linux-unwind.h (frob_update_context <__powerpc64__>): Leave r2 REG_UNSAVED if stopped...
[official-gcc.git] / gcc / reorg.c
blob4df9105cb9a92d488f66c3f3fa6ceb7a357c27c5
1 /* Perform instruction reorganizations for delay slot filling.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
6 Hacked by Michael Tiemann (tiemann@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* Instruction reorganization pass.
26 This pass runs after register allocation and final jump
27 optimization. It should be the last pass to run before peephole.
28 It serves primarily to fill delay slots of insns, typically branch
29 and call insns. Other insns typically involve more complicated
30 interactions of data dependencies and resource constraints, and
31 are better handled by scheduling before register allocation (by the
32 function `schedule_insns').
34 The Branch Penalty is the number of extra cycles that are needed to
35 execute a branch insn. On an ideal machine, branches take a single
36 cycle, and the Branch Penalty is 0. Several RISC machines approach
37 branch delays differently:
39 The MIPS has a single branch delay slot. Most insns
40 (except other branches) can be used to fill this slot. When the
41 slot is filled, two insns execute in two cycles, reducing the
42 branch penalty to zero.
44 The SPARC always has a branch delay slot, but its effects can be
45 annulled when the branch is not taken. This means that failing to
46 find other sources of insns, we can hoist an insn from the branch
47 target that would only be safe to execute knowing that the branch
48 is taken.
50 The HP-PA always has a branch delay slot. For unconditional branches
51 its effects can be annulled when the branch is taken. The effects
52 of the delay slot in a conditional branch can be nullified for forward
53 taken branches, or for untaken backward branches. This means
54 we can hoist insns from the fall-through path for forward branches or
55 steal insns from the target of backward branches.
57 The TMS320C3x and C4x have three branch delay slots. When the three
58 slots are filled, the branch penalty is zero. Most insns can fill the
59 delay slots except jump insns.
61 Three techniques for filling delay slots have been implemented so far:
63 (1) `fill_simple_delay_slots' is the simplest, most efficient way
64 to fill delay slots. This pass first looks for insns which come
65 from before the branch and which are safe to execute after the
66 branch. Then it searches after the insn requiring delay slots or,
67 in the case of a branch, for insns that are after the point at
68 which the branch merges into the fallthrough code, if such a point
69 exists. When such insns are found, the branch penalty decreases
70 and no code expansion takes place.
72 (2) `fill_eager_delay_slots' is more complicated: it is used for
73 scheduling conditional jumps, or for scheduling jumps which cannot
74 be filled using (1). A machine need not have annulled jumps to use
75 this strategy, but it helps (by keeping more options open).
76 `fill_eager_delay_slots' tries to guess the direction the branch
77 will go; if it guesses right 100% of the time, it can reduce the
78 branch penalty as much as `fill_simple_delay_slots' does. If it
79 guesses wrong 100% of the time, it might as well schedule nops. When
80 `fill_eager_delay_slots' takes insns from the fall-through path of
81 the jump, usually there is no code expansion; when it takes insns
82 from the branch target, there is code expansion if it is not the
83 only way to reach that target.
85 (3) `relax_delay_slots' uses a set of rules to simplify code that
86 has been reorganized by (1) and (2). It finds cases where
87 conditional test can be eliminated, jumps can be threaded, extra
88 insns can be eliminated, etc. It is the job of (1) and (2) to do a
89 good job of scheduling locally; `relax_delay_slots' takes care of
90 making the various individual schedules work well together. It is
91 especially tuned to handle the control flow interactions of branch
92 insns. It does nothing for insns with delay slots that do not
93 branch.
95 On machines that use CC0, we are very conservative. We will not make
96 a copy of an insn involving CC0 since we want to maintain a 1-1
97 correspondence between the insn that sets and uses CC0. The insns are
98 allowed to be separated by placing an insn that sets CC0 (but not an insn
99 that uses CC0; we could do this, but it doesn't seem worthwhile) in a
100 delay slot. In that case, we point each insn at the other with REG_CC_USER
101 and REG_CC_SETTER notes. Note that these restrictions affect very few
102 machines because most RISC machines with delay slots will not use CC0
103 (the RT is the only known exception at this point).
105 Not yet implemented:
107 The Acorn Risc Machine can conditionally execute most insns, so
108 it is profitable to move single insns into a position to execute
109 based on the condition code of the previous insn.
111 The HP-PA can conditionally nullify insns, providing a similar
112 effect to the ARM, differing mostly in which insn is "in charge". */
114 #include "config.h"
115 #include "system.h"
116 #include "coretypes.h"
117 #include "tm.h"
118 #include "diagnostic-core.h"
119 #include "rtl.h"
120 #include "tm_p.h"
121 #include "expr.h"
122 #include "function.h"
123 #include "insn-config.h"
124 #include "conditions.h"
125 #include "hard-reg-set.h"
126 #include "basic-block.h"
127 #include "regs.h"
128 #include "recog.h"
129 #include "flags.h"
130 #include "output.h"
131 #include "obstack.h"
132 #include "insn-attr.h"
133 #include "resource.h"
134 #include "except.h"
135 #include "params.h"
136 #include "timevar.h"
137 #include "target.h"
138 #include "tree-pass.h"
140 #ifdef DELAY_SLOTS
142 #ifndef ANNUL_IFTRUE_SLOTS
143 #define eligible_for_annul_true(INSN, SLOTS, TRIAL, FLAGS) 0
144 #endif
145 #ifndef ANNUL_IFFALSE_SLOTS
146 #define eligible_for_annul_false(INSN, SLOTS, TRIAL, FLAGS) 0
147 #endif
149 /* Insns which have delay slots that have not yet been filled. */
151 static struct obstack unfilled_slots_obstack;
152 static rtx *unfilled_firstobj;
154 /* Define macros to refer to the first and last slot containing unfilled
155 insns. These are used because the list may move and its address
156 should be recomputed at each use. */
158 #define unfilled_slots_base \
159 ((rtx *) obstack_base (&unfilled_slots_obstack))
161 #define unfilled_slots_next \
162 ((rtx *) obstack_next_free (&unfilled_slots_obstack))
164 /* Points to the label before the end of the function. */
165 static rtx end_of_function_label;
167 /* Mapping between INSN_UID's and position in the code since INSN_UID's do
168 not always monotonically increase. */
169 static int *uid_to_ruid;
171 /* Highest valid index in `uid_to_ruid'. */
172 static int max_uid;
174 static int stop_search_p (rtx, int);
175 static int resource_conflicts_p (struct resources *, struct resources *);
176 static int insn_references_resource_p (rtx, struct resources *, bool);
177 static int insn_sets_resource_p (rtx, struct resources *, bool);
178 static rtx find_end_label (void);
179 static rtx emit_delay_sequence (rtx, rtx, int);
180 static rtx add_to_delay_list (rtx, rtx);
181 static rtx delete_from_delay_slot (rtx);
182 static void delete_scheduled_jump (rtx);
183 static void note_delay_statistics (int, int);
184 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
185 static rtx optimize_skip (rtx);
186 #endif
187 static int get_jump_flags (rtx, rtx);
188 static int rare_destination (rtx);
189 static int mostly_true_jump (rtx, rtx);
190 static rtx get_branch_condition (rtx, rtx);
191 static int condition_dominates_p (rtx, rtx);
192 static int redirect_with_delay_slots_safe_p (rtx, rtx, rtx);
193 static int redirect_with_delay_list_safe_p (rtx, rtx, rtx);
194 static int check_annul_list_true_false (int, rtx);
195 static rtx steal_delay_list_from_target (rtx, rtx, rtx, rtx,
196 struct resources *,
197 struct resources *,
198 struct resources *,
199 int, int *, int *, rtx *);
200 static rtx steal_delay_list_from_fallthrough (rtx, rtx, rtx, rtx,
201 struct resources *,
202 struct resources *,
203 struct resources *,
204 int, int *, int *);
205 static void try_merge_delay_insns (rtx, rtx);
206 static rtx redundant_insn (rtx, rtx, rtx);
207 static int own_thread_p (rtx, rtx, int);
208 static void update_block (rtx, rtx);
209 static int reorg_redirect_jump (rtx, rtx);
210 static void update_reg_dead_notes (rtx, rtx);
211 static void fix_reg_dead_note (rtx, rtx);
212 static void update_reg_unused_notes (rtx, rtx);
213 static void fill_simple_delay_slots (int);
214 static rtx fill_slots_from_thread (rtx, rtx, rtx, rtx,
215 int, int, int, int,
216 int *, rtx);
217 static void fill_eager_delay_slots (void);
218 static void relax_delay_slots (rtx);
219 #ifdef HAVE_return
220 static void make_return_insns (rtx);
221 #endif
223 /* Return TRUE if this insn should stop the search for insn to fill delay
224 slots. LABELS_P indicates that labels should terminate the search.
225 In all cases, jumps terminate the search. */
227 static int
228 stop_search_p (rtx insn, int labels_p)
230 if (insn == 0)
231 return 1;
233 /* If the insn can throw an exception that is caught within the function,
234 it may effectively perform a jump from the viewpoint of the function.
235 Therefore act like for a jump. */
236 if (can_throw_internal (insn))
237 return 1;
239 switch (GET_CODE (insn))
241 case NOTE:
242 case CALL_INSN:
243 return 0;
245 case CODE_LABEL:
246 return labels_p;
248 case JUMP_INSN:
249 case BARRIER:
250 return 1;
252 case INSN:
253 /* OK unless it contains a delay slot or is an `asm' insn of some type.
254 We don't know anything about these. */
255 return (GET_CODE (PATTERN (insn)) == SEQUENCE
256 || GET_CODE (PATTERN (insn)) == ASM_INPUT
257 || asm_noperands (PATTERN (insn)) >= 0);
259 default:
260 gcc_unreachable ();
264 /* Return TRUE if any resources are marked in both RES1 and RES2 or if either
265 resource set contains a volatile memory reference. Otherwise, return FALSE. */
267 static int
268 resource_conflicts_p (struct resources *res1, struct resources *res2)
270 if ((res1->cc && res2->cc) || (res1->memory && res2->memory)
271 || (res1->unch_memory && res2->unch_memory)
272 || res1->volatil || res2->volatil)
273 return 1;
275 #ifdef HARD_REG_SET
276 return (res1->regs & res2->regs) != HARD_CONST (0);
277 #else
279 int i;
281 for (i = 0; i < HARD_REG_SET_LONGS; i++)
282 if ((res1->regs[i] & res2->regs[i]) != 0)
283 return 1;
284 return 0;
286 #endif
289 /* Return TRUE if any resource marked in RES, a `struct resources', is
290 referenced by INSN. If INCLUDE_DELAYED_EFFECTS is set, return if the called
291 routine is using those resources.
293 We compute this by computing all the resources referenced by INSN and
294 seeing if this conflicts with RES. It might be faster to directly check
295 ourselves, and this is the way it used to work, but it means duplicating
296 a large block of complex code. */
298 static int
299 insn_references_resource_p (rtx insn, struct resources *res,
300 bool include_delayed_effects)
302 struct resources insn_res;
304 CLEAR_RESOURCE (&insn_res);
305 mark_referenced_resources (insn, &insn_res, include_delayed_effects);
306 return resource_conflicts_p (&insn_res, res);
309 /* Return TRUE if INSN modifies resources that are marked in RES.
310 INCLUDE_DELAYED_EFFECTS is set if the actions of that routine should be
311 included. CC0 is only modified if it is explicitly set; see comments
312 in front of mark_set_resources for details. */
314 static int
315 insn_sets_resource_p (rtx insn, struct resources *res,
316 bool include_delayed_effects)
318 struct resources insn_sets;
320 CLEAR_RESOURCE (&insn_sets);
321 mark_set_resources (insn, &insn_sets, 0,
322 (include_delayed_effects
323 ? MARK_SRC_DEST_CALL
324 : MARK_SRC_DEST));
325 return resource_conflicts_p (&insn_sets, res);
328 /* Find a label at the end of the function or before a RETURN. If there
329 is none, try to make one. If that fails, returns 0.
331 The property of such a label is that it is placed just before the
332 epilogue or a bare RETURN insn, so that another bare RETURN can be
333 turned into a jump to the label unconditionally. In particular, the
334 label cannot be placed before a RETURN insn with a filled delay slot.
336 ??? There may be a problem with the current implementation. Suppose
337 we start with a bare RETURN insn and call find_end_label. It may set
338 end_of_function_label just before the RETURN. Suppose the machinery
339 is able to fill the delay slot of the RETURN insn afterwards. Then
340 end_of_function_label is no longer valid according to the property
341 described above and find_end_label will still return it unmodified.
342 Note that this is probably mitigated by the following observation:
343 once end_of_function_label is made, it is very likely the target of
344 a jump, so filling the delay slot of the RETURN will be much more
345 difficult. */
347 static rtx
348 find_end_label (void)
350 rtx insn;
352 /* If we found one previously, return it. */
353 if (end_of_function_label)
354 return end_of_function_label;
356 /* Otherwise, see if there is a label at the end of the function. If there
357 is, it must be that RETURN insns aren't needed, so that is our return
358 label and we don't have to do anything else. */
360 insn = get_last_insn ();
361 while (NOTE_P (insn)
362 || (NONJUMP_INSN_P (insn)
363 && (GET_CODE (PATTERN (insn)) == USE
364 || GET_CODE (PATTERN (insn)) == CLOBBER)))
365 insn = PREV_INSN (insn);
367 /* When a target threads its epilogue we might already have a
368 suitable return insn. If so put a label before it for the
369 end_of_function_label. */
370 if (BARRIER_P (insn)
371 && JUMP_P (PREV_INSN (insn))
372 && GET_CODE (PATTERN (PREV_INSN (insn))) == RETURN)
374 rtx temp = PREV_INSN (PREV_INSN (insn));
375 end_of_function_label = gen_label_rtx ();
376 LABEL_NUSES (end_of_function_label) = 0;
378 /* Put the label before an USE insns that may precede the RETURN insn. */
379 while (GET_CODE (temp) == USE)
380 temp = PREV_INSN (temp);
382 emit_label_after (end_of_function_label, temp);
385 else if (LABEL_P (insn))
386 end_of_function_label = insn;
387 else
389 end_of_function_label = gen_label_rtx ();
390 LABEL_NUSES (end_of_function_label) = 0;
391 /* If the basic block reorder pass moves the return insn to
392 some other place try to locate it again and put our
393 end_of_function_label there. */
394 while (insn && ! (JUMP_P (insn)
395 && (GET_CODE (PATTERN (insn)) == RETURN)))
396 insn = PREV_INSN (insn);
397 if (insn)
399 insn = PREV_INSN (insn);
401 /* Put the label before an USE insns that may proceed the
402 RETURN insn. */
403 while (GET_CODE (insn) == USE)
404 insn = PREV_INSN (insn);
406 emit_label_after (end_of_function_label, insn);
408 else
410 #ifdef HAVE_epilogue
411 if (HAVE_epilogue
412 #ifdef HAVE_return
413 && ! HAVE_return
414 #endif
417 /* The RETURN insn has its delay slot filled so we cannot
418 emit the label just before it. Since we already have
419 an epilogue and cannot emit a new RETURN, we cannot
420 emit the label at all. */
421 end_of_function_label = NULL_RTX;
422 return end_of_function_label;
424 #endif /* HAVE_epilogue */
426 /* Otherwise, make a new label and emit a RETURN and BARRIER,
427 if needed. */
428 emit_label (end_of_function_label);
429 #ifdef HAVE_return
430 /* We don't bother trying to create a return insn if the
431 epilogue has filled delay-slots; we would have to try and
432 move the delay-slot fillers to the delay-slots for the new
433 return insn or in front of the new return insn. */
434 if (crtl->epilogue_delay_list == NULL
435 && HAVE_return)
437 /* The return we make may have delay slots too. */
438 rtx insn = gen_return ();
439 insn = emit_jump_insn (insn);
440 emit_barrier ();
441 if (num_delay_slots (insn) > 0)
442 obstack_ptr_grow (&unfilled_slots_obstack, insn);
444 #endif
448 /* Show one additional use for this label so it won't go away until
449 we are done. */
450 ++LABEL_NUSES (end_of_function_label);
452 return end_of_function_label;
455 /* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
456 the pattern of INSN with the SEQUENCE.
458 Chain the insns so that NEXT_INSN of each insn in the sequence points to
459 the next and NEXT_INSN of the last insn in the sequence points to
460 the first insn after the sequence. Similarly for PREV_INSN. This makes
461 it easier to scan all insns.
463 Returns the SEQUENCE that replaces INSN. */
465 static rtx
466 emit_delay_sequence (rtx insn, rtx list, int length)
468 int i = 1;
469 rtx li;
470 int had_barrier = 0;
472 /* Allocate the rtvec to hold the insns and the SEQUENCE. */
473 rtvec seqv = rtvec_alloc (length + 1);
474 rtx seq = gen_rtx_SEQUENCE (VOIDmode, seqv);
475 rtx seq_insn = make_insn_raw (seq);
476 rtx first = get_insns ();
477 rtx last = get_last_insn ();
479 /* Make a copy of the insn having delay slots. */
480 rtx delay_insn = copy_rtx (insn);
482 /* If INSN is followed by a BARRIER, delete the BARRIER since it will only
483 confuse further processing. Update LAST in case it was the last insn.
