2011-08-19 Andrew Stubbs <ams@codesourcery.com>
[official-gcc.git] / gcc / tree-vrp.c
blobdf19cbbfdd1133d9a17d343cd13d2d02f7f03cd3
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "diagnostic-core.h"
37 #include "intl.h"
38 #include "cfgloop.h"
39 #include "tree-scalar-evolution.h"
40 #include "tree-ssa-propagate.h"
41 #include "tree-chrec.h"
42 #include "gimple-fold.h"
43 #include "expr.h"
44 #include "optabs.h"
47 /* Type of value ranges. See value_range_d for a description of these
48 types. */
49 enum value_range_type { VR_UNDEFINED, VR_RANGE, VR_ANTI_RANGE, VR_VARYING };
51 /* Range of values that can be associated with an SSA_NAME after VRP
52 has executed. */
53 struct value_range_d
55 /* Lattice value represented by this range. */
56 enum value_range_type type;
58 /* Minimum and maximum values represented by this range. These
59 values should be interpreted as follows:
61 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
62 be NULL.
64 - If TYPE == VR_RANGE then MIN holds the minimum value and
65 MAX holds the maximum value of the range [MIN, MAX].
67 - If TYPE == ANTI_RANGE the variable is known to NOT
68 take any values in the range [MIN, MAX]. */
69 tree min;
70 tree max;
72 /* Set of SSA names whose value ranges are equivalent to this one.
73 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
74 bitmap equiv;
77 typedef struct value_range_d value_range_t;
79 /* Set of SSA names found live during the RPO traversal of the function
80 for still active basic-blocks. */
81 static sbitmap *live;
83 /* Return true if the SSA name NAME is live on the edge E. */
85 static bool
86 live_on_edge (edge e, tree name)
88 return (live[e->dest->index]
89 && TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
92 /* Local functions. */
93 static int compare_values (tree val1, tree val2);
94 static int compare_values_warnv (tree val1, tree val2, bool *);
95 static void vrp_meet (value_range_t *, value_range_t *);
96 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
97 tree, tree, bool, bool *,
98 bool *);
100 /* Location information for ASSERT_EXPRs. Each instance of this
101 structure describes an ASSERT_EXPR for an SSA name. Since a single
102 SSA name may have more than one assertion associated with it, these
103 locations are kept in a linked list attached to the corresponding
104 SSA name. */
105 struct assert_locus_d
107 /* Basic block where the assertion would be inserted. */
108 basic_block bb;
110 /* Some assertions need to be inserted on an edge (e.g., assertions
111 generated by COND_EXPRs). In those cases, BB will be NULL. */
112 edge e;
114 /* Pointer to the statement that generated this assertion. */
115 gimple_stmt_iterator si;
117 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
118 enum tree_code comp_code;
120 /* Value being compared against. */
121 tree val;
123 /* Expression to compare. */
124 tree expr;
126 /* Next node in the linked list. */
127 struct assert_locus_d *next;
130 typedef struct assert_locus_d *assert_locus_t;
132 /* If bit I is present, it means that SSA name N_i has a list of
133 assertions that should be inserted in the IL. */
134 static bitmap need_assert_for;
136 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
137 holds a list of ASSERT_LOCUS_T nodes that describe where
138 ASSERT_EXPRs for SSA name N_I should be inserted. */
139 static assert_locus_t *asserts_for;
141 /* Value range array. After propagation, VR_VALUE[I] holds the range
142 of values that SSA name N_I may take. */
143 static unsigned num_vr_values;
144 static value_range_t **vr_value;
145 static bool values_propagated;
147 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
148 number of executable edges we saw the last time we visited the
149 node. */
150 static int *vr_phi_edge_counts;
152 typedef struct {
153 gimple stmt;
154 tree vec;
155 } switch_update;
157 static VEC (edge, heap) *to_remove_edges;
158 DEF_VEC_O(switch_update);
159 DEF_VEC_ALLOC_O(switch_update, heap);
160 static VEC (switch_update, heap) *to_update_switch_stmts;
163 /* Return the maximum value for TYPE. */
165 static inline tree
166 vrp_val_max (const_tree type)
168 if (!INTEGRAL_TYPE_P (type))
169 return NULL_TREE;
171 return TYPE_MAX_VALUE (type);
174 /* Return the minimum value for TYPE. */
176 static inline tree
177 vrp_val_min (const_tree type)
179 if (!INTEGRAL_TYPE_P (type))
180 return NULL_TREE;
182 return TYPE_MIN_VALUE (type);
185 /* Return whether VAL is equal to the maximum value of its type. This
186 will be true for a positive overflow infinity. We can't do a
187 simple equality comparison with TYPE_MAX_VALUE because C typedefs
188 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
189 to the integer constant with the same value in the type. */
191 static inline bool
192 vrp_val_is_max (const_tree val)
194 tree type_max = vrp_val_max (TREE_TYPE (val));
195 return (val == type_max
196 || (type_max != NULL_TREE
197 && operand_equal_p (val, type_max, 0)));
200 /* Return whether VAL is equal to the minimum value of its type. This
201 will be true for a negative overflow infinity. */
203 static inline bool
204 vrp_val_is_min (const_tree val)
206 tree type_min = vrp_val_min (TREE_TYPE (val));
207 return (val == type_min
208 || (type_min != NULL_TREE
209 && operand_equal_p (val, type_min, 0)));
213 /* Return whether TYPE should use an overflow infinity distinct from
214 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
215 represent a signed overflow during VRP computations. An infinity
216 is distinct from a half-range, which will go from some number to
217 TYPE_{MIN,MAX}_VALUE. */
219 static inline bool
220 needs_overflow_infinity (const_tree type)
222 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
225 /* Return whether TYPE can support our overflow infinity
226 representation: we use the TREE_OVERFLOW flag, which only exists
227 for constants. If TYPE doesn't support this, we don't optimize
228 cases which would require signed overflow--we drop them to
229 VARYING. */
231 static inline bool
232 supports_overflow_infinity (const_tree type)
234 tree min = vrp_val_min (type), max = vrp_val_max (type);
235 #ifdef ENABLE_CHECKING
236 gcc_assert (needs_overflow_infinity (type));
237 #endif
238 return (min != NULL_TREE
239 && CONSTANT_CLASS_P (min)
240 && max != NULL_TREE
241 && CONSTANT_CLASS_P (max));
244 /* VAL is the maximum or minimum value of a type. Return a
245 corresponding overflow infinity. */
247 static inline tree
248 make_overflow_infinity (tree val)
250 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
251 val = copy_node (val);
252 TREE_OVERFLOW (val) = 1;
253 return val;
256 /* Return a negative overflow infinity for TYPE. */
258 static inline tree
259 negative_overflow_infinity (tree type)
261 gcc_checking_assert (supports_overflow_infinity (type));
262 return make_overflow_infinity (vrp_val_min (type));
265 /* Return a positive overflow infinity for TYPE. */
267 static inline tree
268 positive_overflow_infinity (tree type)
270 gcc_checking_assert (supports_overflow_infinity (type));
271 return make_overflow_infinity (vrp_val_max (type));
274 /* Return whether VAL is a negative overflow infinity. */
276 static inline bool
277 is_negative_overflow_infinity (const_tree val)
279 return (needs_overflow_infinity (TREE_TYPE (val))
280 && CONSTANT_CLASS_P (val)
281 && TREE_OVERFLOW (val)
282 && vrp_val_is_min (val));
285 /* Return whether VAL is a positive overflow infinity. */
287 static inline bool
288 is_positive_overflow_infinity (const_tree val)
290 return (needs_overflow_infinity (TREE_TYPE (val))
291 && CONSTANT_CLASS_P (val)
292 && TREE_OVERFLOW (val)
293 && vrp_val_is_max (val));
296 /* Return whether VAL is a positive or negative overflow infinity. */
298 static inline bool
299 is_overflow_infinity (const_tree val)
301 return (needs_overflow_infinity (TREE_TYPE (val))
302 && CONSTANT_CLASS_P (val)
303 && TREE_OVERFLOW (val)
304 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
307 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
309 static inline bool
310 stmt_overflow_infinity (gimple stmt)
312 if (is_gimple_assign (stmt)
313 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
314 GIMPLE_SINGLE_RHS)
315 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
316 return false;
319 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
320 the same value with TREE_OVERFLOW clear. This can be used to avoid
321 confusing a regular value with an overflow value. */
323 static inline tree
324 avoid_overflow_infinity (tree val)
326 if (!is_overflow_infinity (val))
327 return val;
329 if (vrp_val_is_max (val))
330 return vrp_val_max (TREE_TYPE (val));
331 else
333 gcc_checking_assert (vrp_val_is_min (val));
334 return vrp_val_min (TREE_TYPE (val));
339 /* Return true if ARG is marked with the nonnull attribute in the
340 current function signature. */
342 static bool
343 nonnull_arg_p (const_tree arg)
345 tree t, attrs, fntype;
346 unsigned HOST_WIDE_INT arg_num;
348 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
350 /* The static chain decl is always non null. */
351 if (arg == cfun->static_chain_decl)
352 return true;
354 fntype = TREE_TYPE (current_function_decl);
355 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
357 /* If "nonnull" wasn't specified, we know nothing about the argument. */
358 if (attrs == NULL_TREE)
359 return false;
361 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
362 if (TREE_VALUE (attrs) == NULL_TREE)
363 return true;
365 /* Get the position number for ARG in the function signature. */
366 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
368 t = DECL_CHAIN (t), arg_num++)
370 if (t == arg)
371 break;
374 gcc_assert (t == arg);
376 /* Now see if ARG_NUM is mentioned in the nonnull list. */
377 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
379 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
380 return true;
383 return false;
387 /* Set value range VR to VR_VARYING. */
389 static inline void
390 set_value_range_to_varying (value_range_t *vr)
392 vr->type = VR_VARYING;
393 vr->min = vr->max = NULL_TREE;
394 if (vr->equiv)
395 bitmap_clear (vr->equiv);
399 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
401 static void
402 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
403 tree max, bitmap equiv)
405 #if defined ENABLE_CHECKING
406 /* Check the validity of the range. */
407 if (t == VR_RANGE || t == VR_ANTI_RANGE)
409 int cmp;
411 gcc_assert (min && max);
413 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
414 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
416 cmp = compare_values (min, max);
417 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
419 if (needs_overflow_infinity (TREE_TYPE (min)))
420 gcc_assert (!is_overflow_infinity (min)
421 || !is_overflow_infinity (max));
424 if (t == VR_UNDEFINED || t == VR_VARYING)
425 gcc_assert (min == NULL_TREE && max == NULL_TREE);
427 if (t == VR_UNDEFINED || t == VR_VARYING)
428 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
429 #endif
431 vr->type = t;
432 vr->min = min;
433 vr->max = max;
435 /* Since updating the equivalence set involves deep copying the
436 bitmaps, only do it if absolutely necessary. */
437 if (vr->equiv == NULL
438 && equiv != NULL)
439 vr->equiv = BITMAP_ALLOC (NULL);
441 if (equiv != vr->equiv)
443 if (equiv && !bitmap_empty_p (equiv))
444 bitmap_copy (vr->equiv, equiv);
445 else
446 bitmap_clear (vr->equiv);
451 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
452 This means adjusting T, MIN and MAX representing the case of a
453 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
454 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
455 In corner cases where MAX+1 or MIN-1 wraps this will fall back
456 to varying.
457 This routine exists to ease canonicalization in the case where we
458 extract ranges from var + CST op limit. */
460 static void
461 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
462 tree min, tree max, bitmap equiv)
464 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
465 if ((t != VR_RANGE
466 && t != VR_ANTI_RANGE)
467 || TREE_CODE (min) != INTEGER_CST
468 || TREE_CODE (max) != INTEGER_CST)
470 set_value_range (vr, t, min, max, equiv);
471 return;
474 /* Wrong order for min and max, to swap them and the VR type we need
475 to adjust them. */
476 if (tree_int_cst_lt (max, min))
478 tree one = build_int_cst (TREE_TYPE (min), 1);
479 tree tmp = int_const_binop (PLUS_EXPR, max, one);
480 max = int_const_binop (MINUS_EXPR, min, one);
481 min = tmp;
483 /* There's one corner case, if we had [C+1, C] before we now have
484 that again. But this represents an empty value range, so drop
485 to varying in this case. */
486 if (tree_int_cst_lt (max, min))
488 set_value_range_to_varying (vr);
489 return;
492 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
495 /* Anti-ranges that can be represented as ranges should be so. */
496 if (t == VR_ANTI_RANGE)
498 bool is_min = vrp_val_is_min (min);
499 bool is_max = vrp_val_is_max (max);
501 if (is_min && is_max)
503 /* We cannot deal with empty ranges, drop to varying. */
504 set_value_range_to_varying (vr);
505 return;
507 else if (is_min
508 /* As a special exception preserve non-null ranges. */
509 && !(TYPE_UNSIGNED (TREE_TYPE (min))
510 && integer_zerop (max)))
512 tree one = build_int_cst (TREE_TYPE (max), 1);
513 min = int_const_binop (PLUS_EXPR, max, one);
514 max = vrp_val_max (TREE_TYPE (max));
515 t = VR_RANGE;
517 else if (is_max)
519 tree one = build_int_cst (TREE_TYPE (min), 1);
520 max = int_const_binop (MINUS_EXPR, min, one);
521 min = vrp_val_min (TREE_TYPE (min));
522 t = VR_RANGE;
526 set_value_range (vr, t, min, max, equiv);
529 /* Copy value range FROM into value range TO. */
531 static inline void
532 copy_value_range (value_range_t *to, value_range_t *from)
534 set_value_range (to, from->type, from->min, from->max, from->equiv);
537 /* Set value range VR to a single value. This function is only called
538 with values we get from statements, and exists to clear the
539 TREE_OVERFLOW flag so that we don't think we have an overflow
540 infinity when we shouldn't. */
542 static inline void
543 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
545 gcc_assert (is_gimple_min_invariant (val));
546 val = avoid_overflow_infinity (val);
547 set_value_range (vr, VR_RANGE, val, val, equiv);
550 /* Set value range VR to a non-negative range of type TYPE.
551 OVERFLOW_INFINITY indicates whether to use an overflow infinity
552 rather than TYPE_MAX_VALUE; this should be true if we determine
553 that the range is nonnegative based on the assumption that signed
554 overflow does not occur. */
556 static inline void
557 set_value_range_to_nonnegative (value_range_t *vr, tree type,
558 bool overflow_infinity)
560 tree zero;
562 if (overflow_infinity && !supports_overflow_infinity (type))
564 set_value_range_to_varying (vr);
565 return;
568 zero = build_int_cst (type, 0);
569 set_value_range (vr, VR_RANGE, zero,
570 (overflow_infinity
571 ? positive_overflow_infinity (type)
572 : TYPE_MAX_VALUE (type)),
573 vr->equiv);
576 /* Set value range VR to a non-NULL range of type TYPE. */
578 static inline void
579 set_value_range_to_nonnull (value_range_t *vr, tree type)
581 tree zero = build_int_cst (type, 0);
582 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
586 /* Set value range VR to a NULL range of type TYPE. */
588 static inline void
589 set_value_range_to_null (value_range_t *vr, tree type)
591 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
595 /* Set value range VR to a range of a truthvalue of type TYPE. */
597 static inline void
598 set_value_range_to_truthvalue (value_range_t *vr, tree type)
600 if (TYPE_PRECISION (type) == 1)
601 set_value_range_to_varying (vr);
602 else
603 set_value_range (vr, VR_RANGE,
604 build_int_cst (type, 0), build_int_cst (type, 1),
605 vr->equiv);
609 /* Set value range VR to VR_UNDEFINED. */
611 static inline void
612 set_value_range_to_undefined (value_range_t *vr)
614 vr->type = VR_UNDEFINED;
615 vr->min = vr->max = NULL_TREE;
616 if (vr->equiv)
617 bitmap_clear (vr->equiv);
621 /* If abs (min) < abs (max), set VR to [-max, max], if
622 abs (min) >= abs (max), set VR to [-min, min]. */
624 static void
625 abs_extent_range (value_range_t *vr, tree min, tree max)
627 int cmp;
629 gcc_assert (TREE_CODE (min) == INTEGER_CST);
630 gcc_assert (TREE_CODE (max) == INTEGER_CST);
631 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
632 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
633 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
634 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
635 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
637 set_value_range_to_varying (vr);
638 return;
640 cmp = compare_values (min, max);
641 if (cmp == -1)
642 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
643 else if (cmp == 0 || cmp == 1)
645 max = min;
646 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
648 else
650 set_value_range_to_varying (vr);
651 return;
653 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
657 /* Return value range information for VAR.
659 If we have no values ranges recorded (ie, VRP is not running), then
660 return NULL. Otherwise create an empty range if none existed for VAR. */
662 static value_range_t *
663 get_value_range (const_tree var)
665 static const struct value_range_d vr_const_varying
666 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
667 value_range_t *vr;
668 tree sym;
669 unsigned ver = SSA_NAME_VERSION (var);
671 /* If we have no recorded ranges, then return NULL. */
672 if (! vr_value)
673 return NULL;
675 /* If we query the range for a new SSA name return an unmodifiable VARYING.
676 We should get here at most from the substitute-and-fold stage which
677 will never try to change values. */
678 if (ver >= num_vr_values)
679 return CONST_CAST (value_range_t *, &vr_const_varying);
681 vr = vr_value[ver];
682 if (vr)
683 return vr;
685 /* After propagation finished do not allocate new value-ranges. */
686 if (values_propagated)
687 return CONST_CAST (value_range_t *, &vr_const_varying);
689 /* Create a default value range. */
690 vr_value[ver] = vr = XCNEW (value_range_t);
692 /* Defer allocating the equivalence set. */
693 vr->equiv = NULL;
695 /* If VAR is a default definition of a parameter, the variable can
696 take any value in VAR's type. */
697 sym = SSA_NAME_VAR (var);
698 if (SSA_NAME_IS_DEFAULT_DEF (var)
699 && TREE_CODE (sym) == PARM_DECL)
701 /* Try to use the "nonnull" attribute to create ~[0, 0]
702 anti-ranges for pointers. Note that this is only valid with
703 default definitions of PARM_DECLs. */
704 if (POINTER_TYPE_P (TREE_TYPE (sym))
705 && nonnull_arg_p (sym))
706 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
707 else
708 set_value_range_to_varying (vr);
711 return vr;
714 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
716 static inline bool
717 vrp_operand_equal_p (const_tree val1, const_tree val2)
719 if (val1 == val2)
720 return true;
721 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
722 return false;
723 if (is_overflow_infinity (val1))
724 return is_overflow_infinity (val2);
725 return true;
728 /* Return true, if the bitmaps B1 and B2 are equal. */
730 static inline bool
731 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
733 return (b1 == b2
734 || ((!b1 || bitmap_empty_p (b1))
735 && (!b2 || bitmap_empty_p (b2)))
736 || (b1 && b2
737 && bitmap_equal_p (b1, b2)));
740 /* Update the value range and equivalence set for variable VAR to
741 NEW_VR. Return true if NEW_VR is different from VAR's previous
742 value.
744 NOTE: This function assumes that NEW_VR is a temporary value range
745 object created for the sole purpose of updating VAR's range. The
746 storage used by the equivalence set from NEW_VR will be freed by
747 this function. Do not call update_value_range when NEW_VR
748 is the range object associated with another SSA name. */
750 static inline bool
751 update_value_range (const_tree var, value_range_t *new_vr)
753 value_range_t *old_vr;
754 bool is_new;
756 /* Update the value range, if necessary. */
757 old_vr = get_value_range (var);
758 is_new = old_vr->type != new_vr->type
759 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
760 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
761 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
763 if (is_new)
764 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
765 new_vr->equiv);
767 BITMAP_FREE (new_vr->equiv);
769 return is_new;
773 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
774 point where equivalence processing can be turned on/off. */
776 static void
777 add_equivalence (bitmap *equiv, const_tree var)
779 unsigned ver = SSA_NAME_VERSION (var);
780 value_range_t *vr = vr_value[ver];
782 if (*equiv == NULL)
783 *equiv = BITMAP_ALLOC (NULL);
784 bitmap_set_bit (*equiv, ver);
785 if (vr && vr->equiv)
786 bitmap_ior_into (*equiv, vr->equiv);
790 /* Return true if VR is ~[0, 0]. */
792 static inline bool
793 range_is_nonnull (value_range_t *vr)
795 return vr->type == VR_ANTI_RANGE
796 && integer_zerop (vr->min)
797 && integer_zerop (vr->max);
801 /* Return true if VR is [0, 0]. */
803 static inline bool
804 range_is_null (value_range_t *vr)
806 return vr->type == VR_RANGE
807 && integer_zerop (vr->min)
808 && integer_zerop (vr->max);
811 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
812 a singleton. */
814 static inline bool
815 range_int_cst_p (value_range_t *vr)
817 return (vr->type == VR_RANGE
818 && TREE_CODE (vr->max) == INTEGER_CST
819 && TREE_CODE (vr->min) == INTEGER_CST
820 && !TREE_OVERFLOW (vr->max)
821 && !TREE_OVERFLOW (vr->min));
824 /* Return true if VR is a INTEGER_CST singleton. */
826 static inline bool
827 range_int_cst_singleton_p (value_range_t *vr)
829 return (range_int_cst_p (vr)
830 && tree_int_cst_equal (vr->min, vr->max));
833 /* Return true if value range VR involves at least one symbol. */
835 static inline bool
836 symbolic_range_p (value_range_t *vr)
838 return (!is_gimple_min_invariant (vr->min)
839 || !is_gimple_min_invariant (vr->max));
842 /* Return true if value range VR uses an overflow infinity. */
844 static inline bool
845 overflow_infinity_range_p (value_range_t *vr)
847 return (vr->type == VR_RANGE
848 && (is_overflow_infinity (vr->min)
849 || is_overflow_infinity (vr->max)));
852 /* Return false if we can not make a valid comparison based on VR;
853 this will be the case if it uses an overflow infinity and overflow
854 is not undefined (i.e., -fno-strict-overflow is in effect).
855 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
856 uses an overflow infinity. */
858 static bool
859 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
861 gcc_assert (vr->type == VR_RANGE);
862 if (is_overflow_infinity (vr->min))
864 *strict_overflow_p = true;
865 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
866 return false;
868 if (is_overflow_infinity (vr->max))
870 *strict_overflow_p = true;
871 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
872 return false;
874 return true;
878 /* Return true if the result of assignment STMT is know to be non-negative.
879 If the return value is based on the assumption that signed overflow is
880 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
881 *STRICT_OVERFLOW_P.*/
883 static bool
884 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
886 enum tree_code code = gimple_assign_rhs_code (stmt);
887 switch (get_gimple_rhs_class (code))
889 case GIMPLE_UNARY_RHS:
890 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
891 gimple_expr_type (stmt),
892 gimple_assign_rhs1 (stmt),
893 strict_overflow_p);
894 case GIMPLE_BINARY_RHS:
895 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
896 gimple_expr_type (stmt),
897 gimple_assign_rhs1 (stmt),
898 gimple_assign_rhs2 (stmt),
899 strict_overflow_p);
900 case GIMPLE_TERNARY_RHS:
901 return false;
902 case GIMPLE_SINGLE_RHS:
903 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
904 strict_overflow_p);
905 case GIMPLE_INVALID_RHS:
906 gcc_unreachable ();
907 default:
908 gcc_unreachable ();
912 /* Return true if return value of call STMT is know to be non-negative.
913 If the return value is based on the assumption that signed overflow is
914 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
915 *STRICT_OVERFLOW_P.*/
917 static bool
918 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
920 tree arg0 = gimple_call_num_args (stmt) > 0 ?
921 gimple_call_arg (stmt, 0) : NULL_TREE;
922 tree arg1 = gimple_call_num_args (stmt) > 1 ?
923 gimple_call_arg (stmt, 1) : NULL_TREE;
925 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
926 gimple_call_fndecl (stmt),
927 arg0,
928 arg1,
929 strict_overflow_p);
932 /* Return true if STMT is know to to compute a non-negative value.
933 If the return value is based on the assumption that signed overflow is
934 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
935 *STRICT_OVERFLOW_P.*/
937 static bool
938 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
940 switch (gimple_code (stmt))
942 case GIMPLE_ASSIGN:
943 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
944 case GIMPLE_CALL:
945 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
946 default:
947 gcc_unreachable ();
951 /* Return true if the result of assignment STMT is know to be non-zero.
952 If the return value is based on the assumption that signed overflow is
953 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
954 *STRICT_OVERFLOW_P.*/
956 static bool
957 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
959 enum tree_code code = gimple_assign_rhs_code (stmt);
960 switch (get_gimple_rhs_class (code))
962 case GIMPLE_UNARY_RHS:
963 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
964 gimple_expr_type (stmt),
965 gimple_assign_rhs1 (stmt),
966 strict_overflow_p);
967 case GIMPLE_BINARY_RHS:
968 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
969 gimple_expr_type (stmt),
970 gimple_assign_rhs1 (stmt),
971 gimple_assign_rhs2 (stmt),
972 strict_overflow_p);
973 case GIMPLE_TERNARY_RHS:
974 return false;
975 case GIMPLE_SINGLE_RHS:
976 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
977 strict_overflow_p);
978 case GIMPLE_INVALID_RHS:
979 gcc_unreachable ();
980 default:
981 gcc_unreachable ();
985 /* Return true if STMT is know to to compute a non-zero value.
986 If the return value is based on the assumption that signed overflow is
987 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
988 *STRICT_OVERFLOW_P.*/
990 static bool
991 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
993 switch (gimple_code (stmt))
995 case GIMPLE_ASSIGN:
996 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
997 case GIMPLE_CALL:
998 return gimple_alloca_call_p (stmt);
999 default:
1000 gcc_unreachable ();
1004 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1005 obtained so far. */
1007 static bool
1008 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
1010 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1011 return true;
1013 /* If we have an expression of the form &X->a, then the expression
1014 is nonnull if X is nonnull. */
1015 if (is_gimple_assign (stmt)
1016 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1018 tree expr = gimple_assign_rhs1 (stmt);
1019 tree base = get_base_address (TREE_OPERAND (expr, 0));
1021 if (base != NULL_TREE
1022 && TREE_CODE (base) == MEM_REF
1023 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1025 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
1026 if (range_is_nonnull (vr))
1027 return true;
1031 return false;
1034 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1035 a gimple invariant, or SSA_NAME +- CST. */
1037 static bool
1038 valid_value_p (tree expr)
1040 if (TREE_CODE (expr) == SSA_NAME)
1041 return true;
1043 if (TREE_CODE (expr) == PLUS_EXPR
1044 || TREE_CODE (expr) == MINUS_EXPR)
1045 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1046 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1048 return is_gimple_min_invariant (expr);
1051 /* Return
1052 1 if VAL < VAL2
1053 0 if !(VAL < VAL2)
1054 -2 if those are incomparable. */
1055 static inline int
1056 operand_less_p (tree val, tree val2)
1058 /* LT is folded faster than GE and others. Inline the common case. */
1059 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1061 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1062 return INT_CST_LT_UNSIGNED (val, val2);
1063 else
1065 if (INT_CST_LT (val, val2))
1066 return 1;
1069 else
1071 tree tcmp;
1073 fold_defer_overflow_warnings ();
1075 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1077 fold_undefer_and_ignore_overflow_warnings ();
1079 if (!tcmp
1080 || TREE_CODE (tcmp) != INTEGER_CST)
1081 return -2;
1083 if (!integer_zerop (tcmp))
1084 return 1;
1087 /* val >= val2, not considering overflow infinity. */
1088 if (is_negative_overflow_infinity (val))
1089 return is_negative_overflow_infinity (val2) ? 0 : 1;
1090 else if (is_positive_overflow_infinity (val2))
1091 return is_positive_overflow_infinity (val) ? 0 : 1;
1093 return 0;
1096 /* Compare two values VAL1 and VAL2. Return
1098 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1099 -1 if VAL1 < VAL2,
1100 0 if VAL1 == VAL2,
1101 +1 if VAL1 > VAL2, and
1102 +2 if VAL1 != VAL2
1104 This is similar to tree_int_cst_compare but supports pointer values
1105 and values that cannot be compared at compile time.
