(ASM_SPEC): Change {% to %{.
[official-gcc.git] / gcc / unroll.c
blob4470c5b82e1d537890d68e33b0654b00bd61e6af
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* Try to unroll a loop, and split induction variables.
24 Loops for which the number of iterations can be calculated exactly are
25 handled specially. If the number of iterations times the insn_count is
26 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
27 Otherwise, we try to unroll the loop a number of times modulo the number
28 of iterations, so that only one exit test will be needed. It is unrolled
29 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
30 the insn count.
32 Otherwise, if the number of iterations can be calculated exactly at
33 run time, and the loop is always entered at the top, then we try to
34 precondition the loop. That is, at run time, calculate how many times
35 the loop will execute, and then execute the loop body a few times so
36 that the remaining iterations will be some multiple of 4 (or 2 if the
37 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
38 with only one exit test needed at the end of the loop.
40 Otherwise, if the number of iterations can not be calculated exactly,
41 not even at run time, then we still unroll the loop a number of times
42 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
43 but there must be an exit test after each copy of the loop body.
45 For each induction variable, which is dead outside the loop (replaceable)
46 or for which we can easily calculate the final value, if we can easily
47 calculate its value at each place where it is set as a function of the
48 current loop unroll count and the variable's value at loop entry, then
49 the induction variable is split into `N' different variables, one for
50 each copy of the loop body. One variable is live across the backward
51 branch, and the others are all calculated as a function of this variable.
52 This helps eliminate data dependencies, and leads to further opportunities
53 for cse. */
55 /* Possible improvements follow: */
57 /* ??? Add an extra pass somewhere to determine whether unrolling will
58 give any benefit. E.g. after generating all unrolled insns, compute the
59 cost of all insns and compare against cost of insns in rolled loop.
61 - On traditional architectures, unrolling a non-constant bound loop
62 is a win if there is a giv whose only use is in memory addresses, the
63 memory addresses can be split, and hence giv increments can be
64 eliminated.
65 - It is also a win if the loop is executed many times, and preconditioning
66 can be performed for the loop.
67 Add code to check for these and similar cases. */
69 /* ??? Improve control of which loops get unrolled. Could use profiling
70 info to only unroll the most commonly executed loops. Perhaps have
71 a user specifyable option to control the amount of code expansion,
72 or the percent of loops to consider for unrolling. Etc. */
74 /* ??? Look at the register copies inside the loop to see if they form a
75 simple permutation. If so, iterate the permutation until it gets back to
76 the start state. This is how many times we should unroll the loop, for
77 best results, because then all register copies can be eliminated.
78 For example, the lisp nreverse function should be unrolled 3 times
79 while (this)
81 next = this->cdr;
82 this->cdr = prev;
83 prev = this;
84 this = next;
87 ??? The number of times to unroll the loop may also be based on data
88 references in the loop. For example, if we have a loop that references
89 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
91 /* ??? Add some simple linear equation solving capability so that we can
92 determine the number of loop iterations for more complex loops.
93 For example, consider this loop from gdb
94 #define SWAP_TARGET_AND_HOST(buffer,len)
96 char tmp;
97 char *p = (char *) buffer;
98 char *q = ((char *) buffer) + len - 1;
99 int iterations = (len + 1) >> 1;
100 int i;
101 for (p; p < q; p++, q--;)
103 tmp = *q;
104 *q = *p;
105 *p = tmp;
108 Note that:
109 start value = p = &buffer + current_iteration
110 end value = q = &buffer + len - 1 - current_iteration
111 Given the loop exit test of "p < q", then there must be "q - p" iterations,
112 set equal to zero and solve for number of iterations:
113 q - p = len - 1 - 2*current_iteration = 0
114 current_iteration = (len - 1) / 2
115 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
116 iterations of this loop. */
118 /* ??? Currently, no labels are marked as loop invariant when doing loop
119 unrolling. This is because an insn inside the loop, that loads the address
120 of a label inside the loop into a register, could be moved outside the loop
121 by the invariant code motion pass if labels were invariant. If the loop
122 is subsequently unrolled, the code will be wrong because each unrolled
123 body of the loop will use the same address, whereas each actually needs a
124 different address. A case where this happens is when a loop containing
125 a switch statement is unrolled.
127 It would be better to let labels be considered invariant. When we
128 unroll loops here, check to see if any insns using a label local to the
129 loop were moved before the loop. If so, then correct the problem, by
130 moving the insn back into the loop, or perhaps replicate the insn before
131 the loop, one copy for each time the loop is unrolled. */
133 /* The prime factors looked for when trying to unroll a loop by some
134 number which is modulo the total number of iterations. Just checking
135 for these 4 prime factors will find at least one factor for 75% of
136 all numbers theoretically. Practically speaking, this will succeed
137 almost all of the time since loops are generally a multiple of 2
138 and/or 5. */
140 #define NUM_FACTORS 4
142 struct _factor { int factor, count; } factors[NUM_FACTORS]
143 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
145 /* Describes the different types of loop unrolling performed. */
147 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
149 #include "config.h"
150 #include "rtl.h"
151 #include "insn-config.h"
152 #include "integrate.h"
153 #include "regs.h"
154 #include "flags.h"
155 #include "expr.h"
156 #include <stdio.h>
157 #include "loop.h"
159 /* This controls which loops are unrolled, and by how much we unroll
160 them. */
162 #ifndef MAX_UNROLLED_INSNS
163 #define MAX_UNROLLED_INSNS 100
164 #endif
166 /* Indexed by register number, if non-zero, then it contains a pointer
167 to a struct induction for a DEST_REG giv which has been combined with
168 one of more address givs. This is needed because whenever such a DEST_REG
169 giv is modified, we must modify the value of all split address givs
170 that were combined with this DEST_REG giv. */
172 static struct induction **addr_combined_regs;
174 /* Indexed by register number, if this is a splittable induction variable,
175 then this will hold the current value of the register, which depends on the
176 iteration number. */
178 static rtx *splittable_regs;
180 /* Indexed by register number, if this is a splittable induction variable,
181 then this will hold the number of instructions in the loop that modify
182 the induction variable. Used to ensure that only the last insn modifying
183 a split iv will update the original iv of the dest. */
185 static int *splittable_regs_updates;
187 /* Values describing the current loop's iteration variable. These are set up
188 by loop_iterations, and used by precondition_loop_p. */
190 static rtx loop_iteration_var;
191 static rtx loop_initial_value;
192 static rtx loop_increment;
193 static rtx loop_final_value;
195 /* Forward declarations. */
197 static void init_reg_map PROTO((struct inline_remap *, int));
198 static int precondition_loop_p PROTO((rtx *, rtx *, rtx *, rtx, rtx));
199 static rtx calculate_giv_inc PROTO((rtx, rtx, int));
200 static rtx initial_reg_note_copy PROTO((rtx, struct inline_remap *));
201 static void final_reg_note_copy PROTO((rtx, struct inline_remap *));
202 static void copy_loop_body PROTO((rtx, rtx, struct inline_remap *, rtx, int,
203 enum unroll_types, rtx, rtx, rtx, rtx));
204 static void iteration_info PROTO((rtx, rtx *, rtx *, rtx, rtx));
205 static rtx approx_final_value PROTO((enum rtx_code, rtx, int *, int *));
206 static int find_splittable_regs PROTO((enum unroll_types, rtx, rtx, rtx, int));
207 static int find_splittable_givs PROTO((struct iv_class *,enum unroll_types,
208 rtx, rtx, rtx, int));
209 static int reg_dead_after_loop PROTO((rtx, rtx, rtx));
210 static rtx fold_rtx_mult_add PROTO((rtx, rtx, rtx, enum machine_mode));
211 static rtx remap_split_bivs PROTO((rtx));
213 /* Try to unroll one loop and split induction variables in the loop.
215 The loop is described by the arguments LOOP_END, INSN_COUNT, and
216 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
217 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
218 indicates whether information generated in the strength reduction pass
219 is available.
221 This function is intended to be called from within `strength_reduce'
222 in loop.c. */
224 void
225 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
226 strength_reduce_p)
227 rtx loop_end;
228 int insn_count;
229 rtx loop_start;
230 rtx end_insert_before;
231 int strength_reduce_p;
233 int i, j, temp;
234 int unroll_number = 1;
235 rtx copy_start, copy_end;
236 rtx insn, copy, sequence, pattern, tem;
237 int max_labelno, max_insnno;
238 rtx insert_before;
239 struct inline_remap *map;
240 char *local_label;
241 char *local_regno;
242 int maxregnum;
243 int new_maxregnum;
244 rtx exit_label = 0;
245 rtx start_label;
246 struct iv_class *bl;
247 int splitting_not_safe = 0;
248 enum unroll_types unroll_type;
249 int loop_preconditioned = 0;
250 rtx safety_label;
251 /* This points to the last real insn in the loop, which should be either
252 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
253 jumps). */
254 rtx last_loop_insn;
256 /* Don't bother unrolling huge loops. Since the minimum factor is
257 two, loops greater than one half of MAX_UNROLLED_INSNS will never
258 be unrolled. */
259 if (insn_count > MAX_UNROLLED_INSNS / 2)
261 if (loop_dump_stream)
262 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
263 return;
266 /* When emitting debugger info, we can't unroll loops with unequal numbers
267 of block_beg and block_end notes, because that would unbalance the block
268 structure of the function. This can happen as a result of the
269 "if (foo) bar; else break;" optimization in jump.c. */
271 if (write_symbols != NO_DEBUG)
273 int block_begins = 0;
274 int block_ends = 0;
276 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
278 if (GET_CODE (insn) == NOTE)
280 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
281 block_begins++;
282 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
283 block_ends++;
287 if (block_begins != block_ends)
289 if (loop_dump_stream)
290 fprintf (loop_dump_stream,
291 "Unrolling failure: Unbalanced block notes.\n");
292 return;
296 /* Determine type of unroll to perform. Depends on the number of iterations
297 and the size of the loop. */
299 /* If there is no strength reduce info, then set loop_n_iterations to zero.
300 This can happen if strength_reduce can't find any bivs in the loop.
301 A value of zero indicates that the number of iterations could not be
302 calculated. */
304 if (! strength_reduce_p)
305 loop_n_iterations = 0;
307 if (loop_dump_stream && loop_n_iterations > 0)
308 fprintf (loop_dump_stream,
309 "Loop unrolling: %d iterations.\n", loop_n_iterations);
311 /* Find and save a pointer to the last nonnote insn in the loop. */
313 last_loop_insn = prev_nonnote_insn (loop_end);
315 /* Calculate how many times to unroll the loop. Indicate whether or
316 not the loop is being completely unrolled. */
318 if (loop_n_iterations == 1)
320 /* If number of iterations is exactly 1, then eliminate the compare and
321 branch at the end of the loop since they will never be taken.
322 Then return, since no other action is needed here. */
324 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
325 don't do anything. */
327 if (GET_CODE (last_loop_insn) == BARRIER)
329 /* Delete the jump insn. This will delete the barrier also. */
330 delete_insn (PREV_INSN (last_loop_insn));
332 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
334 #ifdef HAVE_cc0
335 /* The immediately preceding insn is a compare which must be
336 deleted. */
337 delete_insn (last_loop_insn);
338 delete_insn (PREV_INSN (last_loop_insn));
339 #else
340 /* The immediately preceding insn may not be the compare, so don't
341 delete it. */
342 delete_insn (last_loop_insn);
343 #endif
345 return;
347 else if (loop_n_iterations > 0
348 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
350 unroll_number = loop_n_iterations;
351 unroll_type = UNROLL_COMPLETELY;
353 else if (loop_n_iterations > 0)
355 /* Try to factor the number of iterations. Don't bother with the
356 general case, only using 2, 3, 5, and 7 will get 75% of all
357 numbers theoretically, and almost all in practice. */
359 for (i = 0; i < NUM_FACTORS; i++)
360 factors[i].count = 0;
362 temp = loop_n_iterations;
363 for (i = NUM_FACTORS - 1; i >= 0; i--)
364 while (temp % factors[i].factor == 0)
366 factors[i].count++;
367 temp = temp / factors[i].factor;
370 /* Start with the larger factors first so that we generally
371 get lots of unrolling. */
373 unroll_number = 1;
374 temp = insn_count;
375 for (i = 3; i >= 0; i--)
376 while (factors[i].count--)
378 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
380 unroll_number *= factors[i].factor;
381 temp *= factors[i].factor;
383 else
384 break;
387 /* If we couldn't find any factors, then unroll as in the normal
388 case. */
389 if (unroll_number == 1)
391 if (loop_dump_stream)
392 fprintf (loop_dump_stream,
393 "Loop unrolling: No factors found.\n");
395 else
396 unroll_type = UNROLL_MODULO;
400 /* Default case, calculate number of times to unroll loop based on its
401 size. */
402 if (unroll_number == 1)
404 if (8 * insn_count < MAX_UNROLLED_INSNS)
405 unroll_number = 8;
406 else if (4 * insn_count < MAX_UNROLLED_INSNS)
407 unroll_number = 4;
408 else
409 unroll_number = 2;
411 unroll_type = UNROLL_NAIVE;
414 /* Now we know how many times to unroll the loop. */
416 if (loop_dump_stream)
417 fprintf (loop_dump_stream,
418 "Unrolling loop %d times.\n", unroll_number);
421 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
423 /* Loops of these types should never start with a jump down to
424 the exit condition test. For now, check for this case just to
425 be sure. UNROLL_NAIVE loops can be of this form, this case is
426 handled below. */
427 insn = loop_start;
428 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
429 insn = NEXT_INSN (insn);
430 if (GET_CODE (insn) == JUMP_INSN)
431 abort ();
434 if (unroll_type == UNROLL_COMPLETELY)
436 /* Completely unrolling the loop: Delete the compare and branch at
437 the end (the last two instructions). This delete must done at the
438 very end of loop unrolling, to avoid problems with calls to
439 back_branch_in_range_p, which is called by find_splittable_regs.