484 We will put the BARRIER back in later. */
485 if (NEXT_INSN (insn) && BARRIER_P (NEXT_INSN (insn)))
487 delete_related_insns (NEXT_INSN (insn));
488 last = get_last_insn ();
489 had_barrier = 1;
492 /* Splice our SEQUENCE into the insn stream where INSN used to be. */
493 NEXT_INSN (seq_insn) = NEXT_INSN (insn);
494 PREV_INSN (seq_insn) = PREV_INSN (insn);
496 if (insn != last)
497 PREV_INSN (NEXT_INSN (seq_insn)) = seq_insn;
499 if (insn != first)
500 NEXT_INSN (PREV_INSN (seq_insn)) = seq_insn;
502 /* Note the calls to set_new_first_and_last_insn must occur after
503 SEQ_INSN has been completely spliced into the insn stream.
505 Otherwise CUR_INSN_UID will get set to an incorrect value because
506 set_new_first_and_last_insn will not find SEQ_INSN in the chain. */
507 if (insn == last)
508 set_new_first_and_last_insn (first, seq_insn);
510 if (insn == first)
511 set_new_first_and_last_insn (seq_insn, last);
513 /* Build our SEQUENCE and rebuild the insn chain. */
514 XVECEXP (seq, 0, 0) = delay_insn;
515 INSN_DELETED_P (delay_insn) = 0;
516 PREV_INSN (delay_insn) = PREV_INSN (seq_insn);
518 INSN_LOCATOR (seq_insn) = INSN_LOCATOR (delay_insn);
520 for (li = list; li; li = XEXP (li, 1), i++)
522 rtx tem = XEXP (li, 0);
523 rtx note, next;
525 /* Show that this copy of the insn isn't deleted. */
526 INSN_DELETED_P (tem) = 0;
528 XVECEXP (seq, 0, i) = tem;
529 PREV_INSN (tem) = XVECEXP (seq, 0, i - 1);
530 NEXT_INSN (XVECEXP (seq, 0, i - 1)) = tem;
532 /* SPARC assembler, for instance, emit warning when debug info is output
533 into the delay slot. */
534 if (INSN_LOCATOR (tem) && !INSN_LOCATOR (seq_insn))
535 INSN_LOCATOR (seq_insn) = INSN_LOCATOR (tem);
536 INSN_LOCATOR (tem) = 0;
538 for (note = REG_NOTES (tem); note; note = next)
540 next = XEXP (note, 1);
541 switch (REG_NOTE_KIND (note))
543 case REG_DEAD:
544 /* Remove any REG_DEAD notes because we can't rely on them now
545 that the insn has been moved. */
546 remove_note (tem, note);
547 break;
549 case REG_LABEL_OPERAND:
550 case REG_LABEL_TARGET:
551 /* Keep the label reference count up to date. */
552 if (LABEL_P (XEXP (note, 0)))
553 LABEL_NUSES (XEXP (note, 0)) ++;
554 break;
556 default:
557 break;
562 NEXT_INSN (XVECEXP (seq, 0, length)) = NEXT_INSN (seq_insn);
564 /* If the previous insn is a SEQUENCE, update the NEXT_INSN pointer on the
565 last insn in that SEQUENCE to point to us. Similarly for the first
566 insn in the following insn if it is a SEQUENCE. */
568 if (PREV_INSN (seq_insn) && NONJUMP_INSN_P (PREV_INSN (seq_insn))
569 && GET_CODE (PATTERN (PREV_INSN (seq_insn))) == SEQUENCE)
570 NEXT_INSN (XVECEXP (PATTERN (PREV_INSN (seq_insn)), 0,
571 XVECLEN (PATTERN (PREV_INSN (seq_insn)), 0) - 1))
572 = seq_insn;
574 if (NEXT_INSN (seq_insn) && NONJUMP_INSN_P (NEXT_INSN (seq_insn))
575 && GET_CODE (PATTERN (NEXT_INSN (seq_insn))) == SEQUENCE)
576 PREV_INSN (XVECEXP (PATTERN (NEXT_INSN (seq_insn)), 0, 0)) = seq_insn;
578 /* If there used to be a BARRIER, put it back. */
579 if (had_barrier)
580 emit_barrier_after (seq_insn);
582 gcc_assert (i == length + 1);
584 return seq_insn;
587 /* Add INSN to DELAY_LIST and return the head of the new list. The list must
588 be in the order in which the insns are to be executed. */
590 static rtx
591 add_to_delay_list (rtx insn, rtx delay_list)
593 /* If we have an empty list, just make a new list element. If
594 INSN has its block number recorded, clear it since we may
595 be moving the insn to a new block. */
597 if (delay_list == 0)
599 clear_hashed_info_for_insn (insn);
600 return gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
603 /* Otherwise this must be an INSN_LIST. Add INSN to the end of the
604 list. */
605 XEXP (delay_list, 1) = add_to_delay_list (insn, XEXP (delay_list, 1));
607 return delay_list;
610 /* Delete INSN from the delay slot of the insn that it is in, which may
611 produce an insn with no delay slots. Return the new insn. */
613 static rtx
614 delete_from_delay_slot (rtx insn)
616 rtx trial, seq_insn, seq, prev;
617 rtx delay_list = 0;
618 int i;
619 int had_barrier = 0;
621 /* We first must find the insn containing the SEQUENCE with INSN in its
622 delay slot. Do this by finding an insn, TRIAL, where
623 PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
625 for (trial = insn;
626 PREV_INSN (NEXT_INSN (trial)) == trial;
627 trial = NEXT_INSN (trial))
630 seq_insn = PREV_INSN (NEXT_INSN (trial));
631 seq = PATTERN (seq_insn);
633 if (NEXT_INSN (seq_insn) && BARRIER_P (NEXT_INSN (seq_insn)))
634 had_barrier = 1;
636 /* Create a delay list consisting of all the insns other than the one
637 we are deleting (unless we were the only one). */
638 if (XVECLEN (seq, 0) > 2)
639 for (i = 1; i < XVECLEN (seq, 0); i++)
640 if (XVECEXP (seq, 0, i) != insn)
641 delay_list = add_to_delay_list (XVECEXP (seq, 0, i), delay_list);
643 /* Delete the old SEQUENCE, re-emit the insn that used to have the delay
644 list, and rebuild the delay list if non-empty. */
645 prev = PREV_INSN (seq_insn);
646 trial = XVECEXP (seq, 0, 0);
647 delete_related_insns (seq_insn);
648 add_insn_after (trial, prev, NULL);
650 /* If there was a barrier after the old SEQUENCE, remit it. */
651 if (had_barrier)
652 emit_barrier_after (trial);
654 /* If there are any delay insns, remit them. Otherwise clear the
655 annul flag. */
656 if (delay_list)
657 trial = emit_delay_sequence (trial, delay_list, XVECLEN (seq, 0) - 2);
658 else if (INSN_P (trial))
659 INSN_ANNULLED_BRANCH_P (trial) = 0;
661 INSN_FROM_TARGET_P (insn) = 0;
663 /* Show we need to fill this insn again. */
664 obstack_ptr_grow (&unfilled_slots_obstack, trial);
666 return trial;
669 /* Delete INSN, a JUMP_INSN. If it is a conditional jump, we must track down
670 the insn that sets CC0 for it and delete it too. */
672 static void
673 delete_scheduled_jump (rtx insn)
675 /* Delete the insn that sets cc0 for us. On machines without cc0, we could
676 delete the insn that sets the condition code, but it is hard to find it.
677 Since this case is rare anyway, don't bother trying; there would likely
678 be other insns that became dead anyway, which we wouldn't know to
679 delete. */
681 #ifdef HAVE_cc0
682 if (reg_mentioned_p (cc0_rtx, insn))
684 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
686 /* If a reg-note was found, it points to an insn to set CC0. This
687 insn is in the delay list of some other insn. So delete it from
688 the delay list it was in. */
689 if (note)
691 if (! FIND_REG_INC_NOTE (XEXP (note, 0), NULL_RTX)
692 && sets_cc0_p (PATTERN (XEXP (note, 0))) == 1)
693 delete_from_delay_slot (XEXP (note, 0));
695 else
697 /* The insn setting CC0 is our previous insn, but it may be in
698 a delay slot. It will be the last insn in the delay slot, if
699 it is. */
700 rtx trial = previous_insn (insn);
701 if (NOTE_P (trial))
702 trial = prev_nonnote_insn (trial);
703 if (sets_cc0_p (PATTERN (trial)) != 1
704 || FIND_REG_INC_NOTE (trial, NULL_RTX))
705 return;
706 if (PREV_INSN (NEXT_INSN (trial)) == trial)
707 delete_related_insns (trial);
708 else
709 delete_from_delay_slot (trial);
712 #endif
714 delete_related_insns (insn);
717 /* Counters for delay-slot filling. */
719 #define NUM_REORG_FUNCTIONS 2
720 #define MAX_DELAY_HISTOGRAM 3
721 #define MAX_REORG_PASSES 2
723 static int num_insns_needing_delays[NUM_REORG_FUNCTIONS][MAX_REORG_PASSES];
725 static int num_filled_delays[NUM_REORG_FUNCTIONS][MAX_DELAY_HISTOGRAM+1][MAX_REORG_PASSES];
727 static int reorg_pass_number;
729 static void
730 note_delay_statistics (int slots_filled, int index)
732 num_insns_needing_delays[index][reorg_pass_number]++;
733 if (slots_filled > MAX_DELAY_HISTOGRAM)
734 slots_filled = MAX_DELAY_HISTOGRAM;
735 num_filled_delays[index][slots_filled][reorg_pass_number]++;
738 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
740 /* Optimize the following cases:
742 1. When a conditional branch skips over only one instruction,
743 use an annulling branch and put that insn in the delay slot.
744 Use either a branch that annuls when the condition if true or
745 invert the test with a branch that annuls when the condition is
746 false. This saves insns, since otherwise we must copy an insn
747 from the L1 target.
749 (orig) (skip) (otherwise)
750 Bcc.n L1 Bcc',a L1 Bcc,a L1'
751 insn insn insn2
752 L1: L1: L1:
753 insn2 insn2 insn2
754 insn3 insn3 L1':
755 insn3
757 2. When a conditional branch skips over only one instruction,
758 and after that, it unconditionally branches somewhere else,
759 perform the similar optimization. This saves executing the
760 second branch in the case where the inverted condition is true.
762 Bcc.n L1 Bcc',a L2
763 insn insn
764 L1: L1:
765 Bra L2 Bra L2
767 INSN is a JUMP_INSN.
769 This should be expanded to skip over N insns, where N is the number
770 of delay slots required. */
772 static rtx
773 optimize_skip (rtx insn)
775 rtx trial = next_nonnote_insn (insn);
776 rtx next_trial = next_active_insn (trial);
777 rtx delay_list = 0;
778 int flags;
780 flags = get_jump_flags (insn, JUMP_LABEL (insn));
782 if (trial == 0
783 || !NONJUMP_INSN_P (trial)
784 || GET_CODE (PATTERN (trial)) == SEQUENCE
785 || recog_memoized (trial) < 0
786 || (! eligible_for_annul_false (insn, 0, trial, flags)
787 && ! eligible_for_annul_true (insn, 0, trial, flags))
788 || can_throw_internal (trial))
789 return 0;
791 /* There are two cases where we are just executing one insn (we assume
792 here that a branch requires only one insn; this should be generalized
793 at some point): Where the branch goes around a single insn or where
794 we have one insn followed by a branch to the same label we branch to.
795 In both of these cases, inverting the jump and annulling the delay
796 slot give the same effect in fewer insns. */
797 if ((next_trial == next_active_insn (JUMP_LABEL (insn))
798 && ! (next_trial == 0 && crtl->epilogue_delay_list != 0))
799 || (next_trial != 0
800 && JUMP_P (next_trial)
801 && JUMP_LABEL (insn) == JUMP_LABEL (next_trial)
802 && (simplejump_p (next_trial)
803 || GET_CODE (PATTERN (next_trial)) == RETURN)))
805 if (eligible_for_annul_false (insn, 0, trial, flags))
807 if (invert_jump (insn, JUMP_LABEL (insn), 1))
808 INSN_FROM_TARGET_P (trial) = 1;
809 else if (! eligible_for_annul_true (insn, 0, trial, flags))
810 return 0;
813 delay_list = add_to_delay_list (trial, NULL_RTX);
814 next_trial = next_active_insn (trial);
815 update_block (trial, trial);
816 delete_related_insns (trial);
818 /* Also, if we are targeting an unconditional
819 branch, thread our jump to the target of that branch. Don't
820 change this into a RETURN here, because it may not accept what
821 we have in the delay slot. We'll fix this up later. */
822 if (next_trial && JUMP_P (next_trial)
823 && (simplejump_p (next_trial)
824 || GET_CODE (PATTERN (next_trial)) == RETURN))
826 rtx target_label = JUMP_LABEL (next_trial);
827 if (target_label == 0)
828 target_label = find_end_label ();
830 if (target_label)
832 /* Recompute the flags based on TARGET_LABEL since threading
833 the jump to TARGET_LABEL may change the direction of the
834 jump (which may change the circumstances in which the
835 delay slot is nullified). */
836 flags = get_jump_flags (insn, target_label);
837 if (eligible_for_annul_true (insn, 0, trial, flags))
838 reorg_redirect_jump (insn, target_label);
842 INSN_ANNULLED_BRANCH_P (insn) = 1;
845 return delay_list;
847 #endif
849 /* Encode and return branch direction and prediction information for
850 INSN assuming it will jump to LABEL.
852 Non conditional branches return no direction information and
853 are predicted as very likely taken. */
855 static int
856 get_jump_flags (rtx insn, rtx label)
858 int flags;
860 /* get_jump_flags can be passed any insn with delay slots, these may
861 be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
862 direction information, and only if they are conditional jumps.
864 If LABEL is zero, then there is no way to determine the branch
865 direction. */
866 if (JUMP_P (insn)
867 && (condjump_p (insn) || condjump_in_parallel_p (insn))
868 && INSN_UID (insn) <= max_uid
869 && label != 0
870 && INSN_UID (label) <= max_uid)
871 flags
872 = (uid_to_ruid[INSN_UID (label)] > uid_to_ruid[INSN_UID (insn)])
873 ? ATTR_FLAG_forward : ATTR_FLAG_backward;
874 /* No valid direction information. */
875 else
876 flags = 0;
878 /* If insn is a conditional branch call mostly_true_jump to get
879 determine the branch prediction.
881 Non conditional branches are predicted as very likely taken. */
882 if (JUMP_P (insn)
883 && (condjump_p (insn) || condjump_in_parallel_p (insn)))
885 int prediction;
887 prediction = mostly_true_jump (insn, get_branch_condition (insn, label));
888 switch (prediction)
890 case 2:
891 flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
892 break;
893 case 1:
894 flags |= ATTR_FLAG_likely;
895 break;
896 case 0:
897 flags |= ATTR_FLAG_unlikely;
898 break;
899 case -1:
900 flags |= (ATTR_FLAG_very_unlikely | ATTR_FLAG_unlikely);
901 break;
903 default:
904 gcc_unreachable ();
907 else
908 flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
910 return flags;
913 /* Return 1 if INSN is a destination that will be branched to rarely (the
914 return point of a function); return 2 if DEST will be branched to very
915 rarely (a call to a function that doesn't return). Otherwise,
916 return 0. */
918 static int
919 rare_destination (rtx insn)
921 int jump_count = 0;
922 rtx next;
924 for (; insn; insn = next)
926 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
927 insn = XVECEXP (PATTERN (insn), 0, 0);
929 next = NEXT_INSN (insn);
931 switch (GET_CODE (insn))
933 case CODE_LABEL:
934 return 0;
935 case BARRIER:
936 /* A BARRIER can either be after a JUMP_INSN or a CALL_INSN. We
937 don't scan past JUMP_INSNs, so any barrier we find here must
938 have been after a CALL_INSN and hence mean the call doesn't
939 return. */
940 return 2;
941 case JUMP_INSN:
942 if (GET_CODE (PATTERN (insn)) == RETURN)
943 return 1;
944 else if (simplejump_p (insn)
945 && jump_count++ < 10)
946 next = JUMP_LABEL (insn);
947 else
948 return 0;
950 default:
951 break;
955 /* If we got here it means we hit the end of the function. So this
956 is an unlikely destination. */
958 return 1;
961 /* Return truth value of the statement that this branch
962 is mostly taken. If we think that the branch is extremely likely
963 to be taken, we return 2. If the branch is slightly more likely to be
964 taken, return 1. If the branch is slightly less likely to be taken,
965 return 0 and if the branch is highly unlikely to be taken, return -1.
