2011-08-19 Andrew Stubbs <ams@codesourcery.com>
[official-gcc.git] / gcc / sched-deps.c
blobed592c8278a25a499745a7cf1db3dc2763607037
1 /* Instruction scheduling pass. This file computes dependencies between
2 instructions.
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
5 2011
6 Free Software Foundation, Inc.
7 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
8 and currently maintained by, Jim Wilson (wilson@cygnus.com)
10 This file is part of GCC.
12 GCC is free software; you can redistribute it and/or modify it under
13 the terms of the GNU General Public License as published by the Free
14 Software Foundation; either version 3, or (at your option) any later
15 version.
17 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
18 WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 for more details.
22 You should have received a copy of the GNU General Public License
23 along with GCC; see the file COPYING3. If not see
24 <http://www.gnu.org/licenses/>. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "diagnostic-core.h"
31 #include "rtl.h"
32 #include "tm_p.h"
33 #include "hard-reg-set.h"
34 #include "regs.h"
35 #include "function.h"
36 #include "flags.h"
37 #include "insn-config.h"
38 #include "insn-attr.h"
39 #include "except.h"
40 #include "recog.h"
41 #include "sched-int.h"
42 #include "params.h"
43 #include "cselib.h"
44 #include "ira.h"
45 #include "target.h"
47 #ifdef INSN_SCHEDULING
49 #ifdef ENABLE_CHECKING
50 #define CHECK (true)
51 #else
52 #define CHECK (false)
53 #endif
55 /* In deps->last_pending_memory_flush marks JUMP_INSNs that weren't
56 added to the list because of flush_pending_lists, stands just
57 for itself and not for any other pending memory reads/writes. */
58 #define NON_FLUSH_JUMP_KIND REG_DEP_ANTI
59 #define NON_FLUSH_JUMP_P(x) (REG_NOTE_KIND (x) == NON_FLUSH_JUMP_KIND)
61 /* Holds current parameters for the dependency analyzer. */
62 struct sched_deps_info_def *sched_deps_info;
64 /* The data is specific to the Haifa scheduler. */
65 VEC(haifa_deps_insn_data_def, heap) *h_d_i_d = NULL;
67 /* Return the major type present in the DS. */
68 enum reg_note
69 ds_to_dk (ds_t ds)
71 if (ds & DEP_TRUE)
72 return REG_DEP_TRUE;
74 if (ds & DEP_OUTPUT)
75 return REG_DEP_OUTPUT;
77 gcc_assert (ds & DEP_ANTI);
79 return REG_DEP_ANTI;
82 /* Return equivalent dep_status. */
83 ds_t
84 dk_to_ds (enum reg_note dk)
86 switch (dk)
88 case REG_DEP_TRUE:
89 return DEP_TRUE;
91 case REG_DEP_OUTPUT:
92 return DEP_OUTPUT;
94 default:
95 gcc_assert (dk == REG_DEP_ANTI);
96 return DEP_ANTI;
100 /* Functions to operate with dependence information container - dep_t. */
102 /* Init DEP with the arguments. */
103 void
104 init_dep_1 (dep_t dep, rtx pro, rtx con, enum reg_note type, ds_t ds)
106 DEP_PRO (dep) = pro;
107 DEP_CON (dep) = con;
108 DEP_TYPE (dep) = type;
109 DEP_STATUS (dep) = ds;
110 DEP_COST (dep) = UNKNOWN_DEP_COST;
113 /* Init DEP with the arguments.
114 While most of the scheduler (including targets) only need the major type
115 of the dependency, it is convenient to hide full dep_status from them. */
116 void
117 init_dep (dep_t dep, rtx pro, rtx con, enum reg_note kind)
119 ds_t ds;
121 if ((current_sched_info->flags & USE_DEPS_LIST))
122 ds = dk_to_ds (kind);
123 else
124 ds = 0;
126 init_dep_1 (dep, pro, con, kind, ds);
129 /* Make a copy of FROM in TO. */
130 static void
131 copy_dep (dep_t to, dep_t from)
133 memcpy (to, from, sizeof (*to));
136 static void dump_ds (FILE *, ds_t);
138 /* Define flags for dump_dep (). */
140 /* Dump producer of the dependence. */
141 #define DUMP_DEP_PRO (2)
143 /* Dump consumer of the dependence. */
144 #define DUMP_DEP_CON (4)
146 /* Dump type of the dependence. */
147 #define DUMP_DEP_TYPE (8)
149 /* Dump status of the dependence. */
150 #define DUMP_DEP_STATUS (16)
152 /* Dump all information about the dependence. */
153 #define DUMP_DEP_ALL (DUMP_DEP_PRO | DUMP_DEP_CON | DUMP_DEP_TYPE \
154 |DUMP_DEP_STATUS)
156 /* Dump DEP to DUMP.
157 FLAGS is a bit mask specifying what information about DEP needs
158 to be printed.
159 If FLAGS has the very first bit set, then dump all information about DEP
160 and propagate this bit into the callee dump functions. */
161 static void
162 dump_dep (FILE *dump, dep_t dep, int flags)
164 if (flags & 1)
165 flags |= DUMP_DEP_ALL;
167 fprintf (dump, "<");
169 if (flags & DUMP_DEP_PRO)
170 fprintf (dump, "%d; ", INSN_UID (DEP_PRO (dep)));
172 if (flags & DUMP_DEP_CON)
173 fprintf (dump, "%d; ", INSN_UID (DEP_CON (dep)));
175 if (flags & DUMP_DEP_TYPE)
177 char t;
178 enum reg_note type = DEP_TYPE (dep);
180 switch (type)
182 case REG_DEP_TRUE:
183 t = 't';
184 break;
186 case REG_DEP_OUTPUT:
187 t = 'o';
188 break;
190 case REG_DEP_ANTI:
191 t = 'a';
192 break;
194 default:
195 gcc_unreachable ();
196 break;
199 fprintf (dump, "%c; ", t);
202 if (flags & DUMP_DEP_STATUS)
204 if (current_sched_info->flags & USE_DEPS_LIST)
205 dump_ds (dump, DEP_STATUS (dep));
208 fprintf (dump, ">");
211 /* Default flags for dump_dep (). */
212 static int dump_dep_flags = (DUMP_DEP_PRO | DUMP_DEP_CON);
214 /* Dump all fields of DEP to STDERR. */
215 void
216 sd_debug_dep (dep_t dep)
218 dump_dep (stderr, dep, 1);
219 fprintf (stderr, "\n");
222 /* Determine whether DEP is a dependency link of a non-debug insn on a
223 debug insn. */
225 static inline bool
226 depl_on_debug_p (dep_link_t dep)
228 return (DEBUG_INSN_P (DEP_LINK_PRO (dep))
229 && !DEBUG_INSN_P (DEP_LINK_CON (dep)));
232 /* Functions to operate with a single link from the dependencies lists -
233 dep_link_t. */
235 /* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
236 PREV_NEXT_P. */
237 static void
238 attach_dep_link (dep_link_t l, dep_link_t *prev_nextp)
240 dep_link_t next = *prev_nextp;
242 gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL
243 && DEP_LINK_NEXT (l) == NULL);
245 /* Init node being inserted. */
246 DEP_LINK_PREV_NEXTP (l) = prev_nextp;
247 DEP_LINK_NEXT (l) = next;
249 /* Fix next node. */
250 if (next != NULL)
252 gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp);
254 DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l);
257 /* Fix prev node. */
258 *prev_nextp = l;
261 /* Add dep_link LINK to deps_list L. */
262 static void
263 add_to_deps_list (dep_link_t link, deps_list_t l)
265 attach_dep_link (link, &DEPS_LIST_FIRST (l));
267 /* Don't count debug deps. */
268 if (!depl_on_debug_p (link))
269 ++DEPS_LIST_N_LINKS (l);
272 /* Detach dep_link L from the list. */
273 static void
274 detach_dep_link (dep_link_t l)
276 dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l);
277 dep_link_t next = DEP_LINK_NEXT (l);
279 *prev_nextp = next;
281 if (next != NULL)
282 DEP_LINK_PREV_NEXTP (next) = prev_nextp;
284 DEP_LINK_PREV_NEXTP (l) = NULL;
285 DEP_LINK_NEXT (l) = NULL;
288 /* Remove link LINK from list LIST. */
289 static void
290 remove_from_deps_list (dep_link_t link, deps_list_t list)
292 detach_dep_link (link);
294 /* Don't count debug deps. */
295 if (!depl_on_debug_p (link))
296 --DEPS_LIST_N_LINKS (list);
299 /* Move link LINK from list FROM to list TO. */
300 static void
301 move_dep_link (dep_link_t link, deps_list_t from, deps_list_t to)
303 remove_from_deps_list (link, from);
304 add_to_deps_list (link, to);
307 /* Return true of LINK is not attached to any list. */
308 static bool
309 dep_link_is_detached_p (dep_link_t link)
311 return DEP_LINK_PREV_NEXTP (link) == NULL;
314 /* Pool to hold all dependency nodes (dep_node_t). */
315 static alloc_pool dn_pool;
317 /* Number of dep_nodes out there. */
318 static int dn_pool_diff = 0;
320 /* Create a dep_node. */
321 static dep_node_t
322 create_dep_node (void)
324 dep_node_t n = (dep_node_t) pool_alloc (dn_pool);
325 dep_link_t back = DEP_NODE_BACK (n);
326 dep_link_t forw = DEP_NODE_FORW (n);
328 DEP_LINK_NODE (back) = n;
329 DEP_LINK_NEXT (back) = NULL;
330 DEP_LINK_PREV_NEXTP (back) = NULL;
332 DEP_LINK_NODE (forw) = n;
333 DEP_LINK_NEXT (forw) = NULL;
334 DEP_LINK_PREV_NEXTP (forw) = NULL;
336 ++dn_pool_diff;
338 return n;
341 /* Delete dep_node N. N must not be connected to any deps_list. */
342 static void
343 delete_dep_node (dep_node_t n)
345 gcc_assert (dep_link_is_detached_p (DEP_NODE_BACK (n))
346 && dep_link_is_detached_p (DEP_NODE_FORW (n)));
348 --dn_pool_diff;
350 pool_free (dn_pool, n);
353 /* Pool to hold dependencies lists (deps_list_t). */
354 static alloc_pool dl_pool;
356 /* Number of deps_lists out there. */
357 static int dl_pool_diff = 0;
359 /* Functions to operate with dependences lists - deps_list_t. */
361 /* Return true if list L is empty. */
362 static bool
363 deps_list_empty_p (deps_list_t l)
365 return DEPS_LIST_N_LINKS (l) == 0;
368 /* Create a new deps_list. */
369 static deps_list_t
370 create_deps_list (void)
372 deps_list_t l = (deps_list_t) pool_alloc (dl_pool);
374 DEPS_LIST_FIRST (l) = NULL;
375 DEPS_LIST_N_LINKS (l) = 0;
377 ++dl_pool_diff;
378 return l;
381 /* Free deps_list L. */
382 static void
383 free_deps_list (deps_list_t l)
385 gcc_assert (deps_list_empty_p (l));
387 --dl_pool_diff;
389 pool_free (dl_pool, l);
392 /* Return true if there is no dep_nodes and deps_lists out there.
393 After the region is scheduled all the dependency nodes and lists
394 should [generally] be returned to pool. */
395 bool
396 deps_pools_are_empty_p (void)
398 return dn_pool_diff == 0 && dl_pool_diff == 0;
401 /* Remove all elements from L. */
402 static void
403 clear_deps_list (deps_list_t l)
407 dep_link_t link = DEPS_LIST_FIRST (l);
409 if (link == NULL)
410 break;
412 remove_from_deps_list (link, l);
414 while (1);
417 /* Decide whether a dependency should be treated as a hard or a speculative
418 dependency. */
419 static bool
420 dep_spec_p (dep_t dep)
422 if (current_sched_info->flags & DO_SPECULATION)
423 return (DEP_STATUS (dep) & SPECULATIVE) != 0;
424 return false;
427 static regset reg_pending_sets;
428 static regset reg_pending_clobbers;
429 static regset reg_pending_uses;
430 static enum reg_pending_barrier_mode reg_pending_barrier;
432 /* Hard registers implicitly clobbered or used (or may be implicitly
433 clobbered or used) by the currently analyzed insn. For example,
434 insn in its constraint has one register class. Even if there is
435 currently no hard register in the insn, the particular hard
436 register will be in the insn after reload pass because the
437 constraint requires it. */
438 static HARD_REG_SET implicit_reg_pending_clobbers;
439 static HARD_REG_SET implicit_reg_pending_uses;
441 /* To speed up the test for duplicate dependency links we keep a
442 record of dependencies created by add_dependence when the average
443 number of instructions in a basic block is very large.
445 Studies have shown that there is typically around 5 instructions between
446 branches for typical C code. So we can make a guess that the average
447 basic block is approximately 5 instructions long; we will choose 100X
448 the average size as a very large basic block.
450 Each insn has associated bitmaps for its dependencies. Each bitmap
451 has enough entries to represent a dependency on any other insn in
452 the insn chain. All bitmap for true dependencies cache is
453 allocated then the rest two ones are also allocated. */
454 static bitmap_head *true_dependency_cache = NULL;
455 static bitmap_head *output_dependency_cache = NULL;
456 static bitmap_head *anti_dependency_cache = NULL;
457 static bitmap_head *spec_dependency_cache = NULL;
458 static int cache_size;
460 static int deps_may_trap_p (const_rtx);
461 static void add_dependence_list (rtx, rtx, int, enum reg_note);
462 static void add_dependence_list_and_free (struct deps_desc *, rtx,
463 rtx *, int, enum reg_note);
464 static void delete_all_dependences (rtx);
465 static void fixup_sched_groups (rtx);
467 static void flush_pending_lists (struct deps_desc *, rtx, int, int);
468 static void sched_analyze_1 (struct deps_desc *, rtx, rtx);
469 static void sched_analyze_2 (struct deps_desc *, rtx, rtx);
470 static void sched_analyze_insn (struct deps_desc *, rtx, rtx);
472 static bool sched_has_condition_p (const_rtx);
473 static int conditions_mutex_p (const_rtx, const_rtx, bool, bool);
475 static enum DEPS_ADJUST_RESULT maybe_add_or_update_dep_1 (dep_t, bool,
476 rtx, rtx);
477 static enum DEPS_ADJUST_RESULT add_or_update_dep_1 (dep_t, bool, rtx, rtx);
479 #ifdef ENABLE_CHECKING
480 static void check_dep (dep_t, bool);
481 #endif
483 /* Return nonzero if a load of the memory reference MEM can cause a trap. */
485 static int
486 deps_may_trap_p (const_rtx mem)
488 const_rtx addr = XEXP (mem, 0);
490 if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
492 const_rtx t = get_reg_known_value (REGNO (addr));
493 if (t)
494 addr = t;
496 return rtx_addr_can_trap_p (addr);
500 /* Find the condition under which INSN is executed. If REV is not NULL,
501 it is set to TRUE when the returned comparison should be reversed
502 to get the actual condition. */
503 static rtx
504 sched_get_condition_with_rev_uncached (const_rtx insn, bool *rev)
506 rtx pat = PATTERN (insn);
507 rtx src;
509 if (pat == 0)
510 return 0;
512 if (rev)
513 *rev = false;
515 if (GET_CODE (pat) == COND_EXEC)
516 return COND_EXEC_TEST (pat);
518 if (!any_condjump_p (insn) || !onlyjump_p (insn))
519 return 0;
521 src = SET_SRC (pc_set (insn));
523 if (XEXP (src, 2) == pc_rtx)
524 return XEXP (src, 0);
525 else if (XEXP (src, 1) == pc_rtx)
527 rtx cond = XEXP (src, 0);
528 enum rtx_code revcode = reversed_comparison_code (cond, insn);
530 if (revcode == UNKNOWN)
531 return 0;
533 if (rev)
534 *rev = true;
535 return cond;
538 return 0;
541 /* Caching variant of sched_get_condition_with_rev_uncached.