440 All increments of splittable bivs/givs are changed to load constant
441 instructions. */
443 copy_start = loop_start;
445 /* Set insert_before to the instruction immediately after the JUMP_INSN
446 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
447 the loop will be correctly handled by copy_loop_body. */
448 insert_before = NEXT_INSN (last_loop_insn);
450 /* Set copy_end to the insn before the jump at the end of the loop. */
451 if (GET_CODE (last_loop_insn) == BARRIER)
452 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
453 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
455 #ifdef HAVE_cc0
456 /* The instruction immediately before the JUMP_INSN is a compare
457 instruction which we do not want to copy. */
458 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
459 #else
460 /* The instruction immediately before the JUMP_INSN may not be the
461 compare, so we must copy it. */
462 copy_end = PREV_INSN (last_loop_insn);
463 #endif
465 else
467 /* We currently can't unroll a loop if it doesn't end with a
468 JUMP_INSN. There would need to be a mechanism that recognizes
469 this case, and then inserts a jump after each loop body, which
470 jumps to after the last loop body. */
471 if (loop_dump_stream)
472 fprintf (loop_dump_stream,
473 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
474 return;
477 else if (unroll_type == UNROLL_MODULO)
479 /* Partially unrolling the loop: The compare and branch at the end
480 (the last two instructions) must remain. Don't copy the compare
481 and branch instructions at the end of the loop. Insert the unrolled
482 code immediately before the compare/branch at the end so that the
483 code will fall through to them as before. */
485 copy_start = loop_start;
487 /* Set insert_before to the jump insn at the end of the loop.
488 Set copy_end to before the jump insn at the end of the loop. */
489 if (GET_CODE (last_loop_insn) == BARRIER)
491 insert_before = PREV_INSN (last_loop_insn);
492 copy_end = PREV_INSN (insert_before);
494 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
496 #ifdef HAVE_cc0
497 /* The instruction immediately before the JUMP_INSN is a compare
498 instruction which we do not want to copy or delete. */
499 insert_before = PREV_INSN (last_loop_insn);
500 copy_end = PREV_INSN (insert_before);
501 #else
502 /* The instruction immediately before the JUMP_INSN may not be the
503 compare, so we must copy it. */
504 insert_before = last_loop_insn;
505 copy_end = PREV_INSN (last_loop_insn);
506 #endif
508 else
510 /* We currently can't unroll a loop if it doesn't end with a
511 JUMP_INSN. There would need to be a mechanism that recognizes
512 this case, and then inserts a jump after each loop body, which
513 jumps to after the last loop body. */
514 if (loop_dump_stream)
515 fprintf (loop_dump_stream,
516 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
517 return;
520 else
522 /* Normal case: Must copy the compare and branch instructions at the
523 end of the loop. */
525 if (GET_CODE (last_loop_insn) == BARRIER)
527 /* Loop ends with an unconditional jump and a barrier.
528 Handle this like above, don't copy jump and barrier.
529 This is not strictly necessary, but doing so prevents generating
530 unconditional jumps to an immediately following label.
532 This will be corrected below if the target of this jump is
533 not the start_label. */
535 insert_before = PREV_INSN (last_loop_insn);
536 copy_end = PREV_INSN (insert_before);
538 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
540 /* Set insert_before to immediately after the JUMP_INSN, so that
541 NOTEs at the end of the loop will be correctly handled by
542 copy_loop_body. */
543 insert_before = NEXT_INSN (last_loop_insn);
544 copy_end = last_loop_insn;
546 else
548 /* We currently can't unroll a loop if it doesn't end with a
549 JUMP_INSN. There would need to be a mechanism that recognizes
550 this case, and then inserts a jump after each loop body, which
551 jumps to after the last loop body. */
552 if (loop_dump_stream)
553 fprintf (loop_dump_stream,
554 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
555 return;
558 /* If copying exit test branches because they can not be eliminated,
559 then must convert the fall through case of the branch to a jump past
560 the end of the loop. Create a label to emit after the loop and save
561 it for later use. Do not use the label after the loop, if any, since
562 it might be used by insns outside the loop, or there might be insns
563 added before it later by final_[bg]iv_value which must be after
564 the real exit label. */
565 exit_label = gen_label_rtx ();
567 insn = loop_start;
568 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
569 insn = NEXT_INSN (insn);
571 if (GET_CODE (insn) == JUMP_INSN)
573 /* The loop starts with a jump down to the exit condition test.
574 Start copying the loop after the barrier following this
575 jump insn. */
576 copy_start = NEXT_INSN (insn);
578 /* Splitting induction variables doesn't work when the loop is
579 entered via a jump to the bottom, because then we end up doing
580 a comparison against a new register for a split variable, but
581 we did not execute the set insn for the new register because
582 it was skipped over. */
583 splitting_not_safe = 1;
584 if (loop_dump_stream)
585 fprintf (loop_dump_stream,
586 "Splitting not safe, because loop not entered at top.\n");
588 else
589 copy_start = loop_start;
592 /* This should always be the first label in the loop. */
593 start_label = NEXT_INSN (copy_start);
594 /* There may be a line number note and/or a loop continue note here. */
595 while (GET_CODE (start_label) == NOTE)
596 start_label = NEXT_INSN (start_label);
597 if (GET_CODE (start_label) != CODE_LABEL)
599 /* This can happen as a result of jump threading. If the first insns in
600 the loop test the same condition as the loop's backward jump, or the
601 opposite condition, then the backward jump will be modified to point
602 to elsewhere, and the loop's start label is deleted.
604 This case currently can not be handled by the loop unrolling code. */
606 if (loop_dump_stream)
607 fprintf (loop_dump_stream,
608 "Unrolling failure: unknown insns between BEG note and loop label.\n");
609 return;
611 if (LABEL_NAME (start_label))
613 /* The jump optimization pass must have combined the original start label
614 with a named label for a goto. We can't unroll this case because
615 jumps which go to the named label must be handled differently than
616 jumps to the loop start, and it is impossible to differentiate them
617 in this case. */
618 if (loop_dump_stream)
619 fprintf (loop_dump_stream,
620 "Unrolling failure: loop start label is gone\n");
621 return;
624 if (unroll_type == UNROLL_NAIVE
625 && GET_CODE (last_loop_insn) == BARRIER
626 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
628 /* In this case, we must copy the jump and barrier, because they will
629 not be converted to jumps to an immediately following label. */
631 insert_before = NEXT_INSN (last_loop_insn);
632 copy_end = last_loop_insn;
635 /* Allocate a translation table for the labels and insn numbers.
636 They will be filled in as we copy the insns in the loop. */
638 max_labelno = max_label_num ();
639 max_insnno = get_max_uid ();
641 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
643 map->integrating = 0;
645 /* Allocate the label map. */
647 if (max_labelno > 0)
649 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
651 local_label = (char *) alloca (max_labelno);
652 bzero (local_label, max_labelno);
654 else
655 map->label_map = 0;
657 /* Search the loop and mark all local labels, i.e. the ones which have to
658 be distinct labels when copied. For all labels which might be
659 non-local, set their label_map entries to point to themselves.
660 If they happen to be local their label_map entries will be overwritten
661 before the loop body is copied. The label_map entries for local labels
662 will be set to a different value each time the loop body is copied. */
664 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
666 if (GET_CODE (insn) == CODE_LABEL)
667 local_label[CODE_LABEL_NUMBER (insn)] = 1;
668 else if (GET_CODE (insn) == JUMP_INSN)
670 if (JUMP_LABEL (insn))
671 map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))]
672 = JUMP_LABEL (insn);
673 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
674 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
676 rtx pat = PATTERN (insn);
677 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
678 int len = XVECLEN (pat, diff_vec_p);
679 rtx label;
681 for (i = 0; i < len; i++)
683 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
684 map->label_map[CODE_LABEL_NUMBER (label)] = label;
690 /* Allocate space for the insn map. */
692 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
694 /* Set this to zero, to indicate that we are doing loop unrolling,
695 not function inlining. */
696 map->inline_target = 0;
698 /* The register and constant maps depend on the number of registers
699 present, so the final maps can't be created until after
700 find_splittable_regs is called. However, they are needed for
701 preconditioning, so we create temporary maps when preconditioning
702 is performed. */
704 /* The preconditioning code may allocate two new pseudo registers. */
705 maxregnum = max_reg_num ();
707 /* Allocate and zero out the splittable_regs and addr_combined_regs
708 arrays. These must be zeroed here because they will be used if
709 loop preconditioning is performed, and must be zero for that case.
711 It is safe to do this here, since the extra registers created by the
712 preconditioning code and find_splittable_regs will never be used
713 to access the splittable_regs[] and addr_combined_regs[] arrays. */
715 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
716 bzero ((char *) splittable_regs, maxregnum * sizeof (rtx));
717 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
718 bzero ((char *) splittable_regs_updates, maxregnum * sizeof (int));
719 addr_combined_regs
720 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
721 bzero ((char *) addr_combined_regs, maxregnum * sizeof (struct induction *));
722 /* We must limit it to max_reg_before_loop, because only these pseudo
723 registers have valid regno_first_uid info. Any register created after
724 that is unlikely to be local to the loop anyways. */
725 local_regno = (char *) alloca (max_reg_before_loop);
726 bzero (local_regno, max_reg_before_loop);
728 /* Mark all local registers, i.e. the ones which are referenced only
729 inside the loop. */
730 if (INSN_UID (copy_end) < max_uid_for_loop)
732 int copy_start_luid = INSN_LUID (copy_start);
733 int copy_end_luid = INSN_LUID (copy_end);
735 /* If a register is used in the jump insn, we must not duplicate it
736 since it will also be used outside the loop. */
737 if (GET_CODE (copy_end) == JUMP_INSN)
738 copy_end_luid--;
739 /* If copy_start points to the NOTE that starts the loop, then we must
740 use the next luid, because invariant pseudo-regs moved out of the loop
741 have their lifetimes modified to start here, but they are not safe
742 to duplicate. */
743 if (copy_start == loop_start)
744 copy_start_luid++;
746 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; ++j)
747 if (regno_first_uid[j] > 0 && regno_first_uid[j] <= max_uid_for_loop
748 && uid_luid[regno_first_uid[j]] >= copy_start_luid
749 && regno_last_uid[j] > 0 && regno_last_uid[j] <= max_uid_for_loop
750 && uid_luid[regno_last_uid[j]] <= copy_end_luid)
751 local_regno[j] = 1;
754 /* If this loop requires exit tests when unrolled, check to see if we
755 can precondition the loop so as to make the exit tests unnecessary.
756 Just like variable splitting, this is not safe if the loop is entered
757 via a jump to the bottom. Also, can not do this if no strength
758 reduce info, because precondition_loop_p uses this info. */
760 /* Must copy the loop body for preconditioning before the following
761 find_splittable_regs call since that will emit insns which need to
762 be after the preconditioned loop copies, but immediately before the
763 unrolled loop copies. */
765 /* Also, it is not safe to split induction variables for the preconditioned
766 copies of the loop body. If we split induction variables, then the code
767 assumes that each induction variable can be represented as a function
768 of its initial value and the loop iteration number. This is not true
769 in this case, because the last preconditioned copy of the loop body
770 could be any iteration from the first up to the `unroll_number-1'th,
771 depending on the initial value of the iteration variable. Therefore
772 we can not split induction variables here, because we can not calculate
773 their value. Hence, this code must occur before find_splittable_regs
774 is called. */
776 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
778 rtx initial_value, final_value, increment;
780 if (precondition_loop_p (&initial_value, &final_value, &increment,
781 loop_start, loop_end))
783 register rtx diff, temp;
784 enum machine_mode mode;
785 rtx *labels;
786 int abs_inc, neg_inc;
788 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
790 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
791 map->const_age_map = (unsigned *) alloca (maxregnum
792 * sizeof (unsigned));
793 map->const_equiv_map_size = maxregnum;
794 global_const_equiv_map = map->const_equiv_map;
795 global_const_equiv_map_size = maxregnum;
797 init_reg_map (map, maxregnum);
799 /* Limit loop unrolling to 4, since this will make 7 copies of
800 the loop body. */
801 if (unroll_number > 4)
802 unroll_number = 4;
804 /* Save the absolute value of the increment, and also whether or
805 not it is negative. */
806 neg_inc = 0;
807 abs_inc = INTVAL (increment);
808 if (abs_inc < 0)
810 abs_inc = - abs_inc;
811 neg_inc = 1;
814 start_sequence ();
816 /* Decide what mode to do these calculations in. Choose the larger
817 of final_value's mode and initial_value's mode, or a full-word if
818 both are constants. */
819 mode = GET_MODE (final_value);
820 if (mode == VOIDmode)
822 mode = GET_MODE (initial_value);
823 if (mode == VOIDmode)
824 mode = word_mode;
826 else if (mode != GET_MODE (initial_value)
827 && (GET_MODE_SIZE (mode)
828 < GET_MODE_SIZE (GET_MODE (initial_value))))
829 mode = GET_MODE (initial_value);
831 /* Calculate the difference between the final and initial values.
832 Final value may be a (plus (reg x) (const_int 1)) rtx.
833 Let the following cse pass simplify this if initial value is
834 a constant.