967 CONDITION, if nonzero, is the condition that JUMP_INSN is testing. */
969 static int
970 mostly_true_jump (rtx jump_insn, rtx condition)
972 rtx target_label = JUMP_LABEL (jump_insn);
973 rtx note;
974 int rare_dest, rare_fallthrough;
976 /* If branch probabilities are available, then use that number since it
977 always gives a correct answer. */
978 note = find_reg_note (jump_insn, REG_BR_PROB, 0);
979 if (note)
981 int prob = INTVAL (XEXP (note, 0));
983 if (prob >= REG_BR_PROB_BASE * 9 / 10)
984 return 2;
985 else if (prob >= REG_BR_PROB_BASE / 2)
986 return 1;
987 else if (prob >= REG_BR_PROB_BASE / 10)
988 return 0;
989 else
990 return -1;
993 /* Look at the relative rarities of the fallthrough and destination. If
994 they differ, we can predict the branch that way. */
995 rare_dest = rare_destination (target_label);
996 rare_fallthrough = rare_destination (NEXT_INSN (jump_insn));
998 switch (rare_fallthrough - rare_dest)
1000 case -2:
1001 return -1;
1002 case -1:
1003 return 0;
1004 case 0:
1005 break;
1006 case 1:
1007 return 1;
1008 case 2:
1009 return 2;
1012 /* If we couldn't figure out what this jump was, assume it won't be
1013 taken. This should be rare. */
1014 if (condition == 0)
1015 return 0;
1017 /* Predict backward branches usually take, forward branches usually not. If
1018 we don't know whether this is forward or backward, assume the branch
1019 will be taken, since most are. */
1020 return (target_label == 0 || INSN_UID (jump_insn) > max_uid
1021 || INSN_UID (target_label) > max_uid
1022 || (uid_to_ruid[INSN_UID (jump_insn)]
1023 > uid_to_ruid[INSN_UID (target_label)]));
1026 /* Return the condition under which INSN will branch to TARGET. If TARGET
1027 is zero, return the condition under which INSN will return. If INSN is
1028 an unconditional branch, return const_true_rtx. If INSN isn't a simple
1029 type of jump, or it doesn't go to TARGET, return 0. */
1031 static rtx
1032 get_branch_condition (rtx insn, rtx target)
1034 rtx pat = PATTERN (insn);
1035 rtx src;
1037 if (condjump_in_parallel_p (insn))
1038 pat = XVECEXP (pat, 0, 0);
1040 if (GET_CODE (pat) == RETURN)
1041 return target == 0 ? const_true_rtx : 0;
1043 else if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx)
1044 return 0;
1046 src = SET_SRC (pat);
1047 if (GET_CODE (src) == LABEL_REF && XEXP (src, 0) == target)
1048 return const_true_rtx;
1050 else if (GET_CODE (src) == IF_THEN_ELSE
1051 && ((target == 0 && GET_CODE (XEXP (src, 1)) == RETURN)
1052 || (GET_CODE (XEXP (src, 1)) == LABEL_REF
1053 && XEXP (XEXP (src, 1), 0) == target))
1054 && XEXP (src, 2) == pc_rtx)
1055 return XEXP (src, 0);
1057 else if (GET_CODE (src) == IF_THEN_ELSE
1058 && ((target == 0 && GET_CODE (XEXP (src, 2)) == RETURN)
1059 || (GET_CODE (XEXP (src, 2)) == LABEL_REF
1060 && XEXP (XEXP (src, 2), 0) == target))
1061 && XEXP (src, 1) == pc_rtx)
1063 enum rtx_code rev;
1064 rev = reversed_comparison_code (XEXP (src, 0), insn);
1065 if (rev != UNKNOWN)
1066 return gen_rtx_fmt_ee (rev, GET_MODE (XEXP (src, 0)),
1067 XEXP (XEXP (src, 0), 0),
1068 XEXP (XEXP (src, 0), 1));
1071 return 0;
1074 /* Return nonzero if CONDITION is more strict than the condition of
1075 INSN, i.e., if INSN will always branch if CONDITION is true. */
1077 static int
1078 condition_dominates_p (rtx condition, rtx insn)
1080 rtx other_condition = get_branch_condition (insn, JUMP_LABEL (insn));
1081 enum rtx_code code = GET_CODE (condition);
1082 enum rtx_code other_code;
1084 if (rtx_equal_p (condition, other_condition)
1085 || other_condition == const_true_rtx)
1086 return 1;
1088 else if (condition == const_true_rtx || other_condition == 0)
1089 return 0;
1091 other_code = GET_CODE (other_condition);
1092 if (GET_RTX_LENGTH (code) != 2 || GET_RTX_LENGTH (other_code) != 2
1093 || ! rtx_equal_p (XEXP (condition, 0), XEXP (other_condition, 0))
1094 || ! rtx_equal_p (XEXP (condition, 1), XEXP (other_condition, 1)))
1095 return 0;
1097 return comparison_dominates_p (code, other_code);
1100 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1101 any insns already in the delay slot of JUMP. */
1103 static int
1104 redirect_with_delay_slots_safe_p (rtx jump, rtx newlabel, rtx seq)
1106 int flags, i;
1107 rtx pat = PATTERN (seq);
1109 /* Make sure all the delay slots of this jump would still
1110 be valid after threading the jump. If they are still
1111 valid, then return nonzero. */
1113 flags = get_jump_flags (jump, newlabel);
1114 for (i = 1; i < XVECLEN (pat, 0); i++)
1115 if (! (
1116 #ifdef ANNUL_IFFALSE_SLOTS
1117 (INSN_ANNULLED_BRANCH_P (jump)
1118 && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
1119 ? eligible_for_annul_false (jump, i - 1,
1120 XVECEXP (pat, 0, i), flags) :
1121 #endif
1122 #ifdef ANNUL_IFTRUE_SLOTS
1123 (INSN_ANNULLED_BRANCH_P (jump)
1124 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
1125 ? eligible_for_annul_true (jump, i - 1,
1126 XVECEXP (pat, 0, i), flags) :
1127 #endif
1128 eligible_for_delay (jump, i - 1, XVECEXP (pat, 0, i), flags)))
1129 break;
1131 return (i == XVECLEN (pat, 0));
1134 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1135 any insns we wish to place in the delay slot of JUMP. */
1137 static int
1138 redirect_with_delay_list_safe_p (rtx jump, rtx newlabel, rtx delay_list)
1140 int flags, i;
1141 rtx li;
1143 /* Make sure all the insns in DELAY_LIST would still be
1144 valid after threading the jump. If they are still
1145 valid, then return nonzero. */
1147 flags = get_jump_flags (jump, newlabel);
1148 for (li = delay_list, i = 0; li; li = XEXP (li, 1), i++)
1149 if (! (
1150 #ifdef ANNUL_IFFALSE_SLOTS
1151 (INSN_ANNULLED_BRANCH_P (jump)
1152 && INSN_FROM_TARGET_P (XEXP (li, 0)))
1153 ? eligible_for_annul_false (jump, i, XEXP (li, 0), flags) :
1154 #endif
1155 #ifdef ANNUL_IFTRUE_SLOTS
1156 (INSN_ANNULLED_BRANCH_P (jump)
1157 && ! INSN_FROM_TARGET_P (XEXP (li, 0)))
1158 ? eligible_for_annul_true (jump, i, XEXP (li, 0), flags) :
1159 #endif
1160 eligible_for_delay (jump, i, XEXP (li, 0), flags)))
1161 break;
1163 return (li == NULL);
1166 /* DELAY_LIST is a list of insns that have already been placed into delay
1167 slots. See if all of them have the same annulling status as ANNUL_TRUE_P.
1168 If not, return 0; otherwise return 1. */
1170 static int
1171 check_annul_list_true_false (int annul_true_p, rtx delay_list)
1173 rtx temp;
1175 if (delay_list)
1177 for (temp = delay_list; temp; temp = XEXP (temp, 1))
1179 rtx trial = XEXP (temp, 0);
1181 if ((annul_true_p && INSN_FROM_TARGET_P (trial))
1182 || (!annul_true_p && !INSN_FROM_TARGET_P (trial)))
1183 return 0;
1187 return 1;
1190 /* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
1191 the condition tested by INSN is CONDITION and the resources shown in
1192 OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
1193 from SEQ's delay list, in addition to whatever insns it may execute
1194 (in DELAY_LIST). SETS and NEEDED are denote resources already set and
1195 needed while searching for delay slot insns. Return the concatenated
1196 delay list if possible, otherwise, return 0.
1198 SLOTS_TO_FILL is the total number of slots required by INSN, and
1199 PSLOTS_FILLED points to the number filled so far (also the number of
1200 insns in DELAY_LIST). It is updated with the number that have been
1201 filled from the SEQUENCE, if any.
1203 PANNUL_P points to a nonzero value if we already know that we need
1204 to annul INSN. If this routine determines that annulling is needed,
1205 it may set that value nonzero.
1207 PNEW_THREAD points to a location that is to receive the place at which
1208 execution should continue. */
1210 static rtx
1211 steal_delay_list_from_target (rtx insn, rtx condition, rtx seq,
1212 rtx delay_list, struct resources *sets,
1213 struct resources *needed,
1214 struct resources *other_needed,
1215 int slots_to_fill, int *pslots_filled,
1216 int *pannul_p, rtx *pnew_thread)
1218 rtx temp;
1219 int slots_remaining = slots_to_fill - *pslots_filled;
1220 int total_slots_filled = *pslots_filled;
1221 rtx new_delay_list = 0;
1222 int must_annul = *pannul_p;
1223 int used_annul = 0;
1224 int i;
1225 struct resources cc_set;
1227 /* We can't do anything if there are more delay slots in SEQ than we
1228 can handle, or if we don't know that it will be a taken branch.
1229 We know that it will be a taken branch if it is either an unconditional
1230 branch or a conditional branch with a stricter branch condition.
1232 Also, exit if the branch has more than one set, since then it is computing
1233 other results that can't be ignored, e.g. the HPPA mov&branch instruction.
1234 ??? It may be possible to move other sets into INSN in addition to
1235 moving the instructions in the delay slots.
1237 We can not steal the delay list if one of the instructions in the
1238 current delay_list modifies the condition codes and the jump in the
1239 sequence is a conditional jump. We can not do this because we can
1240 not change the direction of the jump because the condition codes
1241 will effect the direction of the jump in the sequence. */
1243 CLEAR_RESOURCE (&cc_set);
1244 for (temp = delay_list; temp; temp = XEXP (temp, 1))
1246 rtx trial = XEXP (temp, 0);
1248 mark_set_resources (trial, &cc_set, 0, MARK_SRC_DEST_CALL);
1249 if (insn_references_resource_p (XVECEXP (seq , 0, 0), &cc_set, false))
1250 return delay_list;
1253 if (XVECLEN (seq, 0) - 1 > slots_remaining
1254 || ! condition_dominates_p (condition, XVECEXP (seq, 0, 0))
1255 || ! single_set (XVECEXP (seq, 0, 0)))
1256 return delay_list;
1258 #ifdef MD_CAN_REDIRECT_BRANCH
1259 /* On some targets, branches with delay slots can have a limited
1260 displacement. Give the back end a chance to tell us we can't do
1261 this. */
1262 if (! MD_CAN_REDIRECT_BRANCH (insn, XVECEXP (seq, 0, 0)))
1263 return delay_list;
1264 #endif
1266 for (i = 1; i < XVECLEN (seq, 0); i++)
1268 rtx trial = XVECEXP (seq, 0, i);
1269 int flags;
1271 if (insn_references_resource_p (trial, sets, false)
1272 || insn_sets_resource_p (trial, needed, false)
1273 || insn_sets_resource_p (trial, sets, false)
1274 #ifdef HAVE_cc0
1275 /* If TRIAL sets CC0, we can't copy it, so we can't steal this
1276 delay list. */
1277 || find_reg_note (trial, REG_CC_USER, NULL_RTX)
1278 #endif
1279 /* If TRIAL is from the fallthrough code of an annulled branch insn
1280 in SEQ, we cannot use it. */
1281 || (INSN_ANNULLED_BRANCH_P (XVECEXP (seq, 0, 0))
1282 && ! INSN_FROM_TARGET_P (trial)))
1283 return delay_list;
1285 /* If this insn was already done (usually in a previous delay slot),
1286 pretend we put it in our delay slot. */
1287 if (redundant_insn (trial, insn, new_delay_list))
1288 continue;
1290 /* We will end up re-vectoring this branch, so compute flags
1291 based on jumping to the new label. */
1292 flags = get_jump_flags (insn, JUMP_LABEL (XVECEXP (seq, 0, 0)));
1294 if (! must_annul
1295 && ((condition == const_true_rtx
1296 || (! insn_sets_resource_p (trial, other_needed, false)
1297 && ! may_trap_or_fault_p (PATTERN (trial)))))
1298 ? eligible_for_delay (insn, total_slots_filled, trial, flags)
1299 : (must_annul || (delay_list == NULL && new_delay_list == NULL))
1300 && (must_annul = 1,
1301 check_annul_list_true_false (0, delay_list)
1302 && check_annul_list_true_false (0, new_delay_list)
1303 && eligible_for_annul_false (insn, total_slots_filled,
1304 trial, flags)))
1306 if (must_annul)
1307 used_annul = 1;
1308 temp = copy_rtx (trial);
1309 INSN_FROM_TARGET_P (temp) = 1;
1310 new_delay_list = add_to_delay_list (temp, new_delay_list);
1311 total_slots_filled++;
1313 if (--slots_remaining == 0)
1314 break;
1316 else
1317 return delay_list;
1320 /* Show the place to which we will be branching. */
1321 *pnew_thread = next_active_insn (JUMP_LABEL (XVECEXP (seq, 0, 0)));
1323 /* Add any new insns to the delay list and update the count of the
1324 number of slots filled. */
1325 *pslots_filled = total_slots_filled;
1326 if (used_annul)
1327 *pannul_p = 1;
1329 if (delay_list == 0)
1330 return new_delay_list;
1332 for (temp = new_delay_list; temp; temp = XEXP (temp, 1))
1333 delay_list = add_to_delay_list (XEXP (temp, 0), delay_list);
1335 return delay_list;
1338 /* Similar to steal_delay_list_from_target except that SEQ is on the
1339 fallthrough path of INSN. Here we only do something if the delay insn
1340 of SEQ is an unconditional branch. In that case we steal its delay slot
1341 for INSN since unconditional branches are much easier to fill. */
1343 static rtx
1344 steal_delay_list_from_fallthrough (rtx insn, rtx condition, rtx seq,
1345 rtx delay_list, struct resources *sets,
1346 struct resources *needed,
1347 struct resources *other_needed,
1348 int slots_to_fill, int *pslots_filled,
1349 int *pannul_p)
1351 int i;
1352 int flags;
1353 int must_annul = *pannul_p;
1354 int used_annul = 0;
1356 flags = get_jump_flags (insn, JUMP_LABEL (insn));
1358 /* We can't do anything if SEQ's delay insn isn't an
1359 unconditional branch. */
1361 if (! simplejump_p (XVECEXP (seq, 0, 0))
1362 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) != RETURN)
1363 return delay_list;
1365 for (i = 1; i < XVECLEN (seq, 0); i++)
1367 rtx trial = XVECEXP (seq, 0, i);
1369 /* If TRIAL sets CC0, stealing it will move it too far from the use
1370 of CC0. */
1371 if (insn_references_resource_p (trial, sets, false)
1372 || insn_sets_resource_p (trial, needed, false)
1373 || insn_sets_resource_p (trial, sets, false)
1374 #ifdef HAVE_cc0
1375 || sets_cc0_p (PATTERN (trial))
1376 #endif
1379 break;
1381 /* If this insn was already done, we don't need it. */
1382 if (redundant_insn (trial, insn, delay_list))
1384 delete_from_delay_slot (trial);
1385 continue;
1388 if (! must_annul
1389 && ((condition == const_true_rtx
1390 || (! insn_sets_resource_p (trial, other_needed, false)
1391 && ! may_trap_or_fault_p (PATTERN (trial)))))
1392 ? eligible_for_delay (insn, *pslots_filled, trial, flags)
1393 : (must_annul || delay_list == NULL) && (must_annul = 1,
1394 check_annul_list_true_false (1, delay_list)
1395 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
1397 if (must_annul)
1398 used_annul = 1;
1399 delete_from_delay_slot (trial);
1400 delay_list = add_to_delay_list (trial, delay_list);
1402 if (++(*pslots_filled) == slots_to_fill)
1403 break;
1405 else
1406 break;
1409 if (used_annul)
1410 *pannul_p = 1;
1411 return delay_list;
1414 /* Try merging insns starting at THREAD which match exactly the insns in
1415 INSN's delay list.
1417 If all insns were matched and the insn was previously annulling, the
1418 annul bit will be cleared.
