2011-08-19 Andrew Stubbs <ams@codesourcery.com>
[official-gcc.git] / gcc / tree-predcom.c
blob7dfb480e9e1def9ec18291e28098f676cc149714
1 /* Predictive commoning.
2 Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This file implements the predictive commoning optimization. Predictive
22 commoning can be viewed as CSE around a loop, and with some improvements,
23 as generalized strength reduction-- i.e., reusing values computed in
24 earlier iterations of a loop in the later ones. So far, the pass only
25 handles the most useful case, that is, reusing values of memory references.
26 If you think this is all just a special case of PRE, you are sort of right;
27 however, concentrating on loops is simpler, and makes it possible to
28 incorporate data dependence analysis to detect the opportunities, perform
29 loop unrolling to avoid copies together with renaming immediately,
30 and if needed, we could also take register pressure into account.
32 Let us demonstrate what is done on an example:
34 for (i = 0; i < 100; i++)
36 a[i+2] = a[i] + a[i+1];
37 b[10] = b[10] + i;
38 c[i] = c[99 - i];
39 d[i] = d[i + 1];
42 1) We find data references in the loop, and split them to mutually
43 independent groups (i.e., we find components of a data dependence
44 graph). We ignore read-read dependences whose distance is not constant.
45 (TODO -- we could also ignore antidependences). In this example, we
46 find the following groups:
48 a[i]{read}, a[i+1]{read}, a[i+2]{write}
49 b[10]{read}, b[10]{write}
50 c[99 - i]{read}, c[i]{write}
51 d[i + 1]{read}, d[i]{write}
53 2) Inside each of the group, we verify several conditions:
54 a) all the references must differ in indices only, and the indices
55 must all have the same step
56 b) the references must dominate loop latch (and thus, they must be
57 ordered by dominance relation).
58 c) the distance of the indices must be a small multiple of the step
59 We are then able to compute the difference of the references (# of
60 iterations before they point to the same place as the first of them).
61 Also, in case there are writes in the loop, we split the groups into
62 chains whose head is the write whose values are used by the reads in
63 the same chain. The chains are then processed independently,
64 making the further transformations simpler. Also, the shorter chains
65 need the same number of registers, but may require lower unrolling
66 factor in order to get rid of the copies on the loop latch.
68 In our example, we get the following chains (the chain for c is invalid).
70 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
71 b[10]{read,+0}, b[10]{write,+0}
72 d[i + 1]{read,+0}, d[i]{write,+1}
74 3) For each read, we determine the read or write whose value it reuses,
75 together with the distance of this reuse. I.e. we take the last
76 reference before it with distance 0, or the last of the references
77 with the smallest positive distance to the read. Then, we remove
78 the references that are not used in any of these chains, discard the
79 empty groups, and propagate all the links so that they point to the
80 single root reference of the chain (adjusting their distance
81 appropriately). Some extra care needs to be taken for references with
82 step 0. In our example (the numbers indicate the distance of the
83 reuse),
85 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
86 b[10] --> (*) 1, b[10] (*)
88 4) The chains are combined together if possible. If the corresponding
89 elements of two chains are always combined together with the same
90 operator, we remember just the result of this combination, instead
91 of remembering the values separately. We may need to perform
92 reassociation to enable combining, for example
94 e[i] + f[i+1] + e[i+1] + f[i]
96 can be reassociated as
98 (e[i] + f[i]) + (e[i+1] + f[i+1])
100 and we can combine the chains for e and f into one chain.
102 5) For each root reference (end of the chain) R, let N be maximum distance
103 of a reference reusing its value. Variables R0 upto RN are created,
104 together with phi nodes that transfer values from R1 .. RN to
105 R0 .. R(N-1).
106 Initial values are loaded to R0..R(N-1) (in case not all references
107 must necessarily be accessed and they may trap, we may fail here;
108 TODO sometimes, the loads could be guarded by a check for the number
109 of iterations). Values loaded/stored in roots are also copied to
110 RN. Other reads are replaced with the appropriate variable Ri.
111 Everything is put to SSA form.
113 As a small improvement, if R0 is dead after the root (i.e., all uses of
114 the value with the maximum distance dominate the root), we can avoid
115 creating RN and use R0 instead of it.
117 In our example, we get (only the parts concerning a and b are shown):
118 for (i = 0; i < 100; i++)
120 f = phi (a[0], s);
121 s = phi (a[1], f);
122 x = phi (b[10], x);
124 f = f + s;
125 a[i+2] = f;
126 x = x + i;
127 b[10] = x;
130 6) Factor F for unrolling is determined as the smallest common multiple of
131 (N + 1) for each root reference (N for references for that we avoided
132 creating RN). If F and the loop is small enough, loop is unrolled F
133 times. The stores to RN (R0) in the copies of the loop body are
134 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
135 be coalesced and the copies can be eliminated.
137 TODO -- copy propagation and other optimizations may change the live
138 ranges of the temporary registers and prevent them from being coalesced;
139 this may increase the register pressure.
141 In our case, F = 2 and the (main loop of the) result is
143 for (i = 0; i < ...; i += 2)
145 f = phi (a[0], f);
146 s = phi (a[1], s);
147 x = phi (b[10], x);
149 f = f + s;
150 a[i+2] = f;
151 x = x + i;
152 b[10] = x;
154 s = s + f;
155 a[i+3] = s;
156 x = x + i;
157 b[10] = x;
160 TODO -- stores killing other stores can be taken into account, e.g.,
161 for (i = 0; i < n; i++)
163 a[i] = 1;
164 a[i+2] = 2;
167 can be replaced with
169 t0 = a[0];
170 t1 = a[1];
171 for (i = 0; i < n; i++)
173 a[i] = 1;
174 t2 = 2;
175 t0 = t1;
176 t1 = t2;
178 a[n] = t0;
179 a[n+1] = t1;
181 The interesting part is that this would generalize store motion; still, since
182 sm is performed elsewhere, it does not seem that important.
184 Predictive commoning can be generalized for arbitrary computations (not
185 just memory loads), and also nontrivial transfer functions (e.g., replacing
186 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "tm.h"
192 #include "tree.h"
193 #include "tm_p.h"
194 #include "cfgloop.h"
195 #include "tree-flow.h"
196 #include "ggc.h"
197 #include "tree-data-ref.h"
198 #include "tree-scalar-evolution.h"
199 #include "tree-chrec.h"
200 #include "params.h"
201 #include "tree-pretty-print.h"
202 #include "gimple-pretty-print.h"
203 #include "tree-pass.h"
204 #include "tree-affine.h"
205 #include "tree-inline.h"
207 /* The maximum number of iterations between the considered memory
208 references. */
210 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
212 /* Data references (or phi nodes that carry data reference values across
213 loop iterations). */
215 typedef struct dref_d
217 /* The reference itself. */
218 struct data_reference *ref;
220 /* The statement in that the reference appears. */
221 gimple stmt;
223 /* In case that STMT is a phi node, this field is set to the SSA name
224 defined by it in replace_phis_by_defined_names (in order to avoid
225 pointing to phi node that got reallocated in the meantime). */
226 tree name_defined_by_phi;
228 /* Distance of the reference from the root of the chain (in number of
229 iterations of the loop). */
230 unsigned distance;
232 /* Number of iterations offset from the first reference in the component. */
233 double_int offset;
235 /* Number of the reference in a component, in dominance ordering. */
236 unsigned pos;
238 /* True if the memory reference is always accessed when the loop is
239 entered. */
240 unsigned always_accessed : 1;
241 } *dref;
243 DEF_VEC_P (dref);
244 DEF_VEC_ALLOC_P (dref, heap);
246 /* Type of the chain of the references. */
248 enum chain_type
250 /* The addresses of the references in the chain are constant. */
251 CT_INVARIANT,
253 /* There are only loads in the chain. */
254 CT_LOAD,
256 /* Root of the chain is store, the rest are loads. */
257 CT_STORE_LOAD,
259 /* A combination of two chains. */
260 CT_COMBINATION
263 /* Chains of data references. */
265 typedef struct chain
267 /* Type of the chain. */
268 enum chain_type type;
270 /* For combination chains, the operator and the two chains that are
271 combined, and the type of the result. */
272 enum tree_code op;
273 tree rslt_type;
274 struct chain *ch1, *ch2;
276 /* The references in the chain. */
277 VEC(dref,heap) *refs;
279 /* The maximum distance of the reference in the chain from the root. */
280 unsigned length;
282 /* The variables used to copy the value throughout iterations. */
283 VEC(tree,heap) *vars;
285 /* Initializers for the variables. */
286 VEC(tree,heap) *inits;
288 /* True if there is a use of a variable with the maximal distance
289 that comes after the root in the loop. */
