->ref
) == MEM_REF
222 || TREE_CODE (obj2
->ref
) == TARGET_MEM_REF
)
223 && obj2
->ref_alias_set
== 0)
224 /* Likewise if there's a canonical ref with alias-set zero. */
225 || (mem1
->ref_canonical
&& mem1
->mem
.ref_alias_set
== 0))
226 && types_compatible_p (TREE_TYPE (mem1
->mem
.ref
),
227 TREE_TYPE (obj2
->ref
)));
229 return operand_equal_p (mem1
->mem
.ref
, obj2
->ref
, 0);
233 /* Description of memory accesses in loops. */
237 /* The hash table of memory references accessed in loops. */
238 hash_table
<mem_ref_hasher
> *refs
;
240 /* The list of memory references. */
241 vec
<im_mem_ref
*> refs_list
;
243 /* The set of memory references accessed in each loop. */
244 vec
<bitmap_head
> refs_loaded_in_loop
;
246 /* The set of memory references stored in each loop. */
247 vec
<bitmap_head
> refs_stored_in_loop
;
249 /* The set of memory references stored in each loop, including subloops . */
250 vec
<bitmap_head
> all_refs_stored_in_loop
;
252 /* Cache for expanding memory addresses. */
253 hash_map
<tree
, name_expansion
*> *ttae_cache
;
256 /* Obstack for the bitmaps in the above data structures. */
257 static bitmap_obstack lim_bitmap_obstack
;
258 static obstack mem_ref_obstack
;
260 static bool ref_indep_loop_p (class loop
*, im_mem_ref
*, dep_kind
);
261 static bool ref_always_accessed_p (class loop
*, im_mem_ref
*, bool);
262 static bool refs_independent_p (im_mem_ref
*, im_mem_ref
*, bool = true);
264 /* Minimum cost of an expensive expression. */
265 #define LIM_EXPENSIVE ((unsigned) param_lim_expensive)
267 /* The outermost loop for which execution of the header guarantees that the
268 block will be executed. */
269 #define ALWAYS_EXECUTED_IN(BB) ((class loop *) (BB)->aux)
270 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
272 /* ID of the shared unanalyzable mem. */
273 #define UNANALYZABLE_MEM_ID 0
275 /* Whether the reference was analyzable. */
276 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
278 static struct lim_aux_data
*
279 init_lim_data (gimple
*stmt
)
281 lim_aux_data
*p
= XCNEW (struct lim_aux_data
);
282 lim_aux_data_map
->put (stmt
, p
);
287 static struct lim_aux_data
*
288 get_lim_data (gimple
*stmt
)
290 lim_aux_data
**p
= lim_aux_data_map
->get (stmt
);
297 /* Releases the memory occupied by DATA. */
300 free_lim_aux_data (struct lim_aux_data
*data
)
302 data
->depends
.release ();
307 clear_lim_data (gimple
*stmt
)
309 lim_aux_data
**p
= lim_aux_data_map
->get (stmt
);
313 free_lim_aux_data (*p
);
318 /* The possibilities of statement movement. */
321 MOVE_IMPOSSIBLE
, /* No movement -- side effect expression. */
322 MOVE_PRESERVE_EXECUTION
, /* Must not cause the non-executed statement
323 become executed -- memory accesses, ... */
324 MOVE_POSSIBLE
/* Unlimited movement. */
328 /* If it is possible to hoist the statement STMT unconditionally,
329 returns MOVE_POSSIBLE.
330 If it is possible to hoist the statement STMT, but we must avoid making
331 it executed if it would not be executed in the original program (e.g.
332 because it may trap), return MOVE_PRESERVE_EXECUTION.
333 Otherwise return MOVE_IMPOSSIBLE. */
336 movement_possibility_1 (gimple
*stmt
)
339 enum move_pos ret
= MOVE_POSSIBLE
;
341 if (flag_unswitch_loops
342 && gimple_code (stmt
) == GIMPLE_COND
)
344 /* If we perform unswitching, force the operands of the invariant
345 condition to be moved out of the loop. */
346 return MOVE_POSSIBLE
;
349 if (gimple_code (stmt
) == GIMPLE_PHI
350 && gimple_phi_num_args (stmt
) <= 2
351 && !virtual_operand_p (gimple_phi_result (stmt
))
352 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt
)))
353 return MOVE_POSSIBLE
;
355 if (gimple_get_lhs (stmt
) == NULL_TREE
)
356 return MOVE_IMPOSSIBLE
;
358 if (gimple_vdef (stmt
))
359 return MOVE_IMPOSSIBLE
;
361 if (stmt_ends_bb_p (stmt
)
362 || gimple_has_volatile_ops (stmt
)
363 || gimple_has_side_effects (stmt
)
364 || stmt_could_throw_p (cfun
, stmt
))
365 return MOVE_IMPOSSIBLE
;
367 if (is_gimple_call (stmt
))
369 /* While pure or const call is guaranteed to have no side effects, we
370 cannot move it arbitrarily. Consider code like
372 char *s = something ();
382 Here the strlen call cannot be moved out of the loop, even though
383 s is invariant. In addition to possibly creating a call with
384 invalid arguments, moving out a function call that is not executed
385 may cause performance regressions in case the call is costly and
386 not executed at all. */
387 ret
= MOVE_PRESERVE_EXECUTION
;
388 lhs
= gimple_call_lhs (stmt
);
390 else if (is_gimple_assign (stmt
))
391 lhs
= gimple_assign_lhs (stmt
);
393 return MOVE_IMPOSSIBLE
;
395 if (TREE_CODE (lhs
) == SSA_NAME
396 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs
))
397 return MOVE_IMPOSSIBLE
;
399 if (TREE_CODE (lhs
) != SSA_NAME
400 || gimple_could_trap_p (stmt
))
401 return MOVE_PRESERVE_EXECUTION
;
403 /* Non local loads in a transaction cannot be hoisted out. Well,
404 unless the load happens on every path out of the loop, but we
405 don't take this into account yet. */
407 && gimple_in_transaction (stmt
)
408 && gimple_assign_single_p (stmt
))
410 tree rhs
= gimple_assign_rhs1 (stmt
);
411 if (DECL_P (rhs
) && is_global_var (rhs
))
415 fprintf (dump_file
, "Cannot hoist conditional load of ");
416 print_generic_expr (dump_file
, rhs
, TDF_SLIM
);
417 fprintf (dump_file
, " because it is in a transaction.\n");
419 return MOVE_IMPOSSIBLE
;
427 movement_possibility (gimple
*stmt
)
429 enum move_pos pos
= movement_possibility_1 (stmt
);
430 if (pos
== MOVE_POSSIBLE
)
433 ssa_op_iter ssa_iter
;
434 FOR_EACH_PHI_OR_STMT_USE (use_p
, stmt
, ssa_iter
, SSA_OP_USE
)
435 if (TREE_CODE (USE_FROM_PTR (use_p
)) == SSA_NAME
436 && ssa_name_maybe_undef_p (USE_FROM_PTR (use_p
)))
437 return MOVE_PRESERVE_EXECUTION
;
443 /* Compare the profile count inequality of bb and loop's preheader, it is
444 three-state as stated in profile-count.h, FALSE is returned if inequality
445 cannot be decided. */
447 bb_colder_than_loop_preheader (basic_block bb
, class loop
*loop
)
449 gcc_assert (bb
&& loop
);
450 return bb
->count
< loop_preheader_edge (loop
)->src
->count
;
453 /* Check coldest loop between OUTERMOST_LOOP and LOOP by comparing profile
455 It does three steps check:
456 1) Check whether CURR_BB is cold in it's own loop_father, if it is cold, just
457 return NULL which means it should not be moved out at all;
458 2) CURR_BB is NOT cold, check if pre-computed COLDEST_LOOP is outside of
459 OUTERMOST_LOOP, if it is inside of OUTERMOST_LOOP, return the COLDEST_LOOP;
460 3) If COLDEST_LOOP is outside of OUTERMOST_LOOP, check whether there is a
461 hotter loop between OUTERMOST_LOOP and loop in pre-computed
462 HOTTER_THAN_INNER_LOOP, return it's nested inner loop, otherwise return
464 At last, the coldest_loop is inside of OUTERMOST_LOOP, just return it as
468 get_coldest_out_loop (class loop
*outermost_loop
, class loop
*loop
,
471 gcc_assert (outermost_loop
== loop
472 || flow_loop_nested_p (outermost_loop
, loop
));
474 /* If bb_colder_than_loop_preheader returns false due to three-state
475 comparision, OUTERMOST_LOOP is returned finally to preserve the behavior.
476 Otherwise, return the coldest loop between OUTERMOST_LOOP and LOOP. */
477 if (curr_bb
&& bb_colder_than_loop_preheader (curr_bb
, loop
))
480 class loop
*coldest_loop
= coldest_outermost_loop
[loop
->num
];
481 if (loop_depth (coldest_loop
) < loop_depth (outermost_loop
))
483 class loop
*hotter_loop
= hotter_than_inner_loop
[loop
->num
];
485 || loop_depth (hotter_loop
) < loop_depth (outermost_loop
))
486 return outermost_loop
;
488 /* hotter_loop is between OUTERMOST_LOOP and LOOP like:
489 [loop tree root, ..., coldest_loop, ..., outermost_loop, ...,
490 hotter_loop, second_coldest_loop, ..., loop]
491 return second_coldest_loop to be the hoist target. */
493 for (aloop
= hotter_loop
->inner
; aloop
; aloop
= aloop
->next
)
494 if (aloop
== loop
|| flow_loop_nested_p (aloop
, loop
))
500 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
501 loop to that we could move the expression using DEF if it did not have
502 other operands, i.e. the outermost loop enclosing LOOP in that the value
503 of DEF is invariant. */
506 outermost_invariant_loop (tree def
, class loop
*loop
)
510 class loop
*max_loop
;
511 struct lim_aux_data
*lim_data
;
514 return superloop_at_depth (loop
, 1);
516 if (TREE_CODE (def
) != SSA_NAME
)
518 gcc_assert (is_gimple_min_invariant (def
));
519 return superloop_at_depth (loop
, 1);
522 def_stmt
= SSA_NAME_DEF_STMT (def
);
523 def_bb
= gimple_bb (def_stmt
);
525 return superloop_at_depth (loop
, 1);
527 max_loop
= find_common_loop (loop
, def_bb
->loop_father
);
529 lim_data
= get_lim_data (def_stmt
);
530 if (lim_data
!= NULL
&& lim_data
->max_loop
!= NULL
)
531 max_loop
= find_common_loop (max_loop
,
532 loop_outer (lim_data
->max_loop
));
533 if (max_loop
== loop
)
535 max_loop
= superloop_at_depth (loop
, loop_depth (max_loop
) + 1);
540 /* DATA is a structure containing information associated with a statement
541 inside LOOP. DEF is one of the operands of this statement.
543 Find the outermost loop enclosing LOOP in that value of DEF is invariant
544 and record this in DATA->max_loop field. If DEF itself is defined inside
545 this loop as well (i.e. we need to hoist it out of the loop if we want
546 to hoist the statement represented by DATA), record the statement in that
547 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
548 add the cost of the computation of DEF to the DATA->cost.
550 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
553 add_dependency (tree def
, struct lim_aux_data
*data
, class loop
*loop
,
556 gimple
*def_stmt
= SSA_NAME_DEF_STMT (def
);
557 basic_block def_bb
= gimple_bb (def_stmt
);
558 class loop
*max_loop
;
559 struct lim_aux_data
*def_data
;
564 max_loop
= outermost_invariant_loop (def
, loop
);
568 if (flow_loop_nested_p (data
->max_loop
, max_loop
))
569 data
->max_loop
= max_loop
;
571 def_data
= get_lim_data (def_stmt
);
576 /* Only add the cost if the statement defining DEF is inside LOOP,
577 i.e. if it is likely that by moving the invariants dependent
578 on it, we will be able to avoid creating a new register for
579 it (since it will be only used in these dependent invariants). */
580 && def_bb
->loop_father
== loop
)
581 data
->cost
+= def_data
->cost
;
583 data
->depends
.safe_push (def_stmt
);
588 /* Returns an estimate for a cost of statement STMT. The values here
589 are just ad-hoc constants, similar to costs for inlining. */
592 stmt_cost (gimple
*stmt
)
594 /* Always try to create possibilities for unswitching. */
595 if (gimple_code (stmt
) == GIMPLE_COND
596 || gimple_code (stmt
) == GIMPLE_PHI
)
597 return LIM_EXPENSIVE
;
599 /* We should be hoisting calls if possible. */
600 if (is_gimple_call (stmt
))
604 /* Unless the call is a builtin_constant_p; this always folds to a
605 constant, so moving it is useless. */
606 fndecl
= gimple_call_fndecl (stmt
);
607 if (fndecl
&& fndecl_built_in_p (fndecl
, BUILT_IN_CONSTANT_P
))
610 return LIM_EXPENSIVE
;
613 /* Hoisting memory references out should almost surely be a win. */
614 if (gimple_references_memory_p (stmt
))
615 return LIM_EXPENSIVE
;
617 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
620 switch (gimple_assign_rhs_code (stmt
))
623 case WIDEN_MULT_EXPR
:
624 case WIDEN_MULT_PLUS_EXPR
:
625 case WIDEN_MULT_MINUS_EXPR
:
637 /* Division and multiplication are usually expensive. */
638 return LIM_EXPENSIVE
;
642 case WIDEN_LSHIFT_EXPR
:
645 /* Shifts and rotates are usually expensive. */
646 return LIM_EXPENSIVE
;
649 /* Make vector construction cost proportional to the number
651 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt
));
655 /* Whether or not something is wrapped inside a PAREN_EXPR
656 should not change move cost. Nor should an intermediate
657 unpropagated SSA name copy. */
665 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
666 REF is independent. If REF is not independent in LOOP, NULL is returned
670 outermost_indep_loop (class loop
*outer
, class loop
*loop
, im_mem_ref
*ref
)
674 if (ref
->stored
&& bitmap_bit_p (ref
->stored
, loop
->num
))
679 aloop
= superloop_at_depth (loop
, loop_depth (aloop
) + 1))
680 if ((!ref
->stored
|| !bitmap_bit_p (ref
->stored
, aloop
->num
))
681 && ref_indep_loop_p (aloop
, ref
, lim_raw
))
684 if (ref_indep_loop_p (loop
, ref
, lim_raw
))
690 /* If there is a simple load or store to a memory reference in STMT, returns
691 the location of the memory reference, and sets IS_STORE according to whether
692 it is a store or load. Otherwise, returns NULL. */
695 simple_mem_ref_in_stmt (gimple
*stmt
, bool *is_store
)
699 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
700 if (!gimple_assign_single_p (stmt
))
703 lhs
= gimple_assign_lhs_ptr (stmt
);
704 rhs
= gimple_assign_rhs1_ptr (stmt
);
706 if (TREE_CODE (*lhs
) == SSA_NAME
&& gimple_vuse (stmt
))
711 else if (gimple_vdef (stmt
)
712 && (TREE_CODE (*rhs
) == SSA_NAME
|| is_gimple_min_invariant (*rhs
)))
721 /* From a controlling predicate in DOM determine the arguments from
722 the PHI node PHI that are chosen if the predicate evaluates to
723 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
724 they are non-NULL. Returns true if the arguments can be determined,
725 else return false. */
728 extract_true_false_args_from_phi (basic_block dom
, gphi
*phi
,
729 tree
*true_arg_p
, tree
*false_arg_p
)
732 if (! extract_true_false_controlled_edges (dom
, gimple_bb (phi
),
737 *true_arg_p
= PHI_ARG_DEF (phi
, te
->dest_idx
);
739 *false_arg_p
= PHI_ARG_DEF (phi
, fe
->dest_idx
);
744 /* Determine the outermost loop to that it is possible to hoist a statement
745 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
746 the outermost loop in that the value computed by STMT is invariant.