1420 For each insn that is merged, if the branch is or will be non-annulling,
1421 we delete the merged insn. */
1423 static void
1424 try_merge_delay_insns (rtx insn, rtx thread)
1426 rtx trial, next_trial;
1427 rtx delay_insn = XVECEXP (PATTERN (insn), 0, 0);
1428 int annul_p = INSN_ANNULLED_BRANCH_P (delay_insn);
1429 int slot_number = 1;
1430 int num_slots = XVECLEN (PATTERN (insn), 0);
1431 rtx next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1432 struct resources set, needed;
1433 rtx merged_insns = 0;
1434 int i;
1435 int flags;
1437 flags = get_jump_flags (delay_insn, JUMP_LABEL (delay_insn));
1439 CLEAR_RESOURCE (&needed);
1440 CLEAR_RESOURCE (&set);
1442 /* If this is not an annulling branch, take into account anything needed in
1443 INSN's delay slot. This prevents two increments from being incorrectly
1444 folded into one. If we are annulling, this would be the correct
1445 thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
1446 will essentially disable this optimization. This method is somewhat of
1447 a kludge, but I don't see a better way.) */
1448 if (! annul_p)
1449 for (i = 1 ; i < num_slots; i++)
1450 if (XVECEXP (PATTERN (insn), 0, i))
1451 mark_referenced_resources (XVECEXP (PATTERN (insn), 0, i), &needed,
1452 true);
1454 for (trial = thread; !stop_search_p (trial, 1); trial = next_trial)
1456 rtx pat = PATTERN (trial);
1457 rtx oldtrial = trial;
1459 next_trial = next_nonnote_insn (trial);
1461 /* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
1462 if (NONJUMP_INSN_P (trial)
1463 && (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER))
1464 continue;
1466 if (GET_CODE (next_to_match) == GET_CODE (trial)
1467 #ifdef HAVE_cc0
1468 /* We can't share an insn that sets cc0. */
1469 && ! sets_cc0_p (pat)
1470 #endif
1471 && ! insn_references_resource_p (trial, &set, true)
1472 && ! insn_sets_resource_p (trial, &set, true)
1473 && ! insn_sets_resource_p (trial, &needed, true)
1474 && (trial = try_split (pat, trial, 0)) != 0
1475 /* Update next_trial, in case try_split succeeded. */
1476 && (next_trial = next_nonnote_insn (trial))
1477 /* Likewise THREAD. */
1478 && (thread = oldtrial == thread ? trial : thread)
1479 && rtx_equal_p (PATTERN (next_to_match), PATTERN (trial))
1480 /* Have to test this condition if annul condition is different
1481 from (and less restrictive than) non-annulling one. */
1482 && eligible_for_delay (delay_insn, slot_number - 1, trial, flags))
1485 if (! annul_p)
1487 update_block (trial, thread);
1488 if (trial == thread)
1489 thread = next_active_insn (thread);
1491 delete_related_insns (trial);
1492 INSN_FROM_TARGET_P (next_to_match) = 0;
1494 else
1495 merged_insns = gen_rtx_INSN_LIST (VOIDmode, trial, merged_insns);
1497 if (++slot_number == num_slots)
1498 break;
1500 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1503 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
1504 mark_referenced_resources (trial, &needed, true);
1507 /* See if we stopped on a filled insn. If we did, try to see if its
1508 delay slots match. */
1509 if (slot_number != num_slots
1510 && trial && NONJUMP_INSN_P (trial)
1511 && GET_CODE (PATTERN (trial)) == SEQUENCE
1512 && ! INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial), 0, 0)))
1514 rtx pat = PATTERN (trial);
1515 rtx filled_insn = XVECEXP (pat, 0, 0);
1517 /* Account for resources set/needed by the filled insn. */
1518 mark_set_resources (filled_insn, &set, 0, MARK_SRC_DEST_CALL);
1519 mark_referenced_resources (filled_insn, &needed, true);
1521 for (i = 1; i < XVECLEN (pat, 0); i++)
1523 rtx dtrial = XVECEXP (pat, 0, i);
1525 if (! insn_references_resource_p (dtrial, &set, true)
1526 && ! insn_sets_resource_p (dtrial, &set, true)
1527 && ! insn_sets_resource_p (dtrial, &needed, true)
1528 #ifdef HAVE_cc0
1529 && ! sets_cc0_p (PATTERN (dtrial))
1530 #endif
1531 && rtx_equal_p (PATTERN (next_to_match), PATTERN (dtrial))
1532 && eligible_for_delay (delay_insn, slot_number - 1, dtrial, flags))
1534 if (! annul_p)
1536 rtx new_rtx;
1538 update_block (dtrial, thread);
1539 new_rtx = delete_from_delay_slot (dtrial);
1540 if (INSN_DELETED_P (thread))
1541 thread = new_rtx;
1542 INSN_FROM_TARGET_P (next_to_match) = 0;
1544 else
1545 merged_insns = gen_rtx_INSN_LIST (SImode, dtrial,
1546 merged_insns);
1548 if (++slot_number == num_slots)
1549 break;
1551 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1553 else
1555 /* Keep track of the set/referenced resources for the delay
1556 slots of any trial insns we encounter. */
1557 mark_set_resources (dtrial, &set, 0, MARK_SRC_DEST_CALL);
1558 mark_referenced_resources (dtrial, &needed, true);
1563 /* If all insns in the delay slot have been matched and we were previously
1564 annulling the branch, we need not any more. In that case delete all the
1565 merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn in
1566 the delay list so that we know that it isn't only being used at the
1567 target. */
1568 if (slot_number == num_slots && annul_p)
1570 for (; merged_insns; merged_insns = XEXP (merged_insns, 1))
1572 if (GET_MODE (merged_insns) == SImode)
1574 rtx new_rtx;
1576 update_block (XEXP (merged_insns, 0), thread);
1577 new_rtx = delete_from_delay_slot (XEXP (merged_insns, 0));
1578 if (INSN_DELETED_P (thread))
1579 thread = new_rtx;
1581 else
1583 update_block (XEXP (merged_insns, 0), thread);
1584 delete_related_insns (XEXP (merged_insns, 0));
1588 INSN_ANNULLED_BRANCH_P (delay_insn) = 0;
1590 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1591 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)) = 0;
1595 /* See if INSN is redundant with an insn in front of TARGET. Often this
1596 is called when INSN is a candidate for a delay slot of TARGET.
1597 DELAY_LIST are insns that will be placed in delay slots of TARGET in front
1598 of INSN. Often INSN will be redundant with an insn in a delay slot of
1599 some previous insn. This happens when we have a series of branches to the
1600 same label; in that case the first insn at the target might want to go
1601 into each of the delay slots.
1603 If we are not careful, this routine can take up a significant fraction
1604 of the total compilation time (4%), but only wins rarely. Hence we
1605 speed this routine up by making two passes. The first pass goes back
1606 until it hits a label and sees if it finds an insn with an identical
1607 pattern. Only in this (relatively rare) event does it check for
1608 data conflicts.
1610 We do not split insns we encounter. This could cause us not to find a
1611 redundant insn, but the cost of splitting seems greater than the possible
1612 gain in rare cases. */
1614 static rtx
1615 redundant_insn (rtx insn, rtx target, rtx delay_list)
1617 rtx target_main = target;
1618 rtx ipat = PATTERN (insn);
1619 rtx trial, pat;
1620 struct resources needed, set;
1621 int i;
1622 unsigned insns_to_search;
1624 /* If INSN has any REG_UNUSED notes, it can't match anything since we
1625 are allowed to not actually assign to such a register. */
1626 if (find_reg_note (insn, REG_UNUSED, NULL_RTX) != 0)
1627 return 0;
1629 /* Scan backwards looking for a match. */
1630 for (trial = PREV_INSN (target),
1631 insns_to_search = MAX_DELAY_SLOT_INSN_SEARCH;
1632 trial && insns_to_search > 0;
1633 trial = PREV_INSN (trial))
1635 if (LABEL_P (trial))
1636 return 0;
1638 if (!NONDEBUG_INSN_P (trial))
1639 continue;
1640 --insns_to_search;
1642 pat = PATTERN (trial);
1643 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1644 continue;
1646 if (GET_CODE (pat) == SEQUENCE)
1648 /* Stop for a CALL and its delay slots because it is difficult to
1649 track its resource needs correctly. */
1650 if (CALL_P (XVECEXP (pat, 0, 0)))
1651 return 0;
1653 /* Stop for an INSN or JUMP_INSN with delayed effects and its delay
1654 slots because it is difficult to track its resource needs
1655 correctly. */
1657 #ifdef INSN_SETS_ARE_DELAYED
1658 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1659 return 0;
1660 #endif
1662 #ifdef INSN_REFERENCES_ARE_DELAYED
1663 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1664 return 0;
1665 #endif
1667 /* See if any of the insns in the delay slot match, updating
1668 resource requirements as we go. */
1669 for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
1670 if (GET_CODE (XVECEXP (pat, 0, i)) == GET_CODE (insn)
1671 && rtx_equal_p (PATTERN (XVECEXP (pat, 0, i)), ipat)
1672 && ! find_reg_note (XVECEXP (pat, 0, i), REG_UNUSED, NULL_RTX))
1673 break;
1675 /* If found a match, exit this loop early. */
1676 if (i > 0)
1677 break;
1680 else if (GET_CODE (trial) == GET_CODE (insn) && rtx_equal_p (pat, ipat)
1681 && ! find_reg_note (trial, REG_UNUSED, NULL_RTX))
1682 break;
1685 /* If we didn't find an insn that matches, return 0. */
1686 if (trial == 0)
1687 return 0;
1689 /* See what resources this insn sets and needs. If they overlap, or
1690 if this insn references CC0, it can't be redundant. */
1692 CLEAR_RESOURCE (&needed);
1693 CLEAR_RESOURCE (&set);
1694 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1695 mark_referenced_resources (insn, &needed, true);
1697 /* If TARGET is a SEQUENCE, get the main insn. */
1698 if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
1699 target_main = XVECEXP (PATTERN (target), 0, 0);
1701 if (resource_conflicts_p (&needed, &set)
1702 #ifdef HAVE_cc0
1703 || reg_mentioned_p (cc0_rtx, ipat)
1704 #endif
1705 /* The insn requiring the delay may not set anything needed or set by
1706 INSN. */
1707 || insn_sets_resource_p (target_main, &needed, true)
1708 || insn_sets_resource_p (target_main, &set, true))
1709 return 0;
1711 /* Insns we pass may not set either NEEDED or SET, so merge them for
1712 simpler tests. */
1713 needed.memory |= set.memory;
1714 needed.unch_memory |= set.unch_memory;
1715 IOR_HARD_REG_SET (needed.regs, set.regs);
1717 /* This insn isn't redundant if it conflicts with an insn that either is
1718 or will be in a delay slot of TARGET. */
1720 while (delay_list)
1722 if (insn_sets_resource_p (XEXP (delay_list, 0), &needed, true))
1723 return 0;
1724 delay_list = XEXP (delay_list, 1);
1727 if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
1728 for (i = 1; i < XVECLEN (PATTERN (target), 0); i++)
1729 if (insn_sets_resource_p (XVECEXP (PATTERN (target), 0, i), &needed,
1730 true))
1731 return 0;
1733 /* Scan backwards until we reach a label or an insn that uses something
1734 INSN sets or sets something insn uses or sets. */
1736 for (trial = PREV_INSN (target),
1737 insns_to_search = MAX_DELAY_SLOT_INSN_SEARCH;
1738 trial && !LABEL_P (trial) && insns_to_search > 0;
1739 trial = PREV_INSN (trial))
1741 if (!NONDEBUG_INSN_P (trial))
1742 continue;
1743 --insns_to_search;
1745 pat = PATTERN (trial);
1746 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1747 continue;
1749 if (GET_CODE (pat) == SEQUENCE)
1751 /* If this is a CALL_INSN and its delay slots, it is hard to track
1752 the resource needs properly, so give up. */
1753 if (CALL_P (XVECEXP (pat, 0, 0)))
1754 return 0;
1756 /* If this is an INSN or JUMP_INSN with delayed effects, it
1757 is hard to track the resource needs properly, so give up. */
1759 #ifdef INSN_SETS_ARE_DELAYED
1760 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1761 return 0;
1762 #endif
1764 #ifdef INSN_REFERENCES_ARE_DELAYED
1765 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1766 return 0;
1767 #endif
1769 /* See if any of the insns in the delay slot match, updating
1770 resource requirements as we go. */
1771 for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
1773 rtx candidate = XVECEXP (pat, 0, i);
1775 /* If an insn will be annulled if the branch is false, it isn't
1776 considered as a possible duplicate insn. */
1777 if (rtx_equal_p (PATTERN (candidate), ipat)
1778 && ! (INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
1779 && INSN_FROM_TARGET_P (candidate)))
1781 /* Show that this insn will be used in the sequel. */
1782 INSN_FROM_TARGET_P (candidate) = 0;
1783 return candidate;
1786 /* Unless this is an annulled insn from the target of a branch,
1787 we must stop if it sets anything needed or set by INSN. */
1788 if ((! INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
1789 || ! INSN_FROM_TARGET_P (candidate))
1790 && insn_sets_resource_p (candidate, &needed, true))
1791 return 0;
1794 /* If the insn requiring the delay slot conflicts with INSN, we
1795 must stop. */
1796 if (insn_sets_resource_p (XVECEXP (pat, 0, 0), &needed, true))
1797 return 0;
1799 else
1801 /* See if TRIAL is the same as INSN. */
1802 pat = PATTERN (trial);
1803 if (rtx_equal_p (pat, ipat))
1804 return trial;
1806 /* Can't go any further if TRIAL conflicts with INSN. */
1807 if (insn_sets_resource_p (trial, &needed, true))
1808 return 0;
1812 return 0;
1815 /* Return 1 if THREAD can only be executed in one way. If LABEL is nonzero,
1816 it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
1817 is nonzero, we are allowed to fall into this thread; otherwise, we are
1818 not.
1820 If LABEL is used more than one or we pass a label other than LABEL before
1821 finding an active insn, we do not own this thread. */
1823 static int
1824 own_thread_p (rtx thread, rtx label, int allow_fallthrough)
1826 rtx active_insn;
1827 rtx insn;
1829 /* We don't own the function end. */
1830 if (thread == 0)
1831 return 0;
1833 /* Get the first active insn, or THREAD, if it is an active insn. */
1834 active_insn = next_active_insn (PREV_INSN (thread));
1836 for (insn = thread; insn != active_insn; insn = NEXT_INSN (insn))
1837 if (LABEL_P (insn)
1838 && (insn != label || LABEL_NUSES (insn) != 1))
1839 return 0;
1841 if (allow_fallthrough)
1842 return 1;
1844 /* Ensure that we reach a BARRIER before any insn or label. */
1845 for (insn = prev_nonnote_insn (thread);
1846 insn == 0 || !BARRIER_P (insn);
1847 insn = prev_nonnote_insn (insn))
1848 if (insn == 0
1849 || LABEL_P (insn)
1850 || (NONJUMP_INSN_P (insn)
1851 && GET_CODE (PATTERN (insn)) != USE
1852 && GET_CODE (PATTERN (insn)) != CLOBBER))
1853 return 0;
1855 return 1;
1858 /* Called when INSN is being moved from a location near the target of a jump.
1859 We leave a marker of the form (use (INSN)) immediately in front
1860 of WHERE for mark_target_live_regs. These markers will be deleted when
1861 reorg finishes.
1863 We used to try to update the live status of registers if WHERE is at
1864 the start of a basic block, but that can't work since we may remove a
1865 BARRIER in relax_delay_slots. */
1867 static void
1868 update_block (rtx insn, rtx where)
1870 /* Ignore if this was in a delay slot and it came from the target of
1871 a branch. */
1872 if (INSN_FROM_TARGET_P (insn))
1873 return;
1875 emit_insn_before (gen_rtx_USE (VOIDmode, insn), where);
1877 /* INSN might be making a value live in a block where it didn't use to
1878 be. So recompute liveness information for this block. */
1880 incr_ticks_for_insn (insn);
1883 /* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
1884 the basic block containing the jump. */
1886 static int
1887 reorg_redirect_jump (rtx jump, rtx nlabel)
1889 incr_ticks_for_insn (jump);
1890 return redirect_jump (jump, nlabel, 1);
1893 /* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
1894 We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
1895 that reference values used in INSN. If we find one, then we move the
1896 REG_DEAD note to INSN.
1898 This is needed to handle the case where a later insn (after INSN) has a
1899 REG_DEAD note for a register used by INSN, and this later insn subsequently
1900 gets moved before a CODE_LABEL because it is a redundant insn. In this
1901 case, mark_target_live_regs may be confused into thinking the register
1902 is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
1904 static void
1905 update_reg_dead_notes (rtx insn, rtx delayed_insn)
1907 rtx p, link, next;
1909 for (p = next_nonnote_insn (insn); p != delayed_insn;
1910 p = next_nonnote_insn (p))
1911 for (link = REG_NOTES (p); link; link = next)
1913 next = XEXP (link, 1);
1915 if (REG_NOTE_KIND (link) != REG_DEAD
1916 || !REG_P (XEXP (link, 0)))
1917 continue;
1919 if (reg_referenced_p (XEXP (link, 0), PATTERN (insn)))
1921 /* Move the REG_DEAD note from P to INSN. */
1922 remove_note (p, link);
1923 XEXP (link, 1) = REG_NOTES (insn);
1924 REG_NOTES (insn) = link;
1929 /* Called when an insn redundant with start_insn is deleted. If there
1930 is a REG_DEAD note for the target of start_insn between start_insn
1931 and stop_insn, then the REG_DEAD note needs to be deleted since the
1932 value no longer dies there.
1934 If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
1935 confused into thinking the register is dead. */
1937 static void
1938 fix_reg_dead_note (rtx start_insn, rtx stop_insn)
1940 rtx p, link, next;
1942 for (p = next_nonnote_insn (start_insn); p != stop_insn;
1943 p = next_nonnote_insn (p))
1944 for (link = REG_NOTES (p); link; link = next)
1946 next = XEXP (link, 1);
1948 if (REG_NOTE_KIND (link) != REG_DEAD
1949 || !REG_P (XEXP (link, 0)))
1950 continue;
1952 if (reg_set_p (XEXP (link, 0), PATTERN (start_insn)))
1954 remove_note (p, link);
1955 return;
1960 /* Delete any REG_UNUSED notes that exist on INSN but not on REDUNDANT_INSN.
1962 This handles the case of udivmodXi4 instructions which optimize their
1963 output depending on whether any REG_UNUSED notes are present.
1964 we must make sure that INSN calculates as many results as REDUNDANT_INSN
1965 does. */
1967 static void
1968 update_reg_unused_notes (rtx insn, rtx redundant_insn)
1970 rtx link, next;
1972 for (link = REG_NOTES (insn); link; link = next)
1974 next = XEXP (link, 1);
1976 if (REG_NOTE_KIND (link) != REG_UNUSED
1977 || !REG_P (XEXP (link, 0)))
1978 continue;
1980 if (! find_regno_note (redundant_insn, REG_UNUSED,
1981 REGNO (XEXP (link, 0))))
1982 remove_note (insn, link);
1986 /* Return the label before INSN, or put a new label there. */
1988 static rtx
1989 get_label_before (rtx insn)
1991 rtx label;
1993 /* Find an existing label at this point
1994 or make a new one if there is none. */
1995 label = prev_nonnote_insn (insn);
1997 if (label == 0 || !LABEL_P (label))
1999 rtx prev = PREV_INSN (insn);
2001 label = gen_label_rtx ();
2002 emit_label_after (label, prev);
2003 LABEL_NUSES (label) = 0;
2005 return label;
2008 /* Scan a function looking for insns that need a delay slot and find insns to
2009 put into the delay slot.
2011 NON_JUMPS_P is nonzero if we are to only try to fill non-jump insns (such
2012 as calls). We do these first since we don't want jump insns (that are
2013 easier to fill) to get the only insns that could be used for non-jump insns.
2014 When it is zero, only try to fill JUMP_INSNs.
2016 When slots are filled in this manner, the insns (including the
2017 delay_insn) are put together in a SEQUENCE rtx. In this fashion,
2018 it is possible to tell whether a delay slot has really been filled
2019 or not. `final' knows how to deal with this, by communicating
2020 through FINAL_SEQUENCE. */
2022 static void
2023 fill_simple_delay_slots (int non_jumps_p)
2025 rtx insn, pat, trial, next_trial;
2026 int i;
2027 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
2028 struct resources needed, set;
2029 int slots_to_fill, slots_filled;
2030 rtx delay_list;
2032 for (i = 0; i < num_unfilled_slots; i++)
2034 int flags;
2035 /* Get the next insn to fill. If it has already had any slots assigned,
2036 we can't do anything with it. Maybe we'll improve this later. */
2038 insn = unfilled_slots_base[i];
2039 if (insn == 0
2040 || INSN_DELETED_P (insn)
2041 || (NONJUMP_INSN_P (insn)
2042 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2043 || (JUMP_P (insn) && non_jumps_p)
2044 || (!JUMP_P (insn) && ! non_jumps_p))
2045 continue;
2047 /* It may have been that this insn used to need delay slots, but
2048 now doesn't; ignore in that case. This can happen, for example,
2049 on the HP PA RISC, where the number of delay slots depends on
2050 what insns are nearby. */
2051 slots_to_fill = num_delay_slots (insn);
2053 /* Some machine description have defined instructions to have
2054 delay slots only in certain circumstances which may depend on
2055 nearby insns (which change due to reorg's actions).