290 unsigned has_max_use_after : 1;
292 /* True if all the memory references in the chain are always accessed. */
293 unsigned all_always_accessed : 1;
295 /* True if this chain was combined together with some other chain. */
296 unsigned combined : 1;
297 } *chain_p;
299 DEF_VEC_P (chain_p);
300 DEF_VEC_ALLOC_P (chain_p, heap);
302 /* Describes the knowledge about the step of the memory references in
303 the component. */
305 enum ref_step_type
307 /* The step is zero. */
308 RS_INVARIANT,
310 /* The step is nonzero. */
311 RS_NONZERO,
313 /* The step may or may not be nonzero. */
314 RS_ANY
317 /* Components of the data dependence graph. */
319 struct component
321 /* The references in the component. */
322 VEC(dref,heap) *refs;
324 /* What we know about the step of the references in the component. */
325 enum ref_step_type comp_step;
327 /* Next component in the list. */
328 struct component *next;
331 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
333 static bitmap looparound_phis;
335 /* Cache used by tree_to_aff_combination_expand. */
337 static struct pointer_map_t *name_expansions;
339 /* Dumps data reference REF to FILE. */
341 extern void dump_dref (FILE *, dref);
342 void
343 dump_dref (FILE *file, dref ref)
345 if (ref->ref)
347 fprintf (file, " ");
348 print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
349 fprintf (file, " (id %u%s)\n", ref->pos,
350 DR_IS_READ (ref->ref) ? "" : ", write");
352 fprintf (file, " offset ");
353 dump_double_int (file, ref->offset, false);
354 fprintf (file, "\n");
356 fprintf (file, " distance %u\n", ref->distance);
358 else
360 if (gimple_code (ref->stmt) == GIMPLE_PHI)
361 fprintf (file, " looparound ref\n");
362 else
363 fprintf (file, " combination ref\n");
364 fprintf (file, " in statement ");
365 print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
366 fprintf (file, "\n");
367 fprintf (file, " distance %u\n", ref->distance);
372 /* Dumps CHAIN to FILE. */
374 extern void dump_chain (FILE *, chain_p);
375 void
376 dump_chain (FILE *file, chain_p chain)
378 dref a;
379 const char *chain_type;
380 unsigned i;
381 tree var;
383 switch (chain->type)
385 case CT_INVARIANT:
386 chain_type = "Load motion";
387 break;
389 case CT_LOAD:
390 chain_type = "Loads-only";
391 break;
393 case CT_STORE_LOAD:
394 chain_type = "Store-loads";
395 break;
397 case CT_COMBINATION:
398 chain_type = "Combination";
399 break;
401 default:
402 gcc_unreachable ();
405 fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
406 chain->combined ? " (combined)" : "");
407 if (chain->type != CT_INVARIANT)
408 fprintf (file, " max distance %u%s\n", chain->length,
409 chain->has_max_use_after ? "" : ", may reuse first");
411 if (chain->type == CT_COMBINATION)
413 fprintf (file, " equal to %p %s %p in type ",
414 (void *) chain->ch1, op_symbol_code (chain->op),
415 (void *) chain->ch2);
416 print_generic_expr (file, chain->rslt_type, TDF_SLIM);
417 fprintf (file, "\n");
420 if (chain->vars)
422 fprintf (file, " vars");
423 FOR_EACH_VEC_ELT (tree, chain->vars, i, var)
425 fprintf (file, " ");
426 print_generic_expr (file, var, TDF_SLIM);
428 fprintf (file, "\n");
431 if (chain->inits)
433 fprintf (file, " inits");
434 FOR_EACH_VEC_ELT (tree, chain->inits, i, var)
436 fprintf (file, " ");
437 print_generic_expr (file, var, TDF_SLIM);
439 fprintf (file, "\n");
442 fprintf (file, " references:\n");
443 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
444 dump_dref (file, a);
446 fprintf (file, "\n");
449 /* Dumps CHAINS to FILE. */
451 extern void dump_chains (FILE *, VEC (chain_p, heap) *);
452 void
453 dump_chains (FILE *file, VEC (chain_p, heap) *chains)
455 chain_p chain;
456 unsigned i;
458 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
459 dump_chain (file, chain);
462 /* Dumps COMP to FILE. */
464 extern void dump_component (FILE *, struct component *);
465 void
466 dump_component (FILE *file, struct component *comp)
468 dref a;
469 unsigned i;
471 fprintf (file, "Component%s:\n",
472 comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
473 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
474 dump_dref (file, a);
475 fprintf (file, "\n");
478 /* Dumps COMPS to FILE. */
480 extern void dump_components (FILE *, struct component *);
481 void
482 dump_components (FILE *file, struct component *comps)
484 struct component *comp;
486 for (comp = comps; comp; comp = comp->next)
487 dump_component (file, comp);
490 /* Frees a chain CHAIN. */
492 static void
493 release_chain (chain_p chain)
495 dref ref;
496 unsigned i;
498 if (chain == NULL)
499 return;
501 FOR_EACH_VEC_ELT (dref, chain->refs, i, ref)
502 free (ref);
504 VEC_free (dref, heap, chain->refs);
505 VEC_free (tree, heap, chain->vars);
506 VEC_free (tree, heap, chain->inits);
508 free (chain);
511 /* Frees CHAINS. */
513 static void
514 release_chains (VEC (chain_p, heap) *chains)
516 unsigned i;
517 chain_p chain;
519 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
520 release_chain (chain);
521 VEC_free (chain_p, heap, chains);
524 /* Frees a component COMP. */
526 static void
527 release_component (struct component *comp)
529 VEC_free (dref, heap, comp->refs);
530 free (comp);
533 /* Frees list of components COMPS. */
535 static void
536 release_components (struct component *comps)
538 struct component *act, *next;
540 for (act = comps; act; act = next)
542 next = act->next;
543 release_component (act);
547 /* Finds a root of tree given by FATHERS containing A, and performs path
548 shortening. */
550 static unsigned
551 component_of (unsigned fathers[], unsigned a)
553 unsigned root, n;
555 for (root = a; root != fathers[root]; root = fathers[root])
556 continue;
558 for (; a != root; a = n)
560 n = fathers[a];
561 fathers[a] = root;
564 return root;
567 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
568 components, A and B are components to merge. */
570 static void
571 merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
573 unsigned ca = component_of (fathers, a);
574 unsigned cb = component_of (fathers, b);
576 if (ca == cb)
577 return;
579 if (sizes[ca] < sizes[cb])
581 sizes[cb] += sizes[ca];
582 fathers[ca] = cb;
584 else
586 sizes[ca] += sizes[cb];
587 fathers[cb] = ca;
591 /* Returns true if A is a reference that is suitable for predictive commoning
592 in the innermost loop that contains it. REF_STEP is set according to the
593 step of the reference A. */
595 static bool
596 suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
598 tree ref = DR_REF (a), step = DR_STEP (a);
600 if (!step
601 || TREE_THIS_VOLATILE (ref)
602 || !is_gimple_reg_type (TREE_TYPE (ref))
603 || tree_could_throw_p (ref))
604 return false;
606 if (integer_zerop (step))
607 *ref_step = RS_INVARIANT;
608 else if (integer_nonzerop (step))
609 *ref_step = RS_NONZERO;
610 else
611 *ref_step = RS_ANY;
613 return true;
616 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
618 static void
619 aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
621 tree type = TREE_TYPE (DR_OFFSET (dr));
622 aff_tree delta;
624 tree_to_aff_combination_expand (DR_OFFSET (dr), type, offset,
625 &name_expansions);
626 aff_combination_const (&delta, type, tree_to_double_int (DR_INIT (dr)));
627 aff_combination_add (offset, &delta);
630 /* Determines number of iterations of the innermost enclosing loop before B
631 refers to exactly the same location as A and stores it to OFF. If A and
632 B do not have the same step, they never meet, or anything else fails,
633 returns false, otherwise returns true. Both A and B are assumed to
634 satisfy suitable_reference_p. */
636 static bool
637 determine_offset (struct data_reference *a, struct data_reference *b,
638 double_int *off)
640 aff_tree diff, baseb, step;
641 tree typea, typeb;
643 /* Check that both the references access the location in the same type. */
644 typea = TREE_TYPE (DR_REF (a));
645 typeb = TREE_TYPE (DR_REF (b));
646 if (!useless_type_conversion_p (typeb, typea))
647 return false;
649 /* Check whether the base address and the step of both references is the
650 same. */
651 if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
652 || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
653 return false;
655 if (integer_zerop (DR_STEP (a)))
657 /* If the references have loop invariant address, check that they access
658 exactly the same location. */
659 *off = double_int_zero;
660 return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
661 && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
664 /* Compare the offsets of the addresses, and check whether the difference
665 is a multiple of step. */
666 aff_combination_dr_offset (a, &diff);
667 aff_combination_dr_offset (b, &baseb);
668 aff_combination_scale (&baseb, double_int_minus_one);
669 aff_combination_add (&diff, &baseb);
671 tree_to_aff_combination_expand (DR_STEP (a), TREE_TYPE (DR_STEP (a)),
672 &step, &name_expansions);
673 return aff_combination_constant_multiple_p (&diff, &step, off);
676 /* Returns the last basic block in LOOP for that we are sure that
677 it is executed whenever the loop is entered. */