747 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
748 we preserve the fact whether STMT is executed. It also fills other related
749 information to LIM_DATA (STMT).
751 The function returns false if STMT cannot be hoisted outside of the loop it
752 is defined in, and true otherwise. */
755 determine_max_movement (gimple
*stmt
, bool must_preserve_exec
)
757 basic_block bb
= gimple_bb (stmt
);
758 class loop
*loop
= bb
->loop_father
;
760 struct lim_aux_data
*lim_data
= get_lim_data (stmt
);
764 if (must_preserve_exec
)
765 level
= ALWAYS_EXECUTED_IN (bb
);
767 level
= superloop_at_depth (loop
, 1);
768 lim_data
->max_loop
= get_coldest_out_loop (level
, loop
, bb
);
769 if (!lim_data
->max_loop
)
772 if (gphi
*phi
= dyn_cast
<gphi
*> (stmt
))
775 unsigned min_cost
= UINT_MAX
;
776 unsigned total_cost
= 0;
777 struct lim_aux_data
*def_data
;
779 /* We will end up promoting dependencies to be unconditionally
780 evaluated. For this reason the PHI cost (and thus the
781 cost we remove from the loop by doing the invariant motion)
782 is that of the cheapest PHI argument dependency chain. */
783 FOR_EACH_PHI_ARG (use_p
, phi
, iter
, SSA_OP_USE
)
785 val
= USE_FROM_PTR (use_p
);
787 if (TREE_CODE (val
) != SSA_NAME
)
789 /* Assign const 1 to constants. */
790 min_cost
= MIN (min_cost
, 1);
794 if (!add_dependency (val
, lim_data
, loop
, false))
797 gimple
*def_stmt
= SSA_NAME_DEF_STMT (val
);
798 if (gimple_bb (def_stmt
)
799 && gimple_bb (def_stmt
)->loop_father
== loop
)
801 def_data
= get_lim_data (def_stmt
);
804 min_cost
= MIN (min_cost
, def_data
->cost
);
805 total_cost
+= def_data
->cost
;
810 min_cost
= MIN (min_cost
, total_cost
);
811 lim_data
->cost
+= min_cost
;
813 if (gimple_phi_num_args (phi
) > 1)
815 basic_block dom
= get_immediate_dominator (CDI_DOMINATORS
, bb
);
817 if (gsi_end_p (gsi_last_bb (dom
)))
819 cond
= gsi_stmt (gsi_last_bb (dom
));
820 if (gimple_code (cond
) != GIMPLE_COND
)
822 /* Verify that this is an extended form of a diamond and
823 the PHI arguments are completely controlled by the
825 if (!extract_true_false_args_from_phi (dom
, phi
, NULL
, NULL
))
828 /* Fold in dependencies and cost of the condition. */
829 FOR_EACH_SSA_TREE_OPERAND (val
, cond
, iter
, SSA_OP_USE
)
831 if (!add_dependency (val
, lim_data
, loop
, false))
833 def_data
= get_lim_data (SSA_NAME_DEF_STMT (val
));
835 lim_data
->cost
+= def_data
->cost
;
838 /* We want to avoid unconditionally executing very expensive
839 operations. As costs for our dependencies cannot be
840 negative just claim we are not invariand for this case.
841 We also are not sure whether the control-flow inside the
843 if (total_cost
- min_cost
>= 2 * LIM_EXPENSIVE
845 && total_cost
/ min_cost
<= 2))
848 /* Assume that the control-flow in the loop will vanish.
849 ??? We should verify this and not artificially increase
850 the cost if that is not the case. */
851 lim_data
->cost
+= stmt_cost (stmt
);
857 /* A stmt that receives abnormal edges cannot be hoisted. */
858 if (is_a
<gcall
*> (stmt
)
859 && (gimple_call_flags (stmt
) & ECF_RETURNS_TWICE
))
862 FOR_EACH_SSA_TREE_OPERAND (val
, stmt
, iter
, SSA_OP_USE
)
863 if (!add_dependency (val
, lim_data
, loop
, true))
866 if (gimple_vuse (stmt
))
869 = lim_data
? memory_accesses
.refs_list
[lim_data
->ref
] : NULL
;
871 && MEM_ANALYZABLE (ref
))
873 lim_data
->max_loop
= outermost_indep_loop (lim_data
->max_loop
,
875 if (!lim_data
->max_loop
)
878 else if (! add_dependency (gimple_vuse (stmt
), lim_data
, loop
, false))
882 lim_data
->cost
+= stmt_cost (stmt
);
887 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
888 and that one of the operands of this statement is computed by STMT.
889 Ensure that STMT (together with all the statements that define its
890 operands) is hoisted at least out of the loop LEVEL. */
893 set_level (gimple
*stmt
, class loop
*orig_loop
, class loop
*level
)
895 class loop
*stmt_loop
= gimple_bb (stmt
)->loop_father
;
896 struct lim_aux_data
*lim_data
;
900 stmt_loop
= find_common_loop (orig_loop
, stmt_loop
);
901 lim_data
= get_lim_data (stmt
);
902 if (lim_data
!= NULL
&& lim_data
->tgt_loop
!= NULL
)
903 stmt_loop
= find_common_loop (stmt_loop
,
904 loop_outer (lim_data
->tgt_loop
));
905 if (flow_loop_nested_p (stmt_loop
, level
))
908 gcc_assert (level
== lim_data
->max_loop
909 || flow_loop_nested_p (lim_data
->max_loop
, level
));
911 lim_data
->tgt_loop
= level
;
912 FOR_EACH_VEC_ELT (lim_data
->depends
, i
, dep_stmt
)
913 set_level (dep_stmt
, orig_loop
, level
);
916 /* Determines an outermost loop from that we want to hoist the statement STMT.
917 For now we chose the outermost possible loop. TODO -- use profiling
918 information to set it more sanely. */
921 set_profitable_level (gimple
*stmt
)
923 set_level (stmt
, gimple_bb (stmt
)->loop_father
, get_lim_data (stmt
)->max_loop
);
926 /* Returns true if STMT is a call that has side effects. */
929 nonpure_call_p (gimple
*stmt
)
931 if (gimple_code (stmt
) != GIMPLE_CALL
)
934 return gimple_has_side_effects (stmt
);
937 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
940 rewrite_reciprocal (gimple_stmt_iterator
*bsi
)
942 gassign
*stmt
, *stmt1
, *stmt2
;
943 tree name
, lhs
, type
;
945 gimple_stmt_iterator gsi
;
947 stmt
= as_a
<gassign
*> (gsi_stmt (*bsi
));
948 lhs
= gimple_assign_lhs (stmt
);
949 type
= TREE_TYPE (lhs
);
951 real_one
= build_one_cst (type
);
953 name
= make_temp_ssa_name (type
, NULL
, "reciptmp");
954 stmt1
= gimple_build_assign (name
, RDIV_EXPR
, real_one
,
955 gimple_assign_rhs2 (stmt
));
956 stmt2
= gimple_build_assign (lhs
, MULT_EXPR
, name
,
957 gimple_assign_rhs1 (stmt
));
959 /* Replace division stmt with reciprocal and multiply stmts.
960 The multiply stmt is not invariant, so update iterator
961 and avoid rescanning. */
963 gsi_insert_before (bsi
, stmt1
, GSI_NEW_STMT
);
964 gsi_replace (&gsi
, stmt2
, true);
966 /* Continue processing with invariant reciprocal statement. */
970 /* Check if the pattern at *BSI is a bittest of the form
971 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
974 rewrite_bittest (gimple_stmt_iterator
*bsi
)
981 tree lhs
, name
, t
, a
, b
;
984 stmt
= as_a
<gassign
*> (gsi_stmt (*bsi
));
985 lhs
= gimple_assign_lhs (stmt
);
987 /* Verify that the single use of lhs is a comparison against zero. */
988 if (TREE_CODE (lhs
) != SSA_NAME
989 || !single_imm_use (lhs
, &use
, &use_stmt
))
991 cond_stmt
= dyn_cast
<gcond
*> (use_stmt
);
994 if (gimple_cond_lhs (cond_stmt
) != lhs
995 || (gimple_cond_code (cond_stmt
) != NE_EXPR
996 && gimple_cond_code (cond_stmt
) != EQ_EXPR
)
997 || !integer_zerop (gimple_cond_rhs (cond_stmt
)))
1000 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
1001 stmt1
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
1002 if (gimple_code (stmt1
) != GIMPLE_ASSIGN
)
1005 /* There is a conversion in between possibly inserted by fold. */
1006 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1
)))
1008 t
= gimple_assign_rhs1 (stmt1
);
1009 if (TREE_CODE (t
) != SSA_NAME
1010 || !has_single_use (t
))
1012 stmt1
= SSA_NAME_DEF_STMT (t
);
1013 if (gimple_code (stmt1
) != GIMPLE_ASSIGN
)
1017 /* Verify that B is loop invariant but A is not. Verify that with
1018 all the stmt walking we are still in the same loop. */
1019 if (gimple_assign_rhs_code (stmt1
) != RSHIFT_EXPR
1020 || loop_containing_stmt (stmt1
) != loop_containing_stmt (stmt
))
1023 a
= gimple_assign_rhs1 (stmt1
);
1024 b
= gimple_assign_rhs2 (stmt1
);
1026 if (outermost_invariant_loop (b
, loop_containing_stmt (stmt1
)) != NULL
1027 && outermost_invariant_loop (a
, loop_containing_stmt (stmt1
)) == NULL
)
1029 gimple_stmt_iterator rsi
;
1032 t
= fold_build2 (LSHIFT_EXPR
, TREE_TYPE (a
),
1033 build_int_cst (TREE_TYPE (a
), 1), b
);
1034 name
= make_temp_ssa_name (TREE_TYPE (a
), NULL
, "shifttmp");
1035 stmt1
= gimple_build_assign (name
, t
);
1038 t
= fold_build2 (BIT_AND_EXPR
, TREE_TYPE (a
), a
, name
);
1039 name
= make_temp_ssa_name (TREE_TYPE (a
), NULL
, "shifttmp");
1040 stmt2
= gimple_build_assign (name
, t
);
1042 /* Replace the SSA_NAME we compare against zero. Adjust
1043 the type of zero accordingly. */
1044 SET_USE (use
, name
);
1045 gimple_cond_set_rhs (cond_stmt
,
1046 build_int_cst_type (TREE_TYPE (name
),
1049 /* Don't use gsi_replace here, none of the new assignments sets
1050 the variable originally set in stmt. Move bsi to stmt1, and
1051 then remove the original stmt, so that we get a chance to
1052 retain debug info for it. */
1054 gsi_insert_before (bsi
, stmt1
, GSI_NEW_STMT
);
1055 gsi_insert_before (&rsi
, stmt2
, GSI_SAME_STMT
);
1056 gimple
*to_release
= gsi_stmt (rsi
);
1057 gsi_remove (&rsi
, true);
1058 release_defs (to_release
);
1066 /* Determine the outermost loops in that statements in basic block BB are
1067 invariant, and record them to the LIM_DATA associated with the
1071 compute_invariantness (basic_block bb
)
1074 gimple_stmt_iterator bsi
;
1076 bool maybe_never
= ALWAYS_EXECUTED_IN (bb
) == NULL
;
1077 class loop
*outermost
= ALWAYS_EXECUTED_IN (bb
);
1078 struct lim_aux_data
*lim_data
;
1080 if (!loop_outer (bb
->loop_father
))
1083 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1084 fprintf (dump_file
, "Basic block %d (loop %d -- depth %d):\n\n",
1085 bb
->index
, bb
->loop_father
->num
, loop_depth (bb
->loop_father
));
1087 /* Look at PHI nodes, but only if there is at most two.