2057 For example, the PA port normally has delay slots for unconditional
2058 jumps.
2060 However, the PA port claims such jumps do not have a delay slot
2061 if they are immediate successors of certain CALL_INSNs. This
2062 allows the port to favor filling the delay slot of the call with
2063 the unconditional jump. */
2064 if (slots_to_fill == 0)
2065 continue;
2067 /* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
2068 says how many. After initialization, first try optimizing
2070 call _foo call _foo
2071 nop add %o7,.-L1,%o7
2072 b,a L1
2075 If this case applies, the delay slot of the call is filled with
2076 the unconditional jump. This is done first to avoid having the
2077 delay slot of the call filled in the backward scan. Also, since
2078 the unconditional jump is likely to also have a delay slot, that
2079 insn must exist when it is subsequently scanned.
2081 This is tried on each insn with delay slots as some machines
2082 have insns which perform calls, but are not represented as
2083 CALL_INSNs. */
2085 slots_filled = 0;
2086 delay_list = 0;
2088 if (JUMP_P (insn))
2089 flags = get_jump_flags (insn, JUMP_LABEL (insn));
2090 else
2091 flags = get_jump_flags (insn, NULL_RTX);
2093 if ((trial = next_active_insn (insn))
2094 && JUMP_P (trial)
2095 && simplejump_p (trial)
2096 && eligible_for_delay (insn, slots_filled, trial, flags)
2097 && no_labels_between_p (insn, trial)
2098 && ! can_throw_internal (trial))
2100 rtx *tmp;
2101 slots_filled++;
2102 delay_list = add_to_delay_list (trial, delay_list);
2104 /* TRIAL may have had its delay slot filled, then unfilled. When
2105 the delay slot is unfilled, TRIAL is placed back on the unfilled
2106 slots obstack. Unfortunately, it is placed on the end of the
2107 obstack, not in its original location. Therefore, we must search
2108 from entry i + 1 to the end of the unfilled slots obstack to
2109 try and find TRIAL. */
2110 tmp = &unfilled_slots_base[i + 1];
2111 while (*tmp != trial && tmp != unfilled_slots_next)
2112 tmp++;
2114 /* Remove the unconditional jump from consideration for delay slot
2115 filling and unthread it. */
2116 if (*tmp == trial)
2117 *tmp = 0;
2119 rtx next = NEXT_INSN (trial);
2120 rtx prev = PREV_INSN (trial);
2121 if (prev)
2122 NEXT_INSN (prev) = next;
2123 if (next)
2124 PREV_INSN (next) = prev;
2128 /* Now, scan backwards from the insn to search for a potential
2129 delay-slot candidate. Stop searching when a label or jump is hit.
2131 For each candidate, if it is to go into the delay slot (moved
2132 forward in execution sequence), it must not need or set any resources
2133 that were set by later insns and must not set any resources that
2134 are needed for those insns.
2136 The delay slot insn itself sets resources unless it is a call
2137 (in which case the called routine, not the insn itself, is doing
2138 the setting). */
2140 if (slots_filled < slots_to_fill)
2142 CLEAR_RESOURCE (&needed);
2143 CLEAR_RESOURCE (&set);
2144 mark_set_resources (insn, &set, 0, MARK_SRC_DEST);
2145 mark_referenced_resources (insn, &needed, false);
2147 for (trial = prev_nonnote_insn (insn); ! stop_search_p (trial, 1);
2148 trial = next_trial)
2150 next_trial = prev_nonnote_insn (trial);
2152 /* This must be an INSN or CALL_INSN. */
2153 pat = PATTERN (trial);
2155 /* Stand-alone USE and CLOBBER are just for flow. */
2156 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2157 continue;
2159 /* Check for resource conflict first, to avoid unnecessary
2160 splitting. */
2161 if (! insn_references_resource_p (trial, &set, true)
2162 && ! insn_sets_resource_p (trial, &set, true)
2163 && ! insn_sets_resource_p (trial, &needed, true)
2164 #ifdef HAVE_cc0
2165 /* Can't separate set of cc0 from its use. */
2166 && ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
2167 #endif
2168 && ! can_throw_internal (trial))
2170 trial = try_split (pat, trial, 1);
2171 next_trial = prev_nonnote_insn (trial);
2172 if (eligible_for_delay (insn, slots_filled, trial, flags))
2174 /* In this case, we are searching backward, so if we
2175 find insns to put on the delay list, we want
2176 to put them at the head, rather than the
2177 tail, of the list. */
2179 update_reg_dead_notes (trial, insn);
2180 delay_list = gen_rtx_INSN_LIST (VOIDmode,
2181 trial, delay_list);
2182 update_block (trial, trial);
2183 delete_related_insns (trial);
2184 if (slots_to_fill == ++slots_filled)
2185 break;
2186 continue;
2190 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2191 mark_referenced_resources (trial, &needed, true);
2195 /* If all needed slots haven't been filled, we come here. */
2197 /* Try to optimize case of jumping around a single insn. */
2198 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
2199 if (slots_filled != slots_to_fill
2200 && delay_list == 0
2201 && JUMP_P (insn)
2202 && (condjump_p (insn) || condjump_in_parallel_p (insn)))
2204 delay_list = optimize_skip (insn);
2205 if (delay_list)
2206 slots_filled += 1;
2208 #endif
2210 /* Try to get insns from beyond the insn needing the delay slot.
2211 These insns can neither set or reference resources set in insns being
2212 skipped, cannot set resources in the insn being skipped, and, if this
2213 is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
2214 call might not return).
2216 There used to be code which continued past the target label if
2217 we saw all uses of the target label. This code did not work,
2218 because it failed to account for some instructions which were
2219 both annulled and marked as from the target. This can happen as a
2220 result of optimize_skip. Since this code was redundant with
2221 fill_eager_delay_slots anyways, it was just deleted. */
2223 if (slots_filled != slots_to_fill
2224 /* If this instruction could throw an exception which is
2225 caught in the same function, then it's not safe to fill
2226 the delay slot with an instruction from beyond this
2227 point. For example, consider:
2229 int i = 2;
2231 try {
2232 f();
2233 i = 3;
2234 } catch (...) {}
2236 return i;
2238 Even though `i' is a local variable, we must be sure not
2239 to put `i = 3' in the delay slot if `f' might throw an
2240 exception.
2242 Presumably, we should also check to see if we could get
2243 back to this function via `setjmp'. */
2244 && ! can_throw_internal (insn)
2245 && (!JUMP_P (insn)
2246 || ((condjump_p (insn) || condjump_in_parallel_p (insn))
2247 && ! simplejump_p (insn)
2248 && JUMP_LABEL (insn) != 0)))
2250 /* Invariant: If insn is a JUMP_INSN, the insn's jump
2251 label. Otherwise, zero. */
2252 rtx target = 0;
2253 int maybe_never = 0;
2254 rtx pat, trial_delay;
2256 CLEAR_RESOURCE (&needed);
2257 CLEAR_RESOURCE (&set);
2259 if (CALL_P (insn))
2261 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
2262 mark_referenced_resources (insn, &needed, true);
2263 maybe_never = 1;
2265 else
2267 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
2268 mark_referenced_resources (insn, &needed, true);
2269 if (JUMP_P (insn))
2270 target = JUMP_LABEL (insn);
2273 if (target == 0)
2274 for (trial = next_nonnote_insn (insn); !stop_search_p (trial, 1);
2275 trial = next_trial)
2277 next_trial = next_nonnote_insn (trial);
2279 /* This must be an INSN or CALL_INSN. */
2280 pat = PATTERN (trial);
2282 /* Stand-alone USE and CLOBBER are just for flow. */
2283 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2284 continue;
2286 /* If this already has filled delay slots, get the insn needing
2287 the delay slots. */
2288 if (GET_CODE (pat) == SEQUENCE)
2289 trial_delay = XVECEXP (pat, 0, 0);
2290 else
2291 trial_delay = trial;
2293 /* Stop our search when seeing a jump. */
2294 if (JUMP_P (trial_delay))
2295 break;
2297 /* See if we have a resource problem before we try to
2298 split. */
2299 if (GET_CODE (pat) != SEQUENCE
2300 && ! insn_references_resource_p (trial, &set, true)
2301 && ! insn_sets_resource_p (trial, &set, true)
2302 && ! insn_sets_resource_p (trial, &needed, true)
2303 #ifdef HAVE_cc0
2304 && ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
2305 #endif
2306 && ! (maybe_never && may_trap_or_fault_p (pat))
2307 && (trial = try_split (pat, trial, 0))
2308 && eligible_for_delay (insn, slots_filled, trial, flags)
2309 && ! can_throw_internal(trial))
2311 next_trial = next_nonnote_insn (trial);
2312 delay_list = add_to_delay_list (trial, delay_list);
2314 #ifdef HAVE_cc0
2315 if (reg_mentioned_p (cc0_rtx, pat))
2316 link_cc0_insns (trial);
2317 #endif
2319 delete_related_insns (trial);
2320 if (slots_to_fill == ++slots_filled)
2321 break;
2322 continue;
2325 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2326 mark_referenced_resources (trial, &needed, true);
2328 /* Ensure we don't put insns between the setting of cc and the
2329 comparison by moving a setting of cc into an earlier delay
2330 slot since these insns could clobber the condition code. */
2331 set.cc = 1;
2333 /* If this is a call or jump, we might not get here. */
2334 if (CALL_P (trial_delay)
2335 || JUMP_P (trial_delay))
2336 maybe_never = 1;
2339 /* If there are slots left to fill and our search was stopped by an
2340 unconditional branch, try the insn at the branch target. We can
2341 redirect the branch if it works.
2343 Don't do this if the insn at the branch target is a branch. */
2344 if (slots_to_fill != slots_filled
2345 && trial
2346 && JUMP_P (trial)
2347 && simplejump_p (trial)
2348 && (target == 0 || JUMP_LABEL (trial) == target)
2349 && (next_trial = next_active_insn (JUMP_LABEL (trial))) != 0
2350 && ! (NONJUMP_INSN_P (next_trial)
2351 && GET_CODE (PATTERN (next_trial)) == SEQUENCE)
2352 && !JUMP_P (next_trial)
2353 && ! insn_references_resource_p (next_trial, &set, true)
2354 && ! insn_sets_resource_p (next_trial, &set, true)
2355 && ! insn_sets_resource_p (next_trial, &needed, true)
2356 #ifdef HAVE_cc0
2357 && ! reg_mentioned_p (cc0_rtx, PATTERN (next_trial))
2358 #endif
2359 && ! (maybe_never && may_trap_or_fault_p (PATTERN (next_trial)))
2360 && (next_trial = try_split (PATTERN (next_trial), next_trial, 0))
2361 && eligible_for_delay (insn, slots_filled, next_trial, flags)
2362 && ! can_throw_internal (trial))
2364 /* See comment in relax_delay_slots about necessity of using
2365 next_real_insn here. */
2366 rtx new_label = next_real_insn (next_trial);
2368 if (new_label != 0)
2369 new_label = get_label_before (new_label);
2370 else
2371 new_label = find_end_label ();
2373 if (new_label)
2375 delay_list
2376 = add_to_delay_list (copy_rtx (next_trial), delay_list);
2377 slots_filled++;
2378 reorg_redirect_jump (trial, new_label);
2380 /* If we merged because we both jumped to the same place,
2381 redirect the original insn also. */
2382 if (target)
2383 reorg_redirect_jump (insn, new_label);
2388 /* If this is an unconditional jump, then try to get insns from the
2389 target of the jump. */
2390 if (JUMP_P (insn)
2391 && simplejump_p (insn)
2392 && slots_filled != slots_to_fill)
2393 delay_list
2394 = fill_slots_from_thread (insn, const_true_rtx,
2395 next_active_insn (JUMP_LABEL (insn)),
2396 NULL, 1, 1,
2397 own_thread_p (JUMP_LABEL (insn),
2398 JUMP_LABEL (insn), 0),
2399 slots_to_fill, &slots_filled,
2400 delay_list);
2402 if (delay_list)
2403 unfilled_slots_base[i]
2404 = emit_delay_sequence (insn, delay_list, slots_filled);
2406 if (slots_to_fill == slots_filled)
2407 unfilled_slots_base[i] = 0;
2409 note_delay_statistics (slots_filled, 0);
2412 #ifdef DELAY_SLOTS_FOR_EPILOGUE
2413 /* See if the epilogue needs any delay slots. Try to fill them if so.
2414 The only thing we can do is scan backwards from the end of the
2415 function. If we did this in a previous pass, it is incorrect to do it
2416 again. */
2417 if (crtl->epilogue_delay_list)
2418 return;
2420 slots_to_fill = DELAY_SLOTS_FOR_EPILOGUE;
2421 if (slots_to_fill == 0)
2422 return;
2424 slots_filled = 0;
2425 CLEAR_RESOURCE (&set);
2427 /* The frame pointer and stack pointer are needed at the beginning of
2428 the epilogue, so instructions setting them can not be put in the
2429 epilogue delay slot. However, everything else needed at function
2430 end is safe, so we don't want to use end_of_function_needs here. */
2431 CLEAR_RESOURCE (&needed);
2432 if (frame_pointer_needed)
2434 SET_HARD_REG_BIT (needed.regs, FRAME_POINTER_REGNUM);
2435 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2436 SET_HARD_REG_BIT (needed.regs, HARD_FRAME_POINTER_REGNUM);
2437 #endif
2438 if (! EXIT_IGNORE_STACK
2439 || current_function_sp_is_unchanging)
2440 SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
2442 else
2443 SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
2445 #ifdef EPILOGUE_USES
2446 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2448 if (EPILOGUE_USES (i))
2449 SET_HARD_REG_BIT (needed.regs, i);
2451 #endif
2453 for (trial = get_last_insn (); ! stop_search_p (trial, 1);
2454 trial = PREV_INSN (trial))
2456 if (NOTE_P (trial))
2457 continue;
2458 pat = PATTERN (trial);
2459 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2460 continue;
2462 if (! insn_references_resource_p (trial, &set, true)
2463 && ! insn_sets_resource_p (trial, &needed, true)
2464 && ! insn_sets_resource_p (trial, &set, true)
2465 #ifdef HAVE_cc0
2466 /* Don't want to mess with cc0 here. */
2467 && ! reg_mentioned_p (cc0_rtx, pat)
2468 #endif
2469 && ! can_throw_internal (trial))
2471 trial = try_split (pat, trial, 1);
2472 if (ELIGIBLE_FOR_EPILOGUE_DELAY (trial, slots_filled))
2474 /* Here as well we are searching backward, so put the
2475 insns we find on the head of the list. */
2477 crtl->epilogue_delay_list
2478 = gen_rtx_INSN_LIST (VOIDmode, trial,
2479 crtl->epilogue_delay_list);
2480 mark_end_of_function_resources (trial, true);
2481 update_block (trial, trial);
2482 delete_related_insns (trial);
2484 /* Clear deleted bit so final.c will output the insn. */
2485 INSN_DELETED_P (trial) = 0;
2487 if (slots_to_fill == ++slots_filled)
2488 break;
2489 continue;
2493 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2494 mark_referenced_resources (trial, &needed, true);
2497 note_delay_statistics (slots_filled, 0);
2498 #endif
2501 /* Follow any unconditional jump at LABEL;
2502 return the ultimate label reached by any such chain of jumps.
2503 Return null if the chain ultimately leads to a return instruction.
2504 If LABEL is not followed by a jump, return LABEL.
2505 If the chain loops or we can't find end, return LABEL,
2506 since that tells caller to avoid changing the insn. */
2508 static rtx
2509 follow_jumps (rtx label)
2511 rtx insn;
2512 rtx next;
2513 rtx value = label;
2514 int depth;
2516 for (depth = 0;
2517 (depth < 10
2518 && (insn = next_active_insn (value)) != 0
2519 && JUMP_P (insn)
2520 && ((JUMP_LABEL (insn) != 0 && any_uncondjump_p (insn)
2521 && onlyjump_p (insn))
2522 || GET_CODE (PATTERN (insn)) == RETURN)
2523 && (next = NEXT_INSN (insn))
2524 && BARRIER_P (next));
2525 depth++)
2527 rtx tem;
2529 /* If we have found a cycle, make the insn jump to itself. */
2530 if (JUMP_LABEL (insn) == label)
2531 return label;
2533 tem = next_active_insn (JUMP_LABEL (insn));
2534 if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
2535 || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
2536 break;
2538 value = JUMP_LABEL (insn);
2540 if (depth == 10)
2541 return label;
2542 return value;
2545 /* Try to find insns to place in delay slots.
2547 INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
2548 or is an unconditional branch if CONDITION is const_true_rtx.
2549 *PSLOTS_FILLED is updated with the number of slots that we have filled.
2551 THREAD is a flow-of-control, either the insns to be executed if the
2552 branch is true or if the branch is false, THREAD_IF_TRUE says which.
2554 OPPOSITE_THREAD is the thread in the opposite direction. It is used
2555 to see if any potential delay slot insns set things needed there.
2557 LIKELY is nonzero if it is extremely likely that the branch will be
2558 taken and THREAD_IF_TRUE is set. This is used for the branch at the
2559 end of a loop back up to the top.
2561 OWN_THREAD and OWN_OPPOSITE_THREAD are true if we are the only user of the
2562 thread. I.e., it is the fallthrough code of our jump or the target of the
2563 jump when we are the only jump going there.
