[gcc]
[official-gcc.git] / gcc / tree-outof-ssa.c
blob978476c913ce7f8a76dccfaeb526dfd7ec2d6b1b
1 /* Convert a program in SSA form into Normal form.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
3 Contributed by Andrew Macleod <amacleod@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "cfghooks.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "rtl.h"
29 #include "ssa.h"
30 #include "alias.h"
31 #include "fold-const.h"
32 #include "stor-layout.h"
33 #include "cfgrtl.h"
34 #include "cfganal.h"
35 #include "gimple-pretty-print.h"
36 #include "internal-fn.h"
37 #include "tree-eh.h"
38 #include "gimple-iterator.h"
39 #include "tree-cfg.h"
40 #include "dumpfile.h"
41 #include "diagnostic-core.h"
42 #include "tree-ssa-live.h"
43 #include "tree-ssa-ter.h"
44 #include "tree-ssa-coalesce.h"
45 #include "tree-outof-ssa.h"
47 /* FIXME: A lot of code here deals with expanding to RTL. All that code
48 should be in cfgexpand.c. */
49 #include "flags.h"
50 #include "insn-config.h"
51 #include "expmed.h"
52 #include "dojump.h"
53 #include "explow.h"
54 #include "calls.h"
55 #include "emit-rtl.h"
56 #include "varasm.h"
57 #include "stmt.h"
58 #include "expr.h"
60 /* Return TRUE if expression STMT is suitable for replacement. */
62 bool
63 ssa_is_replaceable_p (gimple stmt)
65 use_operand_p use_p;
66 tree def;
67 gimple use_stmt;
69 /* Only consider modify stmts. */
70 if (!is_gimple_assign (stmt))
71 return false;
73 /* If the statement may throw an exception, it cannot be replaced. */
74 if (stmt_could_throw_p (stmt))
75 return false;
77 /* Punt if there is more than 1 def. */
78 def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
79 if (!def)
80 return false;
82 /* Only consider definitions which have a single use. */
83 if (!single_imm_use (def, &use_p, &use_stmt))
84 return false;
86 /* Used in this block, but at the TOP of the block, not the end. */
87 if (gimple_code (use_stmt) == GIMPLE_PHI)
88 return false;
90 /* There must be no VDEFs. */
91 if (gimple_vdef (stmt))
92 return false;
94 /* Float expressions must go through memory if float-store is on. */
95 if (flag_float_store
96 && FLOAT_TYPE_P (gimple_expr_type (stmt)))
97 return false;
99 /* An assignment with a register variable on the RHS is not
100 replaceable. */
101 if (gimple_assign_rhs_code (stmt) == VAR_DECL
102 && DECL_HARD_REGISTER (gimple_assign_rhs1 (stmt)))
103 return false;
105 /* No function calls can be replaced. */
106 if (is_gimple_call (stmt))
107 return false;
109 /* Leave any stmt with volatile operands alone as well. */
110 if (gimple_has_volatile_ops (stmt))
111 return false;
113 return true;
117 /* Used to hold all the components required to do SSA PHI elimination.
118 The node and pred/succ list is a simple linear list of nodes and
119 edges represented as pairs of nodes.
121 The predecessor and successor list: Nodes are entered in pairs, where
122 [0] ->PRED, [1]->SUCC. All the even indexes in the array represent
123 predecessors, all the odd elements are successors.
125 Rationale:
126 When implemented as bitmaps, very large programs SSA->Normal times were
127 being dominated by clearing the interference graph.
129 Typically this list of edges is extremely small since it only includes
130 PHI results and uses from a single edge which have not coalesced with
131 each other. This means that no virtual PHI nodes are included, and
132 empirical evidence suggests that the number of edges rarely exceed
133 3, and in a bootstrap of GCC, the maximum size encountered was 7.