1107 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1108 true if the return value is only valid if we assume that signed
1109 overflow is undefined. */
1111 static int
1112 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1114 if (val1 == val2)
1115 return 0;
1117 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1118 both integers. */
1119 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1120 == POINTER_TYPE_P (TREE_TYPE (val2)));
1121 /* Convert the two values into the same type. This is needed because
1122 sizetype causes sign extension even for unsigned types. */
1123 val2 = fold_convert (TREE_TYPE (val1), val2);
1124 STRIP_USELESS_TYPE_CONVERSION (val2);
1126 if ((TREE_CODE (val1) == SSA_NAME
1127 || TREE_CODE (val1) == PLUS_EXPR
1128 || TREE_CODE (val1) == MINUS_EXPR)
1129 && (TREE_CODE (val2) == SSA_NAME
1130 || TREE_CODE (val2) == PLUS_EXPR
1131 || TREE_CODE (val2) == MINUS_EXPR))
1133 tree n1, c1, n2, c2;
1134 enum tree_code code1, code2;
1136 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1137 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1138 same name, return -2. */
1139 if (TREE_CODE (val1) == SSA_NAME)
1141 code1 = SSA_NAME;
1142 n1 = val1;
1143 c1 = NULL_TREE;
1145 else
1147 code1 = TREE_CODE (val1);
1148 n1 = TREE_OPERAND (val1, 0);
1149 c1 = TREE_OPERAND (val1, 1);
1150 if (tree_int_cst_sgn (c1) == -1)
1152 if (is_negative_overflow_infinity (c1))
1153 return -2;
1154 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1155 if (!c1)
1156 return -2;
1157 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1161 if (TREE_CODE (val2) == SSA_NAME)
1163 code2 = SSA_NAME;
1164 n2 = val2;
1165 c2 = NULL_TREE;
1167 else
1169 code2 = TREE_CODE (val2);
1170 n2 = TREE_OPERAND (val2, 0);
1171 c2 = TREE_OPERAND (val2, 1);
1172 if (tree_int_cst_sgn (c2) == -1)
1174 if (is_negative_overflow_infinity (c2))
1175 return -2;
1176 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1177 if (!c2)
1178 return -2;
1179 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1183 /* Both values must use the same name. */
1184 if (n1 != n2)
1185 return -2;
1187 if (code1 == SSA_NAME
1188 && code2 == SSA_NAME)
1189 /* NAME == NAME */
1190 return 0;
1192 /* If overflow is defined we cannot simplify more. */
1193 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1194 return -2;
1196 if (strict_overflow_p != NULL
1197 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1198 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1199 *strict_overflow_p = true;
1201 if (code1 == SSA_NAME)
1203 if (code2 == PLUS_EXPR)
1204 /* NAME < NAME + CST */
1205 return -1;
1206 else if (code2 == MINUS_EXPR)
1207 /* NAME > NAME - CST */
1208 return 1;
1210 else if (code1 == PLUS_EXPR)
1212 if (code2 == SSA_NAME)
1213 /* NAME + CST > NAME */
1214 return 1;
1215 else if (code2 == PLUS_EXPR)
1216 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1217 return compare_values_warnv (c1, c2, strict_overflow_p);
1218 else if (code2 == MINUS_EXPR)
1219 /* NAME + CST1 > NAME - CST2 */
1220 return 1;
1222 else if (code1 == MINUS_EXPR)
1224 if (code2 == SSA_NAME)
1225 /* NAME - CST < NAME */
1226 return -1;
1227 else if (code2 == PLUS_EXPR)
1228 /* NAME - CST1 < NAME + CST2 */
1229 return -1;
1230 else if (code2 == MINUS_EXPR)
1231 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1232 C1 and C2 are swapped in the call to compare_values. */
1233 return compare_values_warnv (c2, c1, strict_overflow_p);
1236 gcc_unreachable ();
1239 /* We cannot compare non-constants. */
1240 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1241 return -2;
1243 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1245 /* We cannot compare overflowed values, except for overflow
1246 infinities. */
1247 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1249 if (strict_overflow_p != NULL)
1250 *strict_overflow_p = true;
1251 if (is_negative_overflow_infinity (val1))
1252 return is_negative_overflow_infinity (val2) ? 0 : -1;
1253 else if (is_negative_overflow_infinity (val2))
1254 return 1;
1255 else if (is_positive_overflow_infinity (val1))
1256 return is_positive_overflow_infinity (val2) ? 0 : 1;
1257 else if (is_positive_overflow_infinity (val2))
1258 return -1;
1259 return -2;
1262 return tree_int_cst_compare (val1, val2);
1264 else
1266 tree t;
1268 /* First see if VAL1 and VAL2 are not the same. */
1269 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1270 return 0;
1272 /* If VAL1 is a lower address than VAL2, return -1. */
1273 if (operand_less_p (val1, val2) == 1)
1274 return -1;
1276 /* If VAL1 is a higher address than VAL2, return +1. */
1277 if (operand_less_p (val2, val1) == 1)
1278 return 1;
1280 /* If VAL1 is different than VAL2, return +2.
1281 For integer constants we either have already returned -1 or 1
1282 or they are equivalent. We still might succeed in proving
1283 something about non-trivial operands. */
1284 if (TREE_CODE (val1) != INTEGER_CST
1285 || TREE_CODE (val2) != INTEGER_CST)
1287 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1288 if (t && integer_onep (t))
1289 return 2;
1292 return -2;
1296 /* Compare values like compare_values_warnv, but treat comparisons of
1297 nonconstants which rely on undefined overflow as incomparable. */
1299 static int
1300 compare_values (tree val1, tree val2)
1302 bool sop;
1303 int ret;
1305 sop = false;
1306 ret = compare_values_warnv (val1, val2, &sop);
1307 if (sop
1308 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1309 ret = -2;
1310 return ret;
1314 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1315 0 if VAL is not inside VR,
1316 -2 if we cannot tell either way.
1318 FIXME, the current semantics of this functions are a bit quirky
1319 when taken in the context of VRP. In here we do not care
1320 about VR's type. If VR is the anti-range ~[3, 5] the call
1321 value_inside_range (4, VR) will return 1.
1323 This is counter-intuitive in a strict sense, but the callers
1324 currently expect this. They are calling the function
1325 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1326 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1327 themselves.
1329 This also applies to value_ranges_intersect_p and
1330 range_includes_zero_p. The semantics of VR_RANGE and
1331 VR_ANTI_RANGE should be encoded here, but that also means
1332 adapting the users of these functions to the new semantics.
1334 Benchmark compile/20001226-1.c compilation time after changing this
1335 function. */
1337 static inline int
1338 value_inside_range (tree val, value_range_t * vr)
1340 int cmp1, cmp2;
1342 cmp1 = operand_less_p (val, vr->min);
1343 if (cmp1 == -2)
1344 return -2;
1345 if (cmp1 == 1)
1346 return 0;
1348 cmp2 = operand_less_p (vr->max, val);
1349 if (cmp2 == -2)
1350 return -2;
1352 return !cmp2;
1356 /* Return true if value ranges VR0 and VR1 have a non-empty
1357 intersection.
1359 Benchmark compile/20001226-1.c compilation time after changing this
1360 function.
1363 static inline bool
1364 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1366 /* The value ranges do not intersect if the maximum of the first range is
1367 less than the minimum of the second range or vice versa.
1368 When those relations are unknown, we can't do any better. */
1369 if (operand_less_p (vr0->max, vr1->min) != 0)
1370 return false;
1371 if (operand_less_p (vr1->max, vr0->min) != 0)
1372 return false;
1373 return true;
1377 /* Return true if VR includes the value zero, false otherwise. FIXME,
1378 currently this will return false for an anti-range like ~[-4, 3].
1379 This will be wrong when the semantics of value_inside_range are
1380 modified (currently the users of this function expect these
1381 semantics). */
1383 static inline bool
1384 range_includes_zero_p (value_range_t *vr)
1386 tree zero;
1388 gcc_assert (vr->type != VR_UNDEFINED
1389 && vr->type != VR_VARYING
1390 && !symbolic_range_p (vr));
1392 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1393 return (value_inside_range (zero, vr) == 1);
1396 /* Return true if *VR is know to only contain nonnegative values. */
1398 static inline bool
1399 value_range_nonnegative_p (value_range_t *vr)
1401 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1402 which would return a useful value should be encoded as a
1403 VR_RANGE. */
1404 if (vr->type == VR_RANGE)
1406 int result = compare_values (vr->min, integer_zero_node);
1407 return (result == 0 || result == 1);
1410 return false;
1413 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1414 false otherwise or if no value range information is available. */
1416 bool
1417 ssa_name_nonnegative_p (const_tree t)
1419 value_range_t *vr = get_value_range (t);
1421 if (INTEGRAL_TYPE_P (t)
1422 && TYPE_UNSIGNED (t))
1423 return true;
1425 if (!vr)
1426 return false;
1428 return value_range_nonnegative_p (vr);
1431 /* If *VR has a value rante that is a single constant value return that,
1432 otherwise return NULL_TREE. */
1434 static tree
1435 value_range_constant_singleton (value_range_t *vr)
1437 if (vr->type == VR_RANGE
1438 && operand_equal_p (vr->min, vr->max, 0)
1439 && is_gimple_min_invariant (vr->min))
1440 return vr->min;
1442 return NULL_TREE;
1445 /* If OP has a value range with a single constant value return that,
1446 otherwise return NULL_TREE. This returns OP itself if OP is a
1447 constant. */
1449 static tree
1450 op_with_constant_singleton_value_range (tree op)
1452 if (is_gimple_min_invariant (op))
1453 return op;
1455 if (TREE_CODE (op) != SSA_NAME)
1456 return NULL_TREE;
1458 return value_range_constant_singleton (get_value_range (op));
1461 /* Return true if op is in a boolean [0, 1] value-range. */
1463 static bool
1464 op_with_boolean_value_range_p (tree op)
1466 value_range_t *vr;
1468 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1469 return true;
1471 if (integer_zerop (op)
1472 || integer_onep (op))
1473 return true;
1475 if (TREE_CODE (op) != SSA_NAME)
1476 return false;
1478 vr = get_value_range (op);
1479 return (vr->type == VR_RANGE
1480 && integer_zerop (vr->min)
1481 && integer_onep (vr->max));
1484 /* Extract value range information from an ASSERT_EXPR EXPR and store
1485 it in *VR_P. */
1487 static void
1488 extract_range_from_assert (value_range_t *vr_p, tree expr)
1490 tree var, cond, limit, min, max, type;
1491 value_range_t *var_vr, *limit_vr;
1492 enum tree_code cond_code;
1494 var = ASSERT_EXPR_VAR (expr);
1495 cond = ASSERT_EXPR_COND (expr);
1497 gcc_assert (COMPARISON_CLASS_P (cond));
1499 /* Find VAR in the ASSERT_EXPR conditional. */
1500 if (var == TREE_OPERAND (cond, 0)
1501 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1502 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1504 /* If the predicate is of the form VAR COMP LIMIT, then we just
1505 take LIMIT from the RHS and use the same comparison code. */
1506 cond_code = TREE_CODE (cond);
1507 limit = TREE_OPERAND (cond, 1);
1508 cond = TREE_OPERAND (cond, 0);
1510 else
1512 /* If the predicate is of the form LIMIT COMP VAR, then we need
1513 to flip around the comparison code to create the proper range
1514 for VAR. */
1515 cond_code = swap_tree_comparison (TREE_CODE (cond));
1516 limit = TREE_OPERAND (cond, 0);
1517 cond = TREE_OPERAND (cond, 1);
1520 limit = avoid_overflow_infinity (limit);
1522 type = TREE_TYPE (limit);
1523 gcc_assert (limit != var);
1525 /* For pointer arithmetic, we only keep track of pointer equality
1526 and inequality. */
1527 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1529 set_value_range_to_varying (vr_p);
1530 return;
1533 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1534 try to use LIMIT's range to avoid creating symbolic ranges
1535 unnecessarily. */
1536 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1538 /* LIMIT's range is only interesting if it has any useful information. */
1539 if (limit_vr
1540 && (limit_vr->type == VR_UNDEFINED
1541 || limit_vr->type == VR_VARYING
1542 || symbolic_range_p (limit_vr)))
1543 limit_vr = NULL;
1545 /* Initially, the new range has the same set of equivalences of
1546 VAR's range. This will be revised before returning the final
1547 value. Since assertions may be chained via mutually exclusive
1548 predicates, we will need to trim the set of equivalences before
1549 we are done. */
1550 gcc_assert (vr_p->equiv == NULL);
1551 add_equivalence (&vr_p->equiv, var);
1553 /* Extract a new range based on the asserted comparison for VAR and
1554 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1555 will only use it for equality comparisons (EQ_EXPR). For any
1556 other kind of assertion, we cannot derive a range from LIMIT's
1557 anti-range that can be used to describe the new range. For
1558 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1559 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1560 no single range for x_2 that could describe LE_EXPR, so we might
1561 as well build the range [b_4, +INF] for it.
1562 One special case we handle is extracting a range from a
1563 range test encoded as (unsigned)var + CST <= limit. */
1564 if (TREE_CODE (cond) == NOP_EXPR
1565 || TREE_CODE (cond) == PLUS_EXPR)
1567 if (TREE_CODE (cond) == PLUS_EXPR)
1569 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1570 TREE_OPERAND (cond, 1));
1571 max = int_const_binop (PLUS_EXPR, limit, min);
1572 cond = TREE_OPERAND (cond, 0);
1574 else
1576 min = build_int_cst (TREE_TYPE (var), 0);
1577 max = limit;
1580 /* Make sure to not set TREE_OVERFLOW on the final type
1581 conversion. We are willingly interpreting large positive
1582 unsigned values as negative singed values here. */
1583 min = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (min),
1584 0, false);
1585 max = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (max),
1586 0, false);
1588 /* We can transform a max, min range to an anti-range or
1589 vice-versa. Use set_and_canonicalize_value_range which does
1590 this for us. */
1591 if (cond_code == LE_EXPR)
1592 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1593 min, max, vr_p->equiv);
1594 else if (cond_code == GT_EXPR)
1595 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1596 min, max, vr_p->equiv);
1597 else
1598 gcc_unreachable ();
1600 else if (cond_code == EQ_EXPR)
1602 enum value_range_type range_type;
1604 if (limit_vr)
1606 range_type = limit_vr->type;
1607 min = limit_vr->min;
1608 max = limit_vr->max;
1610 else
1612 range_type = VR_RANGE;
1613 min = limit;
1614 max = limit;
1617 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1619 /* When asserting the equality VAR == LIMIT and LIMIT is another
1620 SSA name, the new range will also inherit the equivalence set
1621 from LIMIT. */
1622 if (TREE_CODE (limit) == SSA_NAME)
1623 add_equivalence (&vr_p->equiv, limit);
1625 else if (cond_code == NE_EXPR)
1627 /* As described above, when LIMIT's range is an anti-range and
1628 this assertion is an inequality (NE_EXPR), then we cannot
1629 derive anything from the anti-range. For instance, if
1630 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1631 not imply that VAR's range is [0, 0]. So, in the case of
1632 anti-ranges, we just assert the inequality using LIMIT and
1633 not its anti-range.
1635 If LIMIT_VR is a range, we can only use it to build a new
1636 anti-range if LIMIT_VR is a single-valued range. For
1637 instance, if LIMIT_VR is [0, 1], the predicate
1638 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1639 Rather, it means that for value 0 VAR should be ~[0, 0]
1640 and for value 1, VAR should be ~[1, 1]. We cannot
1641 represent these ranges.
1643 The only situation in which we can build a valid
1644 anti-range is when LIMIT_VR is a single-valued range
1645 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1646 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1647 if (limit_vr
1648 && limit_vr->type == VR_RANGE
1649 && compare_values (limit_vr->min, limit_vr->max) == 0)
1651 min = limit_vr->min;
1652 max = limit_vr->max;
1654 else
1656 /* In any other case, we cannot use LIMIT's range to build a
1657 valid anti-range. */
1658 min = max = limit;
1661 /* If MIN and MAX cover the whole range for their type, then
1662 just use the original LIMIT. */
1663 if (INTEGRAL_TYPE_P (type)
1664 && vrp_val_is_min (min)
1665 && vrp_val_is_max (max))
1666 min = max = limit;
1668 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1670 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1672 min = TYPE_MIN_VALUE (type);
1674 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1675 max = limit;
1676 else
1678 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1679 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1680 LT_EXPR. */
1681 max = limit_vr->max;
1684 /* If the maximum value forces us to be out of bounds, simply punt.
1685 It would be pointless to try and do anything more since this
1686 all should be optimized away above us. */
1687 if ((cond_code == LT_EXPR
1688 && compare_values (max, min) == 0)
1689 || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
1690 set_value_range_to_varying (vr_p);
1691 else
1693 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1694 if (cond_code == LT_EXPR)
1696 tree one = build_int_cst (type, 1);
1697 max = fold_build2 (MINUS_EXPR, type, max, one);
1698 if (EXPR_P (max))
1699 TREE_NO_WARNING (max) = 1;
1702 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1705 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1707 max = TYPE_MAX_VALUE (type);
1709 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1710 min = limit;
1711 else
1713 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1714 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1715 GT_EXPR. */
1716 min = limit_vr->min;
1719 /* If the minimum value forces us to be out of bounds, simply punt.
1720 It would be pointless to try and do anything more since this
1721 all should be optimized away above us. */
1722 if ((cond_code == GT_EXPR
1723 && compare_values (min, max) == 0)
1724 || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
1725 set_value_range_to_varying (vr_p);
1726 else
1728 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1729 if (cond_code == GT_EXPR)
1731 tree one = build_int_cst (type, 1);
1732 min = fold_build2 (PLUS_EXPR, type, min, one);
1733 if (EXPR_P (min))
1734 TREE_NO_WARNING (min) = 1;
1737 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1740 else
1741 gcc_unreachable ();
1743 /* If VAR already had a known range, it may happen that the new
1744 range we have computed and VAR's range are not compatible. For
1745 instance,
1747 if (p_5 == NULL)
1748 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1749 x_7 = p_6->fld;
1750 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1752 While the above comes from a faulty program, it will cause an ICE
1753 later because p_8 and p_6 will have incompatible ranges and at
1754 the same time will be considered equivalent. A similar situation
1755 would arise from
1757 if (i_5 > 10)
1758 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1759 if (i_5 < 5)
1760 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1762 Again i_6 and i_7 will have incompatible ranges. It would be
1763 pointless to try and do anything with i_7's range because
1764 anything dominated by 'if (i_5 < 5)' will be optimized away.
1765 Note, due to the wa in which simulation proceeds, the statement
1766 i_7 = ASSERT_EXPR <...> we would never be visited because the
1767 conditional 'if (i_5 < 5)' always evaluates to false. However,
1768 this extra check does not hurt and may protect against future
1769 changes to VRP that may get into a situation similar to the
1770 NULL pointer dereference example.
1772 Note that these compatibility tests are only needed when dealing
1773 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1774 are both anti-ranges, they will always be compatible, because two
1775 anti-ranges will always have a non-empty intersection. */
1777 var_vr = get_value_range (var);
1779 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1780 ranges or anti-ranges. */
1781 if (vr_p->type == VR_VARYING
1782 || vr_p->type == VR_UNDEFINED
1783 || var_vr->type == VR_VARYING
1784 || var_vr->type == VR_UNDEFINED
1785 || symbolic_range_p (vr_p)
1786 || symbolic_range_p (var_vr))
1787 return;
1789 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1791 /* If the two ranges have a non-empty intersection, we can
1792 refine the resulting range. Since the assert expression
1793 creates an equivalency and at the same time it asserts a
1794 predicate, we can take the intersection of the two ranges to
1795 get better precision. */
1796 if (value_ranges_intersect_p (var_vr, vr_p))
1798 /* Use the larger of the two minimums. */
1799 if (compare_values (vr_p->min, var_vr->min) == -1)
1800 min = var_vr->min;
1801 else
1802 min = vr_p->min;
1804 /* Use the smaller of the two maximums. */
1805 if (compare_values (vr_p->max, var_vr->max) == 1)
1806 max = var_vr->max;
1807 else
1808 max = vr_p->max;
1810 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1812 else
1814 /* The two ranges do not intersect, set the new range to
1815 VARYING, because we will not be able to do anything
1816 meaningful with it. */
1817 set_value_range_to_varying (vr_p);
1820 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1821 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1823 /* A range and an anti-range will cancel each other only if
1824 their ends are the same. For instance, in the example above,
1825 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1826 so VR_P should be set to VR_VARYING. */
1827 if (compare_values (var_vr->min, vr_p->min) == 0
1828 && compare_values (var_vr->max, vr_p->max) == 0)
1829 set_value_range_to_varying (vr_p);
1830 else
1832 tree min, max, anti_min, anti_max, real_min, real_max;
1833 int cmp;
1835 /* We want to compute the logical AND of the two ranges;
1836 there are three cases to consider.
1839 1. The VR_ANTI_RANGE range is completely within the
1840 VR_RANGE and the endpoints of the ranges are
1841 different. In that case the resulting range
1842 should be whichever range is more precise.
1843 Typically that will be the VR_RANGE.
1845 2. The VR_ANTI_RANGE is completely disjoint from
1846 the VR_RANGE. In this case the resulting range
1847 should be the VR_RANGE.
1849 3. There is some overlap between the VR_ANTI_RANGE
1850 and the VR_RANGE.
1852 3a. If the high limit of the VR_ANTI_RANGE resides
1853 within the VR_RANGE, then the result is a new
1854 VR_RANGE starting at the high limit of the
1855 VR_ANTI_RANGE + 1 and extending to the
1856 high limit of the original VR_RANGE.
1858 3b. If the low limit of the VR_ANTI_RANGE resides
1859 within the VR_RANGE, then the result is a new
1860 VR_RANGE starting at the low limit of the original
1861 VR_RANGE and extending to the low limit of the
1862 VR_ANTI_RANGE - 1. */
1863 if (vr_p->type == VR_ANTI_RANGE)
1865 anti_min = vr_p->min;
1866 anti_max = vr_p->max;
1867 real_min = var_vr->min;
1868 real_max = var_vr->max;
1870 else
1872 anti_min = var_vr->min;
1873 anti_max = var_vr->max;
1874 real_min = vr_p->min;
1875 real_max = vr_p->max;
1879 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1880 not including any endpoints. */
1881 if (compare_values (anti_max, real_max) == -1
1882 && compare_values (anti_min, real_min) == 1)
1884 /* If the range is covering the whole valid range of
1885 the type keep the anti-range. */
1886 if (!vrp_val_is_min (real_min)
1887 || !vrp_val_is_max (real_max))
1888 set_value_range (vr_p, VR_RANGE, real_min,
1889 real_max, vr_p->equiv);
1891 /* Case 2, VR_ANTI_RANGE completely disjoint from
1892 VR_RANGE. */
1893 else if (compare_values (anti_min, real_max) == 1
1894 || compare_values (anti_max, real_min) == -1)
1896 set_value_range (vr_p, VR_RANGE, real_min,
1897 real_max, vr_p->equiv);
1899 /* Case 3a, the anti-range extends into the low
1900 part of the real range. Thus creating a new
1901 low for the real range. */
1902 else if (((cmp = compare_values (anti_max, real_min)) == 1
1903 || cmp == 0)
1904 && compare_values (anti_max, real_max) == -1)
1906 gcc_assert (!is_positive_overflow_infinity (anti_max));
1907 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1908 && vrp_val_is_max (anti_max))
1910 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1912 set_value_range_to_varying (vr_p);
1913 return;
1915 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1917 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1918 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1919 anti_max,
1920 build_int_cst (TREE_TYPE (var_vr->min), 1));
1921 else
1922 min = fold_build_pointer_plus_hwi (anti_max, 1);
1923 max = real_max;
1924 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1926 /* Case 3b, the anti-range extends into the high
1927 part of the real range. Thus creating a new
1928 higher for the real range. */
1929 else if (compare_values (anti_min, real_min) == 1
1930 && ((cmp = compare_values (anti_min, real_max)) == -1
1931 || cmp == 0))
1933 gcc_assert (!is_negative_overflow_infinity (anti_min));
1934 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1935 && vrp_val_is_min (anti_min))
1937 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1939 set_value_range_to_varying (vr_p);
1940 return;
1942 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1944 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1945 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1946 anti_min,
1947 build_int_cst (TREE_TYPE (var_vr->min), 1));
1948 else
1949 max = fold_build_pointer_plus_hwi (anti_min, -1);
1950 min = real_min;
1951 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1958 /* Extract range information from SSA name VAR and store it in VR. If
1959 VAR has an interesting range, use it. Otherwise, create the
1960 range [VAR, VAR] and return it. This is useful in situations where
1961 we may have conditionals testing values of VARYING names. For
1962 instance,
1964 x_3 = y_5;
1965 if (x_3 > y_5)
1968 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1969 always false. */
1971 static void
1972 extract_range_from_ssa_name (value_range_t *vr, tree var)
1974 value_range_t *var_vr = get_value_range (var);
1976 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1977 copy_value_range (vr, var_vr);
1978 else
1979 set_value_range (vr, VR_RANGE, var, var, NULL);
1981 add_equivalence (&vr->equiv, var);
1985 /* Wrapper around int_const_binop. If the operation overflows and we
1986 are not using wrapping arithmetic, then adjust the result to be
1987 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1988 NULL_TREE if we need to use an overflow infinity representation but
1989 the type does not support it. */
1991 static tree
1992 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1994 tree res;
1996 res = int_const_binop (code, val1, val2);
1998 /* If we are using unsigned arithmetic, operate symbolically
1999 on -INF and +INF as int_const_binop only handles signed overflow. */
2000 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
2002 int checkz = compare_values (res, val1);
2003 bool overflow = false;
2005 /* Ensure that res = val1 [+*] val2 >= val1
2006 or that res = val1 - val2 <= val1. */
2007 if ((code == PLUS_EXPR
2008 && !(checkz == 1 || checkz == 0))
2009 || (code == MINUS_EXPR
2010 && !(checkz == 0 || checkz == -1)))
2012 overflow = true;
2014 /* Checking for multiplication overflow is done by dividing the
2015 output of the multiplication by the first input of the
2016 multiplication. If the result of that division operation is
2017 not equal to the second input of the multiplication, then the
2018 multiplication overflowed. */
2019 else if (code == MULT_EXPR && !integer_zerop (val1))
2021 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
2022 res,
2023 val1);
2024 int check = compare_values (tmp, val2);
2026 if (check != 0)
2027 overflow = true;
2030 if (overflow)
2032 res = copy_node (res);
2033 TREE_OVERFLOW (res) = 1;
2037 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
2038 /* If the singed operation wraps then int_const_binop has done
2039 everything we want. */
2041 else if ((TREE_OVERFLOW (res)
2042 && !TREE_OVERFLOW (val1)
2043 && !TREE_OVERFLOW (val2))
2044 || is_overflow_infinity (val1)
2045 || is_overflow_infinity (val2))
2047 /* If the operation overflowed but neither VAL1 nor VAL2 are
2048 overflown, return -INF or +INF depending on the operation
2049 and the combination of signs of the operands. */
2050 int sgn1 = tree_int_cst_sgn (val1);
2051 int sgn2 = tree_int_cst_sgn (val2);
2053 if (needs_overflow_infinity (TREE_TYPE (res))
2054 && !supports_overflow_infinity (TREE_TYPE (res)))
2055 return NULL_TREE;
2057 /* We have to punt on adding infinities of different signs,
2058 since we can't tell what the sign of the result should be.
2059 Likewise for subtracting infinities of the same sign. */
2060 if (((code == PLUS_EXPR && sgn1 != sgn2)
2061 || (code == MINUS_EXPR && sgn1 == sgn2))
2062 && is_overflow_infinity (val1)
2063 && is_overflow_infinity (val2))
2064 return NULL_TREE;
2066 /* Don't try to handle division or shifting of infinities. */
2067 if ((code == TRUNC_DIV_EXPR
2068 || code == FLOOR_DIV_EXPR
2069 || code == CEIL_DIV_EXPR
2070 || code == EXACT_DIV_EXPR
2071 || code == ROUND_DIV_EXPR
2072 || code == RSHIFT_EXPR)
2073 && (is_overflow_infinity (val1)
2074 || is_overflow_infinity (val2)))
2075 return NULL_TREE;
2077 /* Notice that we only need to handle the restricted set of
2078 operations handled by extract_range_from_binary_expr.