1088 ??? We could relax this further by post-processing the inserted
1089 code and transforming adjacent cond-exprs with the same predicate
1090 to control flow again. */
1091 bsi
= gsi_start_phis (bb
);
1092 if (!gsi_end_p (bsi
)
1093 && ((gsi_next (&bsi
), gsi_end_p (bsi
))
1094 || (gsi_next (&bsi
), gsi_end_p (bsi
))))
1095 for (bsi
= gsi_start_phis (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1097 stmt
= gsi_stmt (bsi
);
1099 pos
= movement_possibility (stmt
);
1100 if (pos
== MOVE_IMPOSSIBLE
)
1103 lim_data
= get_lim_data (stmt
);
1105 lim_data
= init_lim_data (stmt
);
1106 lim_data
->always_executed_in
= outermost
;
1108 if (!determine_max_movement (stmt
, false))
1110 lim_data
->max_loop
= NULL
;
1114 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1116 print_gimple_stmt (dump_file
, stmt
, 2);
1117 fprintf (dump_file
, " invariant up to level %d, cost %d.\n\n",
1118 loop_depth (lim_data
->max_loop
),
1122 if (lim_data
->cost
>= LIM_EXPENSIVE
)
1123 set_profitable_level (stmt
);
1126 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1128 stmt
= gsi_stmt (bsi
);
1130 pos
= movement_possibility (stmt
);
1131 if (pos
== MOVE_IMPOSSIBLE
)
1133 if (nonpure_call_p (stmt
))
1138 /* Make sure to note always_executed_in for stores to make
1139 store-motion work. */
1140 else if (stmt_makes_single_store (stmt
))
1142 struct lim_aux_data
*lim_data
= get_lim_data (stmt
);
1144 lim_data
= init_lim_data (stmt
);
1145 lim_data
->always_executed_in
= outermost
;
1150 if (is_gimple_assign (stmt
)
1151 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
))
1152 == GIMPLE_BINARY_RHS
))
1154 tree op0
= gimple_assign_rhs1 (stmt
);
1155 tree op1
= gimple_assign_rhs2 (stmt
);
1156 class loop
*ol1
= outermost_invariant_loop (op1
,
1157 loop_containing_stmt (stmt
));
1159 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1160 to be hoisted out of loop, saving expensive divide. */
1161 if (pos
== MOVE_POSSIBLE
1162 && gimple_assign_rhs_code (stmt
) == RDIV_EXPR
1163 && flag_unsafe_math_optimizations
1164 && !flag_trapping_math
1166 && outermost_invariant_loop (op0
, ol1
) == NULL
)
1167 stmt
= rewrite_reciprocal (&bsi
);
1169 /* If the shift count is invariant, convert (A >> B) & 1 to
1170 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1171 saving an expensive shift. */
1172 if (pos
== MOVE_POSSIBLE
1173 && gimple_assign_rhs_code (stmt
) == BIT_AND_EXPR
1174 && integer_onep (op1
)
1175 && TREE_CODE (op0
) == SSA_NAME
1176 && has_single_use (op0
))
1177 stmt
= rewrite_bittest (&bsi
);
1180 lim_data
= get_lim_data (stmt
);
1182 lim_data
= init_lim_data (stmt
);
1183 lim_data
->always_executed_in
= outermost
;
1185 if (maybe_never
&& pos
== MOVE_PRESERVE_EXECUTION
)
1188 if (!determine_max_movement (stmt
, pos
== MOVE_PRESERVE_EXECUTION
))
1190 lim_data
->max_loop
= NULL
;
1194 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1196 print_gimple_stmt (dump_file
, stmt
, 2);
1197 fprintf (dump_file
, " invariant up to level %d, cost %d.\n\n",
1198 loop_depth (lim_data
->max_loop
),
1202 if (lim_data
->cost
>= LIM_EXPENSIVE
)
1203 set_profitable_level (stmt
);
1207 /* Hoist the statements in basic block BB out of the loops prescribed by
1208 data stored in LIM_DATA structures associated with each statement. Callback
1209 for walk_dominator_tree. */
1212 move_computations_worker (basic_block bb
)
1216 struct lim_aux_data
*lim_data
;
1217 unsigned int todo
= 0;
1219 if (!loop_outer (bb
->loop_father
))
1222 for (gphi_iterator bsi
= gsi_start_phis (bb
); !gsi_end_p (bsi
); )
1225 gphi
*stmt
= bsi
.phi ();
1227 lim_data
= get_lim_data (stmt
);
1228 if (lim_data
== NULL
)
1234 cost
= lim_data
->cost
;
1235 level
= lim_data
->tgt_loop
;
1236 clear_lim_data (stmt
);
1244 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1246 fprintf (dump_file
, "Moving PHI node\n");
1247 print_gimple_stmt (dump_file
, stmt
, 0);
1248 fprintf (dump_file
, "(cost %u) out of loop %d.\n\n",
1252 if (gimple_phi_num_args (stmt
) == 1)
1254 tree arg
= PHI_ARG_DEF (stmt
, 0);
1255 new_stmt
= gimple_build_assign (gimple_phi_result (stmt
),
1256 TREE_CODE (arg
), arg
);
1260 basic_block dom
= get_immediate_dominator (CDI_DOMINATORS
, bb
);
1261 gimple
*cond
= gsi_stmt (gsi_last_bb (dom
));
1262 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
, t
;
1263 /* Get the PHI arguments corresponding to the true and false
1265 extract_true_false_args_from_phi (dom
, stmt
, &arg0
, &arg1
);
1266 gcc_assert (arg0
&& arg1
);
1267 t
= make_ssa_name (boolean_type_node
);
1268 new_stmt
= gimple_build_assign (t
, gimple_cond_code (cond
),
1269 gimple_cond_lhs (cond
),
1270 gimple_cond_rhs (cond
));
1271 gsi_insert_on_edge (loop_preheader_edge (level
), new_stmt
);
1272 new_stmt
= gimple_build_assign (gimple_phi_result (stmt
),
1273 COND_EXPR
, t
, arg0
, arg1
);
1274 todo
|= TODO_cleanup_cfg
;
1276 if (!ALWAYS_EXECUTED_IN (bb
)
1277 || (ALWAYS_EXECUTED_IN (bb
) != level
1278 && !flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb
), level
)))
1279 reset_flow_sensitive_info (gimple_assign_lhs (new_stmt
));
1280 gsi_insert_on_edge (loop_preheader_edge (level
), new_stmt
);
1281 remove_phi_node (&bsi
, false);
1284 for (gimple_stmt_iterator bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); )
1288 gimple
*stmt
= gsi_stmt (bsi
);
1290 lim_data
= get_lim_data (stmt
);
1291 if (lim_data
== NULL
)
1297 cost
= lim_data
->cost
;
1298 level
= lim_data
->tgt_loop
;
1299 clear_lim_data (stmt
);
1307 /* We do not really want to move conditionals out of the loop; we just
1308 placed it here to force its operands to be moved if necessary. */
1309 if (gimple_code (stmt
) == GIMPLE_COND
)
1315 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1317 fprintf (dump_file
, "Moving statement\n");
1318 print_gimple_stmt (dump_file
, stmt
, 0);
1319 fprintf (dump_file
, "(cost %u) out of loop %d.\n\n",
1323 e
= loop_preheader_edge (level
);
1324 gcc_assert (!gimple_vdef (stmt
));
1325 if (gimple_vuse (stmt
))
1327 /* The new VUSE is the one from the virtual PHI in the loop
1328 header or the one already present. */
1330 for (gsi2
= gsi_start_phis (e
->dest
);
1331 !gsi_end_p (gsi2
); gsi_next (&gsi2
))
1333 gphi
*phi
= gsi2
.phi ();
1334 if (virtual_operand_p (gimple_phi_result (phi
)))
1336 SET_USE (gimple_vuse_op (stmt
),
1337 PHI_ARG_DEF_FROM_EDGE (phi
, e
));
1342 gsi_remove (&bsi
, false);
1343 if (gimple_has_lhs (stmt
)
1344 && TREE_CODE (gimple_get_lhs (stmt
)) == SSA_NAME
1345 && (!ALWAYS_EXECUTED_IN (bb
)
1346 || !(ALWAYS_EXECUTED_IN (bb
) == level
1347 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb
), level
))))
1348 reset_flow_sensitive_info (gimple_get_lhs (stmt
));
1349 /* In case this is a stmt that is not unconditionally executed
1350 when the target loop header is executed and the stmt may
1351 invoke undefined integer or pointer overflow rewrite it to
1352 unsigned arithmetic. */
1353 if (is_gimple_assign (stmt
)
1354 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt
)))
1355 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt
)))
1356 && arith_code_with_undefined_signed_overflow
1357 (gimple_assign_rhs_code (stmt
))
1358 && (!ALWAYS_EXECUTED_IN (bb
)
1359 || !(ALWAYS_EXECUTED_IN (bb
) == level
1360 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb
), level
))))
1361 gsi_insert_seq_on_edge (e
, rewrite_to_defined_overflow (stmt
));
1363 gsi_insert_on_edge (e
, stmt
);
1369 /* Checks whether the statement defining variable *INDEX can be hoisted
1370 out of the loop passed in DATA. Callback for for_each_index. */
1373 may_move_till (tree ref
, tree
*index
, void *data
)
1375 class loop
*loop
= (class loop
*) data
, *max_loop
;
1377 /* If REF is an array reference, check also that the step and the lower
1378 bound is invariant in LOOP. */
1379 if (TREE_CODE (ref
) == ARRAY_REF
)
1381 tree step
= TREE_OPERAND (ref
, 3);
1382 tree lbound
= TREE_OPERAND (ref
, 2);
1384 max_loop
= outermost_invariant_loop (step
, loop
);
1388 max_loop
= outermost_invariant_loop (lbound
, loop
);
1393 max_loop
= outermost_invariant_loop (*index
, loop
);
1400 /* If OP is SSA NAME, force the statement that defines it to be
1401 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1404 force_move_till_op (tree op
, class loop
*orig_loop
, class loop
*loop
)
1409 || is_gimple_min_invariant (op
))
1412 gcc_assert (TREE_CODE (op
) == SSA_NAME
);
1414 stmt
= SSA_NAME_DEF_STMT (op
);
1415 if (gimple_nop_p (stmt
))
1418 set_level (stmt
, orig_loop
, loop
);
1421 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1422 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1428 class loop
*orig_loop
;
1432 force_move_till (tree ref
, tree
*index
, void *data
)
1434 struct fmt_data
*fmt_data
= (struct fmt_data
*) data
;
1436 if (TREE_CODE (ref
) == ARRAY_REF
)
1438 tree step
= TREE_OPERAND (ref
, 3);
1439 tree lbound
= TREE_OPERAND (ref
, 2);
1441 force_move_till_op (step
, fmt_data
->orig_loop
, fmt_data
->loop
);
1442 force_move_till_op (lbound
, fmt_data
->orig_loop
, fmt_data
->loop
);
1445 force_move_till_op (*index
, fmt_data
->orig_loop
, fmt_data
->loop
);
1450 /* A function to free the mem_ref object OBJ. */
1453 memref_free (class im_mem_ref
*mem
)
1455 mem
->accesses_in_loop
.release ();
1458 /* Allocates and returns a memory reference description for MEM whose hash
1459 value is HASH and id is ID. */
1462 mem_ref_alloc (ao_ref
*mem
, unsigned hash
, unsigned id
)
1464 im_mem_ref
*ref
= XOBNEW (&mem_ref_obstack
, class im_mem_ref
);
1468 ao_ref_init (&ref
->mem
, error_mark_node
);
1470 ref
->ref_canonical
= false;
1471 ref
->ref_decomposed
= false;
1475 bitmap_initialize (&ref
->dep_loop
, &lim_bitmap_obstack
);
1476 ref
->accesses_in_loop
.create (1);
1481 /* Records memory reference location *LOC in LOOP to the memory reference
1482 description REF. The reference occurs in statement STMT. */
1485 record_mem_ref_loc (im_mem_ref
*ref
, gimple
*stmt
, tree
*loc
)
1490 ref
->accesses_in_loop
.safe_push (aref
);
1493 /* Set the LOOP bit in REF stored bitmap and allocate that if
1494 necessary. Return whether a bit was changed. */
1497 set_ref_stored_in_loop (im_mem_ref
*ref
, class loop
*loop
)
1500 ref
->stored
= BITMAP_ALLOC (&lim_bitmap_obstack
);
1501 return bitmap_set_bit (ref
->stored
, loop
->num
);
1504 /* Marks reference REF as stored in LOOP. */
1507 mark_ref_stored (im_mem_ref
*ref
, class loop
*loop
)
1509 while (loop
!= current_loops
->tree_root
1510 && set_ref_stored_in_loop (ref
, loop
))
1511 loop
= loop_outer (loop
);
1514 /* Set the LOOP bit in REF loaded bitmap and allocate that if
1515 necessary. Return whether a bit was changed. */
1518 set_ref_loaded_in_loop (im_mem_ref
*ref
, class loop
*loop
)
1521 ref
->loaded
= BITMAP_ALLOC (&lim_bitmap_obstack
);
1522 return bitmap_set_bit (ref
->loaded
, loop
->num
);
1525 /* Marks reference REF as loaded in LOOP. */
1528 mark_ref_loaded (im_mem_ref
*ref
, class loop
*loop
)
1530 while (loop
!= current_loops
->tree_root
1531 && set_ref_loaded_in_loop (ref
, loop
))
1532 loop
= loop_outer (loop
);
1535 /* Gathers memory references in statement STMT in LOOP, storing the
1536 information about them in the memory_accesses structure. Marks
1537 the vops accessed through unrecognized statements there as
1541 gather_mem_refs_stmt (class loop
*loop
, gimple
*stmt
)
1550 if (!gimple_vuse (stmt
))
1553 mem
= simple_mem_ref_in_stmt (stmt
, &is_stored
);
1554 if (!mem
&& is_gimple_assign (stmt
))
1556 /* For aggregate copies record distinct references but use them
1557 only for disambiguation purposes. */
1558 id
= memory_accesses
.refs_list
.length ();
1559 ref
= mem_ref_alloc (NULL
, 0, id
);
1560 memory_accesses
.refs_list
.safe_push (ref
);
1561 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1563 fprintf (dump_file
, "Unhandled memory reference %u: ", id
);
1564 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1566 record_mem_ref_loc (ref
, stmt
, mem
);
1567 is_stored
= gimple_vdef (stmt
);
1571 /* We use the shared mem_ref for all unanalyzable refs. */
1572 id
= UNANALYZABLE_MEM_ID
;
1573 ref
= memory_accesses
.refs_list
[id
];
1574 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1576 fprintf (dump_file
, "Unanalyzed memory reference %u: ", id
);
1577 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1579 is_stored
= gimple_vdef (stmt
);
1583 /* We are looking for equal refs that might differ in structure
1584 such as a.b vs. MEM[&a + 4]. So we key off the ao_ref but
1585 make sure we can canonicalize the ref in the hashtable if