542 We only do actual work the first time we come here for an insn; the
543 results are cached in INSN_CACHED_COND and INSN_REVERSE_COND. */
544 static rtx
545 sched_get_condition_with_rev (const_rtx insn, bool *rev)
547 bool tmp;
549 if (INSN_LUID (insn) == 0)
550 return sched_get_condition_with_rev_uncached (insn, rev);
552 if (INSN_CACHED_COND (insn) == const_true_rtx)
553 return NULL_RTX;
555 if (INSN_CACHED_COND (insn) != NULL_RTX)
557 if (rev)
558 *rev = INSN_REVERSE_COND (insn);
559 return INSN_CACHED_COND (insn);
562 INSN_CACHED_COND (insn) = sched_get_condition_with_rev_uncached (insn, &tmp);
563 INSN_REVERSE_COND (insn) = tmp;
565 if (INSN_CACHED_COND (insn) == NULL_RTX)
567 INSN_CACHED_COND (insn) = const_true_rtx;
568 return NULL_RTX;
571 if (rev)
572 *rev = INSN_REVERSE_COND (insn);
573 return INSN_CACHED_COND (insn);
576 /* True when we can find a condition under which INSN is executed. */
577 static bool
578 sched_has_condition_p (const_rtx insn)
580 return !! sched_get_condition_with_rev (insn, NULL);
585 /* Return nonzero if conditions COND1 and COND2 can never be both true. */
586 static int
587 conditions_mutex_p (const_rtx cond1, const_rtx cond2, bool rev1, bool rev2)
589 if (COMPARISON_P (cond1)
590 && COMPARISON_P (cond2)
591 && GET_CODE (cond1) ==
592 (rev1==rev2
593 ? reversed_comparison_code (cond2, NULL)
594 : GET_CODE (cond2))
595 && rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
596 && XEXP (cond1, 1) == XEXP (cond2, 1))
597 return 1;
598 return 0;
601 /* Return true if insn1 and insn2 can never depend on one another because
602 the conditions under which they are executed are mutually exclusive. */
603 bool
604 sched_insns_conditions_mutex_p (const_rtx insn1, const_rtx insn2)
606 rtx cond1, cond2;
607 bool rev1 = false, rev2 = false;
609 /* df doesn't handle conditional lifetimes entirely correctly;
610 calls mess up the conditional lifetimes. */
611 if (!CALL_P (insn1) && !CALL_P (insn2))
613 cond1 = sched_get_condition_with_rev (insn1, &rev1);
614 cond2 = sched_get_condition_with_rev (insn2, &rev2);
615 if (cond1 && cond2
616 && conditions_mutex_p (cond1, cond2, rev1, rev2)
617 /* Make sure first instruction doesn't affect condition of second
618 instruction if switched. */
619 && !modified_in_p (cond1, insn2)
620 /* Make sure second instruction doesn't affect condition of first
621 instruction if switched. */
622 && !modified_in_p (cond2, insn1))
623 return true;
625 return false;
629 /* Return true if INSN can potentially be speculated with type DS. */
630 bool
631 sched_insn_is_legitimate_for_speculation_p (const_rtx insn, ds_t ds)
633 if (HAS_INTERNAL_DEP (insn))
634 return false;
636 if (!NONJUMP_INSN_P (insn))
637 return false;
639 if (SCHED_GROUP_P (insn))
640 return false;
642 if (IS_SPECULATION_CHECK_P (CONST_CAST_RTX (insn)))
643 return false;
645 if (side_effects_p (PATTERN (insn)))
646 return false;
648 if (ds & BE_IN_SPEC)
649 /* The following instructions, which depend on a speculatively scheduled
650 instruction, cannot be speculatively scheduled along. */
652 if (may_trap_or_fault_p (PATTERN (insn)))
653 /* If instruction might fault, it cannot be speculatively scheduled.
654 For control speculation it's obvious why and for data speculation
655 it's because the insn might get wrong input if speculation
656 wasn't successful. */
657 return false;
659 if ((ds & BE_IN_DATA)
660 && sched_has_condition_p (insn))
661 /* If this is a predicated instruction, then it cannot be
662 speculatively scheduled. See PR35659. */
663 return false;
666 return true;
669 /* Initialize LIST_PTR to point to one of the lists present in TYPES_PTR,
670 initialize RESOLVED_P_PTR with true if that list consists of resolved deps,
671 and remove the type of returned [through LIST_PTR] list from TYPES_PTR.
672 This function is used to switch sd_iterator to the next list.
673 !!! For internal use only. Might consider moving it to sched-int.h. */
674 void
675 sd_next_list (const_rtx insn, sd_list_types_def *types_ptr,
676 deps_list_t *list_ptr, bool *resolved_p_ptr)
678 sd_list_types_def types = *types_ptr;
680 if (types & SD_LIST_HARD_BACK)
682 *list_ptr = INSN_HARD_BACK_DEPS (insn);
683 *resolved_p_ptr = false;
684 *types_ptr = types & ~SD_LIST_HARD_BACK;
686 else if (types & SD_LIST_SPEC_BACK)
688 *list_ptr = INSN_SPEC_BACK_DEPS (insn);
689 *resolved_p_ptr = false;
690 *types_ptr = types & ~SD_LIST_SPEC_BACK;
692 else if (types & SD_LIST_FORW)
694 *list_ptr = INSN_FORW_DEPS (insn);
695 *resolved_p_ptr = false;
696 *types_ptr = types & ~SD_LIST_FORW;
698 else if (types & SD_LIST_RES_BACK)
700 *list_ptr = INSN_RESOLVED_BACK_DEPS (insn);
701 *resolved_p_ptr = true;
702 *types_ptr = types & ~SD_LIST_RES_BACK;
704 else if (types & SD_LIST_RES_FORW)
706 *list_ptr = INSN_RESOLVED_FORW_DEPS (insn);
707 *resolved_p_ptr = true;
708 *types_ptr = types & ~SD_LIST_RES_FORW;
710 else
712 *list_ptr = NULL;
713 *resolved_p_ptr = false;
714 *types_ptr = SD_LIST_NONE;
718 /* Return the summary size of INSN's lists defined by LIST_TYPES. */
720 sd_lists_size (const_rtx insn, sd_list_types_def list_types)
722 int size = 0;
724 while (list_types != SD_LIST_NONE)
726 deps_list_t list;
727 bool resolved_p;
729 sd_next_list (insn, &list_types, &list, &resolved_p);
730 if (list)
731 size += DEPS_LIST_N_LINKS (list);
734 return size;
737 /* Return true if INSN's lists defined by LIST_TYPES are all empty. */
739 bool
740 sd_lists_empty_p (const_rtx insn, sd_list_types_def list_types)
742 while (list_types != SD_LIST_NONE)
744 deps_list_t list;
745 bool resolved_p;
747 sd_next_list (insn, &list_types, &list, &resolved_p);
748 if (!deps_list_empty_p (list))
749 return false;
752 return true;
755 /* Initialize data for INSN. */
756 void
757 sd_init_insn (rtx insn)
759 INSN_HARD_BACK_DEPS (insn) = create_deps_list ();
760 INSN_SPEC_BACK_DEPS (insn) = create_deps_list ();
761 INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list ();
762 INSN_FORW_DEPS (insn) = create_deps_list ();
763 INSN_RESOLVED_FORW_DEPS (insn) = create_deps_list ();
765 /* ??? It would be nice to allocate dependency caches here. */
768 /* Free data for INSN. */
769 void
770 sd_finish_insn (rtx insn)
772 /* ??? It would be nice to deallocate dependency caches here. */
774 free_deps_list (INSN_HARD_BACK_DEPS (insn));
775 INSN_HARD_BACK_DEPS (insn) = NULL;
777 free_deps_list (INSN_SPEC_BACK_DEPS (insn));
778 INSN_SPEC_BACK_DEPS (insn) = NULL;
780 free_deps_list (INSN_RESOLVED_BACK_DEPS (insn));
781 INSN_RESOLVED_BACK_DEPS (insn) = NULL;
783 free_deps_list (INSN_FORW_DEPS (insn));
784 INSN_FORW_DEPS (insn) = NULL;
786 free_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
787 INSN_RESOLVED_FORW_DEPS (insn) = NULL;
790 /* Find a dependency between producer PRO and consumer CON.
791 Search through resolved dependency lists if RESOLVED_P is true.
792 If no such dependency is found return NULL,
793 otherwise return the dependency and initialize SD_IT_PTR [if it is nonnull]
794 with an iterator pointing to it. */
795 static dep_t
796 sd_find_dep_between_no_cache (rtx pro, rtx con, bool resolved_p,
797 sd_iterator_def *sd_it_ptr)
799 sd_list_types_def pro_list_type;
800 sd_list_types_def con_list_type;
801 sd_iterator_def sd_it;
802 dep_t dep;
803 bool found_p = false;
805 if (resolved_p)
807 pro_list_type = SD_LIST_RES_FORW;
808 con_list_type = SD_LIST_RES_BACK;
810 else
812 pro_list_type = SD_LIST_FORW;
813 con_list_type = SD_LIST_BACK;
816 /* Walk through either back list of INSN or forw list of ELEM
817 depending on which one is shorter. */
818 if (sd_lists_size (con, con_list_type) < sd_lists_size (pro, pro_list_type))
820 /* Find the dep_link with producer PRO in consumer's back_deps. */
821 FOR_EACH_DEP (con, con_list_type, sd_it, dep)
822 if (DEP_PRO (dep) == pro)
824 found_p = true;
825 break;
828 else
830 /* Find the dep_link with consumer CON in producer's forw_deps. */
831 FOR_EACH_DEP (pro, pro_list_type, sd_it, dep)
832 if (DEP_CON (dep) == con)
834 found_p = true;
835 break;
839 if (found_p)
841 if (sd_it_ptr != NULL)
842 *sd_it_ptr = sd_it;
844 return dep;
847 return NULL;
850 /* Find a dependency between producer PRO and consumer CON.
851 Use dependency [if available] to check if dependency is present at all.
852 Search through resolved dependency lists if RESOLVED_P is true.
853 If the dependency or NULL if none found. */
854 dep_t
855 sd_find_dep_between (rtx pro, rtx con, bool resolved_p)
857 if (true_dependency_cache != NULL)
858 /* Avoiding the list walk below can cut compile times dramatically
859 for some code. */
861 int elem_luid = INSN_LUID (pro);
862 int insn_luid = INSN_LUID (con);
864 gcc_assert (output_dependency_cache != NULL
865 && anti_dependency_cache != NULL);
867 if (!bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid)
868 && !bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid)
869 && !bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
870 return NULL;
873 return sd_find_dep_between_no_cache (pro, con, resolved_p, NULL);
876 /* Add or update a dependence described by DEP.
877 MEM1 and MEM2, if non-null, correspond to memory locations in case of
878 data speculation.
880 The function returns a value indicating if an old entry has been changed
881 or a new entry has been added to insn's backward deps.
883 This function merely checks if producer and consumer is the same insn
884 and doesn't create a dep in this case. Actual manipulation of
885 dependence data structures is performed in add_or_update_dep_1. */
886 static enum DEPS_ADJUST_RESULT
887 maybe_add_or_update_dep_1 (dep_t dep, bool resolved_p, rtx mem1, rtx mem2)
889 rtx elem = DEP_PRO (dep);
890 rtx insn = DEP_CON (dep);
892 gcc_assert (INSN_P (insn) && INSN_P (elem));
894 /* Don't depend an insn on itself. */
895 if (insn == elem)
897 if (sched_deps_info->generate_spec_deps)
898 /* INSN has an internal dependence, which we can't overcome. */
899 HAS_INTERNAL_DEP (insn) = 1;
901 return DEP_NODEP;
904 return add_or_update_dep_1 (dep, resolved_p, mem1, mem2);
907 /* Ask dependency caches what needs to be done for dependence DEP.
908 Return DEP_CREATED if new dependence should be created and there is no
909 need to try to find one searching the dependencies lists.
910 Return DEP_PRESENT if there already is a dependence described by DEP and
911 hence nothing is to be done.
912 Return DEP_CHANGED if there already is a dependence, but it should be
913 updated to incorporate additional information from DEP. */
914 static enum DEPS_ADJUST_RESULT
915 ask_dependency_caches (dep_t dep)
917 int elem_luid = INSN_LUID (DEP_PRO (dep));
918 int insn_luid = INSN_LUID (DEP_CON (dep));
920 gcc_assert (true_dependency_cache != NULL
921 && output_dependency_cache != NULL
922 && anti_dependency_cache != NULL);
924 if (!(current_sched_info->flags & USE_DEPS_LIST))
926 enum reg_note present_dep_type;
928 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
929 present_dep_type = REG_DEP_TRUE;
930 else if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
931 present_dep_type = REG_DEP_OUTPUT;
932 else if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
933 present_dep_type = REG_DEP_ANTI;
934 else
935 /* There is no existing dep so it should be created. */
936 return DEP_CREATED;
938 if ((int) DEP_TYPE (dep) >= (int) present_dep_type)
939 /* DEP does not add anything to the existing dependence. */
940 return DEP_PRESENT;
942 else
944 ds_t present_dep_types = 0;
946 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
947 present_dep_types |= DEP_TRUE;
948 if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
949 present_dep_types |= DEP_OUTPUT;
950 if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
951 present_dep_types |= DEP_ANTI;
953 if (present_dep_types == 0)
954 /* There is no existing dep so it should be created. */
955 return DEP_CREATED;
957 if (!(current_sched_info->flags & DO_SPECULATION)
958 || !bitmap_bit_p (&spec_dependency_cache[insn_luid], elem_luid))
960 if ((present_dep_types | (DEP_STATUS (dep) & DEP_TYPES))
961 == present_dep_types)
962 /* DEP does not add anything to the existing dependence. */
963 return DEP_PRESENT;
965 else
967 /* Only true dependencies can be data speculative and
968 only anti dependencies can be control speculative. */
969 gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI))
970 == present_dep_types);
972 /* if (DEP is SPECULATIVE) then
973 ..we should update DEP_STATUS
974 else
975 ..we should reset existing dep to non-speculative. */
979 return DEP_CHANGED;
982 /* Set dependency caches according to DEP. */
983 static void
984 set_dependency_caches (dep_t dep)
986 int elem_luid = INSN_LUID (DEP_PRO (dep));
987 int insn_luid = INSN_LUID (DEP_CON (dep));
989 if (!(current_sched_info->flags & USE_DEPS_LIST))
991 switch (DEP_TYPE (dep))
993 case REG_DEP_TRUE:
994 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
995 break;
997 case REG_DEP_OUTPUT:
998 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
999 break;
1001 case REG_DEP_ANTI:
1002 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1003 break;
1005 default:
1006 gcc_unreachable ();
1009 else
1011 ds_t ds = DEP_STATUS (dep);
1013 if (ds & DEP_TRUE)
1014 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1015 if (ds & DEP_OUTPUT)
1016 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1017 if (ds & DEP_ANTI)
1018 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1020 if (ds & SPECULATIVE)
1022 gcc_assert (current_sched_info->flags & DO_SPECULATION);
1023 bitmap_set_bit (&spec_dependency_cache[insn_luid], elem_luid);
1028 /* Type of dependence DEP have changed from OLD_TYPE. Update dependency
1029 caches accordingly. */
1030 static void
1031 update_dependency_caches (dep_t dep, enum reg_note old_type)
1033 int elem_luid = INSN_LUID (DEP_PRO (dep));
1034 int insn_luid = INSN_LUID (DEP_CON (dep));
1036 /* Clear corresponding cache entry because type of the link
1037 may have changed. Keep them if we use_deps_list. */
1038 if (!(current_sched_info->flags & USE_DEPS_LIST))
1040 switch (old_type)
1042 case REG_DEP_OUTPUT:
1043 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1044 break;
1046 case REG_DEP_ANTI:
1047 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1048 break;
1050 default:
1051 gcc_unreachable ();
1055 set_dependency_caches (dep);
1058 /* Convert a dependence pointed to by SD_IT to be non-speculative. */
1059 static void
1060 change_spec_dep_to_hard (sd_iterator_def sd_it)
1062 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1063 dep_link_t link = DEP_NODE_BACK (node);
1064 dep_t dep = DEP_NODE_DEP (node);
1065 rtx elem = DEP_PRO (dep);
1066 rtx insn = DEP_CON (dep);
1068 move_dep_link (link, INSN_SPEC_BACK_DEPS (insn), INSN_HARD_BACK_DEPS (insn));
1070 DEP_STATUS (dep) &= ~SPECULATIVE;
1072 if (true_dependency_cache != NULL)
1073 /* Clear the cache entry. */
1074 bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)],
1075 INSN_LUID (elem));
1078 /* Update DEP to incorporate information from NEW_DEP.
