PR c++/50303
[official-gcc.git] / gcc / fwprop.c
blobc3530372c12a6989bf3bf0ce90d72d897befd861
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Paolo Bonzini and Steven Bosscher.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "diagnostic-core.h"
28 #include "sparseset.h"
29 #include "timevar.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "recog.h"
34 #include "flags.h"
35 #include "obstack.h"
36 #include "basic-block.h"
37 #include "output.h"
38 #include "df.h"
39 #include "target.h"
40 #include "cfgloop.h"
41 #include "tree-pass.h"
42 #include "domwalk.h"
43 #include "emit-rtl.h"
46 /* This pass does simple forward propagation and simplification when an
47 operand of an insn can only come from a single def. This pass uses
48 df.c, so it is global. However, we only do limited analysis of
49 available expressions.
51 1) The pass tries to propagate the source of the def into the use,
52 and checks if the result is independent of the substituted value.
53 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
54 zero, independent of the source register.
56 In particular, we propagate constants into the use site. Sometimes
57 RTL expansion did not put the constant in the same insn on purpose,
58 to satisfy a predicate, and the result will fail to be recognized;
59 but this happens rarely and in this case we can still create a
60 REG_EQUAL note. For multi-word operations, this
62 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
63 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
64 (set (subreg:SI (reg:DI 122) 0)
65 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
66 (set (subreg:SI (reg:DI 122) 4)
67 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
69 can be simplified to the much simpler
71 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
72 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
74 This particular propagation is also effective at putting together
75 complex addressing modes. We are more aggressive inside MEMs, in
76 that all definitions are propagated if the use is in a MEM; if the
77 result is a valid memory address we check address_cost to decide
78 whether the substitution is worthwhile.
80 2) The pass propagates register copies. This is not as effective as
81 the copy propagation done by CSE's canon_reg, which works by walking
82 the instruction chain, it can help the other transformations.
84 We should consider removing this optimization, and instead reorder the
85 RTL passes, because GCSE does this transformation too. With some luck,
86 the CSE pass at the end of rest_of_handle_gcse could also go away.
88 3) The pass looks for paradoxical subregs that are actually unnecessary.
89 Things like this:
91 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
92 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
93 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
94 (subreg:SI (reg:QI 121) 0)))
96 are very common on machines that can only do word-sized operations.
97 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
98 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
99 we can replace the paradoxical subreg with simply (reg:WIDE M). The
100 above will simplify this to
102 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
103 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
104 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
106 where the first two insns are now dead.
108 We used to use reaching definitions to find which uses have a
109 single reaching definition (sounds obvious...), but this is too
110 complex a problem in nasty testcases like PR33928. Now we use the
111 multiple definitions problem in df-problems.c. The similarity
112 between that problem and SSA form creation is taken further, in
113 that fwprop does a dominator walk to create its chains; however,
114 instead of creating a PHI function where multiple definitions meet
115 I just punt and record only singleton use-def chains, which is
116 all that is needed by fwprop. */
119 static int num_changes;
121 DEF_VEC_P(df_ref);
122 DEF_VEC_ALLOC_P(df_ref,heap);
123 static VEC(df_ref,heap) *use_def_ref;
124 static VEC(df_ref,heap) *reg_defs;
125 static VEC(df_ref,heap) *reg_defs_stack;
127 /* The MD bitmaps are trimmed to include only live registers to cut
128 memory usage on testcases like insn-recog.c. Track live registers
129 in the basic block and do not perform forward propagation if the
130 destination is a dead pseudo occurring in a note. */
131 static bitmap local_md;
132 static bitmap local_lr;
134 /* Return the only def in USE's use-def chain, or NULL if there is
135 more than one def in the chain. */
137 static inline df_ref
138 get_def_for_use (df_ref use)
140 return VEC_index (df_ref, use_def_ref, DF_REF_ID (use));
144 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
145 TOP_FLAG says which artificials uses should be used, when DEF_REC
146 is an artificial def vector. LOCAL_MD is modified as after a
147 df_md_simulate_* function; we do more or less the same processing
148 done there, so we do not use those functions. */
150 #define DF_MD_GEN_FLAGS \
151 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
153 static void
154 process_defs (df_ref *def_rec, int top_flag)
156 df_ref def;
157 while ((def = *def_rec++) != NULL)
159 df_ref curr_def = VEC_index (df_ref, reg_defs, DF_REF_REGNO (def));
160 unsigned int dregno;
162 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
163 continue;
165 dregno = DF_REF_REGNO (def);
166 if (curr_def)
167 VEC_safe_push (df_ref, heap, reg_defs_stack, curr_def);
168 else
170 /* Do not store anything if "transitioning" from NULL to NULL. But
171 otherwise, push a special entry on the stack to tell the
172 leave_block callback that the entry in reg_defs was NULL. */
173 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
175 else
176 VEC_safe_push (df_ref, heap, reg_defs_stack, def);
179 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
181 bitmap_set_bit (local_md, dregno);
182 VEC_replace (df_ref, reg_defs, dregno, NULL);
184 else
186 bitmap_clear_bit (local_md, dregno);
187 VEC_replace (df_ref, reg_defs, dregno, def);
193 /* Fill the use_def_ref vector with values for the uses in USE_REC,
194 taking reaching definitions info from LOCAL_MD and REG_DEFS.