2565 If OWN_THREAD is false, it must be the "true" thread of a jump. In that
2566 case, we can only take insns from the head of the thread for our delay
2567 slot. We then adjust the jump to point after the insns we have taken. */
2569 static rtx
2570 fill_slots_from_thread (rtx insn, rtx condition, rtx thread,
2571 rtx opposite_thread, int likely, int thread_if_true,
2572 int own_thread, int slots_to_fill,
2573 int *pslots_filled, rtx delay_list)
2575 rtx new_thread;
2576 struct resources opposite_needed, set, needed;
2577 rtx trial;
2578 int lose = 0;
2579 int must_annul = 0;
2580 int flags;
2582 /* Validate our arguments. */
2583 gcc_assert(condition != const_true_rtx || thread_if_true);
2584 gcc_assert(own_thread || thread_if_true);
2586 flags = get_jump_flags (insn, JUMP_LABEL (insn));
2588 /* If our thread is the end of subroutine, we can't get any delay
2589 insns from that. */
2590 if (thread == 0)
2591 return delay_list;
2593 /* If this is an unconditional branch, nothing is needed at the
2594 opposite thread. Otherwise, compute what is needed there. */
2595 if (condition == const_true_rtx)
2596 CLEAR_RESOURCE (&opposite_needed);
2597 else
2598 mark_target_live_regs (get_insns (), opposite_thread, &opposite_needed);
2600 /* If the insn at THREAD can be split, do it here to avoid having to
2601 update THREAD and NEW_THREAD if it is done in the loop below. Also
2602 initialize NEW_THREAD. */
2604 new_thread = thread = try_split (PATTERN (thread), thread, 0);
2606 /* Scan insns at THREAD. We are looking for an insn that can be removed
2607 from THREAD (it neither sets nor references resources that were set
2608 ahead of it and it doesn't set anything needs by the insns ahead of
2609 it) and that either can be placed in an annulling insn or aren't
2610 needed at OPPOSITE_THREAD. */
2612 CLEAR_RESOURCE (&needed);
2613 CLEAR_RESOURCE (&set);
2615 /* If we do not own this thread, we must stop as soon as we find
2616 something that we can't put in a delay slot, since all we can do
2617 is branch into THREAD at a later point. Therefore, labels stop
2618 the search if this is not the `true' thread. */
2620 for (trial = thread;
2621 ! stop_search_p (trial, ! thread_if_true) && (! lose || own_thread);
2622 trial = next_nonnote_insn (trial))
2624 rtx pat, old_trial;
2626 /* If we have passed a label, we no longer own this thread. */
2627 if (LABEL_P (trial))
2629 own_thread = 0;
2630 continue;
2633 pat = PATTERN (trial);
2634 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2635 continue;
2637 /* If TRIAL conflicts with the insns ahead of it, we lose. Also,
2638 don't separate or copy insns that set and use CC0. */
2639 if (! insn_references_resource_p (trial, &set, true)
2640 && ! insn_sets_resource_p (trial, &set, true)
2641 && ! insn_sets_resource_p (trial, &needed, true)
2642 #ifdef HAVE_cc0
2643 && ! (reg_mentioned_p (cc0_rtx, pat)
2644 && (! own_thread || ! sets_cc0_p (pat)))
2645 #endif
2646 && ! can_throw_internal (trial))
2648 rtx prior_insn;
2650 /* If TRIAL is redundant with some insn before INSN, we don't
2651 actually need to add it to the delay list; we can merely pretend
2652 we did. */
2653 if ((prior_insn = redundant_insn (trial, insn, delay_list)))
2655 fix_reg_dead_note (prior_insn, insn);
2656 if (own_thread)
2658 update_block (trial, thread);
2659 if (trial == thread)
2661 thread = next_active_insn (thread);
2662 if (new_thread == trial)
2663 new_thread = thread;
2666 delete_related_insns (trial);
2668 else
2670 update_reg_unused_notes (prior_insn, trial);
2671 new_thread = next_active_insn (trial);
2674 continue;
2677 /* There are two ways we can win: If TRIAL doesn't set anything
2678 needed at the opposite thread and can't trap, or if it can
2679 go into an annulled delay slot. */
2680 if (!must_annul
2681 && (condition == const_true_rtx
2682 || (! insn_sets_resource_p (trial, &opposite_needed, true)
2683 && ! may_trap_or_fault_p (pat))))
2685 old_trial = trial;
2686 trial = try_split (pat, trial, 0);
2687 if (new_thread == old_trial)
2688 new_thread = trial;
2689 if (thread == old_trial)
2690 thread = trial;
2691 pat = PATTERN (trial);
2692 if (eligible_for_delay (insn, *pslots_filled, trial, flags))
2693 goto winner;
2695 else if (0
2696 #ifdef ANNUL_IFTRUE_SLOTS
2697 || ! thread_if_true
2698 #endif
2699 #ifdef ANNUL_IFFALSE_SLOTS
2700 || thread_if_true
2701 #endif
2704 old_trial = trial;
2705 trial = try_split (pat, trial, 0);
2706 if (new_thread == old_trial)
2707 new_thread = trial;
2708 if (thread == old_trial)
2709 thread = trial;
2710 pat = PATTERN (trial);
2711 if ((must_annul || delay_list == NULL) && (thread_if_true
2712 ? check_annul_list_true_false (0, delay_list)
2713 && eligible_for_annul_false (insn, *pslots_filled, trial, flags)
2714 : check_annul_list_true_false (1, delay_list)
2715 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
2717 rtx temp;
2719 must_annul = 1;
2720 winner:
2722 #ifdef HAVE_cc0
2723 if (reg_mentioned_p (cc0_rtx, pat))
2724 link_cc0_insns (trial);
2725 #endif
2727 /* If we own this thread, delete the insn. If this is the
2728 destination of a branch, show that a basic block status
2729 may have been updated. In any case, mark the new
2730 starting point of this thread. */
2731 if (own_thread)
2733 rtx note;
2735 update_block (trial, thread);
2736 if (trial == thread)
2738 thread = next_active_insn (thread);
2739 if (new_thread == trial)
2740 new_thread = thread;
2743 /* We are moving this insn, not deleting it. We must
2744 temporarily increment the use count on any referenced
2745 label lest it be deleted by delete_related_insns. */
2746 for (note = REG_NOTES (trial);
2747 note != NULL_RTX;
2748 note = XEXP (note, 1))
2749 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
2750 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
2752 /* REG_LABEL_OPERAND could be
2753 NOTE_INSN_DELETED_LABEL too. */
2754 if (LABEL_P (XEXP (note, 0)))
2755 LABEL_NUSES (XEXP (note, 0))++;
2756 else
2757 gcc_assert (REG_NOTE_KIND (note)
2758 == REG_LABEL_OPERAND);
2760 if (JUMP_P (trial) && JUMP_LABEL (trial))
2761 LABEL_NUSES (JUMP_LABEL (trial))++;
2763 delete_related_insns (trial);
2765 for (note = REG_NOTES (trial);
2766 note != NULL_RTX;
2767 note = XEXP (note, 1))
2768 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
2769 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
2771 /* REG_LABEL_OPERAND could be
2772 NOTE_INSN_DELETED_LABEL too. */
2773 if (LABEL_P (XEXP (note, 0)))
2774 LABEL_NUSES (XEXP (note, 0))--;
2775 else
2776 gcc_assert (REG_NOTE_KIND (note)
2777 == REG_LABEL_OPERAND);
2779 if (JUMP_P (trial) && JUMP_LABEL (trial))
2780 LABEL_NUSES (JUMP_LABEL (trial))--;
2782 else
2783 new_thread = next_active_insn (trial);
2785 temp = own_thread ? trial : copy_rtx (trial);
2786 if (thread_if_true)
2787 INSN_FROM_TARGET_P (temp) = 1;
2789 delay_list = add_to_delay_list (temp, delay_list);
2791 if (slots_to_fill == ++(*pslots_filled))
2793 /* Even though we have filled all the slots, we
2794 may be branching to a location that has a
2795 redundant insn. Skip any if so. */
2796 while (new_thread && ! own_thread
2797 && ! insn_sets_resource_p (new_thread, &set, true)
2798 && ! insn_sets_resource_p (new_thread, &needed,
2799 true)
2800 && ! insn_references_resource_p (new_thread,
2801 &set, true)
2802 && (prior_insn
2803 = redundant_insn (new_thread, insn,
2804 delay_list)))
2806 /* We know we do not own the thread, so no need
2807 to call update_block and delete_insn. */
2808 fix_reg_dead_note (prior_insn, insn);
2809 update_reg_unused_notes (prior_insn, new_thread);
2810 new_thread = next_active_insn (new_thread);
2812 break;
2815 continue;
2820 /* This insn can't go into a delay slot. */
2821 lose = 1;
2822 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2823 mark_referenced_resources (trial, &needed, true);
2825 /* Ensure we don't put insns between the setting of cc and the comparison
2826 by moving a setting of cc into an earlier delay slot since these insns
2827 could clobber the condition code. */
2828 set.cc = 1;
2830 /* If this insn is a register-register copy and the next insn has
2831 a use of our destination, change it to use our source. That way,
2832 it will become a candidate for our delay slot the next time
2833 through this loop. This case occurs commonly in loops that
2834 scan a list.
2836 We could check for more complex cases than those tested below,
2837 but it doesn't seem worth it. It might also be a good idea to try
2838 to swap the two insns. That might do better.
2840 We can't do this if the next insn modifies our destination, because
2841 that would make the replacement into the insn invalid. We also can't
2842 do this if it modifies our source, because it might be an earlyclobber
2843 operand. This latter test also prevents updating the contents of
2844 a PRE_INC. We also can't do this if there's overlap of source and
2845 destination. Overlap may happen for larger-than-register-size modes. */
2847 if (NONJUMP_INSN_P (trial) && GET_CODE (pat) == SET
2848 && REG_P (SET_SRC (pat))
2849 && REG_P (SET_DEST (pat))
2850 && !reg_overlap_mentioned_p (SET_DEST (pat), SET_SRC (pat)))
2852 rtx next = next_nonnote_insn (trial);
2854 if (next && NONJUMP_INSN_P (next)
2855 && GET_CODE (PATTERN (next)) != USE
2856 && ! reg_set_p (SET_DEST (pat), next)
2857 && ! reg_set_p (SET_SRC (pat), next)
2858 && reg_referenced_p (SET_DEST (pat), PATTERN (next))
2859 && ! modified_in_p (SET_DEST (pat), next))
2860 validate_replace_rtx (SET_DEST (pat), SET_SRC (pat), next);
2864 /* If we stopped on a branch insn that has delay slots, see if we can
2865 steal some of the insns in those slots. */
2866 if (trial && NONJUMP_INSN_P (trial)
2867 && GET_CODE (PATTERN (trial)) == SEQUENCE
2868 && JUMP_P (XVECEXP (PATTERN (trial), 0, 0)))
2870 /* If this is the `true' thread, we will want to follow the jump,
2871 so we can only do this if we have taken everything up to here. */
2872 if (thread_if_true && trial == new_thread)
2874 delay_list
2875 = steal_delay_list_from_target (insn, condition, PATTERN (trial),
2876 delay_list, &set, &needed,
2877 &opposite_needed, slots_to_fill,
2878 pslots_filled, &must_annul,
2879 &new_thread);
2880 /* If we owned the thread and are told that it branched
2881 elsewhere, make sure we own the thread at the new location. */
2882 if (own_thread && trial != new_thread)
2883 own_thread = own_thread_p (new_thread, new_thread, 0);
2885 else if (! thread_if_true)
2886 delay_list
2887 = steal_delay_list_from_fallthrough (insn, condition,
2888 PATTERN (trial),
2889 delay_list, &set, &needed,
2890 &opposite_needed, slots_to_fill,
2891 pslots_filled, &must_annul);
2894 /* If we haven't found anything for this delay slot and it is very
2895 likely that the branch will be taken, see if the insn at our target
2896 increments or decrements a register with an increment that does not
2897 depend on the destination register. If so, try to place the opposite
2898 arithmetic insn after the jump insn and put the arithmetic insn in the
2899 delay slot. If we can't do this, return. */
2900 if (delay_list == 0 && likely && new_thread
2901 && NONJUMP_INSN_P (new_thread)
2902 && GET_CODE (PATTERN (new_thread)) != ASM_INPUT
2903 && asm_noperands (PATTERN (new_thread)) < 0)
2905 rtx pat = PATTERN (new_thread);
2906 rtx dest;
2907 rtx src;
2909 trial = new_thread;
2910 pat = PATTERN (trial);
2912 if (!NONJUMP_INSN_P (trial)
2913 || GET_CODE (pat) != SET
2914 || ! eligible_for_delay (insn, 0, trial, flags)
2915 || can_throw_internal (trial))
2916 return 0;
2918 dest = SET_DEST (pat), src = SET_SRC (pat);
2919 if ((GET_CODE (src) == PLUS || GET_CODE (src) == MINUS)
2920 && rtx_equal_p (XEXP (src, 0), dest)
2921 && (!FLOAT_MODE_P (GET_MODE (src))
2922 || flag_unsafe_math_optimizations)
2923 && ! reg_overlap_mentioned_p (dest, XEXP (src, 1))
2924 && ! side_effects_p (pat))
2926 rtx other = XEXP (src, 1);
2927 rtx new_arith;
2928 rtx ninsn;
2930 /* If this is a constant adjustment, use the same code with
2931 the negated constant. Otherwise, reverse the sense of the
2932 arithmetic. */
2933 if (CONST_INT_P (other))
2934 new_arith = gen_rtx_fmt_ee (GET_CODE (src), GET_MODE (src), dest,
2935 negate_rtx (GET_MODE (src), other));
2936 else
2937 new_arith = gen_rtx_fmt_ee (GET_CODE (src) == PLUS ? MINUS : PLUS,
2938 GET_MODE (src), dest, other);
2940 ninsn = emit_insn_after (gen_rtx_SET (VOIDmode, dest, new_arith),
2941 insn);
2943 if (recog_memoized (ninsn) < 0
2944 || (extract_insn (ninsn), ! constrain_operands (1)))
2946 delete_related_insns (ninsn);
2947 return 0;
2950 if (own_thread)
2952 update_block (trial, thread);
2953 if (trial == thread)
2955 thread = next_active_insn (thread);
2956 if (new_thread == trial)
2957 new_thread = thread;
2959 delete_related_insns (trial);
2961 else
2962 new_thread = next_active_insn (trial);
2964 ninsn = own_thread ? trial : copy_rtx (trial);
2965 if (thread_if_true)
2966 INSN_FROM_TARGET_P (ninsn) = 1;
2968 delay_list = add_to_delay_list (ninsn, NULL_RTX);
2969 (*pslots_filled)++;
2973 if (delay_list && must_annul)
2974 INSN_ANNULLED_BRANCH_P (insn) = 1;
2976 /* If we are to branch into the middle of this thread, find an appropriate
2977 label or make a new one if none, and redirect INSN to it. If we hit the
2978 end of the function, use the end-of-function label. */
2979 if (new_thread != thread)
2981 rtx label;
2983 gcc_assert (thread_if_true);
2985 if (new_thread && JUMP_P (new_thread)
2986 && (simplejump_p (new_thread)
2987 || GET_CODE (PATTERN (new_thread)) == RETURN)
2988 && redirect_with_delay_list_safe_p (insn,
2989 JUMP_LABEL (new_thread),
2990 delay_list))
2991 new_thread = follow_jumps (JUMP_LABEL (new_thread));
2993 if (new_thread == 0)
2994 label = find_end_label ();
2995 else if (LABEL_P (new_thread))
2996 label = new_thread;
2997 else
2998 label = get_label_before (new_thread);
3000 if (label)
3001 reorg_redirect_jump (insn, label);
3004 return delay_list;
3007 /* Make another attempt to find insns to place in delay slots.
3009 We previously looked for insns located in front of the delay insn
3010 and, for non-jump delay insns, located behind the delay insn.
3012 Here only try to schedule jump insns and try to move insns from either
3013 the target or the following insns into the delay slot. If annulling is
3014 supported, we will be likely to do this. Otherwise, we can do this only
3015 if safe. */
3017 static void
3018 fill_eager_delay_slots (void)
3020 rtx insn;
3021 int i;
3022 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
3024 for (i = 0; i < num_unfilled_slots; i++)
3026 rtx condition;
3027 rtx target_label, insn_at_target, fallthrough_insn;
3028 rtx delay_list = 0;
3029 int own_target;
3030 int own_fallthrough;
3031 int prediction, slots_to_fill, slots_filled;
3033 insn = unfilled_slots_base[i];
3034 if (insn == 0
3035 || INSN_DELETED_P (insn)
3036 || !JUMP_P (insn)
3037 || ! (condjump_p (insn) || condjump_in_parallel_p (insn)))
3038 continue;
3040 slots_to_fill = num_delay_slots (insn);
3041 /* Some machine description have defined instructions to have
3042 delay slots only in certain circumstances which may depend on
3043 nearby insns (which change due to reorg's actions).
3045 For example, the PA port normally has delay slots for unconditional
3046 jumps.