1079 SD_IT points to DEP in case it should be moved to another list.
1080 MEM1 and MEM2, if nonnull, correspond to memory locations in case if
1081 data-speculative dependence should be updated. */
1082 static enum DEPS_ADJUST_RESULT
1083 update_dep (dep_t dep, dep_t new_dep,
1084 sd_iterator_def sd_it ATTRIBUTE_UNUSED,
1085 rtx mem1 ATTRIBUTE_UNUSED,
1086 rtx mem2 ATTRIBUTE_UNUSED)
1088 enum DEPS_ADJUST_RESULT res = DEP_PRESENT;
1089 enum reg_note old_type = DEP_TYPE (dep);
1090 bool was_spec = dep_spec_p (dep);
1092 /* If this is a more restrictive type of dependence than the
1093 existing one, then change the existing dependence to this
1094 type. */
1095 if ((int) DEP_TYPE (new_dep) < (int) old_type)
1097 DEP_TYPE (dep) = DEP_TYPE (new_dep);
1098 res = DEP_CHANGED;
1101 if (current_sched_info->flags & USE_DEPS_LIST)
1102 /* Update DEP_STATUS. */
1104 ds_t dep_status = DEP_STATUS (dep);
1105 ds_t ds = DEP_STATUS (new_dep);
1106 ds_t new_status = ds | dep_status;
1108 if (new_status & SPECULATIVE)
1110 /* Either existing dep or a dep we're adding or both are
1111 speculative. */
1112 if (!(ds & SPECULATIVE)
1113 || !(dep_status & SPECULATIVE))
1114 /* The new dep can't be speculative. */
1115 new_status &= ~SPECULATIVE;
1116 else
1118 /* Both are speculative. Merge probabilities. */
1119 if (mem1 != NULL)
1121 dw_t dw;
1123 dw = estimate_dep_weak (mem1, mem2);
1124 ds = set_dep_weak (ds, BEGIN_DATA, dw);
1127 new_status = ds_merge (dep_status, ds);
1131 ds = new_status;
1133 if (dep_status != ds)
1135 DEP_STATUS (dep) = ds;
1136 res = DEP_CHANGED;
1140 if (was_spec && !dep_spec_p (dep))
1141 /* The old dep was speculative, but now it isn't. */
1142 change_spec_dep_to_hard (sd_it);
1144 if (true_dependency_cache != NULL
1145 && res == DEP_CHANGED)
1146 update_dependency_caches (dep, old_type);
1148 return res;
1151 /* Add or update a dependence described by DEP.
1152 MEM1 and MEM2, if non-null, correspond to memory locations in case of
1153 data speculation.
1155 The function returns a value indicating if an old entry has been changed
1156 or a new entry has been added to insn's backward deps or nothing has
1157 been updated at all. */
1158 static enum DEPS_ADJUST_RESULT
1159 add_or_update_dep_1 (dep_t new_dep, bool resolved_p,
1160 rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED)
1162 bool maybe_present_p = true;
1163 bool present_p = false;
1165 gcc_assert (INSN_P (DEP_PRO (new_dep)) && INSN_P (DEP_CON (new_dep))
1166 && DEP_PRO (new_dep) != DEP_CON (new_dep));
1168 #ifdef ENABLE_CHECKING
1169 check_dep (new_dep, mem1 != NULL);
1170 #endif
1172 if (true_dependency_cache != NULL)
1174 switch (ask_dependency_caches (new_dep))
1176 case DEP_PRESENT:
1177 return DEP_PRESENT;
1179 case DEP_CHANGED:
1180 maybe_present_p = true;
1181 present_p = true;
1182 break;
1184 case DEP_CREATED:
1185 maybe_present_p = false;
1186 present_p = false;
1187 break;
1189 default:
1190 gcc_unreachable ();
1191 break;
1195 /* Check that we don't already have this dependence. */
1196 if (maybe_present_p)
1198 dep_t present_dep;
1199 sd_iterator_def sd_it;
1201 gcc_assert (true_dependency_cache == NULL || present_p);
1203 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1204 DEP_CON (new_dep),
1205 resolved_p, &sd_it);
1207 if (present_dep != NULL)
1208 /* We found an existing dependency between ELEM and INSN. */
1209 return update_dep (present_dep, new_dep, sd_it, mem1, mem2);
1210 else
1211 /* We didn't find a dep, it shouldn't present in the cache. */
1212 gcc_assert (!present_p);
1215 /* Might want to check one level of transitivity to save conses.
1216 This check should be done in maybe_add_or_update_dep_1.
1217 Since we made it to add_or_update_dep_1, we must create
1218 (or update) a link. */
1220 if (mem1 != NULL_RTX)
1222 gcc_assert (sched_deps_info->generate_spec_deps);
1223 DEP_STATUS (new_dep) = set_dep_weak (DEP_STATUS (new_dep), BEGIN_DATA,
1224 estimate_dep_weak (mem1, mem2));
1227 sd_add_dep (new_dep, resolved_p);
1229 return DEP_CREATED;
1232 /* Initialize BACK_LIST_PTR with consumer's backward list and
1233 FORW_LIST_PTR with producer's forward list. If RESOLVED_P is true
1234 initialize with lists that hold resolved deps. */
1235 static void
1236 get_back_and_forw_lists (dep_t dep, bool resolved_p,
1237 deps_list_t *back_list_ptr,
1238 deps_list_t *forw_list_ptr)
1240 rtx con = DEP_CON (dep);
1242 if (!resolved_p)
1244 if (dep_spec_p (dep))
1245 *back_list_ptr = INSN_SPEC_BACK_DEPS (con);
1246 else
1247 *back_list_ptr = INSN_HARD_BACK_DEPS (con);
1249 *forw_list_ptr = INSN_FORW_DEPS (DEP_PRO (dep));
1251 else
1253 *back_list_ptr = INSN_RESOLVED_BACK_DEPS (con);
1254 *forw_list_ptr = INSN_RESOLVED_FORW_DEPS (DEP_PRO (dep));
1258 /* Add dependence described by DEP.
1259 If RESOLVED_P is true treat the dependence as a resolved one. */
1260 void
1261 sd_add_dep (dep_t dep, bool resolved_p)
1263 dep_node_t n = create_dep_node ();
1264 deps_list_t con_back_deps;
1265 deps_list_t pro_forw_deps;
1266 rtx elem = DEP_PRO (dep);
1267 rtx insn = DEP_CON (dep);
1269 gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
1271 if ((current_sched_info->flags & DO_SPECULATION) == 0
1272 || !sched_insn_is_legitimate_for_speculation_p (insn, DEP_STATUS (dep)))
1273 DEP_STATUS (dep) &= ~SPECULATIVE;
1275 copy_dep (DEP_NODE_DEP (n), dep);
1277 get_back_and_forw_lists (dep, resolved_p, &con_back_deps, &pro_forw_deps);
1279 add_to_deps_list (DEP_NODE_BACK (n), con_back_deps);
1281 #ifdef ENABLE_CHECKING
1282 check_dep (dep, false);
1283 #endif
1285 add_to_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1287 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
1288 in the bitmap caches of dependency information. */
1289 if (true_dependency_cache != NULL)
1290 set_dependency_caches (dep);
1293 /* Add or update backward dependence between INSN and ELEM
1294 with given type DEP_TYPE and dep_status DS.
1295 This function is a convenience wrapper. */
1296 enum DEPS_ADJUST_RESULT
1297 sd_add_or_update_dep (dep_t dep, bool resolved_p)
1299 return add_or_update_dep_1 (dep, resolved_p, NULL_RTX, NULL_RTX);
1302 /* Resolved dependence pointed to by SD_IT.
1303 SD_IT will advance to the next element. */
1304 void
1305 sd_resolve_dep (sd_iterator_def sd_it)
1307 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1308 dep_t dep = DEP_NODE_DEP (node);
1309 rtx pro = DEP_PRO (dep);
1310 rtx con = DEP_CON (dep);
1312 if (dep_spec_p (dep))
1313 move_dep_link (DEP_NODE_BACK (node), INSN_SPEC_BACK_DEPS (con),
1314 INSN_RESOLVED_BACK_DEPS (con));
1315 else
1316 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
1317 INSN_RESOLVED_BACK_DEPS (con));
1319 move_dep_link (DEP_NODE_FORW (node), INSN_FORW_DEPS (pro),
1320 INSN_RESOLVED_FORW_DEPS (pro));
1323 /* Perform the inverse operation of sd_resolve_dep. Restore the dependence
1324 pointed to by SD_IT to unresolved state. */
1325 void
1326 sd_unresolve_dep (sd_iterator_def sd_it)
1328 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1329 dep_t dep = DEP_NODE_DEP (node);
1330 rtx pro = DEP_PRO (dep);
1331 rtx con = DEP_CON (dep);
1333 if ((current_sched_info->flags & DO_SPECULATION)
1334 && (DEP_STATUS (dep) & SPECULATIVE))
1335 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1336 INSN_SPEC_BACK_DEPS (con));
1337 else
1338 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1339 INSN_HARD_BACK_DEPS (con));
1341 move_dep_link (DEP_NODE_FORW (node), INSN_RESOLVED_FORW_DEPS (pro),
1342 INSN_FORW_DEPS (pro));
1345 /* Make TO depend on all the FROM's producers.
1346 If RESOLVED_P is true add dependencies to the resolved lists. */
1347 void
1348 sd_copy_back_deps (rtx to, rtx from, bool resolved_p)
1350 sd_list_types_def list_type;
1351 sd_iterator_def sd_it;
1352 dep_t dep;
1354 list_type = resolved_p ? SD_LIST_RES_BACK : SD_LIST_BACK;
1356 FOR_EACH_DEP (from, list_type, sd_it, dep)
1358 dep_def _new_dep, *new_dep = &_new_dep;
1360 copy_dep (new_dep, dep);
1361 DEP_CON (new_dep) = to;
1362 sd_add_dep (new_dep, resolved_p);
1366 /* Remove a dependency referred to by SD_IT.
1367 SD_IT will point to the next dependence after removal. */
1368 void
1369 sd_delete_dep (sd_iterator_def sd_it)
1371 dep_node_t n = DEP_LINK_NODE (*sd_it.linkp);
1372 dep_t dep = DEP_NODE_DEP (n);
1373 rtx pro = DEP_PRO (dep);
1374 rtx con = DEP_CON (dep);
1375 deps_list_t con_back_deps;
1376 deps_list_t pro_forw_deps;
1378 if (true_dependency_cache != NULL)
1380 int elem_luid = INSN_LUID (pro);
1381 int insn_luid = INSN_LUID (con);
1383 bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid);
1384 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1385 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1387 if (current_sched_info->flags & DO_SPECULATION)
1388 bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid);
1391 get_back_and_forw_lists (dep, sd_it.resolved_p,
1392 &con_back_deps, &pro_forw_deps);
1394 remove_from_deps_list (DEP_NODE_BACK (n), con_back_deps);
1395 remove_from_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1397 delete_dep_node (n);
1400 /* Dump size of the lists. */
1401 #define DUMP_LISTS_SIZE (2)
1403 /* Dump dependencies of the lists. */
1404 #define DUMP_LISTS_DEPS (4)
1406 /* Dump all information about the lists. */
1407 #define DUMP_LISTS_ALL (DUMP_LISTS_SIZE | DUMP_LISTS_DEPS)
1409 /* Dump deps_lists of INSN specified by TYPES to DUMP.
1410 FLAGS is a bit mask specifying what information about the lists needs
1411 to be printed.
1412 If FLAGS has the very first bit set, then dump all information about
1413 the lists and propagate this bit into the callee dump functions. */
1414 static void
1415 dump_lists (FILE *dump, rtx insn, sd_list_types_def types, int flags)
1417 sd_iterator_def sd_it;
1418 dep_t dep;
1419 int all;
1421 all = (flags & 1);
1423 if (all)
1424 flags |= DUMP_LISTS_ALL;
1426 fprintf (dump, "[");
1428 if (flags & DUMP_LISTS_SIZE)
1429 fprintf (dump, "%d; ", sd_lists_size (insn, types));
1431 if (flags & DUMP_LISTS_DEPS)
1433 FOR_EACH_DEP (insn, types, sd_it, dep)
1435 dump_dep (dump, dep, dump_dep_flags | all);
1436 fprintf (dump, " ");
1441 /* Dump all information about deps_lists of INSN specified by TYPES
1442 to STDERR. */
1443 void
1444 sd_debug_lists (rtx insn, sd_list_types_def types)
1446 dump_lists (stderr, insn, types, 1);
1447 fprintf (stderr, "\n");
1450 /* A convenience wrapper to operate on an entire list. */
1452 static void
1453 add_dependence_list (rtx insn, rtx list, int uncond, enum reg_note dep_type)
1455 for (; list; list = XEXP (list, 1))
1457 if (uncond || ! sched_insns_conditions_mutex_p (insn, XEXP (list, 0)))
1458 add_dependence (insn, XEXP (list, 0), dep_type);
1462 /* Similar, but free *LISTP at the same time, when the context
1463 is not readonly. */
1465 static void
1466 add_dependence_list_and_free (struct deps_desc *deps, rtx insn, rtx *listp,
1467 int uncond, enum reg_note dep_type)
1469 rtx list, next;
1471 /* We don't want to short-circuit dependencies involving debug
1472 insns, because they may cause actual dependencies to be
1473 disregarded. */
1474 if (deps->readonly || DEBUG_INSN_P (insn))
1476 add_dependence_list (insn, *listp, uncond, dep_type);
1477 return;
1480 for (list = *listp, *listp = NULL; list ; list = next)
1482 next = XEXP (list, 1);
1483 if (uncond || ! sched_insns_conditions_mutex_p (insn, XEXP (list, 0)))
1484 add_dependence (insn, XEXP (list, 0), dep_type);
1485 free_INSN_LIST_node (list);
1489 /* Remove all occurences of INSN from LIST. Return the number of
1490 occurences removed. */
1492 static int
1493 remove_from_dependence_list (rtx insn, rtx* listp)
1495 int removed = 0;
1497 while (*listp)
1499 if (XEXP (*listp, 0) == insn)
1501 remove_free_INSN_LIST_node (listp);
1502 removed++;
1503 continue;
1506 listp = &XEXP (*listp, 1);
1509 return removed;
1512 /* Same as above, but process two lists at once. */
1513 static int
1514 remove_from_both_dependence_lists (rtx insn, rtx *listp, rtx *exprp)
1516 int removed = 0;
1518 while (*listp)
1520 if (XEXP (*listp, 0) == insn)
1522 remove_free_INSN_LIST_node (listp);
1523 remove_free_EXPR_LIST_node (exprp);
1524 removed++;
1525 continue;
1528 listp = &XEXP (*listp, 1);
1529 exprp = &XEXP (*exprp, 1);
1532 return removed;
1535 /* Clear all dependencies for an insn. */
1536 static void
1537 delete_all_dependences (rtx insn)
1539 sd_iterator_def sd_it;
1540 dep_t dep;
1542 /* The below cycle can be optimized to clear the caches and back_deps
1543 in one call but that would provoke duplication of code from
1544 delete_dep (). */
1546 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1547 sd_iterator_cond (&sd_it, &dep);)
1548 sd_delete_dep (sd_it);
1551 /* All insns in a scheduling group except the first should only have
1552 dependencies on the previous insn in the group. So we find the
1553 first instruction in the scheduling group by walking the dependence
1554 chains backwards. Then we add the dependencies for the group to
1555 the previous nonnote insn. */
1557 static void
1558 fixup_sched_groups (rtx insn)
1560 sd_iterator_def sd_it;
1561 dep_t dep;
1562 rtx prev_nonnote;
1564 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1566 rtx i = insn;
1567 rtx pro = DEP_PRO (dep);
1571 i = prev_nonnote_insn (i);
1573 if (pro == i)
1574 goto next_link;
1575 } while (SCHED_GROUP_P (i) || DEBUG_INSN_P (i));
1577 if (! sched_insns_conditions_mutex_p (i, pro))
1578 add_dependence (i, pro, DEP_TYPE (dep));
1579 next_link:;
1582 delete_all_dependences (insn);
1584 prev_nonnote = prev_nonnote_nondebug_insn (insn);
1585 if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
1586 && ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
1587 add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
1590 /* Process an insn's memory dependencies. There are four kinds of
1591 dependencies:
1593 (0) read dependence: read follows read
1594 (1) true dependence: read follows write
1595 (2) output dependence: write follows write
1596 (3) anti dependence: write follows read
1598 We are careful to build only dependencies which actually exist, and
1599 use transitivity to avoid building too many links. */
1601 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
1602 The MEM is a memory reference contained within INSN, which we are saving
1603 so that we can do memory aliasing on it. */
1605 static void
1606 add_insn_mem_dependence (struct deps_desc *deps, bool read_p,
1607 rtx insn, rtx mem)