679 static basic_block
680 last_always_executed_block (struct loop *loop)
682 unsigned i;
683 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
684 edge ex;
685 basic_block last = loop->latch;
687 FOR_EACH_VEC_ELT (edge, exits, i, ex)
688 last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
689 VEC_free (edge, heap, exits);
691 return last;
694 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
696 static struct component *
697 split_data_refs_to_components (struct loop *loop,
698 VEC (data_reference_p, heap) *datarefs,
699 VEC (ddr_p, heap) *depends)
701 unsigned i, n = VEC_length (data_reference_p, datarefs);
702 unsigned ca, ia, ib, bad;
703 unsigned *comp_father = XNEWVEC (unsigned, n + 1);
704 unsigned *comp_size = XNEWVEC (unsigned, n + 1);
705 struct component **comps;
706 struct data_reference *dr, *dra, *drb;
707 struct data_dependence_relation *ddr;
708 struct component *comp_list = NULL, *comp;
709 dref dataref;
710 basic_block last_always_executed = last_always_executed_block (loop);
712 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
714 if (!DR_REF (dr))
716 /* A fake reference for call or asm_expr that may clobber memory;
717 just fail. */
718 goto end;
720 dr->aux = (void *) (size_t) i;
721 comp_father[i] = i;
722 comp_size[i] = 1;
725 /* A component reserved for the "bad" data references. */
726 comp_father[n] = n;
727 comp_size[n] = 1;
729 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
731 enum ref_step_type dummy;
733 if (!suitable_reference_p (dr, &dummy))
735 ia = (unsigned) (size_t) dr->aux;
736 merge_comps (comp_father, comp_size, n, ia);
740 FOR_EACH_VEC_ELT (ddr_p, depends, i, ddr)
742 double_int dummy_off;
744 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
745 continue;
747 dra = DDR_A (ddr);
748 drb = DDR_B (ddr);
749 ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
750 ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
751 if (ia == ib)
752 continue;
754 bad = component_of (comp_father, n);
756 /* If both A and B are reads, we may ignore unsuitable dependences. */
757 if (DR_IS_READ (dra) && DR_IS_READ (drb)
758 && (ia == bad || ib == bad
759 || !determine_offset (dra, drb, &dummy_off)))
760 continue;
762 merge_comps (comp_father, comp_size, ia, ib);
765 comps = XCNEWVEC (struct component *, n);
766 bad = component_of (comp_father, n);
767 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
769 ia = (unsigned) (size_t) dr->aux;
770 ca = component_of (comp_father, ia);
771 if (ca == bad)
772 continue;
774 comp = comps[ca];
775 if (!comp)
777 comp = XCNEW (struct component);
778 comp->refs = VEC_alloc (dref, heap, comp_size[ca]);
779 comps[ca] = comp;
782 dataref = XCNEW (struct dref_d);
783 dataref->ref = dr;
784 dataref->stmt = DR_STMT (dr);
785 dataref->offset = double_int_zero;
786 dataref->distance = 0;
788 dataref->always_accessed
789 = dominated_by_p (CDI_DOMINATORS, last_always_executed,
790 gimple_bb (dataref->stmt));
791 dataref->pos = VEC_length (dref, comp->refs);
792 VEC_quick_push (dref, comp->refs, dataref);
795 for (i = 0; i < n; i++)
797 comp = comps[i];
798 if (comp)
800 comp->next = comp_list;
801 comp_list = comp;
804 free (comps);
806 end:
807 free (comp_father);
808 free (comp_size);
809 return comp_list;
812 /* Returns true if the component COMP satisfies the conditions
813 described in 2) at the beginning of this file. LOOP is the current
814 loop. */
816 static bool
817 suitable_component_p (struct loop *loop, struct component *comp)
819 unsigned i;
820 dref a, first;
821 basic_block ba, bp = loop->header;
822 bool ok, has_write = false;
824 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
826 ba = gimple_bb (a->stmt);
828 if (!just_once_each_iteration_p (loop, ba))
829 return false;
831 gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
832 bp = ba;
834 if (DR_IS_WRITE (a->ref))
835 has_write = true;
838 first = VEC_index (dref, comp->refs, 0);
839 ok = suitable_reference_p (first->ref, &comp->comp_step);
840 gcc_assert (ok);
841 first->offset = double_int_zero;
843 for (i = 1; VEC_iterate (dref, comp->refs, i, a); i++)
845 if (!determine_offset (first->ref, a->ref, &a->offset))
846 return false;
848 #ifdef ENABLE_CHECKING
850 enum ref_step_type a_step;
851 ok = suitable_reference_p (a->ref, &a_step);
852 gcc_assert (ok && a_step == comp->comp_step);
854 #endif
857 /* If there is a write inside the component, we must know whether the
858 step is nonzero or not -- we would not otherwise be able to recognize
859 whether the value accessed by reads comes from the OFFSET-th iteration
860 or the previous one. */
861 if (has_write && comp->comp_step == RS_ANY)
862 return false;
864 return true;
867 /* Check the conditions on references inside each of components COMPS,
868 and remove the unsuitable components from the list. The new list
869 of components is returned. The conditions are described in 2) at
870 the beginning of this file. LOOP is the current loop. */
872 static struct component *
873 filter_suitable_components (struct loop *loop, struct component *comps)
875 struct component **comp, *act;
877 for (comp = &comps; *comp; )
879 act = *comp;
880 if (suitable_component_p (loop, act))
881 comp = &act->next;
882 else
884 dref ref;
885 unsigned i;
887 *comp = act->next;
888 FOR_EACH_VEC_ELT (dref, act->refs, i, ref)
889 free (ref);
890 release_component (act);
894 return comps;
897 /* Compares two drefs A and B by their offset and position. Callback for
898 qsort. */
900 static int
901 order_drefs (const void *a, const void *b)
903 const dref *const da = (const dref *) a;
904 const dref *const db = (const dref *) b;
905 int offcmp = double_int_scmp ((*da)->offset, (*db)->offset);
907 if (offcmp != 0)
908 return offcmp;
910 return (*da)->pos - (*db)->pos;
913 /* Returns root of the CHAIN. */
915 static inline dref
916 get_chain_root (chain_p chain)
918 return VEC_index (dref, chain->refs, 0);
921 /* Adds REF to the chain CHAIN. */
923 static void
924 add_ref_to_chain (chain_p chain, dref ref)
926 dref root = get_chain_root (chain);
927 double_int dist;
929 gcc_assert (double_int_scmp (root->offset, ref->offset) <= 0);
930 dist = double_int_sub (ref->offset, root->offset);
931 if (double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE), dist) <= 0)
933 free (ref);
934 return;
936 gcc_assert (double_int_fits_in_uhwi_p (dist));
938 VEC_safe_push (dref, heap, chain->refs, ref);
940 ref->distance = double_int_to_uhwi (dist);
942 if (ref->distance >= chain->length)
944 chain->length = ref->distance;
945 chain->has_max_use_after = false;
948 if (ref->distance == chain->length
949 && ref->pos > root->pos)
950 chain->has_max_use_after = true;
952 chain->all_always_accessed &= ref->always_accessed;
955 /* Returns the chain for invariant component COMP. */
957 static chain_p
958 make_invariant_chain (struct component *comp)
960 chain_p chain = XCNEW (struct chain);
961 unsigned i;
962 dref ref;
964 chain->type = CT_INVARIANT;
966 chain->all_always_accessed = true;
968 FOR_EACH_VEC_ELT (dref, comp->refs, i, ref)
970 VEC_safe_push (dref, heap, chain->refs, ref);
971 chain->all_always_accessed &= ref->always_accessed;
974 return chain;
977 /* Make a new chain rooted at REF. */
979 static chain_p
980 make_rooted_chain (dref ref)
982 chain_p chain = XCNEW (struct chain);
984 chain->type = DR_IS_READ (ref->ref) ? CT_LOAD : CT_STORE_LOAD;
986 VEC_safe_push (dref, heap, chain->refs, ref);
987 chain->all_always_accessed = ref->always_accessed;
989 ref->distance = 0;
991 return chain;
994 /* Returns true if CHAIN is not trivial. */
996 static bool
997 nontrivial_chain_p (chain_p chain)
999 return chain != NULL && VEC_length (dref, chain->refs) > 1;
1002 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1003 is no such name. */
1005 static tree
1006 name_for_ref (dref ref)
1008 tree name;
1010 if (is_gimple_assign (ref->stmt))
1012 if (!ref->ref || DR_IS_READ (ref->ref))
1013 name = gimple_assign_lhs (ref->stmt);
1014 else
1015 name = gimple_assign_rhs1 (ref->stmt);
1017 else
1018 name = PHI_RESULT (ref->stmt);
1020 return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1023 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1024 iterations of the innermost enclosing loop). */
1026 static bool
1027 valid_initializer_p (struct data_reference *ref,
1028 unsigned distance, struct data_reference *root)
1030 aff_tree diff, base, step;
1031 double_int off;
1033 /* Both REF and ROOT must be accessing the same object. */
1034 if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1035 return false;
1037 /* The initializer is defined outside of loop, hence its address must be
1038 invariant inside the loop. */
1039 gcc_assert (integer_zerop (DR_STEP (ref)));
1041 /* If the address of the reference is invariant, initializer must access
1042 exactly the same location. */
1043 if (integer_zerop (DR_STEP (root)))
1044 return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1045 && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1047 /* Verify that this index of REF is equal to the root's index at
1048 -DISTANCE-th iteration. */
1049 aff_combination_dr_offset (root, &diff);