134 This also limits the number of possible nodes that are involved to
135 rarely more than 6, and in the bootstrap of gcc, the maximum number
136 of nodes encountered was 12. */
138 typedef struct _elim_graph {
139 /* Size of the elimination vectors. */
140 int size;
142 /* List of nodes in the elimination graph. */
143 vec<int> nodes;
145 /* The predecessor and successor edge list. */
146 vec<int> edge_list;
148 /* Source locus on each edge */
149 vec<source_location> edge_locus;
151 /* Visited vector. */
152 sbitmap visited;
154 /* Stack for visited nodes. */
155 vec<int> stack;
157 /* The variable partition map. */
158 var_map map;
160 /* Edge being eliminated by this graph. */
161 edge e;
163 /* List of constant copies to emit. These are pushed on in pairs. */
164 vec<int> const_dests;
165 vec<tree> const_copies;
167 /* Source locations for any constant copies. */
168 vec<source_location> copy_locus;
169 } *elim_graph;
172 /* For an edge E find out a good source location to associate with
173 instructions inserted on edge E. If E has an implicit goto set,
174 use its location. Otherwise search instructions in predecessors
175 of E for a location, and use that one. That makes sense because
176 we insert on edges for PHI nodes, and effects of PHIs happen on
177 the end of the predecessor conceptually. */
179 static void
180 set_location_for_edge (edge e)
182 if (e->goto_locus)
184 set_curr_insn_location (e->goto_locus);
186 else
188 basic_block bb = e->src;
189 gimple_stmt_iterator gsi;
193 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
195 gimple stmt = gsi_stmt (gsi);
196 if (is_gimple_debug (stmt))
197 continue;
198 if (gimple_has_location (stmt) || gimple_block (stmt))
200 set_curr_insn_location (gimple_location (stmt));
201 return;
204 /* Nothing found in this basic block. Make a half-assed attempt
205 to continue with another block. */
206 if (single_pred_p (bb))
207 bb = single_pred (bb);
208 else
209 bb = e->src;
211 while (bb != e->src);
215 /* Emit insns to copy SRC into DEST converting SRC if necessary. As
216 SRC/DEST might be BLKmode memory locations SIZEEXP is a tree from
217 which we deduce the size to copy in that case. */
219 static inline rtx_insn *
220 emit_partition_copy (rtx dest, rtx src, int unsignedsrcp, tree sizeexp)
222 start_sequence ();
224 if (GET_MODE (src) != VOIDmode && GET_MODE (src) != GET_MODE (dest))
225 src = convert_to_mode (GET_MODE (dest), src, unsignedsrcp);
226 if (GET_MODE (src) == BLKmode)
228 gcc_assert (GET_MODE (dest) == BLKmode);
229 emit_block_move (dest, src, expr_size (sizeexp), BLOCK_OP_NORMAL);
231 else
232 emit_move_insn (dest, src);
234 rtx_insn *seq = get_insns ();
235 end_sequence ();
237 return seq;
240 /* Insert a copy instruction from partition SRC to DEST onto edge E. */
242 static void
243 insert_partition_copy_on_edge (edge e, int dest, int src, source_location locus)
245 tree var;
246 if (dump_file && (dump_flags & TDF_DETAILS))
248 fprintf (dump_file,
249 "Inserting a partition copy on edge BB%d->BB%d :"
250 "PART.%d = PART.%d",
251 e->src->index,
252 e->dest->index, dest, src);
253 fprintf (dump_file, "\n");
256 gcc_assert (SA.partition_to_pseudo[dest]);
257 gcc_assert (SA.partition_to_pseudo[src]);
259 set_location_for_edge (e);
260 /* If a locus is provided, override the default. */
261 if (locus)
262 set_curr_insn_location (locus);
264 var = partition_to_var (SA.map, src);
265 rtx_insn *seq = emit_partition_copy (copy_rtx (SA.partition_to_pseudo[dest]),
266 copy_rtx (SA.partition_to_pseudo[src]),
267 TYPE_UNSIGNED (TREE_TYPE (var)),
268 var);
270 insert_insn_on_edge (seq, e);
273 /* Insert a copy instruction from expression SRC to partition DEST
274 onto edge E. */
276 static void
277 insert_value_copy_on_edge (edge e, int dest, tree src, source_location locus)
279 rtx dest_rtx, seq, x;
280 machine_mode dest_mode, src_mode;
281 int unsignedp;
283 if (dump_file && (dump_flags & TDF_DETAILS))
285 fprintf (dump_file,
286 "Inserting a value copy on edge BB%d->BB%d : PART.%d = ",
287 e->src->index,