1609 rtx *insn_list;
1610 rtx *mem_list;
1611 rtx link;
1613 gcc_assert (!deps->readonly);
1614 if (read_p)
1616 insn_list = &deps->pending_read_insns;
1617 mem_list = &deps->pending_read_mems;
1618 if (!DEBUG_INSN_P (insn))
1619 deps->pending_read_list_length++;
1621 else
1623 insn_list = &deps->pending_write_insns;
1624 mem_list = &deps->pending_write_mems;
1625 deps->pending_write_list_length++;
1628 link = alloc_INSN_LIST (insn, *insn_list);
1629 *insn_list = link;
1631 if (sched_deps_info->use_cselib)
1633 mem = shallow_copy_rtx (mem);
1634 XEXP (mem, 0) = cselib_subst_to_values (XEXP (mem, 0), GET_MODE (mem));
1636 link = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
1637 *mem_list = link;
1640 /* Make a dependency between every memory reference on the pending lists
1641 and INSN, thus flushing the pending lists. FOR_READ is true if emitting
1642 dependencies for a read operation, similarly with FOR_WRITE. */
1644 static void
1645 flush_pending_lists (struct deps_desc *deps, rtx insn, int for_read,
1646 int for_write)
1648 if (for_write)
1650 add_dependence_list_and_free (deps, insn, &deps->pending_read_insns,
1651 1, REG_DEP_ANTI);
1652 if (!deps->readonly)
1654 free_EXPR_LIST_list (&deps->pending_read_mems);
1655 deps->pending_read_list_length = 0;
1659 add_dependence_list_and_free (deps, insn, &deps->pending_write_insns, 1,
1660 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT);
1662 add_dependence_list_and_free (deps, insn,
1663 &deps->last_pending_memory_flush, 1,
1664 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT);
1665 if (!deps->readonly)
1667 free_EXPR_LIST_list (&deps->pending_write_mems);
1668 deps->pending_write_list_length = 0;
1670 deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
1671 deps->pending_flush_length = 1;
1675 /* Instruction which dependencies we are analyzing. */
1676 static rtx cur_insn = NULL_RTX;
1678 /* Implement hooks for haifa scheduler. */
1680 static void
1681 haifa_start_insn (rtx insn)
1683 gcc_assert (insn && !cur_insn);
1685 cur_insn = insn;
1688 static void
1689 haifa_finish_insn (void)
1691 cur_insn = NULL;
1694 void
1695 haifa_note_reg_set (int regno)
1697 SET_REGNO_REG_SET (reg_pending_sets, regno);
1700 void
1701 haifa_note_reg_clobber (int regno)
1703 SET_REGNO_REG_SET (reg_pending_clobbers, regno);
1706 void
1707 haifa_note_reg_use (int regno)
1709 SET_REGNO_REG_SET (reg_pending_uses, regno);
1712 static void
1713 haifa_note_mem_dep (rtx mem, rtx pending_mem, rtx pending_insn, ds_t ds)
1715 if (!(ds & SPECULATIVE))
1717 mem = NULL_RTX;
1718 pending_mem = NULL_RTX;
1720 else
1721 gcc_assert (ds & BEGIN_DATA);
1724 dep_def _dep, *dep = &_dep;
1726 init_dep_1 (dep, pending_insn, cur_insn, ds_to_dt (ds),
1727 current_sched_info->flags & USE_DEPS_LIST ? ds : 0);
1728 maybe_add_or_update_dep_1 (dep, false, pending_mem, mem);
1733 static void
1734 haifa_note_dep (rtx elem, ds_t ds)
1736 dep_def _dep;
1737 dep_t dep = &_dep;
1739 init_dep (dep, elem, cur_insn, ds_to_dt (ds));
1740 maybe_add_or_update_dep_1 (dep, false, NULL_RTX, NULL_RTX);
1743 static void
1744 note_reg_use (int r)
1746 if (sched_deps_info->note_reg_use)
1747 sched_deps_info->note_reg_use (r);
1750 static void
1751 note_reg_set (int r)
1753 if (sched_deps_info->note_reg_set)
1754 sched_deps_info->note_reg_set (r);
1757 static void
1758 note_reg_clobber (int r)
1760 if (sched_deps_info->note_reg_clobber)
1761 sched_deps_info->note_reg_clobber (r);
1764 static void
1765 note_mem_dep (rtx m1, rtx m2, rtx e, ds_t ds)
1767 if (sched_deps_info->note_mem_dep)
1768 sched_deps_info->note_mem_dep (m1, m2, e, ds);
1771 static void
1772 note_dep (rtx e, ds_t ds)
1774 if (sched_deps_info->note_dep)
1775 sched_deps_info->note_dep (e, ds);
1778 /* Return corresponding to DS reg_note. */
1779 enum reg_note
1780 ds_to_dt (ds_t ds)
1782 if (ds & DEP_TRUE)
1783 return REG_DEP_TRUE;
1784 else if (ds & DEP_OUTPUT)
1785 return REG_DEP_OUTPUT;
1786 else
1788 gcc_assert (ds & DEP_ANTI);
1789 return REG_DEP_ANTI;
1795 /* Functions for computation of info needed for register pressure
1796 sensitive insn scheduling. */
1799 /* Allocate and return reg_use_data structure for REGNO and INSN. */
1800 static struct reg_use_data *
1801 create_insn_reg_use (int regno, rtx insn)
1803 struct reg_use_data *use;
1805 use = (struct reg_use_data *) xmalloc (sizeof (struct reg_use_data));
1806 use->regno = regno;
1807 use->insn = insn;
1808 use->next_insn_use = INSN_REG_USE_LIST (insn);
1809 INSN_REG_USE_LIST (insn) = use;
1810 return use;
1813 /* Allocate and return reg_set_data structure for REGNO and INSN. */
1814 static struct reg_set_data *
1815 create_insn_reg_set (int regno, rtx insn)
1817 struct reg_set_data *set;
1819 set = (struct reg_set_data *) xmalloc (sizeof (struct reg_set_data));
1820 set->regno = regno;
1821 set->insn = insn;
1822 set->next_insn_set = INSN_REG_SET_LIST (insn);
1823 INSN_REG_SET_LIST (insn) = set;
1824 return set;
1827 /* Set up insn register uses for INSN and dependency context DEPS. */
1828 static void
1829 setup_insn_reg_uses (struct deps_desc *deps, rtx insn)
1831 unsigned i;
1832 reg_set_iterator rsi;
1833 rtx list;
1834 struct reg_use_data *use, *use2, *next;
1835 struct deps_reg *reg_last;
1837 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
1839 if (i < FIRST_PSEUDO_REGISTER
1840 && TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
1841 continue;
1843 if (find_regno_note (insn, REG_DEAD, i) == NULL_RTX
1844 && ! REGNO_REG_SET_P (reg_pending_sets, i)
1845 && ! REGNO_REG_SET_P (reg_pending_clobbers, i))
1846 /* Ignore use which is not dying. */
1847 continue;
1849 use = create_insn_reg_use (i, insn);
1850 use->next_regno_use = use;
1851 reg_last = &deps->reg_last[i];
1853 /* Create the cycle list of uses. */
1854 for (list = reg_last->uses; list; list = XEXP (list, 1))
1856 use2 = create_insn_reg_use (i, XEXP (list, 0));
1857 next = use->next_regno_use;
1858 use->next_regno_use = use2;
1859 use2->next_regno_use = next;
1864 /* Register pressure info for the currently processed insn. */
1865 static struct reg_pressure_data reg_pressure_info[N_REG_CLASSES];
1867 /* Return TRUE if INSN has the use structure for REGNO. */
1868 static bool
1869 insn_use_p (rtx insn, int regno)
1871 struct reg_use_data *use;
1873 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1874 if (use->regno == regno)
1875 return true;
1876 return false;
1879 /* Update the register pressure info after birth of pseudo register REGNO
1880 in INSN. Arguments CLOBBER_P and UNUSED_P say correspondingly that
1881 the register is in clobber or unused after the insn. */
1882 static void
1883 mark_insn_pseudo_birth (rtx insn, int regno, bool clobber_p, bool unused_p)
1885 int incr, new_incr;
1886 enum reg_class cl;
1888 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
1889 cl = sched_regno_pressure_class[regno];
1890 if (cl != NO_REGS)
1892 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
1893 if (clobber_p)
1895 new_incr = reg_pressure_info[cl].clobber_increase + incr;
1896 reg_pressure_info[cl].clobber_increase = new_incr;
1898 else if (unused_p)
1900 new_incr = reg_pressure_info[cl].unused_set_increase + incr;
1901 reg_pressure_info[cl].unused_set_increase = new_incr;
1903 else
1905 new_incr = reg_pressure_info[cl].set_increase + incr;
1906 reg_pressure_info[cl].set_increase = new_incr;
1907 if (! insn_use_p (insn, regno))
1908 reg_pressure_info[cl].change += incr;
1909 create_insn_reg_set (regno, insn);
1911 gcc_assert (new_incr < (1 << INCREASE_BITS));
1915 /* Like mark_insn_pseudo_regno_birth except that NREGS saying how many
1916 hard registers involved in the birth. */
1917 static void
1918 mark_insn_hard_regno_birth (rtx insn, int regno, int nregs,
1919 bool clobber_p, bool unused_p)
1921 enum reg_class cl;
1922 int new_incr, last = regno + nregs;
1924 while (regno < last)
1926 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1927 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
1929 cl = sched_regno_pressure_class[regno];
1930 if (cl != NO_REGS)
1932 if (clobber_p)
1934 new_incr = reg_pressure_info[cl].clobber_increase + 1;
1935 reg_pressure_info[cl].clobber_increase = new_incr;
1937 else if (unused_p)
1939 new_incr = reg_pressure_info[cl].unused_set_increase + 1;
1940 reg_pressure_info[cl].unused_set_increase = new_incr;
1942 else
1944 new_incr = reg_pressure_info[cl].set_increase + 1;
1945 reg_pressure_info[cl].set_increase = new_incr;
1946 if (! insn_use_p (insn, regno))
1947 reg_pressure_info[cl].change += 1;
1948 create_insn_reg_set (regno, insn);
1950 gcc_assert (new_incr < (1 << INCREASE_BITS));
1953 regno++;
1957 /* Update the register pressure info after birth of pseudo or hard
1958 register REG in INSN. Arguments CLOBBER_P and UNUSED_P say
1959 correspondingly that the register is in clobber or unused after the
1960 insn. */
1961 static void
1962 mark_insn_reg_birth (rtx insn, rtx reg, bool clobber_p, bool unused_p)
1964 int regno;
1966 if (GET_CODE (reg) == SUBREG)
1967 reg = SUBREG_REG (reg);
1969 if (! REG_P (reg))
1970 return;
1972 regno = REGNO (reg);
1973 if (regno < FIRST_PSEUDO_REGISTER)
1974 mark_insn_hard_regno_birth (insn, regno,
1975 hard_regno_nregs[regno][GET_MODE (reg)],
1976 clobber_p, unused_p);
1977 else
1978 mark_insn_pseudo_birth (insn, regno, clobber_p, unused_p);
1981 /* Update the register pressure info after death of pseudo register
1982 REGNO. */
1983 static void
1984 mark_pseudo_death (int regno)
1986 int incr;
1987 enum reg_class cl;
1989 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
1990 cl = sched_regno_pressure_class[regno];
1991 if (cl != NO_REGS)
1993 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
1994 reg_pressure_info[cl].change -= incr;
1998 /* Like mark_pseudo_death except that NREGS saying how many hard
1999 registers involved in the death. */
2000 static void
2001 mark_hard_regno_death (int regno, int nregs)
2003 enum reg_class cl;
2004 int last = regno + nregs;
2006 while (regno < last)
2008 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2009 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2011 cl = sched_regno_pressure_class[regno];
2012 if (cl != NO_REGS)
2013 reg_pressure_info[cl].change -= 1;
2015 regno++;
2019 /* Update the register pressure info after death of pseudo or hard
2020 register REG. */
2021 static void
2022 mark_reg_death (rtx reg)
2024 int regno;
2026 if (GET_CODE (reg) == SUBREG)
2027 reg = SUBREG_REG (reg);
2029 if (! REG_P (reg))
2030 return;
2032 regno = REGNO (reg);
2033 if (regno < FIRST_PSEUDO_REGISTER)
2034 mark_hard_regno_death (regno, hard_regno_nregs[regno][GET_MODE (reg)]);
2035 else
2036 mark_pseudo_death (regno);
2039 /* Process SETTER of REG. DATA is an insn containing the setter. */
2040 static void
2041 mark_insn_reg_store (rtx reg, const_rtx setter, void *data)
2043 if (setter != NULL_RTX && GET_CODE (setter) != SET)
2044 return;
2045 mark_insn_reg_birth
2046 ((rtx) data, reg, false,
2047 find_reg_note ((const_rtx) data, REG_UNUSED, reg) != NULL_RTX);
2050 /* Like mark_insn_reg_store except notice just CLOBBERs; ignore SETs. */
2051 static void
2052 mark_insn_reg_clobber (rtx reg, const_rtx setter, void *data)
2054 if (GET_CODE (setter) == CLOBBER)
2055 mark_insn_reg_birth ((rtx) data, reg, true, false);
2058 /* Set up reg pressure info related to INSN. */
2059 void
2060 init_insn_reg_pressure_info (rtx insn)
2062 int i, len;
2063 enum reg_class cl;
2064 static struct reg_pressure_data *pressure_info;
2065 rtx link;
2067 gcc_assert (sched_pressure_p);
2069 if (! INSN_P (insn))
2070 return;
2072 for (i = 0; i < ira_pressure_classes_num; i++)
2074 cl = ira_pressure_classes[i];
2075 reg_pressure_info[cl].clobber_increase = 0;
2076 reg_pressure_info[cl].set_increase = 0;
2077 reg_pressure_info[cl].unused_set_increase = 0;
2078 reg_pressure_info[cl].change = 0;
2081 note_stores (PATTERN (insn), mark_insn_reg_clobber, insn);
2083 note_stores (PATTERN (insn), mark_insn_reg_store, insn);
2085 #ifdef AUTO_INC_DEC
2086 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2087 if (REG_NOTE_KIND (link) == REG_INC)
2088 mark_insn_reg_store (XEXP (link, 0), NULL_RTX, insn);
2089 #endif
2091 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2092 if (REG_NOTE_KIND (link) == REG_DEAD)
2093 mark_reg_death (XEXP (link, 0));
2095 len = sizeof (struct reg_pressure_data) * ira_pressure_classes_num;
2096 pressure_info
2097 = INSN_REG_PRESSURE (insn) = (struct reg_pressure_data *) xmalloc (len);
2098 INSN_MAX_REG_PRESSURE (insn) = (int *) xcalloc (ira_pressure_classes_num
2099 * sizeof (int), 1);
2100 for (i = 0; i < ira_pressure_classes_num; i++)
2102 cl = ira_pressure_classes[i];
2103 pressure_info[i].clobber_increase
2104 = reg_pressure_info[cl].clobber_increase;
2105 pressure_info[i].set_increase = reg_pressure_info[cl].set_increase;
2106 pressure_info[i].unused_set_increase
2107 = reg_pressure_info[cl].unused_set_increase;
2108 pressure_info[i].change = reg_pressure_info[cl].change;
2115 /* Internal variable for sched_analyze_[12] () functions.
2116 If it is nonzero, this means that sched_analyze_[12] looks
2117 at the most toplevel SET. */
2118 static bool can_start_lhs_rhs_p;
2120 /* Extend reg info for the deps context DEPS given that
2121 we have just generated a register numbered REGNO. */
2122 static void
2123 extend_deps_reg_info (struct deps_desc *deps, int regno)
2125 int max_regno = regno + 1;
2127 gcc_assert (!reload_completed);
2129 /* In a readonly context, it would not hurt to extend info,
2130 but it should not be needed. */
2131 if (reload_completed && deps->readonly)
2133 deps->max_reg = max_regno;
2134 return;
2137 if (max_regno > deps->max_reg)
2139 deps->reg_last = XRESIZEVEC (struct deps_reg, deps->reg_last,
2140 max_regno);
2141 memset (&deps->reg_last[deps->max_reg],
2142 0, (max_regno - deps->max_reg)
2143 * sizeof (struct deps_reg));
2144 deps->max_reg = max_regno;
2148 /* Extends REG_INFO_P if needed. */
2149 void
2150 maybe_extend_reg_info_p (void)
2152 /* Extend REG_INFO_P, if needed. */
2153 if ((unsigned int)max_regno - 1 >= reg_info_p_size)
2155 size_t new_reg_info_p_size = max_regno + 128;
2157 gcc_assert (!reload_completed && sel_sched_p ());
2159 reg_info_p = (struct reg_info_t *) xrecalloc (reg_info_p,
2160 new_reg_info_p_size,
2161 reg_info_p_size,
2162 sizeof (*reg_info_p));
2163 reg_info_p_size = new_reg_info_p_size;
2167 /* Analyze a single reference to register (reg:MODE REGNO) in INSN.