2079 Among them, only multiplication, addition and subtraction
2080 can yield overflow without overflown operands because we
2081 are working with integral types only... except in the
2082 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2083 for division too. */
2085 /* For multiplication, the sign of the overflow is given
2086 by the comparison of the signs of the operands. */
2087 if ((code == MULT_EXPR && sgn1 == sgn2)
2088 /* For addition, the operands must be of the same sign
2089 to yield an overflow. Its sign is therefore that
2090 of one of the operands, for example the first. For
2091 infinite operands X + -INF is negative, not positive. */
2092 || (code == PLUS_EXPR
2093 && (sgn1 >= 0
2094 ? !is_negative_overflow_infinity (val2)
2095 : is_positive_overflow_infinity (val2)))
2096 /* For subtraction, non-infinite operands must be of
2097 different signs to yield an overflow. Its sign is
2098 therefore that of the first operand or the opposite of
2099 that of the second operand. A first operand of 0 counts
2100 as positive here, for the corner case 0 - (-INF), which
2101 overflows, but must yield +INF. For infinite operands 0
2102 - INF is negative, not positive. */
2103 || (code == MINUS_EXPR
2104 && (sgn1 >= 0
2105 ? !is_positive_overflow_infinity (val2)
2106 : is_negative_overflow_infinity (val2)))
2107 /* We only get in here with positive shift count, so the
2108 overflow direction is the same as the sign of val1.
2109 Actually rshift does not overflow at all, but we only
2110 handle the case of shifting overflowed -INF and +INF. */
2111 || (code == RSHIFT_EXPR
2112 && sgn1 >= 0)
2113 /* For division, the only case is -INF / -1 = +INF. */
2114 || code == TRUNC_DIV_EXPR
2115 || code == FLOOR_DIV_EXPR
2116 || code == CEIL_DIV_EXPR
2117 || code == EXACT_DIV_EXPR
2118 || code == ROUND_DIV_EXPR)
2119 return (needs_overflow_infinity (TREE_TYPE (res))
2120 ? positive_overflow_infinity (TREE_TYPE (res))
2121 : TYPE_MAX_VALUE (TREE_TYPE (res)));
2122 else
2123 return (needs_overflow_infinity (TREE_TYPE (res))
2124 ? negative_overflow_infinity (TREE_TYPE (res))
2125 : TYPE_MIN_VALUE (TREE_TYPE (res)));
2128 return res;
2132 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
2133 bitmask if some bit is unset, it means for all numbers in the range
2134 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
2135 bitmask if some bit is set, it means for all numbers in the range
2136 the bit is 1, otherwise it might be 0 or 1. */
2138 static bool
2139 zero_nonzero_bits_from_vr (value_range_t *vr,
2140 double_int *may_be_nonzero,
2141 double_int *must_be_nonzero)
2143 *may_be_nonzero = double_int_minus_one;
2144 *must_be_nonzero = double_int_zero;
2145 if (!range_int_cst_p (vr))
2146 return false;
2148 if (range_int_cst_singleton_p (vr))
2150 *may_be_nonzero = tree_to_double_int (vr->min);
2151 *must_be_nonzero = *may_be_nonzero;
2153 else if (tree_int_cst_sgn (vr->min) >= 0
2154 || tree_int_cst_sgn (vr->max) < 0)
2156 double_int dmin = tree_to_double_int (vr->min);
2157 double_int dmax = tree_to_double_int (vr->max);
2158 double_int xor_mask = double_int_xor (dmin, dmax);
2159 *may_be_nonzero = double_int_ior (dmin, dmax);
2160 *must_be_nonzero = double_int_and (dmin, dmax);
2161 if (xor_mask.high != 0)
2163 unsigned HOST_WIDE_INT mask
2164 = ((unsigned HOST_WIDE_INT) 1
2165 << floor_log2 (xor_mask.high)) - 1;
2166 may_be_nonzero->low = ALL_ONES;
2167 may_be_nonzero->high |= mask;
2168 must_be_nonzero->low = 0;
2169 must_be_nonzero->high &= ~mask;
2171 else if (xor_mask.low != 0)
2173 unsigned HOST_WIDE_INT mask
2174 = ((unsigned HOST_WIDE_INT) 1
2175 << floor_log2 (xor_mask.low)) - 1;
2176 may_be_nonzero->low |= mask;
2177 must_be_nonzero->low &= ~mask;
2181 return true;
2184 /* Helper to extract a value-range *VR for a multiplicative operation
2185 *VR0 CODE *VR1. */
2187 static void
2188 extract_range_from_multiplicative_op_1 (value_range_t *vr,
2189 enum tree_code code,
2190 value_range_t *vr0, value_range_t *vr1)
2192 enum value_range_type type;
2193 tree val[4];
2194 size_t i;
2195 tree min, max;
2196 bool sop;
2197 int cmp;
2199 /* Multiplications, divisions and shifts are a bit tricky to handle,
2200 depending on the mix of signs we have in the two ranges, we
2201 need to operate on different values to get the minimum and
2202 maximum values for the new range. One approach is to figure
2203 out all the variations of range combinations and do the
2204 operations.
2206 However, this involves several calls to compare_values and it
2207 is pretty convoluted. It's simpler to do the 4 operations
2208 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2209 MAX1) and then figure the smallest and largest values to form
2210 the new range. */
2211 gcc_assert (code == MULT_EXPR
2212 || code == TRUNC_DIV_EXPR
2213 || code == FLOOR_DIV_EXPR
2214 || code == CEIL_DIV_EXPR
2215 || code == EXACT_DIV_EXPR
2216 || code == ROUND_DIV_EXPR
2217 || code == RSHIFT_EXPR);
2218 gcc_assert ((vr0->type == VR_RANGE
2219 || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
2220 && vr0->type == vr1->type);
2222 type = vr0->type;
2224 /* Compute the 4 cross operations. */
2225 sop = false;
2226 val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
2227 if (val[0] == NULL_TREE)
2228 sop = true;
2230 if (vr1->max == vr1->min)
2231 val[1] = NULL_TREE;
2232 else
2234 val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
2235 if (val[1] == NULL_TREE)
2236 sop = true;
2239 if (vr0->max == vr0->min)
2240 val[2] = NULL_TREE;
2241 else
2243 val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
2244 if (val[2] == NULL_TREE)
2245 sop = true;
2248 if (vr0->min == vr0->max || vr1->min == vr1->max)
2249 val[3] = NULL_TREE;
2250 else
2252 val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
2253 if (val[3] == NULL_TREE)
2254 sop = true;
2257 if (sop)
2259 set_value_range_to_varying (vr);
2260 return;
2263 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2264 of VAL[i]. */
2265 min = val[0];
2266 max = val[0];
2267 for (i = 1; i < 4; i++)
2269 if (!is_gimple_min_invariant (min)
2270 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2271 || !is_gimple_min_invariant (max)
2272 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2273 break;
2275 if (val[i])
2277 if (!is_gimple_min_invariant (val[i])
2278 || (TREE_OVERFLOW (val[i])
2279 && !is_overflow_infinity (val[i])))
2281 /* If we found an overflowed value, set MIN and MAX
2282 to it so that we set the resulting range to
2283 VARYING. */
2284 min = max = val[i];
2285 break;
2288 if (compare_values (val[i], min) == -1)
2289 min = val[i];
2291 if (compare_values (val[i], max) == 1)
2292 max = val[i];
2296 /* If either MIN or MAX overflowed, then set the resulting range to
2297 VARYING. But we do accept an overflow infinity
2298 representation. */
2299 if (min == NULL_TREE
2300 || !is_gimple_min_invariant (min)
2301 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2302 || max == NULL_TREE
2303 || !is_gimple_min_invariant (max)
2304 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2306 set_value_range_to_varying (vr);
2307 return;
2310 /* We punt if:
2311 1) [-INF, +INF]
2312 2) [-INF, +-INF(OVF)]
2313 3) [+-INF(OVF), +INF]
2314 4) [+-INF(OVF), +-INF(OVF)]
2315 We learn nothing when we have INF and INF(OVF) on both sides.
2316 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2317 overflow. */
2318 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2319 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2321 set_value_range_to_varying (vr);
2322 return;
2325 cmp = compare_values (min, max);
2326 if (cmp == -2 || cmp == 1)
2328 /* If the new range has its limits swapped around (MIN > MAX),
2329 then the operation caused one of them to wrap around, mark
2330 the new range VARYING. */
2331 set_value_range_to_varying (vr);
2333 else
2334 set_value_range (vr, type, min, max, NULL);
2337 /* Extract range information from a binary operation CODE based on
2338 the ranges of each of its operands, *VR0 and *VR1 with resulting
2339 type EXPR_TYPE. The resulting range is stored in *VR. */
2341 static void
2342 extract_range_from_binary_expr_1 (value_range_t *vr,
2343 enum tree_code code, tree expr_type,
2344 value_range_t *vr0_, value_range_t *vr1_)
2346 value_range_t vr0 = *vr0_, vr1 = *vr1_;
2347 enum value_range_type type;
2348 tree min = NULL_TREE, max = NULL_TREE;
2349 int cmp;
2351 if (!INTEGRAL_TYPE_P (expr_type)
2352 && !POINTER_TYPE_P (expr_type))
2354 set_value_range_to_varying (vr);
2355 return;
2358 /* Not all binary expressions can be applied to ranges in a
2359 meaningful way. Handle only arithmetic operations. */
2360 if (code != PLUS_EXPR
2361 && code != MINUS_EXPR
2362 && code != POINTER_PLUS_EXPR
2363 && code != MULT_EXPR
2364 && code != TRUNC_DIV_EXPR
2365 && code != FLOOR_DIV_EXPR
2366 && code != CEIL_DIV_EXPR
2367 && code != EXACT_DIV_EXPR
2368 && code != ROUND_DIV_EXPR
2369 && code != TRUNC_MOD_EXPR
2370 && code != RSHIFT_EXPR
2371 && code != MIN_EXPR
2372 && code != MAX_EXPR
2373 && code != BIT_AND_EXPR
2374 && code != BIT_IOR_EXPR
2375 && code != BIT_XOR_EXPR)
2377 set_value_range_to_varying (vr);
2378 return;
2381 /* If both ranges are UNDEFINED, so is the result. */
2382 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2384 set_value_range_to_undefined (vr);
2385 return;
2387 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2388 code. At some point we may want to special-case operations that
2389 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2390 operand. */
2391 else if (vr0.type == VR_UNDEFINED)
2392 set_value_range_to_varying (&vr0);
2393 else if (vr1.type == VR_UNDEFINED)
2394 set_value_range_to_varying (&vr1);
2396 /* The type of the resulting value range defaults to VR0.TYPE. */
2397 type = vr0.type;
2399 /* Refuse to operate on VARYING ranges, ranges of different kinds
2400 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2401 because we may be able to derive a useful range even if one of
2402 the operands is VR_VARYING or symbolic range. Similarly for
2403 divisions. TODO, we may be able to derive anti-ranges in
2404 some cases. */
2405 if (code != BIT_AND_EXPR
2406 && code != BIT_IOR_EXPR
2407 && code != TRUNC_DIV_EXPR
2408 && code != FLOOR_DIV_EXPR
2409 && code != CEIL_DIV_EXPR
2410 && code != EXACT_DIV_EXPR
2411 && code != ROUND_DIV_EXPR
2412 && code != TRUNC_MOD_EXPR
2413 && (vr0.type == VR_VARYING
2414 || vr1.type == VR_VARYING
2415 || vr0.type != vr1.type
2416 || symbolic_range_p (&vr0)
2417 || symbolic_range_p (&vr1)))
2419 set_value_range_to_varying (vr);
2420 return;
2423 /* Now evaluate the expression to determine the new range. */
2424 if (POINTER_TYPE_P (expr_type))
2426 if (code == MIN_EXPR || code == MAX_EXPR)
2428 /* For MIN/MAX expressions with pointers, we only care about
2429 nullness, if both are non null, then the result is nonnull.
2430 If both are null, then the result is null. Otherwise they
2431 are varying. */
2432 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2433 set_value_range_to_nonnull (vr, expr_type);
2434 else if (range_is_null (&vr0) && range_is_null (&vr1))
2435 set_value_range_to_null (vr, expr_type);
2436 else
2437 set_value_range_to_varying (vr);
2439 else if (code == POINTER_PLUS_EXPR)
2441 /* For pointer types, we are really only interested in asserting
2442 whether the expression evaluates to non-NULL. */
2443 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2444 set_value_range_to_nonnull (vr, expr_type);
2445 else if (range_is_null (&vr0) && range_is_null (&vr1))
2446 set_value_range_to_null (vr, expr_type);
2447 else
2448 set_value_range_to_varying (vr);
2450 else if (code == BIT_AND_EXPR)
2452 /* For pointer types, we are really only interested in asserting
2453 whether the expression evaluates to non-NULL. */
2454 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2455 set_value_range_to_nonnull (vr, expr_type);
2456 else if (range_is_null (&vr0) || range_is_null (&vr1))
2457 set_value_range_to_null (vr, expr_type);
2458 else
2459 set_value_range_to_varying (vr);
2461 else
2462 set_value_range_to_varying (vr);
2464 return;
2467 /* For integer ranges, apply the operation to each end of the
2468 range and see what we end up with. */
2469 if (code == PLUS_EXPR)
2471 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2472 VR_VARYING. It would take more effort to compute a precise
2473 range for such a case. For example, if we have op0 == 1 and
2474 op1 == -1 with their ranges both being ~[0,0], we would have
2475 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2476 Note that we are guaranteed to have vr0.type == vr1.type at
2477 this point. */
2478 if (vr0.type == VR_ANTI_RANGE)
2480 set_value_range_to_varying (vr);
2481 return;
2484 /* For operations that make the resulting range directly
2485 proportional to the original ranges, apply the operation to
2486 the same end of each range. */
2487 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2488 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2490 /* If both additions overflowed the range kind is still correct.
2491 This happens regularly with subtracting something in unsigned
2492 arithmetic.
2493 ??? See PR30318 for all the cases we do not handle. */
2494 if ((TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2495 && (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2497 min = build_int_cst_wide (TREE_TYPE (min),
2498 TREE_INT_CST_LOW (min),
2499 TREE_INT_CST_HIGH (min));
2500 max = build_int_cst_wide (TREE_TYPE (max),
2501 TREE_INT_CST_LOW (max),
2502 TREE_INT_CST_HIGH (max));
2505 else if (code == MIN_EXPR
2506 || code == MAX_EXPR)
2508 if (vr0.type == VR_ANTI_RANGE)
2510 /* For MIN_EXPR and MAX_EXPR with two VR_ANTI_RANGEs,
2511 the resulting VR_ANTI_RANGE is the same - intersection
2512 of the two ranges. */
2513 min = vrp_int_const_binop (MAX_EXPR, vr0.min, vr1.min);
2514 max = vrp_int_const_binop (MIN_EXPR, vr0.max, vr1.max);
2516 else
2518 /* For operations that make the resulting range directly
2519 proportional to the original ranges, apply the operation to
2520 the same end of each range. */
2521 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2522 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2525 else if (code == MULT_EXPR)
2527 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2528 drop to VR_VARYING. It would take more effort to compute a
2529 precise range for such a case. For example, if we have
2530 op0 == 65536 and op1 == 65536 with their ranges both being
2531 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2532 we cannot claim that the product is in ~[0,0]. Note that we
2533 are guaranteed to have vr0.type == vr1.type at this
2534 point. */
2535 if (vr0.type == VR_ANTI_RANGE
2536 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2538 set_value_range_to_varying (vr);
2539 return;
2542 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2543 return;
2545 else if (code == RSHIFT_EXPR)
2547 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2548 then drop to VR_VARYING. Outside of this range we get undefined
2549 behavior from the shift operation. We cannot even trust
2550 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2551 shifts, and the operation at the tree level may be widened. */
2552 if (code == RSHIFT_EXPR)
2554 if (vr1.type != VR_RANGE
2555 || !value_range_nonnegative_p (&vr1)
2556 || TREE_CODE (vr1.max) != INTEGER_CST
2557 || compare_tree_int (vr1.max,
2558 TYPE_PRECISION (expr_type) - 1) == 1)
2560 set_value_range_to_varying (vr);
2561 return;
2565 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2566 return;
2568 else if (code == TRUNC_DIV_EXPR
2569 || code == FLOOR_DIV_EXPR
2570 || code == CEIL_DIV_EXPR
2571 || code == EXACT_DIV_EXPR
2572 || code == ROUND_DIV_EXPR)
2574 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2576 /* For division, if op1 has VR_RANGE but op0 does not, something
2577 can be deduced just from that range. Say [min, max] / [4, max]
2578 gives [min / 4, max / 4] range. */
2579 if (vr1.type == VR_RANGE
2580 && !symbolic_range_p (&vr1)
2581 && !range_includes_zero_p (&vr1))
2583 vr0.type = type = VR_RANGE;
2584 vr0.min = vrp_val_min (expr_type);
2585 vr0.max = vrp_val_max (expr_type);
2587 else
2589 set_value_range_to_varying (vr);
2590 return;
2594 /* For divisions, if flag_non_call_exceptions is true, we must
2595 not eliminate a division by zero. */
2596 if (cfun->can_throw_non_call_exceptions
2597 && (vr1.type != VR_RANGE
2598 || symbolic_range_p (&vr1)
2599 || range_includes_zero_p (&vr1)))
2601 set_value_range_to_varying (vr);
2602 return;
2605 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2606 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2607 include 0. */
2608 if (vr0.type == VR_RANGE
2609 && (vr1.type != VR_RANGE
2610 || symbolic_range_p (&vr1)
2611 || range_includes_zero_p (&vr1)))
2613 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2614 int cmp;
2616 min = NULL_TREE;
2617 max = NULL_TREE;
2618 if (TYPE_UNSIGNED (expr_type)
2619 || value_range_nonnegative_p (&vr1))
2621 /* For unsigned division or when divisor is known
2622 to be non-negative, the range has to cover
2623 all numbers from 0 to max for positive max
2624 and all numbers from min to 0 for negative min. */
2625 cmp = compare_values (vr0.max, zero);
2626 if (cmp == -1)
2627 max = zero;
2628 else if (cmp == 0 || cmp == 1)
2629 max = vr0.max;
2630 else
2631 type = VR_VARYING;
2632 cmp = compare_values (vr0.min, zero);
2633 if (cmp == 1)
2634 min = zero;
2635 else if (cmp == 0 || cmp == -1)
2636 min = vr0.min;
2637 else
2638 type = VR_VARYING;
2640 else
2642 /* Otherwise the range is -max .. max or min .. -min
2643 depending on which bound is bigger in absolute value,
2644 as the division can change the sign. */
2645 abs_extent_range (vr, vr0.min, vr0.max);
2646 return;
2648 if (type == VR_VARYING)
2650 set_value_range_to_varying (vr);
2651 return;
2654 else
2656 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2657 return;
2660 else if (code == TRUNC_MOD_EXPR)
2662 if (vr1.type != VR_RANGE
2663 || symbolic_range_p (&vr1)
2664 || range_includes_zero_p (&vr1)
2665 || vrp_val_is_min (vr1.min))
2667 set_value_range_to_varying (vr);
2668 return;
2670 type = VR_RANGE;
2671 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
2672 max = fold_unary_to_constant (ABS_EXPR, expr_type, vr1.min);
2673 if (tree_int_cst_lt (max, vr1.max))
2674 max = vr1.max;
2675 max = int_const_binop (MINUS_EXPR, max, integer_one_node);
2676 /* If the dividend is non-negative the modulus will be
2677 non-negative as well. */
2678 if (TYPE_UNSIGNED (expr_type)
2679 || value_range_nonnegative_p (&vr0))
2680 min = build_int_cst (TREE_TYPE (max), 0);
2681 else
2682 min = fold_unary_to_constant (NEGATE_EXPR, expr_type, max);
2684 else if (code == MINUS_EXPR)
2686 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2687 VR_VARYING. It would take more effort to compute a precise
2688 range for such a case. For example, if we have op0 == 1 and
2689 op1 == 1 with their ranges both being ~[0,0], we would have
2690 op0 - op1 == 0, so we cannot claim that the difference is in
2691 ~[0,0]. Note that we are guaranteed to have
2692 vr0.type == vr1.type at this point. */
2693 if (vr0.type == VR_ANTI_RANGE)
2695 set_value_range_to_varying (vr);
2696 return;
2699 /* For MINUS_EXPR, apply the operation to the opposite ends of
2700 each range. */
2701 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2702 max = vrp_int_const_binop (code, vr0.max, vr1.min);
2704 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
2706 bool int_cst_range0, int_cst_range1;
2707 double_int may_be_nonzero0, may_be_nonzero1;
2708 double_int must_be_nonzero0, must_be_nonzero1;
2710 int_cst_range0 = zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0,
2711 &must_be_nonzero0);
2712 int_cst_range1 = zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1,
2713 &must_be_nonzero1);
2715 type = VR_RANGE;
2716 if (code == BIT_AND_EXPR)
2718 double_int dmax;
2719 min = double_int_to_tree (expr_type,
2720 double_int_and (must_be_nonzero0,
2721 must_be_nonzero1));
2722 dmax = double_int_and (may_be_nonzero0, may_be_nonzero1);
2723 /* If both input ranges contain only negative values we can
2724 truncate the result range maximum to the minimum of the
2725 input range maxima. */
2726 if (int_cst_range0 && int_cst_range1
2727 && tree_int_cst_sgn (vr0.max) < 0
2728 && tree_int_cst_sgn (vr1.max) < 0)
2730 dmax = double_int_min (dmax, tree_to_double_int (vr0.max),
2731 TYPE_UNSIGNED (expr_type));
2732 dmax = double_int_min (dmax, tree_to_double_int (vr1.max),
2733 TYPE_UNSIGNED (expr_type));
2735 /* If either input range contains only non-negative values
2736 we can truncate the result range maximum to the respective
2737 maximum of the input range. */
2738 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
2739 dmax = double_int_min (dmax, tree_to_double_int (vr0.max),
2740 TYPE_UNSIGNED (expr_type));
2741 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
2742 dmax = double_int_min (dmax, tree_to_double_int (vr1.max),
2743 TYPE_UNSIGNED (expr_type));
2744 max = double_int_to_tree (expr_type, dmax);
2746 else if (code == BIT_IOR_EXPR)
2748 double_int dmin;
2749 max = double_int_to_tree (expr_type,
2750 double_int_ior (may_be_nonzero0,
2751 may_be_nonzero1));
2752 dmin = double_int_ior (must_be_nonzero0, must_be_nonzero1);
2753 /* If the input ranges contain only positive values we can
2754 truncate the minimum of the result range to the maximum
2755 of the input range minima. */
2756 if (int_cst_range0 && int_cst_range1
2757 && tree_int_cst_sgn (vr0.min) >= 0
2758 && tree_int_cst_sgn (vr1.min) >= 0)
2760 dmin = double_int_max (dmin, tree_to_double_int (vr0.min),
2761 TYPE_UNSIGNED (expr_type));
2762 dmin = double_int_max (dmin, tree_to_double_int (vr1.min),
2763 TYPE_UNSIGNED (expr_type));
2765 /* If either input range contains only negative values
2766 we can truncate the minimum of the result range to the
2767 respective minimum range. */
2768 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
2769 dmin = double_int_max (dmin, tree_to_double_int (vr0.min),
2770 TYPE_UNSIGNED (expr_type));
2771 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
2772 dmin = double_int_max (dmin, tree_to_double_int (vr1.min),
2773 TYPE_UNSIGNED (expr_type));
2774 min = double_int_to_tree (expr_type, dmin);
2776 else if (code == BIT_XOR_EXPR)
2778 double_int result_zero_bits, result_one_bits;
2779 result_zero_bits
2780 = double_int_ior (double_int_and (must_be_nonzero0,
2781 must_be_nonzero1),
2782 double_int_not
2783 (double_int_ior (may_be_nonzero0,
2784 may_be_nonzero1)));
2785 result_one_bits
2786 = double_int_ior (double_int_and
2787 (must_be_nonzero0,
2788 double_int_not (may_be_nonzero1)),
2789 double_int_and
2790 (must_be_nonzero1,
2791 double_int_not (may_be_nonzero0)));
2792 max = double_int_to_tree (expr_type,
2793 double_int_not (result_zero_bits));
2794 min = double_int_to_tree (expr_type, result_one_bits);
2795 /* If the range has all positive or all negative values the
2796 result is better than VARYING. */
2797 if (tree_int_cst_sgn (min) < 0
2798 || tree_int_cst_sgn (max) >= 0)
2800 else
2801 max = min = NULL_TREE;
2804 else
2805 gcc_unreachable ();
2807 /* If either MIN or MAX overflowed, then set the resulting range to
2808 VARYING. But we do accept an overflow infinity
2809 representation. */
2810 if (min == NULL_TREE
2811 || !is_gimple_min_invariant (min)
2812 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2813 || max == NULL_TREE
2814 || !is_gimple_min_invariant (max)
2815 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2817 set_value_range_to_varying (vr);
2818 return;
2821 /* We punt if:
2822 1) [-INF, +INF]
2823 2) [-INF, +-INF(OVF)]
2824 3) [+-INF(OVF), +INF]
2825 4) [+-INF(OVF), +-INF(OVF)]
2826 We learn nothing when we have INF and INF(OVF) on both sides.
2827 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2828 overflow. */
2829 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2830 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2832 set_value_range_to_varying (vr);
2833 return;
2836 cmp = compare_values (min, max);
2837 if (cmp == -2 || cmp == 1)
2839 /* If the new range has its limits swapped around (MIN > MAX),
2840 then the operation caused one of them to wrap around, mark
2841 the new range VARYING. */
2842 set_value_range_to_varying (vr);
2844 else
2845 set_value_range (vr, type, min, max, NULL);
2848 /* Extract range information from a binary expression OP0 CODE OP1 based on
2849 the ranges of each of its operands with resulting type EXPR_TYPE.
