1 /* A Fibonacci heap datatype.
2 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin (dan@cgsoftware.com).
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
34 #include "libiberty.h"
38 #define FIBHEAPKEY_MIN LONG_MIN
40 static void fibheap_ins_root
PARAMS ((fibheap_t
, fibnode_t
));
41 static void fibheap_rem_root
PARAMS ((fibheap_t
, fibnode_t
));
42 static void fibheap_consolidate
PARAMS ((fibheap_t
));
43 static void fibheap_link
PARAMS ((fibheap_t
, fibnode_t
, fibnode_t
));
44 static void fibheap_cut
PARAMS ((fibheap_t
, fibnode_t
, fibnode_t
));
45 static void fibheap_cascading_cut
PARAMS ((fibheap_t
, fibnode_t
));
46 static fibnode_t fibheap_extr_min_node
PARAMS ((fibheap_t
));
47 static int fibheap_compare
PARAMS ((fibheap_t
, fibnode_t
, fibnode_t
));
48 static int fibheap_comp_data
PARAMS ((fibheap_t
, fibheapkey_t
, void *,
50 static fibnode_t fibnode_new
PARAMS ((void));
51 static void fibnode_insert_after
PARAMS ((fibnode_t
, fibnode_t
));
52 #define fibnode_insert_before(a, b) fibnode_insert_after (a->left, b)
53 static fibnode_t fibnode_remove
PARAMS ((fibnode_t
));
56 /* Create a new fibonacci heap. */
60 return (fibheap_t
) xcalloc (1, sizeof (struct fibheap
));
63 /* Create a new fibonacci heap node. */
69 node
= (fibnode_t
) xcalloc (1, sizeof *node
);
77 fibheap_compare (heap
, a
, b
)
78 fibheap_t heap ATTRIBUTE_UNUSED
;
90 fibheap_comp_data (heap
, key
, data
, b
)
101 return fibheap_compare (heap
, &a
, b
);
104 /* Insert DATA, with priority KEY, into HEAP. */
106 fibheap_insert (heap
, key
, data
)
113 /* Create the new node. */
114 node
= fibnode_new ();
116 /* Set the node's data. */
120 /* Insert it into the root list. */
121 fibheap_ins_root (heap
, node
);
123 /* If their was no minimum, or this key is less than the min,
125 if (heap
->min
== NULL
|| node
->key
< heap
->min
->key
)
133 /* Return the data of the minimum node (if we know it). */
138 /* If there is no min, we can't easily return it. */
139 if (heap
->min
== NULL
)
141 return heap
->min
->data
;
144 /* Return the key of the minimum node (if we know it). */
146 fibheap_min_key (heap
)
149 /* If there is no min, we can't easily return it. */
150 if (heap
->min
== NULL
)
152 return heap
->min
->key
;
155 /* Union HEAPA and HEAPB into a new heap. */
157 fibheap_union (heapa
, heapb
)
161 fibnode_t a_root
, b_root
, temp
;
163 /* If one of the heaps is empty, the union is just the other heap. */
164 if ((a_root
= heapa
->root
) == NULL
)
169 if ((b_root
= heapb
->root
) == NULL
)
175 /* Merge them to the next nodes on the opposite chain. */
176 a_root
->left
->right
= b_root
;
177 b_root
->left
->right
= a_root
;
179 a_root
->left
= b_root
->left
;
181 heapa
->nodes
+= heapb
->nodes
;
183 /* And set the new minimum, if it's changed. */
184 if (fibheap_compare (heapa
, heapb
->min
, heapa
->min
) < 0)
185 heapa
->min
= heapb
->min
;
191 /* Extract the data of the minimum node from HEAP. */
193 fibheap_extract_min (heap
)
199 /* If we don't have a min set, it means we have no nodes. */
200 if (heap
->min
!= NULL
)
202 /* Otherwise, extract the min node, free the node, and return the
204 z
= fibheap_extr_min_node (heap
);
212 /* Replace both the KEY and the DATA associated with NODE. */
214 fibheap_replace_key_data (heap
, node
, key
, data
)
224 /* If we wanted to, we could actually do a real increase by redeleting and
225 inserting. However, this would require O (log n) time. So just bail out
227 if (fibheap_comp_data (heap
, key
, data
, node
) > 0)
239 /* These two compares are specifically <= 0 to make sure that in the case