288 e->dest->index, dest);
289 print_generic_expr (dump_file, src, TDF_SLIM);
290 fprintf (dump_file, "\n");
293 dest_rtx = copy_rtx (SA.partition_to_pseudo[dest]);
294 gcc_assert (dest_rtx);
296 set_location_for_edge (e);
297 /* If a locus is provided, override the default. */
298 if (locus)
299 set_curr_insn_location (locus);
301 start_sequence ();
303 tree name = partition_to_var (SA.map, dest);
304 src_mode = TYPE_MODE (TREE_TYPE (src));
305 dest_mode = GET_MODE (dest_rtx);
306 gcc_assert (src_mode == TYPE_MODE (TREE_TYPE (name)));
307 gcc_assert (!REG_P (dest_rtx)
308 || dest_mode == promote_ssa_mode (name, &unsignedp));
310 if (src_mode != dest_mode)
312 x = expand_expr (src, NULL, src_mode, EXPAND_NORMAL);
313 x = convert_modes (dest_mode, src_mode, x, unsignedp);
315 else if (src_mode == BLKmode)
317 x = dest_rtx;
318 store_expr (src, x, 0, false);
320 else
321 x = expand_expr (src, dest_rtx, dest_mode, EXPAND_NORMAL);
323 if (x != dest_rtx)
324 emit_move_insn (dest_rtx, x);
325 seq = get_insns ();
326 end_sequence ();
328 insert_insn_on_edge (seq, e);
331 /* Insert a copy instruction from RTL expression SRC to partition DEST
332 onto edge E. */
334 static void
335 insert_rtx_to_part_on_edge (edge e, int dest, rtx src, int unsignedsrcp,
336 source_location locus)
338 if (dump_file && (dump_flags & TDF_DETAILS))
340 fprintf (dump_file,
341 "Inserting a temp copy on edge BB%d->BB%d : PART.%d = ",
342 e->src->index,
343 e->dest->index, dest);
344 print_simple_rtl (dump_file, src);
345 fprintf (dump_file, "\n");
348 gcc_assert (SA.partition_to_pseudo[dest]);
350 set_location_for_edge (e);
351 /* If a locus is provided, override the default. */
352 if (locus)
353 set_curr_insn_location (locus);
355 /* We give the destination as sizeexp in case src/dest are BLKmode
356 mems. Usually we give the source. As we result from SSA names
357 the left and right size should be the same (and no WITH_SIZE_EXPR
358 involved), so it doesn't matter. */
359 rtx_insn *seq = emit_partition_copy (copy_rtx (SA.partition_to_pseudo[dest]),
360 src, unsignedsrcp,
361 partition_to_var (SA.map, dest));
363 insert_insn_on_edge (seq, e);
366 /* Insert a copy instruction from partition SRC to RTL lvalue DEST
367 onto edge E. */
369 static void
370 insert_part_to_rtx_on_edge (edge e, rtx dest, int src, source_location locus)
372 tree var;
373 if (dump_file && (dump_flags & TDF_DETAILS))
375 fprintf (dump_file,
376 "Inserting a temp copy on edge BB%d->BB%d : ",
377 e->src->index,
378 e->dest->index);
379 print_simple_rtl (dump_file, dest);
380 fprintf (dump_file, "= PART.%d\n", src);
383 gcc_assert (SA.partition_to_pseudo[src]);
385 set_location_for_edge (e);
386 /* If a locus is provided, override the default. */
387 if (locus)
388 set_curr_insn_location (locus);
390 var = partition_to_var (SA.map, src);
391 rtx_insn *seq = emit_partition_copy (dest,
392 copy_rtx (SA.partition_to_pseudo[src]),
393 TYPE_UNSIGNED (TREE_TYPE (var)),
394 var);
396 insert_insn_on_edge (seq, e);
400 /* Create an elimination graph with SIZE nodes and associated data
401 structures. */
403 static elim_graph
404 new_elim_graph (int size)
406 elim_graph g = (elim_graph) xmalloc (sizeof (struct _elim_graph));
408 g->nodes.create (30);
409 g->const_dests.create (20);
410 g->const_copies.create (20);
411 g->copy_locus.create (10);
412 g->edge_list.create (20);
413 g->edge_locus.create (10);
414 g->stack.create (30);
416 g->visited = sbitmap_alloc (size);
418 return g;
422 /* Empty elimination graph G. */
424 static inline void
425 clear_elim_graph (elim_graph g)
427 g->nodes.truncate (0);
428 g->edge_list.truncate (0);
429 g->edge_locus.truncate (0);
433 /* Delete elimination graph G. */
435 static inline void
436 delete_elim_graph (elim_graph g)
438 sbitmap_free (g->visited);
439 g->stack.release ();
440 g->edge_list.release ();
441 g->const_copies.release ();
442 g->const_dests.release ();
443 g->nodes.release ();
444 g->copy_locus.release ();
445 g->edge_locus.release ();
447 free (g);
451 /* Return the number of nodes in graph G. */