836 We must copy the final and initial values here to avoid
837 improperly shared rtl. */
839 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
840 copy_rtx (initial_value), NULL_RTX, 0,
841 OPTAB_LIB_WIDEN);
843 /* Now calculate (diff % (unroll * abs (increment))) by using an
844 and instruction. */
845 diff = expand_binop (GET_MODE (diff), and_optab, diff,
846 GEN_INT (unroll_number * abs_inc - 1),
847 NULL_RTX, 0, OPTAB_LIB_WIDEN);
849 /* Now emit a sequence of branches to jump to the proper precond
850 loop entry point. */
852 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
853 for (i = 0; i < unroll_number; i++)
854 labels[i] = gen_label_rtx ();
856 /* Check for the case where the initial value is greater than or equal
857 to the final value. In that case, we want to execute exactly
858 one loop iteration. The code below will fail for this case. */
860 emit_cmp_insn (initial_value, final_value, neg_inc ? LE : GE,
861 NULL_RTX, mode, 0, 0);
862 if (neg_inc)
863 emit_jump_insn (gen_ble (labels[1]));
864 else
865 emit_jump_insn (gen_bge (labels[1]));
866 JUMP_LABEL (get_last_insn ()) = labels[1];
867 LABEL_NUSES (labels[1])++;
869 /* Assuming the unroll_number is 4, and the increment is 2, then
870 for a negative increment: for a positive increment:
871 diff = 0,1 precond 0 diff = 0,7 precond 0
872 diff = 2,3 precond 3 diff = 1,2 precond 1
873 diff = 4,5 precond 2 diff = 3,4 precond 2
874 diff = 6,7 precond 1 diff = 5,6 precond 3 */
876 /* We only need to emit (unroll_number - 1) branches here, the
877 last case just falls through to the following code. */
879 /* ??? This would give better code if we emitted a tree of branches
880 instead of the current linear list of branches. */
882 for (i = 0; i < unroll_number - 1; i++)
884 int cmp_const;
885 enum rtx_code cmp_code;
887 /* For negative increments, must invert the constant compared
888 against, except when comparing against zero. */
889 if (i == 0)
891 cmp_const = 0;
892 cmp_code = EQ;
894 else if (neg_inc)
896 cmp_const = unroll_number - i;
897 cmp_code = GE;
899 else
901 cmp_const = i;
902 cmp_code = LE;
905 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
906 cmp_code, NULL_RTX, mode, 0, 0);
908 if (i == 0)
909 emit_jump_insn (gen_beq (labels[i]));
910 else if (neg_inc)
911 emit_jump_insn (gen_bge (labels[i]));
912 else
913 emit_jump_insn (gen_ble (labels[i]));
914 JUMP_LABEL (get_last_insn ()) = labels[i];
915 LABEL_NUSES (labels[i])++;
918 /* If the increment is greater than one, then we need another branch,
919 to handle other cases equivalent to 0. */
921 /* ??? This should be merged into the code above somehow to help
922 simplify the code here, and reduce the number of branches emitted.
923 For the negative increment case, the branch here could easily
924 be merged with the `0' case branch above. For the positive
925 increment case, it is not clear how this can be simplified. */
927 if (abs_inc != 1)
929 int cmp_const;
930 enum rtx_code cmp_code;
932 if (neg_inc)
934 cmp_const = abs_inc - 1;
935 cmp_code = LE;
937 else
939 cmp_const = abs_inc * (unroll_number - 1) + 1;
940 cmp_code = GE;
943 emit_cmp_insn (diff, GEN_INT (cmp_const), cmp_code, NULL_RTX,
944 mode, 0, 0);
946 if (neg_inc)
947 emit_jump_insn (gen_ble (labels[0]));
948 else
949 emit_jump_insn (gen_bge (labels[0]));
950 JUMP_LABEL (get_last_insn ()) = labels[0];
951 LABEL_NUSES (labels[0])++;
954 sequence = gen_sequence ();
955 end_sequence ();
956 emit_insn_before (sequence, loop_start);
958 /* Only the last copy of the loop body here needs the exit
959 test, so set copy_end to exclude the compare/branch here,
960 and then reset it inside the loop when get to the last
961 copy. */
963 if (GET_CODE (last_loop_insn) == BARRIER)
964 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
965 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
967 #ifdef HAVE_cc0
968 /* The immediately preceding insn is a compare which we do not
969 want to copy. */
970 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
971 #else
972 /* The immediately preceding insn may not be a compare, so we
973 must copy it. */
974 copy_end = PREV_INSN (last_loop_insn);
975 #endif
977 else
978 abort ();
980 for (i = 1; i < unroll_number; i++)
982 emit_label_after (labels[unroll_number - i],
983 PREV_INSN (loop_start));
985 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
986 bzero ((char *) map->const_equiv_map, maxregnum * sizeof (rtx));
987 bzero ((char *) map->const_age_map,
988 maxregnum * sizeof (unsigned));
989 map->const_age = 0;
991 for (j = 0; j < max_labelno; j++)
992 if (local_label[j])
993 map->label_map[j] = gen_label_rtx ();
995 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
996 if (local_regno[j])
997 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
999 /* The last copy needs the compare/branch insns at the end,
1000 so reset copy_end here if the loop ends with a conditional
1001 branch. */
1003 if (i == unroll_number - 1)
1005 if (GET_CODE (last_loop_insn) == BARRIER)
1006 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1007 else
1008 copy_end = last_loop_insn;
1011 /* None of the copies are the `last_iteration', so just
1012 pass zero for that parameter. */
1013 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
1014 unroll_type, start_label, loop_end,
1015 loop_start, copy_end);
1017 emit_label_after (labels[0], PREV_INSN (loop_start));
1019 if (GET_CODE (last_loop_insn) == BARRIER)
1021 insert_before = PREV_INSN (last_loop_insn);
1022 copy_end = PREV_INSN (insert_before);
1024 else
1026 #ifdef HAVE_cc0
1027 /* The immediately preceding insn is a compare which we do not
1028 want to copy. */
1029 insert_before = PREV_INSN (last_loop_insn);
1030 copy_end = PREV_INSN (insert_before);
1031 #else
1032 /* The immediately preceding insn may not be a compare, so we
1033 must copy it. */
1034 insert_before = last_loop_insn;
1035 copy_end = PREV_INSN (last_loop_insn);
1036 #endif
1039 /* Set unroll type to MODULO now. */
1040 unroll_type = UNROLL_MODULO;
1041 loop_preconditioned = 1;
1045 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1046 the loop unless all loops are being unrolled. */
1047 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1049 if (loop_dump_stream)
1050 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
1051 return;
1054 /* At this point, we are guaranteed to unroll the loop. */
1056 /* For each biv and giv, determine whether it can be safely split into
1057 a different variable for each unrolled copy of the loop body.
1058 We precalculate and save this info here, since computing it is
1059 expensive.
1061 Do this before deleting any instructions from the loop, so that
1062 back_branch_in_range_p will work correctly. */
1064 if (splitting_not_safe)
1065 temp = 0;
1066 else
1067 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
1068 end_insert_before, unroll_number);
1070 /* find_splittable_regs may have created some new registers, so must
1071 reallocate the reg_map with the new larger size, and must realloc
1072 the constant maps also. */
1074 maxregnum = max_reg_num ();
1075 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
1077 init_reg_map (map, maxregnum);
1079 /* Space is needed in some of the map for new registers, so new_maxregnum
1080 is an (over)estimate of how many registers will exist at the end. */
1081 new_maxregnum = maxregnum + (temp * unroll_number * 2);
1083 /* Must realloc space for the constant maps, because the number of registers
1084 may have changed. */
1086 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1087 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1089 map->const_equiv_map_size = new_maxregnum;
1090 global_const_equiv_map = map->const_equiv_map;
1091 global_const_equiv_map_size = new_maxregnum;
1093 /* Search the list of bivs and givs to find ones which need to be remapped
1094 when split, and set their reg_map entry appropriately. */
1096 for (bl = loop_iv_list; bl; bl = bl->next)
1098 if (REGNO (bl->biv->src_reg) != bl->regno)
1099 map->reg_map[bl->regno] = bl->biv->src_reg;
1100 #if 0
1101 /* Currently, non-reduced/final-value givs are never split. */
1102 for (v = bl->giv; v; v = v->next_iv)
1103 if (REGNO (v->src_reg) != bl->regno)
1104 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1105 #endif
1108 /* Use our current register alignment and pointer flags. */
1109 map->regno_pointer_flag = regno_pointer_flag;
1110 map->regno_pointer_align = regno_pointer_align;
1112 /* If the loop is being partially unrolled, and the iteration variables
1113 are being split, and are being renamed for the split, then must fix up
1114 the compare/jump instruction at the end of the loop to refer to the new
1115 registers. This compare isn't copied, so the registers used in it
1116 will never be replaced if it isn't done here. */
1118 if (unroll_type == UNROLL_MODULO)
1120 insn = NEXT_INSN (copy_end);
1121 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1122 PATTERN (insn) = remap_split_bivs (PATTERN (insn));
1125 /* For unroll_number - 1 times, make a copy of each instruction
1126 between copy_start and copy_end, and insert these new instructions
1127 before the end of the loop. */
1129 for (i = 0; i < unroll_number; i++)
1131 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1132 bzero ((char *) map->const_equiv_map, new_maxregnum * sizeof (rtx));
1133 bzero ((char *) map->const_age_map, new_maxregnum * sizeof (unsigned));
1134 map->const_age = 0;
1136 for (j = 0; j < max_labelno; j++)
1137 if (local_label[j])
1138 map->label_map[j] = gen_label_rtx ();
1140 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1141 if (local_regno[j])
1142 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1144 /* If loop starts with a branch to the test, then fix it so that
1145 it points to the test of the first unrolled copy of the loop. */
1146 if (i == 0 && loop_start != copy_start)
1148 insn = PREV_INSN (copy_start);
1149 pattern = PATTERN (insn);
1151 tem = map->label_map[CODE_LABEL_NUMBER
1152 (XEXP (SET_SRC (pattern), 0))];
1153 SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);
1155 /* Set the jump label so that it can be used by later loop unrolling
1156 passes. */
1157 JUMP_LABEL (insn) = tem;
1158 LABEL_NUSES (tem)++;
1161 copy_loop_body (copy_start, copy_end, map, exit_label,
1162 i == unroll_number - 1, unroll_type, start_label,
1163 loop_end, insert_before, insert_before);
1166 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1167 insn to be deleted. This prevents any runaway delete_insn call from
1168 more insns that it should, as it always stops at a CODE_LABEL. */
1170 /* Delete the compare and branch at the end of the loop if completely
1171 unrolling the loop. Deleting the backward branch at the end also
1172 deletes the code label at the start of the loop. This is done at
1173 the very end to avoid problems with back_branch_in_range_p. */
1175 if (unroll_type == UNROLL_COMPLETELY)
1176 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1177 else
1178 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1180 /* Delete all of the original loop instructions. Don't delete the
1181 LOOP_BEG note, or the first code label in the loop. */
1183 insn = NEXT_INSN (copy_start);
1184 while (insn != safety_label)
1186 if (insn != start_label)
1187 insn = delete_insn (insn);
1188 else
1189 insn = NEXT_INSN (insn);
1192 /* Can now delete the 'safety' label emitted to protect us from runaway
1193 delete_insn calls. */
1194 if (INSN_DELETED_P (safety_label))
1195 abort ();
1196 delete_insn (safety_label);
1198 /* If exit_label exists, emit it after the loop. Doing the emit here
1199 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1200 This is needed so that mostly_true_jump in reorg.c will treat jumps
1201 to this loop end label correctly, i.e. predict that they are usually
1202 not taken. */
1203 if (exit_label)
1204 emit_label_after (exit_label, loop_end);
1207 /* Return true if the loop can be safely, and profitably, preconditioned
1208 so that the unrolled copies of the loop body don't need exit tests.
1210 This only works if final_value, initial_value and increment can be
1211 determined, and if increment is a constant power of 2.
1212 If increment is not a power of 2, then the preconditioning modulo
1213 operation would require a real modulo instead of a boolean AND, and this
1214 is not considered `profitable'. */
1216 /* ??? If the loop is known to be executed very many times, or the machine
1217 has a very cheap divide instruction, then preconditioning is a win even
1218 when the increment is not a power of 2. Use RTX_COST to compute
1219 whether divide is cheap. */
1221 static int
1222 precondition_loop_p (initial_value, final_value, increment, loop_start,
1223 loop_end)
1224 rtx *initial_value, *final_value, *increment;
1225 rtx loop_start, loop_end;
1228 if (loop_n_iterations > 0)
1230 *initial_value = const0_rtx;
1231 *increment = const1_rtx;
1232 *final_value = GEN_INT (loop_n_iterations);
1234 if (loop_dump_stream)
1235 fprintf (loop_dump_stream,
1236 "Preconditioning: Success, number of iterations known, %d.\n",
1237 loop_n_iterations);
1238 return 1;
1241 if (loop_initial_value == 0)
1243 if (loop_dump_stream)
1244 fprintf (loop_dump_stream,
1245 "Preconditioning: Could not find initial value.\n");
1246 return 0;
1248 else if (loop_increment == 0)
1250 if (loop_dump_stream)
1251 fprintf (loop_dump_stream,
1252 "Preconditioning: Could not find increment value.\n");
1253 return 0;
1255 else if (GET_CODE (loop_increment) != CONST_INT)
1257 if (loop_dump_stream)
1258 fprintf (loop_dump_stream,
1259 "Preconditioning: Increment not a constant.\n");
1260 return 0;
1262 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1263 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1265 if (loop_dump_stream)
1266 fprintf (loop_dump_stream,
1267 "Preconditioning: Increment not a constant power of 2.\n");
1268 return 0;
1271 /* Unsigned_compare and compare_dir can be ignored here, since they do
1272 not matter for preconditioning. */
1274 if (loop_final_value == 0)
1276 if (loop_dump_stream)
1277 fprintf (loop_dump_stream,
1278 "Preconditioning: EQ comparison loop.\n");
1279 return 0;
1282 /* Must ensure that final_value is invariant, so call invariant_p to
1283 check. Before doing so, must check regno against max_reg_before_loop
1284 to make sure that the register is in the range covered by invariant_p.