1586 non-operand_equal_p refs are found. For the lookup we mark
1587 the case we want strict equality with aor.max_size == -1. */
1589 ao_ref_init (&aor
, *mem
);
1591 ao_ref_alias_set (&aor
);
1592 HOST_WIDE_INT offset
, size
, max_size
;
1593 poly_int64 saved_maxsize
= aor
.max_size
, mem_off
;
1595 bool ref_decomposed
;
1596 if (aor
.max_size_known_p ()
1597 && aor
.offset
.is_constant (&offset
)
1598 && aor
.size
.is_constant (&size
)
1599 && aor
.max_size
.is_constant (&max_size
)
1601 && (size
% BITS_PER_UNIT
) == 0
1602 /* We're canonicalizing to a MEM where TYPE_SIZE specifies the
1603 size. Make sure this is consistent with the extraction. */
1604 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (*mem
)))
1605 && known_eq (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (*mem
))),
1607 && (mem_base
= get_addr_base_and_unit_offset (aor
.ref
, &mem_off
)))
1609 ref_decomposed
= true;
1610 tree base
= ao_ref_base (&aor
);
1612 HOST_WIDE_INT mcoffset
;
1613 if (TREE_CODE (base
) == MEM_REF
1614 && (mem_ref_offset (base
) * BITS_PER_UNIT
+ offset
).to_shwi (&moffset
)
1615 && moffset
.is_constant (&mcoffset
))
1617 hash
= iterative_hash_expr (TREE_OPERAND (base
, 0), 0);
1618 hash
= iterative_hash_host_wide_int (mcoffset
, hash
);
1622 hash
= iterative_hash_expr (base
, 0);
1623 hash
= iterative_hash_host_wide_int (offset
, hash
);
1625 hash
= iterative_hash_host_wide_int (size
, hash
);
1629 ref_decomposed
= false;
1630 hash
= iterative_hash_expr (aor
.ref
, 0);
1633 slot
= memory_accesses
.refs
->find_slot_with_hash (&aor
, hash
, INSERT
);
1634 aor
.max_size
= saved_maxsize
;
1637 if (!(*slot
)->ref_canonical
1638 && !operand_equal_p (*mem
, (*slot
)->mem
.ref
, 0))
1640 /* If we didn't yet canonicalize the hashtable ref (which
1641 we'll end up using for code insertion) and hit a second
1642 equal ref that is not structurally equivalent create
1643 a canonical ref which is a bare MEM_REF. */
1644 if (TREE_CODE (*mem
) == MEM_REF
1645 || TREE_CODE (*mem
) == TARGET_MEM_REF
)
1647 (*slot
)->mem
.ref
= *mem
;
1648 (*slot
)->mem
.base_alias_set
= ao_ref_base_alias_set (&aor
);
1652 tree ref_alias_type
= reference_alias_ptr_type (*mem
);
1653 unsigned int ref_align
= get_object_alignment (*mem
);
1654 tree ref_type
= TREE_TYPE (*mem
);
1655 tree tmp
= build1 (ADDR_EXPR
, ptr_type_node
,
1656 unshare_expr (mem_base
));
1657 if (TYPE_ALIGN (ref_type
) != ref_align
)
1658 ref_type
= build_aligned_type (ref_type
, ref_align
);
1660 = fold_build2 (MEM_REF
, ref_type
, tmp
,
1661 build_int_cst (ref_alias_type
, mem_off
));
1662 if ((*slot
)->mem
.volatile_p
)
1663 TREE_THIS_VOLATILE ((*slot
)->mem
.ref
) = 1;
1664 gcc_checking_assert (TREE_CODE ((*slot
)->mem
.ref
) == MEM_REF
1665 && is_gimple_mem_ref_addr
1666 (TREE_OPERAND ((*slot
)->mem
.ref
,
1668 (*slot
)->mem
.base_alias_set
= (*slot
)->mem
.ref_alias_set
;
1670 (*slot
)->ref_canonical
= true;
1677 id
= memory_accesses
.refs_list
.length ();
1678 ref
= mem_ref_alloc (&aor
, hash
, id
);
1679 ref
->ref_decomposed
= ref_decomposed
;
1680 memory_accesses
.refs_list
.safe_push (ref
);
1683 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1685 fprintf (dump_file
, "Memory reference %u: ", id
);
1686 print_generic_expr (dump_file
, ref
->mem
.ref
, TDF_SLIM
);
1687 fprintf (dump_file
, "\n");
1691 record_mem_ref_loc (ref
, stmt
, mem
);
1695 bitmap_set_bit (&memory_accesses
.refs_stored_in_loop
[loop
->num
], ref
->id
);
1696 mark_ref_stored (ref
, loop
);
1698 /* A not simple memory op is also a read when it is a write. */
1699 if (!is_stored
|| id
== UNANALYZABLE_MEM_ID
1700 || ref
->mem
.ref
== error_mark_node
)
1702 bitmap_set_bit (&memory_accesses
.refs_loaded_in_loop
[loop
->num
], ref
->id
);
1703 mark_ref_loaded (ref
, loop
);
1705 init_lim_data (stmt
)->ref
= ref
->id
;
1709 static unsigned *bb_loop_postorder
;
1711 /* qsort sort function to sort blocks after their loop fathers postorder. */
1714 sort_bbs_in_loop_postorder_cmp (const void *bb1_
, const void *bb2_
,
1715 void *bb_loop_postorder_
)
1717 unsigned *bb_loop_postorder
= (unsigned *)bb_loop_postorder_
;
1718 basic_block bb1
= *(const basic_block
*)bb1_
;
1719 basic_block bb2
= *(const basic_block
*)bb2_
;
1720 class loop
*loop1
= bb1
->loop_father
;
1721 class loop
*loop2
= bb2
->loop_father
;
1722 if (loop1
->num
== loop2
->num
)
1723 return bb1
->index
- bb2
->index
;
1724 return bb_loop_postorder
[loop1
->num
] < bb_loop_postorder
[loop2
->num
] ? -1 : 1;
1727 /* qsort sort function to sort ref locs after their loop fathers postorder. */
1730 sort_locs_in_loop_postorder_cmp (const void *loc1_
, const void *loc2_
,
1731 void *bb_loop_postorder_
)
1733 unsigned *bb_loop_postorder
= (unsigned *)bb_loop_postorder_
;
1734 const mem_ref_loc
*loc1
= (const mem_ref_loc
*)loc1_
;
1735 const mem_ref_loc
*loc2
= (const mem_ref_loc
*)loc2_
;
1736 class loop
*loop1
= gimple_bb (loc1
->stmt
)->loop_father
;
1737 class loop
*loop2
= gimple_bb (loc2
->stmt
)->loop_father
;
1738 if (loop1
->num
== loop2
->num
)
1740 return bb_loop_postorder
[loop1
->num
] < bb_loop_postorder
[loop2
->num
] ? -1 : 1;
1743 /* Gathers memory references in loops. */
1746 analyze_memory_references (bool store_motion
)
1748 gimple_stmt_iterator bsi
;
1749 basic_block bb
, *bbs
;
1753 /* Collect all basic-blocks in loops and sort them after their
1756 bbs
= XNEWVEC (basic_block
, n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
);
1757 FOR_EACH_BB_FN (bb
, cfun
)
1758 if (bb
->loop_father
!= current_loops
->tree_root
)
1761 gcc_sort_r (bbs
, n
, sizeof (basic_block
), sort_bbs_in_loop_postorder_cmp
,
1764 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1765 That results in better locality for all the bitmaps. It also
1766 automatically sorts the location list of gathered memory references
1767 after their loop postorder number allowing to binary-search it. */
1768 for (i
= 0; i
< n
; ++i
)
1770 basic_block bb
= bbs
[i
];
1771 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1772 gather_mem_refs_stmt (bb
->loop_father
, gsi_stmt (bsi
));
1775 /* Verify the list of gathered memory references is sorted after their
1776 loop postorder number. */
1780 FOR_EACH_VEC_ELT (memory_accesses
.refs_list
, i
, ref
)
1781 for (unsigned j
= 1; j
< ref
->accesses_in_loop
.length (); ++j
)
1782 gcc_assert (sort_locs_in_loop_postorder_cmp
1783 (&ref
->accesses_in_loop
[j
-1], &ref
->accesses_in_loop
[j
],
1784 bb_loop_postorder
) <= 0);
1792 /* Propagate the information about accessed memory references up
1793 the loop hierarchy. */
1794 for (auto loop
: loops_list (cfun
, LI_FROM_INNERMOST
))
1796 /* Finalize the overall touched references (including subloops). */
1797 bitmap_ior_into (&memory_accesses
.all_refs_stored_in_loop
[loop
->num
],
1798 &memory_accesses
.refs_stored_in_loop
[loop
->num
]);
1800 /* Propagate the information about accessed memory references up
1801 the loop hierarchy. */
1802 outer
= loop_outer (loop
);
1803 if (outer
== current_loops
->tree_root
)
1806 bitmap_ior_into (&memory_accesses
.all_refs_stored_in_loop
[outer
->num
],
1807 &memory_accesses
.all_refs_stored_in_loop
[loop
->num
]);
1811 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1812 tree_to_aff_combination_expand. */
1815 mem_refs_may_alias_p (im_mem_ref
*mem1
, im_mem_ref
*mem2
,
1816 hash_map
<tree
, name_expansion
*> **ttae_cache
,
1819 gcc_checking_assert (mem1
->mem
.ref
!= error_mark_node
1820 && mem2
->mem
.ref
!= error_mark_node
);
1822 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1823 object and their offset differ in such a way that the locations cannot
1824 overlap, then they cannot alias. */
1825 poly_widest_int size1
, size2
;
1826 aff_tree off1
, off2
;
1828 /* Perform basic offset and type-based disambiguation. */
1829 if (!refs_may_alias_p_1 (&mem1
->mem
, &mem2
->mem
, tbaa_p
))
1832 /* The expansion of addresses may be a bit expensive, thus we only do
1833 the check at -O2 and higher optimization levels. */
1837 get_inner_reference_aff (mem1
->mem
.ref
, &off1
, &size1
);
1838 get_inner_reference_aff (mem2
->mem
.ref
, &off2
, &size2
);
1839 aff_combination_expand (&off1
, ttae_cache
);
1840 aff_combination_expand (&off2
, ttae_cache
);
1841 aff_combination_scale (&off1
, -1);
1842 aff_combination_add (&off2
, &off1
);
1844 if (aff_comb_cannot_overlap_p (&off2
, size1
, size2
))
1850 /* Compare function for bsearch searching for reference locations
1854 find_ref_loc_in_loop_cmp (const void *loop_
, const void *loc_
,
1855 void *bb_loop_postorder_
)
1857 unsigned *bb_loop_postorder
= (unsigned *)bb_loop_postorder_
;
1858 class loop
*loop
= (class loop
*)const_cast<void *>(loop_
);
1859 mem_ref_loc
*loc
= (mem_ref_loc
*)const_cast<void *>(loc_
);
1860 class loop
*loc_loop
= gimple_bb (loc
->stmt
)->loop_father
;
1861 if (loop
->num
== loc_loop
->num
1862 || flow_loop_nested_p (loop
, loc_loop
))
1864 return (bb_loop_postorder
[loop
->num
] < bb_loop_postorder
[loc_loop
->num
]
1868 /* Iterates over all locations of REF in LOOP and its subloops calling
1869 fn.operator() with the location as argument. When that operator
1870 returns true the iteration is stopped and true is returned.
1871 Otherwise false is returned. */
1873 template <typename FN
>
1875 for_all_locs_in_loop (class loop
*loop
, im_mem_ref
*ref
, FN fn
)
1880 /* Search for the cluster of locs in the accesses_in_loop vector
1881 which is sorted after postorder index of the loop father. */
1882 loc
= ref
->accesses_in_loop
.bsearch (loop
, find_ref_loc_in_loop_cmp
,
1887 /* We have found one location inside loop or its sub-loops. Iterate
1888 both forward and backward to cover the whole cluster. */
1889 i
= loc
- ref
->accesses_in_loop
.address ();
1893 mem_ref_loc
*l
= &ref
->accesses_in_loop
[i
];
1894 if (!flow_bb_inside_loop_p (loop
, gimple_bb (l
->stmt
)))
1899 for (i
= loc
- ref
->accesses_in_loop
.address ();
1900 i
< ref
->accesses_in_loop
.length (); ++i
)
1902 mem_ref_loc
*l
= &ref
->accesses_in_loop
[i
];
1903 if (!flow_bb_inside_loop_p (loop
, gimple_bb (l
->stmt
)))
1912 /* Rewrites location LOC by TMP_VAR. */
1914 class rewrite_mem_ref_loc
1917 rewrite_mem_ref_loc (tree tmp_var_
) : tmp_var (tmp_var_
) {}
1918 bool operator () (mem_ref_loc
*loc
);
1923 rewrite_mem_ref_loc::operator () (mem_ref_loc
*loc
)
1925 *loc
->ref
= tmp_var
;
1926 update_stmt (loc
->stmt
);
1930 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1933 rewrite_mem_refs (class loop
*loop
, im_mem_ref
*ref
, tree tmp_var
)
1935 for_all_locs_in_loop (loop
, ref
, rewrite_mem_ref_loc (tmp_var
));
1938 /* Stores the first reference location in LOCP. */
1940 class first_mem_ref_loc_1
1943 first_mem_ref_loc_1 (mem_ref_loc
**locp_
) : locp (locp_
) {}
1944 bool operator () (mem_ref_loc
*loc
);
1949 first_mem_ref_loc_1::operator () (mem_ref_loc
*loc
)
1955 /* Returns the first reference location to REF in LOOP. */
1957 static mem_ref_loc
*
1958 first_mem_ref_loc (class loop
*loop
, im_mem_ref
*ref
)
1960 mem_ref_loc
*locp
= NULL
;
1961 for_all_locs_in_loop (loop
, ref
, first_mem_ref_loc_1 (&locp
));
1965 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1968 The store is only done if MEM has changed. We do this so no
1969 changes to MEM occur on code paths that did not originally store
1972 The common case for execute_sm will transform:
1992 This function will generate:
2009 In case MEM and TMP_VAR are NULL the function will return the then
2010 block so the caller can insert (X) and other related stmts.
2014 execute_sm_if_changed (edge ex
, tree mem
, tree tmp_var
, tree flag
,
2015 edge preheader
, hash_set
<basic_block
> *flag_bbs
,
2016 edge
&append_cond_position
, edge
&last_cond_fallthru
)
2018 basic_block new_bb
, then_bb
, old_dest
;
2019 bool loop_has_only_one_exit
;
2021 gimple_stmt_iterator gsi
;
2023 bool irr
= ex
->flags
& EDGE_IRREDUCIBLE_LOOP
;
2025 profile_count count_sum
= profile_count::zero ();
2026 int nbbs
= 0, ncount
= 0;
2027 profile_probability flag_probability
= profile_probability::uninitialized ();
2029 /* Flag is set in FLAG_BBS. Determine probability that flag will be true
2032 This code may look fancy, but it cannot update profile very realistically
2033 because we do not know the probability that flag will be true at given
2036 We look for two interesting extremes
2037 - when exit is dominated by block setting the flag, we know it will
2038 always be true. This is a common case.
2039 - when all blocks setting the flag have very low frequency we know
2040 it will likely be false.