453 static inline int
454 elim_graph_size (elim_graph g)
456 return g->nodes.length ();
460 /* Add NODE to graph G, if it doesn't exist already. */
462 static inline void
463 elim_graph_add_node (elim_graph g, int node)
465 int x;
466 int t;
468 FOR_EACH_VEC_ELT (g->nodes, x, t)
469 if (t == node)
470 return;
471 g->nodes.safe_push (node);
475 /* Add the edge PRED->SUCC to graph G. */
477 static inline void
478 elim_graph_add_edge (elim_graph g, int pred, int succ, source_location locus)
480 g->edge_list.safe_push (pred);
481 g->edge_list.safe_push (succ);
482 g->edge_locus.safe_push (locus);
486 /* Remove an edge from graph G for which NODE is the predecessor, and
487 return the successor node. -1 is returned if there is no such edge. */
489 static inline int
490 elim_graph_remove_succ_edge (elim_graph g, int node, source_location *locus)
492 int y;
493 unsigned x;
494 for (x = 0; x < g->edge_list.length (); x += 2)
495 if (g->edge_list[x] == node)
497 g->edge_list[x] = -1;
498 y = g->edge_list[x + 1];
499 g->edge_list[x + 1] = -1;
500 *locus = g->edge_locus[x / 2];
501 g->edge_locus[x / 2] = UNKNOWN_LOCATION;
502 return y;
504 *locus = UNKNOWN_LOCATION;
505 return -1;
509 /* Find all the nodes in GRAPH which are successors to NODE in the
510 edge list. VAR will hold the partition number found. CODE is the
511 code fragment executed for every node found. */
513 #define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, LOCUS, CODE) \
514 do { \
515 unsigned x_; \
516 int y_; \
517 for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \
519 y_ = (GRAPH)->edge_list[x_]; \
520 if (y_ != (NODE)) \
521 continue; \
522 (void) ((VAR) = (GRAPH)->edge_list[x_ + 1]); \
523 (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \
524 CODE; \
526 } while (0)
529 /* Find all the nodes which are predecessors of NODE in the edge list for
530 GRAPH. VAR will hold the partition number found. CODE is the
531 code fragment executed for every node found. */
533 #define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, LOCUS, CODE) \
534 do { \
535 unsigned x_; \
536 int y_; \
537 for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \
539 y_ = (GRAPH)->edge_list[x_ + 1]; \
540 if (y_ != (NODE)) \
541 continue; \
542 (void) ((VAR) = (GRAPH)->edge_list[x_]); \
543 (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \
544 CODE; \
546 } while (0)
549 /* Add T to elimination graph G. */
551 static inline void
552 eliminate_name (elim_graph g, int T)
554 elim_graph_add_node (g, T);
557 /* Return true if this phi argument T should have a copy queued when using
558 var_map MAP. PHI nodes should contain only ssa_names and invariants. A
559 test for ssa_name is definitely simpler, but don't let invalid contents
560 slip through in the meantime. */
562 static inline bool
563 queue_phi_copy_p (var_map map, tree t)
565 if (TREE_CODE (t) == SSA_NAME)
567 if (var_to_partition (map, t) == NO_PARTITION)
568 return true;
569 return false;
571 gcc_checking_assert (is_gimple_min_invariant (t));
572 return true;
575 /* Build elimination graph G for basic block BB on incoming PHI edge
576 G->e. */
578 static void
579 eliminate_build (elim_graph g)
581 tree Ti;
582 int p0, pi;
583 gphi_iterator gsi;
585 clear_elim_graph (g);
587 for (gsi = gsi_start_phis (g->e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
589 gphi *phi = gsi.phi ();
590 source_location locus;
592 p0 = var_to_partition (g->map, gimple_phi_result (phi));
593 /* Ignore results which are not in partitions. */
594 if (p0 == NO_PARTITION)
595 continue;
597 Ti = PHI_ARG_DEF (phi, g->e->dest_idx);
598 locus = gimple_phi_arg_location_from_edge (phi, g->e);
600 /* If this argument is a constant, or a SSA_NAME which is being
601 left in SSA form, just queue a copy to be emitted on this
602 edge. */
603 if (queue_phi_copy_p (g->map, Ti))
605 /* Save constant copies until all other copies have been emitted
606 on this edge. */
607 g->const_dests.safe_push (p0);
608 g->const_copies.safe_push (Ti);
609 g->copy_locus.safe_push (locus);