1050 aff_combination_dr_offset (ref, &base);
1051 aff_combination_scale (&base, double_int_minus_one);
1052 aff_combination_add (&diff, &base);
1054 tree_to_aff_combination_expand (DR_STEP (root), TREE_TYPE (DR_STEP (root)),
1055 &step, &name_expansions);
1056 if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1057 return false;
1059 if (!double_int_equal_p (off, uhwi_to_double_int (distance)))
1060 return false;
1062 return true;
1065 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1066 initial value is correct (equal to initial value of REF shifted by one
1067 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1068 is the root of the current chain. */
1070 static gimple
1071 find_looparound_phi (struct loop *loop, dref ref, dref root)
1073 tree name, init, init_ref;
1074 gimple phi = NULL, init_stmt;
1075 edge latch = loop_latch_edge (loop);
1076 struct data_reference init_dr;
1077 gimple_stmt_iterator psi;
1079 if (is_gimple_assign (ref->stmt))
1081 if (DR_IS_READ (ref->ref))
1082 name = gimple_assign_lhs (ref->stmt);
1083 else
1084 name = gimple_assign_rhs1 (ref->stmt);
1086 else
1087 name = PHI_RESULT (ref->stmt);
1088 if (!name)
1089 return NULL;
1091 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1093 phi = gsi_stmt (psi);
1094 if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1095 break;
1098 if (gsi_end_p (psi))
1099 return NULL;
1101 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1102 if (TREE_CODE (init) != SSA_NAME)
1103 return NULL;
1104 init_stmt = SSA_NAME_DEF_STMT (init);
1105 if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1106 return NULL;
1107 gcc_assert (gimple_assign_lhs (init_stmt) == init);
1109 init_ref = gimple_assign_rhs1 (init_stmt);
1110 if (!REFERENCE_CLASS_P (init_ref)
1111 && !DECL_P (init_ref))
1112 return NULL;
1114 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1115 loop enclosing PHI). */
1116 memset (&init_dr, 0, sizeof (struct data_reference));
1117 DR_REF (&init_dr) = init_ref;
1118 DR_STMT (&init_dr) = phi;
1119 if (!dr_analyze_innermost (&init_dr))
1120 return NULL;
1122 if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
1123 return NULL;
1125 return phi;
1128 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1130 static void
1131 insert_looparound_copy (chain_p chain, dref ref, gimple phi)
1133 dref nw = XCNEW (struct dref_d), aref;
1134 unsigned i;
1136 nw->stmt = phi;
1137 nw->distance = ref->distance + 1;
1138 nw->always_accessed = 1;
1140 FOR_EACH_VEC_ELT (dref, chain->refs, i, aref)
1141 if (aref->distance >= nw->distance)
1142 break;
1143 VEC_safe_insert (dref, heap, chain->refs, i, nw);
1145 if (nw->distance > chain->length)
1147 chain->length = nw->distance;
1148 chain->has_max_use_after = false;
1152 /* For references in CHAIN that are copied around the LOOP (created previously
1153 by PRE, or by user), add the results of such copies to the chain. This
1154 enables us to remove the copies by unrolling, and may need less registers
1155 (also, it may allow us to combine chains together). */
1157 static void
1158 add_looparound_copies (struct loop *loop, chain_p chain)
1160 unsigned i;
1161 dref ref, root = get_chain_root (chain);
1162 gimple phi;
1164 FOR_EACH_VEC_ELT (dref, chain->refs, i, ref)
1166 phi = find_looparound_phi (loop, ref, root);
1167 if (!phi)
1168 continue;
1170 bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1171 insert_looparound_copy (chain, ref, phi);
1175 /* Find roots of the values and determine distances in the component COMP.
1176 The references are redistributed into CHAINS. LOOP is the current
1177 loop. */
1179 static void
1180 determine_roots_comp (struct loop *loop,
1181 struct component *comp,
1182 VEC (chain_p, heap) **chains)
1184 unsigned i;
1185 dref a;
1186 chain_p chain = NULL;
1187 double_int last_ofs = double_int_zero;
1189 /* Invariants are handled specially. */
1190 if (comp->comp_step == RS_INVARIANT)
1192 chain = make_invariant_chain (comp);
1193 VEC_safe_push (chain_p, heap, *chains, chain);
1194 return;
1197 VEC_qsort (dref, comp->refs, order_drefs);
1199 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
1201 if (!chain || DR_IS_WRITE (a->ref)
1202 || double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE),
1203 double_int_sub (a->offset, last_ofs)) <= 0)
1205 if (nontrivial_chain_p (chain))
1207 add_looparound_copies (loop, chain);
1208 VEC_safe_push (chain_p, heap, *chains, chain);
1210 else
1211 release_chain (chain);
1212 chain = make_rooted_chain (a);
1213 last_ofs = a->offset;
1214 continue;
1217 add_ref_to_chain (chain, a);
1220 if (nontrivial_chain_p (chain))
1222 add_looparound_copies (loop, chain);
1223 VEC_safe_push (chain_p, heap, *chains, chain);
1225 else
1226 release_chain (chain);
1229 /* Find roots of the values and determine distances in components COMPS, and
1230 separates the references to CHAINS. LOOP is the current loop. */
1232 static void
1233 determine_roots (struct loop *loop,
1234 struct component *comps, VEC (chain_p, heap) **chains)
1236 struct component *comp;
1238 for (comp = comps; comp; comp = comp->next)
1239 determine_roots_comp (loop, comp, chains);
1242 /* Replace the reference in statement STMT with temporary variable
1243 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1244 the reference in the statement. IN_LHS is true if the reference
1245 is in the lhs of STMT, false if it is in rhs. */
1247 static void
1248 replace_ref_with (gimple stmt, tree new_tree, bool set, bool in_lhs)
1250 tree val;
1251 gimple new_stmt;
1252 gimple_stmt_iterator bsi, psi;
1254 if (gimple_code (stmt) == GIMPLE_PHI)
1256 gcc_assert (!in_lhs && !set);
1258 val = PHI_RESULT (stmt);
1259 bsi = gsi_after_labels (gimple_bb (stmt));
1260 psi = gsi_for_stmt (stmt);
1261 remove_phi_node (&psi, false);
1263 /* Turn the phi node into GIMPLE_ASSIGN. */
1264 new_stmt = gimple_build_assign (val, new_tree);
1265 gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
1266 return;
1269 /* Since the reference is of gimple_reg type, it should only
1270 appear as lhs or rhs of modify statement. */
1271 gcc_assert (is_gimple_assign (stmt));
1273 bsi = gsi_for_stmt (stmt);
1275 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1276 if (!set)
1278 gcc_assert (!in_lhs);
1279 gimple_assign_set_rhs_from_tree (&bsi, new_tree);
1280 stmt = gsi_stmt (bsi);
1281 update_stmt (stmt);
1282 return;
1285 if (in_lhs)
1287 /* We have statement
1289 OLD = VAL
1291 If OLD is a memory reference, then VAL is gimple_val, and we transform
1292 this to
1294 OLD = VAL
1295 NEW = VAL
1297 Otherwise, we are replacing a combination chain,
1298 VAL is the expression that performs the combination, and OLD is an
1299 SSA name. In this case, we transform the assignment to
1301 OLD = VAL
1302 NEW = OLD
1306 val = gimple_assign_lhs (stmt);
1307 if (TREE_CODE (val) != SSA_NAME)
1309 gcc_assert (gimple_assign_copy_p (stmt));
1310 val = gimple_assign_rhs1 (stmt);
1313 else
1315 /* VAL = OLD
1317 is transformed to
1319 VAL = OLD
1320 NEW = VAL */
1322 val = gimple_assign_lhs (stmt);
1325 new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
1326 gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
1329 /* Returns the reference to the address of REF in the ITER-th iteration of
1330 LOOP, or NULL if we fail to determine it (ITER may be negative). We
1331 try to preserve the original shape of the reference (not rewrite it
1332 as an indirect ref to the address), to make tree_could_trap_p in
1333 prepare_initializers_chain return false more often. */
1335 static tree
1336 ref_at_iteration (struct loop *loop, tree ref, int iter)
1338 tree idx, *idx_p, type, val, op0 = NULL_TREE, ret;
1339 affine_iv iv;
1340 bool ok;
1342 if (handled_component_p (ref))
1344 op0 = ref_at_iteration (loop, TREE_OPERAND (ref, 0), iter);
1345 if (!op0)
1346 return NULL_TREE;
1348 else if (!INDIRECT_REF_P (ref)
1349 && TREE_CODE (ref) != MEM_REF)
1350 return unshare_expr (ref);
1352 if (TREE_CODE (ref) == MEM_REF)
1354 ret = unshare_expr (ref);
1355 idx = TREE_OPERAND (ref, 0);
1356 idx_p = &TREE_OPERAND (ret, 0);
1358 else if (TREE_CODE (ref) == COMPONENT_REF)
1360 /* Check that the offset is loop invariant. */
1361 if (TREE_OPERAND (ref, 2)
1362 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1363 return NULL_TREE;
1365 return build3 (COMPONENT_REF, TREE_TYPE (ref), op0,
1366 unshare_expr (TREE_OPERAND (ref, 1)),
1367 unshare_expr (TREE_OPERAND (ref, 2)));
1369 else if (TREE_CODE (ref) == ARRAY_REF)
1371 /* Check that the lower bound and the step are loop invariant. */
1372 if (TREE_OPERAND (ref, 2)
1373 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1374 return NULL_TREE;
1375 if (TREE_OPERAND (ref, 3)
1376 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 3)))
1377 return NULL_TREE;
1379 ret = build4 (ARRAY_REF, TREE_TYPE (ref), op0, NULL_TREE,
1380 unshare_expr (TREE_OPERAND (ref, 2)),
1381 unshare_expr (TREE_OPERAND (ref, 3)));
1382 idx = TREE_OPERAND (ref, 1);
1383 idx_p = &TREE_OPERAND (ret, 1);
1385 else
1386 return NULL_TREE;
1388 ok = simple_iv (loop, loop, idx, &iv, true);
1389 if (!ok)
1390 return NULL_TREE;