195 TOP_FLAG says which artificials uses should be used, when USE_REC
196 is an artificial use vector. */
198 static void
199 process_uses (df_ref *use_rec, int top_flag)
201 df_ref use;
202 while ((use = *use_rec++) != NULL)
203 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
205 unsigned int uregno = DF_REF_REGNO (use);
206 if (VEC_index (df_ref, reg_defs, uregno)
207 && !bitmap_bit_p (local_md, uregno)
208 && bitmap_bit_p (local_lr, uregno))
209 VEC_replace (df_ref, use_def_ref, DF_REF_ID (use),
210 VEC_index (df_ref, reg_defs, uregno));
215 static void
216 single_def_use_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
217 basic_block bb)
219 int bb_index = bb->index;
220 struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
221 struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
222 rtx insn;
224 bitmap_copy (local_md, &md_bb_info->in);
225 bitmap_copy (local_lr, &lr_bb_info->in);
227 /* Push a marker for the leave_block callback. */
228 VEC_safe_push (df_ref, heap, reg_defs_stack, NULL);
230 process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
231 process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
233 /* We don't call df_simulate_initialize_forwards, as it may overestimate
234 the live registers if there are unused artificial defs. We prefer
235 liveness to be underestimated. */
237 FOR_BB_INSNS (bb, insn)
238 if (INSN_P (insn))
240 unsigned int uid = INSN_UID (insn);
241 process_uses (DF_INSN_UID_USES (uid), 0);
242 process_uses (DF_INSN_UID_EQ_USES (uid), 0);
243 process_defs (DF_INSN_UID_DEFS (uid), 0);
244 df_simulate_one_insn_forwards (bb, insn, local_lr);
247 process_uses (df_get_artificial_uses (bb_index), 0);
248 process_defs (df_get_artificial_defs (bb_index), 0);
251 /* Pop the definitions created in this basic block when leaving its
252 dominated parts. */
254 static void
255 single_def_use_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
256 basic_block bb ATTRIBUTE_UNUSED)
258 df_ref saved_def;
259 while ((saved_def = VEC_pop (df_ref, reg_defs_stack)) != NULL)
261 unsigned int dregno = DF_REF_REGNO (saved_def);
263 /* See also process_defs. */
264 if (saved_def == VEC_index (df_ref, reg_defs, dregno))
265 VEC_replace (df_ref, reg_defs, dregno, NULL);
266 else
267 VEC_replace (df_ref, reg_defs, dregno, saved_def);
272 /* Build a vector holding the reaching definitions of uses reached by a
273 single dominating definition. */
275 static void
276 build_single_def_use_links (void)
278 struct dom_walk_data walk_data;
280 /* We use the multiple definitions problem to compute our restricted
281 use-def chains. */
282 df_set_flags (DF_EQ_NOTES);
283 df_md_add_problem ();
284 df_note_add_problem ();
285 df_analyze ();
286 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
288 use_def_ref = VEC_alloc (df_ref, heap, DF_USES_TABLE_SIZE ());
289 VEC_safe_grow_cleared (df_ref, heap, use_def_ref, DF_USES_TABLE_SIZE ());
291 reg_defs = VEC_alloc (df_ref, heap, max_reg_num ());
292 VEC_safe_grow_cleared (df_ref, heap, reg_defs, max_reg_num ());
294 reg_defs_stack = VEC_alloc (df_ref, heap, n_basic_blocks * 10);
295 local_md = BITMAP_ALLOC (NULL);
296 local_lr = BITMAP_ALLOC (NULL);
298 /* Walk the dominator tree looking for single reaching definitions
299 dominating the uses. This is similar to how SSA form is built. */
300 walk_data.dom_direction = CDI_DOMINATORS;
301 walk_data.initialize_block_local_data = NULL;
302 walk_data.before_dom_children = single_def_use_enter_block;
303 walk_data.after_dom_children = single_def_use_leave_block;
305 init_walk_dominator_tree (&walk_data);
306 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
307 fini_walk_dominator_tree (&walk_data);
309 BITMAP_FREE (local_lr);
310 BITMAP_FREE (local_md);
311 VEC_free (df_ref, heap, reg_defs);
312 VEC_free (df_ref, heap, reg_defs_stack);
316 /* Do not try to replace constant addresses or addresses of local and
317 argument slots. These MEM expressions are made only once and inserted
318 in many instructions, as well as being used to control symbol table
319 output. It is not safe to clobber them.
321 There are some uncommon cases where the address is already in a register
322 for some reason, but we cannot take advantage of that because we have
323 no easy way to unshare the MEM. In addition, looking up all stack
324 addresses is costly. */
326 static bool
327 can_simplify_addr (rtx addr)
329 rtx reg;
331 if (CONSTANT_ADDRESS_P (addr))
332 return false;
334 if (GET_CODE (addr) == PLUS)
335 reg = XEXP (addr, 0);
336 else
337 reg = addr;
339 return (!REG_P (reg)
340 || (REGNO (reg) != FRAME_POINTER_REGNUM
341 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
342 && REGNO (reg) != ARG_POINTER_REGNUM));
345 /* Returns a canonical version of X for the address, from the point of view,
346 that all multiplications are represented as MULT instead of the multiply
347 by a power of 2 being represented as ASHIFT.