2168 The type of the reference is specified by REF and can be SET,
2169 CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */
2171 static void
2172 sched_analyze_reg (struct deps_desc *deps, int regno, enum machine_mode mode,
2173 enum rtx_code ref, rtx insn)
2175 /* We could emit new pseudos in renaming. Extend the reg structures. */
2176 if (!reload_completed && sel_sched_p ()
2177 && (regno >= max_reg_num () - 1 || regno >= deps->max_reg))
2178 extend_deps_reg_info (deps, regno);
2180 maybe_extend_reg_info_p ();
2182 /* A hard reg in a wide mode may really be multiple registers.
2183 If so, mark all of them just like the first. */
2184 if (regno < FIRST_PSEUDO_REGISTER)
2186 int i = hard_regno_nregs[regno][mode];
2187 if (ref == SET)
2189 while (--i >= 0)
2190 note_reg_set (regno + i);
2192 else if (ref == USE)
2194 while (--i >= 0)
2195 note_reg_use (regno + i);
2197 else
2199 while (--i >= 0)
2200 note_reg_clobber (regno + i);
2204 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
2205 it does not reload. Ignore these as they have served their
2206 purpose already. */
2207 else if (regno >= deps->max_reg)
2209 enum rtx_code code = GET_CODE (PATTERN (insn));
2210 gcc_assert (code == USE || code == CLOBBER);
2213 else
2215 if (ref == SET)
2216 note_reg_set (regno);
2217 else if (ref == USE)
2218 note_reg_use (regno);
2219 else
2220 note_reg_clobber (regno);
2222 /* Pseudos that are REG_EQUIV to something may be replaced
2223 by that during reloading. We need only add dependencies for
2224 the address in the REG_EQUIV note. */
2225 if (!reload_completed && get_reg_known_equiv_p (regno))
2227 rtx t = get_reg_known_value (regno);
2228 if (MEM_P (t))
2229 sched_analyze_2 (deps, XEXP (t, 0), insn);
2232 /* Don't let it cross a call after scheduling if it doesn't
2233 already cross one. */
2234 if (REG_N_CALLS_CROSSED (regno) == 0)
2236 if (!deps->readonly && ref == USE && !DEBUG_INSN_P (insn))
2237 deps->sched_before_next_call
2238 = alloc_INSN_LIST (insn, deps->sched_before_next_call);
2239 else
2240 add_dependence_list (insn, deps->last_function_call, 1,
2241 REG_DEP_ANTI);
2246 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
2247 rtx, X, creating all dependencies generated by the write to the
2248 destination of X, and reads of everything mentioned. */
2250 static void
2251 sched_analyze_1 (struct deps_desc *deps, rtx x, rtx insn)
2253 rtx dest = XEXP (x, 0);
2254 enum rtx_code code = GET_CODE (x);
2255 bool cslr_p = can_start_lhs_rhs_p;
2257 can_start_lhs_rhs_p = false;
2259 gcc_assert (dest);
2260 if (dest == 0)
2261 return;
2263 if (cslr_p && sched_deps_info->start_lhs)
2264 sched_deps_info->start_lhs (dest);
2266 if (GET_CODE (dest) == PARALLEL)
2268 int i;
2270 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2271 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
2272 sched_analyze_1 (deps,
2273 gen_rtx_CLOBBER (VOIDmode,
2274 XEXP (XVECEXP (dest, 0, i), 0)),
2275 insn);
2277 if (cslr_p && sched_deps_info->finish_lhs)
2278 sched_deps_info->finish_lhs ();
2280 if (code == SET)
2282 can_start_lhs_rhs_p = cslr_p;
2284 sched_analyze_2 (deps, SET_SRC (x), insn);
2286 can_start_lhs_rhs_p = false;
2289 return;
2292 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
2293 || GET_CODE (dest) == ZERO_EXTRACT)
2295 if (GET_CODE (dest) == STRICT_LOW_PART
2296 || GET_CODE (dest) == ZERO_EXTRACT
2297 || df_read_modify_subreg_p (dest))
2299 /* These both read and modify the result. We must handle
2300 them as writes to get proper dependencies for following
2301 instructions. We must handle them as reads to get proper
2302 dependencies from this to previous instructions.
2303 Thus we need to call sched_analyze_2. */
2305 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2307 if (GET_CODE (dest) == ZERO_EXTRACT)
2309 /* The second and third arguments are values read by this insn. */
2310 sched_analyze_2 (deps, XEXP (dest, 1), insn);
2311 sched_analyze_2 (deps, XEXP (dest, 2), insn);
2313 dest = XEXP (dest, 0);
2316 if (REG_P (dest))
2318 int regno = REGNO (dest);
2319 enum machine_mode mode = GET_MODE (dest);
2321 sched_analyze_reg (deps, regno, mode, code, insn);
2323 #ifdef STACK_REGS
2324 /* Treat all writes to a stack register as modifying the TOS. */
2325 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2327 /* Avoid analyzing the same register twice. */
2328 if (regno != FIRST_STACK_REG)
2329 sched_analyze_reg (deps, FIRST_STACK_REG, mode, code, insn);
2331 add_to_hard_reg_set (&implicit_reg_pending_uses, mode,
2332 FIRST_STACK_REG);
2334 #endif
2336 else if (MEM_P (dest))
2338 /* Writing memory. */
2339 rtx t = dest;
2341 if (sched_deps_info->use_cselib)
2343 enum machine_mode address_mode
2344 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (dest));
2346 t = shallow_copy_rtx (dest);
2347 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2348 GET_MODE (t), insn);
2349 XEXP (t, 0) = cselib_subst_to_values (XEXP (t, 0), GET_MODE (t));
2351 t = canon_rtx (t);
2353 /* Pending lists can't get larger with a readonly context. */
2354 if (!deps->readonly
2355 && ((deps->pending_read_list_length + deps->pending_write_list_length)
2356 > MAX_PENDING_LIST_LENGTH))
2358 /* Flush all pending reads and writes to prevent the pending lists
2359 from getting any larger. Insn scheduling runs too slowly when
2360 these lists get long. When compiling GCC with itself,
2361 this flush occurs 8 times for sparc, and 10 times for m88k using
2362 the default value of 32. */
2363 flush_pending_lists (deps, insn, false, true);
2365 else
2367 rtx pending, pending_mem;
2369 pending = deps->pending_read_insns;
2370 pending_mem = deps->pending_read_mems;
2371 while (pending)
2373 if (anti_dependence (XEXP (pending_mem, 0), t)
2374 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2375 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2376 DEP_ANTI);
2378 pending = XEXP (pending, 1);
2379 pending_mem = XEXP (pending_mem, 1);
2382 pending = deps->pending_write_insns;
2383 pending_mem = deps->pending_write_mems;
2384 while (pending)
2386 if (output_dependence (XEXP (pending_mem, 0), t)
2387 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2388 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2389 DEP_OUTPUT);
2391 pending = XEXP (pending, 1);
2392 pending_mem = XEXP (pending_mem, 1);
2395 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2396 REG_DEP_ANTI);
2398 if (!deps->readonly)
2399 add_insn_mem_dependence (deps, false, insn, dest);
2401 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2404 if (cslr_p && sched_deps_info->finish_lhs)
2405 sched_deps_info->finish_lhs ();
2407 /* Analyze reads. */
2408 if (GET_CODE (x) == SET)
2410 can_start_lhs_rhs_p = cslr_p;
2412 sched_analyze_2 (deps, SET_SRC (x), insn);
2414 can_start_lhs_rhs_p = false;
2418 /* Analyze the uses of memory and registers in rtx X in INSN. */
2419 static void
2420 sched_analyze_2 (struct deps_desc *deps, rtx x, rtx insn)
2422 int i;
2423 int j;
2424 enum rtx_code code;
2425 const char *fmt;
2426 bool cslr_p = can_start_lhs_rhs_p;
2428 can_start_lhs_rhs_p = false;
2430 gcc_assert (x);
2431 if (x == 0)
2432 return;
2434 if (cslr_p && sched_deps_info->start_rhs)
2435 sched_deps_info->start_rhs (x);
2437 code = GET_CODE (x);
2439 switch (code)
2441 case CONST_INT:
2442 case CONST_DOUBLE:
2443 case CONST_FIXED:
2444 case CONST_VECTOR:
2445 case SYMBOL_REF:
2446 case CONST:
2447 case LABEL_REF:
2448 /* Ignore constants. */
2449 if (cslr_p && sched_deps_info->finish_rhs)
2450 sched_deps_info->finish_rhs ();
2452 return;
2454 #ifdef HAVE_cc0
2455 case CC0:
2456 /* User of CC0 depends on immediately preceding insn. */
2457 SCHED_GROUP_P (insn) = 1;
2458 /* Don't move CC0 setter to another block (it can set up the
2459 same flag for previous CC0 users which is safe). */
2460 CANT_MOVE (prev_nonnote_insn (insn)) = 1;
2462 if (cslr_p && sched_deps_info->finish_rhs)
2463 sched_deps_info->finish_rhs ();
2465 return;
2466 #endif
2468 case REG:
2470 int regno = REGNO (x);
2471 enum machine_mode mode = GET_MODE (x);
2473 sched_analyze_reg (deps, regno, mode, USE, insn);
2475 #ifdef STACK_REGS
2476 /* Treat all reads of a stack register as modifying the TOS. */
2477 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2479 /* Avoid analyzing the same register twice. */
2480 if (regno != FIRST_STACK_REG)
2481 sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
2482 sched_analyze_reg (deps, FIRST_STACK_REG, mode, SET, insn);
2484 #endif
2486 if (cslr_p && sched_deps_info->finish_rhs)
2487 sched_deps_info->finish_rhs ();
2489 return;
2492 case MEM:
2494 /* Reading memory. */
2495 rtx u;
2496 rtx pending, pending_mem;
2497 rtx t = x;
2499 if (sched_deps_info->use_cselib)
2501 enum machine_mode address_mode
2502 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (t));
2504 t = shallow_copy_rtx (t);
2505 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2506 GET_MODE (t), insn);
2507 XEXP (t, 0) = cselib_subst_to_values (XEXP (t, 0), GET_MODE (t));
2510 if (!DEBUG_INSN_P (insn))
2512 t = canon_rtx (t);
2513 pending = deps->pending_read_insns;
2514 pending_mem = deps->pending_read_mems;
2515 while (pending)
2517 if (read_dependence (XEXP (pending_mem, 0), t)
2518 && ! sched_insns_conditions_mutex_p (insn,
2519 XEXP (pending, 0)))
2520 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2521 DEP_ANTI);
2523 pending = XEXP (pending, 1);
2524 pending_mem = XEXP (pending_mem, 1);
2527 pending = deps->pending_write_insns;
2528 pending_mem = deps->pending_write_mems;
2529 while (pending)
2531 if (true_dependence (XEXP (pending_mem, 0), VOIDmode,
2532 t, rtx_varies_p)
2533 && ! sched_insns_conditions_mutex_p (insn,
2534 XEXP (pending, 0)))
2535 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2536 sched_deps_info->generate_spec_deps
2537 ? BEGIN_DATA | DEP_TRUE : DEP_TRUE);
2539 pending = XEXP (pending, 1);
2540 pending_mem = XEXP (pending_mem, 1);
2543 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
2545 if (! NON_FLUSH_JUMP_P (u))
2546 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
2547 else if (deps_may_trap_p (x))
2549 if ((sched_deps_info->generate_spec_deps)
2550 && sel_sched_p () && (spec_info->mask & BEGIN_CONTROL))
2552 ds_t ds = set_dep_weak (DEP_ANTI, BEGIN_CONTROL,
2553 MAX_DEP_WEAK);
2555 note_dep (XEXP (u, 0), ds);
2557 else
2558 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
2563 /* Always add these dependencies to pending_reads, since
2564 this insn may be followed by a write. */
2565 if (!deps->readonly)
2566 add_insn_mem_dependence (deps, true, insn, x);
2568 sched_analyze_2 (deps, XEXP (x, 0), insn);
2570 if (cslr_p && sched_deps_info->finish_rhs)
2571 sched_deps_info->finish_rhs ();
2573 return;
2576 /* Force pending stores to memory in case a trap handler needs them. */
2577 case TRAP_IF:
2578 flush_pending_lists (deps, insn, true, false);
2579 break;
2581 case PREFETCH:
2582 if (PREFETCH_SCHEDULE_BARRIER_P (x))
2583 reg_pending_barrier = TRUE_BARRIER;
2584 break;
2586 case UNSPEC_VOLATILE:
2587 flush_pending_lists (deps, insn, true, true);
2588 /* FALLTHRU */
2590 case ASM_OPERANDS:
2591 case ASM_INPUT:
2593 /* Traditional and volatile asm instructions must be considered to use
2594 and clobber all hard registers, all pseudo-registers and all of
2595 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
2597 Consider for instance a volatile asm that changes the fpu rounding
2598 mode. An insn should not be moved across this even if it only uses
2599 pseudo-regs because it might give an incorrectly rounded result. */
2600 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
2601 reg_pending_barrier = TRUE_BARRIER;
2603 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
2604 We can not just fall through here since then we would be confused
2605 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
2606 traditional asms unlike their normal usage. */
2608 if (code == ASM_OPERANDS)
2610 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
2611 sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
2613 if (cslr_p && sched_deps_info->finish_rhs)
2614 sched_deps_info->finish_rhs ();
2616 return;
2618 break;
2621 case PRE_DEC:
2622 case POST_DEC:
2623 case PRE_INC:
2624 case POST_INC:
2625 /* These both read and modify the result. We must handle them as writes
2626 to get proper dependencies for following instructions. We must handle
2627 them as reads to get proper dependencies from this to previous
2628 instructions. Thus we need to pass them to both sched_analyze_1
2629 and sched_analyze_2. We must call sched_analyze_2 first in order
2630 to get the proper antecedent for the read. */
2631 sched_analyze_2 (deps, XEXP (x, 0), insn);
2632 sched_analyze_1 (deps, x, insn);
2634 if (cslr_p && sched_deps_info->finish_rhs)
2635 sched_deps_info->finish_rhs ();
2637 return;
2639 case POST_MODIFY:
2640 case PRE_MODIFY:
2641 /* op0 = op0 + op1 */
2642 sched_analyze_2 (deps, XEXP (x, 0), insn);
2643 sched_analyze_2 (deps, XEXP (x, 1), insn);
2644 sched_analyze_1 (deps, x, insn);
2646 if (cslr_p && sched_deps_info->finish_rhs)
2647 sched_deps_info->finish_rhs ();
2649 return;
2651 default:
2652 break;
2655 /* Other cases: walk the insn. */
2656 fmt = GET_RTX_FORMAT (code);
2657 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2659 if (fmt[i] == 'e')
2660 sched_analyze_2 (deps, XEXP (x, i), insn);
2661 else if (fmt[i] == 'E')
2662 for (j = 0; j < XVECLEN (x, i); j++)
2663 sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
2666 if (cslr_p && sched_deps_info->finish_rhs)
2667 sched_deps_info->finish_rhs ();
2670 /* Analyze an INSN with pattern X to find all dependencies. */
2671 static void
2672 sched_analyze_insn (struct deps_desc *deps, rtx x, rtx insn)
2674 RTX_CODE code = GET_CODE (x);
2675 rtx link;
2676 unsigned i;
2677 reg_set_iterator rsi;
2679 if (! reload_completed)
2681 HARD_REG_SET temp;
2683 extract_insn (insn);
2684 preprocess_constraints ();
2685 ira_implicitly_set_insn_hard_regs (&temp);
2686 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2687 IOR_HARD_REG_SET (implicit_reg_pending_clobbers, temp);
2690 can_start_lhs_rhs_p = (NONJUMP_INSN_P (insn)
2691 && code == SET);
2693 if (may_trap_p (x))
2694 /* Avoid moving trapping instructions accross function calls that might
2695 not always return. */
2696 add_dependence_list (insn, deps->last_function_call_may_noreturn,
2697 1, REG_DEP_ANTI);
2699 /* We must avoid creating a situation in which two successors of the
2700 current block have different unwind info after scheduling. If at any
2701 point the two paths re-join this leads to incorrect unwind info. */
2702 /* ??? There are certain situations involving a forced frame pointer in
2703 which, with extra effort, we could fix up the unwind info at a later
2704 CFG join. However, it seems better to notice these cases earlier
2705 during prologue generation and avoid marking the frame pointer setup
2706 as frame-related at all. */
2707 if (RTX_FRAME_RELATED_P (insn))
2708 deps->sched_before_next_jump
2709 = alloc_INSN_LIST (insn, deps->sched_before_next_jump);
2711 if (code == COND_EXEC)
2713 sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
2715 /* ??? Should be recording conditions so we reduce the number of
2716 false dependencies. */
2717 x = COND_EXEC_CODE (x);
2718 code = GET_CODE (x);
2720 if (code == SET || code == CLOBBER)
2722 sched_analyze_1 (deps, x, insn);
2724 /* Bare clobber insns are used for letting life analysis, reg-stack
2725 and others know that a value is dead. Depend on the last call
2726 instruction so that reg-stack won't get confused. */
2727 if (code == CLOBBER)
2728 add_dependence_list (insn, deps->last_function_call, 1,
2729 REG_DEP_OUTPUT);
2731 else if (code == PARALLEL)
2733 for (i = XVECLEN (x, 0); i--;)
2735 rtx sub = XVECEXP (x, 0, i);
2736 code = GET_CODE (sub);
2738 if (code == COND_EXEC)
2740 sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
2741 sub = COND_EXEC_CODE (sub);
2742 code = GET_CODE (sub);
2744 if (code == SET || code == CLOBBER)
2745 sched_analyze_1 (deps, sub, insn);
2746 else
2747 sched_analyze_2 (deps, sub, insn);
2750 else
2751 sched_analyze_2 (deps, x, insn);
2753 /* Mark registers CLOBBERED or used by called function. */
2754 if (CALL_P (insn))
2756 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2758 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
2759 sched_analyze_1 (deps, XEXP (link, 0), insn);
2760 else
2761 sched_analyze_2 (deps, XEXP (link, 0), insn);
2763 if (find_reg_note (insn, REG_SETJMP, NULL))
2764 reg_pending_barrier = MOVE_BARRIER;
2767 if (JUMP_P (insn))
2769 rtx next;
2770 next = next_nonnote_nondebug_insn (insn);
2771 if (next && BARRIER_P (next))
2772 reg_pending_barrier = MOVE_BARRIER;
2773 else
2775 rtx pending, pending_mem;
2777 if (sched_deps_info->compute_jump_reg_dependencies)
2779 regset_head tmp;
2780 INIT_REG_SET (&tmp);
2782 (*sched_deps_info->compute_jump_reg_dependencies) (insn, &tmp);
2784 /* Make latency of jump equal to 0 by using anti-dependence. */
2785 EXECUTE_IF_SET_IN_REG_SET (&tmp, 0, i, rsi)
2787 struct deps_reg *reg_last = &deps->reg_last[i];
2788 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI);
2789 add_dependence_list (insn, reg_last->implicit_sets,
2790 0, REG_DEP_ANTI);
2791 add_dependence_list (insn, reg_last->clobbers, 0,
2792 REG_DEP_ANTI);
2794 if (!deps->readonly)
2796 reg_last->uses_length++;
2797 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
2801 CLEAR_REG_SET (&tmp);
2804 /* All memory writes and volatile reads must happen before the
2805 jump. Non-volatile reads must happen before the jump iff
2806 the result is needed by the above register used mask. */
2808 pending = deps->pending_write_insns;
2809 pending_mem = deps->pending_write_mems;
2810 while (pending)
2812 if (! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2813 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
2814 pending = XEXP (pending, 1);
2815 pending_mem = XEXP (pending_mem, 1);
2818 pending = deps->pending_read_insns;
2819 pending_mem = deps->pending_read_mems;
2820 while (pending)
2822 if (MEM_VOLATILE_P (XEXP (pending_mem, 0))
2823 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2824 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
2825 pending = XEXP (pending, 1);
2826 pending_mem = XEXP (pending_mem, 1);
2829 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2830 REG_DEP_ANTI);
2834 /* If this instruction can throw an exception, then moving it changes
2835 where block boundaries fall. This is mighty confusing elsewhere.