2850 The resulting range is stored in *VR. */
2852 static void
2853 extract_range_from_binary_expr (value_range_t *vr,
2854 enum tree_code code,
2855 tree expr_type, tree op0, tree op1)
2857 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2858 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2860 /* Get value ranges for each operand. For constant operands, create
2861 a new value range with the operand to simplify processing. */
2862 if (TREE_CODE (op0) == SSA_NAME)
2863 vr0 = *(get_value_range (op0));
2864 else if (is_gimple_min_invariant (op0))
2865 set_value_range_to_value (&vr0, op0, NULL);
2866 else
2867 set_value_range_to_varying (&vr0);
2869 if (TREE_CODE (op1) == SSA_NAME)
2870 vr1 = *(get_value_range (op1));
2871 else if (is_gimple_min_invariant (op1))
2872 set_value_range_to_value (&vr1, op1, NULL);
2873 else
2874 set_value_range_to_varying (&vr1);
2876 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
2879 /* Extract range information from a unary operation CODE based on
2880 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
2881 The The resulting range is stored in *VR. */
2883 static void
2884 extract_range_from_unary_expr_1 (value_range_t *vr,
2885 enum tree_code code, tree type,
2886 value_range_t *vr0_, tree op0_type)
2888 value_range_t vr0 = *vr0_;
2890 /* VRP only operates on integral and pointer types. */
2891 if (!(INTEGRAL_TYPE_P (op0_type)
2892 || POINTER_TYPE_P (op0_type))
2893 || !(INTEGRAL_TYPE_P (type)
2894 || POINTER_TYPE_P (type)))
2896 set_value_range_to_varying (vr);
2897 return;
2900 /* If VR0 is UNDEFINED, so is the result. */
2901 if (vr0.type == VR_UNDEFINED)
2903 set_value_range_to_undefined (vr);
2904 return;
2907 if (CONVERT_EXPR_CODE_P (code))
2909 tree inner_type = op0_type;
2910 tree outer_type = type;
2912 /* If the expression evaluates to a pointer, we are only interested in
2913 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2914 if (POINTER_TYPE_P (type))
2916 if (CONVERT_EXPR_CODE_P (code))
2918 if (range_is_nonnull (&vr0))
2919 set_value_range_to_nonnull (vr, type);
2920 else if (range_is_null (&vr0))
2921 set_value_range_to_null (vr, type);
2922 else
2923 set_value_range_to_varying (vr);
2925 else
2926 set_value_range_to_varying (vr);
2927 return;
2930 /* If VR0 is varying and we increase the type precision, assume
2931 a full range for the following transformation. */
2932 if (vr0.type == VR_VARYING
2933 && INTEGRAL_TYPE_P (inner_type)
2934 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
2936 vr0.type = VR_RANGE;
2937 vr0.min = TYPE_MIN_VALUE (inner_type);
2938 vr0.max = TYPE_MAX_VALUE (inner_type);
2941 /* If VR0 is a constant range or anti-range and the conversion is
2942 not truncating we can convert the min and max values and
2943 canonicalize the resulting range. Otherwise we can do the
2944 conversion if the size of the range is less than what the
2945 precision of the target type can represent and the range is
2946 not an anti-range. */
2947 if ((vr0.type == VR_RANGE
2948 || vr0.type == VR_ANTI_RANGE)
2949 && TREE_CODE (vr0.min) == INTEGER_CST
2950 && TREE_CODE (vr0.max) == INTEGER_CST
2951 && (!is_overflow_infinity (vr0.min)
2952 || (vr0.type == VR_RANGE
2953 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
2954 && needs_overflow_infinity (outer_type)
2955 && supports_overflow_infinity (outer_type)))
2956 && (!is_overflow_infinity (vr0.max)
2957 || (vr0.type == VR_RANGE
2958 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
2959 && needs_overflow_infinity (outer_type)
2960 && supports_overflow_infinity (outer_type)))
2961 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
2962 || (vr0.type == VR_RANGE
2963 && integer_zerop (int_const_binop (RSHIFT_EXPR,
2964 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
2965 size_int (TYPE_PRECISION (outer_type)))))))
2967 tree new_min, new_max;
2968 new_min = force_fit_type_double (outer_type,
2969 tree_to_double_int (vr0.min),
2970 0, false);
2971 new_max = force_fit_type_double (outer_type,
2972 tree_to_double_int (vr0.max),
2973 0, false);
2974 if (is_overflow_infinity (vr0.min))
2975 new_min = negative_overflow_infinity (outer_type);
2976 if (is_overflow_infinity (vr0.max))
2977 new_max = positive_overflow_infinity (outer_type);
2978 set_and_canonicalize_value_range (vr, vr0.type,
2979 new_min, new_max, NULL);
2980 return;
2983 set_value_range_to_varying (vr);
2984 return;
2986 else if (code == NEGATE_EXPR)
2988 /* -X is simply 0 - X, so re-use existing code that also handles
2989 anti-ranges fine. */
2990 value_range_t zero = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2991 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
2992 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
2993 return;
2995 else if (code == ABS_EXPR)
2997 tree min, max;
2998 int cmp;
3000 /* Pass through vr0 in the easy cases. */
3001 if (TYPE_UNSIGNED (type)
3002 || value_range_nonnegative_p (&vr0))
3004 copy_value_range (vr, &vr0);
3005 return;
3008 /* For the remaining varying or symbolic ranges we can't do anything
3009 useful. */
3010 if (vr0.type == VR_VARYING
3011 || symbolic_range_p (&vr0))
3013 set_value_range_to_varying (vr);
3014 return;
3017 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3018 useful range. */
3019 if (!TYPE_OVERFLOW_UNDEFINED (type)
3020 && ((vr0.type == VR_RANGE
3021 && vrp_val_is_min (vr0.min))
3022 || (vr0.type == VR_ANTI_RANGE
3023 && !vrp_val_is_min (vr0.min))))
3025 set_value_range_to_varying (vr);
3026 return;
3029 /* ABS_EXPR may flip the range around, if the original range
3030 included negative values. */
3031 if (is_overflow_infinity (vr0.min))
3032 min = positive_overflow_infinity (type);
3033 else if (!vrp_val_is_min (vr0.min))
3034 min = fold_unary_to_constant (code, type, vr0.min);
3035 else if (!needs_overflow_infinity (type))
3036 min = TYPE_MAX_VALUE (type);
3037 else if (supports_overflow_infinity (type))
3038 min = positive_overflow_infinity (type);
3039 else
3041 set_value_range_to_varying (vr);
3042 return;
3045 if (is_overflow_infinity (vr0.max))
3046 max = positive_overflow_infinity (type);
3047 else if (!vrp_val_is_min (vr0.max))
3048 max = fold_unary_to_constant (code, type, vr0.max);
3049 else if (!needs_overflow_infinity (type))
3050 max = TYPE_MAX_VALUE (type);
3051 else if (supports_overflow_infinity (type)
3052 /* We shouldn't generate [+INF, +INF] as set_value_range
3053 doesn't like this and ICEs. */
3054 && !is_positive_overflow_infinity (min))
3055 max = positive_overflow_infinity (type);
3056 else
3058 set_value_range_to_varying (vr);
3059 return;
3062 cmp = compare_values (min, max);
3064 /* If a VR_ANTI_RANGEs contains zero, then we have
3065 ~[-INF, min(MIN, MAX)]. */
3066 if (vr0.type == VR_ANTI_RANGE)
3068 if (range_includes_zero_p (&vr0))
3070 /* Take the lower of the two values. */
3071 if (cmp != 1)
3072 max = min;
3074 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3075 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3076 flag_wrapv is set and the original anti-range doesn't include
3077 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3078 if (TYPE_OVERFLOW_WRAPS (type))
3080 tree type_min_value = TYPE_MIN_VALUE (type);
3082 min = (vr0.min != type_min_value
3083 ? int_const_binop (PLUS_EXPR, type_min_value,
3084 integer_one_node)
3085 : type_min_value);
3087 else
3089 if (overflow_infinity_range_p (&vr0))
3090 min = negative_overflow_infinity (type);
3091 else
3092 min = TYPE_MIN_VALUE (type);
3095 else
3097 /* All else has failed, so create the range [0, INF], even for
3098 flag_wrapv since TYPE_MIN_VALUE is in the original
3099 anti-range. */
3100 vr0.type = VR_RANGE;
3101 min = build_int_cst (type, 0);
3102 if (needs_overflow_infinity (type))
3104 if (supports_overflow_infinity (type))
3105 max = positive_overflow_infinity (type);
3106 else
3108 set_value_range_to_varying (vr);
3109 return;
3112 else
3113 max = TYPE_MAX_VALUE (type);
3117 /* If the range contains zero then we know that the minimum value in the
3118 range will be zero. */
3119 else if (range_includes_zero_p (&vr0))
3121 if (cmp == 1)
3122 max = min;
3123 min = build_int_cst (type, 0);
3125 else
3127 /* If the range was reversed, swap MIN and MAX. */
3128 if (cmp == 1)
3130 tree t = min;
3131 min = max;
3132 max = t;
3136 cmp = compare_values (min, max);
3137 if (cmp == -2 || cmp == 1)
3139 /* If the new range has its limits swapped around (MIN > MAX),
3140 then the operation caused one of them to wrap around, mark
3141 the new range VARYING. */
3142 set_value_range_to_varying (vr);
3144 else
3145 set_value_range (vr, vr0.type, min, max, NULL);
3146 return;
3148 else if (code == BIT_NOT_EXPR)
3150 /* ~X is simply -1 - X, so re-use existing code that also handles
3151 anti-ranges fine. */
3152 value_range_t minusone = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3153 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3154 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3155 type, &minusone, &vr0);
3156 return;
3158 else if (code == PAREN_EXPR)
3160 copy_value_range (vr, &vr0);
3161 return;
3164 /* For unhandled operations fall back to varying. */
3165 set_value_range_to_varying (vr);
3166 return;
3170 /* Extract range information from a unary expression CODE OP0 based on
3171 the range of its operand with resulting type TYPE.
3172 The resulting range is stored in *VR. */
3174 static void
3175 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
3176 tree type, tree op0)
3178 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3180 /* Get value ranges for the operand. For constant operands, create
3181 a new value range with the operand to simplify processing. */
3182 if (TREE_CODE (op0) == SSA_NAME)
3183 vr0 = *(get_value_range (op0));
3184 else if (is_gimple_min_invariant (op0))
3185 set_value_range_to_value (&vr0, op0, NULL);
3186 else
3187 set_value_range_to_varying (&vr0);
3189 extract_range_from_unary_expr_1 (vr, code, type, &vr0, TREE_TYPE (op0));
3193 /* Extract range information from a conditional expression EXPR based on
3194 the ranges of each of its operands and the expression code. */
3196 static void
3197 extract_range_from_cond_expr (value_range_t *vr, tree expr)
3199 tree op0, op1;
3200 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3201 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3203 /* Get value ranges for each operand. For constant operands, create
3204 a new value range with the operand to simplify processing. */
3205 op0 = COND_EXPR_THEN (expr);
3206 if (TREE_CODE (op0) == SSA_NAME)
3207 vr0 = *(get_value_range (op0));
3208 else if (is_gimple_min_invariant (op0))
3209 set_value_range_to_value (&vr0, op0, NULL);
3210 else
3211 set_value_range_to_varying (&vr0);
3213 op1 = COND_EXPR_ELSE (expr);
3214 if (TREE_CODE (op1) == SSA_NAME)
3215 vr1 = *(get_value_range (op1));
3216 else if (is_gimple_min_invariant (op1))
3217 set_value_range_to_value (&vr1, op1, NULL);
3218 else
3219 set_value_range_to_varying (&vr1);
3221 /* The resulting value range is the union of the operand ranges */
3222 vrp_meet (&vr0, &vr1);
3223 copy_value_range (vr, &vr0);
3227 /* Extract range information from a comparison expression EXPR based
3228 on the range of its operand and the expression code. */
3230 static void
3231 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3232 tree type, tree op0, tree op1)
3234 bool sop = false;
3235 tree val;
3237 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3238 NULL);
3240 /* A disadvantage of using a special infinity as an overflow
3241 representation is that we lose the ability to record overflow
3242 when we don't have an infinity. So we have to ignore a result
3243 which relies on overflow. */
3245 if (val && !is_overflow_infinity (val) && !sop)
3247 /* Since this expression was found on the RHS of an assignment,
3248 its type may be different from _Bool. Convert VAL to EXPR's
3249 type. */
3250 val = fold_convert (type, val);
3251 if (is_gimple_min_invariant (val))
3252 set_value_range_to_value (vr, val, vr->equiv);
3253 else
3254 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3256 else
3257 /* The result of a comparison is always true or false. */
3258 set_value_range_to_truthvalue (vr, type);
3261 /* Try to derive a nonnegative or nonzero range out of STMT relying
3262 primarily on generic routines in fold in conjunction with range data.
3263 Store the result in *VR */
3265 static void
3266 extract_range_basic (value_range_t *vr, gimple stmt)
3268 bool sop = false;
3269 tree type = gimple_expr_type (stmt);
3271 if (INTEGRAL_TYPE_P (type)
3272 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3273 set_value_range_to_nonnegative (vr, type,
3274 sop || stmt_overflow_infinity (stmt));
3275 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3276 && !sop)
3277 set_value_range_to_nonnull (vr, type);
3278 else
3279 set_value_range_to_varying (vr);
3283 /* Try to compute a useful range out of assignment STMT and store it
3284 in *VR. */
3286 static void
3287 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3289 enum tree_code code = gimple_assign_rhs_code (stmt);
3291 if (code == ASSERT_EXPR)
3292 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3293 else if (code == SSA_NAME)
3294 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3295 else if (TREE_CODE_CLASS (code) == tcc_binary)
3296 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3297 gimple_expr_type (stmt),
3298 gimple_assign_rhs1 (stmt),
3299 gimple_assign_rhs2 (stmt));
3300 else if (TREE_CODE_CLASS (code) == tcc_unary)
3301 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3302 gimple_expr_type (stmt),
3303 gimple_assign_rhs1 (stmt));
3304 else if (code == COND_EXPR)
3305 extract_range_from_cond_expr (vr, gimple_assign_rhs1 (stmt));
3306 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3307 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3308 gimple_expr_type (stmt),
3309 gimple_assign_rhs1 (stmt),
3310 gimple_assign_rhs2 (stmt));
3311 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3312 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3313 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3314 else
3315 set_value_range_to_varying (vr);
3317 if (vr->type == VR_VARYING)
3318 extract_range_basic (vr, stmt);
3321 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3322 would be profitable to adjust VR using scalar evolution information
3323 for VAR. If so, update VR with the new limits. */
3325 static void
3326 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3327 gimple stmt, tree var)
3329 tree init, step, chrec, tmin, tmax, min, max, type, tem;
3330 enum ev_direction dir;
3332 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3333 better opportunities than a regular range, but I'm not sure. */
3334 if (vr->type == VR_ANTI_RANGE)
3335 return;
3337 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3339 /* Like in PR19590, scev can return a constant function. */
3340 if (is_gimple_min_invariant (chrec))
3342 set_value_range_to_value (vr, chrec, vr->equiv);
3343 return;
3346 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3347 return;
3349 init = initial_condition_in_loop_num (chrec, loop->num);
3350 tem = op_with_constant_singleton_value_range (init);
3351 if (tem)
3352 init = tem;
3353 step = evolution_part_in_loop_num (chrec, loop->num);
3354 tem = op_with_constant_singleton_value_range (step);
3355 if (tem)
3356 step = tem;
3358 /* If STEP is symbolic, we can't know whether INIT will be the
3359 minimum or maximum value in the range. Also, unless INIT is
3360 a simple expression, compare_values and possibly other functions
3361 in tree-vrp won't be able to handle it. */
3362 if (step == NULL_TREE
3363 || !is_gimple_min_invariant (step)
3364 || !valid_value_p (init))
3365 return;
3367 dir = scev_direction (chrec);
3368 if (/* Do not adjust ranges if we do not know whether the iv increases
3369 or decreases, ... */
3370 dir == EV_DIR_UNKNOWN
3371 /* ... or if it may wrap. */
3372 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3373 true))
3374 return;
3376 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3377 negative_overflow_infinity and positive_overflow_infinity,
3378 because we have concluded that the loop probably does not
3379 wrap. */
3381 type = TREE_TYPE (var);
3382 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3383 tmin = lower_bound_in_type (type, type);
3384 else
3385 tmin = TYPE_MIN_VALUE (type);
3386 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3387 tmax = upper_bound_in_type (type, type);
3388 else
3389 tmax = TYPE_MAX_VALUE (type);
3391 /* Try to use estimated number of iterations for the loop to constrain the
3392 final value in the evolution. */
3393 if (TREE_CODE (step) == INTEGER_CST
3394 && is_gimple_val (init)
3395 && (TREE_CODE (init) != SSA_NAME
3396 || get_value_range (init)->type == VR_RANGE))
3398 double_int nit;
3400 if (estimated_loop_iterations (loop, true, &nit))
3402 value_range_t maxvr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3403 double_int dtmp;
3404 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (step));
3405 int overflow = 0;
3407 dtmp = double_int_mul_with_sign (tree_to_double_int (step), nit,
3408 unsigned_p, &overflow);
3409 /* If the multiplication overflowed we can't do a meaningful
3410 adjustment. Likewise if the result doesn't fit in the type
3411 of the induction variable. For a signed type we have to
3412 check whether the result has the expected signedness which
3413 is that of the step as number of iterations is unsigned. */
3414 if (!overflow
3415 && double_int_fits_to_tree_p (TREE_TYPE (init), dtmp)
3416 && (unsigned_p
3417 || ((dtmp.high ^ TREE_INT_CST_HIGH (step)) >= 0)))
3419 tem = double_int_to_tree (TREE_TYPE (init), dtmp);
3420 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
3421 TREE_TYPE (init), init, tem);
3422 /* Likewise if the addition did. */
3423 if (maxvr.type == VR_RANGE)
3425 tmin = maxvr.min;
3426 tmax = maxvr.max;
3432 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3434 min = tmin;
3435 max = tmax;
3437 /* For VARYING or UNDEFINED ranges, just about anything we get
3438 from scalar evolutions should be better. */
3440 if (dir == EV_DIR_DECREASES)
3441 max = init;
3442 else
3443 min = init;
3445 /* If we would create an invalid range, then just assume we
3446 know absolutely nothing. This may be over-conservative,
3447 but it's clearly safe, and should happen only in unreachable
3448 parts of code, or for invalid programs. */
3449 if (compare_values (min, max) == 1)
3450 return;
3452 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3454 else if (vr->type == VR_RANGE)
3456 min = vr->min;
3457 max = vr->max;
3459 if (dir == EV_DIR_DECREASES)
3461 /* INIT is the maximum value. If INIT is lower than VR->MAX
3462 but no smaller than VR->MIN, set VR->MAX to INIT. */
3463 if (compare_values (init, max) == -1)
3464 max = init;
3466 /* According to the loop information, the variable does not
3467 overflow. If we think it does, probably because of an
3468 overflow due to arithmetic on a different INF value,
3469 reset now. */
3470 if (is_negative_overflow_infinity (min)
3471 || compare_values (min, tmin) == -1)
3472 min = tmin;
3475 else
3477 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3478 if (compare_values (init, min) == 1)
3479 min = init;
3481 if (is_positive_overflow_infinity (max)
3482 || compare_values (tmax, max) == -1)
3483 max = tmax;
3486 /* If we just created an invalid range with the minimum
3487 greater than the maximum, we fail conservatively.
3488 This should happen only in unreachable
3489 parts of code, or for invalid programs. */
3490 if (compare_values (min, max) == 1)
3491 return;
3493 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3497 /* Return true if VAR may overflow at STMT. This checks any available
3498 loop information to see if we can determine that VAR does not
3499 overflow. */
3501 static bool
3502 vrp_var_may_overflow (tree var, gimple stmt)
3504 struct loop *l;
3505 tree chrec, init, step;
3507 if (current_loops == NULL)
3508 return true;
3510 l = loop_containing_stmt (stmt);
3511 if (l == NULL
3512 || !loop_outer (l))
3513 return true;
3515 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
3516 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3517 return true;
3519 init = initial_condition_in_loop_num (chrec, l->num);
3520 step = evolution_part_in_loop_num (chrec, l->num);
3522 if (step == NULL_TREE
3523 || !is_gimple_min_invariant (step)
3524 || !valid_value_p (init))
3525 return true;
3527 /* If we get here, we know something useful about VAR based on the
3528 loop information. If it wraps, it may overflow. */
3530 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3531 true))
3532 return true;
3534 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
3536 print_generic_expr (dump_file, var, 0);
3537 fprintf (dump_file, ": loop information indicates does not overflow\n");
3540 return false;
3544 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3546 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3547 all the values in the ranges.
3549 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3551 - Return NULL_TREE if it is not always possible to determine the
3552 value of the comparison.
3554 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3555 overflow infinity was used in the test. */
3558 static tree
3559 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
3560 bool *strict_overflow_p)
3562 /* VARYING or UNDEFINED ranges cannot be compared. */
3563 if (vr0->type == VR_VARYING
3564 || vr0->type == VR_UNDEFINED
3565 || vr1->type == VR_VARYING
3566 || vr1->type == VR_UNDEFINED)
3567 return NULL_TREE;
3569 /* Anti-ranges need to be handled separately. */
3570 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3572 /* If both are anti-ranges, then we cannot compute any
3573 comparison. */
3574 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3575 return NULL_TREE;
3577 /* These comparisons are never statically computable. */
3578 if (comp == GT_EXPR
3579 || comp == GE_EXPR
3580 || comp == LT_EXPR
3581 || comp == LE_EXPR)
3582 return NULL_TREE;
3584 /* Equality can be computed only between a range and an
3585 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3586 if (vr0->type == VR_RANGE)
3588 /* To simplify processing, make VR0 the anti-range. */
3589 value_range_t *tmp = vr0;
3590 vr0 = vr1;
3591 vr1 = tmp;
3594 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3596 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3597 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
3598 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3600 return NULL_TREE;
3603 if (!usable_range_p (vr0, strict_overflow_p)
3604 || !usable_range_p (vr1, strict_overflow_p))
3605 return NULL_TREE;
3607 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3608 operands around and change the comparison code. */
3609 if (comp == GT_EXPR || comp == GE_EXPR)
3611 value_range_t *tmp;
3612 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
3613 tmp = vr0;
3614 vr0 = vr1;
3615 vr1 = tmp;
3618 if (comp == EQ_EXPR)
3620 /* Equality may only be computed if both ranges represent
3621 exactly one value. */
3622 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
3623 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
3625 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
3626 strict_overflow_p);
3627 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
3628 strict_overflow_p);
3629 if (cmp_min == 0 && cmp_max == 0)
3630 return boolean_true_node;
3631 else if (cmp_min != -2 && cmp_max != -2)
3632 return boolean_false_node;
3634 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3635 else if (compare_values_warnv (vr0->min, vr1->max,
3636 strict_overflow_p) == 1
3637 || compare_values_warnv (vr1->min, vr0->max,
3638 strict_overflow_p) == 1)
3639 return boolean_false_node;
3641 return NULL_TREE;
3643 else if (comp == NE_EXPR)
3645 int cmp1, cmp2;
3647 /* If VR0 is completely to the left or completely to the right
3648 of VR1, they are always different. Notice that we need to
3649 make sure that both comparisons yield similar results to
3650 avoid comparing values that cannot be compared at
3651 compile-time. */
3652 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3653 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3654 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
3655 return boolean_true_node;
3657 /* If VR0 and VR1 represent a single value and are identical,
3658 return false. */
3659 else if (compare_values_warnv (vr0->min, vr0->max,
3660 strict_overflow_p) == 0
3661 && compare_values_warnv (vr1->min, vr1->max,
3662 strict_overflow_p) == 0
3663 && compare_values_warnv (vr0->min, vr1->min,
3664 strict_overflow_p) == 0
3665 && compare_values_warnv (vr0->max, vr1->max,
3666 strict_overflow_p) == 0)
3667 return boolean_false_node;
3669 /* Otherwise, they may or may not be different. */
3670 else
3671 return NULL_TREE;
3673 else if (comp == LT_EXPR || comp == LE_EXPR)
3675 int tst;
3677 /* If VR0 is to the left of VR1, return true. */
3678 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3679 if ((comp == LT_EXPR && tst == -1)
3680 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3682 if (overflow_infinity_range_p (vr0)
3683 || overflow_infinity_range_p (vr1))
3684 *strict_overflow_p = true;
3685 return boolean_true_node;
3688 /* If VR0 is to the right of VR1, return false. */
3689 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3690 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3691 || (comp == LE_EXPR && tst == 1))
3693 if (overflow_infinity_range_p (vr0)
3694 || overflow_infinity_range_p (vr1))
3695 *strict_overflow_p = true;
3696 return boolean_false_node;
3699 /* Otherwise, we don't know. */
3700 return NULL_TREE;
3703 gcc_unreachable ();
3707 /* Given a value range VR, a value VAL and a comparison code COMP, return
3708 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3709 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3710 always returns false. Return NULL_TREE if it is not always
3711 possible to determine the value of the comparison. Also set
3712 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3713 infinity was used in the test. */
3715 static tree
3716 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
3717 bool *strict_overflow_p)
3719 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3720 return NULL_TREE;
3722 /* Anti-ranges need to be handled separately. */
3723 if (vr->type == VR_ANTI_RANGE)
3725 /* For anti-ranges, the only predicates that we can compute at
3726 compile time are equality and inequality. */
3727 if (comp == GT_EXPR
3728 || comp == GE_EXPR
3729 || comp == LT_EXPR
3730 || comp == LE_EXPR)
3731 return NULL_TREE;
3733 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3734 if (value_inside_range (val, vr) == 1)
3735 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3737 return NULL_TREE;
3740 if (!usable_range_p (vr, strict_overflow_p))
3741 return NULL_TREE;
3743 if (comp == EQ_EXPR)
3745 /* EQ_EXPR may only be computed if VR represents exactly
3746 one value. */
3747 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
3749 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
3750 if (cmp == 0)
3751 return boolean_true_node;
3752 else if (cmp == -1 || cmp == 1 || cmp == 2)
3753 return boolean_false_node;
3755 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3756 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3757 return boolean_false_node;
3759 return NULL_TREE;
3761 else if (comp == NE_EXPR)
3763 /* If VAL is not inside VR, then they are always different. */
3764 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3765 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3766 return boolean_true_node;
3768 /* If VR represents exactly one value equal to VAL, then return
3769 false. */
3770 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3771 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3772 return boolean_false_node;
3774 /* Otherwise, they may or may not be different. */
3775 return NULL_TREE;
3777 else if (comp == LT_EXPR || comp == LE_EXPR)
3779 int tst;
3781 /* If VR is to the left of VAL, return true. */
3782 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3783 if ((comp == LT_EXPR && tst == -1)
3784 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3786 if (overflow_infinity_range_p (vr))
3787 *strict_overflow_p = true;
3788 return boolean_true_node;
3791 /* If VR is to the right of VAL, return false. */
3792 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3793 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3794 || (comp == LE_EXPR && tst == 1))
3796 if (overflow_infinity_range_p (vr))
3797 *strict_overflow_p = true;
3798 return boolean_false_node;
3801 /* Otherwise, we don't know. */
3802 return NULL_TREE;
3804 else if (comp == GT_EXPR || comp == GE_EXPR)
3806 int tst;
3808 /* If VR is to the right of VAL, return true. */
3809 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3810 if ((comp == GT_EXPR && tst == 1)
3811 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3813 if (overflow_infinity_range_p (vr))
3814 *strict_overflow_p = true;
3815 return boolean_true_node;
3818 /* If VR is to the left of VAL, return false. */
3819 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3820 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3821 || (comp == GE_EXPR && tst == -1))
3823 if (overflow_infinity_range_p (vr))
3824 *strict_overflow_p = true;
3825 return boolean_false_node;
3828 /* Otherwise, we don't know. */
3829 return NULL_TREE;
3832 gcc_unreachable ();
3836 /* Debugging dumps. */
3838 void dump_value_range (FILE *, value_range_t *);
3839 void debug_value_range (value_range_t *);
3840 void dump_all_value_ranges (FILE *);
3841 void debug_all_value_ranges (void);
3842 void dump_vr_equiv (FILE *, bitmap);
3843 void debug_vr_equiv (bitmap);
3846 /* Dump value range VR to FILE. */
3848 void
3849 dump_value_range (FILE *file, value_range_t *vr)
3851 if (vr == NULL)
3852 fprintf (file, "[]");
3853 else if (vr->type == VR_UNDEFINED)
3854 fprintf (file, "UNDEFINED");
3855 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3857 tree type = TREE_TYPE (vr->min);
3859 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3861 if (is_negative_overflow_infinity (vr->min))
3862 fprintf (file, "-INF(OVF)");
3863 else if (INTEGRAL_TYPE_P (type)
3864 && !TYPE_UNSIGNED (type)
3865 && vrp_val_is_min (vr->min))
3866 fprintf (file, "-INF");
3867 else
3868 print_generic_expr (file, vr->min, 0);
3870 fprintf (file, ", ");
3872 if (is_positive_overflow_infinity (vr->max))
3873 fprintf (file, "+INF(OVF)");
3874 else if (INTEGRAL_TYPE_P (type)
3875 && vrp_val_is_max (vr->max))
3876 fprintf (file, "+INF");
3877 else
3878 print_generic_expr (file, vr->max, 0);
3880 fprintf (file, "]");
3882 if (vr->equiv)
3884 bitmap_iterator bi;
3885 unsigned i, c = 0;
3887 fprintf (file, " EQUIVALENCES: { ");
3889 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3891 print_generic_expr (file, ssa_name (i), 0);
3892 fprintf (file, " ");
3893 c++;
3896 fprintf (file, "} (%u elements)", c);
3899 else if (vr->type == VR_VARYING)
3900 fprintf (file, "VARYING");
3901 else
3902 fprintf (file, "INVALID RANGE");
3906 /* Dump value range VR to stderr. */
3908 DEBUG_FUNCTION void
3909 debug_value_range (value_range_t *vr)
3911 dump_value_range (stderr, vr);
3912 fprintf (stderr, "\n");
3916 /* Dump value ranges of all SSA_NAMEs to FILE. */
3918 void
3919 dump_all_value_ranges (FILE *file)
3921 size_t i;
3923 for (i = 0; i < num_vr_values; i++)
3925 if (vr_value[i])
3927 print_generic_expr (file, ssa_name (i), 0);
3928 fprintf (file, ": ");
3929 dump_value_range (file, vr_value[i]);
3930 fprintf (file, "\n");
3934 fprintf (file, "\n");
3938 /* Dump all value ranges to stderr. */
3940 DEBUG_FUNCTION void
3941 debug_all_value_ranges (void)
3943 dump_all_value_ranges (stderr);
3947 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3948 create a new SSA name N and return the assertion assignment
3949 'V = ASSERT_EXPR <V, V OP W>'. */
3951 static gimple
3952 build_assert_expr_for (tree cond, tree v)
3954 tree n;
3955 gimple assertion;
3957 gcc_assert (TREE_CODE (v) == SSA_NAME);
3958 n = duplicate_ssa_name (v, NULL);
3960 if (COMPARISON_CLASS_P (cond))
3962 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3963 assertion = gimple_build_assign (n, a);
3965 else if (TREE_CODE (cond) == SSA_NAME)
3967 /* Given V, build the assignment N = true. */
3968 gcc_assert (v == cond);
3969 assertion = gimple_build_assign (n, boolean_true_node);
3971 else
3972 gcc_unreachable ();
3974 SSA_NAME_DEF_STMT (n) = assertion;
3976 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3977 operand of the ASSERT_EXPR. Register the new name and the old one
3978 in the replacement table so that we can fix the SSA web after
3979 adding all the ASSERT_EXPRs. */
3980 register_new_name_mapping (n, v);
3982 return assertion;
3986 /* Return false if EXPR is a predicate expression involving floating
3987 point values. */
3989 static inline bool
3990 fp_predicate (gimple stmt)
3992 GIMPLE_CHECK (stmt, GIMPLE_COND);
3994 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
3998 /* If the range of values taken by OP can be inferred after STMT executes,
3999 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4000 describes the inferred range. Return true if a range could be
4001 inferred. */
4003 static bool
4004 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
4006 *val_p = NULL_TREE;
4007 *comp_code_p = ERROR_MARK;
4009 /* Do not attempt to infer anything in names that flow through
4010 abnormal edges. */
4011 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4012 return false;
4014 /* Similarly, don't infer anything from statements that may throw
4015 exceptions. */
4016 if (stmt_could_throw_p (stmt))
4017 return false;
4019 /* If STMT is the last statement of a basic block with no
4020 successors, there is no point inferring anything about any of its
4021 operands. We would not be able to find a proper insertion point
4022 for the assertion, anyway. */
4023 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
4024 return false;
4026 /* We can only assume that a pointer dereference will yield
4027 non-NULL if -fdelete-null-pointer-checks is enabled. */
4028 if (flag_delete_null_pointer_checks
4029 && POINTER_TYPE_P (TREE_TYPE (op))
4030 && gimple_code (stmt) != GIMPLE_ASM)
4032 unsigned num_uses, num_loads, num_stores;
4034 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
4035 if (num_loads + num_stores > 0)
4037 *val_p = build_int_cst (TREE_TYPE (op), 0);
4038 *comp_code_p = NE_EXPR;
4039 return true;
4043 return false;
4047 void dump_asserts_for (FILE *, tree);
4048 void debug_asserts_for (tree);
4049 void dump_all_asserts (FILE *);
4050 void debug_all_asserts (void);
4052 /* Dump all the registered assertions for NAME to FILE. */
4054 void
4055 dump_asserts_for (FILE *file, tree name)
4057 assert_locus_t loc;
4059 fprintf (file, "Assertions to be inserted for ");
4060 print_generic_expr (file, name, 0);
4061 fprintf (file, "\n");
4063 loc = asserts_for[SSA_NAME_VERSION (name)];
4064 while (loc)
4066 fprintf (file, "\t");
4067 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4068 fprintf (file, "\n\tBB #%d", loc->bb->index);
4069 if (loc->e)
4071 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4072 loc->e->dest->index);
4073 dump_edge_info (file, loc->e, 0);
4075 fprintf (file, "\n\tPREDICATE: ");
4076 print_generic_expr (file, name, 0);
4077 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
4078 print_generic_expr (file, loc->val, 0);
4079 fprintf (file, "\n\n");
4080 loc = loc->next;
4083 fprintf (file, "\n");
4087 /* Dump all the registered assertions for NAME to stderr. */
4089 DEBUG_FUNCTION void
4090 debug_asserts_for (tree name)
4092 dump_asserts_for (stderr, name);
4096 /* Dump all the registered assertions for all the names to FILE. */
4098 void
4099 dump_all_asserts (FILE *file)
4101 unsigned i;
4102 bitmap_iterator bi;
4104 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4105 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4106 dump_asserts_for (file, ssa_name (i));
4107 fprintf (file, "\n");
4111 /* Dump all the registered assertions for all the names to stderr. */
4113 DEBUG_FUNCTION void
4114 debug_all_asserts (void)
4116 dump_all_asserts (stderr);
4120 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4121 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4122 E->DEST, then register this location as a possible insertion point
4123 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4125 BB, E and SI provide the exact insertion point for the new
4126 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4127 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4128 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4129 must not be NULL. */
4131 static void
4132 register_new_assert_for (tree name, tree expr,
4133 enum tree_code comp_code,
4134 tree val,
4135 basic_block bb,
4136 edge e,
4137 gimple_stmt_iterator si)
4139 assert_locus_t n, loc, last_loc;
4140 basic_block dest_bb;
4142 gcc_checking_assert (bb == NULL || e == NULL);
4144 if (e == NULL)
4145 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4146 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4148 /* Never build an assert comparing against an integer constant with
4149 TREE_OVERFLOW set. This confuses our undefined overflow warning
4150 machinery. */
4151 if (TREE_CODE (val) == INTEGER_CST
4152 && TREE_OVERFLOW (val))
4153 val = build_int_cst_wide (TREE_TYPE (val),
4154 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
4156 /* The new assertion A will be inserted at BB or E. We need to
4157 determine if the new location is dominated by a previously
4158 registered location for A. If we are doing an edge insertion,
4159 assume that A will be inserted at E->DEST. Note that this is not
4160 necessarily true.