2041 In all other cases we default to 2/3 for flag being true. */
2043 for (hash_set
<basic_block
>::iterator it
= flag_bbs
->begin ();
2044 it
!= flag_bbs
->end (); ++it
)
2046 if ((*it
)->count
.initialized_p ())
2047 count_sum
+= (*it
)->count
, ncount
++;
2048 if (dominated_by_p (CDI_DOMINATORS
, ex
->src
, *it
))
2049 flag_probability
= profile_probability::always ();
2053 profile_probability cap
= profile_probability::always ().apply_scale (2, 3);
2055 if (flag_probability
.initialized_p ())
2057 else if (ncount
== nbbs
2058 && preheader
->count () >= count_sum
&& preheader
->count ().nonzero_p ())
2060 flag_probability
= count_sum
.probability_in (preheader
->count ());
2061 if (flag_probability
> cap
)
2062 flag_probability
= cap
;
2065 if (!flag_probability
.initialized_p ())
2066 flag_probability
= cap
;
2068 /* ?? Insert store after previous store if applicable. See note
2070 if (append_cond_position
)
2071 ex
= append_cond_position
;
2073 loop_has_only_one_exit
= single_pred_p (ex
->dest
);
2075 if (loop_has_only_one_exit
)
2076 ex
= split_block_after_labels (ex
->dest
);
2079 for (gphi_iterator gpi
= gsi_start_phis (ex
->dest
);
2080 !gsi_end_p (gpi
); gsi_next (&gpi
))
2082 gphi
*phi
= gpi
.phi ();
2083 if (virtual_operand_p (gimple_phi_result (phi
)))
2086 /* When the destination has a non-virtual PHI node with multiple
2087 predecessors make sure we preserve the PHI structure by
2088 forcing a forwarder block so that hoisting of that PHI will
2095 old_dest
= ex
->dest
;
2096 new_bb
= split_edge (ex
);
2097 then_bb
= create_empty_bb (new_bb
);
2098 then_bb
->count
= new_bb
->count
.apply_probability (flag_probability
);
2100 then_bb
->flags
= BB_IRREDUCIBLE_LOOP
;
2101 add_bb_to_loop (then_bb
, new_bb
->loop_father
);
2103 gsi
= gsi_start_bb (new_bb
);
2104 stmt
= gimple_build_cond (NE_EXPR
, flag
, boolean_false_node
,
2105 NULL_TREE
, NULL_TREE
);
2106 gsi_insert_after (&gsi
, stmt
, GSI_CONTINUE_LINKING
);
2108 /* Insert actual store. */
2111 gsi
= gsi_start_bb (then_bb
);
2112 stmt
= gimple_build_assign (unshare_expr (mem
), tmp_var
);
2113 gsi_insert_after (&gsi
, stmt
, GSI_CONTINUE_LINKING
);
2116 edge e1
= single_succ_edge (new_bb
);
2117 edge e2
= make_edge (new_bb
, then_bb
,
2118 EDGE_TRUE_VALUE
| (irr
? EDGE_IRREDUCIBLE_LOOP
: 0));
2119 e2
->probability
= flag_probability
;
2121 e1
->flags
|= EDGE_FALSE_VALUE
| (irr
? EDGE_IRREDUCIBLE_LOOP
: 0);
2122 e1
->flags
&= ~EDGE_FALLTHRU
;
2124 e1
->probability
= flag_probability
.invert ();
2126 then_old_edge
= make_single_succ_edge (then_bb
, old_dest
,
2127 EDGE_FALLTHRU
| (irr
? EDGE_IRREDUCIBLE_LOOP
: 0));
2129 set_immediate_dominator (CDI_DOMINATORS
, then_bb
, new_bb
);
2131 if (append_cond_position
)
2133 basic_block prevbb
= last_cond_fallthru
->src
;
2134 redirect_edge_succ (last_cond_fallthru
, new_bb
);
2135 set_immediate_dominator (CDI_DOMINATORS
, new_bb
, prevbb
);
2136 set_immediate_dominator (CDI_DOMINATORS
, old_dest
,
2137 recompute_dominator (CDI_DOMINATORS
, old_dest
));
2140 /* ?? Because stores may alias, they must happen in the exact
2141 sequence they originally happened. Save the position right after
2142 the (_lsm) store we just created so we can continue appending after
2143 it and maintain the original order. */
2144 append_cond_position
= then_old_edge
;
2145 last_cond_fallthru
= find_edge (new_bb
, old_dest
);
2147 if (!loop_has_only_one_exit
)
2148 for (gphi_iterator gpi
= gsi_start_phis (old_dest
);
2149 !gsi_end_p (gpi
); gsi_next (&gpi
))
2151 gphi
*phi
= gpi
.phi ();
2154 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2155 if (gimple_phi_arg_edge (phi
, i
)->src
== new_bb
)
2157 tree arg
= gimple_phi_arg_def (phi
, i
);
2158 add_phi_arg (phi
, arg
, then_old_edge
, UNKNOWN_LOCATION
);
2166 /* When REF is set on the location, set flag indicating the store. */
2168 class sm_set_flag_if_changed
2171 sm_set_flag_if_changed (tree flag_
, hash_set
<basic_block
> *bbs_
)
2172 : flag (flag_
), bbs (bbs_
) {}
2173 bool operator () (mem_ref_loc
*loc
);
2175 hash_set
<basic_block
> *bbs
;
2179 sm_set_flag_if_changed::operator () (mem_ref_loc
*loc
)
2181 /* Only set the flag for writes. */
2182 if (is_gimple_assign (loc
->stmt
)
2183 && gimple_assign_lhs_ptr (loc
->stmt
) == loc
->ref
)
2185 gimple_stmt_iterator gsi
= gsi_for_stmt (loc
->stmt
);
2186 gimple
*stmt
= gimple_build_assign (flag
, boolean_true_node
);
2187 gsi_insert_after (&gsi
, stmt
, GSI_CONTINUE_LINKING
);
2188 bbs
->add (gimple_bb (stmt
));
2193 /* Helper function for execute_sm. On every location where REF is
2194 set, set an appropriate flag indicating the store. */
2197 execute_sm_if_changed_flag_set (class loop
*loop
, im_mem_ref
*ref
,
2198 hash_set
<basic_block
> *bbs
)
2201 char *str
= get_lsm_tmp_name (ref
->mem
.ref
, ~0, "_flag");
2202 flag
= create_tmp_reg (boolean_type_node
, str
);
2203 for_all_locs_in_loop (loop
, ref
, sm_set_flag_if_changed (flag
, bbs
));
2211 hash_set
<basic_block
> flag_bbs
;
2214 /* Executes store motion of memory reference REF from LOOP.
2215 Exits from the LOOP are stored in EXITS. The initialization of the
2216 temporary variable is put to the preheader of the loop, and assignments
2217 to the reference from the temporary variable are emitted to exits. */
2220 execute_sm (class loop
*loop
, im_mem_ref
*ref
,
2221 hash_map
<im_mem_ref
*, sm_aux
*> &aux_map
, bool maybe_mt
,
2222 bool use_other_flag_var
)
2225 struct fmt_data fmt_data
;
2226 struct lim_aux_data
*lim_data
;
2227 bool multi_threaded_model_p
= false;
2228 gimple_stmt_iterator gsi
;
2229 sm_aux
*aux
= new sm_aux
;
2231 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2233 fprintf (dump_file
, "Executing store motion of ");
2234 print_generic_expr (dump_file
, ref
->mem
.ref
);
2235 fprintf (dump_file
, " from loop %d\n", loop
->num
);
2238 aux
->tmp_var
= create_tmp_reg (TREE_TYPE (ref
->mem
.ref
),
2239 get_lsm_tmp_name (ref
->mem
.ref
, ~0));
2241 fmt_data
.loop
= loop
;
2242 fmt_data
.orig_loop
= loop
;
2243 for_each_index (&ref
->mem
.ref
, force_move_till
, &fmt_data
);
2245 bool always_stored
= ref_always_accessed_p (loop
, ref
, true);
2247 && (bb_in_transaction (loop_preheader_edge (loop
)->src
)
2248 || (! flag_store_data_races
&& ! always_stored
)))
2249 multi_threaded_model_p
= true;
2251 if (multi_threaded_model_p
&& !use_other_flag_var
)
2253 = execute_sm_if_changed_flag_set (loop
, ref
, &aux
->flag_bbs
);
2255 aux
->store_flag
= NULL_TREE
;
2257 /* Remember variable setup. */
2258 aux_map
.put (ref
, aux
);
2260 rewrite_mem_refs (loop
, ref
, aux
->tmp_var
);
2262 /* Emit the load code on a random exit edge or into the latch if
2263 the loop does not exit, so that we are sure it will be processed
2264 by move_computations after all dependencies. */
2265 gsi
= gsi_for_stmt (first_mem_ref_loc (loop
, ref
)->stmt
);
2267 /* Avoid doing a load if there was no load of the ref in the loop.
2268 Esp. when the ref is not always stored we cannot optimize it
2269 away later. But when it is not always stored we must use a conditional
2271 if ((!always_stored
&& !multi_threaded_model_p
)
2272 || (ref
->loaded
&& bitmap_bit_p (ref
->loaded
, loop
->num
)))
2273 load
= gimple_build_assign (aux
->tmp_var
, unshare_expr (ref
->mem
.ref
));
2276 /* If not emitting a load mark the uninitialized state on the
2277 loop entry as not to be warned for. */
2278 tree uninit
= create_tmp_reg (TREE_TYPE (aux
->tmp_var
));
2279 suppress_warning (uninit
, OPT_Wuninitialized
);
2280 load
= gimple_build_assign (aux
->tmp_var
, uninit
);
2282 lim_data
= init_lim_data (load
);
2283 lim_data
->max_loop
= loop
;
2284 lim_data
->tgt_loop
= loop
;
2285 gsi_insert_before (&gsi
, load
, GSI_SAME_STMT
);
2287 if (aux
->store_flag
)
2289 load
= gimple_build_assign (aux
->store_flag
, boolean_false_node
);
2290 lim_data
= init_lim_data (load
);
2291 lim_data
->max_loop
= loop
;
2292 lim_data
->tgt_loop
= loop
;
2293 gsi_insert_before (&gsi
, load
, GSI_SAME_STMT
);
2297 /* sm_ord is used for ordinary stores we can retain order with respect
2299 sm_unord is used for conditional executed stores which need to be
2300 able to execute in arbitrary order with respect to other stores
2301 sm_other is used for stores we do not try to apply store motion to. */
2302 enum sm_kind
{ sm_ord
, sm_unord
, sm_other
};
2306 seq_entry (unsigned f
, sm_kind k
, tree fr
= NULL
)
2307 : first (f
), second (k
), from (fr
) {}
2314 execute_sm_exit (class loop
*loop
, edge ex
, vec
<seq_entry
> &seq
,
2315 hash_map
<im_mem_ref
*, sm_aux
*> &aux_map
, sm_kind kind
,
2316 edge
&append_cond_position
, edge
&last_cond_fallthru
)
2318 /* Sink the stores to exit from the loop. */
2319 for (unsigned i
= seq
.length (); i
> 0; --i
)
2321 im_mem_ref
*ref
= memory_accesses
.refs_list
[seq
[i
-1].first
];
2322 if (seq
[i
-1].second
== sm_other
)
2324 gcc_assert (kind
== sm_ord
&& seq
[i
-1].from
!= NULL_TREE
);
2325 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2327 fprintf (dump_file
, "Re-issueing dependent store of ");
2328 print_generic_expr (dump_file
, ref
->mem
.ref
);
2329 fprintf (dump_file
, " from loop %d on exit %d -> %d\n",
2330 loop
->num
, ex
->src
->index
, ex
->dest
->index
);
2332 gassign
*store
= gimple_build_assign (unshare_expr (ref
->mem
.ref
),
2334 gsi_insert_on_edge (ex
, store
);
2338 sm_aux
*aux
= *aux_map
.get (ref
);
2339 if (!aux
->store_flag
|| kind
== sm_ord
)
2342 store
= gimple_build_assign (unshare_expr (ref
->mem
.ref
),
2344 gsi_insert_on_edge (ex
, store
);
2347 execute_sm_if_changed (ex
, ref
->mem
.ref
, aux
->tmp_var
,
2349 loop_preheader_edge (loop
), &aux
->flag_bbs
,
2350 append_cond_position
, last_cond_fallthru
);
2355 /* Push the SM candidate at index PTR in the sequence SEQ down until
2356 we hit the next SM candidate. Return true if that went OK and
2357 false if we could not disambiguate agains another unrelated ref.
2358 Update *AT to the index where the candidate now resides. */
2361 sm_seq_push_down (vec
<seq_entry
> &seq
, unsigned ptr
, unsigned *at
)
2364 for (; ptr
> 0; --ptr
)
2366 seq_entry
&new_cand
= seq
[ptr
];
2367 seq_entry
&against
= seq
[ptr
-1];
2368 if (against
.second
== sm_ord
2369 || (against
.second
== sm_other
&& against
.from
!= NULL_TREE
))
2370 /* Found the tail of the sequence. */
2372 /* We may not ignore self-dependences here. */
2373 if (new_cand
.first
== against
.first
2374 || !refs_independent_p (memory_accesses
.refs_list
[new_cand
.first
],
2375 memory_accesses
.refs_list
[against
.first
],
2377 /* ??? Prune new_cand from the list of refs to apply SM to. */
2379 std::swap (new_cand
, against
);
2385 /* Computes the sequence of stores from candidates in REFS_NOT_IN_SEQ to SEQ
2386 walking backwards from VDEF (or the end of BB if VDEF is NULL). */
2389 sm_seq_valid_bb (class loop
*loop
, basic_block bb
, tree vdef
,
2390 vec
<seq_entry
> &seq
, bitmap refs_not_in_seq
,
2391 bitmap refs_not_supported
, bool forked
,
2392 bitmap fully_visited
)
2395 for (gimple_stmt_iterator gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
);
2398 vdef
= gimple_vdef (gsi_stmt (gsi
));
2404 gphi
*vphi
= get_virtual_phi (bb
);
2406 vdef
= gimple_phi_result (vphi
);
2410 if (single_pred_p (bb
))
2411 /* This handles the perfect nest case. */
2412 return sm_seq_valid_bb (loop
, single_pred (bb
), vdef
,
2413 seq
, refs_not_in_seq
, refs_not_supported
,
2414 forked
, fully_visited
);
2419 gimple
*def
= SSA_NAME_DEF_STMT (vdef
);
2420 if (gimple_bb (def
) != bb
)
2422 /* If we forked by processing a PHI do not allow our walk to
2423 merge again until we handle that robustly. */
2426 /* Mark refs_not_in_seq as unsupported. */
2427 bitmap_ior_into (refs_not_supported
, refs_not_in_seq
);
2430 /* Otherwise it doesn't really matter if we end up in different
2432 bb
= gimple_bb (def
);
2434 if (gphi
*phi
= dyn_cast
<gphi
*> (def
))
2436 /* Handle CFG merges. Until we handle forks (gimple_bb (def) != bb)
2437 this is still linear.