611 else
613 pi = var_to_partition (g->map, Ti);
614 if (p0 != pi)
616 eliminate_name (g, p0);
617 eliminate_name (g, pi);
618 elim_graph_add_edge (g, p0, pi, locus);
625 /* Push successors of T onto the elimination stack for G. */
627 static void
628 elim_forward (elim_graph g, int T)
630 int S;
631 source_location locus;
633 bitmap_set_bit (g->visited, T);
634 FOR_EACH_ELIM_GRAPH_SUCC (g, T, S, locus,
636 if (!bitmap_bit_p (g->visited, S))
637 elim_forward (g, S);
639 g->stack.safe_push (T);
643 /* Return 1 if there unvisited predecessors of T in graph G. */
645 static int
646 elim_unvisited_predecessor (elim_graph g, int T)
648 int P;
649 source_location locus;
651 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
653 if (!bitmap_bit_p (g->visited, P))
654 return 1;
656 return 0;
659 /* Process predecessors first, and insert a copy. */
661 static void
662 elim_backward (elim_graph g, int T)
664 int P;
665 source_location locus;
667 bitmap_set_bit (g->visited, T);
668 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
670 if (!bitmap_bit_p (g->visited, P))
672 elim_backward (g, P);
673 insert_partition_copy_on_edge (g->e, P, T, locus);
678 /* Allocate a new pseudo register usable for storing values sitting
679 in NAME (a decl or SSA name), i.e. with matching mode and attributes. */
681 static rtx
682 get_temp_reg (tree name)
684 tree type = TREE_TYPE (name);
685 int unsignedp;
686 machine_mode reg_mode = promote_ssa_mode (name, &unsignedp);
687 rtx x = gen_reg_rtx (reg_mode);
688 if (POINTER_TYPE_P (type))
689 mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (type)));
690 return x;
693 /* Insert required copies for T in graph G. Check for a strongly connected
694 region, and create a temporary to break the cycle if one is found. */
696 static void
697 elim_create (elim_graph g, int T)
699 int P, S;
700 source_location locus;
702 if (elim_unvisited_predecessor (g, T))
704 tree var = partition_to_var (g->map, T);
705 rtx U = get_temp_reg (var);
706 int unsignedsrcp = TYPE_UNSIGNED (TREE_TYPE (var));
708 insert_part_to_rtx_on_edge (g->e, U, T, UNKNOWN_LOCATION);
709 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
711 if (!bitmap_bit_p (g->visited, P))
713 elim_backward (g, P);
714 insert_rtx_to_part_on_edge (g->e, P, U, unsignedsrcp, locus);
718 else
720 S = elim_graph_remove_succ_edge (g, T, &locus);
721 if (S != -1)
723 bitmap_set_bit (g->visited, T);
724 insert_partition_copy_on_edge (g->e, T, S, locus);
730 /* Eliminate all the phi nodes on edge E in graph G. */
732 static void
733 eliminate_phi (edge e, elim_graph g)
735 int x;
737 gcc_assert (g->const_copies.length () == 0);
738 gcc_assert (g->copy_locus.length () == 0);
740 /* Abnormal edges already have everything coalesced. */
741 if (e->flags & EDGE_ABNORMAL)
742 return;
744 g->e = e;
746 eliminate_build (g);
748 if (elim_graph_size (g) != 0)
750 int part;
752 bitmap_clear (g->visited);
753 g->stack.truncate (0);
755 FOR_EACH_VEC_ELT (g->nodes, x, part)
757 if (!bitmap_bit_p (g->visited, part))
758 elim_forward (g, part);
761 bitmap_clear (g->visited);
762 while (g->stack.length () > 0)
764 x = g->stack.pop ();
765 if (!bitmap_bit_p (g->visited, x))
766 elim_create (g, x);
770 /* If there are any pending constant copies, issue them now. */
771 while (g->const_copies.length () > 0)
773 int dest;
774 tree src;
775 source_location locus;
777 src = g->const_copies.pop ();
778 dest = g->const_dests.pop ();
779 locus = g->copy_locus.pop ();
780 insert_value_copy_on_edge (e, dest, src, locus);
785 /* Remove each argument from PHI. If an arg was the last use of an SSA_NAME,
786 check to see if this allows another PHI node to be removed. */
788 static void
789 remove_gimple_phi_args (gphi *phi)
791 use_operand_p arg_p;
792 ssa_op_iter iter;
794 if (dump_file && (dump_flags & TDF_DETAILS))
796 fprintf (dump_file, "Removing Dead PHI definition: ");
797 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
800 FOR_EACH_PHI_ARG (arg_p, phi, iter, SSA_OP_USE)
802 tree arg = USE_FROM_PTR (arg_p);