4162 If E is a critical edge, it will be split. But even if E is
4163 split, the new block will dominate the same set of blocks that
4164 E->DEST dominates.
4166 The reverse, however, is not true, blocks dominated by E->DEST
4167 will not be dominated by the new block created to split E. So,
4168 if the insertion location is on a critical edge, we will not use
4169 the new location to move another assertion previously registered
4170 at a block dominated by E->DEST. */
4171 dest_bb = (bb) ? bb : e->dest;
4173 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4174 VAL at a block dominating DEST_BB, then we don't need to insert a new
4175 one. Similarly, if the same assertion already exists at a block
4176 dominated by DEST_BB and the new location is not on a critical
4177 edge, then update the existing location for the assertion (i.e.,
4178 move the assertion up in the dominance tree).
4180 Note, this is implemented as a simple linked list because there
4181 should not be more than a handful of assertions registered per
4182 name. If this becomes a performance problem, a table hashed by
4183 COMP_CODE and VAL could be implemented. */
4184 loc = asserts_for[SSA_NAME_VERSION (name)];
4185 last_loc = loc;
4186 while (loc)
4188 if (loc->comp_code == comp_code
4189 && (loc->val == val
4190 || operand_equal_p (loc->val, val, 0))
4191 && (loc->expr == expr
4192 || operand_equal_p (loc->expr, expr, 0)))
4194 /* If the assertion NAME COMP_CODE VAL has already been
4195 registered at a basic block that dominates DEST_BB, then
4196 we don't need to insert the same assertion again. Note
4197 that we don't check strict dominance here to avoid
4198 replicating the same assertion inside the same basic
4199 block more than once (e.g., when a pointer is
4200 dereferenced several times inside a block).
4202 An exception to this rule are edge insertions. If the
4203 new assertion is to be inserted on edge E, then it will
4204 dominate all the other insertions that we may want to
4205 insert in DEST_BB. So, if we are doing an edge
4206 insertion, don't do this dominance check. */
4207 if (e == NULL
4208 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
4209 return;
4211 /* Otherwise, if E is not a critical edge and DEST_BB
4212 dominates the existing location for the assertion, move
4213 the assertion up in the dominance tree by updating its
4214 location information. */
4215 if ((e == NULL || !EDGE_CRITICAL_P (e))
4216 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4218 loc->bb = dest_bb;
4219 loc->e = e;
4220 loc->si = si;
4221 return;
4225 /* Update the last node of the list and move to the next one. */
4226 last_loc = loc;
4227 loc = loc->next;
4230 /* If we didn't find an assertion already registered for
4231 NAME COMP_CODE VAL, add a new one at the end of the list of
4232 assertions associated with NAME. */
4233 n = XNEW (struct assert_locus_d);
4234 n->bb = dest_bb;
4235 n->e = e;
4236 n->si = si;
4237 n->comp_code = comp_code;
4238 n->val = val;
4239 n->expr = expr;
4240 n->next = NULL;
4242 if (last_loc)
4243 last_loc->next = n;
4244 else
4245 asserts_for[SSA_NAME_VERSION (name)] = n;
4247 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4250 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4251 Extract a suitable test code and value and store them into *CODE_P and
4252 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4254 If no extraction was possible, return FALSE, otherwise return TRUE.
4256 If INVERT is true, then we invert the result stored into *CODE_P. */
4258 static bool
4259 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4260 tree cond_op0, tree cond_op1,
4261 bool invert, enum tree_code *code_p,
4262 tree *val_p)
4264 enum tree_code comp_code;
4265 tree val;
4267 /* Otherwise, we have a comparison of the form NAME COMP VAL
4268 or VAL COMP NAME. */
4269 if (name == cond_op1)
4271 /* If the predicate is of the form VAL COMP NAME, flip
4272 COMP around because we need to register NAME as the
4273 first operand in the predicate. */
4274 comp_code = swap_tree_comparison (cond_code);
4275 val = cond_op0;
4277 else
4279 /* The comparison is of the form NAME COMP VAL, so the
4280 comparison code remains unchanged. */
4281 comp_code = cond_code;
4282 val = cond_op1;
4285 /* Invert the comparison code as necessary. */
4286 if (invert)
4287 comp_code = invert_tree_comparison (comp_code, 0);
4289 /* VRP does not handle float types. */
4290 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4291 return false;
4293 /* Do not register always-false predicates.
4294 FIXME: this works around a limitation in fold() when dealing with
4295 enumerations. Given 'enum { N1, N2 } x;', fold will not
4296 fold 'if (x > N2)' to 'if (0)'. */
4297 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4298 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4300 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4301 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4303 if (comp_code == GT_EXPR
4304 && (!max
4305 || compare_values (val, max) == 0))
4306 return false;
4308 if (comp_code == LT_EXPR
4309 && (!min
4310 || compare_values (val, min) == 0))
4311 return false;
4313 *code_p = comp_code;
4314 *val_p = val;
4315 return true;
4318 /* Try to register an edge assertion for SSA name NAME on edge E for
4319 the condition COND contributing to the conditional jump pointed to by BSI.
4320 Invert the condition COND if INVERT is true.
4321 Return true if an assertion for NAME could be registered. */
4323 static bool
4324 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4325 enum tree_code cond_code,
4326 tree cond_op0, tree cond_op1, bool invert)
4328 tree val;
4329 enum tree_code comp_code;
4330 bool retval = false;
4332 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4333 cond_op0,
4334 cond_op1,
4335 invert, &comp_code, &val))
4336 return false;
4338 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4339 reachable from E. */
4340 if (live_on_edge (e, name)
4341 && !has_single_use (name))
4343 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4344 retval = true;
4347 /* In the case of NAME <= CST and NAME being defined as
4348 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4349 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4350 This catches range and anti-range tests. */
4351 if ((comp_code == LE_EXPR
4352 || comp_code == GT_EXPR)
4353 && TREE_CODE (val) == INTEGER_CST
4354 && TYPE_UNSIGNED (TREE_TYPE (val)))
4356 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4357 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4359 /* Extract CST2 from the (optional) addition. */
4360 if (is_gimple_assign (def_stmt)
4361 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4363 name2 = gimple_assign_rhs1 (def_stmt);
4364 cst2 = gimple_assign_rhs2 (def_stmt);
4365 if (TREE_CODE (name2) == SSA_NAME
4366 && TREE_CODE (cst2) == INTEGER_CST)
4367 def_stmt = SSA_NAME_DEF_STMT (name2);
4370 /* Extract NAME2 from the (optional) sign-changing cast. */
4371 if (gimple_assign_cast_p (def_stmt))
4373 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4374 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4375 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4376 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4377 name3 = gimple_assign_rhs1 (def_stmt);
4380 /* If name3 is used later, create an ASSERT_EXPR for it. */
4381 if (name3 != NULL_TREE
4382 && TREE_CODE (name3) == SSA_NAME
4383 && (cst2 == NULL_TREE
4384 || TREE_CODE (cst2) == INTEGER_CST)
4385 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4386 && live_on_edge (e, name3)
4387 && !has_single_use (name3))
4389 tree tmp;
4391 /* Build an expression for the range test. */
4392 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4393 if (cst2 != NULL_TREE)
4394 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4396 if (dump_file)
4398 fprintf (dump_file, "Adding assert for ");
4399 print_generic_expr (dump_file, name3, 0);
4400 fprintf (dump_file, " from ");
4401 print_generic_expr (dump_file, tmp, 0);
4402 fprintf (dump_file, "\n");
4405 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4407 retval = true;
4410 /* If name2 is used later, create an ASSERT_EXPR for it. */
4411 if (name2 != NULL_TREE
4412 && TREE_CODE (name2) == SSA_NAME
4413 && TREE_CODE (cst2) == INTEGER_CST
4414 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4415 && live_on_edge (e, name2)
4416 && !has_single_use (name2))
4418 tree tmp;
4420 /* Build an expression for the range test. */
4421 tmp = name2;
4422 if (TREE_TYPE (name) != TREE_TYPE (name2))
4423 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4424 if (cst2 != NULL_TREE)
4425 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4427 if (dump_file)
4429 fprintf (dump_file, "Adding assert for ");
4430 print_generic_expr (dump_file, name2, 0);
4431 fprintf (dump_file, " from ");
4432 print_generic_expr (dump_file, tmp, 0);
4433 fprintf (dump_file, "\n");
4436 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4438 retval = true;
4442 return retval;
4445 /* OP is an operand of a truth value expression which is known to have
4446 a particular value. Register any asserts for OP and for any
4447 operands in OP's defining statement.
4449 If CODE is EQ_EXPR, then we want to register OP is zero (false),
4450 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
4452 static bool
4453 register_edge_assert_for_1 (tree op, enum tree_code code,
4454 edge e, gimple_stmt_iterator bsi)
4456 bool retval = false;
4457 gimple op_def;
4458 tree val;
4459 enum tree_code rhs_code;
4461 /* We only care about SSA_NAMEs. */
4462 if (TREE_CODE (op) != SSA_NAME)
4463 return false;
4465 /* We know that OP will have a zero or nonzero value. If OP is used
4466 more than once go ahead and register an assert for OP.
4468 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4469 it will always be set for OP (because OP is used in a COND_EXPR in
4470 the subgraph). */
4471 if (!has_single_use (op))
4473 val = build_int_cst (TREE_TYPE (op), 0);
4474 register_new_assert_for (op, op, code, val, NULL, e, bsi);
4475 retval = true;
4478 /* Now look at how OP is set. If it's set from a comparison,
4479 a truth operation or some bit operations, then we may be able
4480 to register information about the operands of that assignment. */
4481 op_def = SSA_NAME_DEF_STMT (op);
4482 if (gimple_code (op_def) != GIMPLE_ASSIGN)
4483 return retval;
4485 rhs_code = gimple_assign_rhs_code (op_def);
4487 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
4489 bool invert = (code == EQ_EXPR ? true : false);
4490 tree op0 = gimple_assign_rhs1 (op_def);
4491 tree op1 = gimple_assign_rhs2 (op_def);
4493 if (TREE_CODE (op0) == SSA_NAME)
4494 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
4495 invert);
4496 if (TREE_CODE (op1) == SSA_NAME)
4497 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
4498 invert);
4500 else if ((code == NE_EXPR
4501 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
4502 || (code == EQ_EXPR
4503 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
4505 /* Recurse on each operand. */
4506 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4507 code, e, bsi);
4508 retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
4509 code, e, bsi);
4511 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
4512 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
4514 /* Recurse, flipping CODE. */
4515 code = invert_tree_comparison (code, false);
4516 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4517 code, e, bsi);
4519 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
4521 /* Recurse through the copy. */
4522 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4523 code, e, bsi);
4525 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
4527 /* Recurse through the type conversion. */
4528 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4529 code, e, bsi);
4532 return retval;
4535 /* Try to register an edge assertion for SSA name NAME on edge E for
4536 the condition COND contributing to the conditional jump pointed to by SI.
4537 Return true if an assertion for NAME could be registered. */
4539 static bool
4540 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
4541 enum tree_code cond_code, tree cond_op0,
4542 tree cond_op1)
4544 tree val;
4545 enum tree_code comp_code;
4546 bool retval = false;
4547 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
4549 /* Do not attempt to infer anything in names that flow through
4550 abnormal edges. */
4551 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
4552 return false;
4554 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4555 cond_op0, cond_op1,
4556 is_else_edge,
4557 &comp_code, &val))
4558 return false;
4560 /* Register ASSERT_EXPRs for name. */
4561 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
4562 cond_op1, is_else_edge);
4565 /* If COND is effectively an equality test of an SSA_NAME against
4566 the value zero or one, then we may be able to assert values
4567 for SSA_NAMEs which flow into COND. */
4569 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
4570 statement of NAME we can assert both operands of the BIT_AND_EXPR
4571 have nonzero value. */
4572 if (((comp_code == EQ_EXPR && integer_onep (val))
4573 || (comp_code == NE_EXPR && integer_zerop (val))))
4575 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4577 if (is_gimple_assign (def_stmt)
4578 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
4580 tree op0 = gimple_assign_rhs1 (def_stmt);
4581 tree op1 = gimple_assign_rhs2 (def_stmt);
4582 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
4583 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
4587 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
4588 statement of NAME we can assert both operands of the BIT_IOR_EXPR
4589 have zero value. */
4590 if (((comp_code == EQ_EXPR && integer_zerop (val))
4591 || (comp_code == NE_EXPR && integer_onep (val))))
4593 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4595 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4596 necessarily zero value, or if type-precision is one. */
4597 if (is_gimple_assign (def_stmt)
4598 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
4599 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
4600 || comp_code == EQ_EXPR)))
4602 tree op0 = gimple_assign_rhs1 (def_stmt);
4603 tree op1 = gimple_assign_rhs2 (def_stmt);
4604 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
4605 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
4609 return retval;
4613 /* Determine whether the outgoing edges of BB should receive an
4614 ASSERT_EXPR for each of the operands of BB's LAST statement.
4615 The last statement of BB must be a COND_EXPR.
4617 If any of the sub-graphs rooted at BB have an interesting use of
4618 the predicate operands, an assert location node is added to the
4619 list of assertions for the corresponding operands. */
4621 static bool
4622 find_conditional_asserts (basic_block bb, gimple last)
4624 bool need_assert;
4625 gimple_stmt_iterator bsi;
4626 tree op;
4627 edge_iterator ei;
4628 edge e;
4629 ssa_op_iter iter;
4631 need_assert = false;
4632 bsi = gsi_for_stmt (last);
4634 /* Look for uses of the operands in each of the sub-graphs
4635 rooted at BB. We need to check each of the outgoing edges
4636 separately, so that we know what kind of ASSERT_EXPR to
4637 insert. */
4638 FOR_EACH_EDGE (e, ei, bb->succs)
4640 if (e->dest == bb)
4641 continue;
4643 /* Register the necessary assertions for each operand in the
4644 conditional predicate. */
4645 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4647 need_assert |= register_edge_assert_for (op, e, bsi,
4648 gimple_cond_code (last),
4649 gimple_cond_lhs (last),
4650 gimple_cond_rhs (last));
4654 return need_assert;
4657 struct case_info
4659 tree expr;
4660 basic_block bb;
4663 /* Compare two case labels sorting first by the destination bb index
4664 and then by the case value. */
4666 static int
4667 compare_case_labels (const void *p1, const void *p2)
4669 const struct case_info *ci1 = (const struct case_info *) p1;
4670 const struct case_info *ci2 = (const struct case_info *) p2;
4671 int idx1 = ci1->bb->index;
4672 int idx2 = ci2->bb->index;
4674 if (idx1 < idx2)
4675 return -1;
4676 else if (idx1 == idx2)
4678 /* Make sure the default label is first in a group. */
4679 if (!CASE_LOW (ci1->expr))
4680 return -1;
4681 else if (!CASE_LOW (ci2->expr))
4682 return 1;
4683 else
4684 return tree_int_cst_compare (CASE_LOW (ci1->expr),
4685 CASE_LOW (ci2->expr));
4687 else
4688 return 1;
4691 /* Determine whether the outgoing edges of BB should receive an
4692 ASSERT_EXPR for each of the operands of BB's LAST statement.
4693 The last statement of BB must be a SWITCH_EXPR.
4695 If any of the sub-graphs rooted at BB have an interesting use of
4696 the predicate operands, an assert location node is added to the
4697 list of assertions for the corresponding operands. */
4699 static bool
4700 find_switch_asserts (basic_block bb, gimple last)
4702 bool need_assert;
4703 gimple_stmt_iterator bsi;
4704 tree op;
4705 edge e;
4706 struct case_info *ci;
4707 size_t n = gimple_switch_num_labels (last);
4708 #if GCC_VERSION >= 4000
4709 unsigned int idx;
4710 #else
4711 /* Work around GCC 3.4 bug (PR 37086). */
4712 volatile unsigned int idx;
4713 #endif
4715 need_assert = false;
4716 bsi = gsi_for_stmt (last);
4717 op = gimple_switch_index (last);
4718 if (TREE_CODE (op) != SSA_NAME)
4719 return false;
4721 /* Build a vector of case labels sorted by destination label. */
4722 ci = XNEWVEC (struct case_info, n);
4723 for (idx = 0; idx < n; ++idx)
4725 ci[idx].expr = gimple_switch_label (last, idx);
4726 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
4728 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
4730 for (idx = 0; idx < n; ++idx)
4732 tree min, max;
4733 tree cl = ci[idx].expr;
4734 basic_block cbb = ci[idx].bb;
4736 min = CASE_LOW (cl);
4737 max = CASE_HIGH (cl);
4739 /* If there are multiple case labels with the same destination
4740 we need to combine them to a single value range for the edge. */
4741 if (idx + 1 < n && cbb == ci[idx + 1].bb)
4743 /* Skip labels until the last of the group. */
4744 do {
4745 ++idx;
4746 } while (idx < n && cbb == ci[idx].bb);
4747 --idx;
4749 /* Pick up the maximum of the case label range. */
4750 if (CASE_HIGH (ci[idx].expr))
4751 max = CASE_HIGH (ci[idx].expr);
4752 else
4753 max = CASE_LOW (ci[idx].expr);
4756 /* Nothing to do if the range includes the default label until we
4757 can register anti-ranges. */
4758 if (min == NULL_TREE)
4759 continue;
4761 /* Find the edge to register the assert expr on. */
4762 e = find_edge (bb, cbb);
4764 /* Register the necessary assertions for the operand in the
4765 SWITCH_EXPR. */
4766 need_assert |= register_edge_assert_for (op, e, bsi,
4767 max ? GE_EXPR : EQ_EXPR,
4769 fold_convert (TREE_TYPE (op),
4770 min));
4771 if (max)
4773 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
4775 fold_convert (TREE_TYPE (op),
4776 max));
4780 XDELETEVEC (ci);
4781 return need_assert;
4785 /* Traverse all the statements in block BB looking for statements that
4786 may generate useful assertions for the SSA names in their operand.
4787 If a statement produces a useful assertion A for name N_i, then the
4788 list of assertions already generated for N_i is scanned to
4789 determine if A is actually needed.
4791 If N_i already had the assertion A at a location dominating the
4792 current location, then nothing needs to be done. Otherwise, the
4793 new location for A is recorded instead.
4795 1- For every statement S in BB, all the variables used by S are
4796 added to bitmap FOUND_IN_SUBGRAPH.
4798 2- If statement S uses an operand N in a way that exposes a known
4799 value range for N, then if N was not already generated by an
4800 ASSERT_EXPR, create a new assert location for N. For instance,
4801 if N is a pointer and the statement dereferences it, we can
4802 assume that N is not NULL.
4804 3- COND_EXPRs are a special case of #2. We can derive range
4805 information from the predicate but need to insert different
4806 ASSERT_EXPRs for each of the sub-graphs rooted at the
4807 conditional block. If the last statement of BB is a conditional
4808 expression of the form 'X op Y', then
4810 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4812 b) If the conditional is the only entry point to the sub-graph
4813 corresponding to the THEN_CLAUSE, recurse into it. On
4814 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4815 an ASSERT_EXPR is added for the corresponding variable.
4817 c) Repeat step (b) on the ELSE_CLAUSE.
4819 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4821 For instance,
4823 if (a == 9)
4824 b = a;
4825 else
4826 b = c + 1;
4828 In this case, an assertion on the THEN clause is useful to
4829 determine that 'a' is always 9 on that edge. However, an assertion
4830 on the ELSE clause would be unnecessary.
4832 4- If BB does not end in a conditional expression, then we recurse
4833 into BB's dominator children.
4835 At the end of the recursive traversal, every SSA name will have a
4836 list of locations where ASSERT_EXPRs should be added. When a new
4837 location for name N is found, it is registered by calling
4838 register_new_assert_for. That function keeps track of all the
4839 registered assertions to prevent adding unnecessary assertions.
4840 For instance, if a pointer P_4 is dereferenced more than once in a
4841 dominator tree, only the location dominating all the dereference of
4842 P_4 will receive an ASSERT_EXPR.
4844 If this function returns true, then it means that there are names
4845 for which we need to generate ASSERT_EXPRs. Those assertions are
4846 inserted by process_assert_insertions. */
4848 static bool
4849 find_assert_locations_1 (basic_block bb, sbitmap live)
4851 gimple_stmt_iterator si;
4852 gimple last;
4853 gimple phi;
4854 bool need_assert;
4856 need_assert = false;
4857 last = last_stmt (bb);
4859 /* If BB's last statement is a conditional statement involving integer
4860 operands, determine if we need to add ASSERT_EXPRs. */
4861 if (last
4862 && gimple_code (last) == GIMPLE_COND
4863 && !fp_predicate (last)
4864 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4865 need_assert |= find_conditional_asserts (bb, last);
4867 /* If BB's last statement is a switch statement involving integer
4868 operands, determine if we need to add ASSERT_EXPRs. */
4869 if (last
4870 && gimple_code (last) == GIMPLE_SWITCH
4871 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4872 need_assert |= find_switch_asserts (bb, last);
4874 /* Traverse all the statements in BB marking used names and looking
4875 for statements that may infer assertions for their used operands. */
4876 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4878 gimple stmt;
4879 tree op;
4880 ssa_op_iter i;
4882 stmt = gsi_stmt (si);
4884 if (is_gimple_debug (stmt))
4885 continue;
4887 /* See if we can derive an assertion for any of STMT's operands. */
4888 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4890 tree value;
4891 enum tree_code comp_code;
4893 /* Mark OP in our live bitmap. */
4894 SET_BIT (live, SSA_NAME_VERSION (op));
4896 /* If OP is used in such a way that we can infer a value
4897 range for it, and we don't find a previous assertion for
4898 it, create a new assertion location node for OP. */
4899 if (infer_value_range (stmt, op, &comp_code, &value))
4901 /* If we are able to infer a nonzero value range for OP,
4902 then walk backwards through the use-def chain to see if OP
4903 was set via a typecast.
4905 If so, then we can also infer a nonzero value range
4906 for the operand of the NOP_EXPR. */
4907 if (comp_code == NE_EXPR && integer_zerop (value))
4909 tree t = op;
4910 gimple def_stmt = SSA_NAME_DEF_STMT (t);
4912 while (is_gimple_assign (def_stmt)
4913 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
4914 && TREE_CODE
4915 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
4916 && POINTER_TYPE_P
4917 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
4919 t = gimple_assign_rhs1 (def_stmt);
4920 def_stmt = SSA_NAME_DEF_STMT (t);
4922 /* Note we want to register the assert for the
4923 operand of the NOP_EXPR after SI, not after the
4924 conversion. */
4925 if (! has_single_use (t))
4927 register_new_assert_for (t, t, comp_code, value,
4928 bb, NULL, si);
4929 need_assert = true;
4934 /* If OP is used only once, namely in this STMT, don't
4935 bother creating an ASSERT_EXPR for it. Such an
4936 ASSERT_EXPR would do nothing but increase compile time. */
4937 if (!has_single_use (op))
4939 register_new_assert_for (op, op, comp_code, value,
4940 bb, NULL, si);
4941 need_assert = true;
4947 /* Traverse all PHI nodes in BB marking used operands. */
4948 for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
4950 use_operand_p arg_p;
4951 ssa_op_iter i;
4952 phi = gsi_stmt (si);
4954 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4956 tree arg = USE_FROM_PTR (arg_p);
4957 if (TREE_CODE (arg) == SSA_NAME)
4958 SET_BIT (live, SSA_NAME_VERSION (arg));
4962 return need_assert;
4965 /* Do an RPO walk over the function computing SSA name liveness
4966 on-the-fly and deciding on assert expressions to insert.