2438 Eventually we want to cache intermediate results per BB
2439 (but we can't easily cache for different exits?). */
2440 /* Stop at PHIs with possible backedges. */
2441 if (bb
== bb
->loop_father
->header
2442 || bb
->flags
& BB_IRREDUCIBLE_LOOP
)
2444 /* Mark refs_not_in_seq as unsupported. */
2445 bitmap_ior_into (refs_not_supported
, refs_not_in_seq
);
2448 if (gimple_phi_num_args (phi
) == 1)
2449 return sm_seq_valid_bb (loop
, gimple_phi_arg_edge (phi
, 0)->src
,
2450 gimple_phi_arg_def (phi
, 0), seq
,
2451 refs_not_in_seq
, refs_not_supported
,
2452 false, fully_visited
);
2453 if (bitmap_bit_p (fully_visited
,
2454 SSA_NAME_VERSION (gimple_phi_result (phi
))))
2456 auto_vec
<seq_entry
> first_edge_seq
;
2457 auto_bitmap
tem_refs_not_in_seq (&lim_bitmap_obstack
);
2459 bitmap_copy (tem_refs_not_in_seq
, refs_not_in_seq
);
2460 eret
= sm_seq_valid_bb (loop
, gimple_phi_arg_edge (phi
, 0)->src
,
2461 gimple_phi_arg_def (phi
, 0),
2463 tem_refs_not_in_seq
, refs_not_supported
,
2464 true, fully_visited
);
2467 /* Simplify our lives by pruning the sequence of !sm_ord. */
2468 while (!first_edge_seq
.is_empty ()
2469 && first_edge_seq
.last ().second
!= sm_ord
)
2470 first_edge_seq
.pop ();
2471 for (unsigned int i
= 1; i
< gimple_phi_num_args (phi
); ++i
)
2473 tree vuse
= gimple_phi_arg_def (phi
, i
);
2474 edge e
= gimple_phi_arg_edge (phi
, i
);
2475 auto_vec
<seq_entry
> edge_seq
;
2476 bitmap_and_compl (tem_refs_not_in_seq
,
2477 refs_not_in_seq
, refs_not_supported
);
2478 /* If we've marked all refs we search for as unsupported
2479 we can stop processing and use the sequence as before
2481 if (bitmap_empty_p (tem_refs_not_in_seq
))
2483 eret
= sm_seq_valid_bb (loop
, e
->src
, vuse
, edge_seq
,
2484 tem_refs_not_in_seq
, refs_not_supported
,
2485 true, fully_visited
);
2488 /* Simplify our lives by pruning the sequence of !sm_ord. */
2489 while (!edge_seq
.is_empty ()
2490 && edge_seq
.last ().second
!= sm_ord
)
2492 unsigned min_len
= MIN(first_edge_seq
.length (),
2493 edge_seq
.length ());
2494 /* Incrementally merge seqs into first_edge_seq. */
2495 int first_uneq
= -1;
2496 auto_vec
<seq_entry
, 2> extra_refs
;
2497 for (unsigned int i
= 0; i
< min_len
; ++i
)
2499 /* ??? We can more intelligently merge when we face different
2500 order by additional sinking operations in one sequence.
2501 For now we simply mark them as to be processed by the
2502 not order-preserving SM code. */
2503 if (first_edge_seq
[i
].first
!= edge_seq
[i
].first
)
2505 if (first_edge_seq
[i
].second
== sm_ord
)
2506 bitmap_set_bit (refs_not_supported
,
2507 first_edge_seq
[i
].first
);
2508 if (edge_seq
[i
].second
== sm_ord
)
2509 bitmap_set_bit (refs_not_supported
, edge_seq
[i
].first
);
2510 first_edge_seq
[i
].second
= sm_other
;
2511 first_edge_seq
[i
].from
= NULL_TREE
;
2512 /* Record the dropped refs for later processing. */
2513 if (first_uneq
== -1)
2515 extra_refs
.safe_push (seq_entry (edge_seq
[i
].first
,
2516 sm_other
, NULL_TREE
));
2518 /* sm_other prevails. */
2519 else if (first_edge_seq
[i
].second
!= edge_seq
[i
].second
)
2521 /* Make sure the ref is marked as not supported. */
2522 bitmap_set_bit (refs_not_supported
,
2523 first_edge_seq
[i
].first
);
2524 first_edge_seq
[i
].second
= sm_other
;
2525 first_edge_seq
[i
].from
= NULL_TREE
;
2527 else if (first_edge_seq
[i
].second
== sm_other
2528 && first_edge_seq
[i
].from
!= NULL_TREE
2529 && (edge_seq
[i
].from
== NULL_TREE
2530 || !operand_equal_p (first_edge_seq
[i
].from
,
2531 edge_seq
[i
].from
, 0)))
2532 first_edge_seq
[i
].from
= NULL_TREE
;
2534 /* Any excess elements become sm_other since they are now
2535 coonditionally executed. */
2536 if (first_edge_seq
.length () > edge_seq
.length ())
2538 for (unsigned i
= edge_seq
.length ();
2539 i
< first_edge_seq
.length (); ++i
)
2541 if (first_edge_seq
[i
].second
== sm_ord
)
2542 bitmap_set_bit (refs_not_supported
,
2543 first_edge_seq
[i
].first
);
2544 first_edge_seq
[i
].second
= sm_other
;
2547 else if (edge_seq
.length () > first_edge_seq
.length ())
2549 if (first_uneq
== -1)
2550 first_uneq
= first_edge_seq
.length ();
2551 for (unsigned i
= first_edge_seq
.length ();
2552 i
< edge_seq
.length (); ++i
)
2554 if (edge_seq
[i
].second
== sm_ord
)
2555 bitmap_set_bit (refs_not_supported
, edge_seq
[i
].first
);
2556 extra_refs
.safe_push (seq_entry (edge_seq
[i
].first
,
2557 sm_other
, NULL_TREE
));
2560 /* Put unmerged refs at first_uneq to force dependence checking
2562 if (first_uneq
!= -1)
2564 /* Missing ordered_splice_at. */
2565 if ((unsigned)first_uneq
== first_edge_seq
.length ())
2566 first_edge_seq
.safe_splice (extra_refs
);
2569 unsigned fes_length
= first_edge_seq
.length ();
2570 first_edge_seq
.safe_grow (fes_length
2571 + extra_refs
.length ());
2572 memmove (&first_edge_seq
[first_uneq
+ extra_refs
.length ()],
2573 &first_edge_seq
[first_uneq
],
2574 (fes_length
- first_uneq
) * sizeof (seq_entry
));
2575 memcpy (&first_edge_seq
[first_uneq
],
2576 extra_refs
.address (),
2577 extra_refs
.length () * sizeof (seq_entry
));
2581 /* Use the sequence from the first edge and push SMs down. */
2582 for (unsigned i
= 0; i
< first_edge_seq
.length (); ++i
)
2584 unsigned id
= first_edge_seq
[i
].first
;
2585 seq
.safe_push (first_edge_seq
[i
]);
2587 if ((first_edge_seq
[i
].second
== sm_ord
2588 || (first_edge_seq
[i
].second
== sm_other
2589 && first_edge_seq
[i
].from
!= NULL_TREE
))
2590 && !sm_seq_push_down (seq
, seq
.length () - 1, &new_idx
))
2592 if (first_edge_seq
[i
].second
== sm_ord
)
2593 bitmap_set_bit (refs_not_supported
, id
);
2594 /* Mark it sm_other. */
2595 seq
[new_idx
].second
= sm_other
;
2596 seq
[new_idx
].from
= NULL_TREE
;
2599 bitmap_set_bit (fully_visited
,
2600 SSA_NAME_VERSION (gimple_phi_result (phi
)));
2603 lim_aux_data
*data
= get_lim_data (def
);
2605 if (data
->ref
== UNANALYZABLE_MEM_ID
)
2607 /* Stop at memory references which we can't move. */
2608 else if (memory_accesses
.refs_list
[data
->ref
]->mem
.ref
== error_mark_node
)
2610 /* Mark refs_not_in_seq as unsupported. */
2611 bitmap_ior_into (refs_not_supported
, refs_not_in_seq
);
2614 /* One of the stores we want to apply SM to and we've not yet seen. */
2615 else if (bitmap_clear_bit (refs_not_in_seq
, data
->ref
))
2617 seq
.safe_push (seq_entry (data
->ref
, sm_ord
));
2619 /* 1) push it down the queue until a SMed
2620 and not ignored ref is reached, skipping all not SMed refs
2621 and ignored refs via non-TBAA disambiguation. */
2623 if (!sm_seq_push_down (seq
, seq
.length () - 1, &new_idx
)
2624 /* If that fails but we did not fork yet continue, we'll see
2625 to re-materialize all of the stores in the sequence then.
2626 Further stores will only be pushed up to this one. */
2629 bitmap_set_bit (refs_not_supported
, data
->ref
);
2630 /* Mark it sm_other. */
2631 seq
[new_idx
].second
= sm_other
;
2634 /* 2) check whether we've seen all refs we want to SM and if so
2635 declare success for the active exit */
2636 if (bitmap_empty_p (refs_not_in_seq
))
2640 /* Another store not part of the final sequence. Simply push it. */
2641 seq
.safe_push (seq_entry (data
->ref
, sm_other
,
2642 gimple_assign_rhs1 (def
)));
2644 vdef
= gimple_vuse (def
);
2649 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2650 edges of the LOOP. */
2653 hoist_memory_references (class loop
*loop
, bitmap mem_refs
,
2654 const vec
<edge
> &exits
)
2660 /* There's a special case we can use ordered re-materialization for
2661 conditionally excuted stores which is when all stores in the loop
2662 happen in the same basic-block. In that case we know we'll reach
2663 all stores and thus can simply process that BB and emit a single
2664 conditional block of ordered materializations. See PR102436. */
2665 basic_block single_store_bb
= NULL
;
2666 EXECUTE_IF_SET_IN_BITMAP (&memory_accesses
.all_refs_stored_in_loop
[loop
->num
],
2670 ref
= memory_accesses
.refs_list
[i
];
2671 for (auto loc
: ref
->accesses_in_loop
)
2672 if (!gimple_vdef (loc
.stmt
))
2674 else if (!single_store_bb
)
2676 single_store_bb
= gimple_bb (loc
.stmt
);
2677 bool conditional
= false;
2678 for (edge e
: exits
)
2679 if (!dominated_by_p (CDI_DOMINATORS
, e
->src
, single_store_bb
))
2681 /* Conditional as seen from e. */
2691 else if (single_store_bb
!= gimple_bb (loc
.stmt
))
2698 single_store_bb
= NULL
;
2702 if (single_store_bb
)
2704 /* Analyze the single block with stores. */
2705 auto_bitmap fully_visited
;
2706 auto_bitmap refs_not_supported
;
2707 auto_bitmap refs_not_in_seq
;
2708 auto_vec
<seq_entry
> seq
;
2709 bitmap_copy (refs_not_in_seq
, mem_refs
);
2710 int res
= sm_seq_valid_bb (loop
, single_store_bb
, NULL_TREE
,
2711 seq
, refs_not_in_seq
, refs_not_supported
,
2712 false, fully_visited
);
2715 /* Unhandled refs can still fail this. */
2716 bitmap_clear (mem_refs
);
2720 /* We cannot handle sm_other since we neither remember the
2721 stored location nor the value at the point we execute them. */
2722 for (unsigned i
= 0; i
< seq
.length (); ++i
)
2725 if (seq
[i
].second
== sm_other
2726 && seq
[i
].from
!= NULL_TREE
)
2727 seq
[i
].from
= NULL_TREE
;
2728 else if ((seq
[i
].second
== sm_ord
2729 || (seq
[i
].second
== sm_other
2730 && seq
[i
].from
!= NULL_TREE
))
2731 && !sm_seq_push_down (seq
, i
, &new_i
))
2733 bitmap_set_bit (refs_not_supported
, seq
[new_i
].first
);
2734 seq
[new_i
].second
= sm_other
;
2735 seq
[new_i
].from
= NULL_TREE
;
2738 bitmap_and_compl_into (mem_refs
, refs_not_supported
);
2739 if (bitmap_empty_p (mem_refs
))
2743 while (seq
.last ().second
== sm_other
2744 && seq
.last ().from
== NULL_TREE
)
2747 hash_map
<im_mem_ref
*, sm_aux
*> aux_map
;
2749 /* Execute SM but delay the store materialization for ordered
2750 sequences on exit. */
2751 bool first_p
= true;
2752 EXECUTE_IF_SET_IN_BITMAP (mem_refs
, 0, i
, bi
)
2754 ref
= memory_accesses
.refs_list
[i
];
2755 execute_sm (loop
, ref
, aux_map
, true, !first_p
);
2759 /* Get at the single flag variable we eventually produced. */
2761 = memory_accesses
.refs_list
[bitmap_first_set_bit (mem_refs
)];
2762 sm_aux
*aux
= *aux_map
.get (ref
);
2764 /* Materialize ordered store sequences on exits. */
2766 FOR_EACH_VEC_ELT (exits
, i
, e
)
2768 edge append_cond_position
= NULL
;
2769 edge last_cond_fallthru
= NULL
;
2771 /* Construct the single flag variable control flow and insert
2772 the ordered seq of stores in the then block. With
2773 -fstore-data-races we can do the stores unconditionally. */
2774 if (aux
->store_flag
)
2777 (execute_sm_if_changed (e
, NULL_TREE
, NULL_TREE
,
2779 loop_preheader_edge (loop
),
2780 &aux
->flag_bbs
, append_cond_position
,
2781 last_cond_fallthru
));
2782 execute_sm_exit (loop
, insert_e
, seq
, aux_map
, sm_ord
,
2783 append_cond_position
, last_cond_fallthru
);
2784 gsi_commit_one_edge_insert (insert_e
, NULL
);
2787 for (hash_map
<im_mem_ref
*, sm_aux
*>::iterator iter
= aux_map
.begin ();
2788 iter
!= aux_map
.end (); ++iter
)
2789 delete (*iter
).second
;