2836 Therefore, prevent such an instruction from being moved. Same for
2837 non-jump instructions that define block boundaries.
2838 ??? Unclear whether this is still necessary in EBB mode. If not,
2839 add_branch_dependences should be adjusted for RGN mode instead. */
2840 if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn))
2841 || (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn)))
2842 reg_pending_barrier = MOVE_BARRIER;
2844 if (sched_pressure_p)
2846 setup_insn_reg_uses (deps, insn);
2847 init_insn_reg_pressure_info (insn);
2850 /* Add register dependencies for insn. */
2851 if (DEBUG_INSN_P (insn))
2853 rtx prev = deps->last_debug_insn;
2854 rtx u;
2856 if (!deps->readonly)
2857 deps->last_debug_insn = insn;
2859 if (prev)
2860 add_dependence (insn, prev, REG_DEP_ANTI);
2862 add_dependence_list (insn, deps->last_function_call, 1,
2863 REG_DEP_ANTI);
2865 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
2866 if (! NON_FLUSH_JUMP_P (u) || !sel_sched_p ())
2867 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
2869 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
2871 struct deps_reg *reg_last = &deps->reg_last[i];
2872 add_dependence_list (insn, reg_last->sets, 1, REG_DEP_ANTI);
2873 add_dependence_list (insn, reg_last->clobbers, 1, REG_DEP_ANTI);
2875 if (!deps->readonly)
2876 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
2878 CLEAR_REG_SET (reg_pending_uses);
2880 /* Quite often, a debug insn will refer to stuff in the
2881 previous instruction, but the reason we want this
2882 dependency here is to make sure the scheduler doesn't
2883 gratuitously move a debug insn ahead. This could dirty
2884 DF flags and cause additional analysis that wouldn't have
2885 occurred in compilation without debug insns, and such
2886 additional analysis can modify the generated code. */
2887 prev = PREV_INSN (insn);
2889 if (prev && NONDEBUG_INSN_P (prev))
2890 add_dependence (insn, prev, REG_DEP_ANTI);
2892 else
2894 regset_head set_or_clobbered;
2896 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
2898 struct deps_reg *reg_last = &deps->reg_last[i];
2899 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE);
2900 add_dependence_list (insn, reg_last->implicit_sets, 0, REG_DEP_ANTI);
2901 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE);
2903 if (!deps->readonly)
2905 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
2906 reg_last->uses_length++;
2910 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2911 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i))
2913 struct deps_reg *reg_last = &deps->reg_last[i];
2914 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE);
2915 add_dependence_list (insn, reg_last->implicit_sets, 0,
2916 REG_DEP_ANTI);
2917 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE);
2919 if (!deps->readonly)
2921 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
2922 reg_last->uses_length++;
2926 if (targetm.sched.exposed_pipeline)
2928 INIT_REG_SET (&set_or_clobbered);
2929 bitmap_ior (&set_or_clobbered, reg_pending_clobbers,
2930 reg_pending_sets);
2931 EXECUTE_IF_SET_IN_REG_SET (&set_or_clobbered, 0, i, rsi)
2933 struct deps_reg *reg_last = &deps->reg_last[i];
2934 rtx list;
2935 for (list = reg_last->uses; list; list = XEXP (list, 1))
2937 rtx other = XEXP (list, 0);
2938 if (INSN_CACHED_COND (other) != const_true_rtx
2939 && refers_to_regno_p (i, i + 1, INSN_CACHED_COND (other), NULL))
2940 INSN_CACHED_COND (other) = const_true_rtx;
2945 /* If the current insn is conditional, we can't free any
2946 of the lists. */
2947 if (sched_has_condition_p (insn))
2949 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
2951 struct deps_reg *reg_last = &deps->reg_last[i];
2952 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT);
2953 add_dependence_list (insn, reg_last->implicit_sets, 0,
2954 REG_DEP_ANTI);
2955 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
2957 if (!deps->readonly)
2959 reg_last->clobbers
2960 = alloc_INSN_LIST (insn, reg_last->clobbers);
2961 reg_last->clobbers_length++;
2964 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
2966 struct deps_reg *reg_last = &deps->reg_last[i];
2967 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT);
2968 add_dependence_list (insn, reg_last->implicit_sets, 0,
2969 REG_DEP_ANTI);
2970 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_OUTPUT);
2971 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
2973 if (!deps->readonly)
2974 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
2977 else
2979 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
2981 struct deps_reg *reg_last = &deps->reg_last[i];
2982 if (reg_last->uses_length > MAX_PENDING_LIST_LENGTH
2983 || reg_last->clobbers_length > MAX_PENDING_LIST_LENGTH)
2985 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
2986 REG_DEP_OUTPUT);
2987 add_dependence_list_and_free (deps, insn,
2988 &reg_last->implicit_sets, 0,
2989 REG_DEP_ANTI);
2990 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
2991 REG_DEP_ANTI);
2992 add_dependence_list_and_free
2993 (deps, insn, &reg_last->clobbers, 0, REG_DEP_OUTPUT);
2995 if (!deps->readonly)
2997 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
2998 reg_last->clobbers_length = 0;
2999 reg_last->uses_length = 0;
3002 else
3004 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT);
3005 add_dependence_list (insn, reg_last->implicit_sets, 0,
3006 REG_DEP_ANTI);
3007 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
3010 if (!deps->readonly)
3012 reg_last->clobbers_length++;
3013 reg_last->clobbers
3014 = alloc_INSN_LIST (insn, reg_last->clobbers);
3017 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3019 struct deps_reg *reg_last = &deps->reg_last[i];
3021 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3022 REG_DEP_OUTPUT);
3023 add_dependence_list_and_free (deps, insn,
3024 &reg_last->implicit_sets,
3025 0, REG_DEP_ANTI);
3026 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3027 REG_DEP_OUTPUT);
3028 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3029 REG_DEP_ANTI);
3031 if (!deps->readonly)
3033 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3034 reg_last->uses_length = 0;
3035 reg_last->clobbers_length = 0;
3041 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3042 if (TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3044 struct deps_reg *reg_last = &deps->reg_last[i];
3045 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI);
3046 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_ANTI);
3047 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
3049 if (!deps->readonly)
3050 reg_last->implicit_sets
3051 = alloc_INSN_LIST (insn, reg_last->implicit_sets);
3054 if (!deps->readonly)
3056 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
3057 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
3058 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
3059 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3060 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i)
3061 || TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3062 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3064 /* Set up the pending barrier found. */
3065 deps->last_reg_pending_barrier = reg_pending_barrier;
3068 CLEAR_REG_SET (reg_pending_uses);
3069 CLEAR_REG_SET (reg_pending_clobbers);
3070 CLEAR_REG_SET (reg_pending_sets);
3071 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
3072 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
3074 /* Add dependencies if a scheduling barrier was found. */
3075 if (reg_pending_barrier)
3077 /* In the case of barrier the most added dependencies are not
3078 real, so we use anti-dependence here. */
3079 if (sched_has_condition_p (insn))
3081 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3083 struct deps_reg *reg_last = &deps->reg_last[i];
3084 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
3085 add_dependence_list (insn, reg_last->sets, 0,
3086 reg_pending_barrier == TRUE_BARRIER
3087 ? REG_DEP_TRUE : REG_DEP_ANTI);
3088 add_dependence_list (insn, reg_last->implicit_sets, 0,
3089 REG_DEP_ANTI);
3090 add_dependence_list (insn, reg_last->clobbers, 0,
3091 reg_pending_barrier == TRUE_BARRIER
3092 ? REG_DEP_TRUE : REG_DEP_ANTI);
3095 else
3097 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3099 struct deps_reg *reg_last = &deps->reg_last[i];
3100 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3101 REG_DEP_ANTI);
3102 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3103 reg_pending_barrier == TRUE_BARRIER
3104 ? REG_DEP_TRUE : REG_DEP_ANTI);
3105 add_dependence_list_and_free (deps, insn,
3106 &reg_last->implicit_sets, 0,
3107 REG_DEP_ANTI);
3108 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3109 reg_pending_barrier == TRUE_BARRIER
3110 ? REG_DEP_TRUE : REG_DEP_ANTI);
3112 if (!deps->readonly)
3114 reg_last->uses_length = 0;
3115 reg_last->clobbers_length = 0;
3120 if (!deps->readonly)
3121 for (i = 0; i < (unsigned)deps->max_reg; i++)
3123 struct deps_reg *reg_last = &deps->reg_last[i];
3124 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3125 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3128 /* Flush pending lists on jumps, but not on speculative checks. */
3129 if (JUMP_P (insn) && !(sel_sched_p ()
3130 && sel_insn_is_speculation_check (insn)))
3131 flush_pending_lists (deps, insn, true, true);
3133 reg_pending_barrier = NOT_A_BARRIER;
3136 /* If a post-call group is still open, see if it should remain so.
3137 This insn must be a simple move of a hard reg to a pseudo or
3138 vice-versa.
3140 We must avoid moving these insns for correctness on targets
3141 with small register classes, and for special registers like
3142 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
3143 hard regs for all targets. */
3145 if (deps->in_post_call_group_p)
3147 rtx tmp, set = single_set (insn);
3148 int src_regno, dest_regno;
3150 if (set == NULL)
3152 if (DEBUG_INSN_P (insn))
3153 /* We don't want to mark debug insns as part of the same
3154 sched group. We know they really aren't, but if we use
3155 debug insns to tell that a call group is over, we'll
3156 get different code if debug insns are not there and
3157 instructions that follow seem like they should be part
3158 of the call group.
3160 Also, if we did, fixup_sched_groups() would move the
3161 deps of the debug insn to the call insn, modifying
3162 non-debug post-dependency counts of the debug insn
3163 dependencies and otherwise messing with the scheduling
3164 order.