1285 If it isn't, then it is most likely a biv/giv which by definition are
1286 not invariant. */
1287 if ((GET_CODE (loop_final_value) == REG
1288 && REGNO (loop_final_value) >= max_reg_before_loop)
1289 || (GET_CODE (loop_final_value) == PLUS
1290 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1291 || ! invariant_p (loop_final_value))
1293 if (loop_dump_stream)
1294 fprintf (loop_dump_stream,
1295 "Preconditioning: Final value not invariant.\n");
1296 return 0;
1299 /* Fail for floating point values, since the caller of this function
1300 does not have code to deal with them. */
1301 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
1302 || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
1304 if (loop_dump_stream)
1305 fprintf (loop_dump_stream,
1306 "Preconditioning: Floating point final or initial value.\n");
1307 return 0;
1310 /* Now set initial_value to be the iteration_var, since that may be a
1311 simpler expression, and is guaranteed to be correct if all of the
1312 above tests succeed.
1314 We can not use the initial_value as calculated, because it will be
1315 one too small for loops of the form "while (i-- > 0)". We can not
1316 emit code before the loop_skip_over insns to fix this problem as this
1317 will then give a number one too large for loops of the form
1318 "while (--i > 0)".
1320 Note that all loops that reach here are entered at the top, because
1321 this function is not called if the loop starts with a jump. */
1323 /* Fail if loop_iteration_var is not live before loop_start, since we need
1324 to test its value in the preconditioning code. */
1326 if (uid_luid[regno_first_uid[REGNO (loop_iteration_var)]]
1327 > INSN_LUID (loop_start))
1329 if (loop_dump_stream)
1330 fprintf (loop_dump_stream,
1331 "Preconditioning: Iteration var not live before loop start.\n");
1332 return 0;
1335 *initial_value = loop_iteration_var;
1336 *increment = loop_increment;
1337 *final_value = loop_final_value;
1339 /* Success! */
1340 if (loop_dump_stream)
1341 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1342 return 1;
1346 /* All pseudo-registers must be mapped to themselves. Two hard registers
1347 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1348 REGNUM, to avoid function-inlining specific conversions of these
1349 registers. All other hard regs can not be mapped because they may be
1350 used with different
1351 modes. */
1353 static void
1354 init_reg_map (map, maxregnum)
1355 struct inline_remap *map;
1356 int maxregnum;
1358 int i;
1360 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1361 map->reg_map[i] = regno_reg_rtx[i];
1362 /* Just clear the rest of the entries. */
1363 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1364 map->reg_map[i] = 0;
1366 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1367 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1368 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1369 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1372 /* Strength-reduction will often emit code for optimized biv/givs which
1373 calculates their value in a temporary register, and then copies the result
1374 to the iv. This procedure reconstructs the pattern computing the iv;
1375 verifying that all operands are of the proper form.
1377 The return value is the amount that the giv is incremented by. */
1379 static rtx
1380 calculate_giv_inc (pattern, src_insn, regno)
1381 rtx pattern, src_insn;
1382 int regno;
1384 rtx increment;
1385 rtx increment_total = 0;
1386 int tries = 0;
1388 retry:
1389 /* Verify that we have an increment insn here. First check for a plus
1390 as the set source. */
1391 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1393 /* SR sometimes computes the new giv value in a temp, then copies it
1394 to the new_reg. */
1395 src_insn = PREV_INSN (src_insn);
1396 pattern = PATTERN (src_insn);
1397 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1398 abort ();
1400 /* The last insn emitted is not needed, so delete it to avoid confusing
1401 the second cse pass. This insn sets the giv unnecessarily. */
1402 delete_insn (get_last_insn ());
1405 /* Verify that we have a constant as the second operand of the plus. */
1406 increment = XEXP (SET_SRC (pattern), 1);
1407 if (GET_CODE (increment) != CONST_INT)
1409 /* SR sometimes puts the constant in a register, especially if it is
1410 too big to be an add immed operand. */
1411 src_insn = PREV_INSN (src_insn);
1412 increment = SET_SRC (PATTERN (src_insn));
1414 /* SR may have used LO_SUM to compute the constant if it is too large
1415 for a load immed operand. In this case, the constant is in operand
1416 one of the LO_SUM rtx. */
1417 if (GET_CODE (increment) == LO_SUM)
1418 increment = XEXP (increment, 1);
1419 else if (GET_CODE (increment) == IOR
1420 || GET_CODE (increment) == ASHIFT)
1422 /* The rs6000 port loads some constants with IOR.
1423 The alpha port loads some constants with ASHIFT. */
1424 rtx second_part = XEXP (increment, 1);
1425 enum rtx_code code = GET_CODE (increment);
1427 src_insn = PREV_INSN (src_insn);
1428 increment = SET_SRC (PATTERN (src_insn));
1429 /* Don't need the last insn anymore. */
1430 delete_insn (get_last_insn ());
1432 if (GET_CODE (second_part) != CONST_INT
1433 || GET_CODE (increment) != CONST_INT)
1434 abort ();
1436 if (code == IOR)
1437 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1438 else
1439 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1442 if (GET_CODE (increment) != CONST_INT)
1443 abort ();
1445 /* The insn loading the constant into a register is no longer needed,
1446 so delete it. */
1447 delete_insn (get_last_insn ());
1450 if (increment_total)
1451 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1452 else
1453 increment_total = increment;
1455 /* Check that the source register is the same as the register we expected
1456 to see as the source. If not, something is seriously wrong. */
1457 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1458 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1460 /* Some machines (e.g. the romp), may emit two add instructions for
1461 certain constants, so lets try looking for another add immediately
1462 before this one if we have only seen one add insn so far. */
1464 if (tries == 0)
1466 tries++;
1468 src_insn = PREV_INSN (src_insn);
1469 pattern = PATTERN (src_insn);
1471 delete_insn (get_last_insn ());
1473 goto retry;
1476 abort ();
1479 return increment_total;
1482 /* Copy REG_NOTES, except for insn references, because not all insn_map
1483 entries are valid yet. We do need to copy registers now though, because
1484 the reg_map entries can change during copying. */
1486 static rtx
1487 initial_reg_note_copy (notes, map)
1488 rtx notes;
1489 struct inline_remap *map;
1491 rtx copy;
1493 if (notes == 0)
1494 return 0;
1496 copy = rtx_alloc (GET_CODE (notes));
1497 PUT_MODE (copy, GET_MODE (notes));
1499 if (GET_CODE (notes) == EXPR_LIST)
1500 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
1501 else if (GET_CODE (notes) == INSN_LIST)
1502 /* Don't substitute for these yet. */
1503 XEXP (copy, 0) = XEXP (notes, 0);
1504 else
1505 abort ();
1507 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1509 return copy;
1512 /* Fixup insn references in copied REG_NOTES. */
1514 static void
1515 final_reg_note_copy (notes, map)
1516 rtx notes;
1517 struct inline_remap *map;
1519 rtx note;
1521 for (note = notes; note; note = XEXP (note, 1))
1522 if (GET_CODE (note) == INSN_LIST)
1523 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1526 /* Copy each instruction in the loop, substituting from map as appropriate.
1527 This is very similar to a loop in expand_inline_function. */
1529 static void
1530 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1531 unroll_type, start_label, loop_end, insert_before,
1532 copy_notes_from)
1533 rtx copy_start, copy_end;
1534 struct inline_remap *map;
1535 rtx exit_label;
1536 int last_iteration;
1537 enum unroll_types unroll_type;
1538 rtx start_label, loop_end, insert_before, copy_notes_from;
1540 rtx insn, pattern;
1541 rtx tem, copy;
1542 int dest_reg_was_split, i;
1543 rtx cc0_insn = 0;
1544 rtx final_label = 0;
1545 rtx giv_inc, giv_dest_reg, giv_src_reg;
1547 /* If this isn't the last iteration, then map any references to the
1548 start_label to final_label. Final label will then be emitted immediately
1549 after the end of this loop body if it was ever used.
1551 If this is the last iteration, then map references to the start_label
1552 to itself. */
1553 if (! last_iteration)
1555 final_label = gen_label_rtx ();
1556 map->label_map[CODE_LABEL_NUMBER (start_label)] = final_label;
1558 else
1559 map->label_map[CODE_LABEL_NUMBER (start_label)] = start_label;
1561 start_sequence ();
1563 insn = copy_start;
1566 insn = NEXT_INSN (insn);
1568 map->orig_asm_operands_vector = 0;
1570 switch (GET_CODE (insn))
1572 case INSN:
1573 pattern = PATTERN (insn);
1574 copy = 0;
1575 giv_inc = 0;
1577 /* Check to see if this is a giv that has been combined with
1578 some split address givs. (Combined in the sense that
1579 `combine_givs' in loop.c has put two givs in the same register.)
1580 In this case, we must search all givs based on the same biv to
1581 find the address givs. Then split the address givs.
1582 Do this before splitting the giv, since that may map the
1583 SET_DEST to a new register. */
1585 if (GET_CODE (pattern) == SET
1586 && GET_CODE (SET_DEST (pattern)) == REG
1587 && addr_combined_regs[REGNO (SET_DEST (pattern))])
1589 struct iv_class *bl;
1590 struct induction *v, *tv;
1591 int regno = REGNO (SET_DEST (pattern));
1593 v = addr_combined_regs[REGNO (SET_DEST (pattern))];
1594 bl = reg_biv_class[REGNO (v->src_reg)];
1596 /* Although the giv_inc amount is not needed here, we must call
1597 calculate_giv_inc here since it might try to delete the
1598 last insn emitted. If we wait until later to call it,
1599 we might accidentally delete insns generated immediately
1600 below by emit_unrolled_add. */
1602 giv_inc = calculate_giv_inc (pattern, insn, regno);
1604 /* Now find all address giv's that were combined with this
1605 giv 'v'. */
1606 for (tv = bl->giv; tv; tv = tv->next_iv)
1607 if (tv->giv_type == DEST_ADDR && tv->same == v)
1609 int this_giv_inc;
1611 /* If this DEST_ADDR giv was not split, then ignore it. */
1612 if (*tv->location != tv->dest_reg)
1613 continue;
1615 /* Scale this_giv_inc if the multiplicative factors of
1616 the two givs are different. */
1617 this_giv_inc = INTVAL (giv_inc);
1618 if (tv->mult_val != v->mult_val)
1619 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1620 * INTVAL (tv->mult_val));
1622 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1623 *tv->location = tv->dest_reg;
1625 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1627 /* Must emit an insn to increment the split address
1628 giv. Add in the const_adjust field in case there
1629 was a constant eliminated from the address. */
1630 rtx value, dest_reg;
1632 /* tv->dest_reg will be either a bare register,
1633 or else a register plus a constant. */
1634 if (GET_CODE (tv->dest_reg) == REG)
1635 dest_reg = tv->dest_reg;
1636 else
1637 dest_reg = XEXP (tv->dest_reg, 0);
1639 /* Check for shared address givs, and avoid
1640 incrementing the shared pseudo reg more than
1641 once. */
1642 if (! tv->same_insn)
1644 /* tv->dest_reg may actually be a (PLUS (REG)
1645 (CONST)) here, so we must call plus_constant
1646 to add the const_adjust amount before calling
1647 emit_unrolled_add below. */
1648 value = plus_constant (tv->dest_reg,
1649 tv->const_adjust);
1651 /* The constant could be too large for an add
1652 immediate, so can't directly emit an insn
1653 here. */
1654 emit_unrolled_add (dest_reg, XEXP (value, 0),
1655 XEXP (value, 1));
1658 /* Reset the giv to be just the register again, in case
1659 it is used after the set we have just emitted.
1660 We must subtract the const_adjust factor added in
1661 above. */
1662 tv->dest_reg = plus_constant (dest_reg,
1663 - tv->const_adjust);
1664 *tv->location = tv->dest_reg;
1669 /* If this is a setting of a splittable variable, then determine
1670 how to split the variable, create a new set based on this split,
1671 and set up the reg_map so that later uses of the variable will
1672 use the new split variable. */
1674 dest_reg_was_split = 0;
1676 if (GET_CODE (pattern) == SET
1677 && GET_CODE (SET_DEST (pattern)) == REG
1678 && splittable_regs[REGNO (SET_DEST (pattern))])
1680 int regno = REGNO (SET_DEST (pattern));
1682 dest_reg_was_split = 1;
1684 /* Compute the increment value for the giv, if it wasn't
1685 already computed above. */
1687 if (giv_inc == 0)
1688 giv_inc = calculate_giv_inc (pattern, insn, regno);
1689 giv_dest_reg = SET_DEST (pattern);
1690 giv_src_reg = SET_DEST (pattern);
1692 if (unroll_type == UNROLL_COMPLETELY)
1694 /* Completely unrolling the loop. Set the induction
1695 variable to a known constant value. */
1697 /* The value in splittable_regs may be an invariant
1698 value, so we must use plus_constant here. */
1699 splittable_regs[regno]
1700 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1702 if (GET_CODE (splittable_regs[regno]) == PLUS)
1704 giv_src_reg = XEXP (splittable_regs[regno], 0);
1705 giv_inc = XEXP (splittable_regs[regno], 1);
1707 else
1709 /* The splittable_regs value must be a REG or a
1710 CONST_INT, so put the entire value in the giv_src_reg
1711 variable. */
1712 giv_src_reg = splittable_regs[regno];
1713 giv_inc = const0_rtx;
1716 else
1718 /* Partially unrolling loop. Create a new pseudo
1719 register for the iteration variable, and set it to
1720 be a constant plus the original register. Except
1721 on the last iteration, when the result has to
1722 go back into the original iteration var register. */
1724 /* Handle bivs which must be mapped to a new register
1725 when split. This happens for bivs which need their
1726 final value set before loop entry. The new register
1727 for the biv was stored in the biv's first struct
1728 induction entry by find_splittable_regs. */
1730 if (regno < max_reg_before_loop
1731 && reg_iv_type[regno] == BASIC_INDUCT)
1733 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1734 giv_dest_reg = giv_src_reg;
1737 #if 0
1738 /* If non-reduced/final-value givs were split, then
1739 this would have to remap those givs also. See
1740 find_splittable_regs. */
1741 #endif
1743 splittable_regs[regno]
1744 = GEN_INT (INTVAL (giv_inc)
1745 + INTVAL (splittable_regs[regno]));
1746 giv_inc = splittable_regs[regno];
1748 /* Now split the induction variable by changing the dest
1749 of this insn to a new register, and setting its
1750 reg_map entry to point to this new register.