2794 /* To address PR57359 before actually applying store-motion check
2795 the candidates found for validity with regards to reordering
2796 relative to other stores which we until here disambiguated using
2797 TBAA which isn't valid.
2798 What matters is the order of the last stores to the mem_refs
2799 with respect to the other stores of the loop at the point of the
2802 /* For each exit compute the store order, pruning from mem_refs
2804 /* The complexity of this is at least
2805 O(number of exits * number of SM refs) but more approaching
2806 O(number of exits * number of SM refs * number of stores). */
2807 /* ??? Somehow do this in a single sweep over the loop body. */
2808 auto_vec
<std::pair
<edge
, vec
<seq_entry
> > > sms
;
2809 auto_bitmap
refs_not_supported (&lim_bitmap_obstack
);
2811 FOR_EACH_VEC_ELT (exits
, i
, e
)
2815 auto_bitmap
refs_not_in_seq (&lim_bitmap_obstack
);
2816 bitmap_and_compl (refs_not_in_seq
, mem_refs
, refs_not_supported
);
2817 if (bitmap_empty_p (refs_not_in_seq
))
2822 auto_bitmap fully_visited
;
2823 int res
= sm_seq_valid_bb (loop
, e
->src
, NULL_TREE
,
2824 seq
, refs_not_in_seq
,
2825 refs_not_supported
, false,
2829 bitmap_copy (refs_not_supported
, mem_refs
);
2833 sms
.safe_push (std::make_pair (e
, seq
));
2836 /* Prune pruned mem_refs from earlier processed exits. */
2837 bool changed
= !bitmap_empty_p (refs_not_supported
);
2841 std::pair
<edge
, vec
<seq_entry
> > *seq
;
2842 FOR_EACH_VEC_ELT (sms
, i
, seq
)
2844 bool need_to_push
= false;
2845 for (unsigned i
= 0; i
< seq
->second
.length (); ++i
)
2847 sm_kind kind
= seq
->second
[i
].second
;
2848 if (kind
== sm_other
&& seq
->second
[i
].from
== NULL_TREE
)
2850 unsigned id
= seq
->second
[i
].first
;
2853 && bitmap_bit_p (refs_not_supported
, id
))
2855 seq
->second
[i
].second
= sm_other
;
2856 gcc_assert (seq
->second
[i
].from
== NULL_TREE
);
2857 need_to_push
= true;
2859 else if (need_to_push
2860 && !sm_seq_push_down (seq
->second
, i
, &new_idx
))
2862 /* We need to push down both sm_ord and sm_other
2863 but for the latter we need to disqualify all
2867 if (bitmap_set_bit (refs_not_supported
, id
))
2869 seq
->second
[new_idx
].second
= sm_other
;
2873 for (unsigned j
= seq
->second
.length () - 1;
2875 if (seq
->second
[j
].second
== sm_ord
2876 && bitmap_set_bit (refs_not_supported
,
2877 seq
->second
[j
].first
))
2879 seq
->second
.truncate (new_idx
);
2886 std::pair
<edge
, vec
<seq_entry
> > *seq
;
2887 FOR_EACH_VEC_ELT (sms
, i
, seq
)
2889 /* Prune sm_other from the end. */
2890 while (!seq
->second
.is_empty ()
2891 && seq
->second
.last ().second
== sm_other
)
2893 /* Prune duplicates from the start. */
2894 auto_bitmap
seen (&lim_bitmap_obstack
);
2896 for (j
= k
= 0; j
< seq
->second
.length (); ++j
)
2897 if (bitmap_set_bit (seen
, seq
->second
[j
].first
))
2900 seq
->second
[k
] = seq
->second
[j
];
2903 seq
->second
.truncate (k
);
2906 FOR_EACH_VEC_ELT (seq
->second
, j
, e
)
2907 gcc_assert (e
->second
== sm_ord
2908 || (e
->second
== sm_other
&& e
->from
!= NULL_TREE
));
2911 /* Verify dependence for refs we cannot handle with the order preserving
2912 code (refs_not_supported) or prune them from mem_refs. */
2913 auto_vec
<seq_entry
> unord_refs
;
2914 EXECUTE_IF_SET_IN_BITMAP (refs_not_supported
, 0, i
, bi
)
2916 ref
= memory_accesses
.refs_list
[i
];
2917 if (!ref_indep_loop_p (loop
, ref
, sm_waw
))
2918 bitmap_clear_bit (mem_refs
, i
);
2919 /* We've now verified store order for ref with respect to all other
2920 stores in the loop does not matter. */
2922 unord_refs
.safe_push (seq_entry (i
, sm_unord
));
2925 hash_map
<im_mem_ref
*, sm_aux
*> aux_map
;
2927 /* Execute SM but delay the store materialization for ordered
2928 sequences on exit. */
2929 EXECUTE_IF_SET_IN_BITMAP (mem_refs
, 0, i
, bi
)
2931 ref
= memory_accesses
.refs_list
[i
];
2932 execute_sm (loop
, ref
, aux_map
, bitmap_bit_p (refs_not_supported
, i
),
2936 /* Materialize ordered store sequences on exits. */
2937 FOR_EACH_VEC_ELT (exits
, i
, e
)
2939 edge append_cond_position
= NULL
;
2940 edge last_cond_fallthru
= NULL
;
2941 if (i
< sms
.length ())
2943 gcc_assert (sms
[i
].first
== e
);
2944 execute_sm_exit (loop
, e
, sms
[i
].second
, aux_map
, sm_ord
,
2945 append_cond_position
, last_cond_fallthru
);
2946 sms
[i
].second
.release ();
2948 if (!unord_refs
.is_empty ())
2949 execute_sm_exit (loop
, e
, unord_refs
, aux_map
, sm_unord
,
2950 append_cond_position
, last_cond_fallthru
);
2951 /* Commit edge inserts here to preserve the order of stores
2952 when an exit exits multiple loops. */
2953 gsi_commit_one_edge_insert (e
, NULL
);
2956 for (hash_map
<im_mem_ref
*, sm_aux
*>::iterator iter
= aux_map
.begin ();
2957 iter
!= aux_map
.end (); ++iter
)
2958 delete (*iter
).second
;
2961 class ref_always_accessed
2964 ref_always_accessed (class loop
*loop_
, bool stored_p_
)
2965 : loop (loop_
), stored_p (stored_p_
) {}
2966 bool operator () (mem_ref_loc
*loc
);
2972 ref_always_accessed::operator () (mem_ref_loc
*loc
)
2974 class loop
*must_exec
;
2976 struct lim_aux_data
*lim_data
= get_lim_data (loc
->stmt
);
2980 /* If we require an always executed store make sure the statement
2984 tree lhs
= gimple_get_lhs (loc
->stmt
);
2986 || !(DECL_P (lhs
) || REFERENCE_CLASS_P (lhs
)))
2990 must_exec
= lim_data
->always_executed_in
;
2994 if (must_exec
== loop
2995 || flow_loop_nested_p (must_exec
, loop
))
3001 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
3002 make sure REF is always stored to in LOOP. */
3005 ref_always_accessed_p (class loop
*loop
, im_mem_ref
*ref
, bool stored_p
)
3007 return for_all_locs_in_loop (loop
, ref
,
3008 ref_always_accessed (loop
, stored_p
));
3011 /* Returns true if REF1 and REF2 are independent. */
3014 refs_independent_p (im_mem_ref
*ref1
, im_mem_ref
*ref2
, bool tbaa_p
)
3019 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3020 fprintf (dump_file
, "Querying dependency of refs %u and %u: ",
3021 ref1
->id
, ref2
->id
);
3023 if (mem_refs_may_alias_p (ref1
, ref2
, &memory_accesses
.ttae_cache
, tbaa_p
))
3025 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3026 fprintf (dump_file
, "dependent.\n");
3031 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3032 fprintf (dump_file
, "independent.\n");
3037 /* Returns true if REF is independent on all other accessess in LOOP.
3038 KIND specifies the kind of dependence to consider.
3039 lim_raw assumes REF is not stored in LOOP and disambiguates RAW
3040 dependences so if true REF can be hoisted out of LOOP
3041 sm_war disambiguates a store REF against all other loads to see
3042 whether the store can be sunk across loads out of LOOP
3043 sm_waw disambiguates a store REF against all other stores to see
3044 whether the store can be sunk across stores out of LOOP. */
3047 ref_indep_loop_p (class loop
*loop
, im_mem_ref
*ref
, dep_kind kind
)
3049 bool indep_p
= true;
3050 bitmap refs_to_check
;
3053 refs_to_check
= &memory_accesses
.refs_loaded_in_loop
[loop
->num
];
3055 refs_to_check
= &memory_accesses
.refs_stored_in_loop
[loop
->num
];
3057 if (bitmap_bit_p (refs_to_check
, UNANALYZABLE_MEM_ID
)
3058 || ref
->mem
.ref
== error_mark_node
)
3062 /* tri-state, { unknown, independent, dependent } */
3063 dep_state state
= query_loop_dependence (loop
, ref
, kind
);
3064 if (state
!= dep_unknown
)
3065 return state
== dep_independent
? true : false;
3067 class loop
*inner
= loop
->inner
;
3070 if (!ref_indep_loop_p (inner
, ref
, kind
))
3075 inner
= inner
->next
;
3082 EXECUTE_IF_SET_IN_BITMAP (refs_to_check
, 0, i
, bi
)
3084 im_mem_ref
*aref
= memory_accesses
.refs_list
[i
];
3085 if (aref
->mem
.ref
== error_mark_node
)
3087 gimple
*stmt
= aref
->accesses_in_loop
[0].stmt
;
3089 && ref_maybe_used_by_stmt_p (stmt
, &ref
->mem
,
3091 || stmt_may_clobber_ref_p_1 (stmt
, &ref
->mem
,
3098 else if (!refs_independent_p (ref
, aref
, kind
!= sm_waw
))
3107 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3108 fprintf (dump_file
, "Querying %s dependencies of ref %u in loop %d: %s\n",
3109 kind
== lim_raw
? "RAW" : (kind
== sm_war
? "SM WAR" : "SM WAW"),
3110 ref
->id
, loop
->num
, indep_p
? "independent" : "dependent");
3112 /* Record the computed result in the cache. */
3113 record_loop_dependence (loop
, ref
, kind
,
3114 indep_p
? dep_independent
: dep_dependent
);
3119 class ref_in_loop_hot_body
3122 ref_in_loop_hot_body (class loop
*loop_
) : l (loop_
) {}
3123 bool operator () (mem_ref_loc
*loc
);
3127 /* Check the coldest loop between loop L and innermost loop. If there is one
3128 cold loop between L and INNER_LOOP, store motion can be performed, otherwise
3129 no cold loop means no store motion. get_coldest_out_loop also handles cases
3130 when l is inner_loop. */
3132 ref_in_loop_hot_body::operator () (mem_ref_loc
*loc
)
3134 basic_block curr_bb
= gimple_bb (loc
->stmt
);
3135 class loop
*inner_loop
= curr_bb
->loop_father
;
3136 return get_coldest_out_loop (l
, inner_loop
, curr_bb
);
3140 /* Returns true if we can perform store motion of REF from LOOP. */
3143 can_sm_ref_p (class loop
*loop
, im_mem_ref
*ref
)
3147 /* Can't hoist unanalyzable refs. */
3148 if (!MEM_ANALYZABLE (ref
))
3151 /* Can't hoist/sink aggregate copies. */
3152 if (ref
->mem
.ref
== error_mark_node
)
3155 /* It should be movable. */
3156 if (!is_gimple_reg_type (TREE_TYPE (ref
->mem
.ref
))
3157 || TREE_THIS_VOLATILE (ref
->mem
.ref
)
3158 || !for_each_index (&ref
->mem
.ref
, may_move_till
, loop
))
3161 /* If it can throw fail, we do not properly update EH info. */
3162 if (tree_could_throw_p (ref
->mem
.ref
))
3165 /* If it can trap, it must be always executed in LOOP.