3048 However, the PA port claims such jumps do not have a delay slot
3049 if they are immediate successors of certain CALL_INSNs. This
3050 allows the port to favor filling the delay slot of the call with
3051 the unconditional jump. */
3052 if (slots_to_fill == 0)
3053 continue;
3055 slots_filled = 0;
3056 target_label = JUMP_LABEL (insn);
3057 condition = get_branch_condition (insn, target_label);
3059 if (condition == 0)
3060 continue;
3062 /* Get the next active fallthrough and target insns and see if we own
3063 them. Then see whether the branch is likely true. We don't need
3064 to do a lot of this for unconditional branches. */
3066 insn_at_target = next_active_insn (target_label);
3067 own_target = own_thread_p (target_label, target_label, 0);
3069 if (condition == const_true_rtx)
3071 own_fallthrough = 0;
3072 fallthrough_insn = 0;
3073 prediction = 2;
3075 else
3077 fallthrough_insn = next_active_insn (insn);
3078 own_fallthrough = own_thread_p (NEXT_INSN (insn), NULL_RTX, 1);
3079 prediction = mostly_true_jump (insn, condition);
3082 /* If this insn is expected to branch, first try to get insns from our
3083 target, then our fallthrough insns. If it is not expected to branch,
3084 try the other order. */
3086 if (prediction > 0)
3088 delay_list
3089 = fill_slots_from_thread (insn, condition, insn_at_target,
3090 fallthrough_insn, prediction == 2, 1,
3091 own_target,
3092 slots_to_fill, &slots_filled, delay_list);
3094 if (delay_list == 0 && own_fallthrough)
3096 /* Even though we didn't find anything for delay slots,
3097 we might have found a redundant insn which we deleted
3098 from the thread that was filled. So we have to recompute
3099 the next insn at the target. */
3100 target_label = JUMP_LABEL (insn);
3101 insn_at_target = next_active_insn (target_label);
3103 delay_list
3104 = fill_slots_from_thread (insn, condition, fallthrough_insn,
3105 insn_at_target, 0, 0,
3106 own_fallthrough,
3107 slots_to_fill, &slots_filled,
3108 delay_list);
3111 else
3113 if (own_fallthrough)
3114 delay_list
3115 = fill_slots_from_thread (insn, condition, fallthrough_insn,
3116 insn_at_target, 0, 0,
3117 own_fallthrough,
3118 slots_to_fill, &slots_filled,
3119 delay_list);
3121 if (delay_list == 0)
3122 delay_list
3123 = fill_slots_from_thread (insn, condition, insn_at_target,
3124 next_active_insn (insn), 0, 1,
3125 own_target,
3126 slots_to_fill, &slots_filled,
3127 delay_list);
3130 if (delay_list)
3131 unfilled_slots_base[i]
3132 = emit_delay_sequence (insn, delay_list, slots_filled);
3134 if (slots_to_fill == slots_filled)
3135 unfilled_slots_base[i] = 0;
3137 note_delay_statistics (slots_filled, 1);
3141 static void delete_computation (rtx insn);
3143 /* Recursively delete prior insns that compute the value (used only by INSN
3144 which the caller is deleting) stored in the register mentioned by NOTE
3145 which is a REG_DEAD note associated with INSN. */
3147 static void
3148 delete_prior_computation (rtx note, rtx insn)
3150 rtx our_prev;
3151 rtx reg = XEXP (note, 0);
3153 for (our_prev = prev_nonnote_insn (insn);
3154 our_prev && (NONJUMP_INSN_P (our_prev)
3155 || CALL_P (our_prev));
3156 our_prev = prev_nonnote_insn (our_prev))
3158 rtx pat = PATTERN (our_prev);
3160 /* If we reach a CALL which is not calling a const function
3161 or the callee pops the arguments, then give up. */
3162 if (CALL_P (our_prev)
3163 && (! RTL_CONST_CALL_P (our_prev)
3164 || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
3165 break;
3167 /* If we reach a SEQUENCE, it is too complex to try to
3168 do anything with it, so give up. We can be run during
3169 and after reorg, so SEQUENCE rtl can legitimately show
3170 up here. */
3171 if (GET_CODE (pat) == SEQUENCE)
3172 break;
3174 if (GET_CODE (pat) == USE
3175 && NONJUMP_INSN_P (XEXP (pat, 0)))
3176 /* reorg creates USEs that look like this. We leave them
3177 alone because reorg needs them for its own purposes. */
3178 break;
3180 if (reg_set_p (reg, pat))
3182 if (side_effects_p (pat) && !CALL_P (our_prev))
3183 break;
3185 if (GET_CODE (pat) == PARALLEL)
3187 /* If we find a SET of something else, we can't
3188 delete the insn. */
3190 int i;
3192 for (i = 0; i < XVECLEN (pat, 0); i++)
3194 rtx part = XVECEXP (pat, 0, i);
3196 if (GET_CODE (part) == SET
3197 && SET_DEST (part) != reg)
3198 break;
3201 if (i == XVECLEN (pat, 0))
3202 delete_computation (our_prev);
3204 else if (GET_CODE (pat) == SET
3205 && REG_P (SET_DEST (pat)))
3207 int dest_regno = REGNO (SET_DEST (pat));
3208 int dest_endregno = END_REGNO (SET_DEST (pat));
3209 int regno = REGNO (reg);
3210 int endregno = END_REGNO (reg);
3212 if (dest_regno >= regno
3213 && dest_endregno <= endregno)
3214 delete_computation (our_prev);
3216 /* We may have a multi-word hard register and some, but not
3217 all, of the words of the register are needed in subsequent
3218 insns. Write REG_UNUSED notes for those parts that were not
3219 needed. */
3220 else if (dest_regno <= regno
3221 && dest_endregno >= endregno)
3223 int i;
3225 add_reg_note (our_prev, REG_UNUSED, reg);
3227 for (i = dest_regno; i < dest_endregno; i++)
3228 if (! find_regno_note (our_prev, REG_UNUSED, i))
3229 break;
3231 if (i == dest_endregno)
3232 delete_computation (our_prev);
3236 break;
3239 /* If PAT references the register that dies here, it is an
3240 additional use. Hence any prior SET isn't dead. However, this
3241 insn becomes the new place for the REG_DEAD note. */
3242 if (reg_overlap_mentioned_p (reg, pat))
3244 XEXP (note, 1) = REG_NOTES (our_prev);
3245 REG_NOTES (our_prev) = note;
3246 break;
3251 /* Delete INSN and recursively delete insns that compute values used only
3252 by INSN. This uses the REG_DEAD notes computed during flow analysis.
3254 Look at all our REG_DEAD notes. If a previous insn does nothing other
3255 than set a register that dies in this insn, we can delete that insn
3256 as well.
3258 On machines with CC0, if CC0 is used in this insn, we may be able to
3259 delete the insn that set it. */
3261 static void
3262 delete_computation (rtx insn)
3264 rtx note, next;
3266 #ifdef HAVE_cc0
3267 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
3269 rtx prev = prev_nonnote_insn (insn);
3270 /* We assume that at this stage
3271 CC's are always set explicitly
3272 and always immediately before the jump that
3273 will use them. So if the previous insn
3274 exists to set the CC's, delete it
3275 (unless it performs auto-increments, etc.). */
3276 if (prev && NONJUMP_INSN_P (prev)
3277 && sets_cc0_p (PATTERN (prev)))
3279 if (sets_cc0_p (PATTERN (prev)) > 0
3280 && ! side_effects_p (PATTERN (prev)))
3281 delete_computation (prev);
3282 else
3283 /* Otherwise, show that cc0 won't be used. */
3284 add_reg_note (prev, REG_UNUSED, cc0_rtx);
3287 #endif
3289 for (note = REG_NOTES (insn); note; note = next)
3291 next = XEXP (note, 1);
3293 if (REG_NOTE_KIND (note) != REG_DEAD
3294 /* Verify that the REG_NOTE is legitimate. */
3295 || !REG_P (XEXP (note, 0)))
3296 continue;
3298 delete_prior_computation (note, insn);
3301 delete_related_insns (insn);
3304 /* If all INSN does is set the pc, delete it,
3305 and delete the insn that set the condition codes for it
3306 if that's what the previous thing was. */
3308 static void
3309 delete_jump (rtx insn)
3311 rtx set = single_set (insn);
3313 if (set && GET_CODE (SET_DEST (set)) == PC)
3314 delete_computation (insn);
3318 /* Once we have tried two ways to fill a delay slot, make a pass over the
3319 code to try to improve the results and to do such things as more jump
3320 threading. */
3322 static void
3323 relax_delay_slots (rtx first)
3325 rtx insn, next, pat;
3326 rtx trial, delay_insn, target_label;
3328 /* Look at every JUMP_INSN and see if we can improve it. */
3329 for (insn = first; insn; insn = next)
3331 rtx other;
3333 next = next_active_insn (insn);
3335 /* If this is a jump insn, see if it now jumps to a jump, jumps to
3336 the next insn, or jumps to a label that is not the last of a
3337 group of consecutive labels. */
3338 if (JUMP_P (insn)
3339 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3340 && (target_label = JUMP_LABEL (insn)) != 0)
3342 target_label = skip_consecutive_labels (follow_jumps (target_label));
3343 if (target_label == 0)
3344 target_label = find_end_label ();
3346 if (target_label && next_active_insn (target_label) == next
3347 && ! condjump_in_parallel_p (insn))
3349 delete_jump (insn);
3350 continue;
3353 if (target_label && target_label != JUMP_LABEL (insn))
3354 reorg_redirect_jump (insn, target_label);
3356 /* See if this jump conditionally branches around an unconditional
3357 jump. If so, invert this jump and point it to the target of the
3358 second jump. */
3359 if (next && JUMP_P (next)
3360 && any_condjump_p (insn)
3361 && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
3362 && target_label
3363 && next_active_insn (target_label) == next_active_insn (next)
3364 && no_labels_between_p (insn, next))
3366 rtx label = JUMP_LABEL (next);
3368 /* Be careful how we do this to avoid deleting code or
3369 labels that are momentarily dead. See similar optimization
3370 in jump.c.
3372 We also need to ensure we properly handle the case when
3373 invert_jump fails. */
3375 ++LABEL_NUSES (target_label);
3376 if (label)
3377 ++LABEL_NUSES (label);
3379 if (invert_jump (insn, label, 1))
3381 delete_related_insns (next);
3382 next = insn;
3385 if (label)
3386 --LABEL_NUSES (label);
3388 if (--LABEL_NUSES (target_label) == 0)
3389 delete_related_insns (target_label);
3391 continue;
3395 /* If this is an unconditional jump and the previous insn is a
3396 conditional jump, try reversing the condition of the previous
3397 insn and swapping our targets. The next pass might be able to
3398 fill the slots.
3400 Don't do this if we expect the conditional branch to be true, because
3401 we would then be making the more common case longer. */
3403 if (JUMP_P (insn)
3404 && (simplejump_p (insn) || GET_CODE (PATTERN (insn)) == RETURN)
3405 && (other = prev_active_insn (insn)) != 0
3406 && any_condjump_p (other)
3407 && no_labels_between_p (other, insn)
3408 && 0 > mostly_true_jump (other,
3409 get_branch_condition (other,
3410 JUMP_LABEL (other))))
3412 rtx other_target = JUMP_LABEL (other);
3413 target_label = JUMP_LABEL (insn);
3415 if (invert_jump (other, target_label, 0))
3416 reorg_redirect_jump (insn, other_target);
3419 /* Now look only at cases where we have filled a delay slot. */
3420 if (!NONJUMP_INSN_P (insn)
3421 || GET_CODE (PATTERN (insn)) != SEQUENCE)
3422 continue;
3424 pat = PATTERN (insn);
3425 delay_insn = XVECEXP (pat, 0, 0);
3427 /* See if the first insn in the delay slot is redundant with some
3428 previous insn. Remove it from the delay slot if so; then set up
3429 to reprocess this insn. */
3430 if (redundant_insn (XVECEXP (pat, 0, 1), delay_insn, 0))
3432 delete_from_delay_slot (XVECEXP (pat, 0, 1));
3433 next = prev_active_insn (next);
3434 continue;
3437 /* See if we have a RETURN insn with a filled delay slot followed
3438 by a RETURN insn with an unfilled a delay slot. If so, we can delete
3439 the first RETURN (but not its delay insn). This gives the same
3440 effect in fewer instructions.
3442 Only do so if optimizing for size since this results in slower, but
3443 smaller code. */
3444 if (optimize_function_for_size_p (cfun)
3445 && GET_CODE (PATTERN (delay_insn)) == RETURN
3446 && next
3447 && JUMP_P (next)
3448 && GET_CODE (PATTERN (next)) == RETURN)
3450 rtx after;
3451 int i;
3453 /* Delete the RETURN and just execute the delay list insns.
3455 We do this by deleting the INSN containing the SEQUENCE, then
3456 re-emitting the insns separately, and then deleting the RETURN.
3457 This allows the count of the jump target to be properly
3458 decremented.
3460 Note that we need to change the INSN_UID of the re-emitted insns
3461 since it is used to hash the insns for mark_target_live_regs and
3462 the re-emitted insns will no longer be wrapped up in a SEQUENCE.
3464 Clear the from target bit, since these insns are no longer
3465 in delay slots. */
3466 for (i = 0; i < XVECLEN (pat, 0); i++)
3467 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3469 trial = PREV_INSN (insn);
3470 delete_related_insns (insn);
3471 gcc_assert (GET_CODE (pat) == SEQUENCE);
3472 add_insn_after (delay_insn, trial, NULL);
3473 after = delay_insn;
3474 for (i = 1; i < XVECLEN (pat, 0); i++)
3475 after = emit_copy_of_insn_after (XVECEXP (pat, 0, i), after);
3476 delete_scheduled_jump (delay_insn);
3477 continue;
3480 /* Now look only at the cases where we have a filled JUMP_INSN. */
3481 if (!JUMP_P (XVECEXP (PATTERN (insn), 0, 0))
3482 || ! (condjump_p (XVECEXP (PATTERN (insn), 0, 0))
3483 || condjump_in_parallel_p (XVECEXP (PATTERN (insn), 0, 0))))
3484 continue;
3486 target_label = JUMP_LABEL (delay_insn);
3488 if (target_label)
3490 /* If this jump goes to another unconditional jump, thread it, but
3491 don't convert a jump into a RETURN here. */
3492 trial = skip_consecutive_labels (follow_jumps (target_label));
3493 if (trial == 0)
3494 trial = find_end_label ();
3496 if (trial && trial != target_label
3497 && redirect_with_delay_slots_safe_p (delay_insn, trial, insn))
3499 reorg_redirect_jump (delay_insn, trial);
3500 target_label = trial;
3503 /* If the first insn at TARGET_LABEL is redundant with a previous
3504 insn, redirect the jump to the following insn and process again.
3505 We use next_real_insn instead of next_active_insn so we
3506 don't skip USE-markers, or we'll end up with incorrect
3507 liveness info. */
3508 trial = next_real_insn (target_label);
3509 if (trial && GET_CODE (PATTERN (trial)) != SEQUENCE
3510 && redundant_insn (trial, insn, 0)
3511 && ! can_throw_internal (trial))
3513 /* Figure out where to emit the special USE insn so we don't
3514 later incorrectly compute register live/death info. */
3515 rtx tmp = next_active_insn (trial);
3516 if (tmp == 0)
3517 tmp = find_end_label ();
3519 if (tmp)
3521 /* Insert the special USE insn and update dataflow info. */
3522 update_block (trial, tmp);
3524 /* Now emit a label before the special USE insn, and
3525 redirect our jump to the new label. */
3526 target_label = get_label_before (PREV_INSN (tmp));
3527 reorg_redirect_jump (delay_insn, target_label);
3528 next = insn;
3529 continue;
3533 /* Similarly, if it is an unconditional jump with one insn in its
3534 delay list and that insn is redundant, thread the jump. */
3535 if (trial && GET_CODE (PATTERN (trial)) == SEQUENCE
3536 && XVECLEN (PATTERN (trial), 0) == 2
3537 && JUMP_P (XVECEXP (PATTERN (trial), 0, 0))
3538 && (simplejump_p (XVECEXP (PATTERN (trial), 0, 0))
3539 || GET_CODE (PATTERN (XVECEXP (PATTERN (trial), 0, 0))) == RETURN)
3540 && redundant_insn (XVECEXP (PATTERN (trial), 0, 1), insn, 0))
3542 target_label = JUMP_LABEL (XVECEXP (PATTERN (trial), 0, 0));
3543 if (target_label == 0)
3544 target_label = find_end_label ();
3546 if (target_label
3547 && redirect_with_delay_slots_safe_p (delay_insn, target_label,
3548 insn))
3550 reorg_redirect_jump (delay_insn, target_label);
3551 next = insn;
3552 continue;
3557 if (! INSN_ANNULLED_BRANCH_P (delay_insn)
3558 && prev_active_insn (target_label) == insn
3559 && ! condjump_in_parallel_p (delay_insn)
3560 #ifdef HAVE_cc0
3561 /* If the last insn in the delay slot sets CC0 for some insn,
3562 various code assumes that it is in a delay slot. We could
3563 put it back where it belonged and delete the register notes,
3564 but it doesn't seem worthwhile in this uncommon case. */
3565 && ! find_reg_note (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1),
3566 REG_CC_USER, NULL_RTX)
3567 #endif
3570 rtx after;
3571 int i;
3573 /* All this insn does is execute its delay list and jump to the
3574 following insn. So delete the jump and just execute the delay
3575 list insns.
3577 We do this by deleting the INSN containing the SEQUENCE, then
3578 re-emitting the insns separately, and then deleting the jump.
3579 This allows the count of the jump target to be properly
3580 decremented.
3582 Note that we need to change the INSN_UID of the re-emitted insns
3583 since it is used to hash the insns for mark_target_live_regs and
3584 the re-emitted insns will no longer be wrapped up in a SEQUENCE.