1391 iv.base = expand_simple_operations (iv.base);
1392 if (integer_zerop (iv.step))
1393 *idx_p = unshare_expr (iv.base);
1394 else
1396 type = TREE_TYPE (iv.base);
1397 if (POINTER_TYPE_P (type))
1399 val = fold_build2 (MULT_EXPR, sizetype, iv.step,
1400 size_int (iter));
1401 val = fold_build_pointer_plus (iv.base, val);
1403 else
1405 val = fold_build2 (MULT_EXPR, type, iv.step,
1406 build_int_cst_type (type, iter));
1407 val = fold_build2 (PLUS_EXPR, type, iv.base, val);
1409 *idx_p = unshare_expr (val);
1412 return ret;
1415 /* Get the initialization expression for the INDEX-th temporary variable
1416 of CHAIN. */
1418 static tree
1419 get_init_expr (chain_p chain, unsigned index)
1421 if (chain->type == CT_COMBINATION)
1423 tree e1 = get_init_expr (chain->ch1, index);
1424 tree e2 = get_init_expr (chain->ch2, index);
1426 return fold_build2 (chain->op, chain->rslt_type, e1, e2);
1428 else
1429 return VEC_index (tree, chain->inits, index);
1432 /* Marks all virtual operands of statement STMT for renaming. */
1434 void
1435 mark_virtual_ops_for_renaming (gimple stmt)
1437 tree var;
1439 if (gimple_code (stmt) == GIMPLE_PHI)
1441 var = PHI_RESULT (stmt);
1442 if (is_gimple_reg (var))
1443 return;
1445 if (TREE_CODE (var) == SSA_NAME)
1446 var = SSA_NAME_VAR (var);
1447 mark_sym_for_renaming (var);
1448 return;
1451 update_stmt (stmt);
1452 if (gimple_vuse (stmt))
1453 mark_sym_for_renaming (gimple_vop (cfun));
1456 /* Returns a new temporary variable used for the I-th variable carrying
1457 value of REF. The variable's uid is marked in TMP_VARS. */
1459 static tree
1460 predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1462 tree type = TREE_TYPE (ref);
1463 /* We never access the components of the temporary variable in predictive
1464 commoning. */
1465 tree var = create_tmp_reg (type, get_lsm_tmp_name (ref, i));
1467 add_referenced_var (var);
1468 bitmap_set_bit (tmp_vars, DECL_UID (var));
1469 return var;
1472 /* Creates the variables for CHAIN, as well as phi nodes for them and
1473 initialization on entry to LOOP. Uids of the newly created
1474 temporary variables are marked in TMP_VARS. */
1476 static void
1477 initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
1479 unsigned i;
1480 unsigned n = chain->length;
1481 dref root = get_chain_root (chain);
1482 bool reuse_first = !chain->has_max_use_after;
1483 tree ref, init, var, next;
1484 gimple phi;
1485 gimple_seq stmts;
1486 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1488 /* If N == 0, then all the references are within the single iteration. And
1489 since this is an nonempty chain, reuse_first cannot be true. */
1490 gcc_assert (n > 0 || !reuse_first);
1492 chain->vars = VEC_alloc (tree, heap, n + 1);
1494 if (chain->type == CT_COMBINATION)
1495 ref = gimple_assign_lhs (root->stmt);
1496 else
1497 ref = DR_REF (root->ref);
1499 for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1501 var = predcom_tmp_var (ref, i, tmp_vars);
1502 VEC_quick_push (tree, chain->vars, var);
1504 if (reuse_first)
1505 VEC_quick_push (tree, chain->vars, VEC_index (tree, chain->vars, 0));
1507 FOR_EACH_VEC_ELT (tree, chain->vars, i, var)
1508 VEC_replace (tree, chain->vars, i, make_ssa_name (var, NULL));
1510 for (i = 0; i < n; i++)
1512 var = VEC_index (tree, chain->vars, i);
1513 next = VEC_index (tree, chain->vars, i + 1);
1514 init = get_init_expr (chain, i);
1516 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1517 if (stmts)
1518 gsi_insert_seq_on_edge_immediate (entry, stmts);
1520 phi = create_phi_node (var, loop->header);
1521 SSA_NAME_DEF_STMT (var) = phi;
1522 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1523 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1527 /* Create the variables and initialization statement for root of chain
1528 CHAIN. Uids of the newly created temporary variables are marked
1529 in TMP_VARS. */
1531 static void
1532 initialize_root (struct loop *loop, chain_p chain, bitmap tmp_vars)
1534 dref root = get_chain_root (chain);
1535 bool in_lhs = (chain->type == CT_STORE_LOAD
1536 || chain->type == CT_COMBINATION);
1538 initialize_root_vars (loop, chain, tmp_vars);
1539 replace_ref_with (root->stmt,
1540 VEC_index (tree, chain->vars, chain->length),
1541 true, in_lhs);
1544 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1545 initialization on entry to LOOP if necessary. The ssa name for the variable
1546 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1547 around the loop is created. Uid of the newly created temporary variable
1548 is marked in TMP_VARS. INITS is the list containing the (single)
1549 initializer. */
1551 static void
1552 initialize_root_vars_lm (struct loop *loop, dref root, bool written,
1553 VEC(tree, heap) **vars, VEC(tree, heap) *inits,
1554 bitmap tmp_vars)
1556 unsigned i;
1557 tree ref = DR_REF (root->ref), init, var, next;
1558 gimple_seq stmts;
1559 gimple phi;
1560 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1562 /* Find the initializer for the variable, and check that it cannot
1563 trap. */
1564 init = VEC_index (tree, inits, 0);
1566 *vars = VEC_alloc (tree, heap, written ? 2 : 1);
1567 var = predcom_tmp_var (ref, 0, tmp_vars);
1568 VEC_quick_push (tree, *vars, var);
1569 if (written)
1570 VEC_quick_push (tree, *vars, VEC_index (tree, *vars, 0));
1572 FOR_EACH_VEC_ELT (tree, *vars, i, var)
1573 VEC_replace (tree, *vars, i, make_ssa_name (var, NULL));
1575 var = VEC_index (tree, *vars, 0);
1577 init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1578 if (stmts)
1579 gsi_insert_seq_on_edge_immediate (entry, stmts);
1581 if (written)
1583 next = VEC_index (tree, *vars, 1);
1584 phi = create_phi_node (var, loop->header);
1585 SSA_NAME_DEF_STMT (var) = phi;
1586 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1587 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1589 else
1591 gimple init_stmt = gimple_build_assign (var, init);
1592 mark_virtual_ops_for_renaming (init_stmt);
1593 gsi_insert_on_edge_immediate (entry, init_stmt);
1598 /* Execute load motion for references in chain CHAIN. Uids of the newly
1599 created temporary variables are marked in TMP_VARS. */
1601 static void
1602 execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
1604 VEC (tree, heap) *vars;
1605 dref a;
1606 unsigned n_writes = 0, ridx, i;
1607 tree var;
1609 gcc_assert (chain->type == CT_INVARIANT);
1610 gcc_assert (!chain->combined);
1611 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
1612 if (DR_IS_WRITE (a->ref))
1613 n_writes++;
1615 /* If there are no reads in the loop, there is nothing to do. */
1616 if (n_writes == VEC_length (dref, chain->refs))
1617 return;
1619 initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
1620 &vars, chain->inits, tmp_vars);
1622 ridx = 0;
1623 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
1625 bool is_read = DR_IS_READ (a->ref);
1626 mark_virtual_ops_for_renaming (a->stmt);
1628 if (DR_IS_WRITE (a->ref))
1630 n_writes--;
1631 if (n_writes)
1633 var = VEC_index (tree, vars, 0);
1634 var = make_ssa_name (SSA_NAME_VAR (var), NULL);
1635 VEC_replace (tree, vars, 0, var);
1637 else
1638 ridx = 1;
1641 replace_ref_with (a->stmt, VEC_index (tree, vars, ridx),
1642 !is_read, !is_read);
1645 VEC_free (tree, heap, vars);
1648 /* Returns the single statement in that NAME is used, excepting
1649 the looparound phi nodes contained in one of the chains. If there is no
1650 such statement, or more statements, NULL is returned. */
1652 static gimple
1653 single_nonlooparound_use (tree name)
1655 use_operand_p use;
1656 imm_use_iterator it;
1657 gimple stmt, ret = NULL;
1659 FOR_EACH_IMM_USE_FAST (use, it, name)
1661 stmt = USE_STMT (use);
1663 if (gimple_code (stmt) == GIMPLE_PHI)
1665 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1666 could not be processed anyway, so just fail for them. */
1667 if (bitmap_bit_p (looparound_phis,
1668 SSA_NAME_VERSION (PHI_RESULT (stmt))))
1669 continue;
1671 return NULL;
1673 else if (is_gimple_debug (stmt))
1674 continue;
1675 else if (ret != NULL)
1676 return NULL;
1677 else
1678 ret = stmt;
1681 return ret;
1684 /* Remove statement STMT, as well as the chain of assignments in that it is
1685 used. */
1687 static void
1688 remove_stmt (gimple stmt)
1690 tree name;
1691 gimple next;
1692 gimple_stmt_iterator psi;
1694 if (gimple_code (stmt) == GIMPLE_PHI)
1696 name = PHI_RESULT (stmt);
1697 next = single_nonlooparound_use (name);
1698 psi = gsi_for_stmt (stmt);
1699 remove_phi_node (&psi, true);
1701 if (!next
1702 || !gimple_assign_ssa_name_copy_p (next)
1703 || gimple_assign_rhs1 (next) != name)
1704 return;
1706 stmt = next;
1709 while (1)
1711 gimple_stmt_iterator bsi;
1713 bsi = gsi_for_stmt (stmt);
1715 name = gimple_assign_lhs (stmt);
1716 gcc_assert (TREE_CODE (name) == SSA_NAME);
1718 next = single_nonlooparound_use (name);
1720 mark_virtual_ops_for_renaming (stmt);
1721 gsi_remove (&bsi, true);
1722 release_defs (stmt);
1724 if (!next
1725 || !gimple_assign_ssa_name_copy_p (next)
1726 || gimple_assign_rhs1 (next) != name)
1727 return;
1729 stmt = next;
1733 /* Perform the predictive commoning optimization for a chain CHAIN.