4967 Returns true if there are assert expressions to be inserted. */
4969 static bool
4970 find_assert_locations (void)
4972 int *rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4973 int *bb_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4974 int *last_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4975 int rpo_cnt, i;
4976 bool need_asserts;
4978 live = XCNEWVEC (sbitmap, last_basic_block + NUM_FIXED_BLOCKS);
4979 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
4980 for (i = 0; i < rpo_cnt; ++i)
4981 bb_rpo[rpo[i]] = i;
4983 need_asserts = false;
4984 for (i = rpo_cnt-1; i >= 0; --i)
4986 basic_block bb = BASIC_BLOCK (rpo[i]);
4987 edge e;
4988 edge_iterator ei;
4990 if (!live[rpo[i]])
4992 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
4993 sbitmap_zero (live[rpo[i]]);
4996 /* Process BB and update the live information with uses in
4997 this block. */
4998 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
5000 /* Merge liveness into the predecessor blocks and free it. */
5001 if (!sbitmap_empty_p (live[rpo[i]]))
5003 int pred_rpo = i;
5004 FOR_EACH_EDGE (e, ei, bb->preds)
5006 int pred = e->src->index;
5007 if (e->flags & EDGE_DFS_BACK)
5008 continue;
5010 if (!live[pred])
5012 live[pred] = sbitmap_alloc (num_ssa_names);
5013 sbitmap_zero (live[pred]);
5015 sbitmap_a_or_b (live[pred], live[pred], live[rpo[i]]);
5017 if (bb_rpo[pred] < pred_rpo)
5018 pred_rpo = bb_rpo[pred];
5021 /* Record the RPO number of the last visited block that needs
5022 live information from this block. */
5023 last_rpo[rpo[i]] = pred_rpo;
5025 else
5027 sbitmap_free (live[rpo[i]]);
5028 live[rpo[i]] = NULL;
5031 /* We can free all successors live bitmaps if all their
5032 predecessors have been visited already. */
5033 FOR_EACH_EDGE (e, ei, bb->succs)
5034 if (last_rpo[e->dest->index] == i
5035 && live[e->dest->index])
5037 sbitmap_free (live[e->dest->index]);
5038 live[e->dest->index] = NULL;
5042 XDELETEVEC (rpo);
5043 XDELETEVEC (bb_rpo);
5044 XDELETEVEC (last_rpo);
5045 for (i = 0; i < last_basic_block + NUM_FIXED_BLOCKS; ++i)
5046 if (live[i])
5047 sbitmap_free (live[i]);
5048 XDELETEVEC (live);
5050 return need_asserts;
5053 /* Create an ASSERT_EXPR for NAME and insert it in the location
5054 indicated by LOC. Return true if we made any edge insertions. */
5056 static bool
5057 process_assert_insertions_for (tree name, assert_locus_t loc)
5059 /* Build the comparison expression NAME_i COMP_CODE VAL. */
5060 gimple stmt;
5061 tree cond;
5062 gimple assert_stmt;
5063 edge_iterator ei;
5064 edge e;
5066 /* If we have X <=> X do not insert an assert expr for that. */
5067 if (loc->expr == loc->val)
5068 return false;
5070 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
5071 assert_stmt = build_assert_expr_for (cond, name);
5072 if (loc->e)
5074 /* We have been asked to insert the assertion on an edge. This
5075 is used only by COND_EXPR and SWITCH_EXPR assertions. */
5076 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
5077 || (gimple_code (gsi_stmt (loc->si))
5078 == GIMPLE_SWITCH));
5080 gsi_insert_on_edge (loc->e, assert_stmt);
5081 return true;
5084 /* Otherwise, we can insert right after LOC->SI iff the
5085 statement must not be the last statement in the block. */
5086 stmt = gsi_stmt (loc->si);
5087 if (!stmt_ends_bb_p (stmt))
5089 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
5090 return false;
5093 /* If STMT must be the last statement in BB, we can only insert new
5094 assertions on the non-abnormal edge out of BB. Note that since
5095 STMT is not control flow, there may only be one non-abnormal edge
5096 out of BB. */
5097 FOR_EACH_EDGE (e, ei, loc->bb->succs)
5098 if (!(e->flags & EDGE_ABNORMAL))
5100 gsi_insert_on_edge (e, assert_stmt);
5101 return true;
5104 gcc_unreachable ();
5108 /* Process all the insertions registered for every name N_i registered
5109 in NEED_ASSERT_FOR. The list of assertions to be inserted are
5110 found in ASSERTS_FOR[i]. */
5112 static void
5113 process_assert_insertions (void)
5115 unsigned i;
5116 bitmap_iterator bi;
5117 bool update_edges_p = false;
5118 int num_asserts = 0;
5120 if (dump_file && (dump_flags & TDF_DETAILS))
5121 dump_all_asserts (dump_file);
5123 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
5125 assert_locus_t loc = asserts_for[i];
5126 gcc_assert (loc);
5128 while (loc)
5130 assert_locus_t next = loc->next;
5131 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
5132 free (loc);
5133 loc = next;
5134 num_asserts++;
5138 if (update_edges_p)
5139 gsi_commit_edge_inserts ();
5141 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
5142 num_asserts);
5146 /* Traverse the flowgraph looking for conditional jumps to insert range
5147 expressions. These range expressions are meant to provide information
5148 to optimizations that need to reason in terms of value ranges. They
5149 will not be expanded into RTL. For instance, given:
5151 x = ...
5152 y = ...
5153 if (x < y)
5154 y = x - 2;
5155 else
5156 x = y + 3;
5158 this pass will transform the code into:
5160 x = ...
5161 y = ...
5162 if (x < y)
5164 x = ASSERT_EXPR <x, x < y>
5165 y = x - 2
5167 else
5169 y = ASSERT_EXPR <y, x <= y>
5170 x = y + 3
5173 The idea is that once copy and constant propagation have run, other
5174 optimizations will be able to determine what ranges of values can 'x'
5175 take in different paths of the code, simply by checking the reaching
5176 definition of 'x'. */
5178 static void
5179 insert_range_assertions (void)
5181 need_assert_for = BITMAP_ALLOC (NULL);
5182 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
5184 calculate_dominance_info (CDI_DOMINATORS);
5186 if (find_assert_locations ())
5188 process_assert_insertions ();
5189 update_ssa (TODO_update_ssa_no_phi);
5192 if (dump_file && (dump_flags & TDF_DETAILS))
5194 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
5195 dump_function_to_file (current_function_decl, dump_file, dump_flags);
5198 free (asserts_for);
5199 BITMAP_FREE (need_assert_for);
5202 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
5203 and "struct" hacks. If VRP can determine that the
5204 array subscript is a constant, check if it is outside valid
5205 range. If the array subscript is a RANGE, warn if it is
5206 non-overlapping with valid range.
5207 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
5209 static void
5210 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
5212 value_range_t* vr = NULL;
5213 tree low_sub, up_sub;
5214 tree low_bound, up_bound, up_bound_p1;
5215 tree base;
5217 if (TREE_NO_WARNING (ref))
5218 return;
5220 low_sub = up_sub = TREE_OPERAND (ref, 1);
5221 up_bound = array_ref_up_bound (ref);
5223 /* Can not check flexible arrays. */
5224 if (!up_bound
5225 || TREE_CODE (up_bound) != INTEGER_CST)
5226 return;
5228 /* Accesses to trailing arrays via pointers may access storage
5229 beyond the types array bounds. */
5230 base = get_base_address (ref);
5231 if (base && TREE_CODE (base) == MEM_REF)
5233 tree cref, next = NULL_TREE;
5235 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
5236 return;
5238 cref = TREE_OPERAND (ref, 0);
5239 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
5240 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
5241 next && TREE_CODE (next) != FIELD_DECL;
5242 next = DECL_CHAIN (next))
5245 /* If this is the last field in a struct type or a field in a
5246 union type do not warn. */
5247 if (!next)
5248 return;
5251 low_bound = array_ref_low_bound (ref);
5252 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound, integer_one_node);
5254 if (TREE_CODE (low_sub) == SSA_NAME)
5256 vr = get_value_range (low_sub);
5257 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
5259 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
5260 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
5264 if (vr && vr->type == VR_ANTI_RANGE)
5266 if (TREE_CODE (up_sub) == INTEGER_CST
5267 && tree_int_cst_lt (up_bound, up_sub)
5268 && TREE_CODE (low_sub) == INTEGER_CST
5269 && tree_int_cst_lt (low_sub, low_bound))
5271 warning_at (location, OPT_Warray_bounds,
5272 "array subscript is outside array bounds");
5273 TREE_NO_WARNING (ref) = 1;
5276 else if (TREE_CODE (up_sub) == INTEGER_CST
5277 && (ignore_off_by_one
5278 ? (tree_int_cst_lt (up_bound, up_sub)
5279 && !tree_int_cst_equal (up_bound_p1, up_sub))
5280 : (tree_int_cst_lt (up_bound, up_sub)
5281 || tree_int_cst_equal (up_bound_p1, up_sub))))
5283 warning_at (location, OPT_Warray_bounds,
5284 "array subscript is above array bounds");
5285 TREE_NO_WARNING (ref) = 1;
5287 else if (TREE_CODE (low_sub) == INTEGER_CST
5288 && tree_int_cst_lt (low_sub, low_bound))
5290 warning_at (location, OPT_Warray_bounds,
5291 "array subscript is below array bounds");
5292 TREE_NO_WARNING (ref) = 1;
5296 /* Searches if the expr T, located at LOCATION computes
5297 address of an ARRAY_REF, and call check_array_ref on it. */
5299 static void
5300 search_for_addr_array (tree t, location_t location)
5302 while (TREE_CODE (t) == SSA_NAME)
5304 gimple g = SSA_NAME_DEF_STMT (t);
5306 if (gimple_code (g) != GIMPLE_ASSIGN)
5307 return;
5309 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
5310 != GIMPLE_SINGLE_RHS)
5311 return;
5313 t = gimple_assign_rhs1 (g);
5317 /* We are only interested in addresses of ARRAY_REF's. */
5318 if (TREE_CODE (t) != ADDR_EXPR)
5319 return;
5321 /* Check each ARRAY_REFs in the reference chain. */
5324 if (TREE_CODE (t) == ARRAY_REF)
5325 check_array_ref (location, t, true /*ignore_off_by_one*/);
5327 t = TREE_OPERAND (t, 0);
5329 while (handled_component_p (t));
5331 if (TREE_CODE (t) == MEM_REF
5332 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
5333 && !TREE_NO_WARNING (t))
5335 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
5336 tree low_bound, up_bound, el_sz;
5337 double_int idx;
5338 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
5339 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
5340 || !TYPE_DOMAIN (TREE_TYPE (tem)))
5341 return;
5343 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
5344 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
5345 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
5346 if (!low_bound
5347 || TREE_CODE (low_bound) != INTEGER_CST
5348 || !up_bound
5349 || TREE_CODE (up_bound) != INTEGER_CST
5350 || !el_sz
5351 || TREE_CODE (el_sz) != INTEGER_CST)
5352 return;
5354 idx = mem_ref_offset (t);
5355 idx = double_int_sdiv (idx, tree_to_double_int (el_sz), TRUNC_DIV_EXPR);
5356 if (double_int_scmp (idx, double_int_zero) < 0)
5358 warning_at (location, OPT_Warray_bounds,
5359 "array subscript is below array bounds");
5360 TREE_NO_WARNING (t) = 1;
5362 else if (double_int_scmp (idx,
5363 double_int_add
5364 (double_int_add
5365 (tree_to_double_int (up_bound),
5366 double_int_neg
5367 (tree_to_double_int (low_bound))),
5368 double_int_one)) > 0)
5370 warning_at (location, OPT_Warray_bounds,
5371 "array subscript is above array bounds");
5372 TREE_NO_WARNING (t) = 1;
5377 /* walk_tree() callback that checks if *TP is
5378 an ARRAY_REF inside an ADDR_EXPR (in which an array
5379 subscript one outside the valid range is allowed). Call
5380 check_array_ref for each ARRAY_REF found. The location is
5381 passed in DATA. */
5383 static tree
5384 check_array_bounds (tree *tp, int *walk_subtree, void *data)
5386 tree t = *tp;
5387 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5388 location_t location;
5390 if (EXPR_HAS_LOCATION (t))
5391 location = EXPR_LOCATION (t);
5392 else
5394 location_t *locp = (location_t *) wi->info;
5395 location = *locp;
5398 *walk_subtree = TRUE;
5400 if (TREE_CODE (t) == ARRAY_REF)
5401 check_array_ref (location, t, false /*ignore_off_by_one*/);
5403 if (TREE_CODE (t) == MEM_REF
5404 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
5405 search_for_addr_array (TREE_OPERAND (t, 0), location);
5407 if (TREE_CODE (t) == ADDR_EXPR)
5408 *walk_subtree = FALSE;
5410 return NULL_TREE;
5413 /* Walk over all statements of all reachable BBs and call check_array_bounds
5414 on them. */
5416 static void
5417 check_all_array_refs (void)
5419 basic_block bb;
5420 gimple_stmt_iterator si;
5422 FOR_EACH_BB (bb)
5424 edge_iterator ei;
5425 edge e;
5426 bool executable = false;
5428 /* Skip blocks that were found to be unreachable. */
5429 FOR_EACH_EDGE (e, ei, bb->preds)
5430 executable |= !!(e->flags & EDGE_EXECUTABLE);
5431 if (!executable)
5432 continue;
5434 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5436 gimple stmt = gsi_stmt (si);
5437 struct walk_stmt_info wi;
5438 if (!gimple_has_location (stmt))
5439 continue;
5441 if (is_gimple_call (stmt))
5443 size_t i;
5444 size_t n = gimple_call_num_args (stmt);
5445 for (i = 0; i < n; i++)
5447 tree arg = gimple_call_arg (stmt, i);
5448 search_for_addr_array (arg, gimple_location (stmt));
5451 else
5453 memset (&wi, 0, sizeof (wi));
5454 wi.info = CONST_CAST (void *, (const void *)
5455 gimple_location_ptr (stmt));
5457 walk_gimple_op (gsi_stmt (si),
5458 check_array_bounds,
5459 &wi);
5465 /* Convert range assertion expressions into the implied copies and
5466 copy propagate away the copies. Doing the trivial copy propagation
5467 here avoids the need to run the full copy propagation pass after
5468 VRP.
5470 FIXME, this will eventually lead to copy propagation removing the
5471 names that had useful range information attached to them. For
5472 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5473 then N_i will have the range [3, +INF].
5475 However, by converting the assertion into the implied copy
5476 operation N_i = N_j, we will then copy-propagate N_j into the uses
5477 of N_i and lose the range information. We may want to hold on to
5478 ASSERT_EXPRs a little while longer as the ranges could be used in
5479 things like jump threading.
5481 The problem with keeping ASSERT_EXPRs around is that passes after
5482 VRP need to handle them appropriately.
5484 Another approach would be to make the range information a first
5485 class property of the SSA_NAME so that it can be queried from
5486 any pass. This is made somewhat more complex by the need for
5487 multiple ranges to be associated with one SSA_NAME. */
5489 static void
5490 remove_range_assertions (void)
5492 basic_block bb;
5493 gimple_stmt_iterator si;
5495 /* Note that the BSI iterator bump happens at the bottom of the
5496 loop and no bump is necessary if we're removing the statement
5497 referenced by the current BSI. */
5498 FOR_EACH_BB (bb)
5499 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
5501 gimple stmt = gsi_stmt (si);
5502 gimple use_stmt;
5504 if (is_gimple_assign (stmt)
5505 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
5507 tree rhs = gimple_assign_rhs1 (stmt);
5508 tree var;
5509 tree cond = fold (ASSERT_EXPR_COND (rhs));
5510 use_operand_p use_p;
5511 imm_use_iterator iter;
5513 gcc_assert (cond != boolean_false_node);
5515 /* Propagate the RHS into every use of the LHS. */
5516 var = ASSERT_EXPR_VAR (rhs);
5517 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
5518 gimple_assign_lhs (stmt))
5519 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5521 SET_USE (use_p, var);
5522 gcc_assert (TREE_CODE (var) == SSA_NAME);
5525 /* And finally, remove the copy, it is not needed. */
5526 gsi_remove (&si, true);
5527 release_defs (stmt);
5529 else
5530 gsi_next (&si);
5535 /* Return true if STMT is interesting for VRP. */
5537 static bool
5538 stmt_interesting_for_vrp (gimple stmt)
5540 if (gimple_code (stmt) == GIMPLE_PHI
5541 && is_gimple_reg (gimple_phi_result (stmt))
5542 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))
5543 || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))))
5544 return true;
5545 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
5547 tree lhs = gimple_get_lhs (stmt);
5549 /* In general, assignments with virtual operands are not useful
5550 for deriving ranges, with the obvious exception of calls to
5551 builtin functions. */
5552 if (lhs && TREE_CODE (lhs) == SSA_NAME
5553 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5554 || POINTER_TYPE_P (TREE_TYPE (lhs)))
5555 && ((is_gimple_call (stmt)
5556 && gimple_call_fndecl (stmt) != NULL_TREE
5557 && DECL_BUILT_IN (gimple_call_fndecl (stmt)))
5558 || !gimple_vuse (stmt)))
5559 return true;
5561 else if (gimple_code (stmt) == GIMPLE_COND
5562 || gimple_code (stmt) == GIMPLE_SWITCH)
5563 return true;
5565 return false;
5569 /* Initialize local data structures for VRP. */
5571 static void
5572 vrp_initialize (void)
5574 basic_block bb;
5576 values_propagated = false;
5577 num_vr_values = num_ssa_names;
5578 vr_value = XCNEWVEC (value_range_t *, num_vr_values);
5579 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
5581 FOR_EACH_BB (bb)
5583 gimple_stmt_iterator si;
5585 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5587 gimple phi = gsi_stmt (si);
5588 if (!stmt_interesting_for_vrp (phi))
5590 tree lhs = PHI_RESULT (phi);
5591 set_value_range_to_varying (get_value_range (lhs));
5592 prop_set_simulate_again (phi, false);
5594 else
5595 prop_set_simulate_again (phi, true);
5598 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5600 gimple stmt = gsi_stmt (si);
5602 /* If the statement is a control insn, then we do not
5603 want to avoid simulating the statement once. Failure
5604 to do so means that those edges will never get added. */
5605 if (stmt_ends_bb_p (stmt))
5606 prop_set_simulate_again (stmt, true);
5607 else if (!stmt_interesting_for_vrp (stmt))
5609 ssa_op_iter i;
5610 tree def;
5611 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
5612 set_value_range_to_varying (get_value_range (def));
5613 prop_set_simulate_again (stmt, false);
5615 else
5616 prop_set_simulate_again (stmt, true);
5621 /* Return the singleton value-range for NAME or NAME. */
5623 static inline tree
5624 vrp_valueize (tree name)
5626 if (TREE_CODE (name) == SSA_NAME)
5628 value_range_t *vr = get_value_range (name);
5629 if (vr->type == VR_RANGE
5630 && (vr->min == vr->max
5631 || operand_equal_p (vr->min, vr->max, 0)))
5632 return vr->min;
5634 return name;
5637 /* Visit assignment STMT. If it produces an interesting range, record
5638 the SSA name in *OUTPUT_P. */
5640 static enum ssa_prop_result
5641 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
5643 tree def, lhs;
5644 ssa_op_iter iter;
5645 enum gimple_code code = gimple_code (stmt);
5646 lhs = gimple_get_lhs (stmt);
5648 /* We only keep track of ranges in integral and pointer types. */
5649 if (TREE_CODE (lhs) == SSA_NAME
5650 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5651 /* It is valid to have NULL MIN/MAX values on a type. See
5652 build_range_type. */
5653 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
5654 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
5655 || POINTER_TYPE_P (TREE_TYPE (lhs))))
5657 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5659 /* Try folding the statement to a constant first. */
5660 tree tem = gimple_fold_stmt_to_constant (stmt, vrp_valueize);
5661 if (tem && !is_overflow_infinity (tem))
5662 set_value_range (&new_vr, VR_RANGE, tem, tem, NULL);
5663 /* Then dispatch to value-range extracting functions. */
5664 else if (code == GIMPLE_CALL)
5665 extract_range_basic (&new_vr, stmt);
5666 else
5667 extract_range_from_assignment (&new_vr, stmt);
5669 if (update_value_range (lhs, &new_vr))
5671 *output_p = lhs;
5673 if (dump_file && (dump_flags & TDF_DETAILS))
5675 fprintf (dump_file, "Found new range for ");
5676 print_generic_expr (dump_file, lhs, 0);
5677 fprintf (dump_file, ": ");
5678 dump_value_range (dump_file, &new_vr);
5679 fprintf (dump_file, "\n\n");
5682 if (new_vr.type == VR_VARYING)
5683 return SSA_PROP_VARYING;
5685 return SSA_PROP_INTERESTING;
5688 return SSA_PROP_NOT_INTERESTING;
5691 /* Every other statement produces no useful ranges. */
5692 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5693 set_value_range_to_varying (get_value_range (def));
5695 return SSA_PROP_VARYING;
5698 /* Helper that gets the value range of the SSA_NAME with version I
5699 or a symbolic range containing the SSA_NAME only if the value range
5700 is varying or undefined. */
5702 static inline value_range_t
5703 get_vr_for_comparison (int i)
5705 value_range_t vr = *get_value_range (ssa_name (i));
5707 /* If name N_i does not have a valid range, use N_i as its own
5708 range. This allows us to compare against names that may
5709 have N_i in their ranges. */
5710 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
5712 vr.type = VR_RANGE;
5713 vr.min = ssa_name (i);
5714 vr.max = ssa_name (i);
5717 return vr;
5720 /* Compare all the value ranges for names equivalent to VAR with VAL
5721 using comparison code COMP. Return the same value returned by
5722 compare_range_with_value, including the setting of
5723 *STRICT_OVERFLOW_P. */
5725 static tree
5726 compare_name_with_value (enum tree_code comp, tree var, tree val,
5727 bool *strict_overflow_p)
5729 bitmap_iterator bi;
5730 unsigned i;
5731 bitmap e;
5732 tree retval, t;
5733 int used_strict_overflow;
5734 bool sop;
5735 value_range_t equiv_vr;
5737 /* Get the set of equivalences for VAR. */
5738 e = get_value_range (var)->equiv;
5740 /* Start at -1. Set it to 0 if we do a comparison without relying
5741 on overflow, or 1 if all comparisons rely on overflow. */
5742 used_strict_overflow = -1;
5744 /* Compare vars' value range with val. */
5745 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
5746 sop = false;
5747 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
5748 if (retval)
5749 used_strict_overflow = sop ? 1 : 0;
5751 /* If the equiv set is empty we have done all work we need to do. */
5752 if (e == NULL)
5754 if (retval
5755 && used_strict_overflow > 0)
5756 *strict_overflow_p = true;
5757 return retval;
5760 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
5762 equiv_vr = get_vr_for_comparison (i);
5763 sop = false;
5764 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
5765 if (t)
5767 /* If we get different answers from different members
5768 of the equivalence set this check must be in a dead
5769 code region. Folding it to a trap representation
5770 would be correct here. For now just return don't-know. */
5771 if (retval != NULL
5772 && t != retval)
5774 retval = NULL_TREE;
5775 break;
5777 retval = t;
5779 if (!sop)
5780 used_strict_overflow = 0;
5781 else if (used_strict_overflow < 0)
5782 used_strict_overflow = 1;
5786 if (retval
5787 && used_strict_overflow > 0)
5788 *strict_overflow_p = true;
5790 return retval;
5794 /* Given a comparison code COMP and names N1 and N2, compare all the
5795 ranges equivalent to N1 against all the ranges equivalent to N2
5796 to determine the value of N1 COMP N2. Return the same value
5797 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5798 whether we relied on an overflow infinity in the comparison. */
5801 static tree
5802 compare_names (enum tree_code comp, tree n1, tree n2,
5803 bool *strict_overflow_p)
5805 tree t, retval;
5806 bitmap e1, e2;
5807 bitmap_iterator bi1, bi2;
5808 unsigned i1, i2;
5809 int used_strict_overflow;
5810 static bitmap_obstack *s_obstack = NULL;
5811 static bitmap s_e1 = NULL, s_e2 = NULL;
5813 /* Compare the ranges of every name equivalent to N1 against the
5814 ranges of every name equivalent to N2. */
5815 e1 = get_value_range (n1)->equiv;
5816 e2 = get_value_range (n2)->equiv;
5818 /* Use the fake bitmaps if e1 or e2 are not available. */
5819 if (s_obstack == NULL)
5821 s_obstack = XNEW (bitmap_obstack);
5822 bitmap_obstack_initialize (s_obstack);
5823 s_e1 = BITMAP_ALLOC (s_obstack);
5824 s_e2 = BITMAP_ALLOC (s_obstack);
5826 if (e1 == NULL)
5827 e1 = s_e1;
5828 if (e2 == NULL)
5829 e2 = s_e2;
5831 /* Add N1 and N2 to their own set of equivalences to avoid
5832 duplicating the body of the loop just to check N1 and N2
5833 ranges. */
5834 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
5835 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
5837 /* If the equivalence sets have a common intersection, then the two
5838 names can be compared without checking their ranges. */
5839 if (bitmap_intersect_p (e1, e2))
5841 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5842 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5844 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
5845 ? boolean_true_node
5846 : boolean_false_node;
5849 /* Start at -1. Set it to 0 if we do a comparison without relying
5850 on overflow, or 1 if all comparisons rely on overflow. */
5851 used_strict_overflow = -1;
5853 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5854 N2 to their own set of equivalences to avoid duplicating the body
5855 of the loop just to check N1 and N2 ranges. */
5856 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
5858 value_range_t vr1 = get_vr_for_comparison (i1);
5860 t = retval = NULL_TREE;
5861 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
5863 bool sop = false;
5865 value_range_t vr2 = get_vr_for_comparison (i2);
5867 t = compare_ranges (comp, &vr1, &vr2, &sop);
5868 if (t)
5870 /* If we get different answers from different members
5871 of the equivalence set this check must be in a dead
5872 code region. Folding it to a trap representation
5873 would be correct here. For now just return don't-know. */
5874 if (retval != NULL
5875 && t != retval)
5877 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5878 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5879 return NULL_TREE;
5881 retval = t;
5883 if (!sop)
5884 used_strict_overflow = 0;
5885 else if (used_strict_overflow < 0)
5886 used_strict_overflow = 1;
5890 if (retval)
5892 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5893 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5894 if (used_strict_overflow > 0)
5895 *strict_overflow_p = true;
5896 return retval;
5900 /* None of the equivalent ranges are useful in computing this
5901 comparison. */
5902 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5903 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5904 return NULL_TREE;
5907 /* Helper function for vrp_evaluate_conditional_warnv. */
5909 static tree
5910 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
5911 tree op0, tree op1,
5912 bool * strict_overflow_p)
5914 value_range_t *vr0, *vr1;
5916 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5917 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5919 if (vr0 && vr1)
5920 return compare_ranges (code, vr0, vr1, strict_overflow_p);
5921 else if (vr0 && vr1 == NULL)
5922 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
5923 else if (vr0 == NULL && vr1)
5924 return (compare_range_with_value
5925 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
5926 return NULL;
5929 /* Helper function for vrp_evaluate_conditional_warnv. */
5931 static tree
5932 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
5933 tree op1, bool use_equiv_p,
5934 bool *strict_overflow_p, bool *only_ranges)
5936 tree ret;
5937 if (only_ranges)
5938 *only_ranges = true;
5940 /* We only deal with integral and pointer types. */
5941 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
5942 && !POINTER_TYPE_P (TREE_TYPE (op0)))
5943 return NULL_TREE;
5945 if (use_equiv_p)
5947 if (only_ranges
5948 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
5949 (code, op0, op1, strict_overflow_p)))
5950 return ret;
5951 *only_ranges = false;
5952 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
5953 return compare_names (code, op0, op1, strict_overflow_p);
5954 else if (TREE_CODE (op0) == SSA_NAME)
5955 return compare_name_with_value (code, op0, op1, strict_overflow_p);
5956 else if (TREE_CODE (op1) == SSA_NAME)
5957 return (compare_name_with_value
5958 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
5960 else
5961 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
5962 strict_overflow_p);
5963 return NULL_TREE;
5966 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
5967 information. Return NULL if the conditional can not be evaluated.