1752 If this is the last iteration, and this is the last insn
1753 that will update the iv, then reuse the original dest,
1754 to ensure that the iv will have the proper value when
1755 the loop exits or repeats.
1757 Using splittable_regs_updates here like this is safe,
1758 because it can only be greater than one if all
1759 instructions modifying the iv are always executed in
1760 order. */
1762 if (! last_iteration
1763 || (splittable_regs_updates[regno]-- != 1))
1765 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1766 giv_dest_reg = tem;
1767 map->reg_map[regno] = tem;
1769 else
1770 map->reg_map[regno] = giv_src_reg;
1773 /* The constant being added could be too large for an add
1774 immediate, so can't directly emit an insn here. */
1775 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1776 copy = get_last_insn ();
1777 pattern = PATTERN (copy);
1779 else
1781 pattern = copy_rtx_and_substitute (pattern, map);
1782 copy = emit_insn (pattern);
1784 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1786 #ifdef HAVE_cc0
1787 /* If this insn is setting CC0, it may need to look at
1788 the insn that uses CC0 to see what type of insn it is.
1789 In that case, the call to recog via validate_change will
1790 fail. So don't substitute constants here. Instead,
1791 do it when we emit the following insn.
1793 For example, see the pyr.md file. That machine has signed and
1794 unsigned compares. The compare patterns must check the
1795 following branch insn to see which what kind of compare to
1796 emit.
1798 If the previous insn set CC0, substitute constants on it as
1799 well. */
1800 if (sets_cc0_p (PATTERN (copy)) != 0)
1801 cc0_insn = copy;
1802 else
1804 if (cc0_insn)
1805 try_constants (cc0_insn, map);
1806 cc0_insn = 0;
1807 try_constants (copy, map);
1809 #else
1810 try_constants (copy, map);
1811 #endif
1813 /* Make split induction variable constants `permanent' since we
1814 know there are no backward branches across iteration variable
1815 settings which would invalidate this. */
1816 if (dest_reg_was_split)
1818 int regno = REGNO (SET_DEST (pattern));
1820 if (regno < map->const_equiv_map_size
1821 && map->const_age_map[regno] == map->const_age)
1822 map->const_age_map[regno] = -1;
1824 break;
1826 case JUMP_INSN:
1827 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1828 copy = emit_jump_insn (pattern);
1829 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1831 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1832 && ! last_iteration)
1834 /* This is a branch to the beginning of the loop; this is the
1835 last insn being copied; and this is not the last iteration.
1836 In this case, we want to change the original fall through
1837 case to be a branch past the end of the loop, and the
1838 original jump label case to fall_through. */
1840 if (invert_exp (pattern, copy))
1842 if (! redirect_exp (&pattern,
1843 map->label_map[CODE_LABEL_NUMBER
1844 (JUMP_LABEL (insn))],
1845 exit_label, copy))
1846 abort ();
1848 else
1850 rtx jmp;
1851 rtx lab = gen_label_rtx ();
1852 /* Can't do it by reversing the jump (probably because we
1853 couldn't reverse the conditions), so emit a new
1854 jump_insn after COPY, and redirect the jump around
1855 that. */
1856 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
1857 jmp = emit_barrier_after (jmp);
1858 emit_label_after (lab, jmp);
1859 LABEL_NUSES (lab) = 0;
1860 if (! redirect_exp (&pattern,
1861 map->label_map[CODE_LABEL_NUMBER
1862 (JUMP_LABEL (insn))],
1863 lab, copy))
1864 abort ();
1868 #ifdef HAVE_cc0
1869 if (cc0_insn)
1870 try_constants (cc0_insn, map);
1871 cc0_insn = 0;
1872 #endif
1873 try_constants (copy, map);
1875 /* Set the jump label of COPY correctly to avoid problems with
1876 later passes of unroll_loop, if INSN had jump label set. */
1877 if (JUMP_LABEL (insn))
1879 rtx label = 0;
1881 /* Can't use the label_map for every insn, since this may be
1882 the backward branch, and hence the label was not mapped. */
1883 if (GET_CODE (pattern) == SET)
1885 tem = SET_SRC (pattern);
1886 if (GET_CODE (tem) == LABEL_REF)
1887 label = XEXP (tem, 0);
1888 else if (GET_CODE (tem) == IF_THEN_ELSE)
1890 if (XEXP (tem, 1) != pc_rtx)
1891 label = XEXP (XEXP (tem, 1), 0);
1892 else
1893 label = XEXP (XEXP (tem, 2), 0);
1897 if (label && GET_CODE (label) == CODE_LABEL)
1898 JUMP_LABEL (copy) = label;
1899 else
1901 /* An unrecognizable jump insn, probably the entry jump
1902 for a switch statement. This label must have been mapped,
1903 so just use the label_map to get the new jump label. */
1904 JUMP_LABEL (copy)
1905 = map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))];
1908 /* If this is a non-local jump, then must increase the label
1909 use count so that the label will not be deleted when the
1910 original jump is deleted. */
1911 LABEL_NUSES (JUMP_LABEL (copy))++;
1913 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
1914 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
1916 rtx pat = PATTERN (copy);
1917 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1918 int len = XVECLEN (pat, diff_vec_p);
1919 int i;
1921 for (i = 0; i < len; i++)
1922 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
1925 /* If this used to be a conditional jump insn but whose branch
1926 direction is now known, we must do something special. */
1927 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
1929 #ifdef HAVE_cc0
1930 /* The previous insn set cc0 for us. So delete it. */
1931 delete_insn (PREV_INSN (copy));
1932 #endif
1934 /* If this is now a no-op, delete it. */
1935 if (map->last_pc_value == pc_rtx)
1937 /* Don't let delete_insn delete the label referenced here,
1938 because we might possibly need it later for some other
1939 instruction in the loop. */
1940 if (JUMP_LABEL (copy))
1941 LABEL_NUSES (JUMP_LABEL (copy))++;
1942 delete_insn (copy);
1943 if (JUMP_LABEL (copy))
1944 LABEL_NUSES (JUMP_LABEL (copy))--;
1945 copy = 0;
1947 else
1948 /* Otherwise, this is unconditional jump so we must put a
1949 BARRIER after it. We could do some dead code elimination
1950 here, but jump.c will do it just as well. */
1951 emit_barrier ();
1953 break;
1955 case CALL_INSN:
1956 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1957 copy = emit_call_insn (pattern);
1958 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1960 /* Because the USAGE information potentially contains objects other
1961 than hard registers, we need to copy it. */
1962 CALL_INSN_FUNCTION_USAGE (copy) =
1963 copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn), map);
1965 #ifdef HAVE_cc0
1966 if (cc0_insn)
1967 try_constants (cc0_insn, map);
1968 cc0_insn = 0;
1969 #endif
1970 try_constants (copy, map);
1972 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
1973 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1974 map->const_equiv_map[i] = 0;
1975 break;
1977 case CODE_LABEL:
1978 /* If this is the loop start label, then we don't need to emit a
1979 copy of this label since no one will use it. */
1981 if (insn != start_label)
1983 copy = emit_label (map->label_map[CODE_LABEL_NUMBER (insn)]);
1984 map->const_age++;
1986 break;
1988 case BARRIER:
1989 copy = emit_barrier ();
1990 break;
1992 case NOTE:
1993 /* VTOP notes are valid only before the loop exit test. If placed
1994 anywhere else, loop may generate bad code. */
1996 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
1997 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
1998 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
1999 copy = emit_note (NOTE_SOURCE_FILE (insn),
2000 NOTE_LINE_NUMBER (insn));
2001 else
2002 copy = 0;
2003 break;
2005 default:
2006 abort ();
2007 break;
2010 map->insn_map[INSN_UID (insn)] = copy;
2012 while (insn != copy_end);
2014 /* Now finish coping the REG_NOTES. */
2015 insn = copy_start;
2018 insn = NEXT_INSN (insn);
2019 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2020 || GET_CODE (insn) == CALL_INSN)
2021 && map->insn_map[INSN_UID (insn)])
2022 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2024 while (insn != copy_end);
2026 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2027 each of these notes here, since there may be some important ones, such as
2028 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2029 iteration, because the original notes won't be deleted.
2031 We can't use insert_before here, because when from preconditioning,
2032 insert_before points before the loop. We can't use copy_end, because
2033 there may be insns already inserted after it (which we don't want to
2034 copy) when not from preconditioning code. */
2036 if (! last_iteration)
2038 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2040 if (GET_CODE (insn) == NOTE
2041 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
2042 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2046 if (final_label && LABEL_NUSES (final_label) > 0)
2047 emit_label (final_label);
2049 tem = gen_sequence ();
2050 end_sequence ();
2051 emit_insn_before (tem, insert_before);
2054 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2055 emitted. This will correctly handle the case where the increment value
2056 won't fit in the immediate field of a PLUS insns. */
2058 void
2059 emit_unrolled_add (dest_reg, src_reg, increment)
2060 rtx dest_reg, src_reg, increment;
2062 rtx result;
2064 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
2065 dest_reg, 0, OPTAB_LIB_WIDEN);
2067 if (dest_reg != result)
2068 emit_move_insn (dest_reg, result);
2071 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
2072 is a backward branch in that range that branches to somewhere between
2073 LOOP_START and INSN. Returns 0 otherwise. */
2075 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2076 In practice, this is not a problem, because this function is seldom called,
2077 and uses a negligible amount of CPU time on average. */
2080 back_branch_in_range_p (insn, loop_start, loop_end)
2081 rtx insn;
2082 rtx loop_start, loop_end;
2084 rtx p, q, target_insn;
2086 /* Stop before we get to the backward branch at the end of the loop. */
2087 loop_end = prev_nonnote_insn (loop_end);
2088 if (GET_CODE (loop_end) == BARRIER)
2089 loop_end = PREV_INSN (loop_end);
2091 /* Check in case insn has been deleted, search forward for first non
2092 deleted insn following it. */
2093 while (INSN_DELETED_P (insn))
2094 insn = NEXT_INSN (insn);
2096 /* Check for the case where insn is the last insn in the loop. */
2097 if (insn == loop_end)
2098 return 0;
2100 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2102 if (GET_CODE (p) == JUMP_INSN)
2104 target_insn = JUMP_LABEL (p);
2106 /* Search from loop_start to insn, to see if one of them is
2107 the target_insn. We can't use INSN_LUID comparisons here,
2108 since insn may not have an LUID entry. */
2109 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2110 if (q == target_insn)
2111 return 1;
2115 return 0;
2118 /* Try to generate the simplest rtx for the expression
2119 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2120 value of giv's. */
2122 static rtx
2123 fold_rtx_mult_add (mult1, mult2, add1, mode)
2124 rtx mult1, mult2, add1;
2125 enum machine_mode mode;
2127 rtx temp, mult_res;
2128 rtx result;
2130 /* The modes must all be the same. This should always be true. For now,
2131 check to make sure. */
2132 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2133 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2134 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2135 abort ();
2137 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2138 will be a constant. */
2139 if (GET_CODE (mult1) == CONST_INT)
2141 temp = mult2;
2142 mult2 = mult1;
2143 mult1 = temp;
2146 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2147 if (! mult_res)
2148 mult_res = gen_rtx (MULT, mode, mult1, mult2);
2150 /* Again, put the constant second. */
2151 if (GET_CODE (add1) == CONST_INT)
2153 temp = add1;
2154 add1 = mult_res;
2155 mult_res = temp;
2158 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2159 if (! result)
2160 result = gen_rtx (PLUS, mode, add1, mult_res);
2162 return result;
2165 /* Searches the list of induction struct's for the biv BL, to try to calculate
2166 the total increment value for one iteration of the loop as a constant.
2168 Returns the increment value as an rtx, simplified as much as possible,
2169 if it can be calculated. Otherwise, returns 0. */
2171 rtx
2172 biv_total_increment (bl, loop_start, loop_end)
2173 struct iv_class *bl;
2174 rtx loop_start, loop_end;
2176 struct induction *v;
2177 rtx result;
2179 /* For increment, must check every instruction that sets it. Each
2180 instruction must be executed only once each time through the loop.
2181 To verify this, we check that the the insn is always executed, and that
2182 there are no backward branches after the insn that branch to before it.
2183 Also, the insn must have a mult_val of one (to make sure it really is
2184 an increment). */
2186 result = const0_rtx;
2187 for (v = bl->biv; v; v = v->next_iv)
2189 if (v->always_computable && v->mult_val == const1_rtx
2190 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
2191 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2192 else
2193 return 0;
2196 return result;
2199 /* Determine the initial value of the iteration variable, and the amount
2200 that it is incremented each loop. Use the tables constructed by
2201 the strength reduction pass to calculate these values.