3166 Instead, let such debug insns be scheduled freely, but
3167 keep the call group open in case there are insns that
3168 should be part of it afterwards. Since we grant debug
3169 insns higher priority than even sched group insns, it
3170 will all turn out all right. */
3171 goto debug_dont_end_call_group;
3172 else
3173 goto end_call_group;
3176 tmp = SET_DEST (set);
3177 if (GET_CODE (tmp) == SUBREG)
3178 tmp = SUBREG_REG (tmp);
3179 if (REG_P (tmp))
3180 dest_regno = REGNO (tmp);
3181 else
3182 goto end_call_group;
3184 tmp = SET_SRC (set);
3185 if (GET_CODE (tmp) == SUBREG)
3186 tmp = SUBREG_REG (tmp);
3187 if ((GET_CODE (tmp) == PLUS
3188 || GET_CODE (tmp) == MINUS)
3189 && REG_P (XEXP (tmp, 0))
3190 && REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
3191 && dest_regno == STACK_POINTER_REGNUM)
3192 src_regno = STACK_POINTER_REGNUM;
3193 else if (REG_P (tmp))
3194 src_regno = REGNO (tmp);
3195 else
3196 goto end_call_group;
3198 if (src_regno < FIRST_PSEUDO_REGISTER
3199 || dest_regno < FIRST_PSEUDO_REGISTER)
3201 if (!deps->readonly
3202 && deps->in_post_call_group_p == post_call_initial)
3203 deps->in_post_call_group_p = post_call;
3205 if (!sel_sched_p () || sched_emulate_haifa_p)
3207 SCHED_GROUP_P (insn) = 1;
3208 CANT_MOVE (insn) = 1;
3211 else
3213 end_call_group:
3214 if (!deps->readonly)
3215 deps->in_post_call_group_p = not_post_call;
3219 debug_dont_end_call_group:
3220 if ((current_sched_info->flags & DO_SPECULATION)
3221 && !sched_insn_is_legitimate_for_speculation_p (insn, 0))
3222 /* INSN has an internal dependency (e.g. r14 = [r14]) and thus cannot
3223 be speculated. */
3225 if (sel_sched_p ())
3226 sel_mark_hard_insn (insn);
3227 else
3229 sd_iterator_def sd_it;
3230 dep_t dep;
3232 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3233 sd_iterator_cond (&sd_it, &dep);)
3234 change_spec_dep_to_hard (sd_it);
3239 /* Return TRUE if INSN might not always return normally (e.g. call exit,
3240 longjmp, loop forever, ...). */
3241 static bool
3242 call_may_noreturn_p (rtx insn)
3244 rtx call;
3246 /* const or pure calls that aren't looping will always return. */
3247 if (RTL_CONST_OR_PURE_CALL_P (insn)
3248 && !RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
3249 return false;
3251 call = PATTERN (insn);
3252 if (GET_CODE (call) == PARALLEL)
3253 call = XVECEXP (call, 0, 0);
3254 if (GET_CODE (call) == SET)
3255 call = SET_SRC (call);
3256 if (GET_CODE (call) == CALL
3257 && MEM_P (XEXP (call, 0))
3258 && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
3260 rtx symbol = XEXP (XEXP (call, 0), 0);
3261 if (SYMBOL_REF_DECL (symbol)
3262 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
3264 if (DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
3265 == BUILT_IN_NORMAL)
3266 switch (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol)))
3268 case BUILT_IN_BCMP:
3269 case BUILT_IN_BCOPY:
3270 case BUILT_IN_BZERO:
3271 case BUILT_IN_INDEX:
3272 case BUILT_IN_MEMCHR:
3273 case BUILT_IN_MEMCMP:
3274 case BUILT_IN_MEMCPY:
3275 case BUILT_IN_MEMMOVE:
3276 case BUILT_IN_MEMPCPY:
3277 case BUILT_IN_MEMSET:
3278 case BUILT_IN_RINDEX:
3279 case BUILT_IN_STPCPY:
3280 case BUILT_IN_STPNCPY:
3281 case BUILT_IN_STRCAT:
3282 case BUILT_IN_STRCHR:
3283 case BUILT_IN_STRCMP:
3284 case BUILT_IN_STRCPY:
3285 case BUILT_IN_STRCSPN:
3286 case BUILT_IN_STRLEN:
3287 case BUILT_IN_STRNCAT:
3288 case BUILT_IN_STRNCMP:
3289 case BUILT_IN_STRNCPY:
3290 case BUILT_IN_STRPBRK:
3291 case BUILT_IN_STRRCHR:
3292 case BUILT_IN_STRSPN:
3293 case BUILT_IN_STRSTR:
3294 /* Assume certain string/memory builtins always return. */
3295 return false;
3296 default:
3297 break;
3302 /* For all other calls assume that they might not always return. */
3303 return true;
3306 /* Analyze INSN with DEPS as a context. */
3307 void
3308 deps_analyze_insn (struct deps_desc *deps, rtx insn)
3310 if (sched_deps_info->start_insn)
3311 sched_deps_info->start_insn (insn);
3313 /* Record the condition for this insn. */
3314 if (NONDEBUG_INSN_P (insn))
3315 sched_get_condition_with_rev (insn, NULL);
3317 if (JUMP_P (insn))
3319 /* Make each JUMP_INSN (but not a speculative check)
3320 a scheduling barrier for memory references. */
3321 if (!deps->readonly
3322 && !(sel_sched_p ()
3323 && sel_insn_is_speculation_check (insn)))
3325 /* Keep the list a reasonable size. */
3326 if (deps->pending_flush_length++ > MAX_PENDING_LIST_LENGTH)
3327 flush_pending_lists (deps, insn, true, true);
3328 else
3330 deps->last_pending_memory_flush
3331 = alloc_INSN_LIST (insn, deps->last_pending_memory_flush);
3332 /* Signal to sched_analyze_insn that this jump stands
3333 just for its own, not any other pending memory
3334 reads/writes flush_pending_lists had to flush. */
3335 PUT_REG_NOTE_KIND (deps->last_pending_memory_flush,
3336 NON_FLUSH_JUMP_KIND);
3340 /* For each insn which shouldn't cross a jump, add a dependence. */
3341 add_dependence_list_and_free (deps, insn,
3342 &deps->sched_before_next_jump, 1,
3343 REG_DEP_ANTI);
3345 sched_analyze_insn (deps, PATTERN (insn), insn);
3347 else if (NONJUMP_INSN_P (insn) || DEBUG_INSN_P (insn))
3349 sched_analyze_insn (deps, PATTERN (insn), insn);
3351 else if (CALL_P (insn))
3353 int i;
3355 CANT_MOVE (insn) = 1;
3357 if (find_reg_note (insn, REG_SETJMP, NULL))
3359 /* This is setjmp. Assume that all registers, not just
3360 hard registers, may be clobbered by this call. */
3361 reg_pending_barrier = MOVE_BARRIER;
3363 else
3365 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3366 /* A call may read and modify global register variables. */
3367 if (global_regs[i])
3369 SET_REGNO_REG_SET (reg_pending_sets, i);
3370 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3372 /* Other call-clobbered hard regs may be clobbered.
3373 Since we only have a choice between 'might be clobbered'
3374 and 'definitely not clobbered', we must include all
3375 partly call-clobbered registers here. */
3376 else if (HARD_REGNO_CALL_PART_CLOBBERED (i, reg_raw_mode[i])
3377 || TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
3378 SET_REGNO_REG_SET (reg_pending_clobbers, i);
3379 /* We don't know what set of fixed registers might be used
3380 by the function, but it is certain that the stack pointer
3381 is among them, but be conservative. */
3382 else if (fixed_regs[i])
3383 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3384 /* The frame pointer is normally not used by the function
3385 itself, but by the debugger. */
3386 /* ??? MIPS o32 is an exception. It uses the frame pointer
3387 in the macro expansion of jal but does not represent this
3388 fact in the call_insn rtl. */
3389 else if (i == FRAME_POINTER_REGNUM
3390 || (i == HARD_FRAME_POINTER_REGNUM
3391 && (! reload_completed || frame_pointer_needed)))
3392 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3395 /* For each insn which shouldn't cross a call, add a dependence
3396 between that insn and this call insn. */
3397 add_dependence_list_and_free (deps, insn,
3398 &deps->sched_before_next_call, 1,
3399 REG_DEP_ANTI);
3401 sched_analyze_insn (deps, PATTERN (insn), insn);
3403 /* If CALL would be in a sched group, then this will violate
3404 convention that sched group insns have dependencies only on the
3405 previous instruction.
3407 Of course one can say: "Hey! What about head of the sched group?"
3408 And I will answer: "Basic principles (one dep per insn) are always
3409 the same." */
3410 gcc_assert (!SCHED_GROUP_P (insn));
3412 /* In the absence of interprocedural alias analysis, we must flush
3413 all pending reads and writes, and start new dependencies starting
3414 from here. But only flush writes for constant calls (which may
3415 be passed a pointer to something we haven't written yet). */
3416 flush_pending_lists (deps, insn, true, ! RTL_CONST_OR_PURE_CALL_P (insn));
3418 if (!deps->readonly)
3420 /* Remember the last function call for limiting lifetimes. */
3421 free_INSN_LIST_list (&deps->last_function_call);
3422 deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
3424 if (call_may_noreturn_p (insn))
3426 /* Remember the last function call that might not always return
3427 normally for limiting moves of trapping insns. */
3428 free_INSN_LIST_list (&deps->last_function_call_may_noreturn);
3429 deps->last_function_call_may_noreturn
3430 = alloc_INSN_LIST (insn, NULL_RTX);
3433 /* Before reload, begin a post-call group, so as to keep the
3434 lifetimes of hard registers correct. */
3435 if (! reload_completed)
3436 deps->in_post_call_group_p = post_call;
3440 if (sched_deps_info->use_cselib)
3441 cselib_process_insn (insn);
3443 /* EH_REGION insn notes can not appear until well after we complete
3444 scheduling. */
3445 if (NOTE_P (insn))
3446 gcc_assert (NOTE_KIND (insn) != NOTE_INSN_EH_REGION_BEG
3447 && NOTE_KIND (insn) != NOTE_INSN_EH_REGION_END);
3449 if (sched_deps_info->finish_insn)
3450 sched_deps_info->finish_insn ();
3452 /* Fixup the dependencies in the sched group. */
3453 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
3454 && SCHED_GROUP_P (insn) && !sel_sched_p ())
3455 fixup_sched_groups (insn);
3458 /* Initialize DEPS for the new block beginning with HEAD. */
3459 void
3460 deps_start_bb (struct deps_desc *deps, rtx head)
3462 gcc_assert (!deps->readonly);
3464 /* Before reload, if the previous block ended in a call, show that
3465 we are inside a post-call group, so as to keep the lifetimes of
3466 hard registers correct. */
3467 if (! reload_completed && !LABEL_P (head))
3469 rtx insn = prev_nonnote_nondebug_insn (head);
3471 if (insn && CALL_P (insn))
3472 deps->in_post_call_group_p = post_call_initial;
3476 /* Analyze every insn between HEAD and TAIL inclusive, creating backward
3477 dependencies for each insn. */
3478 void
3479 sched_analyze (struct deps_desc *deps, rtx head, rtx tail)
3481 rtx insn;
3483 if (sched_deps_info->use_cselib)
3484 cselib_init (CSELIB_RECORD_MEMORY);
3486 deps_start_bb (deps, head);
3488 for (insn = head;; insn = NEXT_INSN (insn))
3491 if (INSN_P (insn))
3493 /* And initialize deps_lists. */
3494 sd_init_insn (insn);
3497 deps_analyze_insn (deps, insn);
3499 if (insn == tail)
3501 if (sched_deps_info->use_cselib)
3502 cselib_finish ();
3503 return;
3506 gcc_unreachable ();
3509 /* Helper for sched_free_deps ().
3510 Delete INSN's (RESOLVED_P) backward dependencies. */
3511 static void
3512 delete_dep_nodes_in_back_deps (rtx insn, bool resolved_p)
3514 sd_iterator_def sd_it;
3515 dep_t dep;
3516 sd_list_types_def types;
3518 if (resolved_p)
3519 types = SD_LIST_RES_BACK;
3520 else
3521 types = SD_LIST_BACK;
3523 for (sd_it = sd_iterator_start (insn, types);
3524 sd_iterator_cond (&sd_it, &dep);)
3526 dep_link_t link = *sd_it.linkp;
3527 dep_node_t node = DEP_LINK_NODE (link);
3528 deps_list_t back_list;
3529 deps_list_t forw_list;
3531 get_back_and_forw_lists (dep, resolved_p, &back_list, &forw_list);
3532 remove_from_deps_list (link, back_list);
3533 delete_dep_node (node);
3537 /* Delete (RESOLVED_P) dependencies between HEAD and TAIL together with
3538 deps_lists. */
3539 void
3540 sched_free_deps (rtx head, rtx tail, bool resolved_p)
3542 rtx insn;
3543 rtx next_tail = NEXT_INSN (tail);
3545 /* We make two passes since some insns may be scheduled before their
3546 dependencies are resolved. */
3547 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3548 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3550 /* Clear forward deps and leave the dep_nodes to the
3551 corresponding back_deps list. */
3552 if (resolved_p)
3553 clear_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
3554 else
3555 clear_deps_list (INSN_FORW_DEPS (insn));
3557 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3558 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3560 /* Clear resolved back deps together with its dep_nodes. */
3561 delete_dep_nodes_in_back_deps (insn, resolved_p);
3563 sd_finish_insn (insn);
3567 /* Initialize variables for region data dependence analysis.
3568 When LAZY_REG_LAST is true, do not allocate reg_last array
3569 of struct deps_desc immediately. */
3571 void
3572 init_deps (struct deps_desc *deps, bool lazy_reg_last)
3574 int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
3576 deps->max_reg = max_reg;
3577 if (lazy_reg_last)
3578 deps->reg_last = NULL;
3579 else
3580 deps->reg_last = XCNEWVEC (struct deps_reg, max_reg);
3581 INIT_REG_SET (&deps->reg_last_in_use);
3583 deps->pending_read_insns = 0;
3584 deps->pending_read_mems = 0;
3585 deps->pending_write_insns = 0;
3586 deps->pending_write_mems = 0;
3587 deps->pending_read_list_length = 0;
3588 deps->pending_write_list_length = 0;
3589 deps->pending_flush_length = 0;
3590 deps->last_pending_memory_flush = 0;
3591 deps->last_function_call = 0;
3592 deps->last_function_call_may_noreturn = 0;
3593 deps->sched_before_next_call = 0;
3594 deps->sched_before_next_jump = 0;
3595 deps->in_post_call_group_p = not_post_call;
3596 deps->last_debug_insn = 0;
3597 deps->last_reg_pending_barrier = NOT_A_BARRIER;
3598 deps->readonly = 0;
3601 /* Init only reg_last field of DEPS, which was not allocated before as
3602 we inited DEPS lazily. */
3603 void
3604 init_deps_reg_last (struct deps_desc *deps)
3606 gcc_assert (deps && deps->max_reg > 0);
3607 gcc_assert (deps->reg_last == NULL);
3609 deps->reg_last = XCNEWVEC (struct deps_reg, deps->max_reg);
3613 /* Free insn lists found in DEPS. */
3615 void
3616 free_deps (struct deps_desc *deps)
3618 unsigned i;
3619 reg_set_iterator rsi;
3621 /* We set max_reg to 0 when this context was already freed. */
3622 if (deps->max_reg == 0)
3624 gcc_assert (deps->reg_last == NULL);
3625 return;
3627 deps->max_reg = 0;
3629 free_INSN_LIST_list (&deps->pending_read_insns);
3630 free_EXPR_LIST_list (&deps->pending_read_mems);
3631 free_INSN_LIST_list (&deps->pending_write_insns);
3632 free_EXPR_LIST_list (&deps->pending_write_mems);
3633 free_INSN_LIST_list (&deps->last_pending_memory_flush);
3635 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
3636 times. For a testcase with 42000 regs and 8000 small basic blocks,
3637 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
3638 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3640 struct deps_reg *reg_last = &deps->reg_last[i];
3641 if (reg_last->uses)
3642 free_INSN_LIST_list (&reg_last->uses);
3643 if (reg_last->sets)
3644 free_INSN_LIST_list (&reg_last->sets);
3645 if (reg_last->implicit_sets)
3646 free_INSN_LIST_list (&reg_last->implicit_sets);
3647 if (reg_last->clobbers)
3648 free_INSN_LIST_list (&reg_last->clobbers);
3650 CLEAR_REG_SET (&deps->reg_last_in_use);
3652 /* As we initialize reg_last lazily, it is possible that we didn't allocate
3653 it at all. */
3654 free (deps->reg_last);
3655 deps->reg_last = NULL;
3657 deps = NULL;
3660 /* Remove INSN from dependence contexts DEPS. */
3661 void
3662 remove_from_deps (struct deps_desc *deps, rtx insn)
3664 int removed;
3665 unsigned i;
3666 reg_set_iterator rsi;
3668 removed = remove_from_both_dependence_lists (insn, &deps->pending_read_insns,
3669 &deps->pending_read_mems);
3670 if (!DEBUG_INSN_P (insn))
3671 deps->pending_read_list_length -= removed;
3672 removed = remove_from_both_dependence_lists (insn, &deps->pending_write_insns,
3673 &deps->pending_write_mems);
3674 deps->pending_write_list_length -= removed;
3675 removed = remove_from_dependence_list (insn, &deps->last_pending_memory_flush);
3676 deps->pending_flush_length -= removed;
3678 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3680 struct deps_reg *reg_last = &deps->reg_last[i];
3681 if (reg_last->uses)
3682 remove_from_dependence_list (insn, &reg_last->uses);
3683 if (reg_last->sets)
3684 remove_from_dependence_list (insn, &reg_last->sets);
3685 if (reg_last->implicit_sets)
3686 remove_from_dependence_list (insn, &reg_last->implicit_sets);
3687 if (reg_last->clobbers)
3688 remove_from_dependence_list (insn, &reg_last->clobbers);
3689 if (!reg_last->uses && !reg_last->sets && !reg_last->implicit_sets
3690 && !reg_last->clobbers)
3691 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, i);
3694 if (CALL_P (insn))
3696 remove_from_dependence_list (insn, &deps->last_function_call);
3697 remove_from_dependence_list (insn,
3698 &deps->last_function_call_may_noreturn);
3700 remove_from_dependence_list (insn, &deps->sched_before_next_call);
3703 /* Init deps data vector. */
3704 static void
3705 init_deps_data_vector (void)
3707 int reserve = (sched_max_luid + 1
3708 - VEC_length (haifa_deps_insn_data_def, h_d_i_d));
3709 if (reserve > 0
3710 && ! VEC_space (haifa_deps_insn_data_def, h_d_i_d, reserve))
3711 VEC_safe_grow_cleared (haifa_deps_insn_data_def, heap, h_d_i_d,
3712 3 * sched_max_luid / 2);
3715 /* If it is profitable to use them, initialize or extend (depending on
3716 GLOBAL_P) dependency data. */
3717 void
3718 sched_deps_init (bool global_p)
3720 /* Average number of insns in the basic block.
3721 '+ 1' is used to make it nonzero. */
3722 int insns_in_block = sched_max_luid / n_basic_blocks + 1;
3724 init_deps_data_vector ();
3726 /* We use another caching mechanism for selective scheduling, so
3727 we don't use this one. */
3728 if (!sel_sched_p () && global_p && insns_in_block > 100 * 5)
3730 /* ?!? We could save some memory by computing a per-region luid mapping
3731 which could reduce both the number of vectors in the cache and the
3732 size of each vector. Instead we just avoid the cache entirely unless
3733 the average number of instructions in a basic block is very high. See
3734 the comment before the declaration of true_dependency_cache for
3735 what we consider "very high". */
3736 cache_size = 0;
3737 extend_dependency_caches (sched_max_luid, true);
3740 if (global_p)
3742 dl_pool = create_alloc_pool ("deps_list", sizeof (struct _deps_list),
3743 /* Allocate lists for one block at a time. */
3744 insns_in_block);
3745 dn_pool = create_alloc_pool ("dep_node", sizeof (struct _dep_node),
3746 /* Allocate nodes for one block at a time.