3166 Readonly memory locations may trap when storing to them, but
3167 tree_could_trap_p is a predicate for rvalues, so check that
3169 base
= get_base_address (ref
->mem
.ref
);
3170 if ((tree_could_trap_p (ref
->mem
.ref
)
3171 || (DECL_P (base
) && TREE_READONLY (base
)))
3172 /* ??? We can at least use false here, allowing loads? We
3173 are forcing conditional stores if the ref is not always
3174 stored to later anyway. So this would only guard
3175 the load we need to emit. Thus when the ref is not
3176 loaded we can elide this completely? */
3177 && !ref_always_accessed_p (loop
, ref
, true))
3180 /* Verify all loads of ref can be hoisted. */
3182 && bitmap_bit_p (ref
->loaded
, loop
->num
)
3183 && !ref_indep_loop_p (loop
, ref
, lim_raw
))
3186 /* Verify the candidate can be disambiguated against all loads,
3187 that is, we can elide all in-loop stores. Disambiguation
3188 against stores is done later when we cannot guarantee preserving
3189 the order of stores. */
3190 if (!ref_indep_loop_p (loop
, ref
, sm_war
))
3193 /* Verify whether the candidate is hot for LOOP. Only do store motion if the
3194 candidate's profile count is hot. Statement in cold BB shouldn't be moved
3195 out of it's loop_father. */
3196 if (!for_all_locs_in_loop (loop
, ref
, ref_in_loop_hot_body (loop
)))
3202 /* Marks the references in LOOP for that store motion should be performed
3203 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
3204 motion was performed in one of the outer loops. */
3207 find_refs_for_sm (class loop
*loop
, bitmap sm_executed
, bitmap refs_to_sm
)
3209 bitmap refs
= &memory_accesses
.all_refs_stored_in_loop
[loop
->num
];
3214 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs
, sm_executed
, 0, i
, bi
)
3216 ref
= memory_accesses
.refs_list
[i
];
3217 if (can_sm_ref_p (loop
, ref
) && dbg_cnt (lim
))
3218 bitmap_set_bit (refs_to_sm
, i
);
3222 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
3223 for a store motion optimization (i.e. whether we can insert statement
3227 loop_suitable_for_sm (class loop
*loop ATTRIBUTE_UNUSED
,
3228 const vec
<edge
> &exits
)
3233 FOR_EACH_VEC_ELT (exits
, i
, ex
)
3234 if (ex
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
3240 /* Try to perform store motion for all memory references modified inside
3241 LOOP. SM_EXECUTED is the bitmap of the memory references for that
3242 store motion was executed in one of the outer loops. */
3245 store_motion_loop (class loop
*loop
, bitmap sm_executed
)
3247 auto_vec
<edge
> exits
= get_loop_exit_edges (loop
);
3248 class loop
*subloop
;
3249 bitmap sm_in_loop
= BITMAP_ALLOC (&lim_bitmap_obstack
);
3251 if (loop_suitable_for_sm (loop
, exits
))
3253 find_refs_for_sm (loop
, sm_executed
, sm_in_loop
);
3254 if (!bitmap_empty_p (sm_in_loop
))
3255 hoist_memory_references (loop
, sm_in_loop
, exits
);
3258 bitmap_ior_into (sm_executed
, sm_in_loop
);
3259 for (subloop
= loop
->inner
; subloop
!= NULL
; subloop
= subloop
->next
)
3260 store_motion_loop (subloop
, sm_executed
);
3261 bitmap_and_compl_into (sm_executed
, sm_in_loop
);
3262 BITMAP_FREE (sm_in_loop
);
3265 /* Try to perform store motion for all memory references modified inside
3269 do_store_motion (void)
3272 bitmap sm_executed
= BITMAP_ALLOC (&lim_bitmap_obstack
);
3274 for (loop
= current_loops
->tree_root
->inner
; loop
!= NULL
; loop
= loop
->next
)
3275 store_motion_loop (loop
, sm_executed
);
3277 BITMAP_FREE (sm_executed
);
3280 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
3281 for each such basic block bb records the outermost loop for that execution
3282 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
3283 blocks that contain a nonpure call. */
3286 fill_always_executed_in_1 (class loop
*loop
, sbitmap contains_call
)
3288 basic_block bb
= NULL
, last
= NULL
;
3290 class loop
*inn_loop
= loop
;
3292 if (ALWAYS_EXECUTED_IN (loop
->header
) == NULL
)
3294 auto_vec
<basic_block
, 64> worklist
;
3295 worklist
.reserve_exact (loop
->num_nodes
);
3296 worklist
.quick_push (loop
->header
);
3300 bb
= worklist
.pop ();
3302 if (!flow_bb_inside_loop_p (inn_loop
, bb
))
3304 /* When we are leaving a possibly infinite inner loop
3305 we have to stop processing. */
3306 if (!finite_loop_p (inn_loop
))
3308 /* If the loop was finite we can continue with processing
3309 the loop we exited to. */
3310 inn_loop
= bb
->loop_father
;
3313 if (dominated_by_p (CDI_DOMINATORS
, loop
->latch
, bb
))
3316 if (bitmap_bit_p (contains_call
, bb
->index
))
3319 /* If LOOP exits from this BB stop processing. */
3320 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
3321 if (!flow_bb_inside_loop_p (loop
, e
->dest
))
3326 /* A loop might be infinite (TODO use simple loop analysis
3327 to disprove this if possible). */
3328 if (bb
->flags
& BB_IRREDUCIBLE_LOOP
)
3331 if (bb
->loop_father
->header
== bb
)
3332 /* Record that we enter into a subloop since it might not
3334 /* ??? Entering into a not always executed subloop makes
3335 fill_always_executed_in quadratic in loop depth since
3336 we walk those loops N times. This is not a problem
3337 in practice though, see PR102253 for a worst-case testcase. */
3338 inn_loop
= bb
->loop_father
;
3340 /* Walk the body of LOOP sorted by dominance relation. Additionally,
3341 if a basic block S dominates the latch, then only blocks dominated
3343 This is get_loop_body_in_dom_order using a worklist algorithm and
3344 stopping once we are no longer interested in visiting further
3346 unsigned old_len
= worklist
.length ();
3347 unsigned postpone
= 0;
3348 for (basic_block son
= first_dom_son (CDI_DOMINATORS
, bb
);
3350 son
= next_dom_son (CDI_DOMINATORS
, son
))
3352 if (!flow_bb_inside_loop_p (loop
, son
))
3354 if (dominated_by_p (CDI_DOMINATORS
, loop
->latch
, son
))
3355 postpone
= worklist
.length ();
3356 worklist
.quick_push (son
);
3359 /* Postponing the block that dominates the latch means
3360 processing it last and thus putting it earliest in the
3362 std::swap (worklist
[old_len
], worklist
[postpone
]);
3364 while (!worklist
.is_empty ());
3368 if (dump_enabled_p ())
3369 dump_printf (MSG_NOTE
, "BB %d is always executed in loop %d\n",
3370 last
->index
, loop
->num
);
3371 SET_ALWAYS_EXECUTED_IN (last
, loop
);
3372 if (last
== loop
->header
)
3374 last
= get_immediate_dominator (CDI_DOMINATORS
, last
);
3378 for (loop
= loop
->inner
; loop
; loop
= loop
->next
)
3379 fill_always_executed_in_1 (loop
, contains_call
);
3382 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
3383 for each such basic block bb records the outermost loop for that execution
3384 of its header implies execution of bb. */
3387 fill_always_executed_in (void)
3392 auto_sbitmap
contains_call (last_basic_block_for_fn (cfun
));
3393 bitmap_clear (contains_call
);
3394 FOR_EACH_BB_FN (bb
, cfun
)
3396 gimple_stmt_iterator gsi
;
3397 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
3399 if (nonpure_call_p (gsi_stmt (gsi
)))
3403 if (!gsi_end_p (gsi
))
3404 bitmap_set_bit (contains_call
, bb
->index
);
3407 for (loop
= current_loops
->tree_root
->inner
; loop
; loop
= loop
->next
)
3408 fill_always_executed_in_1 (loop
, contains_call
);
3411 /* Find the coldest loop preheader for LOOP, also find the nearest hotter loop
3412 to LOOP. Then recursively iterate each inner loop. */
3415 fill_coldest_and_hotter_out_loop (class loop
*coldest_loop
,
3416 class loop
*hotter_loop
, class loop
*loop
)
3418 if (bb_colder_than_loop_preheader (loop_preheader_edge (loop
)->src
,
3420 coldest_loop
= loop
;
3422 coldest_outermost_loop
[loop
->num
] = coldest_loop
;
3424 hotter_than_inner_loop
[loop
->num
] = NULL
;
3425 class loop
*outer_loop
= loop_outer (loop
);
3427 && bb_colder_than_loop_preheader (loop_preheader_edge (loop
)->src
,
3429 hotter_than_inner_loop
[loop
->num
] = hotter_loop
;
3431 if (outer_loop
&& outer_loop
!= current_loops
->tree_root
3432 && bb_colder_than_loop_preheader (loop_preheader_edge (loop
)->src
,
3434 hotter_than_inner_loop
[loop
->num
] = outer_loop
;
3436 if (dump_enabled_p ())
3438 dump_printf (MSG_NOTE
, "loop %d's coldest_outermost_loop is %d, ",
3439 loop
->num
, coldest_loop
->num
);
3440 if (hotter_than_inner_loop
[loop
->num
])
3441 dump_printf (MSG_NOTE
, "hotter_than_inner_loop is %d\n",
3442 hotter_than_inner_loop
[loop
->num
]->num
);
3444 dump_printf (MSG_NOTE
, "hotter_than_inner_loop is NULL\n");
3447 class loop
*inner_loop
;
3448 for (inner_loop
= loop
->inner
; inner_loop
; inner_loop
= inner_loop
->next
)
3449 fill_coldest_and_hotter_out_loop (coldest_loop
,
3450 hotter_than_inner_loop
[loop
->num
],
3454 /* Compute the global information needed by the loop invariant motion pass. */
3457 tree_ssa_lim_initialize (bool store_motion
)
3461 bitmap_obstack_initialize (&lim_bitmap_obstack
);
3462 gcc_obstack_init (&mem_ref_obstack
);
3463 lim_aux_data_map
= new hash_map
<gimple
*, lim_aux_data
*>;
3466 compute_transaction_bits ();
3468 memory_accesses
.refs
= new hash_table
<mem_ref_hasher
> (100);
3469 memory_accesses
.refs_list
.create (100);
3470 /* Allocate a special, unanalyzable mem-ref with ID zero. */
3471 memory_accesses
.refs_list
.quick_push
3472 (mem_ref_alloc (NULL
, 0, UNANALYZABLE_MEM_ID
));
3474 memory_accesses
.refs_loaded_in_loop
.create (number_of_loops (cfun
));
3475 memory_accesses
.refs_loaded_in_loop
.quick_grow (number_of_loops (cfun
));
3476 memory_accesses
.refs_stored_in_loop
.create (number_of_loops (cfun
));
3477 memory_accesses
.refs_stored_in_loop
.quick_grow (number_of_loops (cfun
));
3480 memory_accesses
.all_refs_stored_in_loop
.create (number_of_loops (cfun
));
3481 memory_accesses
.all_refs_stored_in_loop
.quick_grow
3482 (number_of_loops (cfun
));
3485 for (i
= 0; i
< number_of_loops (cfun
); i
++)
3487 bitmap_initialize (&memory_accesses
.refs_loaded_in_loop
[i
],
3488 &lim_bitmap_obstack
);
3489 bitmap_initialize (&memory_accesses
.refs_stored_in_loop
[i
],
3490 &lim_bitmap_obstack
);
3492 bitmap_initialize (&memory_accesses
.all_refs_stored_in_loop
[i
],
3493 &lim_bitmap_obstack
);
3496 memory_accesses
.ttae_cache
= NULL
;
3498 /* Initialize bb_loop_postorder with a mapping from loop->num to
3499 its postorder index. */
3501 bb_loop_postorder
= XNEWVEC (unsigned, number_of_loops (cfun
));
3502 for (auto loop
: loops_list (cfun
, LI_FROM_INNERMOST
))
3503 bb_loop_postorder
[loop
->num
] = i
++;
3506 /* Cleans up after the invariant motion pass. */
3509 tree_ssa_lim_finalize (void)
3515 FOR_EACH_BB_FN (bb
, cfun
)
3516 SET_ALWAYS_EXECUTED_IN (bb
, NULL
);
3518 bitmap_obstack_release (&lim_bitmap_obstack
);
3519 delete lim_aux_data_map
;
3521 delete memory_accesses
.refs
;
3522 memory_accesses
.refs
= NULL
;
3524 FOR_EACH_VEC_ELT (memory_accesses
.refs_list
, i
, ref
)
3526 memory_accesses
.refs_list
.release ();
3527 obstack_free (&mem_ref_obstack
, NULL
);
3529 memory_accesses
.refs_loaded_in_loop
.release ();
3530 memory_accesses
.refs_stored_in_loop
.release ();
3531 memory_accesses
.all_refs_stored_in_loop
.release ();
3533 if (memory_accesses
.ttae_cache
)
3534 free_affine_expand_cache (&memory_accesses
.ttae_cache
);
3536 free (bb_loop_postorder
);
3538 coldest_outermost_loop
.release ();
3539 hotter_than_inner_loop
.release ();
3542 /* Moves invariants from loops. Only "expensive" invariants are moved out --
3543 i.e. those that are likely to be win regardless of the register pressure.
3544 Only perform store motion if STORE_MOTION is true. */
3547 loop_invariant_motion_in_fun (function
*fun
, bool store_motion
)
3549 unsigned int todo
= 0;
3551 tree_ssa_lim_initialize (store_motion
);
3553 mark_ssa_maybe_undefs ();
3555 /* Gathers information about memory accesses in the loops. */
3556 analyze_memory_references (store_motion
);
3558 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
3559 fill_always_executed_in ();
3561 /* Pre-compute coldest outermost loop and nearest hotter loop of each loop.
3564 coldest_outermost_loop
.create (number_of_loops (cfun
));
3565 coldest_outermost_loop
.safe_grow_cleared (number_of_loops (cfun
));
3566 hotter_than_inner_loop
.create (number_of_loops (cfun
));
3567 hotter_than_inner_loop
.safe_grow_cleared (number_of_loops (cfun
));
3568 for (loop
= current_loops
->tree_root
->inner
; loop
!= NULL
; loop
= loop
->next
)
3569 fill_coldest_and_hotter_out_loop (loop
, NULL
, loop
);
3571 int *rpo
= XNEWVEC (int, last_basic_block_for_fn (fun
));
3572 int n
= pre_and_rev_post_order_compute_fn (fun
, NULL
, rpo
, false);
3574 /* For each statement determine the outermost loop in that it is
3575 invariant and cost for computing the invariant. */
3576 for (int i
= 0; i
< n
; ++i
)
3577 compute_invariantness (BASIC_BLOCK_FOR_FN (fun
, rpo
[i
]));
3579 /* Execute store motion. Force the necessary invariants to be moved
3580 out of the loops as well. */
3585 rpo
= XNEWVEC (int, last_basic_block_for_fn (fun
));
3586 n
= pre_and_rev_post_order_compute_fn (fun
, NULL
, rpo
, false);
3588 /* Move the expressions that are expensive enough. */
3589 for (int i
= 0; i
< n
; ++i
)
3590 todo
|= move_computations_worker (BASIC_BLOCK_FOR_FN (fun
, rpo
[i
]));
3594 gsi_commit_edge_inserts ();
3595 if (need_ssa_update_p (fun
))
3596 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
3598 tree_ssa_lim_finalize ();
3603 /* Loop invariant motion pass. */
3607 const pass_data pass_data_lim
=
3609 GIMPLE_PASS
, /* type */
3611 OPTGROUP_LOOP
, /* optinfo_flags */
3613 PROP_cfg
, /* properties_required */
3614 0, /* properties_provided */
3615 0, /* properties_destroyed */
3616 0, /* todo_flags_start */
3617 0, /* todo_flags_finish */
3620 class pass_lim
: public gimple_opt_pass
3623 pass_lim (gcc::context
*ctxt
)
3624 : gimple_opt_pass (pass_data_lim
, ctxt
)
3627 /* opt_pass methods: */
3628 opt_pass
* clone () final override
{ return new pass_lim (m_ctxt
); }
3629 bool gate (function
*) final override
{ return flag_tree_loop_im
!= 0; }
3630 unsigned int execute (function
*) final override
;
3632 }; // class pass_lim
3635 pass_lim::execute (function
*fun
)
3637 bool in_loop_pipeline
= scev_initialized_p ();
3638 if (!in_loop_pipeline
)
3639 loop_optimizer_init (LOOPS_NORMAL
| LOOPS_HAVE_RECORDED_EXITS
);
3641 if (number_of_loops (fun
) <= 1)
3643 unsigned int todo
= loop_invariant_motion_in_fun (fun
, flag_move_loop_stores
);
3645 if (!in_loop_pipeline
)
3646 loop_optimizer_finalize ();
3655 make_pass_lim (gcc::context
*ctxt
)
3657 return new pass_lim (ctxt
);