2203 Initial_value and/or increment are set to zero if their values could not
2204 be calculated. */
2206 static void
2207 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2208 rtx iteration_var, *initial_value, *increment;
2209 rtx loop_start, loop_end;
2211 struct iv_class *bl;
2212 struct induction *v, *b;
2214 /* Clear the result values, in case no answer can be found. */
2215 *initial_value = 0;
2216 *increment = 0;
2218 /* The iteration variable can be either a giv or a biv. Check to see
2219 which it is, and compute the variable's initial value, and increment
2220 value if possible. */
2222 /* If this is a new register, can't handle it since we don't have any
2223 reg_iv_type entry for it. */
2224 if (REGNO (iteration_var) >= max_reg_before_loop)
2226 if (loop_dump_stream)
2227 fprintf (loop_dump_stream,
2228 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2229 return;
2231 /* Reject iteration variables larger than the host long size, since they
2232 could result in a number of iterations greater than the range of our
2233 `unsigned long' variable loop_n_iterations. */
2234 else if (GET_MODE_BITSIZE (GET_MODE (iteration_var)) > HOST_BITS_PER_LONG)
2236 if (loop_dump_stream)
2237 fprintf (loop_dump_stream,
2238 "Loop unrolling: Iteration var rejected because mode larger than host long.\n");
2239 return;
2241 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2243 if (loop_dump_stream)
2244 fprintf (loop_dump_stream,
2245 "Loop unrolling: Iteration var not an integer.\n");
2246 return;
2248 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2250 /* Grab initial value, only useful if it is a constant. */
2251 bl = reg_biv_class[REGNO (iteration_var)];
2252 *initial_value = bl->initial_value;
2254 *increment = biv_total_increment (bl, loop_start, loop_end);
2256 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2258 #if 1
2259 /* ??? The code below does not work because the incorrect number of
2260 iterations is calculated when the biv is incremented after the giv
2261 is set (which is the usual case). This can probably be accounted
2262 for by biasing the initial_value by subtracting the amount of the
2263 increment that occurs between the giv set and the giv test. However,
2264 a giv as an iterator is very rare, so it does not seem worthwhile
2265 to handle this. */
2266 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2267 if (loop_dump_stream)
2268 fprintf (loop_dump_stream,
2269 "Loop unrolling: Giv iterators are not handled.\n");
2270 return;
2271 #else
2272 /* Initial value is mult_val times the biv's initial value plus
2273 add_val. Only useful if it is a constant. */
2274 v = reg_iv_info[REGNO (iteration_var)];
2275 bl = reg_biv_class[REGNO (v->src_reg)];
2276 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2277 v->add_val, v->mode);
2279 /* Increment value is mult_val times the increment value of the biv. */
2281 *increment = biv_total_increment (bl, loop_start, loop_end);
2282 if (*increment)
2283 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2284 v->mode);
2285 #endif
2287 else
2289 if (loop_dump_stream)
2290 fprintf (loop_dump_stream,
2291 "Loop unrolling: Not basic or general induction var.\n");
2292 return;
2296 /* Calculate the approximate final value of the iteration variable
2297 which has an loop exit test with code COMPARISON_CODE and comparison value
2298 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2299 was signed or unsigned, and the direction of the comparison. This info is
2300 needed to calculate the number of loop iterations. */
2302 static rtx
2303 approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2304 enum rtx_code comparison_code;
2305 rtx comparison_value;
2306 int *unsigned_p;
2307 int *compare_dir;
2309 /* Calculate the final value of the induction variable.
2310 The exact final value depends on the branch operator, and increment sign.
2311 This is only an approximate value. It will be wrong if the iteration
2312 variable is not incremented by one each time through the loop, and
2313 approx final value - start value % increment != 0. */
2315 *unsigned_p = 0;
2316 switch (comparison_code)
2318 case LEU:
2319 *unsigned_p = 1;
2320 case LE:
2321 *compare_dir = 1;
2322 return plus_constant (comparison_value, 1);
2323 case GEU:
2324 *unsigned_p = 1;
2325 case GE:
2326 *compare_dir = -1;
2327 return plus_constant (comparison_value, -1);
2328 case EQ:
2329 /* Can not calculate a final value for this case. */
2330 *compare_dir = 0;
2331 return 0;
2332 case LTU:
2333 *unsigned_p = 1;
2334 case LT:
2335 *compare_dir = 1;
2336 return comparison_value;
2337 break;
2338 case GTU:
2339 *unsigned_p = 1;
2340 case GT:
2341 *compare_dir = -1;
2342 return comparison_value;
2343 case NE:
2344 *compare_dir = 0;
2345 return comparison_value;
2346 default:
2347 abort ();
2351 /* For each biv and giv, determine whether it can be safely split into
2352 a different variable for each unrolled copy of the loop body. If it
2353 is safe to split, then indicate that by saving some useful info
2354 in the splittable_regs array.
2356 If the loop is being completely unrolled, then splittable_regs will hold
2357 the current value of the induction variable while the loop is unrolled.
2358 It must be set to the initial value of the induction variable here.
2359 Otherwise, splittable_regs will hold the difference between the current
2360 value of the induction variable and the value the induction variable had
2361 at the top of the loop. It must be set to the value 0 here.
2363 Returns the total number of instructions that set registers that are
2364 splittable. */
2366 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2367 constant values are unnecessary, since we can easily calculate increment
2368 values in this case even if nothing is constant. The increment value
2369 should not involve a multiply however. */
2371 /* ?? Even if the biv/giv increment values aren't constant, it may still
2372 be beneficial to split the variable if the loop is only unrolled a few
2373 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2375 static int
2376 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2377 unroll_number)
2378 enum unroll_types unroll_type;
2379 rtx loop_start, loop_end;
2380 rtx end_insert_before;
2381 int unroll_number;
2383 struct iv_class *bl;
2384 struct induction *v;
2385 rtx increment, tem;
2386 rtx biv_final_value;
2387 int biv_splittable;
2388 int result = 0;
2390 for (bl = loop_iv_list; bl; bl = bl->next)
2392 /* Biv_total_increment must return a constant value,
2393 otherwise we can not calculate the split values. */
2395 increment = biv_total_increment (bl, loop_start, loop_end);
2396 if (! increment || GET_CODE (increment) != CONST_INT)
2397 continue;
2399 /* The loop must be unrolled completely, or else have a known number
2400 of iterations and only one exit, or else the biv must be dead
2401 outside the loop, or else the final value must be known. Otherwise,
2402 it is unsafe to split the biv since it may not have the proper
2403 value on loop exit. */
2405 /* loop_number_exit_count is non-zero if the loop has an exit other than
2406 a fall through at the end. */
2408 biv_splittable = 1;
2409 biv_final_value = 0;
2410 if (unroll_type != UNROLL_COMPLETELY
2411 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2412 || unroll_type == UNROLL_NAIVE)
2413 && (uid_luid[regno_last_uid[bl->regno]] >= INSN_LUID (loop_end)
2414 || ! bl->init_insn
2415 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2416 || (uid_luid[regno_first_uid[bl->regno]]
2417 < INSN_LUID (bl->init_insn))
2418 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2419 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2420 biv_splittable = 0;
2422 /* If any of the insns setting the BIV don't do so with a simple
2423 PLUS, we don't know how to split it. */
2424 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2425 if ((tem = single_set (v->insn)) == 0
2426 || GET_CODE (SET_DEST (tem)) != REG
2427 || REGNO (SET_DEST (tem)) != bl->regno
2428 || GET_CODE (SET_SRC (tem)) != PLUS)
2429 biv_splittable = 0;
2431 /* If final value is non-zero, then must emit an instruction which sets
2432 the value of the biv to the proper value. This is done after
2433 handling all of the givs, since some of them may need to use the
2434 biv's value in their initialization code. */
2436 /* This biv is splittable. If completely unrolling the loop, save
2437 the biv's initial value. Otherwise, save the constant zero. */
2439 if (biv_splittable == 1)
2441 if (unroll_type == UNROLL_COMPLETELY)
2443 /* If the initial value of the biv is itself (i.e. it is too
2444 complicated for strength_reduce to compute), or is a hard
2445 register, or it isn't invariant, then we must create a new
2446 pseudo reg to hold the initial value of the biv. */
2448 if (GET_CODE (bl->initial_value) == REG
2449 && (REGNO (bl->initial_value) == bl->regno
2450 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2451 || ! invariant_p (bl->initial_value)))
2453 rtx tem = gen_reg_rtx (bl->biv->mode);
2455 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2456 loop_start);
2458 if (loop_dump_stream)
2459 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2460 bl->regno, REGNO (tem));
2462 splittable_regs[bl->regno] = tem;
2464 else
2465 splittable_regs[bl->regno] = bl->initial_value;
2467 else
2468 splittable_regs[bl->regno] = const0_rtx;
2470 /* Save the number of instructions that modify the biv, so that
2471 we can treat the last one specially. */
2473 splittable_regs_updates[bl->regno] = bl->biv_count;
2474 result += bl->biv_count;
2476 if (loop_dump_stream)
2477 fprintf (loop_dump_stream,
2478 "Biv %d safe to split.\n", bl->regno);
2481 /* Check every giv that depends on this biv to see whether it is
2482 splittable also. Even if the biv isn't splittable, givs which
2483 depend on it may be splittable if the biv is live outside the
2484 loop, and the givs aren't. */
2486 result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2487 increment, unroll_number);
2489 /* If final value is non-zero, then must emit an instruction which sets
2490 the value of the biv to the proper value. This is done after
2491 handling all of the givs, since some of them may need to use the
2492 biv's value in their initialization code. */
2493 if (biv_final_value)
2495 /* If the loop has multiple exits, emit the insns before the
2496 loop to ensure that it will always be executed no matter
2497 how the loop exits. Otherwise emit the insn after the loop,
2498 since this is slightly more efficient. */
2499 if (! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
2500 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2501 biv_final_value),
2502 end_insert_before);
2503 else
2505 /* Create a new register to hold the value of the biv, and then
2506 set the biv to its final value before the loop start. The biv
2507 is set to its final value before loop start to ensure that
2508 this insn will always be executed, no matter how the loop
2509 exits. */
2510 rtx tem = gen_reg_rtx (bl->biv->mode);
2511 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2512 loop_start);
2513 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2514 biv_final_value),
2515 loop_start);
2517 if (loop_dump_stream)
2518 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2519 REGNO (bl->biv->src_reg), REGNO (tem));
2521 /* Set up the mapping from the original biv register to the new
2522 register. */
2523 bl->biv->src_reg = tem;
2527 return result;
2530 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2531 for the instruction that is using it. Do not make any changes to that
2532 instruction. */
2534 static int
2535 verify_addresses (v, giv_inc, unroll_number)
2536 struct induction *v;
2537 rtx giv_inc;
2538 int unroll_number;
2540 int ret = 1;
2541 rtx orig_addr = *v->location;
2542 rtx last_addr = plus_constant (v->dest_reg,
2543 INTVAL (giv_inc) * (unroll_number - 1));
2545 /* First check to see if either address would fail. */
2546 if (! validate_change (v->insn, v->location, v->dest_reg, 0)
2547 || ! validate_change (v->insn, v->location, last_addr, 0))
2548 ret = 0;
2550 /* Now put things back the way they were before. This will always
2551 succeed. */
2552 validate_change (v->insn, v->location, orig_addr, 0);
2554 return ret;
2557 /* For every giv based on the biv BL, check to determine whether it is
2558 splittable. This is a subroutine to find_splittable_regs ().
2560 Return the number of instructions that set splittable registers. */
2562 static int
2563 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2564 unroll_number)
2565 struct iv_class *bl;
2566 enum unroll_types unroll_type;
2567 rtx loop_start, loop_end;
2568 rtx increment;
2569 int unroll_number;
2571 struct induction *v, *v2;
2572 rtx final_value;
2573 rtx tem;
2574 int result = 0;
2576 /* Scan the list of givs, and set the same_insn field when there are
2577 multiple identical givs in the same insn. */
2578 for (v = bl->giv; v; v = v->next_iv)
2579 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2580 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2581 && ! v2->same_insn)
2582 v2->same_insn = v;
2584 for (v = bl->giv; v; v = v->next_iv)
2586 rtx giv_inc, value;
2588 /* Only split the giv if it has already been reduced, or if the loop is
2589 being completely unrolled. */
2590 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2591 continue;
2593 /* The giv can be split if the insn that sets the giv is executed once
2594 and only once on every iteration of the loop. */
2595 /* An address giv can always be split. v->insn is just a use not a set,
2596 and hence it does not matter whether it is always executed. All that
2597 matters is that all the biv increments are always executed, and we
2598 won't reach here if they aren't. */
2599 if (v->giv_type != DEST_ADDR
2600 && (! v->always_computable
2601 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2602 continue;
2604 /* The giv increment value must be a constant. */
2605 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2606 v->mode);
2607 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2608 continue;
2610 /* The loop must be unrolled completely, or else have a known number of
2611 iterations and only one exit, or else the giv must be dead outside
2612 the loop, or else the final value of the giv must be known.