803 if (TREE_CODE (arg) == SSA_NAME)
805 /* Remove the reference to the existing argument. */
806 SET_USE (arg_p, NULL_TREE);
807 if (has_zero_uses (arg))
809 gimple stmt;
810 gimple_stmt_iterator gsi;
812 stmt = SSA_NAME_DEF_STMT (arg);
814 /* Also remove the def if it is a PHI node. */
815 if (gimple_code (stmt) == GIMPLE_PHI)
817 remove_gimple_phi_args (as_a <gphi *> (stmt));
818 gsi = gsi_for_stmt (stmt);
819 remove_phi_node (&gsi, true);
827 /* Remove any PHI node which is a virtual PHI, or a PHI with no uses. */
829 static void
830 eliminate_useless_phis (void)
832 basic_block bb;
833 gphi_iterator gsi;
834 tree result;
836 FOR_EACH_BB_FN (bb, cfun)
838 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
840 gphi *phi = gsi.phi ();
841 result = gimple_phi_result (phi);
842 if (virtual_operand_p (result))
844 #ifdef ENABLE_CHECKING
845 size_t i;
846 /* There should be no arguments which are not virtual, or the
847 results will be incorrect. */
848 for (i = 0; i < gimple_phi_num_args (phi); i++)
850 tree arg = PHI_ARG_DEF (phi, i);
851 if (TREE_CODE (arg) == SSA_NAME
852 && !virtual_operand_p (arg))
854 fprintf (stderr, "Argument of PHI is not virtual (");
855 print_generic_expr (stderr, arg, TDF_SLIM);
856 fprintf (stderr, "), but the result is :");
857 print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
858 internal_error ("SSA corruption");
861 #endif
862 remove_phi_node (&gsi, true);
864 else
866 /* Also remove real PHIs with no uses. */
867 if (has_zero_uses (result))
869 remove_gimple_phi_args (phi);
870 remove_phi_node (&gsi, true);
872 else
873 gsi_next (&gsi);
880 /* This function will rewrite the current program using the variable mapping
881 found in MAP. If the replacement vector VALUES is provided, any
882 occurrences of partitions with non-null entries in the vector will be
883 replaced with the expression in the vector instead of its mapped
884 variable. */
886 static void
887 rewrite_trees (var_map map ATTRIBUTE_UNUSED)
889 #ifdef ENABLE_CHECKING
890 basic_block bb;
891 /* Search for PHIs where the destination has no partition, but one
892 or more arguments has a partition. This should not happen and can
893 create incorrect code. */
894 FOR_EACH_BB_FN (bb, cfun)
896 gphi_iterator gsi;
897 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
899 gphi *phi = gsi.phi ();
900 tree T0 = var_to_partition_to_var (map, gimple_phi_result (phi));
901 if (T0 == NULL_TREE)
903 size_t i;
904 for (i = 0; i < gimple_phi_num_args (phi); i++)
906 tree arg = PHI_ARG_DEF (phi, i);
908 if (TREE_CODE (arg) == SSA_NAME
909 && var_to_partition (map, arg) != NO_PARTITION)
911 fprintf (stderr, "Argument of PHI is in a partition :(");
912 print_generic_expr (stderr, arg, TDF_SLIM);
913 fprintf (stderr, "), but the result is not :");
914 print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
915 internal_error ("SSA corruption");
921 #endif
924 /* Given the out-of-ssa info object SA (with prepared partitions)
925 eliminate all phi nodes in all basic blocks. Afterwards no
926 basic block will have phi nodes anymore and there are possibly
927 some RTL instructions inserted on edges. */
929 void
930 expand_phi_nodes (struct ssaexpand *sa)
932 basic_block bb;
933 elim_graph g = new_elim_graph (sa->map->num_partitions);
934 g->map = sa->map;
936 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb,
937 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
938 if (!gimple_seq_empty_p (phi_nodes (bb)))
940 edge e;
941 edge_iterator ei;
942 FOR_EACH_EDGE (e, ei, bb->preds)
943 eliminate_phi (e, g);
944 set_phi_nodes (bb, NULL);
945 /* We can't redirect EH edges in RTL land, so we need to do this
946 here. Redirection happens only when splitting is necessary,
947 which it is only for critical edges, normally. For EH edges
948 it might also be necessary when the successor has more than
949 one predecessor. In that case the edge is either required to
950 be fallthru (which EH edges aren't), or the predecessor needs
951 to end with a jump (which again, isn't the case with EH edges).