3586 Clear the from target bit, since these insns are no longer
3587 in delay slots. */
3588 for (i = 0; i < XVECLEN (pat, 0); i++)
3589 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3591 trial = PREV_INSN (insn);
3592 delete_related_insns (insn);
3593 gcc_assert (GET_CODE (pat) == SEQUENCE);
3594 add_insn_after (delay_insn, trial, NULL);
3595 after = delay_insn;
3596 for (i = 1; i < XVECLEN (pat, 0); i++)
3597 after = emit_copy_of_insn_after (XVECEXP (pat, 0, i), after);
3598 delete_scheduled_jump (delay_insn);
3599 continue;
3602 /* See if this is an unconditional jump around a single insn which is
3603 identical to the one in its delay slot. In this case, we can just
3604 delete the branch and the insn in its delay slot. */
3605 if (next && NONJUMP_INSN_P (next)
3606 && prev_label (next_active_insn (next)) == target_label
3607 && simplejump_p (insn)
3608 && XVECLEN (pat, 0) == 2
3609 && rtx_equal_p (PATTERN (next), PATTERN (XVECEXP (pat, 0, 1))))
3611 delete_related_insns (insn);
3612 continue;
3615 /* See if this jump (with its delay slots) conditionally branches
3616 around an unconditional jump (without delay slots). If so, invert
3617 this jump and point it to the target of the second jump. We cannot
3618 do this for annulled jumps, though. Again, don't convert a jump to
3619 a RETURN here. */
3620 if (! INSN_ANNULLED_BRANCH_P (delay_insn)
3621 && any_condjump_p (delay_insn)
3622 && next && JUMP_P (next)
3623 && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
3624 && next_active_insn (target_label) == next_active_insn (next)
3625 && no_labels_between_p (insn, next))
3627 rtx label = JUMP_LABEL (next);
3628 rtx old_label = JUMP_LABEL (delay_insn);
3630 if (label == 0)
3631 label = find_end_label ();
3633 /* find_end_label can generate a new label. Check this first. */
3634 if (label
3635 && no_labels_between_p (insn, next)
3636 && redirect_with_delay_slots_safe_p (delay_insn, label, insn))
3638 /* Be careful how we do this to avoid deleting code or labels
3639 that are momentarily dead. See similar optimization in
3640 jump.c */
3641 if (old_label)
3642 ++LABEL_NUSES (old_label);
3644 if (invert_jump (delay_insn, label, 1))
3646 int i;
3648 /* Must update the INSN_FROM_TARGET_P bits now that
3649 the branch is reversed, so that mark_target_live_regs
3650 will handle the delay slot insn correctly. */
3651 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
3653 rtx slot = XVECEXP (PATTERN (insn), 0, i);
3654 INSN_FROM_TARGET_P (slot) = ! INSN_FROM_TARGET_P (slot);
3657 delete_related_insns (next);
3658 next = insn;
3661 if (old_label && --LABEL_NUSES (old_label) == 0)
3662 delete_related_insns (old_label);
3663 continue;
3667 /* If we own the thread opposite the way this insn branches, see if we
3668 can merge its delay slots with following insns. */
3669 if (INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
3670 && own_thread_p (NEXT_INSN (insn), 0, 1))
3671 try_merge_delay_insns (insn, next);
3672 else if (! INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
3673 && own_thread_p (target_label, target_label, 0))
3674 try_merge_delay_insns (insn, next_active_insn (target_label));
3676 /* If we get here, we haven't deleted INSN. But we may have deleted
3677 NEXT, so recompute it. */
3678 next = next_active_insn (insn);
3682 #ifdef HAVE_return
3684 /* Look for filled jumps to the end of function label. We can try to convert
3685 them into RETURN insns if the insns in the delay slot are valid for the
3686 RETURN as well. */
3688 static void
3689 make_return_insns (rtx first)
3691 rtx insn, jump_insn, pat;
3692 rtx real_return_label = end_of_function_label;
3693 int slots, i;
3695 #ifdef DELAY_SLOTS_FOR_EPILOGUE
3696 /* If a previous pass filled delay slots in the epilogue, things get a
3697 bit more complicated, as those filler insns would generally (without
3698 data flow analysis) have to be executed after any existing branch
3699 delay slot filler insns. It is also unknown whether such a
3700 transformation would actually be profitable. Note that the existing
3701 code only cares for branches with (some) filled delay slots. */
3702 if (crtl->epilogue_delay_list != NULL)
3703 return;
3704 #endif
3706 /* See if there is a RETURN insn in the function other than the one we
3707 made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
3708 into a RETURN to jump to it. */
3709 for (insn = first; insn; insn = NEXT_INSN (insn))
3710 if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
3712 real_return_label = get_label_before (insn);
3713 break;
3716 /* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
3717 was equal to END_OF_FUNCTION_LABEL. */
3718 LABEL_NUSES (real_return_label)++;
3720 /* Clear the list of insns to fill so we can use it. */
3721 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3723 for (insn = first; insn; insn = NEXT_INSN (insn))
3725 int flags;
3727 /* Only look at filled JUMP_INSNs that go to the end of function
3728 label. */
3729 if (!NONJUMP_INSN_P (insn)
3730 || GET_CODE (PATTERN (insn)) != SEQUENCE
3731 || !JUMP_P (XVECEXP (PATTERN (insn), 0, 0))
3732 || JUMP_LABEL (XVECEXP (PATTERN (insn), 0, 0)) != end_of_function_label)
3733 continue;
3735 pat = PATTERN (insn);
3736 jump_insn = XVECEXP (pat, 0, 0);
3738 /* If we can't make the jump into a RETURN, try to redirect it to the best
3739 RETURN and go on to the next insn. */
3740 if (! reorg_redirect_jump (jump_insn, NULL_RTX))
3742 /* Make sure redirecting the jump will not invalidate the delay
3743 slot insns. */
3744 if (redirect_with_delay_slots_safe_p (jump_insn,
3745 real_return_label,
3746 insn))
3747 reorg_redirect_jump (jump_insn, real_return_label);
3748 continue;
3751 /* See if this RETURN can accept the insns current in its delay slot.
3752 It can if it has more or an equal number of slots and the contents
3753 of each is valid. */
3755 flags = get_jump_flags (jump_insn, JUMP_LABEL (jump_insn));
3756 slots = num_delay_slots (jump_insn);
3757 if (slots >= XVECLEN (pat, 0) - 1)
3759 for (i = 1; i < XVECLEN (pat, 0); i++)
3760 if (! (
3761 #ifdef ANNUL_IFFALSE_SLOTS
3762 (INSN_ANNULLED_BRANCH_P (jump_insn)
3763 && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
3764 ? eligible_for_annul_false (jump_insn, i - 1,
3765 XVECEXP (pat, 0, i), flags) :
3766 #endif
3767 #ifdef ANNUL_IFTRUE_SLOTS
3768 (INSN_ANNULLED_BRANCH_P (jump_insn)
3769 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
3770 ? eligible_for_annul_true (jump_insn, i - 1,
3771 XVECEXP (pat, 0, i), flags) :
3772 #endif
3773 eligible_for_delay (jump_insn, i - 1,
3774 XVECEXP (pat, 0, i), flags)))
3775 break;
3777 else
3778 i = 0;
3780 if (i == XVECLEN (pat, 0))
3781 continue;
3783 /* We have to do something with this insn. If it is an unconditional
3784 RETURN, delete the SEQUENCE and output the individual insns,
3785 followed by the RETURN. Then set things up so we try to find
3786 insns for its delay slots, if it needs some. */
3787 if (GET_CODE (PATTERN (jump_insn)) == RETURN)
3789 rtx prev = PREV_INSN (insn);
3791 delete_related_insns (insn);
3792 for (i = 1; i < XVECLEN (pat, 0); i++)
3793 prev = emit_insn_after (PATTERN (XVECEXP (pat, 0, i)), prev);
3795 insn = emit_jump_insn_after (PATTERN (jump_insn), prev);
3796 emit_barrier_after (insn);
3798 if (slots)
3799 obstack_ptr_grow (&unfilled_slots_obstack, insn);
3801 else
3802 /* It is probably more efficient to keep this with its current
3803 delay slot as a branch to a RETURN. */
3804 reorg_redirect_jump (jump_insn, real_return_label);
3807 /* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
3808 new delay slots we have created. */
3809 if (--LABEL_NUSES (real_return_label) == 0)
3810 delete_related_insns (real_return_label);
3812 fill_simple_delay_slots (1);
3813 fill_simple_delay_slots (0);
3815 #endif
3817 /* Try to find insns to place in delay slots. */
3819 void
3820 dbr_schedule (rtx first)
3822 rtx insn, next, epilogue_insn = 0;
3823 int i;
3825 /* If the current function has no insns other than the prologue and
3826 epilogue, then do not try to fill any delay slots. */
3827 if (n_basic_blocks == NUM_FIXED_BLOCKS)
3828 return;
3830 /* Find the highest INSN_UID and allocate and initialize our map from
3831 INSN_UID's to position in code. */
3832 for (max_uid = 0, insn = first; insn; insn = NEXT_INSN (insn))
3834 if (INSN_UID (insn) > max_uid)
3835 max_uid = INSN_UID (insn);
3836 if (NOTE_P (insn)
3837 && NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
3838 epilogue_insn = insn;
3841 uid_to_ruid = XNEWVEC (int, max_uid + 1);
3842 for (i = 0, insn = first; insn; i++, insn = NEXT_INSN (insn))
3843 uid_to_ruid[INSN_UID (insn)] = i;
3845 /* Initialize the list of insns that need filling. */
3846 if (unfilled_firstobj == 0)
3848 gcc_obstack_init (&unfilled_slots_obstack);
3849 unfilled_firstobj = XOBNEWVAR (&unfilled_slots_obstack, rtx, 0);
3852 for (insn = next_active_insn (first); insn; insn = next_active_insn (insn))
3854 rtx target;
3856 INSN_ANNULLED_BRANCH_P (insn) = 0;
3857 INSN_FROM_TARGET_P (insn) = 0;
3859 /* Skip vector tables. We can't get attributes for them. */
3860 if (JUMP_TABLE_DATA_P (insn))
3861 continue;
3863 if (num_delay_slots (insn) > 0)
3864 obstack_ptr_grow (&unfilled_slots_obstack, insn);
3866 /* Ensure all jumps go to the last of a set of consecutive labels. */
3867 if (JUMP_P (insn)
3868 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3869 && JUMP_LABEL (insn) != 0
3870 && ((target = skip_consecutive_labels (JUMP_LABEL (insn)))
3871 != JUMP_LABEL (insn)))
3872 redirect_jump (insn, target, 1);
3875 init_resource_info (epilogue_insn);
3877 /* Show we haven't computed an end-of-function label yet. */
3878 end_of_function_label = 0;
3880 /* Initialize the statistics for this function. */
3881 memset (num_insns_needing_delays, 0, sizeof num_insns_needing_delays);
3882 memset (num_filled_delays, 0, sizeof num_filled_delays);
3884 /* Now do the delay slot filling. Try everything twice in case earlier
3885 changes make more slots fillable. */
3887 for (reorg_pass_number = 0;
3888 reorg_pass_number < MAX_REORG_PASSES;
3889 reorg_pass_number++)
3891 fill_simple_delay_slots (1);
3892 fill_simple_delay_slots (0);
3893 fill_eager_delay_slots ();
3894 relax_delay_slots (first);
3897 /* If we made an end of function label, indicate that it is now
3898 safe to delete it by undoing our prior adjustment to LABEL_NUSES.
3899 If it is now unused, delete it. */
3900 if (end_of_function_label && --LABEL_NUSES (end_of_function_label) == 0)
3901 delete_related_insns (end_of_function_label);
3903 #ifdef HAVE_return
3904 if (HAVE_return && end_of_function_label != 0)
3905 make_return_insns (first);
3906 #endif
3908 /* Delete any USE insns made by update_block; subsequent passes don't need
3909 them or know how to deal with them. */
3910 for (insn = first; insn; insn = next)
3912 next = NEXT_INSN (insn);
3914 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
3915 && INSN_P (XEXP (PATTERN (insn), 0)))
3916 next = delete_related_insns (insn);
3919 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3921 /* It is not clear why the line below is needed, but it does seem to be. */
3922 unfilled_firstobj = XOBNEWVAR (&unfilled_slots_obstack, rtx, 0);
3924 if (dump_file)
3926 int i, j, need_comma;
3927 int total_delay_slots[MAX_DELAY_HISTOGRAM + 1];
3928 int total_annul_slots[MAX_DELAY_HISTOGRAM + 1];
3930 for (reorg_pass_number = 0;
3931 reorg_pass_number < MAX_REORG_PASSES;
3932 reorg_pass_number++)
3934 fprintf (dump_file, ";; Reorg pass #%d:\n", reorg_pass_number + 1);
3935 for (i = 0; i < NUM_REORG_FUNCTIONS; i++)
3937 need_comma = 0;
3938 fprintf (dump_file, ";; Reorg function #%d\n", i);
3940 fprintf (dump_file, ";; %d insns needing delay slots\n;; ",
3941 num_insns_needing_delays[i][reorg_pass_number]);
3943 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3944 if (num_filled_delays[i][j][reorg_pass_number])
3946 if (need_comma)
3947 fprintf (dump_file, ", ");
3948 need_comma = 1;
3949 fprintf (dump_file, "%d got %d delays",
3950 num_filled_delays[i][j][reorg_pass_number], j);
3952 fprintf (dump_file, "\n");
3955 memset (total_delay_slots, 0, sizeof total_delay_slots);
3956 memset (total_annul_slots, 0, sizeof total_annul_slots);
3957 for (insn = first; insn; insn = NEXT_INSN (insn))
3959 if (! INSN_DELETED_P (insn)
3960 && NONJUMP_INSN_P (insn)
3961 && GET_CODE (PATTERN (insn)) != USE
3962 && GET_CODE (PATTERN (insn)) != CLOBBER)
3964 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
3966 j = XVECLEN (PATTERN (insn), 0) - 1;
3967 if (j > MAX_DELAY_HISTOGRAM)
3968 j = MAX_DELAY_HISTOGRAM;
3969 if (INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (insn), 0, 0)))
3970 total_annul_slots[j]++;
3971 else
3972 total_delay_slots[j]++;
3974 else if (num_delay_slots (insn) > 0)
3975 total_delay_slots[0]++;
3978 fprintf (dump_file, ";; Reorg totals: ");
3979 need_comma = 0;
3980 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3982 if (total_delay_slots[j])
3984 if (need_comma)
3985 fprintf (dump_file, ", ");
3986 need_comma = 1;
3987 fprintf (dump_file, "%d got %d delays", total_delay_slots[j], j);
3990 fprintf (dump_file, "\n");
3991 #if defined (ANNUL_IFTRUE_SLOTS) || defined (ANNUL_IFFALSE_SLOTS)
3992 fprintf (dump_file, ";; Reorg annuls: ");
3993 need_comma = 0;
3994 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3996 if (total_annul_slots[j])
3998 if (need_comma)
3999 fprintf (dump_file, ", ");
4000 need_comma = 1;
4001 fprintf (dump_file, "%d got %d delays", total_annul_slots[j], j);
4004 fprintf (dump_file, "\n");
4005 #endif
4006 fprintf (dump_file, "\n");
4009 /* For all JUMP insns, fill in branch prediction notes, so that during
4010 assembler output a target can set branch prediction bits in the code.
4011 We have to do this now, as up until this point the destinations of
4012 JUMPS can be moved around and changed, but past right here that cannot
4013 happen. */
4014 for (insn = first; insn; insn = NEXT_INSN (insn))
4016 int pred_flags;
4018 if (NONJUMP_INSN_P (insn))
4020 rtx pat = PATTERN (insn);
4022 if (GET_CODE (pat) == SEQUENCE)
4023 insn = XVECEXP (pat, 0, 0);
4025 if (!JUMP_P (insn))
4026 continue;
4028 pred_flags = get_jump_flags (insn, JUMP_LABEL (insn));
4029 add_reg_note (insn, REG_BR_PRED, GEN_INT (pred_flags));
4031 free_resource_info ();
4032 free (uid_to_ruid);
4033 #ifdef DELAY_SLOTS_FOR_EPILOGUE
4034 /* SPARC assembler, for instance, emit warning when debug info is output
4035 into the delay slot. */
4037 rtx link;
4039 for (link = crtl->epilogue_delay_list;
4040 link;
4041 link = XEXP (link, 1))
4042 INSN_LOCATOR (XEXP (link, 0)) = 0;
4045 #endif
4046 crtl->dbr_scheduled_p = true;
4048 #endif /* DELAY_SLOTS */
4050 static bool
4051 gate_handle_delay_slots (void)
4053 #ifdef DELAY_SLOTS
4054 /* At -O0 dataflow info isn't updated after RA. */
4055 return optimize > 0 && flag_delayed_branch && !crtl->dbr_scheduled_p;
4056 #else
4057 return 0;
4058 #endif
4061 /* Run delay slot optimization. */
4062 static unsigned int
4063 rest_of_handle_delay_slots (void)
4065 #ifdef DELAY_SLOTS
4066 dbr_schedule (get_insns ());
4067 #endif
4068 return 0;
4071 struct rtl_opt_pass pass_delay_slots =
4074 RTL_PASS,
4075 "dbr", /* name */
4076 gate_handle_delay_slots, /* gate */
4077 rest_of_handle_delay_slots, /* execute */
4078 NULL, /* sub */
4079 NULL, /* next */
4080 0, /* static_pass_number */
4081 TV_DBR_SCHED, /* tv_id */
4082 0, /* properties_required */
4083 0, /* properties_provided */
4084 0, /* properties_destroyed */
4085 0, /* todo_flags_start */
4086 TODO_ggc_collect /* todo_flags_finish */
4090 /* Machine dependent reorg pass. */
4091 static bool
4092 gate_handle_machine_reorg (void)
4094 return targetm.machine_dependent_reorg != 0;
4098 static unsigned int
4099 rest_of_handle_machine_reorg (void)
4101 targetm.machine_dependent_reorg ();
4102 return 0;
4105 struct rtl_opt_pass pass_machine_reorg =
4108 RTL_PASS,
4109 "mach", /* name */
4110 gate_handle_machine_reorg, /* gate */
4111 rest_of_handle_machine_reorg, /* execute */
4112 NULL, /* sub */
4113 NULL, /* next */
4114 0, /* static_pass_number */
4115 TV_MACH_DEP, /* tv_id */
4116 0, /* properties_required */
4117 0, /* properties_provided */
4118 0, /* properties_destroyed */
4119 0, /* todo_flags_start */
4120 TODO_ggc_collect /* todo_flags_finish */