349 Every ASHIFT we find has been made by simplify_gen_binary and was not
350 there before, so it is not shared. So we can do this in place. */
352 static void
353 canonicalize_address (rtx x)
355 for (;;)
356 switch (GET_CODE (x))
358 case ASHIFT:
359 if (CONST_INT_P (XEXP (x, 1))
360 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
361 && INTVAL (XEXP (x, 1)) >= 0)
363 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
364 PUT_CODE (x, MULT);
365 XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
366 GET_MODE (x));
369 x = XEXP (x, 0);
370 break;
372 case PLUS:
373 if (GET_CODE (XEXP (x, 0)) == PLUS
374 || GET_CODE (XEXP (x, 0)) == ASHIFT
375 || GET_CODE (XEXP (x, 0)) == CONST)
376 canonicalize_address (XEXP (x, 0));
378 x = XEXP (x, 1);
379 break;
381 case CONST:
382 x = XEXP (x, 0);
383 break;
385 default:
386 return;
390 /* OLD is a memory address. Return whether it is good to use NEW instead,
391 for a memory access in the given MODE. */
393 static bool
394 should_replace_address (rtx old_rtx, rtx new_rtx, enum machine_mode mode,
395 addr_space_t as, bool speed)
397 int gain;
399 if (rtx_equal_p (old_rtx, new_rtx)
400 || !memory_address_addr_space_p (mode, new_rtx, as))
401 return false;
403 /* Copy propagation is always ok. */
404 if (REG_P (old_rtx) && REG_P (new_rtx))
405 return true;
407 /* Prefer the new address if it is less expensive. */
408 gain = (address_cost (old_rtx, mode, as, speed)
409 - address_cost (new_rtx, mode, as, speed));
411 /* If the addresses have equivalent cost, prefer the new address
412 if it has the highest `set_src_cost'. That has the potential of
413 eliminating the most insns without additional costs, and it
414 is the same that cse.c used to do. */
415 if (gain == 0)
416 gain = set_src_cost (new_rtx, speed) - set_src_cost (old_rtx, speed);
418 return (gain > 0);
422 /* Flags for the last parameter of propagate_rtx_1. */
424 enum {
425 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
426 if it is false, propagate_rtx_1 returns false if, for at least
427 one occurrence OLD, it failed to collapse the result to a constant.
428 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
429 collapse to zero if replacing (reg:M B) with (reg:M A).
431 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
432 propagate_rtx_1 just tries to make cheaper and valid memory
433 addresses. */
434 PR_CAN_APPEAR = 1,
436 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
437 outside memory addresses. This is needed because propagate_rtx_1 does
438 not do any analysis on memory; thus it is very conservative and in general
439 it will fail if non-read-only MEMs are found in the source expression.
441 PR_HANDLE_MEM is set when the source of the propagation was not
442 another MEM. Then, it is safe not to treat non-read-only MEMs as
443 ``opaque'' objects. */
444 PR_HANDLE_MEM = 2,
446 /* Set when costs should be optimized for speed. */
447 PR_OPTIMIZE_FOR_SPEED = 4
451 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
452 resulting expression. Replace *PX with a new RTL expression if an
453 occurrence of OLD was found.
455 This is only a wrapper around simplify-rtx.c: do not add any pattern
456 matching code here. (The sole exception is the handling of LO_SUM, but
457 that is because there is no simplify_gen_* function for LO_SUM). */
459 static bool
460 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
462 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
463 enum rtx_code code = GET_CODE (x);
464 enum machine_mode mode = GET_MODE (x);
465 enum machine_mode op_mode;
466 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
467 bool valid_ops = true;
469 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
471 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
472 they have side effects or not). */
473 *px = (side_effects_p (x)
474 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
475 : gen_rtx_SCRATCH (GET_MODE (x)));
476 return false;
479 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
480 address, and we are *not* inside one. */
481 if (x == old_rtx)
483 *px = new_rtx;
484 return can_appear;
487 /* If this is an expression, try recursive substitution. */
488 switch (GET_RTX_CLASS (code))
490 case RTX_UNARY:
491 op0 = XEXP (x, 0);
492 op_mode = GET_MODE (op0);
493 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
494 if (op0 == XEXP (x, 0))
495 return true;
496 tem = simplify_gen_unary (code, mode, op0, op_mode);
497 break;
499 case RTX_BIN_ARITH:
500 case RTX_COMM_ARITH:
501 op0 = XEXP (x, 0);
502 op1 = XEXP (x, 1);
503 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
504 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
505 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
506 return true;
507 tem = simplify_gen_binary (code, mode, op0, op1);
508 break;
510 case RTX_COMPARE:
511 case RTX_COMM_COMPARE:
512 op0 = XEXP (x, 0);
513 op1 = XEXP (x, 1);
514 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
515 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
516 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
517 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
518 return true;
519 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
520 break;
522 case RTX_TERNARY:
523 case RTX_BITFIELD_OPS:
524 op0 = XEXP (x, 0);
525 op1 = XEXP (x, 1);
526 op2 = XEXP (x, 2);
527 op_mode = GET_MODE (op0);
528 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
529 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
530 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
531 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
532 return true;
533 if (op_mode == VOIDmode)
534 op_mode = GET_MODE (op0);
535 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
536 break;
538 case RTX_EXTRA:
539 /* The only case we try to handle is a SUBREG. */
540 if (code == SUBREG)
542 op0 = XEXP (x, 0);
543 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