952 Hence, split all EH edges on which we inserted instructions
953 and whose successor has multiple predecessors. */
954 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
956 if (e->insns.r && (e->flags & EDGE_EH)
957 && !single_pred_p (e->dest))
959 rtx_insn *insns = e->insns.r;
960 basic_block bb;
961 e->insns.r = NULL;
962 bb = split_edge (e);
963 single_pred_edge (bb)->insns.r = insns;
965 else
966 ei_next (&ei);
970 delete_elim_graph (g);
974 /* Remove the ssa-names in the current function and translate them into normal
975 compiler variables. PERFORM_TER is true if Temporary Expression Replacement
976 should also be used. */
978 static void
979 remove_ssa_form (bool perform_ter, struct ssaexpand *sa)
981 bitmap values = NULL;
982 var_map map;
983 unsigned i;
985 map = coalesce_ssa_name ();
987 /* Return to viewing the variable list as just all reference variables after
988 coalescing has been performed. */
989 partition_view_normal (map);
991 if (dump_file && (dump_flags & TDF_DETAILS))
993 fprintf (dump_file, "After Coalescing:\n");
994 dump_var_map (dump_file, map);
997 if (perform_ter)
999 values = find_replaceable_exprs (map);
1000 if (values && dump_file && (dump_flags & TDF_DETAILS))
1001 dump_replaceable_exprs (dump_file, values);
1004 rewrite_trees (map);
1006 sa->map = map;
1007 sa->values = values;
1008 sa->partition_has_default_def = BITMAP_ALLOC (NULL);
1009 for (i = 1; i < num_ssa_names; i++)
1011 tree t = ssa_name (i);
1012 if (t && SSA_NAME_IS_DEFAULT_DEF (t))
1014 int p = var_to_partition (map, t);
1015 if (p != NO_PARTITION)
1016 bitmap_set_bit (sa->partition_has_default_def, p);
1022 /* If not already done so for basic block BB, assign increasing uids
1023 to each of its instructions. */
1025 static void
1026 maybe_renumber_stmts_bb (basic_block bb)
1028 unsigned i = 0;
1029 gimple_stmt_iterator gsi;
1031 if (!bb->aux)
1032 return;
1033 bb->aux = NULL;
1034 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1036 gimple stmt = gsi_stmt (gsi);
1037 gimple_set_uid (stmt, i);
1038 i++;
1043 /* Return true if we can determine that the SSA_NAMEs RESULT (a result
1044 of a PHI node) and ARG (one of its arguments) conflict. Return false
1045 otherwise, also when we simply aren't sure. */
1047 static bool
1048 trivially_conflicts_p (basic_block bb, tree result, tree arg)
1050 use_operand_p use;
1051 imm_use_iterator imm_iter;
1052 gimple defa = SSA_NAME_DEF_STMT (arg);
1054 /* If ARG isn't defined in the same block it's too complicated for
1055 our little mind. */
1056 if (gimple_bb (defa) != bb)
1057 return false;
1059 FOR_EACH_IMM_USE_FAST (use, imm_iter, result)
1061 gimple use_stmt = USE_STMT (use);
1062 if (is_gimple_debug (use_stmt))
1063 continue;
1064 /* Now, if there's a use of RESULT that lies outside this basic block,
1065 then there surely is a conflict with ARG. */
1066 if (gimple_bb (use_stmt) != bb)
1067 return true;
1068 if (gimple_code (use_stmt) == GIMPLE_PHI)
1069 continue;
1070 /* The use now is in a real stmt of BB, so if ARG was defined
1071 in a PHI node (like RESULT) both conflict. */
1072 if (gimple_code (defa) == GIMPLE_PHI)
1073 return true;
1074 maybe_renumber_stmts_bb (bb);
1075 /* If the use of RESULT occurs after the definition of ARG,
1076 the two conflict too. */
1077 if (gimple_uid (defa) < gimple_uid (use_stmt))
1078 return true;
1081 return false;
1085 /* Search every PHI node for arguments associated with backedges which
1086 we can trivially determine will need a copy (the argument is either
1087 not an SSA_NAME or the argument has a different underlying variable
1088 than the PHI result).