2613 Otherwise, it is not safe to split the giv since it may not have the
2614 proper value on loop exit. */
2616 /* The used outside loop test will fail for DEST_ADDR givs. They are
2617 never used outside the loop anyways, so it is always safe to split a
2618 DEST_ADDR giv. */
2620 final_value = 0;
2621 if (unroll_type != UNROLL_COMPLETELY
2622 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2623 || unroll_type == UNROLL_NAIVE)
2624 && v->giv_type != DEST_ADDR
2625 && ((regno_first_uid[REGNO (v->dest_reg)] != INSN_UID (v->insn)
2626 /* Check for the case where the pseudo is set by a shift/add
2627 sequence, in which case the first insn setting the pseudo
2628 is the first insn of the shift/add sequence. */
2629 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2630 || (regno_first_uid[REGNO (v->dest_reg)]
2631 != INSN_UID (XEXP (tem, 0)))))
2632 /* Line above always fails if INSN was moved by loop opt. */
2633 || (uid_luid[regno_last_uid[REGNO (v->dest_reg)]]
2634 >= INSN_LUID (loop_end)))
2635 && ! (final_value = v->final_value))
2636 continue;
2638 #if 0
2639 /* Currently, non-reduced/final-value givs are never split. */
2640 /* Should emit insns after the loop if possible, as the biv final value
2641 code below does. */
2643 /* If the final value is non-zero, and the giv has not been reduced,
2644 then must emit an instruction to set the final value. */
2645 if (final_value && !v->new_reg)
2647 /* Create a new register to hold the value of the giv, and then set
2648 the giv to its final value before the loop start. The giv is set
2649 to its final value before loop start to ensure that this insn
2650 will always be executed, no matter how we exit. */
2651 tem = gen_reg_rtx (v->mode);
2652 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2653 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2654 loop_start);
2656 if (loop_dump_stream)
2657 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2658 REGNO (v->dest_reg), REGNO (tem));
2660 v->src_reg = tem;
2662 #endif
2664 /* This giv is splittable. If completely unrolling the loop, save the
2665 giv's initial value. Otherwise, save the constant zero for it. */
2667 if (unroll_type == UNROLL_COMPLETELY)
2669 /* It is not safe to use bl->initial_value here, because it may not
2670 be invariant. It is safe to use the initial value stored in
2671 the splittable_regs array if it is set. In rare cases, it won't
2672 be set, so then we do exactly the same thing as
2673 find_splittable_regs does to get a safe value. */
2674 rtx biv_initial_value;
2676 if (splittable_regs[bl->regno])
2677 biv_initial_value = splittable_regs[bl->regno];
2678 else if (GET_CODE (bl->initial_value) != REG
2679 || (REGNO (bl->initial_value) != bl->regno
2680 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2681 biv_initial_value = bl->initial_value;
2682 else
2684 rtx tem = gen_reg_rtx (bl->biv->mode);
2686 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2687 loop_start);
2688 biv_initial_value = tem;
2690 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2691 v->add_val, v->mode);
2693 else
2694 value = const0_rtx;
2696 if (v->new_reg)
2698 /* If a giv was combined with another giv, then we can only split
2699 this giv if the giv it was combined with was reduced. This
2700 is because the value of v->new_reg is meaningless in this
2701 case. */
2702 if (v->same && ! v->same->new_reg)
2704 if (loop_dump_stream)
2705 fprintf (loop_dump_stream,
2706 "giv combined with unreduced giv not split.\n");
2707 continue;
2709 /* If the giv is an address destination, it could be something other
2710 than a simple register, these have to be treated differently. */
2711 else if (v->giv_type == DEST_REG)
2713 /* If value is not a constant, register, or register plus
2714 constant, then compute its value into a register before
2715 loop start. This prevents invalid rtx sharing, and should
2716 generate better code. We can use bl->initial_value here
2717 instead of splittable_regs[bl->regno] because this code
2718 is going before the loop start. */
2719 if (unroll_type == UNROLL_COMPLETELY
2720 && GET_CODE (value) != CONST_INT
2721 && GET_CODE (value) != REG
2722 && (GET_CODE (value) != PLUS
2723 || GET_CODE (XEXP (value, 0)) != REG
2724 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2726 rtx tem = gen_reg_rtx (v->mode);
2727 emit_iv_add_mult (bl->initial_value, v->mult_val,
2728 v->add_val, tem, loop_start);
2729 value = tem;
2732 splittable_regs[REGNO (v->new_reg)] = value;
2734 else
2736 /* Splitting address givs is useful since it will often allow us
2737 to eliminate some increment insns for the base giv as
2738 unnecessary. */
2740 /* If the addr giv is combined with a dest_reg giv, then all
2741 references to that dest reg will be remapped, which is NOT
2742 what we want for split addr regs. We always create a new
2743 register for the split addr giv, just to be safe. */
2745 /* ??? If there are multiple address givs which have been
2746 combined with the same dest_reg giv, then we may only need
2747 one new register for them. Pulling out constants below will
2748 catch some of the common cases of this. Currently, I leave
2749 the work of simplifying multiple address givs to the
2750 following cse pass. */
2752 /* As a special case, if we have multiple identical address givs
2753 within a single instruction, then we do use a single pseudo
2754 reg for both. This is necessary in case one is a match_dup
2755 of the other. */
2757 v->const_adjust = 0;
2759 if (v->same_insn)
2761 v->dest_reg = v->same_insn->dest_reg;
2762 if (loop_dump_stream)
2763 fprintf (loop_dump_stream,
2764 "Sharing address givs in insn %d\n",
2765 INSN_UID (v->insn));
2767 else if (unroll_type != UNROLL_COMPLETELY)
2769 /* If not completely unrolling the loop, then create a new
2770 register to hold the split value of the DEST_ADDR giv.
2771 Emit insn to initialize its value before loop start. */
2772 tem = gen_reg_rtx (v->mode);
2774 /* If the address giv has a constant in its new_reg value,
2775 then this constant can be pulled out and put in value,
2776 instead of being part of the initialization code. */
2778 if (GET_CODE (v->new_reg) == PLUS
2779 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2781 v->dest_reg
2782 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2784 /* Only succeed if this will give valid addresses.
2785 Try to validate both the first and the last
2786 address resulting from loop unrolling, if
2787 one fails, then can't do const elim here. */
2788 if (verify_addresses (v, giv_inc, unroll_number))
2790 /* Save the negative of the eliminated const, so
2791 that we can calculate the dest_reg's increment
2792 value later. */
2793 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2795 v->new_reg = XEXP (v->new_reg, 0);
2796 if (loop_dump_stream)
2797 fprintf (loop_dump_stream,
2798 "Eliminating constant from giv %d\n",
2799 REGNO (tem));
2801 else
2802 v->dest_reg = tem;
2804 else
2805 v->dest_reg = tem;
2807 /* If the address hasn't been checked for validity yet, do so
2808 now, and fail completely if either the first or the last
2809 unrolled copy of the address is not a valid address
2810 for the instruction that uses it. */
2811 if (v->dest_reg == tem
2812 && ! verify_addresses (v, giv_inc, unroll_number))
2814 if (loop_dump_stream)
2815 fprintf (loop_dump_stream,
2816 "Invalid address for giv at insn %d\n",
2817 INSN_UID (v->insn));
2818 continue;
2821 /* To initialize the new register, just move the value of
2822 new_reg into it. This is not guaranteed to give a valid
2823 instruction on machines with complex addressing modes.
2824 If we can't recognize it, then delete it and emit insns
2825 to calculate the value from scratch. */
2826 emit_insn_before (gen_rtx (SET, VOIDmode, tem,
2827 copy_rtx (v->new_reg)),
2828 loop_start);
2829 if (recog_memoized (PREV_INSN (loop_start)) < 0)
2831 rtx sequence, ret;
2833 /* We can't use bl->initial_value to compute the initial
2834 value, because the loop may have been preconditioned.
2835 We must calculate it from NEW_REG. Try using
2836 force_operand instead of emit_iv_add_mult. */
2837 delete_insn (PREV_INSN (loop_start));
2839 start_sequence ();
2840 ret = force_operand (v->new_reg, tem);
2841 if (ret != tem)
2842 emit_move_insn (tem, ret);
2843 sequence = gen_sequence ();
2844 end_sequence ();
2845 emit_insn_before (sequence, loop_start);
2847 if (loop_dump_stream)
2848 fprintf (loop_dump_stream,
2849 "Invalid init insn, rewritten.\n");
2852 else
2854 v->dest_reg = value;
2856 /* Check the resulting address for validity, and fail
2857 if the resulting address would be invalid. */
2858 if (! verify_addresses (v, giv_inc, unroll_number))
2860 if (loop_dump_stream)
2861 fprintf (loop_dump_stream,
2862 "Invalid address for giv at insn %d\n",
2863 INSN_UID (v->insn));
2864 continue;
2868 /* Store the value of dest_reg into the insn. This sharing
2869 will not be a problem as this insn will always be copied
2870 later. */
2872 *v->location = v->dest_reg;
2874 /* If this address giv is combined with a dest reg giv, then
2875 save the base giv's induction pointer so that we will be
2876 able to handle this address giv properly. The base giv
2877 itself does not have to be splittable. */
2879 if (v->same && v->same->giv_type == DEST_REG)
2880 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2882 if (GET_CODE (v->new_reg) == REG)
2884 /* This giv maybe hasn't been combined with any others.
2885 Make sure that it's giv is marked as splittable here. */
2887 splittable_regs[REGNO (v->new_reg)] = value;
2889 /* Make it appear to depend upon itself, so that the
2890 giv will be properly split in the main loop above. */
2891 if (! v->same)
2893 v->same = v;
2894 addr_combined_regs[REGNO (v->new_reg)] = v;
2898 if (loop_dump_stream)
2899 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
2902 else
2904 #if 0
2905 /* Currently, unreduced giv's can't be split. This is not too much
2906 of a problem since unreduced giv's are not live across loop
2907 iterations anyways. When unrolling a loop completely though,
2908 it makes sense to reduce&split givs when possible, as this will
2909 result in simpler instructions, and will not require that a reg
2910 be live across loop iterations. */
2912 splittable_regs[REGNO (v->dest_reg)] = value;
2913 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2914 REGNO (v->dest_reg), INSN_UID (v->insn));
2915 #else
2916 continue;
2917 #endif
2920 /* Givs are only updated once by definition. Mark it so if this is
2921 a splittable register. Don't need to do anything for address givs
2922 where this may not be a register. */
2924 if (GET_CODE (v->new_reg) == REG)
2925 splittable_regs_updates[REGNO (v->new_reg)] = 1;
2927 result++;
2929 if (loop_dump_stream)
2931 int regnum;
2933 if (GET_CODE (v->dest_reg) == CONST_INT)
2934 regnum = -1;
2935 else if (GET_CODE (v->dest_reg) != REG)
2936 regnum = REGNO (XEXP (v->dest_reg, 0));
2937 else
2938 regnum = REGNO (v->dest_reg);
2939 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2940 regnum, INSN_UID (v->insn));
2944 return result;
2947 /* Try to prove that the register is dead after the loop exits. Trace every
2948 loop exit looking for an insn that will always be executed, which sets
2949 the register to some value, and appears before the first use of the register
2950 is found. If successful, then return 1, otherwise return 0. */
2952 /* ?? Could be made more intelligent in the handling of jumps, so that
2953 it can search past if statements and other similar structures. */
2955 static int
2956 reg_dead_after_loop (reg, loop_start, loop_end)
2957 rtx reg, loop_start, loop_end;
2959 rtx insn, label;
2960 enum rtx_code code;
2961 int jump_count = 0;
2962 int label_count = 0;
2963 int this_loop_num = uid_loop_num[INSN_UID (loop_start)];
2965 /* In addition to checking all exits of this loop, we must also check
2966 all exits of inner nested loops that would exit this loop. We don't
2967 have any way to identify those, so we just give up if there are any
2968 such inner loop exits. */
2970 for (label = loop_number_exit_labels[this_loop_num]; label;
2971 label = LABEL_NEXTREF (label))
2972 label_count++;
2974 if (label_count != loop_number_exit_count[this_loop_num])
2975 return 0;
2977 /* HACK: Must also search the loop fall through exit, create a label_ref
2978 here which points to the loop_end, and append the loop_number_exit_labels
2979 list to it. */
2980 label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
2981 LABEL_NEXTREF (label) = loop_number_exit_labels[this_loop_num];
2983 for ( ; label; label = LABEL_NEXTREF (label))
2985 /* Succeed if find an insn which sets the biv or if reach end of
2986 function. Fail if find an insn that uses the biv, or if come to
2987 a conditional jump. */
2989 insn = NEXT_INSN (XEXP (label, 0));
2990 while (insn)
2992 code = GET_CODE (insn);
2993 if (GET_RTX_CLASS (code) == 'i')
2995 rtx set;
2997 if (reg_referenced_p (reg, PATTERN (insn)))
2998 return 0;
3000 set = single_set (insn);
3001 if (set && rtx_equal_p (SET_DEST (set), reg))
3002 break;
3005 if (code == JUMP_INSN)
3007 if (GET_CODE (PATTERN (insn)) == RETURN)
3008 break;
3009 else if (! simplejump_p (insn)
3010 /* Prevent infinite loop following infinite loops. */
3011 || jump_count++ > 20)
3012 return 0;
3013 else
3014 insn = JUMP_LABEL (insn);
3017 insn = NEXT_INSN (insn);
3021 /* Success, the register is dead on all loop exits. */
3022 return 1;
3025 /* Try to calculate the final value of the biv, the value it will have at
3026 the end of the loop. If we can do it, return that value. */
3029 final_biv_value (bl, loop_start, loop_end)
3030 struct iv_class *bl;
3031 rtx loop_start, loop_end;
3033 rtx increment, tem;
3035 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3037 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3038 return 0;
3040 /* The final value for reversed bivs must be calculated differently than
3041 for ordinary bivs. In this case, there is already an insn after the
3042 loop which sets this biv's final value (if necessary), and there are
3043 no other loop exits, so we can return any value. */
3044 if (bl->reversed)
3046 if (loop_dump_stream)
3047 fprintf (loop_dump_stream,
3048 "Final biv value for %d, reversed biv.\n", bl->regno);
3050 return const0_rtx;
3053 /* Try to calculate the final value as initial value + (number of iterations
3054 * increment). For this to work, increment must be invariant, the only
3055 exit from the loop must be the fall through at the bottom (otherwise
3056 it may not have its final value when the loop exits), and the initial
3057 value of the biv must be invariant. */
3059 if (loop_n_iterations != 0
3060 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
3061 && invariant_p (bl->initial_value))
3063 increment = biv_total_increment (bl, loop_start, loop_end);
3065 if (increment && invariant_p (increment))
3067 /* Can calculate the loop exit value, emit insns after loop
3068 end to calculate this value into a temporary register in
3069 case it is needed later. */
3071 tem = gen_reg_rtx (bl->biv->mode);
3072 /* Make sure loop_end is not the last insn. */
3073 if (NEXT_INSN (loop_end) == 0)
3074 emit_note_after (NOTE_INSN_DELETED, loop_end);
3075 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3076 bl->initial_value, tem, NEXT_INSN (loop_end));
3078 if (loop_dump_stream)
3079 fprintf (loop_dump_stream,
3080 "Final biv value for %d, calculated.\n", bl->regno);
3082 return tem;
3086 /* Check to see if the biv is dead at all loop exits. */
3087 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
3089 if (loop_dump_stream)
3090 fprintf (loop_dump_stream,
3091 "Final biv value for %d, biv dead after loop exit.\n",
3092 bl->regno);
3094 return const0_rtx;
3097 return 0;
3100 /* Try to calculate the final value of the giv, the value it will have at
3101 the end of the loop. If we can do it, return that value. */
3104 final_giv_value (v, loop_start, loop_end)
3105 struct induction *v;
3106 rtx loop_start, loop_end;
3108 struct iv_class *bl;
3109 rtx insn;
3110 rtx increment, tem;
3111 rtx insert_before, seq;
3113 bl = reg_biv_class[REGNO (v->src_reg)];
3115 /* The final value for givs which depend on reversed bivs must be calculated
3116 differently than for ordinary givs. In this case, there is already an
3117 insn after the loop which sets this giv's final value (if necessary),
3118 and there are no other loop exits, so we can return any value. */
3119 if (bl->reversed)
3121 if (loop_dump_stream)
3122 fprintf (loop_dump_stream,
3123 "Final giv value for %d, depends on reversed biv\n",
3124 REGNO (v->dest_reg));
3125 return const0_rtx;
3128 /* Try to calculate the final value as a function of the biv it depends
3129 upon. The only exit from the loop must be the fall through at the bottom
3130 (otherwise it may not have its final value when the loop exits). */
3132 /* ??? Can calculate the final giv value by subtracting off the
3133 extra biv increments times the giv's mult_val. The loop must have
3134 only one exit for this to work, but the loop iterations does not need
3135 to be known. */
3137 if (loop_n_iterations != 0
3138 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
3140 /* ?? It is tempting to use the biv's value here since these insns will
3141 be put after the loop, and hence the biv will have its final value
3142 then. However, this fails if the biv is subsequently eliminated.