544 if (op0 == XEXP (x, 0))
545 return true;
546 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
547 SUBREG_BYTE (x));
549 break;
551 case RTX_OBJ:
552 if (code == MEM && x != new_rtx)
554 rtx new_op0;
555 op0 = XEXP (x, 0);
557 /* There are some addresses that we cannot work on. */
558 if (!can_simplify_addr (op0))
559 return true;
561 op0 = new_op0 = targetm.delegitimize_address (op0);
562 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
563 flags | PR_CAN_APPEAR);
565 /* Dismiss transformation that we do not want to carry on. */
566 if (!valid_ops
567 || new_op0 == op0
568 || !(GET_MODE (new_op0) == GET_MODE (op0)
569 || GET_MODE (new_op0) == VOIDmode))
570 return true;
572 canonicalize_address (new_op0);
574 /* Copy propagations are always ok. Otherwise check the costs. */
575 if (!(REG_P (old_rtx) && REG_P (new_rtx))
576 && !should_replace_address (op0, new_op0, GET_MODE (x),
577 MEM_ADDR_SPACE (x),
578 flags & PR_OPTIMIZE_FOR_SPEED))
579 return true;
581 tem = replace_equiv_address_nv (x, new_op0);
584 else if (code == LO_SUM)
586 op0 = XEXP (x, 0);
587 op1 = XEXP (x, 1);
589 /* The only simplification we do attempts to remove references to op0
590 or make it constant -- in both cases, op0's invalidity will not
591 make the result invalid. */
592 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
593 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
594 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
595 return true;
597 /* (lo_sum (high x) x) -> x */
598 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
599 tem = op1;
600 else
601 tem = gen_rtx_LO_SUM (mode, op0, op1);
603 /* OP1 is likely not a legitimate address, otherwise there would have
604 been no LO_SUM. We want it to disappear if it is invalid, return
605 false in that case. */
606 return memory_address_p (mode, tem);
609 else if (code == REG)
611 if (rtx_equal_p (x, old_rtx))
613 *px = new_rtx;
614 return can_appear;
617 break;
619 default:
620 break;
623 /* No change, no trouble. */
624 if (tem == NULL_RTX)
625 return true;
627 *px = tem;
629 /* The replacement we made so far is valid, if all of the recursive
630 replacements were valid, or we could simplify everything to
631 a constant. */
632 return valid_ops || can_appear || CONSTANT_P (tem);
636 /* for_each_rtx traversal function that returns 1 if BODY points to
637 a non-constant mem. */
639 static int
640 varying_mem_p (rtx *body, void *data ATTRIBUTE_UNUSED)
642 rtx x = *body;
643 return MEM_P (x) && !MEM_READONLY_P (x);
647 /* Replace all occurrences of OLD in X with NEW and try to simplify the
648 resulting expression (in mode MODE). Return a new expression if it is
649 a constant, otherwise X.
651 Simplifications where occurrences of NEW collapse to a constant are always
652 accepted. All simplifications are accepted if NEW is a pseudo too.
653 Otherwise, we accept simplifications that have a lower or equal cost. */
655 static rtx
656 propagate_rtx (rtx x, enum machine_mode mode, rtx old_rtx, rtx new_rtx,
657 bool speed)
659 rtx tem;
660 bool collapsed;
661 int flags;
663 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
664 return NULL_RTX;
666 flags = 0;
667 if (REG_P (new_rtx)
668 || CONSTANT_P (new_rtx)
669 || (GET_CODE (new_rtx) == SUBREG
670 && REG_P (SUBREG_REG (new_rtx))
671 && (GET_MODE_SIZE (mode)
672 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (new_rtx))))))
673 flags |= PR_CAN_APPEAR;
674 if (!for_each_rtx (&new_rtx, varying_mem_p, NULL))
675 flags |= PR_HANDLE_MEM;
677 if (speed)
678 flags |= PR_OPTIMIZE_FOR_SPEED;
680 tem = x;
681 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
682 if (tem == x || !collapsed)
683 return NULL_RTX;
685 /* gen_lowpart_common will not be able to process VOIDmode entities other
686 than CONST_INTs. */
687 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
688 return NULL_RTX;
690 if (GET_MODE (tem) == VOIDmode)
691 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
692 else
693 gcc_assert (GET_MODE (tem) == mode);
695 return tem;
701 /* Return true if the register from reference REF is killed
702 between FROM to (but not including) TO. */
704 static bool
705 local_ref_killed_between_p (df_ref ref, rtx from, rtx to)
707 rtx insn;
709 for (insn = from; insn != to; insn = NEXT_INSN (insn))
711 df_ref *def_rec;
712 if (!INSN_P (insn))
713 continue;
715 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
717 df_ref def = *def_rec;
718 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
719 return true;
722 return false;
726 /* Check if the given DEF is available in INSN. This would require full
727 computation of available expressions; we check only restricted conditions:
728 - if DEF is the sole definition of its register, go ahead;
729 - in the same basic block, we check for no definitions killing the
730 definition of DEF_INSN;
731 - if USE's basic block has DEF's basic block as the sole predecessor,
732 we check if the definition is killed after DEF_INSN or before
733 TARGET_INSN insn, in their respective basic blocks. */
734 static bool
735 use_killed_between (df_ref use, rtx def_insn, rtx target_insn)
737 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
738 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
739 int regno;
740 df_ref def;
742 /* We used to have a def reaching a use that is _before_ the def,
743 with the def not dominating the use even though the use and def
744 are in the same basic block, when a register may be used
745 uninitialized in a loop. This should not happen anymore since
746 we do not use reaching definitions, but still we test for such
747 cases and assume that DEF is not available. */
748 if (def_bb == target_bb
749 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
750 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
751 return true;
753 /* Check if the reg in USE has only one definition. We already
754 know that this definition reaches use, or we wouldn't be here.