5968 The ranges of all the names equivalent with the operands in COND
5969 will be used when trying to compute the value. If the result is
5970 based on undefined signed overflow, issue a warning if
5971 appropriate. */
5973 static tree
5974 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
5976 bool sop;
5977 tree ret;
5978 bool only_ranges;
5980 /* Some passes and foldings leak constants with overflow flag set
5981 into the IL. Avoid doing wrong things with these and bail out. */
5982 if ((TREE_CODE (op0) == INTEGER_CST
5983 && TREE_OVERFLOW (op0))
5984 || (TREE_CODE (op1) == INTEGER_CST
5985 && TREE_OVERFLOW (op1)))
5986 return NULL_TREE;
5988 sop = false;
5989 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
5990 &only_ranges);
5992 if (ret && sop)
5994 enum warn_strict_overflow_code wc;
5995 const char* warnmsg;
5997 if (is_gimple_min_invariant (ret))
5999 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
6000 warnmsg = G_("assuming signed overflow does not occur when "
6001 "simplifying conditional to constant");
6003 else
6005 wc = WARN_STRICT_OVERFLOW_COMPARISON;
6006 warnmsg = G_("assuming signed overflow does not occur when "
6007 "simplifying conditional");
6010 if (issue_strict_overflow_warning (wc))
6012 location_t location;
6014 if (!gimple_has_location (stmt))
6015 location = input_location;
6016 else
6017 location = gimple_location (stmt);
6018 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
6022 if (warn_type_limits
6023 && ret && only_ranges
6024 && TREE_CODE_CLASS (code) == tcc_comparison
6025 && TREE_CODE (op0) == SSA_NAME)
6027 /* If the comparison is being folded and the operand on the LHS
6028 is being compared against a constant value that is outside of
6029 the natural range of OP0's type, then the predicate will
6030 always fold regardless of the value of OP0. If -Wtype-limits
6031 was specified, emit a warning. */
6032 tree type = TREE_TYPE (op0);
6033 value_range_t *vr0 = get_value_range (op0);
6035 if (vr0->type != VR_VARYING
6036 && INTEGRAL_TYPE_P (type)
6037 && vrp_val_is_min (vr0->min)
6038 && vrp_val_is_max (vr0->max)
6039 && is_gimple_min_invariant (op1))
6041 location_t location;
6043 if (!gimple_has_location (stmt))
6044 location = input_location;
6045 else
6046 location = gimple_location (stmt);
6048 warning_at (location, OPT_Wtype_limits,
6049 integer_zerop (ret)
6050 ? G_("comparison always false "
6051 "due to limited range of data type")
6052 : G_("comparison always true "
6053 "due to limited range of data type"));
6057 return ret;
6061 /* Visit conditional statement STMT. If we can determine which edge
6062 will be taken out of STMT's basic block, record it in
6063 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6064 SSA_PROP_VARYING. */
6066 static enum ssa_prop_result
6067 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
6069 tree val;
6070 bool sop;
6072 *taken_edge_p = NULL;
6074 if (dump_file && (dump_flags & TDF_DETAILS))
6076 tree use;
6077 ssa_op_iter i;
6079 fprintf (dump_file, "\nVisiting conditional with predicate: ");
6080 print_gimple_stmt (dump_file, stmt, 0, 0);
6081 fprintf (dump_file, "\nWith known ranges\n");
6083 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
6085 fprintf (dump_file, "\t");
6086 print_generic_expr (dump_file, use, 0);
6087 fprintf (dump_file, ": ");
6088 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
6091 fprintf (dump_file, "\n");
6094 /* Compute the value of the predicate COND by checking the known
6095 ranges of each of its operands.
6097 Note that we cannot evaluate all the equivalent ranges here
6098 because those ranges may not yet be final and with the current
6099 propagation strategy, we cannot determine when the value ranges
6100 of the names in the equivalence set have changed.
6102 For instance, given the following code fragment
6104 i_5 = PHI <8, i_13>
6106 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
6107 if (i_14 == 1)
6110 Assume that on the first visit to i_14, i_5 has the temporary
6111 range [8, 8] because the second argument to the PHI function is
6112 not yet executable. We derive the range ~[0, 0] for i_14 and the
6113 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
6114 the first time, since i_14 is equivalent to the range [8, 8], we
6115 determine that the predicate is always false.
6117 On the next round of propagation, i_13 is determined to be
6118 VARYING, which causes i_5 to drop down to VARYING. So, another
6119 visit to i_14 is scheduled. In this second visit, we compute the
6120 exact same range and equivalence set for i_14, namely ~[0, 0] and
6121 { i_5 }. But we did not have the previous range for i_5
6122 registered, so vrp_visit_assignment thinks that the range for
6123 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
6124 is not visited again, which stops propagation from visiting
6125 statements in the THEN clause of that if().
6127 To properly fix this we would need to keep the previous range
6128 value for the names in the equivalence set. This way we would've
6129 discovered that from one visit to the other i_5 changed from
6130 range [8, 8] to VR_VARYING.
6132 However, fixing this apparent limitation may not be worth the
6133 additional checking. Testing on several code bases (GCC, DLV,
6134 MICO, TRAMP3D and SPEC2000) showed that doing this results in
6135 4 more predicates folded in SPEC. */
6136 sop = false;
6138 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
6139 gimple_cond_lhs (stmt),
6140 gimple_cond_rhs (stmt),
6141 false, &sop, NULL);
6142 if (val)
6144 if (!sop)
6145 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
6146 else
6148 if (dump_file && (dump_flags & TDF_DETAILS))
6149 fprintf (dump_file,
6150 "\nIgnoring predicate evaluation because "
6151 "it assumes that signed overflow is undefined");
6152 val = NULL_TREE;
6156 if (dump_file && (dump_flags & TDF_DETAILS))
6158 fprintf (dump_file, "\nPredicate evaluates to: ");
6159 if (val == NULL_TREE)
6160 fprintf (dump_file, "DON'T KNOW\n");
6161 else
6162 print_generic_stmt (dump_file, val, 0);
6165 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
6168 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
6169 that includes the value VAL. The search is restricted to the range
6170 [START_IDX, n - 1] where n is the size of VEC.
6172 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
6173 returned.
6175 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
6176 it is placed in IDX and false is returned.
6178 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
6179 returned. */
6181 static bool
6182 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
6184 size_t n = gimple_switch_num_labels (stmt);
6185 size_t low, high;
6187 /* Find case label for minimum of the value range or the next one.
6188 At each iteration we are searching in [low, high - 1]. */
6190 for (low = start_idx, high = n; high != low; )
6192 tree t;
6193 int cmp;
6194 /* Note that i != high, so we never ask for n. */
6195 size_t i = (high + low) / 2;
6196 t = gimple_switch_label (stmt, i);
6198 /* Cache the result of comparing CASE_LOW and val. */
6199 cmp = tree_int_cst_compare (CASE_LOW (t), val);
6201 if (cmp == 0)
6203 /* Ranges cannot be empty. */
6204 *idx = i;
6205 return true;
6207 else if (cmp > 0)
6208 high = i;
6209 else
6211 low = i + 1;
6212 if (CASE_HIGH (t) != NULL
6213 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
6215 *idx = i;
6216 return true;
6221 *idx = high;
6222 return false;
6225 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
6226 for values between MIN and MAX. The first index is placed in MIN_IDX. The
6227 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
6228 then MAX_IDX < MIN_IDX.
6229 Returns true if the default label is not needed. */
6231 static bool
6232 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
6233 size_t *max_idx)
6235 size_t i, j;
6236 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
6237 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
6239 if (i == j
6240 && min_take_default
6241 && max_take_default)
6243 /* Only the default case label reached.
6244 Return an empty range. */
6245 *min_idx = 1;
6246 *max_idx = 0;
6247 return false;
6249 else
6251 bool take_default = min_take_default || max_take_default;
6252 tree low, high;
6253 size_t k;
6255 if (max_take_default)
6256 j--;
6258 /* If the case label range is continuous, we do not need
6259 the default case label. Verify that. */
6260 high = CASE_LOW (gimple_switch_label (stmt, i));
6261 if (CASE_HIGH (gimple_switch_label (stmt, i)))
6262 high = CASE_HIGH (gimple_switch_label (stmt, i));
6263 for (k = i + 1; k <= j; ++k)
6265 low = CASE_LOW (gimple_switch_label (stmt, k));
6266 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
6268 take_default = true;
6269 break;
6271 high = low;
6272 if (CASE_HIGH (gimple_switch_label (stmt, k)))
6273 high = CASE_HIGH (gimple_switch_label (stmt, k));
6276 *min_idx = i;
6277 *max_idx = j;
6278 return !take_default;
6282 /* Visit switch statement STMT. If we can determine which edge
6283 will be taken out of STMT's basic block, record it in
6284 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6285 SSA_PROP_VARYING. */
6287 static enum ssa_prop_result
6288 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
6290 tree op, val;
6291 value_range_t *vr;
6292 size_t i = 0, j = 0;
6293 bool take_default;
6295 *taken_edge_p = NULL;
6296 op = gimple_switch_index (stmt);
6297 if (TREE_CODE (op) != SSA_NAME)
6298 return SSA_PROP_VARYING;
6300 vr = get_value_range (op);
6301 if (dump_file && (dump_flags & TDF_DETAILS))
6303 fprintf (dump_file, "\nVisiting switch expression with operand ");
6304 print_generic_expr (dump_file, op, 0);
6305 fprintf (dump_file, " with known range ");
6306 dump_value_range (dump_file, vr);
6307 fprintf (dump_file, "\n");
6310 if (vr->type != VR_RANGE
6311 || symbolic_range_p (vr))
6312 return SSA_PROP_VARYING;
6314 /* Find the single edge that is taken from the switch expression. */
6315 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
6317 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
6318 label */
6319 if (j < i)
6321 gcc_assert (take_default);
6322 val = gimple_switch_default_label (stmt);
6324 else
6326 /* Check if labels with index i to j and maybe the default label
6327 are all reaching the same label. */
6329 val = gimple_switch_label (stmt, i);
6330 if (take_default
6331 && CASE_LABEL (gimple_switch_default_label (stmt))
6332 != CASE_LABEL (val))
6334 if (dump_file && (dump_flags & TDF_DETAILS))
6335 fprintf (dump_file, " not a single destination for this "
6336 "range\n");
6337 return SSA_PROP_VARYING;
6339 for (++i; i <= j; ++i)
6341 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
6343 if (dump_file && (dump_flags & TDF_DETAILS))
6344 fprintf (dump_file, " not a single destination for this "
6345 "range\n");
6346 return SSA_PROP_VARYING;
6351 *taken_edge_p = find_edge (gimple_bb (stmt),
6352 label_to_block (CASE_LABEL (val)));
6354 if (dump_file && (dump_flags & TDF_DETAILS))
6356 fprintf (dump_file, " will take edge to ");
6357 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
6360 return SSA_PROP_INTERESTING;
6364 /* Evaluate statement STMT. If the statement produces a useful range,
6365 return SSA_PROP_INTERESTING and record the SSA name with the
6366 interesting range into *OUTPUT_P.
6368 If STMT is a conditional branch and we can determine its truth
6369 value, the taken edge is recorded in *TAKEN_EDGE_P.
6371 If STMT produces a varying value, return SSA_PROP_VARYING. */
6373 static enum ssa_prop_result
6374 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
6376 tree def;
6377 ssa_op_iter iter;
6379 if (dump_file && (dump_flags & TDF_DETAILS))
6381 fprintf (dump_file, "\nVisiting statement:\n");
6382 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
6383 fprintf (dump_file, "\n");
6386 if (!stmt_interesting_for_vrp (stmt))
6387 gcc_assert (stmt_ends_bb_p (stmt));
6388 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6390 /* In general, assignments with virtual operands are not useful
6391 for deriving ranges, with the obvious exception of calls to
6392 builtin functions. */
6393 if ((is_gimple_call (stmt)
6394 && gimple_call_fndecl (stmt) != NULL_TREE
6395 && DECL_BUILT_IN (gimple_call_fndecl (stmt)))
6396 || !gimple_vuse (stmt))
6397 return vrp_visit_assignment_or_call (stmt, output_p);
6399 else if (gimple_code (stmt) == GIMPLE_COND)
6400 return vrp_visit_cond_stmt (stmt, taken_edge_p);
6401 else if (gimple_code (stmt) == GIMPLE_SWITCH)
6402 return vrp_visit_switch_stmt (stmt, taken_edge_p);
6404 /* All other statements produce nothing of interest for VRP, so mark
6405 their outputs varying and prevent further simulation. */
6406 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6407 set_value_range_to_varying (get_value_range (def));
6409 return SSA_PROP_VARYING;
6413 /* Meet operation for value ranges. Given two value ranges VR0 and
6414 VR1, store in VR0 a range that contains both VR0 and VR1. This
6415 may not be the smallest possible such range. */
6417 static void
6418 vrp_meet (value_range_t *vr0, value_range_t *vr1)
6420 if (vr0->type == VR_UNDEFINED)
6422 copy_value_range (vr0, vr1);
6423 return;
6426 if (vr1->type == VR_UNDEFINED)
6428 /* Nothing to do. VR0 already has the resulting range. */
6429 return;
6432 if (vr0->type == VR_VARYING)
6434 /* Nothing to do. VR0 already has the resulting range. */
6435 return;
6438 if (vr1->type == VR_VARYING)
6440 set_value_range_to_varying (vr0);
6441 return;
6444 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
6446 int cmp;
6447 tree min, max;
6449 /* Compute the convex hull of the ranges. The lower limit of
6450 the new range is the minimum of the two ranges. If they
6451 cannot be compared, then give up. */
6452 cmp = compare_values (vr0->min, vr1->min);
6453 if (cmp == 0 || cmp == 1)
6454 min = vr1->min;
6455 else if (cmp == -1)
6456 min = vr0->min;
6457 else
6458 goto give_up;
6460 /* Similarly, the upper limit of the new range is the maximum
6461 of the two ranges. If they cannot be compared, then
6462 give up. */
6463 cmp = compare_values (vr0->max, vr1->max);
6464 if (cmp == 0 || cmp == -1)
6465 max = vr1->max;
6466 else if (cmp == 1)
6467 max = vr0->max;
6468 else
6469 goto give_up;
6471 /* Check for useless ranges. */
6472 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
6473 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
6474 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
6475 goto give_up;
6477 /* The resulting set of equivalences is the intersection of
6478 the two sets. */
6479 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6480 bitmap_and_into (vr0->equiv, vr1->equiv);
6481 else if (vr0->equiv && !vr1->equiv)
6482 bitmap_clear (vr0->equiv);
6484 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
6486 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
6488 /* Two anti-ranges meet only if their complements intersect.
6489 Only handle the case of identical ranges. */
6490 if (compare_values (vr0->min, vr1->min) == 0
6491 && compare_values (vr0->max, vr1->max) == 0
6492 && compare_values (vr0->min, vr0->max) == 0)
6494 /* The resulting set of equivalences is the intersection of
6495 the two sets. */
6496 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6497 bitmap_and_into (vr0->equiv, vr1->equiv);
6498 else if (vr0->equiv && !vr1->equiv)
6499 bitmap_clear (vr0->equiv);
6501 else
6502 goto give_up;
6504 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
6506 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6507 only handle the case where the ranges have an empty intersection.
6508 The result of the meet operation is the anti-range. */
6509 if (!symbolic_range_p (vr0)
6510 && !symbolic_range_p (vr1)
6511 && !value_ranges_intersect_p (vr0, vr1))
6513 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
6514 set. We need to compute the intersection of the two
6515 equivalence sets. */
6516 if (vr1->type == VR_ANTI_RANGE)
6517 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
6519 /* The resulting set of equivalences is the intersection of
6520 the two sets. */
6521 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6522 bitmap_and_into (vr0->equiv, vr1->equiv);
6523 else if (vr0->equiv && !vr1->equiv)
6524 bitmap_clear (vr0->equiv);
6526 else
6527 goto give_up;
6529 else
6530 gcc_unreachable ();
6532 return;
6534 give_up:
6535 /* Failed to find an efficient meet. Before giving up and setting
6536 the result to VARYING, see if we can at least derive a useful
6537 anti-range. FIXME, all this nonsense about distinguishing
6538 anti-ranges from ranges is necessary because of the odd
6539 semantics of range_includes_zero_p and friends. */
6540 if (!symbolic_range_p (vr0)
6541 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
6542 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
6543 && !symbolic_range_p (vr1)
6544 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
6545 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
6547 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
6549 /* Since this meet operation did not result from the meeting of
6550 two equivalent names, VR0 cannot have any equivalences. */
6551 if (vr0->equiv)
6552 bitmap_clear (vr0->equiv);
6554 else
6555 set_value_range_to_varying (vr0);
6559 /* Visit all arguments for PHI node PHI that flow through executable
6560 edges. If a valid value range can be derived from all the incoming
6561 value ranges, set a new range for the LHS of PHI. */
6563 static enum ssa_prop_result
6564 vrp_visit_phi_node (gimple phi)
6566 size_t i;
6567 tree lhs = PHI_RESULT (phi);
6568 value_range_t *lhs_vr = get_value_range (lhs);
6569 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6570 int edges, old_edges;
6571 struct loop *l;
6573 if (dump_file && (dump_flags & TDF_DETAILS))
6575 fprintf (dump_file, "\nVisiting PHI node: ");
6576 print_gimple_stmt (dump_file, phi, 0, dump_flags);
6579 edges = 0;
6580 for (i = 0; i < gimple_phi_num_args (phi); i++)
6582 edge e = gimple_phi_arg_edge (phi, i);
6584 if (dump_file && (dump_flags & TDF_DETAILS))
6586 fprintf (dump_file,
6587 "\n Argument #%d (%d -> %d %sexecutable)\n",
6588 (int) i, e->src->index, e->dest->index,
6589 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
6592 if (e->flags & EDGE_EXECUTABLE)
6594 tree arg = PHI_ARG_DEF (phi, i);
6595 value_range_t vr_arg;
6597 ++edges;
6599 if (TREE_CODE (arg) == SSA_NAME)
6601 vr_arg = *(get_value_range (arg));
6603 else
6605 if (is_overflow_infinity (arg))
6607 arg = copy_node (arg);
6608 TREE_OVERFLOW (arg) = 0;
6611 vr_arg.type = VR_RANGE;
6612 vr_arg.min = arg;
6613 vr_arg.max = arg;
6614 vr_arg.equiv = NULL;
6617 if (dump_file && (dump_flags & TDF_DETAILS))
6619 fprintf (dump_file, "\t");
6620 print_generic_expr (dump_file, arg, dump_flags);
6621 fprintf (dump_file, "\n\tValue: ");
6622 dump_value_range (dump_file, &vr_arg);
6623 fprintf (dump_file, "\n");
6626 vrp_meet (&vr_result, &vr_arg);
6628 if (vr_result.type == VR_VARYING)
6629 break;
6633 if (vr_result.type == VR_VARYING)
6634 goto varying;
6635 else if (vr_result.type == VR_UNDEFINED)
6636 goto update_range;
6638 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
6639 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
6641 /* To prevent infinite iterations in the algorithm, derive ranges
6642 when the new value is slightly bigger or smaller than the
6643 previous one. We don't do this if we have seen a new executable
6644 edge; this helps us avoid an overflow infinity for conditionals
6645 which are not in a loop. */
6646 if (edges > 0
6647 && gimple_phi_num_args (phi) > 1
6648 && edges == old_edges)
6650 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
6651 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
6653 /* For non VR_RANGE or for pointers fall back to varying if
6654 the range changed. */
6655 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
6656 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6657 && (cmp_min != 0 || cmp_max != 0))
6658 goto varying;
6660 /* If the new minimum is smaller or larger than the previous
6661 one, go all the way to -INF. In the first case, to avoid
6662 iterating millions of times to reach -INF, and in the
6663 other case to avoid infinite bouncing between different
6664 minimums. */
6665 if (cmp_min > 0 || cmp_min < 0)
6667 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
6668 || !vrp_var_may_overflow (lhs, phi))
6669 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
6670 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
6671 vr_result.min =
6672 negative_overflow_infinity (TREE_TYPE (vr_result.min));
6675 /* Similarly, if the new maximum is smaller or larger than
6676 the previous one, go all the way to +INF. */
6677 if (cmp_max < 0 || cmp_max > 0)
6679 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
6680 || !vrp_var_may_overflow (lhs, phi))
6681 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
6682 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
6683 vr_result.max =
6684 positive_overflow_infinity (TREE_TYPE (vr_result.max));
6687 /* If we dropped either bound to +-INF then if this is a loop
6688 PHI node SCEV may known more about its value-range. */
6689 if ((cmp_min > 0 || cmp_min < 0
6690 || cmp_max < 0 || cmp_max > 0)
6691 && current_loops
6692 && (l = loop_containing_stmt (phi))
6693 && l->header == gimple_bb (phi))
6694 adjust_range_with_scev (&vr_result, l, phi, lhs);
6696 /* If we will end up with a (-INF, +INF) range, set it to
6697 VARYING. Same if the previous max value was invalid for
6698 the type and we end up with vr_result.min > vr_result.max. */
6699 if ((vrp_val_is_max (vr_result.max)
6700 && vrp_val_is_min (vr_result.min))
6701 || compare_values (vr_result.min,
6702 vr_result.max) > 0)
6703 goto varying;
6706 /* If the new range is different than the previous value, keep
6707 iterating. */
6708 update_range:
6709 if (update_value_range (lhs, &vr_result))
6711 if (dump_file && (dump_flags & TDF_DETAILS))
6713 fprintf (dump_file, "Found new range for ");
6714 print_generic_expr (dump_file, lhs, 0);
6715 fprintf (dump_file, ": ");
6716 dump_value_range (dump_file, &vr_result);
6717 fprintf (dump_file, "\n\n");
6720 return SSA_PROP_INTERESTING;
6723 /* Nothing changed, don't add outgoing edges. */
6724 return SSA_PROP_NOT_INTERESTING;
6726 /* No match found. Set the LHS to VARYING. */
6727 varying:
6728 set_value_range_to_varying (lhs_vr);
6729 return SSA_PROP_VARYING;
6732 /* Simplify boolean operations if the source is known
6733 to be already a boolean. */
6734 static bool
6735 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
6737 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6738 tree lhs, op0, op1;
6739 bool need_conversion;
6741 /* We handle only !=/== case here. */
6742 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
6744 op0 = gimple_assign_rhs1 (stmt);
6745 if (!op_with_boolean_value_range_p (op0))
6746 return false;
6748 op1 = gimple_assign_rhs2 (stmt);
6749 if (!op_with_boolean_value_range_p (op1))
6750 return false;
6752 /* Reduce number of cases to handle to NE_EXPR. As there is no
6753 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
6754 if (rhs_code == EQ_EXPR)
6756 if (TREE_CODE (op1) == INTEGER_CST)
6757 op1 = int_const_binop (BIT_XOR_EXPR, op1, integer_one_node);
6758 else
6759 return false;
6762 lhs = gimple_assign_lhs (stmt);
6763 need_conversion
6764 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
6766 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
6767 if (need_conversion
6768 && !TYPE_UNSIGNED (TREE_TYPE (op0))
6769 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
6770 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
6771 return false;
6773 /* For A != 0 we can substitute A itself. */
6774 if (integer_zerop (op1))
6775 gimple_assign_set_rhs_with_ops (gsi,
6776 need_conversion
6777 ? NOP_EXPR : TREE_CODE (op0),
6778 op0, NULL_TREE);
6779 /* For A != B we substitute A ^ B. Either with conversion. */
6780 else if (need_conversion)
6782 gimple newop;
6783 tree tem = create_tmp_reg (TREE_TYPE (op0), NULL);
6784 newop = gimple_build_assign_with_ops (BIT_XOR_EXPR, tem, op0, op1);
6785 tem = make_ssa_name (tem, newop);
6786 gimple_assign_set_lhs (newop, tem);
6787 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
6788 update_stmt (newop);
6789 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem, NULL_TREE);
6791 /* Or without. */
6792 else
6793 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
6794 update_stmt (gsi_stmt (*gsi));
6796 return true;
6799 /* Simplify a division or modulo operator to a right shift or
6800 bitwise and if the first operand is unsigned or is greater
6801 than zero and the second operand is an exact power of two. */
6803 static bool
6804 simplify_div_or_mod_using_ranges (gimple stmt)
6806 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6807 tree val = NULL;
6808 tree op0 = gimple_assign_rhs1 (stmt);
6809 tree op1 = gimple_assign_rhs2 (stmt);
6810 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
6812 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
6814 val = integer_one_node;
6816 else
6818 bool sop = false;
6820 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6822 if (val
6823 && sop
6824 && integer_onep (val)
6825 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6827 location_t location;
6829 if (!gimple_has_location (stmt))
6830 location = input_location;
6831 else
6832 location = gimple_location (stmt);
6833 warning_at (location, OPT_Wstrict_overflow,
6834 "assuming signed overflow does not occur when "
6835 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
6839 if (val && integer_onep (val))
6841 tree t;
6843 if (rhs_code == TRUNC_DIV_EXPR)
6845 t = build_int_cst (integer_type_node, tree_log2 (op1));
6846 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
6847 gimple_assign_set_rhs1 (stmt, op0);
6848 gimple_assign_set_rhs2 (stmt, t);
6850 else
6852 t = build_int_cst (TREE_TYPE (op1), 1);
6853 t = int_const_binop (MINUS_EXPR, op1, t);
6854 t = fold_convert (TREE_TYPE (op0), t);
6856 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
6857 gimple_assign_set_rhs1 (stmt, op0);
6858 gimple_assign_set_rhs2 (stmt, t);
6861 update_stmt (stmt);
6862 return true;
6865 return false;
6868 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6869 ABS_EXPR. If the operand is <= 0, then simplify the
6870 ABS_EXPR into a NEGATE_EXPR. */
6872 static bool
6873 simplify_abs_using_ranges (gimple stmt)
6875 tree val = NULL;
6876 tree op = gimple_assign_rhs1 (stmt);
6877 tree type = TREE_TYPE (op);
6878 value_range_t *vr = get_value_range (op);
6880 if (TYPE_UNSIGNED (type))
6882 val = integer_zero_node;
6884 else if (vr)
6886 bool sop = false;
6888 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
6889 if (!val)
6891 sop = false;
6892 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
6893 &sop);
6895 if (val)
6897 if (integer_zerop (val))
6898 val = integer_one_node;
6899 else if (integer_onep (val))
6900 val = integer_zero_node;
6904 if (val
6905 && (integer_onep (val) || integer_zerop (val)))
6907 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6909 location_t location;
6911 if (!gimple_has_location (stmt))
6912 location = input_location;
6913 else
6914 location = gimple_location (stmt);
6915 warning_at (location, OPT_Wstrict_overflow,
6916 "assuming signed overflow does not occur when "
6917 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
6920 gimple_assign_set_rhs1 (stmt, op);
6921 if (integer_onep (val))
6922 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
6923 else
6924 gimple_assign_set_rhs_code (stmt, SSA_NAME);
6925 update_stmt (stmt);
6926 return true;
6930 return false;
6933 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
6934 If all the bits that are being cleared by & are already
6935 known to be zero from VR, or all the bits that are being
6936 set by | are already known to be one from VR, the bit
6937 operation is redundant. */
6939 static bool
6940 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
6942 tree op0 = gimple_assign_rhs1 (stmt);
6943 tree op1 = gimple_assign_rhs2 (stmt);
6944 tree op = NULL_TREE;
6945 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6946 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6947 double_int may_be_nonzero0, may_be_nonzero1;
6948 double_int must_be_nonzero0, must_be_nonzero1;
6949 double_int mask;
6951 if (TREE_CODE (op0) == SSA_NAME)
6952 vr0 = *(get_value_range (op0));
6953 else if (is_gimple_min_invariant (op0))
6954 set_value_range_to_value (&vr0, op0, NULL);
6955 else
6956 return false;
6958 if (TREE_CODE (op1) == SSA_NAME)
6959 vr1 = *(get_value_range (op1));
6960 else if (is_gimple_min_invariant (op1))
6961 set_value_range_to_value (&vr1, op1, NULL);
6962 else
6963 return false;
6965 if (!zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0, &must_be_nonzero0))
6966 return false;
6967 if (!zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1, &must_be_nonzero1))
6968 return false;
6970 switch (gimple_assign_rhs_code (stmt))
6972 case BIT_AND_EXPR:
6973 mask = double_int_and_not (may_be_nonzero0, must_be_nonzero1);
6974 if (double_int_zero_p (mask))
6976 op = op0;
6977 break;
6979 mask = double_int_and_not (may_be_nonzero1, must_be_nonzero0);
6980 if (double_int_zero_p (mask))
6982 op = op1;
6983 break;
6985 break;
6986 case BIT_IOR_EXPR:
6987 mask = double_int_and_not (may_be_nonzero0, must_be_nonzero1);
6988 if (double_int_zero_p (mask))
6990 op = op1;
6991 break;
6993 mask = double_int_and_not (may_be_nonzero1, must_be_nonzero0);
6994 if (double_int_zero_p (mask))
6996 op = op0;
6997 break;
6999 break;
7000 default:
7001 gcc_unreachable ();
7004 if (op == NULL_TREE)
7005 return false;
7007 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op, NULL);
7008 update_stmt (gsi_stmt (*gsi));
7009 return true;
7012 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
7013 a known value range VR.