1734 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1736 static void
1737 execute_pred_commoning_chain (struct loop *loop, chain_p chain,
1738 bitmap tmp_vars)
1740 unsigned i;
1741 dref a, root;
1742 tree var;
1744 if (chain->combined)
1746 /* For combined chains, just remove the statements that are used to
1747 compute the values of the expression (except for the root one). */
1748 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1749 remove_stmt (a->stmt);
1751 else
1753 /* For non-combined chains, set up the variables that hold its value,
1754 and replace the uses of the original references by these
1755 variables. */
1756 root = get_chain_root (chain);
1757 mark_virtual_ops_for_renaming (root->stmt);
1759 initialize_root (loop, chain, tmp_vars);
1760 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1762 mark_virtual_ops_for_renaming (a->stmt);
1763 var = VEC_index (tree, chain->vars, chain->length - a->distance);
1764 replace_ref_with (a->stmt, var, false, false);
1769 /* Determines the unroll factor necessary to remove as many temporary variable
1770 copies as possible. CHAINS is the list of chains that will be
1771 optimized. */
1773 static unsigned
1774 determine_unroll_factor (VEC (chain_p, heap) *chains)
1776 chain_p chain;
1777 unsigned factor = 1, af, nfactor, i;
1778 unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1780 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1782 if (chain->type == CT_INVARIANT || chain->combined)
1783 continue;
1785 /* The best unroll factor for this chain is equal to the number of
1786 temporary variables that we create for it. */
1787 af = chain->length;
1788 if (chain->has_max_use_after)
1789 af++;
1791 nfactor = factor * af / gcd (factor, af);
1792 if (nfactor <= max)
1793 factor = nfactor;
1796 return factor;
1799 /* Perform the predictive commoning optimization for CHAINS.
1800 Uids of the newly created temporary variables are marked in TMP_VARS. */
1802 static void
1803 execute_pred_commoning (struct loop *loop, VEC (chain_p, heap) *chains,
1804 bitmap tmp_vars)
1806 chain_p chain;
1807 unsigned i;
1809 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1811 if (chain->type == CT_INVARIANT)
1812 execute_load_motion (loop, chain, tmp_vars);
1813 else
1814 execute_pred_commoning_chain (loop, chain, tmp_vars);
1817 update_ssa (TODO_update_ssa_only_virtuals);
1820 /* For each reference in CHAINS, if its defining statement is
1821 phi node, record the ssa name that is defined by it. */
1823 static void
1824 replace_phis_by_defined_names (VEC (chain_p, heap) *chains)
1826 chain_p chain;
1827 dref a;
1828 unsigned i, j;
1830 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1831 FOR_EACH_VEC_ELT (dref, chain->refs, j, a)
1833 if (gimple_code (a->stmt) == GIMPLE_PHI)
1835 a->name_defined_by_phi = PHI_RESULT (a->stmt);
1836 a->stmt = NULL;
1841 /* For each reference in CHAINS, if name_defined_by_phi is not
1842 NULL, use it to set the stmt field. */
1844 static void
1845 replace_names_by_phis (VEC (chain_p, heap) *chains)
1847 chain_p chain;
1848 dref a;
1849 unsigned i, j;
1851 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1852 FOR_EACH_VEC_ELT (dref, chain->refs, j, a)
1853 if (a->stmt == NULL)
1855 a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
1856 gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
1857 a->name_defined_by_phi = NULL_TREE;
1861 /* Wrapper over execute_pred_commoning, to pass it as a callback
1862 to tree_transform_and_unroll_loop. */
1864 struct epcc_data
1866 VEC (chain_p, heap) *chains;
1867 bitmap tmp_vars;
1870 static void
1871 execute_pred_commoning_cbck (struct loop *loop, void *data)
1873 struct epcc_data *const dta = (struct epcc_data *) data;
1875 /* Restore phi nodes that were replaced by ssa names before
1876 tree_transform_and_unroll_loop (see detailed description in
1877 tree_predictive_commoning_loop). */
1878 replace_names_by_phis (dta->chains);
1879 execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
1882 /* Base NAME and all the names in the chain of phi nodes that use it
1883 on variable VAR. The phi nodes are recognized by being in the copies of
1884 the header of the LOOP. */
1886 static void
1887 base_names_in_chain_on (struct loop *loop, tree name, tree var)
1889 gimple stmt, phi;
1890 imm_use_iterator iter;
1892 SSA_NAME_VAR (name) = var;
1894 while (1)
1896 phi = NULL;
1897 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1899 if (gimple_code (stmt) == GIMPLE_PHI
1900 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1902 phi = stmt;
1903 BREAK_FROM_IMM_USE_STMT (iter);
1906 if (!phi)
1907 return;
1909 name = PHI_RESULT (phi);
1910 SSA_NAME_VAR (name) = var;
1914 /* Given an unrolled LOOP after predictive commoning, remove the
1915 register copies arising from phi nodes by changing the base
1916 variables of SSA names. TMP_VARS is the set of the temporary variables
1917 for those we want to perform this. */
1919 static void
1920 eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
1922 edge e;
1923 gimple phi, stmt;
1924 tree name, use, var;
1925 gimple_stmt_iterator psi;
1927 e = loop_latch_edge (loop);
1928 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1930 phi = gsi_stmt (psi);
1931 name = PHI_RESULT (phi);
1932 var = SSA_NAME_VAR (name);
1933 if (!bitmap_bit_p (tmp_vars, DECL_UID (var)))
1934 continue;
1935 use = PHI_ARG_DEF_FROM_EDGE (phi, e);
1936 gcc_assert (TREE_CODE (use) == SSA_NAME);
1938 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1939 stmt = SSA_NAME_DEF_STMT (use);
1940 while (gimple_code (stmt) == GIMPLE_PHI
1941 /* In case we could not unroll the loop enough to eliminate
1942 all copies, we may reach the loop header before the defining
1943 statement (in that case, some register copies will be present
1944 in loop latch in the final code, corresponding to the newly
1945 created looparound phi nodes). */
1946 && gimple_bb (stmt) != loop->header)
1948 gcc_assert (single_pred_p (gimple_bb (stmt)));
1949 use = PHI_ARG_DEF (stmt, 0);
1950 stmt = SSA_NAME_DEF_STMT (use);
1953 base_names_in_chain_on (loop, use, var);
1957 /* Returns true if CHAIN is suitable to be combined. */
1959 static bool
1960 chain_can_be_combined_p (chain_p chain)
1962 return (!chain->combined
1963 && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
1966 /* Returns the modify statement that uses NAME. Skips over assignment
1967 statements, NAME is replaced with the actual name used in the returned
1968 statement. */
1970 static gimple
1971 find_use_stmt (tree *name)
1973 gimple stmt;
1974 tree rhs, lhs;
1976 /* Skip over assignments. */
1977 while (1)
1979 stmt = single_nonlooparound_use (*name);
1980 if (!stmt)
1981 return NULL;
1983 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1984 return NULL;
1986 lhs = gimple_assign_lhs (stmt);
1987 if (TREE_CODE (lhs) != SSA_NAME)
1988 return NULL;
1990 if (gimple_assign_copy_p (stmt))
1992 rhs = gimple_assign_rhs1 (stmt);
1993 if (rhs != *name)
1994 return NULL;
1996 *name = lhs;
1998 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1999 == GIMPLE_BINARY_RHS)
2000 return stmt;
2001 else
2002 return NULL;
2006 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2008 static bool
2009 may_reassociate_p (tree type, enum tree_code code)
2011 if (FLOAT_TYPE_P (type)
2012 && !flag_unsafe_math_optimizations)
2013 return false;
2015 return (commutative_tree_code (code)
2016 && associative_tree_code (code));
2019 /* If the operation used in STMT is associative and commutative, go through the
2020 tree of the same operations and returns its root. Distance to the root