755 However, this is invalid for hard registers because if they are
756 live at the beginning of the function it does not mean that we
757 have an uninitialized access. */
758 regno = DF_REF_REGNO (use);
759 def = DF_REG_DEF_CHAIN (regno);
760 if (def
761 && DF_REF_NEXT_REG (def) == NULL
762 && regno >= FIRST_PSEUDO_REGISTER)
763 return false;
765 /* Check locally if we are in the same basic block. */
766 if (def_bb == target_bb)
767 return local_ref_killed_between_p (use, def_insn, target_insn);
769 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
770 if (single_pred_p (target_bb)
771 && single_pred (target_bb) == def_bb)
773 df_ref x;
775 /* See if USE is killed between DEF_INSN and the last insn in the
776 basic block containing DEF_INSN. */
777 x = df_bb_regno_last_def_find (def_bb, regno);
778 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
779 return true;
781 /* See if USE is killed between TARGET_INSN and the first insn in the
782 basic block containing TARGET_INSN. */
783 x = df_bb_regno_first_def_find (target_bb, regno);
784 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
785 return true;
787 return false;
790 /* Otherwise assume the worst case. */
791 return true;
795 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
796 would require full computation of available expressions;
797 we check only restricted conditions, see use_killed_between. */
798 static bool
799 all_uses_available_at (rtx def_insn, rtx target_insn)
801 df_ref *use_rec;
802 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
803 rtx def_set = single_set (def_insn);
805 gcc_assert (def_set);
807 /* If target_insn comes right after def_insn, which is very common
808 for addresses, we can use a quicker test. */
809 if (NEXT_INSN (def_insn) == target_insn
810 && REG_P (SET_DEST (def_set)))
812 rtx def_reg = SET_DEST (def_set);
814 /* If the insn uses the reg that it defines, the substitution is
815 invalid. */
816 for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
818 df_ref use = *use_rec;
819 if (rtx_equal_p (DF_REF_REG (use), def_reg))
820 return false;
822 for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
824 df_ref use = *use_rec;
825 if (rtx_equal_p (DF_REF_REG (use), def_reg))
826 return false;
829 else
831 rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
833 /* Look at all the uses of DEF_INSN, and see if they are not
834 killed between DEF_INSN and TARGET_INSN. */
835 for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
837 df_ref use = *use_rec;
838 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
839 return false;
840 if (use_killed_between (use, def_insn, target_insn))
841 return false;
843 for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
845 df_ref use = *use_rec;
846 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
847 return false;
848 if (use_killed_between (use, def_insn, target_insn))
849 return false;
853 return true;
857 static df_ref *active_defs;
858 #ifdef ENABLE_CHECKING
859 static sparseset active_defs_check;
860 #endif
862 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
863 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
864 too, for checking purposes. */
866 static void
867 register_active_defs (df_ref *use_rec)
869 while (*use_rec)
871 df_ref use = *use_rec++;
872 df_ref def = get_def_for_use (use);
873 int regno = DF_REF_REGNO (use);
875 #ifdef ENABLE_CHECKING
876 sparseset_set_bit (active_defs_check, regno);
877 #endif
878 active_defs[regno] = def;
883 /* Build the use->def links that we use to update the dataflow info
884 for new uses. Note that building the links is very cheap and if
885 it were done earlier, they could be used to rule out invalid
886 propagations (in addition to what is done in all_uses_available_at).
887 I'm not doing this yet, though. */
889 static void
890 update_df_init (rtx def_insn, rtx insn)
892 #ifdef ENABLE_CHECKING
893 sparseset_clear (active_defs_check);
894 #endif
895 register_active_defs (DF_INSN_USES (def_insn));
896 register_active_defs (DF_INSN_USES (insn));
897 register_active_defs (DF_INSN_EQ_USES (insn));
901 /* Update the USE_DEF_REF array for the given use, using the active definitions
902 in the ACTIVE_DEFS array to match pseudos to their def. */
904 static inline void
905 update_uses (df_ref *use_rec)
907 while (*use_rec)
909 df_ref use = *use_rec++;
910 int regno = DF_REF_REGNO (use);
912 /* Set up the use-def chain. */
913 if (DF_REF_ID (use) >= (int) VEC_length (df_ref, use_def_ref))
914 VEC_safe_grow_cleared (df_ref, heap, use_def_ref,
915 DF_REF_ID (use) + 1);
917 #ifdef ENABLE_CHECKING
918 gcc_assert (sparseset_bit_p (active_defs_check, regno));
919 #endif
920 VEC_replace (df_ref, use_def_ref, DF_REF_ID (use), active_defs[regno]);
925 /* Update the USE_DEF_REF array for the uses in INSN. Only update note
926 uses if NOTES_ONLY is true. */
928 static void
929 update_df (rtx insn, rtx note)
931 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
933 if (note)
935 df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
936 df_notes_rescan (insn);
938 else