7015 If there is one and only one value which will satisfy the
7016 conditional, then return that value. Else return NULL. */
7018 static tree
7019 test_for_singularity (enum tree_code cond_code, tree op0,
7020 tree op1, value_range_t *vr)
7022 tree min = NULL;
7023 tree max = NULL;
7025 /* Extract minimum/maximum values which satisfy the
7026 the conditional as it was written. */
7027 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
7029 /* This should not be negative infinity; there is no overflow
7030 here. */
7031 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
7033 max = op1;
7034 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
7036 tree one = build_int_cst (TREE_TYPE (op0), 1);
7037 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
7038 if (EXPR_P (max))
7039 TREE_NO_WARNING (max) = 1;
7042 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
7044 /* This should not be positive infinity; there is no overflow
7045 here. */
7046 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
7048 min = op1;
7049 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
7051 tree one = build_int_cst (TREE_TYPE (op0), 1);
7052 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
7053 if (EXPR_P (min))
7054 TREE_NO_WARNING (min) = 1;
7058 /* Now refine the minimum and maximum values using any
7059 value range information we have for op0. */
7060 if (min && max)
7062 if (compare_values (vr->min, min) == 1)
7063 min = vr->min;
7064 if (compare_values (vr->max, max) == -1)
7065 max = vr->max;
7067 /* If the new min/max values have converged to a single value,
7068 then there is only one value which can satisfy the condition,
7069 return that value. */
7070 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
7071 return min;
7073 return NULL;
7076 /* Simplify a conditional using a relational operator to an equality
7077 test if the range information indicates only one value can satisfy
7078 the original conditional. */
7080 static bool
7081 simplify_cond_using_ranges (gimple stmt)
7083 tree op0 = gimple_cond_lhs (stmt);
7084 tree op1 = gimple_cond_rhs (stmt);
7085 enum tree_code cond_code = gimple_cond_code (stmt);
7087 if (cond_code != NE_EXPR
7088 && cond_code != EQ_EXPR
7089 && TREE_CODE (op0) == SSA_NAME
7090 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7091 && is_gimple_min_invariant (op1))
7093 value_range_t *vr = get_value_range (op0);
7095 /* If we have range information for OP0, then we might be
7096 able to simplify this conditional. */
7097 if (vr->type == VR_RANGE)
7099 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
7101 if (new_tree)
7103 if (dump_file)
7105 fprintf (dump_file, "Simplified relational ");
7106 print_gimple_stmt (dump_file, stmt, 0, 0);
7107 fprintf (dump_file, " into ");
7110 gimple_cond_set_code (stmt, EQ_EXPR);
7111 gimple_cond_set_lhs (stmt, op0);
7112 gimple_cond_set_rhs (stmt, new_tree);
7114 update_stmt (stmt);
7116 if (dump_file)
7118 print_gimple_stmt (dump_file, stmt, 0, 0);
7119 fprintf (dump_file, "\n");
7122 return true;
7125 /* Try again after inverting the condition. We only deal
7126 with integral types here, so no need to worry about
7127 issues with inverting FP comparisons. */
7128 cond_code = invert_tree_comparison (cond_code, false);
7129 new_tree = test_for_singularity (cond_code, op0, op1, vr);
7131 if (new_tree)
7133 if (dump_file)
7135 fprintf (dump_file, "Simplified relational ");
7136 print_gimple_stmt (dump_file, stmt, 0, 0);
7137 fprintf (dump_file, " into ");
7140 gimple_cond_set_code (stmt, NE_EXPR);
7141 gimple_cond_set_lhs (stmt, op0);
7142 gimple_cond_set_rhs (stmt, new_tree);
7144 update_stmt (stmt);
7146 if (dump_file)
7148 print_gimple_stmt (dump_file, stmt, 0, 0);
7149 fprintf (dump_file, "\n");
7152 return true;
7157 return false;
7160 /* Simplify a switch statement using the value range of the switch
7161 argument. */
7163 static bool
7164 simplify_switch_using_ranges (gimple stmt)
7166 tree op = gimple_switch_index (stmt);
7167 value_range_t *vr;
7168 bool take_default;
7169 edge e;
7170 edge_iterator ei;
7171 size_t i = 0, j = 0, n, n2;
7172 tree vec2;
7173 switch_update su;
7175 if (TREE_CODE (op) == SSA_NAME)
7177 vr = get_value_range (op);
7179 /* We can only handle integer ranges. */
7180 if (vr->type != VR_RANGE
7181 || symbolic_range_p (vr))
7182 return false;
7184 /* Find case label for min/max of the value range. */
7185 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
7187 else if (TREE_CODE (op) == INTEGER_CST)
7189 take_default = !find_case_label_index (stmt, 1, op, &i);
7190 if (take_default)
7192 i = 1;
7193 j = 0;
7195 else
7197 j = i;
7200 else
7201 return false;
7203 n = gimple_switch_num_labels (stmt);
7205 /* Bail out if this is just all edges taken. */
7206 if (i == 1
7207 && j == n - 1
7208 && take_default)
7209 return false;
7211 /* Build a new vector of taken case labels. */
7212 vec2 = make_tree_vec (j - i + 1 + (int)take_default);
7213 n2 = 0;
7215 /* Add the default edge, if necessary. */
7216 if (take_default)
7217 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
7219 for (; i <= j; ++i, ++n2)
7220 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
7222 /* Mark needed edges. */
7223 for (i = 0; i < n2; ++i)
7225 e = find_edge (gimple_bb (stmt),
7226 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
7227 e->aux = (void *)-1;
7230 /* Queue not needed edges for later removal. */
7231 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
7233 if (e->aux == (void *)-1)
7235 e->aux = NULL;
7236 continue;
7239 if (dump_file && (dump_flags & TDF_DETAILS))
7241 fprintf (dump_file, "removing unreachable case label\n");
7243 VEC_safe_push (edge, heap, to_remove_edges, e);
7244 e->flags &= ~EDGE_EXECUTABLE;
7247 /* And queue an update for the stmt. */
7248 su.stmt = stmt;
7249 su.vec = vec2;
7250 VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
7251 return false;
7254 /* Simplify an integral conversion from an SSA name in STMT. */
7256 static bool
7257 simplify_conversion_using_ranges (gimple stmt)
7259 tree innerop, middleop, finaltype;
7260 gimple def_stmt;
7261 value_range_t *innervr;
7262 double_int innermin, innermax, middlemin, middlemax;
7264 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
7265 if (!INTEGRAL_TYPE_P (finaltype))
7266 return false;
7267 middleop = gimple_assign_rhs1 (stmt);
7268 def_stmt = SSA_NAME_DEF_STMT (middleop);
7269 if (!is_gimple_assign (def_stmt)
7270 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
7271 return false;
7272 innerop = gimple_assign_rhs1 (def_stmt);
7273 if (TREE_CODE (innerop) != SSA_NAME)
7274 return false;
7276 /* Get the value-range of the inner operand. */
7277 innervr = get_value_range (innerop);
7278 if (innervr->type != VR_RANGE
7279 || TREE_CODE (innervr->min) != INTEGER_CST
7280 || TREE_CODE (innervr->max) != INTEGER_CST)
7281 return false;
7283 /* Simulate the conversion chain to check if the result is equal if
7284 the middle conversion is removed. */
7285 innermin = tree_to_double_int (innervr->min);
7286 innermax = tree_to_double_int (innervr->max);
7287 middlemin = double_int_ext (innermin, TYPE_PRECISION (TREE_TYPE (middleop)),
7288 TYPE_UNSIGNED (TREE_TYPE (middleop)));
7289 middlemax = double_int_ext (innermax, TYPE_PRECISION (TREE_TYPE (middleop)),
7290 TYPE_UNSIGNED (TREE_TYPE (middleop)));
7291 /* If the middle values do not represent a proper range fail. */
7292 if (double_int_cmp (middlemin, middlemax,
7293 TYPE_UNSIGNED (TREE_TYPE (middleop))) > 0)
7294 return false;
7295 if (!double_int_equal_p (double_int_ext (middlemin,
7296 TYPE_PRECISION (finaltype),
7297 TYPE_UNSIGNED (finaltype)),
7298 double_int_ext (innermin,
7299 TYPE_PRECISION (finaltype),
7300 TYPE_UNSIGNED (finaltype)))
7301 || !double_int_equal_p (double_int_ext (middlemax,
7302 TYPE_PRECISION (finaltype),
7303 TYPE_UNSIGNED (finaltype)),
7304 double_int_ext (innermax,
7305 TYPE_PRECISION (finaltype),
7306 TYPE_UNSIGNED (finaltype))))
7307 return false;
7309 gimple_assign_set_rhs1 (stmt, innerop);
7310 update_stmt (stmt);
7311 return true;
7314 /* Return whether the value range *VR fits in an integer type specified
7315 by PRECISION and UNSIGNED_P. */
7317 static bool
7318 range_fits_type_p (value_range_t *vr, unsigned precision, bool unsigned_p)
7320 tree src_type;
7321 unsigned src_precision;
7322 double_int tem;
7324 /* We can only handle integral and pointer types. */
7325 src_type = TREE_TYPE (vr->min);
7326 if (!INTEGRAL_TYPE_P (src_type)
7327 && !POINTER_TYPE_P (src_type))
7328 return false;
7330 /* An extension is always fine, so is an identity transform. */
7331 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
7332 if (src_precision < precision
7333 || (src_precision == precision
7334 && TYPE_UNSIGNED (src_type) == unsigned_p))
7335 return true;
7337 /* Now we can only handle ranges with constant bounds. */
7338 if (vr->type != VR_RANGE
7339 || TREE_CODE (vr->min) != INTEGER_CST
7340 || TREE_CODE (vr->max) != INTEGER_CST)
7341 return false;
7343 /* For precision-preserving sign-changes the MSB of the double-int
7344 has to be clear. */
7345 if (src_precision == precision
7346 && (TREE_INT_CST_HIGH (vr->min) | TREE_INT_CST_HIGH (vr->max)) < 0)
7347 return false;
7349 /* Then we can perform the conversion on both ends and compare
7350 the result for equality. */
7351 tem = double_int_ext (tree_to_double_int (vr->min), precision, unsigned_p);
7352 if (!double_int_equal_p (tree_to_double_int (vr->min), tem))
7353 return false;
7354 tem = double_int_ext (tree_to_double_int (vr->max), precision, unsigned_p);
7355 if (!double_int_equal_p (tree_to_double_int (vr->max), tem))
7356 return false;
7358 return true;
7361 /* Simplify a conversion from integral SSA name to float in STMT. */
7363 static bool
7364 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
7366 tree rhs1 = gimple_assign_rhs1 (stmt);
7367 value_range_t *vr = get_value_range (rhs1);
7368 enum machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
7369 enum machine_mode mode;
7370 tree tem;
7371 gimple conv;
7373 /* We can only handle constant ranges. */
7374 if (vr->type != VR_RANGE
7375 || TREE_CODE (vr->min) != INTEGER_CST
7376 || TREE_CODE (vr->max) != INTEGER_CST)
7377 return false;
7379 /* First check if we can use a signed type in place of an unsigned. */
7380 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
7381 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
7382 != CODE_FOR_nothing)
7383 && range_fits_type_p (vr, GET_MODE_PRECISION
7384 (TYPE_MODE (TREE_TYPE (rhs1))), 0))
7385 mode = TYPE_MODE (TREE_TYPE (rhs1));
7386 /* If we can do the conversion in the current input mode do nothing. */
7387 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
7388 TYPE_UNSIGNED (TREE_TYPE (rhs1))))
7389 return false;
7390 /* Otherwise search for a mode we can use, starting from the narrowest
7391 integer mode available. */
7392 else
7394 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
7397 /* If we cannot do a signed conversion to float from mode
7398 or if the value-range does not fit in the signed type
7399 try with a wider mode. */
7400 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
7401 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), 0))
7402 break;
7404 mode = GET_MODE_WIDER_MODE (mode);
7405 /* But do not widen the input. Instead leave that to the
7406 optabs expansion code. */
7407 if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
7408 return false;
7410 while (mode != VOIDmode);
7411 if (mode == VOIDmode)
7412 return false;
7415 /* It works, insert a truncation or sign-change before the
7416 float conversion. */
7417 tem = create_tmp_var (build_nonstandard_integer_type
7418 (GET_MODE_PRECISION (mode), 0), NULL);
7419 conv = gimple_build_assign_with_ops (NOP_EXPR, tem, rhs1, NULL_TREE);
7420 tem = make_ssa_name (tem, conv);
7421 gimple_assign_set_lhs (conv, tem);
7422 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
7423 gimple_assign_set_rhs1 (stmt, tem);
7424 update_stmt (stmt);
7426 return true;
7429 /* Simplify STMT using ranges if possible. */
7431 static bool
7432 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
7434 gimple stmt = gsi_stmt (*gsi);
7435 if (is_gimple_assign (stmt))
7437 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
7438 tree rhs1 = gimple_assign_rhs1 (stmt);
7440 switch (rhs_code)
7442 case EQ_EXPR:
7443 case NE_EXPR:
7444 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
7445 if the RHS is zero or one, and the LHS are known to be boolean
7446 values. */
7447 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7448 return simplify_truth_ops_using_ranges (gsi, stmt);
7449 break;
7451 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
7452 and BIT_AND_EXPR respectively if the first operand is greater
7453 than zero and the second operand is an exact power of two. */
7454 case TRUNC_DIV_EXPR:
7455 case TRUNC_MOD_EXPR:
7456 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
7457 && integer_pow2p (gimple_assign_rhs2 (stmt)))
7458 return simplify_div_or_mod_using_ranges (stmt);
7459 break;
7461 /* Transform ABS (X) into X or -X as appropriate. */
7462 case ABS_EXPR:
7463 if (TREE_CODE (rhs1) == SSA_NAME
7464 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7465 return simplify_abs_using_ranges (stmt);
7466 break;
7468 case BIT_AND_EXPR:
7469 case BIT_IOR_EXPR:
7470 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
7471 if all the bits being cleared are already cleared or
7472 all the bits being set are already set. */
7473 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7474 return simplify_bit_ops_using_ranges (gsi, stmt);
7475 break;
7477 CASE_CONVERT:
7478 if (TREE_CODE (rhs1) == SSA_NAME
7479 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7480 return simplify_conversion_using_ranges (stmt);
7481 break;
7483 case FLOAT_EXPR:
7484 if (TREE_CODE (rhs1) == SSA_NAME
7485 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7486 return simplify_float_conversion_using_ranges (gsi, stmt);
7487 break;
7489 default:
7490 break;
7493 else if (gimple_code (stmt) == GIMPLE_COND)
7494 return simplify_cond_using_ranges (stmt);
7495 else if (gimple_code (stmt) == GIMPLE_SWITCH)
7496 return simplify_switch_using_ranges (stmt);
7498 return false;
7501 /* If the statement pointed by SI has a predicate whose value can be
7502 computed using the value range information computed by VRP, compute
7503 its value and return true. Otherwise, return false. */
7505 static bool
7506 fold_predicate_in (gimple_stmt_iterator *si)
7508 bool assignment_p = false;
7509 tree val;
7510 gimple stmt = gsi_stmt (*si);
7512 if (is_gimple_assign (stmt)
7513 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
7515 assignment_p = true;
7516 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
7517 gimple_assign_rhs1 (stmt),
7518 gimple_assign_rhs2 (stmt),
7519 stmt);
7521 else if (gimple_code (stmt) == GIMPLE_COND)
7522 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
7523 gimple_cond_lhs (stmt),
7524 gimple_cond_rhs (stmt),
7525 stmt);
7526 else
7527 return false;
7529 if (val)
7531 if (assignment_p)
7532 val = fold_convert (gimple_expr_type (stmt), val);
7534 if (dump_file)
7536 fprintf (dump_file, "Folding predicate ");
7537 print_gimple_expr (dump_file, stmt, 0, 0);
7538 fprintf (dump_file, " to ");
7539 print_generic_expr (dump_file, val, 0);
7540 fprintf (dump_file, "\n");
7543 if (is_gimple_assign (stmt))
7544 gimple_assign_set_rhs_from_tree (si, val);
7545 else
7547 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
7548 if (integer_zerop (val))
7549 gimple_cond_make_false (stmt);
7550 else if (integer_onep (val))
7551 gimple_cond_make_true (stmt);
7552 else
7553 gcc_unreachable ();
7556 return true;
7559 return false;
7562 /* Callback for substitute_and_fold folding the stmt at *SI. */
7564 static bool
7565 vrp_fold_stmt (gimple_stmt_iterator *si)
7567 if (fold_predicate_in (si))
7568 return true;
7570 return simplify_stmt_using_ranges (si);
7573 /* Stack of dest,src equivalency pairs that need to be restored after
7574 each attempt to thread a block's incoming edge to an outgoing edge.
7576 A NULL entry is used to mark the end of pairs which need to be
7577 restored. */
7578 static VEC(tree,heap) *stack;
7580 /* A trivial wrapper so that we can present the generic jump threading
7581 code with a simple API for simplifying statements. STMT is the
7582 statement we want to simplify, WITHIN_STMT provides the location
7583 for any overflow warnings. */
7585 static tree
7586 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
7588 /* We only use VRP information to simplify conditionals. This is
7589 overly conservative, but it's unclear if doing more would be
7590 worth the compile time cost. */
7591 if (gimple_code (stmt) != GIMPLE_COND)
7592 return NULL;
7594 return vrp_evaluate_conditional (gimple_cond_code (stmt),
7595 gimple_cond_lhs (stmt),
7596 gimple_cond_rhs (stmt), within_stmt);
7599 /* Blocks which have more than one predecessor and more than
7600 one successor present jump threading opportunities, i.e.,
7601 when the block is reached from a specific predecessor, we
7602 may be able to determine which of the outgoing edges will
7603 be traversed. When this optimization applies, we are able
7604 to avoid conditionals at runtime and we may expose secondary
7605 optimization opportunities.
7607 This routine is effectively a driver for the generic jump
7608 threading code. It basically just presents the generic code
7609 with edges that may be suitable for jump threading.
7611 Unlike DOM, we do not iterate VRP if jump threading was successful.
7612 While iterating may expose new opportunities for VRP, it is expected
7613 those opportunities would be very limited and the compile time cost
7614 to expose those opportunities would be significant.
7616 As jump threading opportunities are discovered, they are registered
7617 for later realization. */
7619 static void
7620 identify_jump_threads (void)
7622 basic_block bb;
7623 gimple dummy;
7624 int i;
7625 edge e;
7627 /* Ugh. When substituting values earlier in this pass we can
7628 wipe the dominance information. So rebuild the dominator
7629 information as we need it within the jump threading code. */
7630 calculate_dominance_info (CDI_DOMINATORS);
7632 /* We do not allow VRP information to be used for jump threading
7633 across a back edge in the CFG. Otherwise it becomes too
7634 difficult to avoid eliminating loop exit tests. Of course
7635 EDGE_DFS_BACK is not accurate at this time so we have to
7636 recompute it. */
7637 mark_dfs_back_edges ();
7639 /* Do not thread across edges we are about to remove. Just marking
7640 them as EDGE_DFS_BACK will do. */
7641 FOR_EACH_VEC_ELT (edge, to_remove_edges, i, e)
7642 e->flags |= EDGE_DFS_BACK;
7644 /* Allocate our unwinder stack to unwind any temporary equivalences
7645 that might be recorded. */
7646 stack = VEC_alloc (tree, heap, 20);
7648 /* To avoid lots of silly node creation, we create a single
7649 conditional and just modify it in-place when attempting to
7650 thread jumps. */
7651 dummy = gimple_build_cond (EQ_EXPR,
7652 integer_zero_node, integer_zero_node,
7653 NULL, NULL);
7655 /* Walk through all the blocks finding those which present a
7656 potential jump threading opportunity. We could set this up
7657 as a dominator walker and record data during the walk, but
7658 I doubt it's worth the effort for the classes of jump
7659 threading opportunities we are trying to identify at this
7660 point in compilation. */
7661 FOR_EACH_BB (bb)
7663 gimple last;
7665 /* If the generic jump threading code does not find this block
7666 interesting, then there is nothing to do. */
7667 if (! potentially_threadable_block (bb))
7668 continue;
7670 /* We only care about blocks ending in a COND_EXPR. While there
7671 may be some value in handling SWITCH_EXPR here, I doubt it's
7672 terribly important. */
7673 last = gsi_stmt (gsi_last_bb (bb));
7675 /* We're basically looking for a switch or any kind of conditional with
7676 integral or pointer type arguments. Note the type of the second
7677 argument will be the same as the first argument, so no need to
7678 check it explicitly. */
7679 if (gimple_code (last) == GIMPLE_SWITCH
7680 || (gimple_code (last) == GIMPLE_COND
7681 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
7682 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
7683 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
7684 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
7685 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
7687 edge_iterator ei;
7689 /* We've got a block with multiple predecessors and multiple
7690 successors which also ends in a suitable conditional or
7691 switch statement. For each predecessor, see if we can thread
7692 it to a specific successor. */
7693 FOR_EACH_EDGE (e, ei, bb->preds)
7695 /* Do not thread across back edges or abnormal edges
7696 in the CFG. */
7697 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
7698 continue;
7700 thread_across_edge (dummy, e, true, &stack,
7701 simplify_stmt_for_jump_threading);
7706 /* We do not actually update the CFG or SSA graphs at this point as
7707 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
7708 handle ASSERT_EXPRs gracefully. */
7711 /* We identified all the jump threading opportunities earlier, but could
7712 not transform the CFG at that time. This routine transforms the
7713 CFG and arranges for the dominator tree to be rebuilt if necessary.
7715 Note the SSA graph update will occur during the normal TODO
7716 processing by the pass manager. */
7717 static void
7718 finalize_jump_threads (void)
7720 thread_through_all_blocks (false);
7721 VEC_free (tree, heap, stack);
7725 /* Traverse all the blocks folding conditionals with known ranges. */
7727 static void
7728 vrp_finalize (void)
7730 size_t i;
7732 values_propagated = true;
7734 if (dump_file)
7736 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
7737 dump_all_value_ranges (dump_file);
7738 fprintf (dump_file, "\n");
7741 substitute_and_fold (op_with_constant_singleton_value_range,
7742 vrp_fold_stmt, false);
7744 if (warn_array_bounds)
7745 check_all_array_refs ();
7747 /* We must identify jump threading opportunities before we release
7748 the datastructures built by VRP. */
7749 identify_jump_threads ();
7751 /* Free allocated memory. */
7752 for (i = 0; i < num_vr_values; i++)
7753 if (vr_value[i])
7755 BITMAP_FREE (vr_value[i]->equiv);
7756 free (vr_value[i]);
7759 free (vr_value);
7760 free (vr_phi_edge_counts);
7762 /* So that we can distinguish between VRP data being available
7763 and not available. */
7764 vr_value = NULL;
7765 vr_phi_edge_counts = NULL;
7769 /* Main entry point to VRP (Value Range Propagation). This pass is
7770 loosely based on J. R. C. Patterson, ``Accurate Static Branch
7771 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
7772 Programming Language Design and Implementation, pp. 67-78, 1995.
7773 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
7775 This is essentially an SSA-CCP pass modified to deal with ranges
7776 instead of constants.
7778 While propagating ranges, we may find that two or more SSA name
7779 have equivalent, though distinct ranges. For instance,
7781 1 x_9 = p_3->a;
7782 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
7783 3 if (p_4 == q_2)
7784 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
7785 5 endif
7786 6 if (q_2)
7788 In the code above, pointer p_5 has range [q_2, q_2], but from the
7789 code we can also determine that p_5 cannot be NULL and, if q_2 had
7790 a non-varying range, p_5's range should also be compatible with it.
7792 These equivalences are created by two expressions: ASSERT_EXPR and
7793 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
7794 result of another assertion, then we can use the fact that p_5 and
7795 p_4 are equivalent when evaluating p_5's range.
7797 Together with value ranges, we also propagate these equivalences
7798 between names so that we can take advantage of information from
7799 multiple ranges when doing final replacement. Note that this
7800 equivalency relation is transitive but not symmetric.
7802 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
7803 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
7804 in contexts where that assertion does not hold (e.g., in line 6).
7806 TODO, the main difference between this pass and Patterson's is that
7807 we do not propagate edge probabilities. We only compute whether
7808 edges can be taken or not. That is, instead of having a spectrum
7809 of jump probabilities between 0 and 1, we only deal with 0, 1 and
7810 DON'T KNOW. In the future, it may be worthwhile to propagate
7811 probabilities to aid branch prediction. */
7813 static unsigned int
7814 execute_vrp (void)
7816 int i;
7817 edge e;
7818 switch_update *su;
7820 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
7821 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
7822 scev_initialize ();
7824 insert_range_assertions ();
7826 /* Estimate number of iterations - but do not use undefined behavior
7827 for this. We can't do this lazily as other functions may compute
7828 this using undefined behavior. */
7829 free_numbers_of_iterations_estimates ();
7830 estimate_numbers_of_iterations (false);
7832 to_remove_edges = VEC_alloc (edge, heap, 10);
7833 to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
7834 threadedge_initialize_values ();
7836 vrp_initialize ();
7837 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
7838 vrp_finalize ();
7840 free_numbers_of_iterations_estimates ();
7842 /* ASSERT_EXPRs must be removed before finalizing jump threads
7843 as finalizing jump threads calls the CFG cleanup code which
7844 does not properly handle ASSERT_EXPRs. */
7845 remove_range_assertions ();
7847 /* If we exposed any new variables, go ahead and put them into
7848 SSA form now, before we handle jump threading. This simplifies
7849 interactions between rewriting of _DECL nodes into SSA form
7850 and rewriting SSA_NAME nodes into SSA form after block
7851 duplication and CFG manipulation. */
7852 update_ssa (TODO_update_ssa);
7854 finalize_jump_threads ();
7856 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
7857 CFG in a broken state and requires a cfg_cleanup run. */
7858 FOR_EACH_VEC_ELT (edge, to_remove_edges, i, e)
7859 remove_edge (e);
7860 /* Update SWITCH_EXPR case label vector. */
7861 FOR_EACH_VEC_ELT (switch_update, to_update_switch_stmts, i, su)
7863 size_t j;
7864 size_t n = TREE_VEC_LENGTH (su->vec);
7865 tree label;
7866 gimple_switch_set_num_labels (su->stmt, n);
7867 for (j = 0; j < n; j++)
7868 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
7869 /* As we may have replaced the default label with a regular one
7870 make sure to make it a real default label again. This ensures
7871 optimal expansion. */
7872 label = gimple_switch_default_label (su->stmt);
7873 CASE_LOW (label) = NULL_TREE;
7874 CASE_HIGH (label) = NULL_TREE;
7877 if (VEC_length (edge, to_remove_edges) > 0)
7878 free_dominance_info (CDI_DOMINATORS);
7880 VEC_free (edge, heap, to_remove_edges);
7881 VEC_free (switch_update, heap, to_update_switch_stmts);
7882 threadedge_finalize_values ();
7884 scev_finalize ();
7885 loop_optimizer_finalize ();
7886 return 0;
7889 static bool
7890 gate_vrp (void)
7892 return flag_tree_vrp != 0;
7895 struct gimple_opt_pass pass_vrp =
7898 GIMPLE_PASS,
7899 "vrp", /* name */
7900 gate_vrp, /* gate */
7901 execute_vrp, /* execute */
7902 NULL, /* sub */
7903 NULL, /* next */
7904 0, /* static_pass_number */
7905 TV_TREE_VRP, /* tv_id */
7906 PROP_ssa, /* properties_required */
7907 0, /* properties_provided */
7908 0, /* properties_destroyed */
7909 0, /* todo_flags_start */
7910 TODO_cleanup_cfg
7911 | TODO_update_ssa
7912 | TODO_verify_ssa
7913 | TODO_verify_flow
7914 | TODO_ggc_collect /* todo_flags_finish */