3747 We assume that average insn has
3748 5 producers. */
3749 5 * insns_in_block);
3754 /* Create or extend (depending on CREATE_P) dependency caches to
3755 size N. */
3756 void
3757 extend_dependency_caches (int n, bool create_p)
3759 if (create_p || true_dependency_cache)
3761 int i, luid = cache_size + n;
3763 true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache,
3764 luid);
3765 output_dependency_cache = XRESIZEVEC (bitmap_head,
3766 output_dependency_cache, luid);
3767 anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache,
3768 luid);
3770 if (current_sched_info->flags & DO_SPECULATION)
3771 spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache,
3772 luid);
3774 for (i = cache_size; i < luid; i++)
3776 bitmap_initialize (&true_dependency_cache[i], 0);
3777 bitmap_initialize (&output_dependency_cache[i], 0);
3778 bitmap_initialize (&anti_dependency_cache[i], 0);
3780 if (current_sched_info->flags & DO_SPECULATION)
3781 bitmap_initialize (&spec_dependency_cache[i], 0);
3783 cache_size = luid;
3787 /* Finalize dependency information for the whole function. */
3788 void
3789 sched_deps_finish (void)
3791 gcc_assert (deps_pools_are_empty_p ());
3792 free_alloc_pool_if_empty (&dn_pool);
3793 free_alloc_pool_if_empty (&dl_pool);
3794 gcc_assert (dn_pool == NULL && dl_pool == NULL);
3796 VEC_free (haifa_deps_insn_data_def, heap, h_d_i_d);
3797 cache_size = 0;
3799 if (true_dependency_cache)
3801 int i;
3803 for (i = 0; i < cache_size; i++)
3805 bitmap_clear (&true_dependency_cache[i]);
3806 bitmap_clear (&output_dependency_cache[i]);
3807 bitmap_clear (&anti_dependency_cache[i]);
3809 if (sched_deps_info->generate_spec_deps)
3810 bitmap_clear (&spec_dependency_cache[i]);
3812 free (true_dependency_cache);
3813 true_dependency_cache = NULL;
3814 free (output_dependency_cache);
3815 output_dependency_cache = NULL;
3816 free (anti_dependency_cache);
3817 anti_dependency_cache = NULL;
3819 if (sched_deps_info->generate_spec_deps)
3821 free (spec_dependency_cache);
3822 spec_dependency_cache = NULL;
3828 /* Initialize some global variables needed by the dependency analysis
3829 code. */
3831 void
3832 init_deps_global (void)
3834 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
3835 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
3836 reg_pending_sets = ALLOC_REG_SET (&reg_obstack);
3837 reg_pending_clobbers = ALLOC_REG_SET (&reg_obstack);
3838 reg_pending_uses = ALLOC_REG_SET (&reg_obstack);
3839 reg_pending_barrier = NOT_A_BARRIER;
3841 if (!sel_sched_p () || sched_emulate_haifa_p)
3843 sched_deps_info->start_insn = haifa_start_insn;
3844 sched_deps_info->finish_insn = haifa_finish_insn;
3846 sched_deps_info->note_reg_set = haifa_note_reg_set;
3847 sched_deps_info->note_reg_clobber = haifa_note_reg_clobber;
3848 sched_deps_info->note_reg_use = haifa_note_reg_use;
3850 sched_deps_info->note_mem_dep = haifa_note_mem_dep;
3851 sched_deps_info->note_dep = haifa_note_dep;
3855 /* Free everything used by the dependency analysis code. */
3857 void
3858 finish_deps_global (void)
3860 FREE_REG_SET (reg_pending_sets);
3861 FREE_REG_SET (reg_pending_clobbers);
3862 FREE_REG_SET (reg_pending_uses);
3865 /* Estimate the weakness of dependence between MEM1 and MEM2. */
3866 dw_t
3867 estimate_dep_weak (rtx mem1, rtx mem2)
3869 rtx r1, r2;
3871 if (mem1 == mem2)
3872 /* MEMs are the same - don't speculate. */
3873 return MIN_DEP_WEAK;
3875 r1 = XEXP (mem1, 0);
3876 r2 = XEXP (mem2, 0);
3878 if (r1 == r2
3879 || (REG_P (r1) && REG_P (r2)
3880 && REGNO (r1) == REGNO (r2)))
3881 /* Again, MEMs are the same. */
3882 return MIN_DEP_WEAK;
3883 else if ((REG_P (r1) && !REG_P (r2))
3884 || (!REG_P (r1) && REG_P (r2)))
3885 /* Different addressing modes - reason to be more speculative,
3886 than usual. */
3887 return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2;
3888 else
3889 /* We can't say anything about the dependence. */
3890 return UNCERTAIN_DEP_WEAK;
3893 /* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
3894 This function can handle same INSN and ELEM (INSN == ELEM).
3895 It is a convenience wrapper. */
3896 void
3897 add_dependence (rtx insn, rtx elem, enum reg_note dep_type)
3899 ds_t ds;
3900 bool internal;
3902 if (dep_type == REG_DEP_TRUE)
3903 ds = DEP_TRUE;
3904 else if (dep_type == REG_DEP_OUTPUT)
3905 ds = DEP_OUTPUT;
3906 else
3908 gcc_assert (dep_type == REG_DEP_ANTI);
3909 ds = DEP_ANTI;
3912 /* When add_dependence is called from inside sched-deps.c, we expect
3913 cur_insn to be non-null. */
3914 internal = cur_insn != NULL;
3915 if (internal)
3916 gcc_assert (insn == cur_insn);
3917 else
3918 cur_insn = insn;
3920 note_dep (elem, ds);
3921 if (!internal)
3922 cur_insn = NULL;
3925 /* Return weakness of speculative type TYPE in the dep_status DS. */
3926 dw_t
3927 get_dep_weak_1 (ds_t ds, ds_t type)
3929 ds = ds & type;
3931 switch (type)
3933 case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break;
3934 case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break;
3935 case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break;
3936 case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break;
3937 default: gcc_unreachable ();
3940 return (dw_t) ds;
3943 dw_t
3944 get_dep_weak (ds_t ds, ds_t type)
3946 dw_t dw = get_dep_weak_1 (ds, type);
3948 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
3949 return dw;
3952 /* Return the dep_status, which has the same parameters as DS, except for
3953 speculative type TYPE, that will have weakness DW. */
3954 ds_t
3955 set_dep_weak (ds_t ds, ds_t type, dw_t dw)
3957 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
3959 ds &= ~type;
3960 switch (type)
3962 case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break;
3963 case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break;
3964 case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break;
3965 case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break;
3966 default: gcc_unreachable ();
3968 return ds;
3971 /* Return the join of two dep_statuses DS1 and DS2.
3972 If MAX_P is true then choose the greater probability,
3973 otherwise multiply probabilities.
3974 This function assumes that both DS1 and DS2 contain speculative bits. */
3975 static ds_t
3976 ds_merge_1 (ds_t ds1, ds_t ds2, bool max_p)
3978 ds_t ds, t;
3980 gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE));
3982 ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES);
3984 t = FIRST_SPEC_TYPE;
3987 if ((ds1 & t) && !(ds2 & t))
3988 ds |= ds1 & t;
3989 else if (!(ds1 & t) && (ds2 & t))
3990 ds |= ds2 & t;
3991 else if ((ds1 & t) && (ds2 & t))
3993 dw_t dw1 = get_dep_weak (ds1, t);
3994 dw_t dw2 = get_dep_weak (ds2, t);
3995 ds_t dw;
3997 if (!max_p)
3999 dw = ((ds_t) dw1) * ((ds_t) dw2);
4000 dw /= MAX_DEP_WEAK;
4001 if (dw < MIN_DEP_WEAK)
4002 dw = MIN_DEP_WEAK;
4004 else
4006 if (dw1 >= dw2)
4007 dw = dw1;
4008 else
4009 dw = dw2;
4012 ds = set_dep_weak (ds, t, (dw_t) dw);
4015 if (t == LAST_SPEC_TYPE)
4016 break;
4017 t <<= SPEC_TYPE_SHIFT;
4019 while (1);
4021 return ds;
4024 /* Return the join of two dep_statuses DS1 and DS2.
4025 This function assumes that both DS1 and DS2 contain speculative bits. */
4026 ds_t
4027 ds_merge (ds_t ds1, ds_t ds2)
4029 return ds_merge_1 (ds1, ds2, false);
4032 /* Return the join of two dep_statuses DS1 and DS2. */
4033 ds_t
4034 ds_full_merge (ds_t ds, ds_t ds2, rtx mem1, rtx mem2)
4036 ds_t new_status = ds | ds2;
4038 if (new_status & SPECULATIVE)
4040 if ((ds && !(ds & SPECULATIVE))
4041 || (ds2 && !(ds2 & SPECULATIVE)))
4042 /* Then this dep can't be speculative. */
4043 new_status &= ~SPECULATIVE;
4044 else
4046 /* Both are speculative. Merging probabilities. */
4047 if (mem1)
4049 dw_t dw;
4051 dw = estimate_dep_weak (mem1, mem2);
4052 ds = set_dep_weak (ds, BEGIN_DATA, dw);
4055 if (!ds)
4056 new_status = ds2;
4057 else if (!ds2)
4058 new_status = ds;
4059 else
4060 new_status = ds_merge (ds2, ds);
4064 return new_status;
4067 /* Return the join of DS1 and DS2. Use maximum instead of multiplying
4068 probabilities. */
4069 ds_t
4070 ds_max_merge (ds_t ds1, ds_t ds2)
4072 if (ds1 == 0 && ds2 == 0)
4073 return 0;
4075 if (ds1 == 0 && ds2 != 0)
4076 return ds2;
4078 if (ds1 != 0 && ds2 == 0)
4079 return ds1;
4081 return ds_merge_1 (ds1, ds2, true);
4084 /* Return the probability of speculation success for the speculation
4085 status DS. */
4086 dw_t
4087 ds_weak (ds_t ds)
4089 ds_t res = 1, dt;
4090 int n = 0;
4092 dt = FIRST_SPEC_TYPE;
4095 if (ds & dt)
4097 res *= (ds_t) get_dep_weak (ds, dt);
4098 n++;
4101 if (dt == LAST_SPEC_TYPE)
4102 break;
4103 dt <<= SPEC_TYPE_SHIFT;
4105 while (1);
4107 gcc_assert (n);
4108 while (--n)
4109 res /= MAX_DEP_WEAK;
4111 if (res < MIN_DEP_WEAK)
4112 res = MIN_DEP_WEAK;
4114 gcc_assert (res <= MAX_DEP_WEAK);
4116 return (dw_t) res;
4119 /* Return a dep status that contains all speculation types of DS. */
4120 ds_t
4121 ds_get_speculation_types (ds_t ds)
4123 if (ds & BEGIN_DATA)
4124 ds |= BEGIN_DATA;
4125 if (ds & BE_IN_DATA)
4126 ds |= BE_IN_DATA;
4127 if (ds & BEGIN_CONTROL)
4128 ds |= BEGIN_CONTROL;
4129 if (ds & BE_IN_CONTROL)
4130 ds |= BE_IN_CONTROL;
4132 return ds & SPECULATIVE;
4135 /* Return a dep status that contains maximal weakness for each speculation
4136 type present in DS. */
4137 ds_t
4138 ds_get_max_dep_weak (ds_t ds)
4140 if (ds & BEGIN_DATA)
4141 ds = set_dep_weak (ds, BEGIN_DATA, MAX_DEP_WEAK);
4142 if (ds & BE_IN_DATA)
4143 ds = set_dep_weak (ds, BE_IN_DATA, MAX_DEP_WEAK);
4144 if (ds & BEGIN_CONTROL)
4145 ds = set_dep_weak (ds, BEGIN_CONTROL, MAX_DEP_WEAK);
4146 if (ds & BE_IN_CONTROL)
4147 ds = set_dep_weak (ds, BE_IN_CONTROL, MAX_DEP_WEAK);
4149 return ds;
4152 /* Dump information about the dependence status S. */
4153 static void
4154 dump_ds (FILE *f, ds_t s)
4156 fprintf (f, "{");
4158 if (s & BEGIN_DATA)
4159 fprintf (f, "BEGIN_DATA: %d; ", get_dep_weak_1 (s, BEGIN_DATA));
4160 if (s & BE_IN_DATA)
4161 fprintf (f, "BE_IN_DATA: %d; ", get_dep_weak_1 (s, BE_IN_DATA));
4162 if (s & BEGIN_CONTROL)
4163 fprintf (f, "BEGIN_CONTROL: %d; ", get_dep_weak_1 (s, BEGIN_CONTROL));
4164 if (s & BE_IN_CONTROL)
4165 fprintf (f, "BE_IN_CONTROL: %d; ", get_dep_weak_1 (s, BE_IN_CONTROL));
4167 if (s & HARD_DEP)
4168 fprintf (f, "HARD_DEP; ");
4170 if (s & DEP_TRUE)
4171 fprintf (f, "DEP_TRUE; ");
4172 if (s & DEP_ANTI)
4173 fprintf (f, "DEP_ANTI; ");
4174 if (s & DEP_OUTPUT)
4175 fprintf (f, "DEP_OUTPUT; ");
4177 fprintf (f, "}");
4180 DEBUG_FUNCTION void
4181 debug_ds (ds_t s)
4183 dump_ds (stderr, s);
4184 fprintf (stderr, "\n");
4187 #ifdef ENABLE_CHECKING
4188 /* Verify that dependence type and status are consistent.
4189 If RELAXED_P is true, then skip dep_weakness checks. */
4190 static void
4191 check_dep (dep_t dep, bool relaxed_p)
4193 enum reg_note dt = DEP_TYPE (dep);
4194 ds_t ds = DEP_STATUS (dep);
4196 gcc_assert (DEP_PRO (dep) != DEP_CON (dep));
4198 if (!(current_sched_info->flags & USE_DEPS_LIST))
4200 gcc_assert (ds == 0);
4201 return;
4204 /* Check that dependence type contains the same bits as the status. */
4205 if (dt == REG_DEP_TRUE)
4206 gcc_assert (ds & DEP_TRUE);
4207 else if (dt == REG_DEP_OUTPUT)
4208 gcc_assert ((ds & DEP_OUTPUT)
4209 && !(ds & DEP_TRUE));
4210 else
4211 gcc_assert ((dt == REG_DEP_ANTI)
4212 && (ds & DEP_ANTI)
4213 && !(ds & (DEP_OUTPUT | DEP_TRUE)));
4215 /* HARD_DEP can not appear in dep_status of a link. */
4216 gcc_assert (!(ds & HARD_DEP));
4218 /* Check that dependence status is set correctly when speculation is not
4219 supported. */
4220 if (!sched_deps_info->generate_spec_deps)
4221 gcc_assert (!(ds & SPECULATIVE));
4222 else if (ds & SPECULATIVE)
4224 if (!relaxed_p)
4226 ds_t type = FIRST_SPEC_TYPE;
4228 /* Check that dependence weakness is in proper range. */
4231 if (ds & type)
4232 get_dep_weak (ds, type);
4234 if (type == LAST_SPEC_TYPE)
4235 break;
4236 type <<= SPEC_TYPE_SHIFT;
4238 while (1);
4241 if (ds & BEGIN_SPEC)
4243 /* Only true dependence can be data speculative. */
4244 if (ds & BEGIN_DATA)
4245 gcc_assert (ds & DEP_TRUE);
4247 /* Control dependencies in the insn scheduler are represented by
4248 anti-dependencies, therefore only anti dependence can be
4249 control speculative. */
4250 if (ds & BEGIN_CONTROL)
4251 gcc_assert (ds & DEP_ANTI);
4253 else
4255 /* Subsequent speculations should resolve true dependencies. */
4256 gcc_assert ((ds & DEP_TYPES) == DEP_TRUE);
4259 /* Check that true and anti dependencies can't have other speculative
4260 statuses. */
4261 if (ds & DEP_TRUE)
4262 gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC));
4263 /* An output dependence can't be speculative at all. */
4264 gcc_assert (!(ds & DEP_OUTPUT));
4265 if (ds & DEP_ANTI)
4266 gcc_assert (ds & BEGIN_CONTROL);
4269 #endif /* ENABLE_CHECKING */
4271 #endif /* INSN_SCHEDULING */