940 df_uses_create (&PATTERN (insn), insn, 0);
941 df_insn_rescan (insn);
942 update_uses (DF_INSN_INFO_USES (insn_info));
945 update_uses (DF_INSN_INFO_EQ_USES (insn_info));
949 /* Try substituting NEW into LOC, which originated from forward propagation
950 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
951 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
952 new insn is not recognized. Return whether the substitution was
953 performed. */
955 static bool
956 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx def_insn, bool set_reg_equal)
958 rtx insn = DF_REF_INSN (use);
959 rtx set = single_set (insn);
960 rtx note = NULL_RTX;
961 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
962 int old_cost = 0;
963 bool ok;
965 update_df_init (def_insn, insn);
967 /* forward_propagate_subreg may be operating on an instruction with
968 multiple sets. If so, assume the cost of the new instruction is
969 not greater than the old one. */
970 if (set)
971 old_cost = set_src_cost (SET_SRC (set), speed);
972 if (dump_file)
974 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
975 print_inline_rtx (dump_file, *loc, 2);
976 fprintf (dump_file, "\n with ");
977 print_inline_rtx (dump_file, new_rtx, 2);
978 fprintf (dump_file, "\n");
981 validate_unshare_change (insn, loc, new_rtx, true);
982 if (!verify_changes (0))
984 if (dump_file)
985 fprintf (dump_file, "Changes to insn %d not recognized\n",
986 INSN_UID (insn));
987 ok = false;
990 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
991 && set
992 && set_src_cost (SET_SRC (set), speed) > old_cost)
994 if (dump_file)
995 fprintf (dump_file, "Changes to insn %d not profitable\n",
996 INSN_UID (insn));
997 ok = false;
1000 else
1002 if (dump_file)
1003 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
1004 ok = true;
1007 if (ok)
1009 confirm_change_group ();
1010 num_changes++;
1012 else
1014 cancel_changes (0);
1016 /* Can also record a simplified value in a REG_EQUAL note,
1017 making a new one if one does not already exist. */
1018 if (set_reg_equal)
1020 if (dump_file)
1021 fprintf (dump_file, " Setting REG_EQUAL note\n");
1023 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1027 if ((ok || note) && !CONSTANT_P (new_rtx))
1028 update_df (insn, note);
1030 return ok;
1033 /* For the given single_set INSN, containing SRC known to be a
1034 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1035 is redundant due to the register being set by a LOAD_EXTEND_OP
1036 load from memory. */
1038 static bool
1039 free_load_extend (rtx src, rtx insn)
1041 rtx reg;
1042 df_ref *use_vec;
1043 df_ref use = 0, def;
1045 reg = XEXP (src, 0);
1046 #ifdef LOAD_EXTEND_OP
1047 if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
1048 #endif
1049 return false;
1051 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1053 use = *use_vec;
1055 if (!DF_REF_IS_ARTIFICIAL (use)
1056 && DF_REF_TYPE (use) == DF_REF_REG_USE
1057 && DF_REF_REG (use) == reg)
1058 break;
1060 if (!use)
1061 return false;
1063 def = get_def_for_use (use);
1064 if (!def)
1065 return false;
1067 if (DF_REF_IS_ARTIFICIAL (def))
1068 return false;
1070 if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1072 rtx patt = PATTERN (DF_REF_INSN (def));
1074 if (GET_CODE (patt) == SET
1075 && GET_CODE (SET_SRC (patt)) == MEM
1076 && rtx_equal_p (SET_DEST (patt), reg))
1077 return true;
1079 return false;
1082 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1084 static bool
1085 forward_propagate_subreg (df_ref use, rtx def_insn, rtx def_set)
1087 rtx use_reg = DF_REF_REG (use);
1088 rtx use_insn, src;
1090 /* Only consider subregs... */
1091 enum machine_mode use_mode = GET_MODE (use_reg);
1092 if (GET_CODE (use_reg) != SUBREG
1093 || !REG_P (SET_DEST (def_set)))
1094 return false;
1096 /* If this is a paradoxical SUBREG... */
1097 if (GET_MODE_SIZE (use_mode)
1098 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1100 /* If this is a paradoxical SUBREG, we have no idea what value the
1101 extra bits would have. However, if the operand is equivalent to
1102 a SUBREG whose operand is the same as our mode, and all the modes
1103 are within a word, we can just use the inner operand because
1104 these SUBREGs just say how to treat the register. */
1105 use_insn = DF_REF_INSN (use);
1106 src = SET_SRC (def_set);
1107 if (GET_CODE (src) == SUBREG
1108 && REG_P (SUBREG_REG (src))
1109 && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
1110 && GET_MODE (SUBREG_REG (src)) == use_mode
1111 && subreg_lowpart_p (src)
1112 && all_uses_available_at (def_insn, use_insn))
1113 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1114 def_insn, false);
1117 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1118 is the low part of the reg being extended then just use the inner
1119 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1120 be removed due to it matching a LOAD_EXTEND_OP load from memory,
1121 or due to the operation being a no-op when applied to registers.
1122 For example, if we have:
1124 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1125 B: (... (subreg:SI (reg:DI X)) ...)