3143 Perhaps determine whether biv's are eliminable before trying to
3144 determine whether giv's are replaceable so that we can use the
3145 biv value here if it is not eliminable. */
3147 increment = biv_total_increment (bl, loop_start, loop_end);
3149 if (increment && invariant_p (increment))
3151 /* Can calculate the loop exit value of its biv as
3152 (loop_n_iterations * increment) + initial_value */
3154 /* The loop exit value of the giv is then
3155 (final_biv_value - extra increments) * mult_val + add_val.
3156 The extra increments are any increments to the biv which
3157 occur in the loop after the giv's value is calculated.
3158 We must search from the insn that sets the giv to the end
3159 of the loop to calculate this value. */
3161 insert_before = NEXT_INSN (loop_end);
3163 /* Put the final biv value in tem. */
3164 tem = gen_reg_rtx (bl->biv->mode);
3165 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3166 bl->initial_value, tem, insert_before);
3168 /* Subtract off extra increments as we find them. */
3169 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3170 insn = NEXT_INSN (insn))
3172 struct induction *biv;
3174 for (biv = bl->biv; biv; biv = biv->next_iv)
3175 if (biv->insn == insn)
3177 start_sequence ();
3178 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3179 biv->add_val, NULL_RTX, 0,
3180 OPTAB_LIB_WIDEN);
3181 seq = gen_sequence ();
3182 end_sequence ();
3183 emit_insn_before (seq, insert_before);
3187 /* Now calculate the giv's final value. */
3188 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3189 insert_before);
3191 if (loop_dump_stream)
3192 fprintf (loop_dump_stream,
3193 "Final giv value for %d, calc from biv's value.\n",
3194 REGNO (v->dest_reg));
3196 return tem;
3200 /* Replaceable giv's should never reach here. */
3201 if (v->replaceable)
3202 abort ();
3204 /* Check to see if the biv is dead at all loop exits. */
3205 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
3207 if (loop_dump_stream)
3208 fprintf (loop_dump_stream,
3209 "Final giv value for %d, giv dead after loop exit.\n",
3210 REGNO (v->dest_reg));
3212 return const0_rtx;
3215 return 0;
3219 /* Calculate the number of loop iterations. Returns the exact number of loop
3220 iterations if it can be calculated, otherwise returns zero. */
3222 unsigned HOST_WIDE_INT
3223 loop_iterations (loop_start, loop_end)
3224 rtx loop_start, loop_end;
3226 rtx comparison, comparison_value;
3227 rtx iteration_var, initial_value, increment, final_value;
3228 enum rtx_code comparison_code;
3229 HOST_WIDE_INT i;
3230 int increment_dir;
3231 int unsigned_compare, compare_dir, final_larger;
3232 unsigned long tempu;
3233 rtx last_loop_insn;
3235 /* First find the iteration variable. If the last insn is a conditional
3236 branch, and the insn before tests a register value, make that the
3237 iteration variable. */
3239 loop_initial_value = 0;
3240 loop_increment = 0;
3241 loop_final_value = 0;
3242 loop_iteration_var = 0;
3244 /* We used to use pren_nonnote_insn here, but that fails because it might
3245 accidentally get the branch for a contained loop if the branch for this
3246 loop was deleted. We can only trust branches immediately before the
3247 loop_end. */
3248 last_loop_insn = PREV_INSN (loop_end);
3250 comparison = get_condition_for_loop (last_loop_insn);
3251 if (comparison == 0)
3253 if (loop_dump_stream)
3254 fprintf (loop_dump_stream,
3255 "Loop unrolling: No final conditional branch found.\n");
3256 return 0;
3259 /* ??? Get_condition may switch position of induction variable and
3260 invariant register when it canonicalizes the comparison. */
3262 comparison_code = GET_CODE (comparison);
3263 iteration_var = XEXP (comparison, 0);
3264 comparison_value = XEXP (comparison, 1);
3266 if (GET_CODE (iteration_var) != REG)
3268 if (loop_dump_stream)
3269 fprintf (loop_dump_stream,
3270 "Loop unrolling: Comparison not against register.\n");
3271 return 0;
3274 /* Loop iterations is always called before any new registers are created
3275 now, so this should never occur. */
3277 if (REGNO (iteration_var) >= max_reg_before_loop)
3278 abort ();
3280 iteration_info (iteration_var, &initial_value, &increment,
3281 loop_start, loop_end);
3282 if (initial_value == 0)
3283 /* iteration_info already printed a message. */
3284 return 0;
3286 /* If the comparison value is an invariant register, then try to find
3287 its value from the insns before the start of the loop. */
3289 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3291 rtx insn, set;
3293 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3295 if (GET_CODE (insn) == CODE_LABEL)
3296 break;
3298 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3299 && reg_set_p (comparison_value, insn))
3301 /* We found the last insn before the loop that sets the register.
3302 If it sets the entire register, and has a REG_EQUAL note,
3303 then use the value of the REG_EQUAL note. */
3304 if ((set = single_set (insn))
3305 && (SET_DEST (set) == comparison_value))
3307 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3309 /* Only use the REG_EQUAL note if it is a constant.
3310 Other things, divide in particular, will cause
3311 problems later if we use them. */
3312 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3313 && CONSTANT_P (XEXP (note, 0)))
3314 comparison_value = XEXP (note, 0);
3316 break;
3321 final_value = approx_final_value (comparison_code, comparison_value,
3322 &unsigned_compare, &compare_dir);
3324 /* Save the calculated values describing this loop's bounds, in case
3325 precondition_loop_p will need them later. These values can not be
3326 recalculated inside precondition_loop_p because strength reduction
3327 optimizations may obscure the loop's structure. */
3329 loop_iteration_var = iteration_var;
3330 loop_initial_value = initial_value;
3331 loop_increment = increment;
3332 loop_final_value = final_value;
3334 if (increment == 0)
3336 if (loop_dump_stream)
3337 fprintf (loop_dump_stream,
3338 "Loop unrolling: Increment value can't be calculated.\n");
3339 return 0;
3341 else if (GET_CODE (increment) != CONST_INT)
3343 if (loop_dump_stream)
3344 fprintf (loop_dump_stream,
3345 "Loop unrolling: Increment value not constant.\n");
3346 return 0;
3348 else if (GET_CODE (initial_value) != CONST_INT)
3350 if (loop_dump_stream)
3351 fprintf (loop_dump_stream,
3352 "Loop unrolling: Initial value not constant.\n");
3353 return 0;
3355 else if (final_value == 0)
3357 if (loop_dump_stream)
3358 fprintf (loop_dump_stream,
3359 "Loop unrolling: EQ comparison loop.\n");
3360 return 0;
3362 else if (GET_CODE (final_value) != CONST_INT)
3364 if (loop_dump_stream)
3365 fprintf (loop_dump_stream,
3366 "Loop unrolling: Final value not constant.\n");
3367 return 0;
3370 /* ?? Final value and initial value do not have to be constants.
3371 Only their difference has to be constant. When the iteration variable
3372 is an array address, the final value and initial value might both
3373 be addresses with the same base but different constant offsets.
3374 Final value must be invariant for this to work.
3376 To do this, need some way to find the values of registers which are
3377 invariant. */
3379 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3380 if (unsigned_compare)
3381 final_larger
3382 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3383 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3384 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3385 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3386 else
3387 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3388 - (INTVAL (final_value) < INTVAL (initial_value));
3390 if (INTVAL (increment) > 0)
3391 increment_dir = 1;
3392 else if (INTVAL (increment) == 0)
3393 increment_dir = 0;
3394 else
3395 increment_dir = -1;
3397 /* There are 27 different cases: compare_dir = -1, 0, 1;
3398 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3399 There are 4 normal cases, 4 reverse cases (where the iteration variable
3400 will overflow before the loop exits), 4 infinite loop cases, and 15
3401 immediate exit (0 or 1 iteration depending on loop type) cases.
3402 Only try to optimize the normal cases. */
3404 /* (compare_dir/final_larger/increment_dir)
3405 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3406 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3407 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3408 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3410 /* ?? If the meaning of reverse loops (where the iteration variable
3411 will overflow before the loop exits) is undefined, then could
3412 eliminate all of these special checks, and just always assume
3413 the loops are normal/immediate/infinite. Note that this means
3414 the sign of increment_dir does not have to be known. Also,
3415 since it does not really hurt if immediate exit loops or infinite loops
3416 are optimized, then that case could be ignored also, and hence all
3417 loops can be optimized.
3419 According to ANSI Spec, the reverse loop case result is undefined,
3420 because the action on overflow is undefined.
3422 See also the special test for NE loops below. */
3424 if (final_larger == increment_dir && final_larger != 0
3425 && (final_larger == compare_dir || compare_dir == 0))
3426 /* Normal case. */
3428 else
3430 if (loop_dump_stream)
3431 fprintf (loop_dump_stream,
3432 "Loop unrolling: Not normal loop.\n");
3433 return 0;
3436 /* Calculate the number of iterations, final_value is only an approximation,
3437 so correct for that. Note that tempu and loop_n_iterations are
3438 unsigned, because they can be as large as 2^n - 1. */
3440 i = INTVAL (increment);
3441 if (i > 0)
3442 tempu = INTVAL (final_value) - INTVAL (initial_value);
3443 else if (i < 0)
3445 tempu = INTVAL (initial_value) - INTVAL (final_value);
3446 i = -i;
3448 else
3449 abort ();
3451 /* For NE tests, make sure that the iteration variable won't miss the
3452 final value. If tempu mod i is not zero, then the iteration variable
3453 will overflow before the loop exits, and we can not calculate the
3454 number of iterations. */
3455 if (compare_dir == 0 && (tempu % i) != 0)
3456 return 0;
3458 return tempu / i + ((tempu % i) != 0);
3461 /* Replace uses of split bivs with their split pseudo register. This is
3462 for original instructions which remain after loop unrolling without
3463 copying. */
3465 static rtx
3466 remap_split_bivs (x)
3467 rtx x;
3469 register enum rtx_code code;
3470 register int i;
3471 register char *fmt;
3473 if (x == 0)
3474 return x;
3476 code = GET_CODE (x);
3477 switch (code)
3479 case SCRATCH:
3480 case PC:
3481 case CC0:
3482 case CONST_INT:
3483 case CONST_DOUBLE:
3484 case CONST:
3485 case SYMBOL_REF:
3486 case LABEL_REF:
3487 return x;
3489 case REG:
3490 #if 0
3491 /* If non-reduced/final-value givs were split, then this would also
3492 have to remap those givs also. */
3493 #endif
3494 if (REGNO (x) < max_reg_before_loop
3495 && reg_iv_type[REGNO (x)] == BASIC_INDUCT)
3496 return reg_biv_class[REGNO (x)]->biv->src_reg;
3499 fmt = GET_RTX_FORMAT (code);
3500 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3502 if (fmt[i] == 'e')
3503 XEXP (x, i) = remap_split_bivs (XEXP (x, i));
3504 if (fmt[i] == 'E')
3506 register int j;
3507 for (j = 0; j < XVECLEN (x, i); j++)
3508 XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
3511 return x;