2021 is stored in DISTANCE. */
2023 static gimple
2024 find_associative_operation_root (gimple stmt, unsigned *distance)
2026 tree lhs;
2027 gimple next;
2028 enum tree_code code = gimple_assign_rhs_code (stmt);
2029 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2030 unsigned dist = 0;
2032 if (!may_reassociate_p (type, code))
2033 return NULL;
2035 while (1)
2037 lhs = gimple_assign_lhs (stmt);
2038 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2040 next = find_use_stmt (&lhs);
2041 if (!next
2042 || gimple_assign_rhs_code (next) != code)
2043 break;
2045 stmt = next;
2046 dist++;
2049 if (distance)
2050 *distance = dist;
2051 return stmt;
2054 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2055 is no such statement, returns NULL_TREE. In case the operation used on
2056 NAME1 and NAME2 is associative and commutative, returns the root of the
2057 tree formed by this operation instead of the statement that uses NAME1 or
2058 NAME2. */
2060 static gimple
2061 find_common_use_stmt (tree *name1, tree *name2)
2063 gimple stmt1, stmt2;
2065 stmt1 = find_use_stmt (name1);
2066 if (!stmt1)
2067 return NULL;
2069 stmt2 = find_use_stmt (name2);
2070 if (!stmt2)
2071 return NULL;
2073 if (stmt1 == stmt2)
2074 return stmt1;
2076 stmt1 = find_associative_operation_root (stmt1, NULL);
2077 if (!stmt1)
2078 return NULL;
2079 stmt2 = find_associative_operation_root (stmt2, NULL);
2080 if (!stmt2)
2081 return NULL;
2083 return (stmt1 == stmt2 ? stmt1 : NULL);
2086 /* Checks whether R1 and R2 are combined together using CODE, with the result
2087 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2088 if it is true. If CODE is ERROR_MARK, set these values instead. */
2090 static bool
2091 combinable_refs_p (dref r1, dref r2,
2092 enum tree_code *code, bool *swap, tree *rslt_type)
2094 enum tree_code acode;
2095 bool aswap;
2096 tree atype;
2097 tree name1, name2;
2098 gimple stmt;
2100 name1 = name_for_ref (r1);
2101 name2 = name_for_ref (r2);
2102 gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2104 stmt = find_common_use_stmt (&name1, &name2);
2106 if (!stmt)
2107 return false;
2109 acode = gimple_assign_rhs_code (stmt);
2110 aswap = (!commutative_tree_code (acode)
2111 && gimple_assign_rhs1 (stmt) != name1);
2112 atype = TREE_TYPE (gimple_assign_lhs (stmt));
2114 if (*code == ERROR_MARK)
2116 *code = acode;
2117 *swap = aswap;
2118 *rslt_type = atype;
2119 return true;
2122 return (*code == acode
2123 && *swap == aswap
2124 && *rslt_type == atype);
2127 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2128 an assignment of the remaining operand. */
2130 static void
2131 remove_name_from_operation (gimple stmt, tree op)
2133 tree other_op;
2134 gimple_stmt_iterator si;
2136 gcc_assert (is_gimple_assign (stmt));
2138 if (gimple_assign_rhs1 (stmt) == op)
2139 other_op = gimple_assign_rhs2 (stmt);
2140 else
2141 other_op = gimple_assign_rhs1 (stmt);
2143 si = gsi_for_stmt (stmt);
2144 gimple_assign_set_rhs_from_tree (&si, other_op);
2146 /* We should not have reallocated STMT. */
2147 gcc_assert (gsi_stmt (si) == stmt);
2149 update_stmt (stmt);
2152 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2153 are combined in a single statement, and returns this statement. */
2155 static gimple
2156 reassociate_to_the_same_stmt (tree name1, tree name2)
2158 gimple stmt1, stmt2, root1, root2, s1, s2;
2159 gimple new_stmt, tmp_stmt;
2160 tree new_name, tmp_name, var, r1, r2;
2161 unsigned dist1, dist2;
2162 enum tree_code code;
2163 tree type = TREE_TYPE (name1);
2164 gimple_stmt_iterator bsi;
2166 stmt1 = find_use_stmt (&name1);
2167 stmt2 = find_use_stmt (&name2);
2168 root1 = find_associative_operation_root (stmt1, &dist1);
2169 root2 = find_associative_operation_root (stmt2, &dist2);
2170 code = gimple_assign_rhs_code (stmt1);
2172 gcc_assert (root1 && root2 && root1 == root2
2173 && code == gimple_assign_rhs_code (stmt2));
2175 /* Find the root of the nearest expression in that both NAME1 and NAME2
2176 are used. */
2177 r1 = name1;
2178 s1 = stmt1;
2179 r2 = name2;
2180 s2 = stmt2;
2182 while (dist1 > dist2)
2184 s1 = find_use_stmt (&r1);
2185 r1 = gimple_assign_lhs (s1);
2186 dist1--;
2188 while (dist2 > dist1)
2190 s2 = find_use_stmt (&r2);
2191 r2 = gimple_assign_lhs (s2);
2192 dist2--;
2195 while (s1 != s2)
2197 s1 = find_use_stmt (&r1);
2198 r1 = gimple_assign_lhs (s1);
2199 s2 = find_use_stmt (&r2);
2200 r2 = gimple_assign_lhs (s2);
2203 /* Remove NAME1 and NAME2 from the statements in that they are used
2204 currently. */
2205 remove_name_from_operation (stmt1, name1);
2206 remove_name_from_operation (stmt2, name2);
2208 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2209 combine it with the rhs of S1. */
2210 var = create_tmp_reg (type, "predreastmp");
2211 add_referenced_var (var);
2212 new_name = make_ssa_name (var, NULL);
2213 new_stmt = gimple_build_assign_with_ops (code, new_name, name1, name2);
2215 var = create_tmp_reg (type, "predreastmp");
2216 add_referenced_var (var);
2217 tmp_name = make_ssa_name (var, NULL);
2219 /* Rhs of S1 may now be either a binary expression with operation
2220 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2221 so that name1 or name2 was removed from it). */
2222 tmp_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (s1),
2223 tmp_name,
2224 gimple_assign_rhs1 (s1),
2225 gimple_assign_rhs2 (s1));
2227 bsi = gsi_for_stmt (s1);
2228 gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2229 s1 = gsi_stmt (bsi);
2230 update_stmt (s1);
2232 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2233 gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
2235 return new_stmt;
2238 /* Returns the statement that combines references R1 and R2. In case R1
2239 and R2 are not used in the same statement, but they are used with an
2240 associative and commutative operation in the same expression, reassociate
2241 the expression so that they are used in the same statement. */
2243 static gimple
2244 stmt_combining_refs (dref r1, dref r2)
2246 gimple stmt1, stmt2;
2247 tree name1 = name_for_ref (r1);
2248 tree name2 = name_for_ref (r2);
2250 stmt1 = find_use_stmt (&name1);
2251 stmt2 = find_use_stmt (&name2);
2252 if (stmt1 == stmt2)
2253 return stmt1;
2255 return reassociate_to_the_same_stmt (name1, name2);
2258 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2259 description of the new chain is returned, otherwise we return NULL. */
2261 static chain_p
2262 combine_chains (chain_p ch1, chain_p ch2)
2264 dref r1, r2, nw;
2265 enum tree_code op = ERROR_MARK;
2266 bool swap = false;
2267 chain_p new_chain;
2268 unsigned i;
2269 gimple root_stmt;
2270 tree rslt_type = NULL_TREE;
2272 if (ch1 == ch2)
2273 return NULL;
2274 if (ch1->length != ch2->length)
2275 return NULL;
2277 if (VEC_length (dref, ch1->refs) != VEC_length (dref, ch2->refs))
2278 return NULL;
2280 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2281 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2283 if (r1->distance != r2->distance)
2284 return NULL;
2286 if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2287 return NULL;
2290 if (swap)
2292 chain_p tmp = ch1;
2293 ch1 = ch2;
2294 ch2 = tmp;
2297 new_chain = XCNEW (struct chain);
2298 new_chain->type = CT_COMBINATION;
2299 new_chain->op = op;
2300 new_chain->ch1 = ch1;
2301 new_chain->ch2 = ch2;
2302 new_chain->rslt_type = rslt_type;
2303 new_chain->length = ch1->length;
2305 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2306 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2308 nw = XCNEW (struct dref_d);
2309 nw->stmt = stmt_combining_refs (r1, r2);