1127 and mode_rep_extended says that Y is already sign-extended,
1128 the backend will typically allow A to be combined with the
1129 definition of Y or, failing that, allow A to be deleted after
1130 reload through register tying. Introducing more uses of Y
1131 prevents both optimisations. */
1132 else if (subreg_lowpart_p (use_reg))
1134 use_insn = DF_REF_INSN (use);
1135 src = SET_SRC (def_set);
1136 if ((GET_CODE (src) == ZERO_EXTEND
1137 || GET_CODE (src) == SIGN_EXTEND)
1138 && REG_P (XEXP (src, 0))
1139 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
1140 && GET_MODE (XEXP (src, 0)) == use_mode
1141 && !free_load_extend (src, def_insn)
1142 && (targetm.mode_rep_extended (use_mode, GET_MODE (src))
1143 != (int) GET_CODE (src))
1144 && all_uses_available_at (def_insn, use_insn))
1145 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1146 def_insn, false);
1149 return false;
1152 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1154 static bool
1155 forward_propagate_asm (df_ref use, rtx def_insn, rtx def_set, rtx reg)
1157 rtx use_insn = DF_REF_INSN (use), src, use_pat, asm_operands, new_rtx, *loc;
1158 int speed_p, i;
1159 df_ref *use_vec;
1161 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1163 src = SET_SRC (def_set);
1164 use_pat = PATTERN (use_insn);
1166 /* In __asm don't replace if src might need more registers than
1167 reg, as that could increase register pressure on the __asm. */
1168 use_vec = DF_INSN_USES (def_insn);
1169 if (use_vec[0] && use_vec[1])
1170 return false;
1172 update_df_init (def_insn, use_insn);
1173 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1174 asm_operands = NULL_RTX;
1175 switch (GET_CODE (use_pat))
1177 case ASM_OPERANDS:
1178 asm_operands = use_pat;
1179 break;
1180 case SET:
1181 if (MEM_P (SET_DEST (use_pat)))
1183 loc = &SET_DEST (use_pat);
1184 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1185 if (new_rtx)
1186 validate_unshare_change (use_insn, loc, new_rtx, true);
1188 asm_operands = SET_SRC (use_pat);
1189 break;
1190 case PARALLEL:
1191 for (i = 0; i < XVECLEN (use_pat, 0); i++)
1192 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1194 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1196 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1197 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1198 src, speed_p);
1199 if (new_rtx)
1200 validate_unshare_change (use_insn, loc, new_rtx, true);
1202 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1204 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1205 asm_operands = XVECEXP (use_pat, 0, i);
1206 break;
1207 default:
1208 gcc_unreachable ();
1211 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1212 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1214 loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1215 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1216 if (new_rtx)
1217 validate_unshare_change (use_insn, loc, new_rtx, true);
1220 if (num_changes_pending () == 0 || !apply_change_group ())
1221 return false;
1223 update_df (use_insn, NULL);
1224 num_changes++;
1225 return true;
1228 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1229 result. */
1231 static bool
1232 forward_propagate_and_simplify (df_ref use, rtx def_insn, rtx def_set)
1234 rtx use_insn = DF_REF_INSN (use);
1235 rtx use_set = single_set (use_insn);
1236 rtx src, reg, new_rtx, *loc;
1237 bool set_reg_equal;
1238 enum machine_mode mode;
1239 int asm_use = -1;
1241 if (INSN_CODE (use_insn) < 0)
1242 asm_use = asm_noperands (PATTERN (use_insn));
1244 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1245 return false;
1247 /* Do not propagate into PC, CC0, etc. */
1248 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1249 return false;
1251 /* If def and use are subreg, check if they match. */
1252 reg = DF_REF_REG (use);
1253 if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
1255 if (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg))
1256 return false;
1258 /* Check if the def had a subreg, but the use has the whole reg. */
1259 else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1260 return false;
1261 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1262 previous case, the optimization is possible and often useful indeed. */
1263 else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1264 reg = SUBREG_REG (reg);
1266 /* Make sure that we can treat REG as having the same mode as the
1267 source of DEF_SET. */
1268 if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
1269 return false;
1271 /* Check if the substitution is valid (last, because it's the most
1272 expensive check!). */
1273 src = SET_SRC (def_set);
1274 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1275 return false;
1277 /* Check if the def is loading something from the constant pool; in this
1278 case we would undo optimization such as compress_float_constant.
1279 Still, we can set a REG_EQUAL note. */
1280 if (MEM_P (src) && MEM_READONLY_P (src))
1282 rtx x = avoid_constant_pool_reference (src);
1283 if (x != src && use_set)
1285 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1286 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1287 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1288 if (old_rtx != new_rtx)
1289 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1291 return false;
1294 if (asm_use >= 0)
1295 return forward_propagate_asm (use, def_insn, def_set, reg);
1297 /* Else try simplifying. */
1299 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1301 loc = &SET_DEST (use_set);
1302 set_reg_equal = false;
1304 else if (!use_set)
1306 loc = &INSN_VAR_LOCATION_LOC (use_insn);
1307 set_reg_equal = false;
1309 else
1311 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1312 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1313 loc = &XEXP (note, 0);
1314 else
1315 loc = &SET_SRC (use_set);
1317 /* Do not replace an existing REG_EQUAL note if the insn is not
1318 recognized. Either we're already replacing in the note, or we'll
1319 separately try plugging the definition in the note and simplifying.
1320 And only install a REQ_EQUAL note when the destination is a REG,
1321 as the note would be invalid otherwise. */
1322 set_reg_equal = (note == NULL_RTX && REG_P (SET_DEST (use_set)));
1325 if (GET_MODE (*loc) == VOIDmode)
1326 mode = GET_MODE (SET_DEST (use_set));
1327 else
1328 mode = GET_MODE (*loc);
1330 new_rtx = propagate_rtx (*loc, mode, reg, src,
1331 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1333 if (!new_rtx)
1334 return false;
1336 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1340 /* Given a use USE of an insn, if it has a single reaching
1341 definition, try to forward propagate it into that insn.