240 of equality, a node we replaced the data on, becomes the new min. This
241 is needed so that delete's call to extractmin gets the right node. */
242 if (y
!= NULL
&& fibheap_compare (heap
, node
, y
) <= 0)
244 fibheap_cut (heap
, node
, y
);
245 fibheap_cascading_cut (heap
, y
);
248 if (fibheap_compare (heap
, node
, heap
->min
) <= 0)
254 /* Replace the DATA associated with NODE. */
256 fibheap_replace_data (heap
, node
, data
)
261 return fibheap_replace_key_data (heap
, node
, node
->key
, data
);
264 /* Replace the KEY associated with NODE. */
266 fibheap_replace_key (heap
, node
, key
)
271 int okey
= node
->key
;
272 fibheap_replace_key_data (heap
, node
, key
, node
->data
);
276 /* Delete NODE from HEAP. */
278 fibheap_delete_node (heap
, node
)
282 void *ret
= node
->data
;
284 /* To perform delete, we just make it the min key, and extract. */
285 fibheap_replace_key (heap
, node
, FIBHEAPKEY_MIN
);
286 fibheap_extract_min (heap
);
293 fibheap_delete (heap
)
296 while (heap
->min
!= NULL
)
297 free (fibheap_extr_min_node (heap
));
302 /* Determine if HEAP is empty. */
307 return heap
->nodes
== 0;
310 /* Extract the minimum node of the heap. */
312 fibheap_extr_min_node (heap
)
315 fibnode_t ret
= heap
->min
;
316 fibnode_t x
, y
, orig
;
318 /* Attach the child list of the minimum node to the root list of the heap.
319 If there is no child list, we don't do squat. */
320 for (x
= ret
->child
, orig
= NULL
; x
!= orig
&& x
!= NULL
; x
= y
)
326 fibheap_ins_root (heap
, x
);
329 /* Remove the old root. */
330 fibheap_rem_root (heap
, ret
);
333 /* If we are left with no nodes, then the min is NULL. */
334 if (heap
->nodes
== 0)
338 /* Otherwise, consolidate to find new minimum, as well as do the reorg
339 work that needs to be done. */
340 heap
->min
= ret
->right
;
341 fibheap_consolidate (heap
);
347 /* Insert NODE into the root list of HEAP. */
349 fibheap_ins_root (heap
, node
)
353 /* If the heap is currently empty, the new node becomes the singleton
354 circular root list. */
355 if (heap
->root
== NULL
)
363 /* Otherwise, insert it in the circular root list between the root
364 and it's right node. */
365 fibnode_insert_after (heap
->root
, node
);
368 /* Remove NODE from the rootlist of HEAP. */
370 fibheap_rem_root (heap
, node
)
374 if (node
->left
== node
)
377 heap
->root
= fibnode_remove (node
);
380 /* Consolidate the heap. */
382 fibheap_consolidate (heap
)
385 fibnode_t a
[1 + 8 * sizeof (long)];
393 D
= 1 + 8 * sizeof (long);
395 memset (a
, 0, sizeof (fibnode_t
) * D
);
397 while ((w
= heap
->root
) != NULL
)
400 fibheap_rem_root (heap
, w
);
405 if (fibheap_compare (heap
, x
, y
) > 0)
412 fibheap_link (heap
, y
, x
);
419 for (i
= 0; i
< D
; i
++)
422 fibheap_ins_root (heap
, a
[i
]);
423 if (heap
->min
== NULL
|| fibheap_compare (heap
, a
[i
], heap
->min
) < 0)
428 /* Make NODE a child of PARENT. */
430 fibheap_link (heap
, node
, parent
)
431 fibheap_t heap ATTRIBUTE_UNUSED
;
435 if (parent
->child
== NULL
)
436 parent
->child
= node
;
438 fibnode_insert_before (parent
->child
, node
);
439 node
->parent
= parent
;
444 /* Remove NODE from PARENT's child list. */
446 fibheap_cut (heap
, node
, parent
)
451 fibnode_remove (node
);
453 fibheap_ins_root (heap
, node
);
459 fibheap_cascading_cut (heap
, y
)
465 while ((z
= y
->parent
) != NULL
)
474 fibheap_cut (heap
, y
, z
);
481 fibnode_insert_after (a
, b
)
502 fibnode_remove (node
)
507 if (node
== node
->left
)
512 if (node
->parent
!= NULL
&& node
->parent
->child
== node
)
513 node
->parent
->child
= ret
;
515 node
->right
->left
= node
->left
;
516 node
->left
->right
= node
->right
;