1090 Insert a copy from the PHI argument to a new destination at the
1091 end of the block with the backedge to the top of the loop. Update
1092 the PHI argument to reference this new destination. */
1094 static void
1095 insert_backedge_copies (void)
1097 basic_block bb;
1098 gphi_iterator gsi;
1100 mark_dfs_back_edges ();
1102 FOR_EACH_BB_FN (bb, cfun)
1104 /* Mark block as possibly needing calculation of UIDs. */
1105 bb->aux = &bb->aux;
1107 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1109 gphi *phi = gsi.phi ();
1110 tree result = gimple_phi_result (phi);
1111 size_t i;
1113 if (virtual_operand_p (result))
1114 continue;
1116 for (i = 0; i < gimple_phi_num_args (phi); i++)
1118 tree arg = gimple_phi_arg_def (phi, i);
1119 edge e = gimple_phi_arg_edge (phi, i);
1121 /* If the argument is not an SSA_NAME, then we will need a
1122 constant initialization. If the argument is an SSA_NAME with
1123 a different underlying variable then a copy statement will be
1124 needed. */
1125 if ((e->flags & EDGE_DFS_BACK)
1126 && (TREE_CODE (arg) != SSA_NAME
1127 || SSA_NAME_VAR (arg) != SSA_NAME_VAR (result)
1128 || trivially_conflicts_p (bb, result, arg)))
1130 tree name;
1131 gassign *stmt;
1132 gimple last = NULL;
1133 gimple_stmt_iterator gsi2;
1135 gsi2 = gsi_last_bb (gimple_phi_arg_edge (phi, i)->src);
1136 if (!gsi_end_p (gsi2))
1137 last = gsi_stmt (gsi2);
1139 /* In theory the only way we ought to get back to the
1140 start of a loop should be with a COND_EXPR or GOTO_EXPR.
1141 However, better safe than sorry.
1142 If the block ends with a control statement or
1143 something that might throw, then we have to
1144 insert this assignment before the last
1145 statement. Else insert it after the last statement. */
1146 if (last && stmt_ends_bb_p (last))
1148 /* If the last statement in the block is the definition
1149 site of the PHI argument, then we can't insert
1150 anything after it. */
1151 if (TREE_CODE (arg) == SSA_NAME
1152 && SSA_NAME_DEF_STMT (arg) == last)
1153 continue;
1156 /* Create a new instance of the underlying variable of the
1157 PHI result. */
1158 name = copy_ssa_name (result);
1159 stmt = gimple_build_assign (name,
1160 gimple_phi_arg_def (phi, i));
1162 /* copy location if present. */
1163 if (gimple_phi_arg_has_location (phi, i))
1164 gimple_set_location (stmt,
1165 gimple_phi_arg_location (phi, i));
1167 /* Insert the new statement into the block and update
1168 the PHI node. */
1169 if (last && stmt_ends_bb_p (last))
1170 gsi_insert_before (&gsi2, stmt, GSI_NEW_STMT);
1171 else
1172 gsi_insert_after (&gsi2, stmt, GSI_NEW_STMT);
1173 SET_PHI_ARG_DEF (phi, i, name);
1178 /* Unmark this block again. */
1179 bb->aux = NULL;
1183 /* Free all memory associated with going out of SSA form. SA is
1184 the outof-SSA info object. */
1186 void
1187 finish_out_of_ssa (struct ssaexpand *sa)
1189 free (sa->partition_to_pseudo);
1190 if (sa->values)
1191 BITMAP_FREE (sa->values);
1192 delete_var_map (sa->map);
1193 BITMAP_FREE (sa->partition_has_default_def);
1194 memset (sa, 0, sizeof *sa);
1197 /* Take the current function out of SSA form, translating PHIs as described in
1198 R. Morgan, ``Building an Optimizing Compiler'',
1199 Butterworth-Heinemann, Boston, MA, 1998. pp 176-186. */
1201 unsigned int
1202 rewrite_out_of_ssa (struct ssaexpand *sa)
1204 /* If elimination of a PHI requires inserting a copy on a backedge,
1205 then we will have to split the backedge which has numerous
1206 undesirable performance effects.
1208 A significant number of such cases can be handled here by inserting
1209 copies into the loop itself. */
1210 insert_backedge_copies ();
1213 /* Eliminate PHIs which are of no use, such as virtual or dead phis. */
1214 eliminate_useless_phis ();
1216 if (dump_file && (dump_flags & TDF_DETAILS))
1217 gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
1219 remove_ssa_form (flag_tree_ter, sa);
1221 if (dump_file && (dump_flags & TDF_DETAILS))
1222 gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
1224 return 0;