2310 nw->distance = r1->distance;
2312 VEC_safe_push (dref, heap, new_chain->refs, nw);
2315 new_chain->has_max_use_after = false;
2316 root_stmt = get_chain_root (new_chain)->stmt;
2317 for (i = 1; VEC_iterate (dref, new_chain->refs, i, nw); i++)
2319 if (nw->distance == new_chain->length
2320 && !stmt_dominates_stmt_p (nw->stmt, root_stmt))
2322 new_chain->has_max_use_after = true;
2323 break;
2327 ch1->combined = true;
2328 ch2->combined = true;
2329 return new_chain;
2332 /* Try to combine the CHAINS. */
2334 static void
2335 try_combine_chains (VEC (chain_p, heap) **chains)
2337 unsigned i, j;
2338 chain_p ch1, ch2, cch;
2339 VEC (chain_p, heap) *worklist = NULL;
2341 FOR_EACH_VEC_ELT (chain_p, *chains, i, ch1)
2342 if (chain_can_be_combined_p (ch1))
2343 VEC_safe_push (chain_p, heap, worklist, ch1);
2345 while (!VEC_empty (chain_p, worklist))
2347 ch1 = VEC_pop (chain_p, worklist);
2348 if (!chain_can_be_combined_p (ch1))
2349 continue;
2351 FOR_EACH_VEC_ELT (chain_p, *chains, j, ch2)
2353 if (!chain_can_be_combined_p (ch2))
2354 continue;
2356 cch = combine_chains (ch1, ch2);
2357 if (cch)
2359 VEC_safe_push (chain_p, heap, worklist, cch);
2360 VEC_safe_push (chain_p, heap, *chains, cch);
2361 break;
2367 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2368 impossible because one of these initializers may trap, true otherwise. */
2370 static bool
2371 prepare_initializers_chain (struct loop *loop, chain_p chain)
2373 unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
2374 struct data_reference *dr = get_chain_root (chain)->ref;
2375 tree init;
2376 gimple_seq stmts;
2377 dref laref;
2378 edge entry = loop_preheader_edge (loop);
2380 /* Find the initializers for the variables, and check that they cannot
2381 trap. */
2382 chain->inits = VEC_alloc (tree, heap, n);
2383 for (i = 0; i < n; i++)
2384 VEC_quick_push (tree, chain->inits, NULL_TREE);
2386 /* If we have replaced some looparound phi nodes, use their initializers
2387 instead of creating our own. */
2388 FOR_EACH_VEC_ELT (dref, chain->refs, i, laref)
2390 if (gimple_code (laref->stmt) != GIMPLE_PHI)
2391 continue;
2393 gcc_assert (laref->distance > 0);
2394 VEC_replace (tree, chain->inits, n - laref->distance,
2395 PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry));
2398 for (i = 0; i < n; i++)
2400 if (VEC_index (tree, chain->inits, i) != NULL_TREE)
2401 continue;
2403 init = ref_at_iteration (loop, DR_REF (dr), (int) i - n);
2404 if (!init)
2405 return false;
2407 if (!chain->all_always_accessed && tree_could_trap_p (init))
2408 return false;
2410 init = force_gimple_operand (init, &stmts, false, NULL_TREE);
2411 if (stmts)
2412 gsi_insert_seq_on_edge_immediate (entry, stmts);
2414 VEC_replace (tree, chain->inits, i, init);
2417 return true;
2420 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2421 be used because the initializers might trap. */
2423 static void
2424 prepare_initializers (struct loop *loop, VEC (chain_p, heap) *chains)
2426 chain_p chain;
2427 unsigned i;
2429 for (i = 0; i < VEC_length (chain_p, chains); )
2431 chain = VEC_index (chain_p, chains, i);
2432 if (prepare_initializers_chain (loop, chain))
2433 i++;
2434 else
2436 release_chain (chain);
2437 VEC_unordered_remove (chain_p, chains, i);
2442 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2443 unrolled. */
2445 static bool
2446 tree_predictive_commoning_loop (struct loop *loop)
2448 VEC (loop_p, heap) *loop_nest;
2449 VEC (data_reference_p, heap) *datarefs;
2450 VEC (ddr_p, heap) *dependences;
2451 struct component *components;
2452 VEC (chain_p, heap) *chains = NULL;
2453 unsigned unroll_factor;
2454 struct tree_niter_desc desc;
2455 bool unroll = false;
2456 edge exit;
2457 bitmap tmp_vars;
2459 if (dump_file && (dump_flags & TDF_DETAILS))
2460 fprintf (dump_file, "Processing loop %d\n", loop->num);
2462 /* Find the data references and split them into components according to their
2463 dependence relations. */
2464 datarefs = VEC_alloc (data_reference_p, heap, 10);
2465 dependences = VEC_alloc (ddr_p, heap, 10);
2466 loop_nest = VEC_alloc (loop_p, heap, 3);
2467 compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
2468 &dependences);
2469 if (dump_file && (dump_flags & TDF_DETAILS))
2470 dump_data_dependence_relations (dump_file, dependences);
2472 components = split_data_refs_to_components (loop, datarefs, dependences);
2473 VEC_free (loop_p, heap, loop_nest);
2474 free_dependence_relations (dependences);
2475 if (!components)
2477 free_data_refs (datarefs);
2478 return false;
2481 if (dump_file && (dump_flags & TDF_DETAILS))
2483 fprintf (dump_file, "Initial state:\n\n");
2484 dump_components (dump_file, components);
2487 /* Find the suitable components and split them into chains. */
2488 components = filter_suitable_components (loop, components);
2490 tmp_vars = BITMAP_ALLOC (NULL);
2491 looparound_phis = BITMAP_ALLOC (NULL);
2492 determine_roots (loop, components, &chains);
2493 release_components (components);
2495 if (!chains)
2497 if (dump_file && (dump_flags & TDF_DETAILS))
2498 fprintf (dump_file,
2499 "Predictive commoning failed: no suitable chains\n");
2500 goto end;
2502 prepare_initializers (loop, chains);
2504 /* Try to combine the chains that are always worked with together. */
2505 try_combine_chains (&chains);
2507 if (dump_file && (dump_flags & TDF_DETAILS))
2509 fprintf (dump_file, "Before commoning:\n\n");
2510 dump_chains (dump_file, chains);
2513 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2514 that its number of iterations is divisible by the factor. */
2515 unroll_factor = determine_unroll_factor (chains);
2516 scev_reset ();
2517 unroll = (unroll_factor > 1
2518 && can_unroll_loop_p (loop, unroll_factor, &desc));
2519 exit = single_dom_exit (loop);
2521 /* Execute the predictive commoning transformations, and possibly unroll the
2522 loop. */
2523 if (unroll)
2525 struct epcc_data dta;
2527 if (dump_file && (dump_flags & TDF_DETAILS))
2528 fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
2530 dta.chains = chains;
2531 dta.tmp_vars = tmp_vars;
2533 update_ssa (TODO_update_ssa_only_virtuals);
2535 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2536 execute_pred_commoning_cbck is called may cause phi nodes to be
2537 reallocated, which is a problem since CHAINS may point to these
2538 statements. To fix this, we store the ssa names defined by the
2539 phi nodes here instead of the phi nodes themselves, and restore
2540 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2541 replace_phis_by_defined_names (chains);
2543 tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
2544 execute_pred_commoning_cbck, &dta);
2545 eliminate_temp_copies (loop, tmp_vars);
2547 else
2549 if (dump_file && (dump_flags & TDF_DETAILS))
2550 fprintf (dump_file,
2551 "Executing predictive commoning without unrolling.\n");
2552 execute_pred_commoning (loop, chains, tmp_vars);
2555 end: ;
2556 release_chains (chains);
2557 free_data_refs (datarefs);
2558 BITMAP_FREE (tmp_vars);
2559 BITMAP_FREE (looparound_phis);
2561 free_affine_expand_cache (&name_expansions);
2563 return unroll;
2566 /* Runs predictive commoning. */
2568 unsigned
2569 tree_predictive_commoning (void)
2571 bool unrolled = false;
2572 struct loop *loop;
2573 loop_iterator li;
2574 unsigned ret = 0;
2576 initialize_original_copy_tables ();
2577 FOR_EACH_LOOP (li, loop, LI_ONLY_INNERMOST)
2578 if (optimize_loop_for_speed_p (loop))
2580 unrolled |= tree_predictive_commoning_loop (loop);
2583 if (unrolled)
2585 scev_reset ();
2586 ret = TODO_cleanup_cfg;
2588 free_original_copy_tables ();
2590 return ret;