1342 Return true if cfg cleanup will be needed. */
1344 static bool
1345 forward_propagate_into (df_ref use)
1347 df_ref def;
1348 rtx def_insn, def_set, use_insn;
1349 rtx parent;
1351 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1352 return false;
1353 if (DF_REF_IS_ARTIFICIAL (use))
1354 return false;
1356 /* Only consider uses that have a single definition. */
1357 def = get_def_for_use (use);
1358 if (!def)
1359 return false;
1360 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1361 return false;
1362 if (DF_REF_IS_ARTIFICIAL (def))
1363 return false;
1365 /* Do not propagate loop invariant definitions inside the loop. */
1366 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1367 return false;
1369 /* Check if the use is still present in the insn! */
1370 use_insn = DF_REF_INSN (use);
1371 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1372 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1373 else
1374 parent = PATTERN (use_insn);
1376 if (!reg_mentioned_p (DF_REF_REG (use), parent))
1377 return false;
1379 def_insn = DF_REF_INSN (def);
1380 if (multiple_sets (def_insn))
1381 return false;
1382 def_set = single_set (def_insn);
1383 if (!def_set)
1384 return false;
1386 /* Only try one kind of propagation. If two are possible, we'll
1387 do it on the following iterations. */
1388 if (forward_propagate_and_simplify (use, def_insn, def_set)
1389 || forward_propagate_subreg (use, def_insn, def_set))
1391 if (cfun->can_throw_non_call_exceptions
1392 && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
1393 && purge_dead_edges (DF_REF_BB (use)))
1394 return true;
1396 return false;
1400 static void
1401 fwprop_init (void)
1403 num_changes = 0;
1404 calculate_dominance_info (CDI_DOMINATORS);
1406 /* We do not always want to propagate into loops, so we have to find
1407 loops and be careful about them. But we have to call flow_loops_find
1408 before df_analyze, because flow_loops_find may introduce new jump
1409 insns (sadly) if we are not working in cfglayout mode. */
1410 loop_optimizer_init (0);
1412 build_single_def_use_links ();
1413 df_set_flags (DF_DEFER_INSN_RESCAN);
1415 active_defs = XNEWVEC (df_ref, max_reg_num ());
1416 #ifdef ENABLE_CHECKING
1417 active_defs_check = sparseset_alloc (max_reg_num ());
1418 #endif
1421 static void
1422 fwprop_done (void)
1424 loop_optimizer_finalize ();
1426 VEC_free (df_ref, heap, use_def_ref);
1427 free (active_defs);
1428 #ifdef ENABLE_CHECKING
1429 sparseset_free (active_defs_check);
1430 #endif
1432 free_dominance_info (CDI_DOMINATORS);
1433 cleanup_cfg (0);
1434 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1436 if (dump_file)
1437 fprintf (dump_file,
1438 "\nNumber of successful forward propagations: %d\n\n",
1439 num_changes);
1443 /* Main entry point. */
1445 static bool
1446 gate_fwprop (void)
1448 return optimize > 0 && flag_forward_propagate;
1451 static unsigned int
1452 fwprop (void)
1454 unsigned i;
1455 bool need_cleanup = false;
1457 fwprop_init ();
1459 /* Go through all the uses. df_uses_create will create new ones at the
1460 end, and we'll go through them as well.
1462 Do not forward propagate addresses into loops until after unrolling.
1463 CSE did so because it was able to fix its own mess, but we are not. */
1465 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1467 df_ref use = DF_USES_GET (i);
1468 if (use)
1469 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1470 || DF_REF_BB (use)->loop_father == NULL
1471 /* The outer most loop is not really a loop. */
1472 || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1473 need_cleanup |= forward_propagate_into (use);
1476 fwprop_done ();
1477 if (need_cleanup)
1478 cleanup_cfg (0);
1479 return 0;
1482 struct rtl_opt_pass pass_rtl_fwprop =
1485 RTL_PASS,
1486 "fwprop1", /* name */
1487 gate_fwprop, /* gate */
1488 fwprop, /* execute */
1489 NULL, /* sub */
1490 NULL, /* next */
1491 0, /* static_pass_number */
1492 TV_FWPROP, /* tv_id */
1493 0, /* properties_required */
1494 0, /* properties_provided */
1495 0, /* properties_destroyed */
1496 0, /* todo_flags_start */
1497 TODO_df_finish
1498 | TODO_verify_flow
1499 | TODO_verify_rtl_sharing /* todo_flags_finish */
1503 static unsigned int
1504 fwprop_addr (void)
1506 unsigned i;
1507 bool need_cleanup = false;
1509 fwprop_init ();
1511 /* Go through all the uses. df_uses_create will create new ones at the
1512 end, and we'll go through them as well. */
1513 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1515 df_ref use = DF_USES_GET (i);
1516 if (use)
1517 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1518 && DF_REF_BB (use)->loop_father != NULL
1519 /* The outer most loop is not really a loop. */
1520 && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1521 need_cleanup |= forward_propagate_into (use);
1524 fwprop_done ();
1526 if (need_cleanup)
1527 cleanup_cfg (0);
1528 return 0;
1531 struct rtl_opt_pass pass_rtl_fwprop_addr =
1534 RTL_PASS,
1535 "fwprop2", /* name */
1536 gate_fwprop, /* gate */
1537 fwprop_addr, /* execute */
1538 NULL, /* sub */
1539 NULL, /* next */
1540 0, /* static_pass_number */
1541 TV_FWPROP, /* tv_id */
1542 0, /* properties_required */
1543 0, /* properties_provided */
1544 0, /* properties_destroyed */
1545 0, /* todo_flags_start */
1546 TODO_df_finish | TODO_verify_rtl_sharing /* todo_flags_finish */